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Abstract 

 
The pervasiveness of smartphones has made 

connecting with users through proximity based mobile 

social networks commonplace in today’s culture.  

Many such networks connect users by matching them 

based on shared interests. With ever-increasing 

concern for privacy, users are wary of openly sharing 

personal information with strangers.  Several methods 

have addressed this privacy concern such as 

encryption and k-anonymity, but none address issues of 

eliminating third party matches, achieving relevant 

matches, and prohibiting malicious users from 

inferring information based on their input into the 

system.  In this paper, we propose a matching scheme 

that accurately pairs similar users while 

simultaneously providing protection from malicious 

users inferring information.  Specifically, we match 

users in a proximity-based social network setting 

adapted from a framework of differential privacy.  This 

eliminates the need for third-party matching schemes, 

allows for accurate matching, and ensures malicious 

users will be unable to infer information from 

matching results. 

 

 

1. Introduction  

 
The reliance on mobile devices is ever increasing in 

our current culture.  The pervasiveness of such devices 

allows for such conveniences as Location Based 

Services (LBSs). LBSs are mobile application services 

that provide a service, such as a restaurant 

recommendation, to a user based on their location.  

Foursquare and Yelp are two widely known LBSs.  

Social networking applications often utilize LBSs in 

Proximity Based Social Networking (PBSN), which is 

commonly used to match users based on similarities in 

interests in things like music, sports, movies, etc. 

Examples of PBSN’s are mobile dating applications 

such as Tinder, and Sonar.me.  A typical process for 

matching users in a PBSN is for an initiating party to 

broadcast a user’s interests to the other nearby users 

directly.   These users then decide if a connection will 

be made based on similarities between them and the 

initiator.  The result will either be a match, or no 

match, based on some similarity computation.  

Although this scheme is effective, unfortunately, it 

sacrifices the privacy of the users.  Users might not feel 

comfortable broadcasting their interests if it is related 

to sensitive matters.  It is not hard to imagine a 

scenario where a user maintains a personal persona 

separate from their professional persona.  Bad things 

could happen if this user were matched with a fellow 

employee who might reveal sensitive information 

about the user in the workplace.  Also, users may 

experience loss of privacy if a malicious user 

systematically changes their interests until a match is 

made with another user. It allows the malicious user to 

infer information about other users interests by simply 

using the application how it is intended. Common 

approaches of encryption and k-anonymity do not 

successfully address preserving user privacy while 

simultaneously producing accurate results.  

 
1.1. Related Word 

  
Various solutions have been proposed in recent 

years [1,7,8,9,13,14] to address the issues of preserving 

privacy while matching users.  These solutions all 

assume the user has multiple interests chosen from a 

public set of defined interests. These interests range 

from things like what type of music a person likes, to 

how often do they consume alcohol. 

[10] matches users by both the number of common 

interests and the corresponding interest weight on each 

of the individual users.  They argue this allows for 

more accurate fine-grained matches.  Instead of peer to 

peer sharing of data to find user matches, [10] relies on 

a third-party matching scheme.  The problem with this 

reliance on a third-party is that they maintain a central 

repository for all user data and therefore are subject to 

a central point of failure if the third-party entity is 
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somehow compromised.  [10] also relies on 

computationally expensive encryption techniques that 

do not address the issue of a malicious user inferring 

other user information based on their interests and 

match results.   

[6] incorporates differential privacy by perturbing 

data with noise from the Laplace distribution and using 

secure multi-party computation (SMC) for matching. 

They utilize a blocking step when processing the data 

for SMC.  This filters out records that will not be part 

of the join result and ensures the cost of matching 

during SMC will be at acceptable levels.  Instead of 

using common k-anonymity techniques to sanitize the 

data, they leverage differential privacy.  Essentially, 

they group records according to their attributes and 

then use noise drawn from the Laplacian distribution to 

either suppress a record or add a fake record.  If the 

noise is positive they add fake records to the dataset, 

and if it is negative they suppress records from the 

dataset.  Their experimental analysis aims at reducing 

the cost of private matching records.  Although they 

show their approach provides strong privacy 

guarantees, their effectiveness in reducing matching 

costs is approximately the same as the k-anonymity 

versions.   

