INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quaiity of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the onginal manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms international
A Bell & Howell Information Company
300 North Zeeb Road. Ann Arbor. M1 48106-1346 USA
313:761-4700 800/521-0600






Order Number 9506208

HAT (Hyper Analysis Toolkit): A tool for hypertext-based
dynamic systems analysis

He, Jingxiang, Ph.D.

University of Hawaii, 1994

U-M-1

300 N. Zeeb Rd.
Ann Arbor, MI 48106






HAT (HYPER ANALYSIS TOOLKIT):
A TOOL FOR HYPERTEXT-BASED DYNAMIC SYSTEMS
ANALYSIS

A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF
THE UNIVERSITY OF HAWAII IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
IN
COMMUNICATION AND INFORMATION SCIENCES

AUGUST 1994

By

JingXiang He

Dissertation Committee:

Kenneth A. Griggs, Chairperson
William E. Remus
Rosemary H. Wild
Larry N. Osborne
David C. H. Yang



© Copyright 1994
by
JingXiang He
All Rights Reserved

il



ACKNOWLEDGMENTS

I am profoundly grateful to Dr. Kenneth Griggs for his advice and support
throughout this research. I am equally grateful to all other members of my committee, Dr.
William Remus, Dr. Rosemary Wild, Dr. Larry Osborne, and Dr. David Yang. Each of
them took time out from their busy schedules to help my progress. My special thanks to

Dr. Art Lew for editing and evaluating this dissertation.

Many thanks to Mr. Tien Lum for his participation in this project. I also own a
debt of gratitude to Mr. Jon Fujiwara and my colleagues at the Computer Resources of the
College of Business Administration for their understanding and technical support. My
thanks also go to Dr. Timothy Hill and my friends in the CIS program for providing

information that makes this dissertation possible.

Last but not least, my special thanks to my wife XiaoMei for her love and
emotional support throughout the four-year endeavor of my Ph.D. I also want to express

gratitude to my parents in China for their continuous care and love.



ABSTRACT

Increasing system complexity necessitated the development of software
engineering methods and CASE (Computer Aided Software Engineering) tools. Many
software developers and businesses have adopted engineering principles and computer
aided tools to cope with the growing needs of software development and maintenance. In
practice, most software projects are initiated by the information needs of the end users.
Precise descriptions and understandings of these information needs are critical to
information systems. It is believed that increasing end user involvement and doing things
right in the early stages of software development processes are the most effective ways to

improve software quality.

This dissertation presents a research project to develop a tool, HAT (Hyper
Analysis Toolkit), to help the end users to understand and use the structured analysis
techniques. HAT provides a hypertext linkage of graphical models, such as DFDs (Data
Flow Diagrams) and ERDs (Entity Relation Diagrams), with system description narratives
and other documents created during the system analysis. Hyperlinks placed in the diagrams
and documents provide an easy way for end users and system analysts to navigate and

cross-reference the system models.

Model evaluation is as important as model description. In addition to the
hypertext-based user interface for model description, this research incorporates a
simulation package and a rule-based expert system to estimate the dynamic features of a
DFD model. Dynamic evaluation of models at early stages will help system developers and

end users to have better control over software development processes.



vi

TABLE OF CONTENTS
AcknOwledgmeEnts. .........coooiiiiiiii e v
ADSETACE ...ttt e \%
List Of TabIeS .. ...oeieiiiiiiii e e Xil
LISt Of FIGUIES....oieiiiiieiii et Xiii
List Of AbBreviationS.............ooiiiiiieiii et Xvii
Chapter 1 Introduction............oo.oooiiiiiiiiiii i 1
1.1 Software engineering and software lifecycle.................................. 2
1.2 Tools for structured techniques.............ccccoociiiiiiii 7
1.3 CASE toéls .................................................................................... 10
1.4 Scope and constraints of this research...............................cooo 13
1.4.1 Making the user interface more friendly.............................. 13
1.4.2 Discovering system dynamics .................cccc..oooeoireiiiieennenn, 16
1.4.3 Levels of interactions ................ccccocoeiiniiiiiioiii 19
1.4.4 Environments for software engineering and simulation ........... 21

14,5 What 1S HAT oo e 23



vii

Chapter 2 Literature T@VIEW............ccoooiiiiiiiiieiiiice ettt 26
2.1 Upper CASE Studies.............coooiiiiiriiiiieieciinie e 26

2.2 Hypertext and CASE ...t 31

2.2.1 Hypertext and hypermedia.................cccccooviiiiviinrieiice 31

2.2.2 Apply hypertext to IS development ................cccooeiiiiin. 35

2.3 Simulation and IS dynamics................ccccoooieiiieeiee e 41

2.3.1 Dynamics of information systems ....................ccoeuvevueerenn.n 41

2.3.2 Apply simulation to discover IS dynamics .............ccccoooceenn. 42

2.3.3 Al and simulation...........c.ccoceooiiiiiiiic e 49

2.3.4 Simulation environmMent...............ccoeeeiieiiiiniiiiie e 53

2.3.5 Visual interactive simulation...................cocoovciiiiini 55

2.4 Summary of literature revView...............ocooeoiriiiiiiiee e 58
Chapter 3  Methodologies and tOOIS.............oooviiiiiiiiiiiie 60
3.1 Issues in user interface design ..............ccoooeiieiiiiiice 61

3.1.1 User interface design concepts ............cccocvvvivieiiiinieieninn, 61

3.1.2 User interface design methodologies ...............cccoocoeinnn 64

3.1.3 User interface tOOlS ... ..m oo 67



viii

3.1.4 Evolutionary development strategy for hypertext

APPHCALIONS......eovvviiiiieeie e 70

3.1.5 The DEXTER hypertext reference model.............................. 71
3.1.6 User interface evaluation...............coocoeoeniniicnincinene e 72
3.2 Object-oriented simulation and YANSL ... 73
3.2.1 Advantages of object-oriented simulation.............................. 73
3.2.2 YANSL - an object-oriented simulation package.................... 75

3.3 Rule-based expert systemand M4 ..o 78
3.3.1 Basic concepts of expert SyStems..................ccoevvrerireeiennn.nn 78
3.3.2 The M4 expert SYStemM.........ccocooviviiiiiiiieii e 79
3.3.3 Procedures for expert system development........................... 81

3.4 Dynamic Data Exchange and Object Linking & Embedding

tECRNIQUES ......oiiiii i 83

3.5 Object manager and object database............................................ 85

3.5.1 A file-based object-oriented storage service - Tools.h++......... 86

3.5.2 An object-oriented database - RAIMA Object Manager.......... 87

3.6 Summary of tools and methodologies.......................ccocoii. 88
Chapter 4 The system architecture.............................cocoiiiie 89

4.1 The software architecture for HAT



4.2 The user interface SUbSYStEM..............ccooviiieiiiiiiceecce e, 93
4.2.1 The Hypertext EQitor............c.ooooviiiiiiiiiiiii e 97
4.2.2 The DFD Editor and the ERD Editor ................ccocoooooiinn. 99
4.2.3 The windows for process analysis................ccccoeeeveeriiicncnninn. 102
4.2.4 The windows for data analysis.......................cocoevveieiiienn. 104
4.2.5 Comments on the user interface design.................cc..ccccoevnnnnn. 105

4.3 The data repository SUbSYStem ...................cooiiiiiiiiiieie e 106
431 The DFDre€.......coiiiiiiiiiiii e 108
4.3.2 The data relation graph and structures for the ERD................ 114
4.3.3 The dictionaries and their entries..................ccc.occvviiiiennnnn.. 118

4.4 The DDE Interface..........cccoooiiiiiiiiiiiiii e 119
4.4.1 The data interface StruCture................ccoocoocviiiineici e 120
4.4.2 The conversation protocols of the subsystems ..................... 122

4.5 The dynamic evaluation subsystem: DFD simulation ...................... 127
4.5.1 The structure of the simulation subsystem ........................... 128
4.5.2 The script language for simulation models............................. 130
4.5.3 DFD model conversion rules .............cccoccoocioiiiiinn i 133

4.5.4 The DFD model converter..............ccccoiiir e 137



4.5.5 The simulation model generator and result parser................... 140

4.6 The intelligent help subsystem..............ccooooiiiiiiiiiiii 141

4.6.1 Static DFD checking rules............c....ooooiioiiiiiic 141

4.6.2 The structure of the simulation expert system........................ 142

4.6.3 The modeling rule base................c..coooviiiiiiii 144

4.6.4 The result explanation rule base.........................coocovi e 146

Chapter 5 Implementation ISSUES ..............ccooviieiiiiiiiiiieiee e 148
5.1 Windows programming environments .................cccocoeevrrveriennrernennes 148

5.2 System integration ..............cccoovvieeiiiiiiie e 151

5.3 System testing and evaluation ....................cccooeiiin i 155

5.4 Alternative integration Strat€gies.................cc.ooieeieirireoieiiiie 159

5.5 Lessons learned through the implementation of HAT ...................... 162
Chapter 6 ConcluSIONS ............ccooiiiiiiiie e 170
0.1 ContribUtioNS. ... ......oocooiiiiiii e 170

6.2 LIMItAtIONS. ..o 174

6.3 Futureresearch..............ooooiiii 175
Appendix A An overview of object-oriented techniques.................................. 178
Appendix B Examples of systems analysis with HAT ................................. 186



Xi

B.1 Analysis of a TV inspection workshop operation: balance of

WOTKI OWS. e 186

B.2 Analysis of an investment company: determine the system

DOtIENECK ... 193

Appendix C HAT survey qUeStionnaire.................ccooocvereviirciiviosoeceenne 199
Appendix D M4 rule-base examples in HAT ..., 201
Appendix E Selective class descriptions of HAT...............ccooooiii 206
E.1 The user interface.................ccooooviiiiiiiiinicc e 206

E.2 The data repOSItOrY ........c.ccooiiiiiieiiec et 218

E.3 Simulation subsystem ........................ocoiiiiii e 251

E.4 DDE Data interface..............cc.occooooiiiiiiiiiieieees e 254

BiblIogFaphy........coiiiii i 259



Table

Table 1.1.

Table 1.2.

Table 1.3.

Table 2.1.

Table 2.2.

Table 2.3.

Table 2.4.

Table 3.1.

Table 3.2.

Table 4.1,

Table 4.2.

Table 4.3.

Table 4.4,

Table 5.1.

xii

LIST OF TABLES

Page
General models of software development....................cccooiiiiiii, 4
A list of structured diagramming tools...............ccocoiiiiiiiiiii 8
A list of some CASE tools.........cccooiiiiiiiiiii 13
Summary of user INVOIVEMENL...............ccoviiiiiiiiiii e 28
JAD solutions to user involvement problems.................................. 30
User preferences of navigation methods....................occooiiiiiiii 33
Comparative listing of hypertext and CASE.................ccc.oooiiii 41
User classification.............ccooiiiiiiiiii e 62
Pros and cons of user interface design tools.................coco..cooceoiiii 69
Basic modes for DDE data transfer...................coccoocoiiiiiiii 119
An example of the simulation script fora TV shop.....................o 132
Steps to convert a DFD into a stmulation model .................................. 139
DFD connection rules...........oooociiiiiiiiiii e 141



Figure

Figure 1.1.

Figure 1.2.

Figure 1.3.

Figure 1.4.

Figure 1.5.

Figure 1.6.

Figure 1.7.

Figure 1.8.

Figure 1.9.

Figure 2.1.

Figure 2.2.

Figure 2.3.

Figure 2.4.

Figure 2.5.

Figure 2.6.

Xiil

LIST OF FIGURES

Page
Evolution of the ‘Waterfall’ model ................coconiiiii 6
DFD SYMDBOIS ..o 9
AnERD eXample .........oooviiiiii e 9
The structure of a CASE environment.................ccooces ciiiniiiiiiniii, i1
An example of hypertext linkages to aDFD ..., 15
Arevised SDLC model ...........coooiiiiiiii 17
Different levels of interactions in system development ............................ 20
Software engineering and simulation ..................ccccoeiiii 22
An example of hyperlinks among document in HAT ................................ 24
Sources of software bugs ...............c.oooiviiii 27
Hypertext as an intermediary agent in IS development............................ 39
Stepsina simulation study ................o.oooiiiiiiiie 46
A taxonomy of combining ES and simulation .................ccc.ocooii 49
An extended ES and simulation model......................... 51
SMDE archit€Cture .............ocooiuiiiiiiiii i 54



Xiv

Figure 3.1. Areas involved in this research ... 60
Figure 3.2. Norman's user interface cognitive model............................ 63
Figure 3.3. Star life cycle for user interface development.......................... 64
Figure 3.4. Knowledge-based human-computer interaction model............................... 65
Figure 3.5. Evolutionary development strategy for a hypertext system......................... 71
Figure 3.6. An overview of DEXTER models layers ................cccooconiin. 72
Figure 3.7. Class structure of YANSL simulation language ... ..................c.ccon. 77
Figure 3.8. The kernel structure of M. 80
Figure 3.9. A generic procedure for expert system development........................c.o. 82
Figure 3.10. DDE as an information hub to connection different applications............... 83
Figure 4.1. An exploratory model to develop new systems .............c..c.oooeiiiiiinien 90
Figure 4.2. The architecture for HAT integration .............c..cc.o.ooeiiiiiieeirieiieeeenn 92
Figure 4.3. Assembly structure of objects for the user interface................................. 93
Figure 4.4. A snapshot of the user interface - default settings.................................. 95
Figure 4.5. The Tool Bar and Control Bar of the DFD Editor ... 96
Figure 4.6. Channels for hyperlinks among child-windows ... 97
Figure 4.7. The Structure of the Hypertext Editor......................cooooi i 98

Figure 4.8. The Structure of the DFD Editor and ERD Editor.....................c.ococo0. 100



XV

Figure 4.9. A snapshot of ERD EdifOr ..........cccccooiiiiiiiiiiiieiiicc e 101
Figure 4.10. The windows for process analysis..................cccooceviiniiiiieii e 103
Figure 4.11. The windows for data analysis.............cccccoooeriiiiiiniiiiee 104
Figure 4.12. Connections between the user interface and data repository.................... 107
Figure 4.13. Structure of the data repository............c.occ.eoveveviiiiiii i 108
Figure 4.14. An example of a DFD tre€ ..........ccocoooiiiiiiiiiicice e 109
Figure 4.15. Class structure of @a DFD ...........coccoociiiiiiiiiii e 110
Figure 4.16. Structure of DFD ObJECtS ...........cocoeriiiiiiiiiiiiiciceciiee e 111
Figure 4.17. A further description of DFD-related objects based on Figure 4.16........... 113
Figure 4.18. An example of a data relation graph ... 114
Figure 4.19. The structure of data-related objects................ccccooeiiiiiiiiiiii 115
Figure 4.20. The structure of an ERD .............c.coccooiiiiii 116
Figure 4.21. The structure of an Entity and a Relation..............................ooo 117
Figure 4.22. The origin of a project dictionary and a data dictionary ......................... 118
Figure 4.23. The structure of ProjectEntry and DataEntry........................oocoeein. 119
Figure 4.24. The DDE data interface in HAT ... 120
Figure 4.25. The class structure of DDE Data Interface .....................c..occcooiiiiinn 121
Figure 4.26. The structure of the simulation subsystem ... 129



xvi

Figure 4.27. The multiplexing effect of a data store after conversion ........................... 135
Figure 4.28. Examples of pseudo sink nodes to avoid simulation deadlock ................... 136
Figure 4.29. An example of converting a DFD model to a simulation model................. 137
Figure 4.30. Dialogue boxes for simulation parameters .................c.coccvcinnnicncenne, 138
Figure 4.31. State transition diagram of the model script interpreter............................. 140
Figure 4.32. The structure of the simulation expert system....................c..co..ccoccoeiee... 144
Figure 4.33. The decision tree for distribution selection....................c..ccoooiiiin 145
Figure 5.1. Comparison of different Windows programming environment ................... 149
Figure 5.2. Steps in systems int€Gration................cccovviriiiiiiieieee e 153
Figure 5.3. Class structures of subsystems and their handlers..........................co 154
Figure 5.4. The stages and the factors involved in testing ..., 155

Figure 5.5 A Software integration scenario based on DEXTER model ....................... 162



XVvil

LIST OF ABBREVIATIONS

API
CASE
DDE
DDEML
DFD
DIF
DLL
DSS
E-JAD
ERD
EMS
ESS
FIFO
4GL
GDI
GSS
GUI
HAM
IDE
IS
ISHYS
JAD
MDI

NEST
OLE

OWL

SA

Application Programming Interface
Computer Aided Software Engineering
Dynamic Data Exchange

DDE Management Library

Data Flow Diagram

Document Integration Facility
Dynamic Link Library

Decision Support Systems

Electronic JAD

Entity Relation Diagram

Electronic Meeting System

Expert Simulation System
First-in-first-out

4th Generation Language

Graphic Device Interface

Group Supporting System

Graphical User Interface

Hypertext Abstract Machine
Integrated Development Environment
Information System

Intelligent Software HY pertext System
Joint Application Design

Multiple Document Interface
Microsoft Fundamental Classes
NEtwork Simulation Testbed

Object Linking and Embedding
Object Window Library

Rapid Application Development
Systems Analysis



SD
SDLC
SE
SESSA
SILK
SMDE
SGML
SPG
UIDS
UIT

VIM
VIS
WAF
WIMP

Systems Design

System Development Life Cycle

Software Engineering

Statistical Expert System for Simulation Analysis
Speech, Image, Language and Knowledge
Simulation Model Development Environment
Standard Generalized Markup Language
Simulation Program Generator

User Interface Development Systems

User Interface Toolkits

Visual Basic eXtension

Visual Interactive Modeling

Visual Interactive Simulation

Windows Application Framework

Window, Icon, Menu and Point

xvii



CHAPTER 1 INTRODUCTION

The development of contemporary computer technology enables computer
applications in many areas and places increasing pressure on information system
professionals and end users. Because of the increased information system requirements,
more information systems need to be developed, maintained and upgraded. It is
paramount that computer scientists and information system developers deal with these

increasing demands.

This research addresses the problem of user requirement specifications and
information system (IS) modeling at the systems analysis (SA) stage. Systems analysis is
the first stage in the software development life cycle (SDLC) in which users meet system
analysts. Requirement specifications for a target system are defined at this stage. The
cost of software modification increases exponentially as the development process goes
from the SA stage to later stages of the SDLC [Sommerville 89]. Since changes can be
least expensively made at the SA stage, it is obvious that different alternatives should be
carefully weighted to determine the most feasible solution at this stage. This thesis
reports on a project that incorporates hypertext, simulation and expert system techniques
to construct a tool — Hyper Analysis Toolkit (HAT). The essence of this project is
twofold: (1) to improve the communication among users and system analysts by
introducing a hypertext-based user interface, and (2) to enhance model evaluation by
integrating simulation and expert system techniques. This thesis reviews what has been
done in related areas and describes a unique architecture feasible for the implementation
of HAT. This architecture may also be used for visual interactive simulation environment

and other simulation studies.



Several different fields are involved in this research. The first chapter begins with
some background information on software engineering and computer-aided software
engineering (CASE) tools. It answers the questions of ‘what’” and ‘why’ of this research.
The second chapter reviews what has been done on this and related subjects. The third
chapter summarizes the methodologies and tools used for this project, as well as some
theories behind them. The fourth chapter focuses on the description of the HAT
architecture and systems design. The fifth chapter discusses some implementation issues
and lessens learned from this project. The thesis concludes with the sixth chapter that
summarizes the strengths, weaknesses, contributions, as well as possible extensions of

this research.

1.1 Software Engineering and Software Life Cycle

The term ‘software engineering’ (SE) was first introduced in the late 1960's at a
conference held to discuss the ‘software crisis’{Sommerville 89]. The software crisis
resulted from the introduction of third generation computers. The advanced hardware
technologies and powerful computers made the software methodologies inadequate to
meet the increasing needs for more and larger applications. After more than twenty
years, the software crisis is still with us. The demand for software has increased at a
faster rate than the improvement in the productivity of software engineers. Furthermore,
the advent of microcomputer systems has increased the awareness of computer
applications and brought more people into computer-related activities. However, some
of these people are not aware of SE methodologies and are repeating the same mistakes
made by software engineers twenty years ago. Currently, there is a great need for better
tools, techniques, methodologies, and most importantly, better education and training for

IS developers as well as end users.



Although the definition of software engineering varies, the common factors are
that (1) SE is concerned with software systems which are built by teams rather than by
individual programmers, (2) SE uses engineering principles in the development of
information systems, and (3) SE consists of both technical and non-technical aspects. A
well-engineered software project should have the following features as described by

Sommerville [Sommerville 89]:

(1) The software should be maintainable: As long-life software is subject to regular
change, it is important that the software is written and documented in such a way

that changes can be made without undue cost.

(2) The software should be reliable: An appropriate level of reliability is essential if a

software system is to be of any use.

(3) The software should be effective and efficient: The software should perform

defined functions with a minimum cost of time and computer resources.

(8) The software should offer an appropriate user interface: The software cannot be
used to its full potential if a user interface makes it difficult to use. The user
interface design should take into account the capacity and background of the

intended users.

SE studies have developed a number of general models of software development.
Table 1.1 shows a list of some general models. Among these models, the ‘waterfall’
model, which was proposed by Royce in 1970[Royce 70], is the earliest and most
frequently used model for IS development. It divides the software development life cycle

(SDLC) into five different stages: (1) systems analysis and definition; (2) systems



design; (3) implementation and unit testing; (4) system testing; and (5) operation and

maintenance.

Table 1.1. General models of sofiware development

The waterfall approach | View a software process as being made up of a number of stages and
the software process follows these stages one after another.

Exploring programming | Develop a working system as quickly as possible. and then modify that
system until it performs in an adequate way.

Formal transformations | Develop a formal specification of the software system and transform the
specification into a program.

End user computing End users are responsible for development of their own systems.

Assembly from reusable | Use existing reusable components to construct a new system. The
components development process is mostly assembly rather than creation.

There have been numerous refinements and variations of the original waterfall life
cycle model. Figure 1.1 shows an evolution process of the waterfall model. The original
model assumed that software development was a linear process. Later stages would not
be started until the previous stages have been finished. However, in practice, the
development stages overlap and feed information to each other. Each stage needs to go
through several iterations before passing on to the next stage. Later stages may feed
information back to the earlier stages and start a new iteration. This iterative process will

continue until the software is phased out.

Software development often takes several months or even years to finish. In the
original waterfall model, users will not see the system until after the implementation and
testing stage. Because the cost of software modification goes up exponentially as the
SDLC goes on, it will be too late and too expensive, if not impossible, for users to
suggest modifications after the implementation. In addition, the original SDLC model
assumes that a system is well specified prior to the system development. However, most

users do not know what they want until they ‘feel’ and ‘see’ their system in operation



[Sprague 82]. The ‘rapid prototyping’ technique provides users with an operational
version of system inputs and outputs. Once rapid prototyping is incorporated into the
SDLC model, the users can ‘feel’, ‘see’, and play with the system prototype at early
stages. Rapid prototyping often reveals omissions, inconsistencies and misunderstandings
of system requirements. If the system does not meet their expectation, users may suggest
modifications and see the changes quickiy. Because system developers can get feedback
from users much earlier than that of the old SDLC models, modifications become easier
with less cost. Rapid prototyping also encourages users to become more involved and
committed to their system from the earliest stages of development. Since users actively
participate the development process, they are more ready to understand and accept the

new system [Lantz 87].



Feedback

Syslem's »| Systems Implementation System __| Operationa
Analysis Design | &Testing *| Testing ~ | Maintenance
0]

{ Users )4 ________ Ee_egtl.ask_ ________

j
!
|
Systems |
Analysis ||
i l I
Systems I
Design _'j I
i
Implementation :
& Testing y ',
|
‘ System
Testing
Operation&
- Maintenance
(i)
Feedback

————————— »( Users ’_.__A_____Egef’gafﬁ,;ﬁv___._‘

Systems
/ Analysis I

Rapid L Systems

Prototyping Design l
4

Implementation
& Testing

]

o — —
e —

System

Testing j

QOperation&
Maintenance

(iii)

Figure 1.1. Evolution of the ‘Waterfall ' model



1.2 Tools for Structured Techniques

In the early days of information systems development, there were few tools other
than the programming languages themselves. SE research has brought tools and design
methodologies into every stage of the SDLC. The primary objective of these tools are:
(1) to achieve high-quality programs of predictable behavior, (2) to create programs that
are easily maintainable, (3) to simplify the programs and the programming process, (4) to
speed up system development, and (5) to lower the cost of system development [Martin

88].

Based on these objectives, ‘Structured Techniques’ evolved from a coding
methodology (structured programming) to techniques that include analysis, design,
testing methodologies, and prcject management concepts. Martin and McClure [Martin

88] summarize the basic principles of structured philosophy as:

(1) The principle of abstraction: To solve a problem, separate the aspects that are
tied to a particular reality in order to represent the problem in a simplified,

general form.

(2) The principle of formality: Follow a rigorous, methodical approach to solve a

problem.

(3) The divide-and-conquer concept: Solve a difficult problem by dividing the
problem into a set of smaller, independent problems that are easier to understand

and to solve.

(4) The hierarchical ordering concept: Organize the components of a solution into a
tree-like hierarchical structure. Then the solution can be understood and

constructed level by level, each new level adding more details.



Diagrams are often used in software development to illustrate the structures and
ideas of analysis, design and implementation. Table 1.2 lists some structured diagram

tools for different stages of the SDLC.