The approach in [6] essentially uses the noise from 

the Laplacian distribution as a binary decision to add or 

suppress data.  This is fundamentally different from 

our approach.  We add noise from the Laplace 

distribution to all attributes of a given record.  The 

experimental results of [6] also focus on reducing the 

cost of SMC so it is unclear as to how accurate their 

matching results are.   

[7] develops an approach to publish search queries 

and click data in the form of a click query graph.  A 

query is only published if the query frequency plus 

some added noise exceeds some threshold.  Their 

findings are that the more stringent the privacy 

requirement, the higher the threshold, and 

consequently the fewer the number of queries that can 

be safely published.  Their approach is similar to [6] in 

the way they information is released based on some 

threshold. Our research differs in the way we use 

Laplacian noise with data.  We don not suppress data 

based on some threshold as [7] does.  It is also unclear 

if the approach in [7] relies on third parties.  The 

experimental analysis of [7] found that keywords 

obtained with the perturbed data closely resemble the 

original unperturbed data.  Whether this translates to a 

more general case of matching users is unclear.   

[8] avoids the issues with third party matching by 

directly calculating matches between two users based 

on a maximal intersection of interest sets where 

interest is defined as a string up to a certain length.  

Calculations are computed locally on each user’s 

machine.  It is unclear how accurate the matches 

between users is with this approach, and no data is 

provided regarding accuracy.  Also, the set matching 

technique in [8] does not address the issue of malicious 

users inferring information because when one user 

attempts to match with another, they can infer interests 

of the other from the matching results.   

[13] uses three different protocols to match users in 

PBSN’s.  These protocols assume an honest but 

curious user and do not address the scenario of a 

malicious user who changes input and observes output 

to infer information of another user.  The paper states 

that if a malicious user Bob repeatedly tries to match 

with a user Alice by creating fake profiles, he can 

eventually learn Alice’s profile information.  To 

combat this problem, they suggest limiting the number 

of times that Bob can attempt to match to Alice.  

Unfortunately, this suggestion is not an adequate 

solution to the problem our paper focuses on; ensuring 

that user profile information is safe from malicious 

users.  Although [13] provides adequate protocols for 

an honest but curious scenario, they do not address the 

problems that are the focus of our paper.  

 [14] matches users with similarity calculations 

based on prioritizing and weighting individual 

interests.  This is done without the use of a third party 

matching scheme, but a malicious user can still infer 

knowledge by repeatedly querying nearby users and 

analyzing results.  Again the accuracy of matches is 

not thoroughly examined in this research.   

The problem of secure matching discussed in this 

paper is similar to secure recommender systems. 

Cryptographic solutions to the problem of secure 

recommender systems such as [5,6] focus on removing 

the third-party recommenders.  They do not attempt to 

limit the amount of knowledge malicious users can 

infer through using the system as intended.    

[9] develops a differentially private recommender 

system that provides guarantees of privacy for users.  

Their system ensures some level of privacy against 

malicious users inferring information from the use of 

systems that recommend movies from the Netflix 

dataset.  The approach in this work is developed for a 

specific recommender system that uses certain 

statistical steps.  This approach does not generalize to 

all recommenders and therefore does not work for our 

research. Technical differences between our work are 

in the way we use the interest weight of a user as the 

count query function where they compute a covariance 

matrix.  Lastly, the general objective of the research in 

[9] is different from ours.  [9] uses statistical methods 

to aggregate user data and recommend movies where 

our work involves mutual selection between two 

parties by focusing on user to user matching, not an 
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aggregation of some number of user records to 

recommend something to a given user. 