Table ]1.2. A list of structured diagramming tools

Analysis Tools Data Flow Diagram, Control Flow Diagram, Decision Table & Tree,
Matrix, Dependency Diagram, Decomposition Diagram, HIPO Diagram

Design Tools Structure Chart, Action Diagram, Wanier-Orr Diagram, Dccision Table
& Trec, Pseudo Code, Flowcharts, Screen layouts, Dialog Flow

Programming Flowcharts, Pscudo Code. Action Diagram. Decision Table & Tree
Tools

Database Tools Entity Relation Diagram, Data Structure Diagram, Data Navigation
Diagram, Logical Records. Physical Database and Filcs, Data
Immediate Access Diagram, Data Dictionary

Among all the structured analysis tools, the Data Flow Diagram (DFD),
developed by Demarco and Yourdon [Yourdon 79], is frequently used for function-
oriented analysis to aid functional decomposition and process modeling. Figure 1.2
shows the four basic DFD symbols of Gane & Sarson method [Gane 79]. A ‘Source or
Destination of Data’, also called ‘External Node’, is an entity outside the system that
sends or receives data. A ‘Data Flow’ is a collection of data elements in motion. A ‘Data
Store’ is a collection of data elements at rest. A ‘Process’ is an operation that transforms
data. System models are created using these symbols in a hierarchical fashion starting
with a single process context level diagram and ‘exploding’ the process to other more
detailed levels. A Process explosion is the linkage of the process to a sub-DFD for
purposes of functional decomposition and encapsulation. Processes in sub-DFDs can be
further exploded until an atomic level is reached and the system has been fully,

functionally decomposed.



Symbol:

Meaning:

Entity Relation Diagrams (ERDs) are often used for data-oriented analysis to
describe the relationships of data entities and their attributes. Figure 1.3 is an example of
an ERD using the Chen method [Chen 76]. An ERD has two basic symbols: an entity
(the rectangle) and a relation (the diamond shape). Entities are collection of data
describing an important element in the information system, such as ‘Seller’. Relationships
describe a logical connection between entities (e.g., owns). Cardinalities (numerical
relationships between entities) are labeled on relationships. Each entity-relationship set is
an expression of the underlying semantics of data. If properly constructed, an entity-
relation set can be read like a sentence in either direction. For example, the relationship

between ‘Seller’ and ‘House’ can be read as ‘A seller owns M houses’ and ‘A house is

11
Seller

owned by a seller’

1M

Brokerage
Cortract

[

Source or
Destination of Data

1.1

Data Flow

[

Data Store

Figure 1.2. DFD symbols

n

Owns

lowned by

1M

11
Is ForfHas House

Is ForMas

Figure 1.3. An ERD example

]

Process

Listing




10

Function-oriented analysis and data-oriented analysis are complementary. ERDs
can be used to describe data components in a DFD; and DFDs can be used to model data

processing functions in data-oriented analysis.

1.3 CASE Tools

The objective of SE principles and methodologies is to improve the quality and
productivity of software development. However, it is very hard to create, modify, and
manage all kinds of diagrams and documents manually. Without computer-aided
automation, the software engineering paradigms will not be practical in software
development. McClure [McClure 89] concludes that: “Computer-aided software

engineering (CASE) is the automation of software development.”

Automation of the software development process is not a new concept. Since the
early days of computer-based system development, assemblers and compilers have been
used to translate high level language into machine language. CASE differs from previous
computer-aided automation by enforcing software engineering methodologies in all
stages of the SDLC. It encourages evolutionary and incremental development. Some SE
concepts, such as abstraction, divide-and-conquer, hierarchical ordering, and step-wise
refinement, are embedded in CASE. With CASE tools, software developers can derive

the real benefit of SE methodologies.

There have been many CASE tools in the market for computer professionals.
Most of these tools are based on structured techniques used to support structured
analysis (SA), structured design (SD) and code generation. The recent development of
object-oriented techniques brings a new perspective to the enforcement and

implementation of basic SE philosophy. Several object-oriented CASE tools have been



11

proposed [Coad 90, 91]. It is believed that object-oriented techniques will be the

dominant software development method of the next generation.

Although there are different variations, CASE tools have common goals to
support software development [McClure 89]: (1) Provide an interactive development
environment with rapid response time, dedicated resources, and early error checking. (2)
Automate many software development and maintenance tasks. (3) Provide powerful user

interface and visual programming capacity.
Data
dictionary

Skeleton
code
generator

Report
generation

Diagramming
tools

facilities

Query
. facilities
repository
Checking Import/export
tools facilities

Figure 1.4. The structure of a CASE environment

Y

Central
—t—— information

Form
creation
tools

Figure 1.4 shows the structure of a CASE environment. There is a central
information repository as the information exchange center, from which other
components store and retrieve information. A database is often used to facilitate the
information repository. Other components can reside in the same computer as the

repository, or distribute over a local area network.

A graphical diagramming capacity is fundamental to CASE to create DFD, ERD
as well as other graphical models. A data dictionary is used to maintain names, labels,

data attributes and other information of system models. Checking tools verify the validity



12

of the models. Query facilities and a report generator are used to browse information and
examine completed designs. A code generator produces code or code segments from
designs stored in the central repository. Form creation tools enable the users to
customize the reports. Import-export facilities allow information interchange with other

CASE tools.

Technologies utilized to build a CASE environment may change, but the basic
functions that CASE provides to system developers should remain stable. Chen and

Nunamaker [Chen 89] summarize the following basic functions of a CASE environment:

(1) Elicitation: CASE tools should be able to help system developers describe

systems at analysis, design, and implementation levels.

(2) Analysis: CASE tools should be able to analyze the consistency and
completeness of an elicited system description, detect errors or evaluate design

alternatives.

(3) Transformation: CASE should help system developers to convert a system

description from one level to another.

(4) Information Storage: Information elicited by system developers or generated by

CASE must be stored so that project information can be shared and reused.

A complete CASE environment is a very complex piece of software. It may take
years of team-work to finish. As a result, CASE tools are often very expensive and used
mostly by computer professionals. Table 1.3 lists some information of commercial CASE
tools available in the market [Oman 90]. These CASE tools support multiple SE
techniques that help system developers in different stages of the SDLC. Unlike these

fully functional CASE tools, this research focuses an architecture for front-end CASE



that only support the systems analysis stage of the SDLC. It will be less expensive, more

compact and more user friendly to encourage user involvement in the development

process.
Table 1.3. A list of some CASE tools as of 1990 [Oman 90]
CASE Tool Developer Description Platform Price
Cradle CASE Yourdon Inc. Supports all phascs of the life Sun , UNIX | $12,500
cycle. Uses Yourdon structured
method. (single user)
Jackson CASE | Michael Jackson | Maps closely to Jackson methods PC . DOS $8.000
Systems for system design
Card Tool Ready Systems An integrated set of requirements | Sun . UNIX | $7.000
and design tool .
Excelerator Index Provides multiplc analysis and PC . DOS $8, 400
Technology design tools to analyze, design and
document IS. Sun, UNIX
AdaGen Mark V Systems | Supports both object-oriented and | PC. DOS $7.850
traditional Ada development.
Sun, UNIX

1.4 Scope and Constraints of This Research

This section illustrates the need for more user involvement and dynamic model

evaluation. This research tries to meet these needs by introducing hypertext and

simulation into the system analysis process.

1.4.1 Making the user interface more friendiy

The purpose of software engineering is to improve sofiware quality. Like any

other product, the goal of a software product is to satisfy consumer's needs. The

definitions of quality have evolved from ‘fitness of use’ and ‘conformance to established

requirements ’ to ‘never ending improvement of product and service’ and ‘delight the

customers’. From this perspective, a CASE tool should not only focus on how to




14

implement a design efficiently, but also the need to improve the user interface to

communicate with users more effectively and earn their trust.

On the base of the SDLC coverage, CASE studies can be classified as ‘upper
CASE’ (front-end CASE) and ‘lower CASE’ (back-end CASE) [Chen 89, 92a]. Upper
CASE tools are used for information system planning, analysis, logical design, and some
other user related aspects of system development. Lower CASE tools are used for
physical design, code generation and program testing. Since user involvement and early
error detection are critical to developing correct and cost-effective information systems,

upper-CASE studies have drawn increasing attention.

Ives, Olson and Baroudi [Ives 83] have proved that greater user involvement
leads to greater system success and less user involvement results in malfunction and
unsatisfactory systems. To improve user involvement, many techniques have been
proposed, such as Joint Application Design (JAD), Rapid Application Development
(RAD), prototyping, and Group CASE [Yourdon 92].

Hypertext, which was originally designed for authoring and document
management, is viewed as one of the enabling technologies for CASE [Chen 89].
Hypertext is a non-linear information network composed of information nodes,
hyperlinks and navigation methods. Experimentations have shown that well-organized
hypertext system may result in more friendly user interfaces and customized information

retrieval [McAleese 89, Mynatt 92].



Sellers sZRd ircompletad
brokerage contracts and when
they are received thgy are ~~~~.__

time-stamped and placed fn-a_
~y. ~a

-~ ~

contracts file RN S~

™|contracts

Sellers

hs RS brokerage
" & | contracts

received

—.— | & time

stamped

brokerage
contracts

Hypertext Narrative Window

DFD Drawing Window

Figure 1.5. An example of hvpertext linkages to a DFD

Figure 1.5. shows a structure to incorporate hypertext with a DFD. A text

15

window holds the description narratives of a DFD model and another graphical window

displays the graphical layout of the diagram. Hyperlinks are constructed while the model

is been developed. The hyperlinks provide various ways to view the model. These links
represent the thought path of the model designers (authors) and can be easily accessed
by reviewers (readers). As a result, hyperlinks provide another dimension (hyper-

dimension) in addition to the linear text and two-dimensional graphical model for

communication between designer and users as well as among users themselves.

A user interface with multiple windows and hypertext conveys richer information

to users. It is expected that once it is incorporated with a CASE tool, the hypertext

interface will increase users' comprehension of system models. Such an improved channel

of communication may help software developers to achieve more user involvement, less

misunderstanding, and fewer errors in software development.



16

On the other hand, a WIMP (Window, Icon, Menu and Point) styled hypertext
interface may help users not only to understand models designed by other people, but
also to learn and to use the analysis techniques for their requirement specification. This
will provide an opportunity to extend structured techniques and CASE, which are used
mostly by computer professionals, toward end users. It will result in more user
involvement, improved communication and better tools for user requirement

specification.

1.4.2 Discovering system dynamics

In addition to the construction of system models, validation and evaluation of
these models are also important CASE functions. Model validation is to check if a model
is structurally valid and functionally correct. Model evaluation is to measure the

performance of a valid model and weight different alternatives.

Most CASE tools check for mechanical errors in a model and study some static
features, such as data balance, cardinality and data consistency. Noise and random
factors have not been taken into consideration in static analysis. However, information
systems are designed, implemented and used in a rapidly changing and turbulent
environment. The activities of software development and application are dynamic by
nature. Although prototyping techniques reveal some dynamic features and give a fast
glimpse on the system's behavior, they can only uncover some of the micro features, such
as what a user interface looks like, how it responds to users' requests and what functions
may be included in the system. Some macro features which reveal the overall system
performance, such as bottlenecks, job waiting time and resource utilization, still remain
unknown. Analytical methods can be used to statistically analyze these performance
features of system models [Ng 90]. Unfortunately, it is hard, if not impossible, to define

mathematical formulas that precisely represent the behaviors of a system model. Studies



17

have shown that static analysis based on mathematical approximation may result in
unrealistic conclusions in noisy and turbulent environments [Wild 91a]. Systematic
dynamic modeling strategies are needed to counter noise and turbulence that may occur

in system development [Sol 91].

Simulation is often used to model an unknown system and reveal the statistical
features of the system performance when analytical solutions are not available.
Simulation is non-destructive, repetitive and dynamic. It can be used to test system
behaviors under different scenarios without implementation of the system. A study
conducted by Warren [Warren 92] shows that simulation of IS models can provide better

estimates of system performance and detect errors at early stages.

ext. dynamic feedback external feedback
—————————————————————— B USErs )-~em - - - e e
i i T |
i macro | micro 1 I static ! 1 ! !
! i ’ i 1 ( ! )
{ i L t ( ! 1
= Systems ! . i i i
Smart ! Analysis | static i ,
simulator | i | " i I
" l | . slatlc{ i )
— Systems ll dynamic : "
Rapid - Design i ! ; !
Prototyping % | i static/ |
| ' ! dynamic :
Implemen‘lation ‘ |
& Testing i | static/
\ : ! dynamic
System X
Testing |
; |
/ ] Operation&
Maintenance

Internal feedback

Figure 1.6. 4 revised SDLC model

Figure 1.6 shows a revised SDLC model with a simulation package embedded in
the SE process. There are two kinds of feedback to users: static feedback, such as verbal
or written reports and documents, and dynamic feedback, such as demos, prototypes and
system previews. In the old SDLC model, users can, at most, get static feedback at the

systems analysis and design stages. The system performance dynamics will not be



18

available until the coding and testing periods when it is too late and too expensive to
make changes. The prototyping technique provides dynamic feedback on what the target
system will look like to users at an early stage. Users may have the chance to offer
suggestions for improvement when it is still feasible to change the system. However,
prototyping only provide a micro view of a system. An embedded simulation package
can be used to estimate the dynamics of overall system performance at an early stage and
provide a macro view of the system at the systems analysis stage. The macro views of a
target system are more important for strategic decision making, such as to determine the
hardware and software configurations and to compare different design options. With
information from dynamic evaluation, users and the system developers may have better

control over the software development process.

To date, IS dynamic evaluation has not been routinely included in CASE tools.
The potential of dynamic model evaluation may improve the IS development processes in

the following ways:

(1) Improve system performance estimation. Unlike static evaluation, dynamic
evaluation takes random factors into account and results in more precise
estimations of system parameters under turbulent situations, such as job-load,

service time, and average system response time.

2) Improve hardware platform selection. Because of improved system performance
estimation, system analysts can reduce the chance of over-specifying or under-
specifying hardware configurations. It may save hardware costs and avoid

unsatisfied system requirements.



19

3) Improve software environment selection. Because system response time and data
volume are better estimated, software systems can be chosen on a cost-effective

basis.

4) Improve re-engineering process. Different re-engineering strategies can be
compared through dynamic evaluation before any decision is made. It provides

more control and quality assurance to the re-engineering team.

However, few users and system analysts are skillful at simulation techniques.
They may neither have the time nor the experience to develop a simulation model every
time an IS analysis problem occurs. They need help to determine simulation parameters
and generate simulation models. Furthermore, simulation results are not always
understandable and are very tedious. An expert system can provide suggestions and
insights to help users and improve the effectiveness of simulation. O'Keefe described a
different architecture incorporating a simulation system with an expert system [O'Keefe
86]. There have been other studies that incorporate an expert system in different
simulation tasks [Fox 89, Hill 87, Park 90]. It is necessary and feasible to build an expert

system that helps users to build simulation models and explain simulation results.

1.4.3 Levels of interactions

Software development involves different levels of interactions and activities. It
ranges from highly abstract conceptual modeling to very detailed coding and testing. As
described in the previous sections, the development is a team effort that can be viewed as
a process full of interactions between ‘authors’ and ‘readers’, ‘users’ and ‘analysts’, and
‘designers’ and ‘programmers’. There are different concerns at each level that require

different tools.



20

Mittermeir and his colleagues add interaction into the water-fall model. They
view software development as consisting of two dimensions: interaction and refinement
[Mittermeir 90 ]. They propose ‘outside in’ and ‘inside out’ approaches to analyze the
interactions of a system; and ‘top down’ and ‘bottom up’ approaches to refine the

system functionality.

The interactions can be further decomposed into human to human interactions
and human to machine interactions. In a study of hypertext and CASE integration,
Oinas-Kukkonen focused on the human to human interaction among users and system
developers as well as system developers themselves [Oinas-Kukkonen 93]. He concludes

that hypertext is the right vehicle that serves as an intermediary among human actors.

Levels of Human-Computer Interaction

Run-time Debugging /

Prototyping

Simulation &
Anzlytical Evaluation

Planning & Design ¢ |implementation & Steps of
Analysis Testing System Refinement

Technical

V

Levels of Human-Human Interaction

Figure 1.7. Different levels of interactions in system development

Figure 1.7 is a 3-dimensional model of interactions in software development. In
the first two dimensions, human to human interactions are presented throughout the
entire software development process. At the planning and systems analysis stage, human

to human interactions focus on the organizational level. People are more interested in



2]

which department is involved in the new information system, how the development team
is organized, what is the budget for the project, what is the hardware and software
configurations. At the later part of systems analysis and logical system design stages,
information about the conceptual model of the proposed system needs to be circulated
among the end users, the developers, the management, and other interested groups. At
the implementation and testing stage, system developers are interested in technical details
of how to implement the conceptual models, the test strategies that should be used, and
the testing of code or functional modules. Hypertext is suitable for all the human to
human interactions by providing hyperlinks among documents and improving

understanding of the system.

In the human to computer interaction dimension, people must actively observe,
study, and test the computer system and control it within their expectations. It is obvious
that debugging and testing a real system is the most direct way to get feedback on
system performance. However, at the systems analysis stage, the only tools available to

study a non-existing system are simulation and some other analytical methods.

This project is to develop a tool that improves systems analysis by integrating
hypertext to enhance human to human interactions, and simulation to enrich human to
machine (models of a proposed information system) interactions. Since systems analysis
is the corner-stone for later stages of the SDLC, improved system analysis greatly

enhances system development as a whole.

1.4.4 Environments for software engineering and simulation
Software engineering and simulation are two distinct but closely related areas.
Computer simulation involves the development of a simulation program. The principles

and tools for software engineering can be used to direct the development of simulation



22

programs and simulation environments. On the other hand, as stated in the last section,

simulation can be used as a tool to improve the software engineering process.

Each of the two areas has its own essentials. SE focuses efficient and effective
implementation. Simulation is concerned with statistical analysis and model evaluation.
Neither of the environments can replace the other. However, there are some

commonalties between the environments of SE and simulation.

Software Engineering Computer Simulation

~
~ //
-

~ -
~ -

‘ Visual, Interactive and Inteliigent Environment )

Hypertext/hypermedia and computer graphics
+

Artificial Intelligence

Figure 1.8. Software engineering and simulation

As hardware costs goes down and personal computing becomes more available,
software engineering and simulation analysis require more distributed, collaborative and
user friendly support environments. Figure 1.8 shows that enabling technologies, such as
computer graphics, hypertext/hypermedia along with breakthroughs in hardware, become
the foundation for a visual interactive environment. Artificial intelligence techniques
provide vehicles for inference and intellectual reasoning of computer systems. There is a
trend in software engineering and simulation toward the development of integrated,
visual, interactive, and intelligent environments. The intention of this dissertation is to

follow this trend and search for ways to create better systems environments.



23

1.4.5 What is HAT?

HAT (Hypertext Analysis Toolkit) is designed to address the problems found in
upper CASE. A hypertext-based user interface is the fundamental component. It helps
end users and system analysts to plan an information system, define the user
requirements and analyze the system with DFD and ERD models. The goal of HAT is to
encourage more user involvement, promote structured systems analysis methods,
improve communications among users and system analysts, and estimate system
performance at the early stages of the SDLC. This tool provides an opportunity to push
traditional methods such as the use of DFDs and ERDs, which are practiced by computer
professionals, toward end users and allow them to describe their needs in a more
organized fashion. In addition, dynamic evaluation of information system models with an
embedded simulation package may overcome some of the biases of static analysis and
provide statistical estimation of the general system dynamics. Different alternatives can

be judged and weighted before systems implementation.

Figure 1.9 shows an example of hyperlinks in HAT. Direct hyperlinks (dashed
lines with arrow head) are constructed from requirement specifications of DFDs, ERDs
and other documents. These links are connected as the analysis process is developed.
Reviewers of the project can easily browse the models through hyperlinks and add new

links.



Requirements T
e e ___
ERD 2
N N
AN ERD 1 O
¢ \O\
s . A
s N\
/ -
Data % .
Dictionary x

OFD1

e

~

M
- ———— =]

\_
»

Module 1

Project
~—e Dictionary
N L
\
N
\\
\\ - - .
-
A\l
Module 2

Figure 1.9. An example of hyperlinks among documents in HAT

24

The dynamic evaluation subsystem generates simulation models from DFDs and

feeds the result back to the user interface. A simulation expert system functions as a

helper to determine the parameters of a simulation model and explain the simulation

result. Dynamic Data Exchange (DDE) links are used as communication channels among

the user interface, the simulation package, and the simulation expert system.

The basic functions of HAT can be listed as:

(1) A WIMP (Window, Icon, Menu and Pointer) styled GUI (Graphical User

Interface) for friendly, easy user access, which includes:

(a) A graphical editor that provides graphical tools for drawing and editing

(b) A hypertext editor that provides tools to create and delete hyperwords

DFD and ERD models.

and connect them with graphical objects in DFD and ERD models.



25

(c) A browser and navigation methods for model query and retrieval.
(d) Interfaces to access the data dictionary and data model descriptions.

(e) A report generator that generates reports from DFD and ERD models in

a pre-defined format.

() Interfaces for simulation modeling and parameter setting.

(2) Model validation and evaluation subsystem:

(a) A static evaluator of DFD models that checks for mechanical errors in a

DFD drawing and data flow balance.

(b) A dynamic evaluator of DFD models that generates simulation models

from DFD model scripts and runs a simulation to get statistics of system

performance.

(c) A simulation supporting expert system that aids in simulation model

development and explains simulation results.

This research is an exploration of ways to integrate hypertext and simulation with
a CASE environment. These are two enabling techniques that may improve CASE
performance and software productivity in the future. HAT focuses exclusively on the
systems analysis stage and is an aid to effective communication with structured systems
development methods. HAT itself cannot work as a stand-alone CASE tool. However, it

may serve as a front-end CASE tool and a tutorial tool for educational purposes.



26

CHAPTER 2 LITERATURE REVIEW

The objective of this literature review is to support the underlying concepts of
Hyper Analysis Toolkit (HAT) and lay the foundation for its creation. This review
includes an explication of (1) the concepts of upper CASE and user-oriented techniques;
(2) an application of hypertext to CASE usage; (3) simulation systems and embedded
simulation in CASE; and (4) an integrated simulation environment with visual agents and

expert systems.

2.1 Upper CASE Studies

Software development is a labor-intensive process that ranges from several
months to many years. With the advance of hardware technology, especially
microcomputer technology, the cost of hardware is decreasing and CPU time is no
longer a scarce resource. Thus, sophisticated user interface technologies become
practical. In addition, new developments in software methodologies make it possible for
CASE and other software tools to support functions such as 4GL (4th Generation
Language), automatic code generation and automatic testing. As a result, software
developers are greatly relieved from the burden of programming and code optimization.
However, this does not mean the end of software crisis. The demand for software has
grown much faster than the improvement in the productivity of sofiware engineers.
While new software development techniques relieve some programming and testing
urgency, overall time pressure for complex systems project completion is increasing.
More efforts are required to not only increase the efficiency of programming, but also to

improve the effectiveness of software development, especially in the early stages of the

SDLC.



27

Martin [Martin 88] identifies the principal source of software bugs as being in
the stages of analysis and design, not in the coding process itself. As shown in Figure
2.1, 60% of software bugs come from systems analysis and 85% from analysis and
design combined. The study also showed that 80% of the time and effort required to
locate and debug software problems were due to logic errors. It is obvious that software
development time and cost will be significantly reduced if errors in analysis and design

are detected and corrected soon after they occur.

Coding

5% Cthers

10%

Design
25%

Analysis
60%

Figure 2.1. Sources of software bugs as presented in [Towner 89]

Since the quality of systems analysis and design is of great importance, much
CASE research has paid special attention to upstream activities, such as analysis, logical
design, and some other user related aspects [Chen 89, 92a). Chen further states that
because of the increasing demand for business application and widespread use of
microcomputers, the traditional SDLC model has been expanded to include business and
information system planning activities. More users and field experts are involved in the
planning and preliminary znalysis stages. In addition to structured analysis and design
tools, it requires upper CASE to provide IS planning tools representing high level
business objectives and organization structures, as well as their relationships with
business functions. These planning tools should allow users to navigate through
descriptions (in graphs or forms) of a system in various related aspects via hypertext-
styled links. Consistency within and across modeling aspects should be checked and

ensured by upper CASE.



Table 2.1. Summary of user involvement from [lves 84]

Features Descriptions

Type of 1. Consultative: Design decisions are made by system group. But the

participation objective and the form of the system is influenced by the necds of the user
department. (indirect involvement)
2. Representative: All levels and functions of the affected user group are
represented in the system design team. (direct involvement)
3. Consensus: An attempt is made to involve all workers in the user
department, at least through communications and consultation. through
the system design process. (highly direct involvement)

Degree of 1. No involvement: Uscrs are unwilling or not invited to participate.

participation

(the amount of
user influences
over the final
product)

2. Svmbolic involvement: User input is respected but ignored.

3. Involvement by advice: User advice is solicited through interview or
questionnairces.

4. Involvement by weak control: Uscrs have ‘sign ofl” responsibility at
each stage of system development process.

5. Involvement by doing: A user as design team member or as liaison joins
the information devclopment group.

6. Involvement by strong control: Users directly pay for the new
development out of their own budgets.

Outcome of user
involvement

1. System quality: More user involvement results in improved
understanding of the system, improved assessment of the sysiem needs,
and improved cvaluation of system features.

2. Svstem acceptance: More user involvement increases user perceived
ownership of the system, decreases resistance of change, and increascs
commitment to the new system.

28



29

Ives and Olson define the term ‘user involvement’ as ‘the participation in the
system development process by representatives of the target user group’ [Ives 84]. They
indicate that the concept of user involvement can be traced to the theories and research
in Organization Behavior, including group problem solving, interpersonal communication

and individual motivation. Table 2.1 gives a summary of user involvement research.