[11] develops a lightweight recommender system 

that uses perturbed data for existing recommender 

systems.  Data is perturbed locally and their system 

works with existing recommenders.  Perturbing the 

data locally ensures their objective of privacy 

preservation is met and allows their data to be used 

with third party recommenders.  Their experimental 

analysis shows that recommendation accuracy is 

preserved while perturbing the data.  Our research 

differs in the general objective.  Similar to the 

differences with [9], [11] focuses on recommending 

products to a user based on aggregating some number 

of user records to find the most relevant product.  It is 

unclear how this approach would generalize to our 

objective of finding the best match from direct user to 

user matching.    

A common approach to preserving privacy in data 

is anonymization.  This involves methods such as k-

anonymity.  K-anonymity typically attempts to 

anonymize data with two techniques: suppression and 

generalization. Suppression involves removing or 

masking certain attributes in the dataset and 

generalization involves replacing individual values of 

attributes with a general range.  The problem with 

these approaches as shown in [1] is that the 

anonymization techniques often used render the data 

useless for matching algorithms.  Differential privacy 

does not experience this problem.  

 
1.1. Contributions 

  
The contributions of this work are to implement a 

matching algorithm to be used for PBSN’s that 

provides differential privacy guarantees for the users.  

The challenge of this task is to provide accurate 

matching while maintaining privacy.  This challenge is 

overcome by developing a matching algorithm within 

the framework of differential privacy.  The issue of 

using a third-party matching scheme is arbitrarily 

solved by calculating the matching metrics for users 

directly on their devices.  Furthermore, third-party 

matching schemes could be used as long as the data 

they received was already differentially private.  The 

issue of malicious users inferring user information 

from the results of the algorithm is addressed by 

applying differentially private techniques to user’s 

interest data.  Specifically, perturbing the data using 

random noise drawn from the Laplace distribution. 

Applying the Laplace mechanism to each user’s 

interest data set ensures that a malicious user will not 

be able to determine a user’s interests and that 

subsequent queries will also not leak information. 

Users privacy will be guaranteed up to some , 

meaning no user will be able to definitively infer each 

interest level of another user.  The similarity between 

two users is calculated with the Pearson coefficient 

similarity metric, a common similarity metric used in 

matching algorithms. 

 

2. Preliminaries  

 
2.1. Dataset and Distance 

  
In this research, a dataset x is a collection of 

interests from the universe U of all possible interests.  

When a given user does not have an interest in a 

particular attribute, the interest will remain in the 

dataset with a weight of 0.  Our universe U of interests 

is U = {interesti, …interestn} where i = 1 … n and n is 

the total number of possible interests.  Given this 

definition, we can define the distance between two 

datasets x, y with the l1 norm as [3]:  

 

 

 

The dataset used for our experiments consists of 

weight vectors of user interests. Weights for interests 

range from 0-5 where 0 indicates no preference (no 

interest) and 5 indicates strong preference. An attribute 

in the dataset is an individual weight for a user interest. 

 
2.2. Differential Privacy 

 
Differential privacy formalizes the idea that the 

output of some computation does not allow inference 

to be made on the presence or absence of any record in 

the computations input.  More formally, it requires that 

for any outcome of a randomized computation, that 

outcome should be nearly equally likely with and 

without any one record [9]. A randomized computation 

M satisfies -differential privacy if for any adjacent 

dataset X and Y, and any subset S of possible 

outcomes Range(M), 

 

 
 

The guarantee differential privacy provides can be 

interpreted as a bound on the ability to infer from any 

output event S, whether the input to the computation 

was X or Y [3].  In our project, this means inference 

about the presence or absence of any given attribute 

(user interest) is bounded by a factor of  
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It is important to note that differential privacy is a 

property used in our algorithm that outputs matches.  It 

is not the output itself.  Differential privacy is a privacy 

guarantee for some defined . 

 
2.3. Laplace Mechanism 

 
The Laplace Mechanism is used to ensure 

differential privacy with our matches.  This works by 

perturbing a counting query  with noise distributed 

according to a Laplace distribution centered at 0 with 

scale ,        

Lap(x| ) =  

 

then the Laplace mechanism is defined as: 

   where Z is a random variable 

drawn from the Laplace distribution.  The Laplace 

Mechanism is proven to ensure differential privacy [3].  