Gould and Lewis [Gould 85] have also observed the complexity of IS
development and the importance of user involvement. They assert that nobody can get it
right the first time and IS development is full of surprises. Furthermore, developing a
user-oriented system requires living in a ‘sea of changes’. Ignoring the changes does not
eliminate the need for change. They recommend three principles of design: (1) Early
focus on users and tasks — understand user needs at the very beginning, (2) Encourage
the intended users to use prototypes and a simulation of the system, (3) Empirical
measurement — observe, record, and analysis of user response, and (4) Iterative design —

go through the cycle of design, user test, measure, and redesign.

In practice, the needs for more interactive tools and more user involvement have
been widely recognized. Users are becoming involved at discrete points in the SDLC in
various forms, namely review, sign-off meetings, and weekly sieering committee
meetings. These common techniques, however, are still insufficient to create enough user
involvement [Gould 85]. There are several reasons that more powerful, structural and
informative communication channels need to be created— (1) system analysts often do
not have the experience nor the expertise to fully understand the business, the people and
the politics in an application field, (2) as systems sophistication progresses, there has
been an increasing focus on the introduction of creative and innovative ideas into
information systems (often users, not designers, are innovators who bring novel solutions

to their own problems), (3) user requirements may change over time during the lengthy



30

software life cycle. There should be enough leverage for system developers to be well

informed of changes and reflect the changes in their design in a timely fashion.

Joint Application Design (JAD) presents some solutions to the problems. JAD
was originated at IBM in the late 70's. By the mid 80's, JAD gained recognition in the IS
community as an effective method to manage analysis and design stages in the systems
life cycle [August 91]. More recently, Martin [Martin 90a] created a variation of JAD
known as Rapid Application Development (RAD). IBM has built a very large program
to support JAD, both for its customers and for its massive internal development needs.
The principles of JAD are to introduce structures and formats for “how to run a design
meeting’. Once the principles were supported by software and built into the SDLC, JAD
became a methodology that centered on other activities from IS planning to system
maintenance. Although there has not been a rigid set of rules nor a single structure, JAD
provides ‘soft’ guidelines to solve some user involvement problems. Carmel, George and
Nunamaker [Carmel 92] summarize some JAD solutions as shown in Table 2 2. At the
systems analysis stage, the JAD solution is to encourage teamwork among the users to

define system requirements and some design details.

Table 2.2. JAD solutions to user involvement problems as presented in [Carmel 92]

User involvement problems JAD solutions

System analysis Have the users define the requirements and some design
details. synergy of group work.

System innovation Encourage creativity, brainstorming, pool cxperts together

Fluctuation of requircments | Gather all decision makers in one place, group dynamics

There have been several recent studies in the incorporation of JAD with CASE,
group support systems (GSS), and electronic meeting systems (EMS) to achieve better

user involvement [Carmel 92, Liou 93]. The research takes advantage of state-of-the-art



31

computer network and group software techniques to complement the lack of user
attention found in some CASE tools and make JAD methods more accessible to users.
The Electronic JAD (E-JAD) proposed by Carmel provides GSS ‘tool boxes’ to support
traditional JAD sessions. Each ‘tool box’ is carefully orchestrated by a facilitator who
plays an active role in meeting planning and in supervising the meeting process. Users

can join JAD sessions from distributed locations and use tools in a given ‘tool box’.

2.2 Hypertext and CASE

2.2.1 Hypertext and hypermedia

The term ‘hypertext’ was first coined by Ted Nelson in 1965. Nelson attributes
the underlying concept to Vannevar Bush and his Memex system in 1945. An easy
explanation of hypertext might be ‘a non-linear network of linked information nodes’.

Hypertext is non-sequential reading and writing that allow authors to link information
to create paths of related materials, annotations and existing text.

-- Jeff Conklin {Conklin 87]

Hypermedia is an extension of hypertext where the information nodes may
contain not only text and graphics but also sound, video and animation. There is not a
clear-cut distinction between hypertext and hypermedia. Hypertext is a more general

term. Discussions of hypertext are also suitable for hypermedia.

Conklin [Conklin 87] discusses three different views of Hypertext: View of
Linked-ness, View of Nodeness and View of Navigation. These different views represent

features in a hypertext system.

o View of Linked-ness: A Hypertext system is an information network connected
by hyperlinks. These hyperlinks encourage writers to make references and

readers to make their own decisions. With hyperlinks, a hypertext system has the



32

feature of nonlinear information retrieval that users can start from anywhere in
the information network and choose whatever ways they want to search for
information. Because of computer support, hyperlinks can be determined at run
time and it is very fast to go along hyperlinks to visit information nodes in the
network. There can be different kinds of hyperlinks in a hypertext system which
serve different purposes. They can be: Referential Links, Organizational Links,

Conditional Links, and Activation Links.

o View of Nodeness: Information nodes are the information carriers of a hypertext
system. An information node has natural correspondence with an object in the
real world. For example, we can view ‘computer’ as an information node and

‘peripheral’ as another information node.

o View of Navigation: A set of navigation methods that guide users going through
the information network in a hypertext system. Users have the liberty to decide
where to go and how to go. The navigation method that a user applies may have
a direct impact on the result of information retrieval. Table 2.3 is a list of

navigation strategies and their usage.

Nelson [Nelson 87] points out that human thinking is not sequential but is based
on associations. It is often not reasonable to make every reader of hypertext read all the
materials in the information network. A hypertext system should allow its reader to

choose according to his/her interest.



33

Table 2.3. User preferences of navigation methods as presented in [McAleece 89]

Navigation methods Text Graphics
Scanning ** **
Browsing *kxk *
Searching *x% *
Exploring * ok

Wandering * *kk
Preferences: *: small, **: some, ***: high

Scanning covers a large arca but without depth.

Browsing follows a path until a goal is reached.

Searching has an explicit goal and strives to find it.

Exploring finds out the content of a given information web without a pre-defined goal.
Wandering goes through the information web purposelessly and unstructurally.

As a non-linear information storage and retrieval method, hypertext has great

potential to be used in many areas from authoring and document management to tutorial

and entertainment. New developments in hardware, such as CD-ROM, high resolution

color monitors, fast microcomputers, allow for the creation of hypertext and hypermedia

applications. Some common features of hypertext and hypermedia applications can be

listed as following [Conklin 87]:

Easy to trace reference: Hyperlinks can be constructed among information

nodes. Non-linear tracing along the hyperlinks can easily go from one node to

another.

Easy 1o create new references: Most hypertext authoring systems allow users to

add and delete hyperlinks.

Information structuring: Information nodes are connected by hyperlinks in
hyper-dimension space. They can be structured in many ways: tree, graph, hyper-
cube, hyper-tree and so on. These structures break the limit of linear printed text

and 2-D graphics so that they can store and retrieve information more effectively.



34

o Global views: Browsers, indexes and maps are common navigation tools
provided by hypertext systems. Users can have global views of the whole

document as well as their own positions in the hypertext web.

o Customized documents: Users have the maximum liberty to go through the
information web with navigation methods provided by the system to any
reachable node. They may create their own search patterns and information sub-

net in the web.

s Modularity of information: Each information node can be viewed as an

autonomous unit, like an object. It will not be affected by changes in other nodes.

o Consistency of information: A well-organized information network should have

no redundant nodes. All references go through hyperlinks.

o Information collaboration: Hypertext can be a shared information resource on

which multiple users can work synchronously or asynchronously.

o Two problems - disorientation and cognitive overhead: Because hypertext and
hypermedia systems contain so many nodes and their structures have so many
variations, a user may ‘get lost’ in the jungles of information. To solve this
problem, browsers, indexes and maps are often used to guide users. These tools
may also help users to ease some of the cognitive problems so that users don't

have to always remember the paths they have gone through.

How effective is hypertext as an information retrieval tool? Some other studies
have proven that users read electronic documents more slowly than they read the same
documents on paper [Wright 83]. Mynatt and his colleagues [Mynatt 92] compare the

recall and readability of hypertext and printed book. A hypertext encyclopedia and an



35

identical printed copy of the encyclopedia are used for the experiments. The result shows
that hypertext was not superior over printed document for linear information retrieval.
However, when non-linear retrieval and more complex questions are involved, the

performance of hypertext users is better than that of printed documents users.

2.2.2 Apply hypertext to IS development

Software development can be viewed as a special authoring process. The
products from this process are computer programs and software documents. The
management of these documents is one source of software development problems. It is
quite natural to employ powerful document management tools like hypertext to improve
software document management. Chen [Chen 89] lists hypertext as one of the enabling

techniques for the next generation of CASE tools.

Much of the difficulty in developing and maintaining a large software system is
inherent in the complexity of the tasks themselves. Brook [Brook 87] points out that the
complexity is the essential property of sofiware and part of the problem is the inability to
visualize the system . Although Brook asserts that software structures cannot be
visualized because they contain higher dimensions of space, Carando argues that a lot of
the work in software design and analysis goes into conceptualizing these elements in
visual forms [Carando 89]. She points out that these limited attempts at visualization, if
not completely correct, are at least of some help in finding a direction to explore.
Furthermore, hypertext alleviates some of the problems by providing (1) a repository for
all project information, (2) hyperlinks that describe internal relationships, and (3) an

interface that improves software visualization.



36

Hypertext tries to imitate associative human thinking and offers a flexible solution
for managing various kinds of media (text, graphics, audio and video). Hypertext can

empower a CASE environment in the following ways [Oinas-Kukkonen 93]:

(a) Graphical user interface. Users may visually and interactively select and/or
define hyperlinks and zoom the information ‘lens’ to the desired level of details.
Different browsers of the hypertext system provide orientation of global views

that guide users through the information network.

(b) Supporting data/document repository. Hypertext can provide efficient data and
document storage and retrieval to integrate the file management in a CASE
environment. An advance hypertext system also supports document generation

and version controls that can further improve CASE performance.

(c) Representing semi-structured information. Hypertext combines the semantics of
natural language and a node-link structure. It separates the logical and physical
structure of a document and makes it easier to capture the reasoning process

behind a design decision.

(d) Support collaboration. A Hypertext database provides a common Ayperspace

that can be shared by different parties.

The history of hypertext applications in IS development extends over 20 years
ago when the Augment system was developed [Conklin 87]. Several examples of
hypertext systems that specially target applications for software engineering are as

follows:

Augment, developed at Stanford Research Institute, was the first hypertext

system applied to SE. Its research objectives were to develop principles and techniques



for designing an ‘augmentation system’ that conceptualize, visualize and organize
working materials. Incarnation of these ideas in current software products provides
office automation support for SE, including document preparation and the journalizing

of electronic mail entries [Carando 89, Conklin 87].

Neptune of Tektronix has an open layered architecture. Neptune has two distinct
parts: the front end — a SmaliTalk user interface, and the back end - a transaction-based
server called the Hypertext Abstract Machine (HAM). HAM is a generic hypertext
model which provides operations for creating, modifying, and accessing nodes and links.
It maintains a complete version history of each node in hyper-documents and provides
rapid access to any version of a hyper-document. It also provides multi-user access over
a computer network. The Dynamic Design function in HAM allows great flexibility for

users to construct nodes and links [Bigelow 88, Conklin 87].

Shadow, developed at Schiumberger Laboratory for Computer Science,
incorporated Al with hypertext and SE. It represents software projects as a series of
models. Users can define annotations and relations among models and model
components. Shadow provides a highly visual, directly manipulatable interface that
supports element linking and traversal of the model network. In addition, Shadow has a
knowledge acquisition scheme that automatically captures information augmenting

elements, models and the links between them [Carando 89].

ISHYS and DIF, a ten-year-old project at the University of Southern California,
supports hypertext document management in the SDLC. D/ (Document Integration
Facility) provides all the basic functions of hypertext retrieval and software version
management. In addition, it also provides consistency and completeness checking of

documents, on-line software document inspection, as well as intra- and inter-document



38

tracing. ISHYS (Intelligent Software HYpertext System) adds intelligent behaviors to
DIF. 1t contains knowledge of the surrounding environment and has the ability to: (1)
automatically determine attributes of hypertext nodes, and (2) coordinate and schedule

agent tasks in the software life cycle [Garg 89].

HyperCASE, an on going project of Amdahl Australian Intelligent Tools
Program, integrates a collection of tools to provide a visual integrated and customized
SE environment. It consists of loosely coupled tools for both text and diagram
presentation. HyperCASE combines a hypertext-based user interface with a knowledge-
based document repository. It also includes an extensive natural language capacity

tailored for the CASE domain [Cybulski 92].

Hypertext Intermediary Agent, is an on-going hypertext-CASE integration
project conducted by the Department of Information Science of University of Oulu,
Finland. In the preliminary report of this project, Oinas-Kukkonen [Oinas-Kukkonen 93]
points out that a CASE environment itself is an evolutionary information system during
the development of the target IS. The communication and data gathering function during
this evolution becomes more and more problematic among different actors and actor
groups. He describes the use of a collaborative hypertext system as an intermediary agent
that conveys information among different parties. Figure 2.2 shows the basic idea of a
hypertext intermediary agent. There are four actor groups in this scenario: CASE
developers, CASE users, IS developers, and IS users. The people participating in each
process can use (reading) and alter (authoring) hypertext according to their needs. The
collaborative hypertext system allows all participating groups to share a common

hyperspace.