In our work, the counting query function  is simply 

the preference count for a given interest.  Similar to 

counting a population of people represented in a 

dataset that smoke, the preference count represents the 

number of bits that represent the amount of interest a 

user has in a specific area. 

 
2.4. Similarity Metrics and Matching 

 
Matching in our work is where for a given user 

Alice from a set of N users, a similarity metric is 

calculated for the N-1 users and the user with the 

highest similarity score to Alice is the one she is 

matched with. Each user has a set of interests 

represented as a weight vector and inputted into the 

Lapalce mechanism.  The output of the Laplace 

mechanism from one user to the rest is used to 

compute the Pearson correlation coefficient (PCC), 

which computes the similarity between two users.  

PCC in this instance shows the linear relationship 

between two weight vectors.  PCC output ranges 

between -1 and 1 where a value greater than 1 would 

be a positive relationship for the vectors, a value less 

than 0 would be a negative relationship, and a value of 

0 would be no relationship at all. 

 
2.5. Adversary Models 

 
A common user scheme for this type of research is 

to consider the user honest-but-curious [10][3][8].  

This research addresses the honest-but-curious user 

approach as well as the malicious user approach. This 

malicious user has the power to modify interest weight 

input until a match is made with a targeted user, or 

information is inferred about the user.  In this scheme, 

any given user can act as the malicious user. 

 

3. Problem Description  

 
The protocol in our approach is a PBSN that 

involves n users geographically close, who are trying 

to match with each other based on shared interests.  

This protocol does not rely on interacting with a third 

party matching entity.  The process is divided into two 

phases: creating differentially private user datasets, and 

matching users.  An example assumes n users where 

each user has their own preference dataset Ip = <Ip1, Ip2. 

…, Ipn>. The PBSN application ensures each users 

dataset is differentially private.  Each user dataset is 

then shared with all n-1 users and the similarity is 

computed.  The most similar user to a given user Alice 

is the one matched to Alice. This can also be 

generalized to the most similar k users, where k can 

equal 1 to n-1. 

 
3.1. Phase I 

 
In this phase, the Laplace mechanism is applied to a 

given user’s preference dataset.  This is done locally on 

each user’s machine.  This eliminates the need for a 

third-party matching system as well as sharing 

unperturbed data with other users.  The Laplace 

mechanism adds random noise to each interest count 

drawn from the Laplace distribution.  Once the Laplace 

mechanism outputs the perturbed dataset, it can be 

shared with all other n-1 users. 

 
3.2. Phase II 

 
In this phase, a user calculates their matching 

similarity with all n-1 users.  This is done by 

calculating the PCC for a given user amongst all other 

users with their provided perturbed dataset.  The user 

with the highest similarity to a user Alice will be the 

one she is matched with.   

Since the datasets used in the matching satisfy 

differential privacy for some , Alice cannot determine 

definitively the exact interests and weights that 

achieved this match. Furthermore, each user can 

control the privacy they are comfortable with by 

adjusting the noise metric used in their differential 

privacy calculation. 

 

4. Experiments  
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The experiments in this paper consist of 

simulations of PBSNs that pair similar users.  The 

simulations are implemented in Python and the dataset 

used is a real world dataset pertaining to the interests, 

habits fears, and opinions of  young people between 

the ages of 15 and 30 in Slovakia.  The responses to 

each question are in the form of a scale where 0 

denotes no interest and 5 denotes a strong interest [16].  

There are a total of 1010 participants and  a total  of 

140 attributes for each respondent. Three experiments 

are performed to analyze the trade-off in accuracy vs 

privacy, as well as validate accuracy and usefulness of 

our system.  Experiment 1 calculates the number of 

features vs the matching accuracy for different 

amounts of noise ( ) drawn from the Laplace 

distribution.  Experiment 2 computes the best match 

for one sample with an  of 0. The placement of this 

best match in similarity lists (list of highest scoring 

matches to lowest scoring, for a given amount of noise) 

of various  is compared.  Experiment 3 computes the 

match for multiple values of .  The rank of these 

matches on a baseline similarity list is compared.   