39

Reading Authoring

Reading Reading

Authoring Authoring

Readin
9 Authoring

Figure 2.2. Hypertext as an intermediary agent in IS development

In this hypertext intermediary agent paradigm, an embedded hypertext system

improves communication and document management at three different levels: (1) the

organizational level, which defines the organizational role and context of the target IS;

(2) the conceptual level, which defines an ‘implementation-independent’ specification of

the IS; (3) the technical level, which defines the technical implementation of the IS. As a

result, the hypertext system becomes the center of communicative software in a CASE

environment and serves as an intermediary agent between other software agents and

different human actors.

The current trends in hypertext applications in IS development can be summarized as:

(1) Encourage user-oriented authoring and offer great flexibility for users to

manipulate documents. With a hypertext system, users have the freedom to

choose what to read and how to read. They can also alter the document for their

own need.



40

(2) Emphasis on highly interactive user interface and the visual expression of
software models. Hypertext is ideally suited for designing and implementing

adaptive user interface.

(3) The use of richer media. Earlier systems, like Augment and Neptune, are basically
text-based system with different browsers. Later systems like HyperCASE,

include not only text but also diagramming tools.

(4) The use of Al techniques to automatically generate hyperlinks, identify attributes

and support the modeling process.

(5) The coverage of more than one stage of the SDLC and whole-life-cycle
document management. A hypertext system can be the information exchange

center that conveys information for different people at different levels.

(6) The inclusion of consistency checks and validation capabilities.



Table 2.4. Comparative listing of hvpertext and CASE as presented in [Cvbulski 92]

Hypertext

CASE

Document authoring

Diagram editing, Text-oricnted tools

Browsing and navigation

Traversing through program modules
and refinement levels

Document aggregation

Module libraries, Data structure groups

Virtual structures

Code generation

Dynamic computation

Run time results

Revision management

Software configuration management

Group work

Project team dcvelopment

Extendibility / tailor-ability

Multiple methodologies

Concept annotation

Design dccision recording

Consistency checking

Validation / verification

Completeness assessment

Project plan tracking

These examples above show that hypertext applications in the SE process are

feasible and beneficial to software development. Table 2.4 compares functions of

41

hypertext and CASE. It is clear that hypertext can be applied to CASE in diverse ways to

solve or alleviate systems development problems.

2.3 Simulation and IS Dynamics

2.3.1 Dynamics of information systems

An information system is a cohesive part of an organization. An information
system is composed of people, hardware, software, data, and procedures. It collects,
transmits, processes, and stores data. It also retrieves and distributes information to

various users in an organization [Ahituv 90].



42

Because an information system is not isolated, it is subject to change with its
environment. Our society is dynamic by nature and organizations in the society must
accommodate these dynamics. Unfortunately, current information systems development
is strongly linked to the uses of static models, which often fail to express the system
dynamics. Many IS problems can be traced to the nature of IS design and its impact on
our way of thinking and modeling [Sol 91]. In addition, an information system itself is
also dynamic by nature. A sofiware system has different functions to perform different
missions from different initial points and variable input data [Cobb 90]. New perspectives
and dynamic modeling methods are needed to cope with the dynamic aspects of

information systems.

IS dynamic modeling depends on two major factors [Warren 91]:
(1) The dynamic capability of system components: the rate at which jobs can be
processed. System components include combinations of computer systems
(databases, operating systems, application software, and computer hardware),

non-computer factors in the operation of the IS, and people.

(2) The design of the IS: (a) how does work flow through the system components?
and (b) what are the performance requirements and objectives of the IS, such as

response time, available resources and budget limit?

The goal of IS dynamic modeling is to determine the extent to which a set of

system components in an IS design satisfies the performance requirements of that IS

design.

2.3.2 Apply simulation to discover IS dynamics
Queuing networks are frequently used to model complex systems, such as

production systems, communication systems, computer systems and flexible



43

manufacturing systems. To describe the behavior of a queuing system, five basic
characteristics of the process need to be specified: (1) the arrival pattern, (2) the number
of servers, (3) the service pattern, (4) the server discipline, and (5) the system capacity.
A queuing network model can represent time and stochastic factors of a system, which

are fundamental to dynamic modeling.

Queuing network problems can be solved by mathematical formulas or discrete-
event simulation. For many complex systems, there is no feasible analytical solution
derived from mathematical formulas. Simulation of a mathematical model becomes the
only way to solve the problems [Law 91]. Unlike the testing of physical models, analysis
of mathematical models is non-destructive and repetitive. This distinction, when applied
to IS performance evaluation, can be translated to: (a) physical model experiment:
testing with a real computer system, and (b) mathematical model experiment: simulating
a queuing model. Simulation provides a way to test relevant aspects of a real system or
hypothetical system without actually building the system. This feature is ideal to evaluate

IS designs at an early stage when the actual system has not been developed.

Developing a simulation model is not trivial. It requires the same amount of
effort, attention and discipline as developing any other computer application. An invalid
or inaccurate simulation model may lead to wrong conclusions. Figure 2.3 describes ten

basic steps to carry out a simulation study { Law 91, Widman 89]:

(1) Formulate problem and plan the study: Every study must begin with a clear
statement of the study's overall objective and specific issues to be addressed,

without such a statement there is little hope for success.



44

(2) Collect data and define a model: Information and data should be collected on the
system of interest (if it exists) and used to specify operating procedures and

probability distributions for random variables used in the model.

(3) Logic model validation: When the model has been specified, it must be checked
with the decision maker and the intended model user to make sure that the model
represents the real system accurately and completely within the application

domain.

(4) Construct a computer program and verify: Select a simulation language or
general purpose programming language to construct a computer program based
on the model and verify that the program correctly represents the model's

function.

(5) Make pilot runs to verify the computer program: Pilot runs of the verified model

are made for validation purpose.

(6) Extensive model validation: Pilot runs can be used to test the sensitivity output

to small changes in an input parameter and improve the model if necessary.

(7) Design experiments: It must be decided which system design to simulate if there
are some alternatives. Decisions have to be made on such issues as initial
conditions for simulation runs, the length of warm-up period, the length of
simulation runs and the number of independent simulation runs. Different

scenarios have to be prepared on how the input parameters are going to change.

(8) Make production runs: Production runs are made to provide performance data

on the system of interest.



45

(9) Analyze output data: Statistical techniques are used to analyze the output data
from production runs. Typical goals are to determine a confidence interval for a
measure of performance or to decide which simulated system is best to some

specific measure of performance.

(10) Document, present, and implement result: It is important to document the
assumptions of a simulation model. The result and recommendations should be

presented to users.



(1) Formulate problem ”
and plan the study
@ Collect data and
define a model

'

3) Validation 1

(4) Construct a program
and verify
(5) Make pilot runs

(6) Validation 2

(7) Design experiment

4

®) Make production runs
(9) Analyze output data
(10) Document, present

and implement

Figure 2.3. Steps in a simulation study as presented in {Law 91]



47

The relevance of a queuing network model and IS dynamic evaluation can be
justified as: (a) an IS will entail a number of processes where often the input of one
process is the output of one or more other processes, (b) the rate at which a job is
completed in one process and sent to the next process can be estimated, (c) the amount
of time that jobs spend waiting at some processes is an interesting parameter for
evaluation. The dynamic aspects of an information system can be thought in terms of a
network of queuing systems where the outputs of some of the queuing systems connect

to the inputs of some of the others [Warren 91].

System simulation has been broadly applied in business. In fact, it has been the
second most frequently used Operations Research (OR) technique (after statistical
analysis) [Law 91]. The following sections review several successful simulation projects

for information systems.

Eich [Eich 89] presents a methodology for the simulation of database
architecture for performance evaluation. It is implemented in SLAM II and can be
modified readily to accommodate different architectures. It has three major components:
(a) a basic simulation model which defines the basic environment but does not detail the
hardware / software components, (b) a system simulation model which defines the details
of hardware / software configurations, (c) an execution model which describes the exact
parameters to be examined and the simulation experiment design. Users can specify the

system simulation model at any desired level of detail.

QASE of Advance System Technologies allows users to graphically depict
software running on a hardware environment so that developers can study how certain

applications affect a proposed system's performance [Gore 90]. QASE allows modeling



48

of wide area networks, where the type of hardware and operating system of each

computer can be specified. Performance evaluation can be derived rapidly by simulation.

Eddins [Eddins 90] proposes a method to enhance the traditional DFD approach
with some dynamic features and incorporate simulation with the traditional structured
analysis and design process. An expanded DFD model is converted into an equivalent
simulation model in SIMSCRIPT. Evaluation of the system dynamics can be achieved
from the simulation results. The research suggests that CASE should include the

capacities of simulation modeling and simulation analysis.

Wild and Griggs [Wild 91a] conducted research to compare the difference
between static and dynamic analysis of DFD models in a noisy and turbulent
environment. A SIMAN simulation model is derived from a DFD. The result shows that
in a turbulent environment, static analysis may yield unrealistic results while simulation

analysis can still capture the dynamic and probabilistic features of the system.

Warren has developed a prototype of a CASE/Simulation system [Warren 92].
The system imports a DFD model from a CASE tool and converts the DFD model
automatically into a simulation model for dynamic evaluation. The prototype runs under
X Windows on a Sun Workstation. It automatically interprets a DFD model as a queuing
network and conducts simulation under specified parameters. A knowledge-based help
support system is built into the prototype to provide a model-based expert advice in
simulation modeling and simulation output interpretation. A series of behavioral studies
of system developers based on this prototype have shown that dynamic evaluation of

DFD models lead to more accurate assessments of IS design dynamics.



49

2.3.3 AI and simulation

The incorporation of Al into simulation is twofold ~ first, the desire to make
simulation methods easier to use and more widely available, and second, the need to
model increasingly complex systems, particularly systems that include some elements of
human decision making [O'Keefe 89]. Widman [Widman 89] asserts that building and
using a simulation model is a skilled process requiring expertise in a number of
theoretical fields including statistics, system analysis, and numerical analysis. In addition,
experience is needed to use simulation as an effective tool. For these reasons, an expert
system can be applied to the simulation process. Furthermore, O'Keefe shows that Al
workers have an increasing need to include simulation in Al systems so that the effects of
a decision can be extrapolated over time and an expert system can use a model of a
system to aid in reasoning. He concludes that the interdisciplinary application of Al and

simulation is natural and practical.

&— O—6

User L _User D

Hz

(© (d)

Embedded Parallel

3

—
- |

t

Cooperative

@

J

(e)

Intelligent front-end

Figure 2.4. A taxonomy of combining ES and simulation as presented in [O'Keefe 86]



50

In another research, O'Keefe [O'Keefe 86] summarizes seven patterns and four

types of Al and simulation integration (see Figure 2.4):

(1) Embedding: An expert system is embedded within a simulation model or vice
versa (pattern (a) and pattern (b)). The expert system is conceptually part of the

simulation environment.

(2) Parallel: Simulations and expert systems are designed, developed and
implemented as separate software in parallel. A simulation model can interrogate
an expert system (pattern (c)) or the expert system can execute and use the result
from the simulation (pattern (d)). Pattern (c) is useful if a simulation is developed
for a system where an expert system has already existed for part of the decision
making in the system. Pattern (d) can be used to test an expert system in a
simulation instead of on a real system, so that the development time and cost of

the expert system can be reduced.

(3) Cooperative: Al and simulation share some data to fulfill certain tasks (pattern
(e)) or they may be surrounded by a larger software system (pattern (f)). A good
example of such a system is that an expert system can be a tool that helps the

simulation modeling.

(4) Intelligent front-end: An expert system sits between a simulation package and
the user, and generates the necessary instruction or code to use the simulation

package.



51

Simulation Tasks

Experimental Output
Bi-directional Modeling Coding Design Analysis
Dynamic Links l T
Unidirectional S e ol
- - P '
P e - e |
i | ! P
Embedded ! ! f -
! ! ! - :
-------- B e et Vo
I ' 1 e
Parallel | \ i g
1 t : -
I e
———————— S it Sttt VoL
i .
Cooperative 1 : ! /}'/
1 | | e
________ Lo
I i ! 1
Intelligent ! ! '
Front-end \ H | |
Link Architecture

Figure 2.5. An extended ES and simulation model as presented in [Kwanjai 92]

Kwanjai and Wild [Kwanjai 92] extends O'Keefe's taxonomy to include two other
dimensions: dynamic links and simulation tasks (see Figure 2.5). ‘Dynamic links’ refers
to the actual interaction between an expert system and a simulation program. It can be
unidirectional, in which data is transferred at some specified intervals and with only one
direction, or bi-directional, in which data is transferred through a dynamic link back and
forth at run time. Simulation tasks are associated with steps of simulation studies: from

modeling and coding to experimental design and output analysis.

Many simulation expert systems have been developed to support different
simulation tasks. The following are several expert systems that set good examples of Al

simulation integration.