 
4.1. Experiment 1 

 
Experiment 1 compares the trade-off between 

accuracy and privacy ( ) with various feature sizes. 

Here, features represent the weight vectors of users 

interests.  For each , we compute the best match with 

10, 50, 90, and 130 features.  A random sample is 

drawn from the dataset to compute the PCC against all 

other samples. The values for  that we compare are 

0.0, 0.1, 0.3, 0.5, 0.7, and 0.9.  The baseline  that we 

compare all others to is  = 0 which means no noise is 

added to the data.  For the baseline, as the number of 

features included in the similarity calculation increases, 

the similarity score decreases. After computing the 

baseline for the various feature sizes, we then generate 

a similarity score between all users, for all values of .  

For each , we now have a list of similarity scores 

between all the samples and the randomly chosen one.  

From here, we use the highest scoring calculation from 

each feature size in the baseline and find it in the 

similarity lists for each .  This allows us to compare 

the accuracy of the baseline match and the different 

amount of privacy applied to the system.  The results 

of this are displayed in Figure 1. 

 
4.2. Experiment 2 

 

In this experiment, we compute the PCC for one 

randomly chosen sample against all other samples in 

our dataset.  Our baseline used for comparison is when 

 = 0.  Like before, we obtain lists of similarity scores 

by computing PCC between the random sample and all 

others for  = 0.1, 0.3, 0.5, 0.7, 0.9.  We do this for 

feature sizes of 10 to 140, where the feature size 

increases by 10 each time. This results in a total of 14 

features sizes.  We next compare the highest scoring 

match in the baseline at each feature size to the 

similarity lists for each  size.  Specifically, we 

calculate where the baseline match sits in the similarity 

list for each , and we store this in a matrix.  From 

here, we can compute the average distance of how far 

away a value for  places the baseline match across all 

feature sizes. The results of this are displayed in figure 

2. 

 
4.3. Experiment 3 

 
Experiment 3 computes the PCC for one randomly 

chosen sample against all other samples in our dataset.  

Our baseline used for comparison is once again when  

= 0.  In this experiment we compute a similarity list for 

the baseline.  We then compute the highest scoring 

match for each value of  across all feature sizes 

(feature sizes are the same as experiment 2). After this, 

we check to see where the highest scoring match for 

each value of  rank in the baseline similarity list.  We 

essentially reverse the comparison done in experiment 

2.  Results of experiment 3 are found in figure 3. 

 

5. Experimental Evaluation  

 
The general findings of our experiments show that 

although there is a trade-off between accuracy and 

privacy when matching users, our system matches 

users with high similarity even with significant noise 

added to the data  

 
5.1. Experiment 1 Evaluation 

 
The results of experiment 1 reveal multiple 

findings.  In general,   figure 1 shows that as a number 

of features used in calculating similarity increases, the 

similarity scores decrease.  It is obvious that when the 

feature set is more robust there will be less similarity 

between users, because  there are more features to 

consider, resulting in a decrease in score.  This holds 

true whether or not noise is added to the data. 

The most important finding from experiment 1 is 

that as the noise added to the data increases, the 
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accuracy of the matching algorithm decreases, but not 

significantly for   0.5.  This has been noted in 

previous research [9] and is now displayed in our novel 

approach.  Our system maintains relatively high 

matching accuracy even with significant noise added to 

the data    

The takeaway from this experiment is that PBSN’s 

are capable of overcoming the challenge of not 

allowing malicious users to infer information thus 

preserving user privacy in matching algorithms.  

Figure 1 shows that depending on the data for a 

particular PBSN; consideration is required to find the 

right balance between a number of features used for 

calculating similarity, the amount of noise to add to the 

data, and how much variation in accuracy to allow in 

the system.  

 

 
 

Fig. 1. Each line represents some  of 
privacy.  The comparison of privacy vs 
accuracy is compared to various sizes of 
features used in computing similarity between 
two samples.  The red line has no noise 
added, and serves as the comparison for all 
others. 

 
5.2. Experiment 2 Evaluation 

 
Results from experiment 1 show that striking the 

right balance between feature size and privacy can 

allow our system to still perform highly accurate 

matching.  Experiment 2 looks at the accuracy from a 

different perspective and aids in validating the findings 

from Experiment 1.   

Results of experiment 2 show that for   0.5,  the 

baseline highest scoring match for a given feature size 

is less than six users away from the top of the 

similarity lists for each  on average.  This is a 

significant finding because it shows that adding noise 

up to 0.5 keeps the relative order for the k closest 

matches intact and still matches users with high 

similarity.  This means that although our system might 

not match the true highest scoring match, it matches on 

one of the top six.  Even on our relatively small dataset 

of approximately 1000 users, the top ten closest 

matches were always within a similarity score with a 

range of no more than 10%. 

The impact of this finding is great for PBSN’s.  It 

ensures that even if a differentially private system does 

not match a user to the user with the highest similarity 

score, it will be one of the top six. When more features 

are used to calculate the similarity between two users, 

similarity scores decrease.  This means that the reality 

of a perfect match is more difficult to achieve.  

Because of this, our system works as well (for   0.5) 

as a system with no noise added.  For practical 

purposes in industry, our system is acceptable.   

 

 
Fig. 2. This illustrates the distance for the 
nearest neighbor in the baseline to the various 

.  Each column is the average distance 
across all feature sizes. 

 
5.3. Experiment 3 Evaluation 

 
Results from experiment 3 reinforce findings in 

experiments 1 and 2.  Here, we look at where the 

highest scoring matches for various rank in the 

baseline similarity list. 

The general results of experiment 3 show that the 

highest scoring matches for all   0.5 are one of the 

top 26 matches in the baseline similarity list.  Figure 3 

shows that for the highest scoring matches for   0.5, 

these matches are in the list of the top six matches for 

the baseline.  This further shows that not only does the 

datasets with added noise (   0.5) keep the highest 

scoring matches for the baseline among their top six 

matches, the highest scoring matches resulting from 

the perturbed dataset are amongst the top six matches 

in the baseline.   
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The findings in this experiment show that the 

although the matches made with the noisy datasets 

might not be the absolute best match, they are one of 

the top six for   0.5.  This means that on average, our 

system will match a user with one of the top six most 

similar users for an   0.5 across all feature sizes.  

This illustrates the practicality of our system for 

industry use.    

 

 
 

Fig. 3. Compares where the highest scoring 

nearest neighbor for various  ranks on the 
baseline similarity score list.   

 
5.4. Comparison of our Solution to Related 

Works 

 
The results of our work shows that our system is 

resilient overcomes the limitations that other works 

have experienced.  Different from [10] our work does 

not rely on third-party matching or computationally 

expensive encryption algorithms.  Also, we ensure  

differential privacy for users data, which [8] and [14] 

suffer from as well.  Our results show relatively 

accurate matching, compared to the ambiguous results 

of [8].  Unlike approaches that use k-anonymity, our 

system considers all attributes in the dataset and 

produces accurate matching even with some noise 

added to the data.  

 

6. Conclusions and Future Work 

 
In this work, we draw the conclusion that our 

matching system with differential privacy guarantees is 

practical, feasible, and produces highly accurate 

matching.  Although the loss of accuracy does increase 

as more noise is added to the data, our system is 

resilient for significant levels of noise. 

For matching systems used in industry, it is 

typically not required that the best match be made, 

rather, a match between two users with high similarity.  

We have demonstrated that our system performs well 

in this setting. We generally match users to one of their 

top six most similar neighbors while adding noise to 

the data. Our system does not rely third party matching 

schemes and allows users to set the privacy level they 

are comfortable with.   

Directions for future work include expanding our 

system to work with other data sets and testing 

different matching protocols.  Also, fully realizing our 

system by implementing it in an application that can be 

tested on mobile devices in a real world setting.   
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