Hill and Roberts [Hill 87] illustrate an expert system prototype that helps
students to develop simulation models. A knowledge base is constructed, which contains
the expertise of common problems that students may encounter during simulation

modeling with the INSIGHT simulation language. The prototype system is developed in



52

PROLOG. It helps students solve their simulation modeling problems through question-

answer sessions.

Mellichamp and Park [Mellichamp 89, Park 90] have developed the Statistical
Expert System for Simulation Analysis (SESSA) to provide support for the numerous
statistical issues in simulation. It addresses as many as eighteen simulation analysis
issues. Within each issue, the system helps users to identify particular methods for
different situations. Once a method is chosen, a statistical package embedded in the
system can perform the actual calculations on the input data. The system is implemented

on a PC and has 172 rules.

Frankel and Balci [Frankel 89] describe the help system for the Simulation Model
Development Environment (SMDE). The help system has two major components: (a)
the Assistant Manager that offers an introduction to the SMDE, tutorials on how to use
the tool, a glossary of terms, and a help-update facility, and (b) a tool specific help
function provides the tool-implementor a set of routines to include in the application

code.

Kreutzer [Kreutzer 90] discusses the Modeller's Workbench and the Modeller's
Assistant. The Modeller's Workbench allows rapid prototyping of graphically animated
queuing scenarios. The Modeller's Assistant is a production rules-based intelligent help
system for the Modeller's Workbench. The system is implemented in SmallTalk on a Sun

Workstation.

Wu [Wu 90] discusses the concept of an expert simulation system (ESS)
combining simulation knowledge and domain knowledge into an environment which will
automatically generate working simulation models. ESS is an expert system with an

embedded simulation package. It includes: (1) a friendly user interface to input models



53

and data, (2) an automatic model generation, (3) a simulation execution, (4) an
automatic simulation analysis, (5) a simulation model adaptation, (6) a help and

interpretation facility, and (7) machine learning.

Wild and Pignatiello [Wild 91b] introduce a reverse simulation concept in which
expert systems and simulation can complement each other to enhance simulation
experimentation. Reverse simulation is a heuristic procedure which starts with a desired
performance target value or a range of values and dynamically adjusts the system design
to conform to these user-defined performance targets. The expert system and simulation
package negotiate a dynamic bi-directional linkage between them to check with the user's
goals and adjust simulation parameters. As output, reverse simulation provides
information useful in determining initial feasible values for system design variables that

serve as a starting point for subsequent performance evaluation and optimization.

2.3.4 Simulation environment

Simulation environment is a term used to describe a variety of architectures and
products which support the simulation tasks by aiding different stages of the simulation
life cycle. To some extent, such an environment can be viewed as a special CASE
(Computer Aided Software Engineering or Computer Aided Simulation Environment)
tool for simulation studies. Some simulation development environments cover every step
in the simulation life cycle, while others may cover only part of the life cycle or are

specific to certain application domains.

Henriksen [Henriksen 83] describes and integrates a simulation environment that
covers the whole simulation life cycle. It includes a model design language, a model
editor, an input preparation subsystem, a statistics collection definition facility, an

experimental design facility, a program editor and compiler, and run-time support.



54

Balci and Nance [Balci 87, Balci 92] discuss a prototype of a discrete-event
Simulation Model Development Environment (SMDE), that has been under development
since 1983. It includes: (a) a cost-effective, integrated and automated support of
simulation model development throughout its entire life cycle, (b) an improvement in
model quality by effectively assisting in the quality assurance of the model, (c) increased
project team efficiency and productivity, and (d) decreased model development time. The
architecture of SMDE is composed of four layers: (1) hardware and operating system,

(2) kernel SMDE, (3) minimal SMDE, and (4) SMDEs (see Figure 2.6).

(2)
Kernal SMDE _A

project
manager

editor

Figure 2.6. SMDE architecture as presented in [Balci 92]

Pflug and Prohaska [Pflug 90] introduce their Entity-Connection approach to
modeling and simulation. They point out that the nature of simulation studies is such that
the investigation of different model parameters, components, and structures is of primary
interest over the specific results of a particular simulation run. Based on this observation,
they conclude that a computer-aided tool for simulation should support easy model

modification. The Entity-Connection approach is to support modularity and hierarchy in



55

modeiing and programming. It also includes a graphical user interface of simulation

models.

Graber, Ulrich and Bolay present their PetriNet-based object-oriented general
purpose simulation system [Graber 90]. The system had an interactive graphical user
interface to enable users to develop a model in a short time. The system has the same
user interface for low level programming and for high level modeling. The user interface
can be used by developers and by end users. Furthermore, the interface provides end
users a fair chance to access lower level models, because all the models incorporate the

same modeling philosophy.

Domain-specific simulation modeling environments are developed for specific
applications. Because of the specific nature of an application, these environments can
offer some special functions. An example of such a system is the NEtwork Simulation
Testbed (NEST) [Dupuy 90]. It is a UNIX-based graphical environment for simulation
and rapid prototyping of distributed networks and network protocols. NEST uses a
different approach io simulation. It extends a network operating environment to support
simulation modeling and efficient execution. This ‘environment-based’ approach offers a
few important features: (1) simulation is integrated with the tools supported by the
environment, (2) users need not develop extensive new skills or knowledge to use
simulation, (3) standard features of the environment can be used to enhance the range of
applicability. NEST uses client / server architecture that can serve multiple users

interactively over communication networks.

2.3.5 Visual interactive simulation
Visual Interactive Simulation (VIS) is an important part of Visual Interactive

Modeling (VIM), which includes both deterministic modeling, such as spreadsheet, and



56

dynamic modeling, such as simulation. VIM is a natural extension of Management
Science and Operations Research. It combines an interactive interface, a visual display of
computer-generated model status, and mathematical or symbolic models of a system to
aid in decision making [Bell 91]. As a part of VIM approach, VIS produces a dynamic
display of a system model and allows users to interact with the running simulation. It
breaks the tradition of batch simulation methods and provides users with a visual and
interactive simulation environment. VIS can be embedded into a Decision Support
Systems (DSS) and Executive Information Systems (EIS) to support the decision making

processes of non-technical managers and senior executives.

Bell and O'Keefe [Bell 87] suggest that a VIS environment should have three
basic facilities: (a) Visual Output,(b) User Interaction, and (c) Visual Input. Among
these three facilities, ‘visual output’ is absolutely necessary to visually describe a system,
and ‘visual output’ plus ‘user interaction’ are necessary and sufficient. The majority of

VISs have not provided sufficient support for “visual input’ so far [O'Keefe 87].

The major benefits of using VIS over traditional batch simulation methods are the

following [O'Keefe 87]:

(1) Selling: VIS, particularly visual output or animation, is a tremendous aid to
selling the simulation method, a simulation model or a specific solution. Users
can quickly understand the model behavior and validate the simulation by

following the dynamic display.

(2) Gaming: Using model determined interaction, user interaction can be
incorporated into the model. Decisions that are too difficult to encapsulate in a

model can be made by users. Gaming is particularly appropriate for complex



57

systems that are never allowed to reach steady-states due to a necessity for

frequent management interventions.

(3) Learning: In addition to being used as an analysis tool, a VIS can be used by
users to ‘play’ different scenarios of a system. The benefit to users is an increase
in understanding of the system behavior and some information that can help to

solve ill-structured problems.

Currently, there are no guidelines for VIS. New methods for statistical analysis
are needed that include the user intervention factors. There are questions as to the
efficacy of a VIS in simulation. Arguments have been made that in every simulation
study, there comes a time when it is necessary to shut off the visual display and run
properly designed statistics. There is a mistrust of the use of a VIS for experimental
analysis and suggestions that using VIS for experimentation should be limited to
professional users [Bell 91]. A study conducted by O'Keefe and Bell shows that although
sometimes a more detailed analysis is required, a VIS is a good vehicle for simulation.
They indicate that VIS animation is valuable, that confidence in decisions is warranted,
and that the use of a VIS under a particular strategy leads to more efficient and better

use of the model [O'Keefe 92].

The development of systems that provide VIM and VIS capability represent a
major trend in the simulation area [Vujosevic 90]. Some general-purpose simulation
packages, such as GPSS, SIMSCRTPT and SIMAN, have included a number of
graphical features. They allow movement of objects in two dimensions or even three
dimensions, animation of transaction movement in block diagrams, and dynamic
statistical displays. Special-purpose VIS packages are primarily used in transportation

scheduling and project management [Bell 91].



58

Hurrion, who proposed the concept of VIS in 1976, proposes a structure for an
intelligent VIS that combines VIS and Al [Hurrion 91]. He asserts that without an expert
system, a VIS can only react passively to user directions for pre-programmed conditions.
An embedded expert system may add expertise to a VIS environment so that it will
become participative along with users in search of an acceptable solution to the original

problem.

2.4 Summary of Literature Review

This literature review provides support for the choice of techniques and
architecture of HAT. While improving software quality is the focus of most computer
scientists and MIS developers, upper CASE has drawn increasing attention because of
the high probability of error and relatively low cost for error-correction in the early

stages of the SDLC.

As one of the enabling techniques to improve CASE tools, hypertext has been
used on several occasions in information systems to increase the user friendliness and
improve document management. The non-linear structure and flexible store and retrieval
capacity makes hypertext suitable for handling the complexity of IS development and
provides both the computer professionals and users an easy access to design documents.
A more friendly and easy-to-use CASE tool encourages more user-involvement and
wide-spread use of software engineering methodologies such as JAD, DFD, ERD and so
forth. As a result, more friendly CASE tools will eventually improve the quality of

software products.

By embedding a simulation package within a CASE tool, the tool acquires
dynamic model evaluation capacity which alleviates the bias of static evaluation. An

expert system can be incorporated with a simulation package to aid the simulation



59

modeling and the simulation result explanation. There are several different architectures
for expert system and simulation combinations. A simulation environment itself can be

seen as a CASE tool that serves a special domain.



CHAPTER 3 METHODOLOGIES AND TOOLS

This research is interdisciplinary by nature and consists of four topics: software

60

engineering, hypertext user interface, queuing network simulation, and rule-based expert

system. Among these topics, software engineering is the fundamental one. In a broader

sense, this research encompasses computer science, user behavior, Operations Research

(OR) and Artificial Intelligence (Al) as indicated in Figure 3.1. HAT is implemented

under Microsoft Windows with C++. MS Windows provides basic features of multi-

window interface. The Dynamic Data Exchange (DDE) facilities of MS Windows serve

as dynamic links among different system components. The C++ programming language

provides a vehicle for object-oriented design and implementation.

Figure 3.1. Areas involved in this research

\\ User Behavior Study
T
’ ’ Hypertext \
* User-Interface
/
f Design
/'/(\\ - ™
O | o 2 st
Queuing -~ . L Rule-based \
.y Network . Expert )
Slmulatlon/ \System !
\ /
N :
S B I
T software T
“._Engineering -
‘\\/V/"
MS Windows
Computer Science

Al




61

3.1 Issues in User Interface Design

3.1.1 User interface design concepts

The user interface of a computer system should serve as both a connector and a
separator of the system. The user interface design principles builds on the concepts of
computer science, ergonomics, linguistics, psychology, and social science. Today's
system designers are expected to apply these interdisciplinary principles to improve user
satisfaction and productivity [Gerlach 91]. A typical interface design involves many
decisions concerning the functions and objects to include, how they are labeled and
displayed; whether the interface should use a command language, menus, or icons; and

how on-line help can be provided.

From a design perspective, discretionary capacities and levels of expertise are the
main distinguishing characteristics of users [Galitz 93]. Galitz summarizes these

differences of users as:

(1) Non-discretionary use: Users in this group must learn to adapt to a computer,
because this is the only way to get their job done. These users normally have
technical backgrounds and are willing to invest time and effort in learning to use
computers. They often have high motivation to use computer systems and can

overcome the low usability of the systems.

(2) Discretionary use: Users of this group are more self-directed - not being told
how to work but being evaluated on the result of their efforts. These users are
office executives, managers who have been working without computers for years.
They are neither willing to invest extra effort to learn computer systems nor are

they interested in technical details.



62

(3) Novice use: Novice users are new to computer systems. They heavily depend on
system features and facilities, such as menus, instructions, and help systems.
These users prefer to have very informative feedback, simple tasks and tutorials

to improve their system expertise.

(4) Expert use: Expert users rely on their experience and recall. They expect rapid
system performance and less feedback. System efficiency is their primary concern

rather than surface features of a system.

Table 3.1 illustrates computer users based on this taxonomy. The primary target
of HAT is novice users of non-discretionary use, namely the users who have not much
experience with information system analysis and are willing to learn structured systems
analysis techniques. An extension to the architecture and concepts of HAT may result in
computer systems that include some discretionary users who are interested in using

structured techniques to model their day to day work.

Table 3.1. User classification

Novice Expert
compuler operators, computcr specialists.
Non-discretionary | ficld specialists, system developers

sccretarics.

officc executives. system managers.,
Discretionary managers of non projcct managers
computer department

Many studies have been conducted on user behavior in accomplishing specific
tasks. The result of these studies are used to improve the cognitive processes employed
in user interface design. Card [Card 91] proposes a three-stage user recognition cycle as
the basic behavior for understanding the psychology of a user interface. A user will; (1)

perceive the computer presentation and encode it, (2) search long and short-term



63

memory to determine a response, and (3) carry out the response through an action. A
more elaborated seven-stage user interface model was proposed by Norman in 1986 (see
Figure 3.2) [Norman 86]. Norman's model expands the memory stage to include mental
activities, such as interpretation and evaluation of system responses, formulation of

personal goals and intentions, as well as specification of action sequences.

Expectation

Action
Specification

Interpretation

Mental Activity

Fhysical Activity

Computer
Systems

Figure 3.2. Norman's user interface cognitive model as presented in [Gerlach 91]

Gerlach [Gerlach 91] states that the goal of user interface design is to satisfy
users and their perspective needs: signals must be perceivable, and responses should be
within the range of a user's skill. He further states that the more important goal of user
interface design is to empower the memory and cognitive capacity of users so that they
can learn and reason the systems behavior. A human being is a complex organism with a
variety of attributes that should be considered in user interface design. The attributes of

particular importance are: perception, memory, visual acuity, skill and individual

differences [Galitz 93].



64

3.1.2 User interface design methodologies

The design of a user interface still remains more an art than a science. An
interface cannot be viewed as an ‘add on’ part that is developed in isolation. The
methodologies for user interface design are part of the methodologies for interactive

systems development.

Based on qualitative empirical observation of computer user interface developers,
Hartson and Hix [Hartson 89] discuss the pros and cons of current software engineering
methodologies for user interface design and conclude that user interface development
naturally occurs in ‘alternating waves’ of two kinds of complementary activities: upward
and downward where upward activities are synthetic, empirical and related to the end
user's view; and downward activities are analytic, structuring, and related to the system
view. These results suggest a ‘star’ life cycle for user interface development, as shown in
Figure 3.3. This star life cycle, with evaluation as its center, supports iterative refinement
and rapid prototyping. Because of its high interconnectivity, this model allows almost

any ordering of development activities and promotes rapid alternation among them.

Evaluation

Task Analysis/
’

Functional Analysig
Prototyping Conceptual Design/ Requirements/
Formal Design Specification

f 1 #

Figure 3.3. Star life cvcle for user interface development as presented in [[Tartson 89]

Implementation




65

Fischer [Fischer 89] echoes Hartson's opinion by stating that the best paradigm
for creating a user interface software is a communication model and a rapid-prototyping
approach that supports the evolution of specification and implementation. Furthermore,
Fischer points out that it is the human factor that distinguishes the user interface from
other software. A computer system should include knowledge of the human factors in its
user interface. Figure 3.4 is a knowledge-based human computer interaction model. The
explicit communication channels in the model are graphical screen, windows, menus,
pointing device, and audio/video input and output devices. The implicit communication

channels are layers of knowledge structures that support the human-machine interaction.

Knowledge of:

- problem domain

- communication process

- communication partner

- problems of the user
and tutorial intervention

~ N

Human |—a-—--cceew-—-
knowledge | - Knc:)\;lidge

implicit communication
channe!

i Computer
@ — termFi’naI '

explicit communication
channel

Figure 3.4. Knowledge-based human-computer interaction model as presented in [Fischer 89]

The issues of user interface design have great depth and subtlety. There are no
concrete rules to guarantee a good design. Galitz [Galitz 93] proposes a set of guidelines

for user interface development:

e Consistency: A system should look, act, and feel the same throughout.
Consistent designs can reduce the requirement for human learning. Standard

formats and screen layouts should be used to achieve the consistency.



66

Design tradeoffs: Human requirements must always take precedence over
machine processing requirements. When there is a conflict among different

requirements, users' requirements should go first.

Flexibility: A system must be sensitive to the different needs of its users.
Flexibility is the ability to respond to individual differences. A flexible system
should permit users to interact with it in a manner commensurate with their own

knowledge, skill, and experience.

Complexity: A system should minimize its complexity to perform required
functions by hiding some information until it is needed. Uniformity and

consistency of design will also simplify a system.

Closure: A system should provide organized sequences of actions with a
beginning, middle, and an end. Feedback should be available at the end of these
sequences. Closure with its informative feedback provides users the satisfaction

of accomplishment and a sense of relief.

Information load: A system should be commensurate with the capacity of users
and satisfy the users' information needs. Graphical and formatted displays can
reduce users' information load as opposed to powerful commands and complex

dialogues.

Control: Users should control the interaction. All actions should be the results of

user inputs and these actions can be interrupted and terminated be users.

Feedback: A system should acknowledge all actions by immediate execution,
change in status, confirm messages, or ‘in progress’ messages. Proper feedback

will shape users' performance and instill confidence.



67

e Recovery: A system should permit commands or actions to be aborted or

reversed.

o Command language: Command language should be logical, consistent, and

flexible.

e Error management: A system should have error prevention, detection, and
correction capacity. Good error management can save users' time and frustration

and improve user confidence.

o Response time: A system's response time should match the speed of human

thinking processes.

o Guidance and assistance: A system should provide on-line documentation that

supplements hard copy documentation and Aelp facilities.

HAT is a user-oriented system. Its cardinal goal is to help users learn and use
structured systems analysis. The design of the HAT user interface observes the above

guidelines.

3.1.3 User interface tools

User interface software is often large, complex and difficult to debug and modify.
As user interfaces become more friendly, they become harder to create. The increasing
complexity comes from the ‘easy-to-use’ features of modern systems, such as elaborate
graphics, many ways to give the same command, control of many input devices, and
mode-free interactions. In some applications, 40-50% of the code and run-time memory
are devoted to interface functions [Myers 89]. It is imperative that computer aided tools

and interactive design strategies are used for user interface designs.



68

User interface tools come in two general forms: wser interface toolkit (UIT) and
user interface development system (UIDS). A UIT is a library of interaction techniques,
which provide ways to use physical input and output devices. Examples of interaction
techniques are menus, scroll bars, buttons and cursors. A UIDS is an integrated set of

tools that help programmers to create and manage many aspects of a user interface.

A UIT is often a cluster of application programs that supports interaction
techniques. It does not provide enough support for the design of interfaces or the
sequence of dialogue control. A system developed with a UIT often takes more time. A
UIDS helps the designers combine and sequence different interaction techniques and
provide interactive access to the techniques. There are language-based and graphical-

based UIDS. Some UIDS support automatic creation of user interfaces.

In the MS Windows environment, Microsoft provides a set of Windows
programming utilities, called the System Development Kit (SDK). These utility programs
can be used as a UIT to develop Windows applications. In addition to the SDK, Borland
provides an interactive Resource Workshop for interface design. The Resource
Workshop is a special UIDS for menus, icons, dialogue boxes, and bitmaps of Windows.
Users can define a user interface component in the Resource Workshop graphically and
the system will convert the resource description to computer code automatically. Other
Windows Programming environments, such as Visual BASIC and Visual C++ of

Microsoft, also offer visual programming capacity.

HAT uses another UIT package — ObjectGraphics, in addition to the functions
provided by MS Windows and Borland C++ programming environment. ObjectGraphics
is developed by the Whitewater Group and Application Vision Inc. It is built on top of

Borland OWL (Object Windows Library) and Microsoft SDK. It provides a set of



object-oriented classes for graphical object manipulation. HAT inherits some

ObjectGraphics objects and develops its own objects for DFD and ERD graphical

interface design.

Table 3.2. Pros and cons of user interface design tools from [Myers 89]

Advantages

Disadvantages

coding.
« Quick feedback for modification.

« Easier to investigate different user
interface styles.

« More efficient use of resources,
because tools can be used in many
projects and many times.

« Easier for field specialists involved in
design.

« Code will be better structured and
more modular.,

« Code will be more reusable.

« Higher reliability of user interface

« Design can be rapid prototyped before

« Language-based tools are difficult to
use and the specifications are hard
to understand.

« Not enough functionality is offered.
« Tool are often not portable.

« Interface evaluations are not
available.

« Very hard to build tools.

« Difficult to separate user interface
from the application.

« Designers are unwilling to accept
new tools.

Myers [Myers 89] summarizes the pros and cons of current user interface tools

(see Table 3.2). It is expected that in the 90's the user interface technologies are

69

converging to Speech, Image, Language and Knowledge (SILK) capacities [Marcus 91].

The development of enabling technologies in areas of fast graphical processor, 3-D

hardware and software, hypertext and hypermedia, and virtual reality, will solve some of

the user interface problems we are facing now.



70

3.1.4 Evolutionary development strategy for hypertext applications

The development of a hypertext application requires a good understanding of the
structure of the application. Again, software engineering principles should be applied.
This often means that applications have to be well-structured, which in many cases need
a hierarchical skeleton. The links that correspond to the hierarchy (e.g. vertical links
from one DFD to another) are easy to present. However, links that correspond to other
relationships (e.g. horizontal links from a data store to its data node) are more difficult to

manage, although they are necessary to constitute the hyperlink network.

There are many text books that claim to provide for structuring and managing
methods of hypertext application development [Martin 90b, Horton 90]. However, these
methods only provide guidance at a coarse level and have rather limited support for
teamwork [Oinas-Kukkonen 93]. Oinas-Kukkonen combines the evolutionary
development method in software engineering with a hypertext system design and
proposes a model for evolutionary hypertext application development shown in Figure

3.5.

This model takes advantage of the easy-to-use tools in many hypertext
development environments (Toolbook, Plus, HyperCard, etc.) and emphasizes the use of
prototyping techniques. Prototyping is of value for creating hypertext applications and
making not only one but many evolving prototypes during the development is helpful.
The evaluation of these prototypes by developers and end users is of great benefit to the
design process. This model encourages ‘quick-and-dirty’ prototyping at many phases of
a development process. However, these prototypes should be thrown away, as the
author suggested, and implementation should proceed from a ‘fresh start’ to prevent

hidden obstacles for implementation retained in the prototypes [Oinas-Kukkonen 93].



71

Hypertext Application
Development

| Probism Analysls I
P
$ | Specifications I
o Criticizing and Eveiuating Ideas
T
Y
P
1
N
G
Creating
Screen
e Objects

Testing

Figure 3.5. Evolutionarv development strategy for a hypertext svstem

3.1.5 The DEXTER hypertext reference model

Halasz and Schwartz [Halasz 94] describe the DEXTER hypertext reference
model as an attempt to capture, both formally and informally, the important abstractions
in a wide range of hypertext systems. The goal of this model is to provide a basis for

comparing systems as well as for developing interchange and inter-operability standards.

Figure 3.6 shows an overview of the DEXTER reference model. A hypertext
system is divided into three layers: the run-time layer, the storage layer, and the within-
component layer. The run-time layer provides tools for users to access, view, and
manipulate a hypertext network. The storage layer focuses on the mechanism by which
link and non-link components of a hypertext system are ‘glued together’ to form
hypeitext networks. The within-component layer concerns the contents and structure

within the components of a hypertext system.



72

A crucial piece of the DEXTER Model is the interface between the storage layer
and the within component layer that addresses locations or items within the contents of

an individual component. This interface is known as Anchoring.

Run-Time Layer

Presentation of the hypertext;
User interaction; dynamics

Presentation_Specifications

Storage Layer
A ‘database’ containing a | Focusof the
network of nodes and links DEXTER Model
Anchoring

Within-component Layer

The content / structure inside
the node

Figure 3.6. An overview of the DEXTER model lavers as presented in [Halasz 94]

Another important part of DEXTER model is the interface between the run-time
layer and the storage layer, known as presentation specifications. Presentation
specifications are a mechanism to present information about how a hypertext component

network is to be presented to users.

Even though the development of the DEXTER Model is still in its very early
stages, the model is far more powerful than any existing hypertext system [Gronbaek
94]. It can provide the basis for developing a comprehensive standard for interchanging

hypertexts between different systems.

3.1.6 User interface evaluation
With the new GUI development techniques and environments, the temptation to
move applications to GUI increases. However, user interface design is often more

difficult than it looks. Evaluation of a GUI user interface is also a very expensive



73

process. It requires the support of cognitive scientists, such as psychologists and graphic
design specialists. The evaluation often involves designing and carrying out a series of
user experiments and statistical analyses. A complete evaluation is economically possible
and sensible only for large projects. The methodologies for complete user interface
evaluation are beyond the scope of this project. However, some simple evaluation

techniques can be carried out for a project like HAT:

» Questionnaires: Survey users with a questionnaire to collect information

about what users thought about the interface.

o Observation: Observe user working with the interface and record their

reactions to screen displays and window lay-outs.

o Video recording: Record user sessions and analyze the sessions for hand

movement, eye movement, facial expression, and etc.

o Embedded coding: Include a piece of software code that collects information

about the usage of facilities and errors.

« Comment insertion: Provide facilities to allow users to feedback comments to

system designers.

3.2 Object-Oriented Simulation and YANSL

3.2.1 Advantages of object-oriented simulation

Object-oriented programming is a design and programming discipline that
focuses on the objects that make up the system rather than on functions of the system.
Object-oriented simulation (OOS) uses object-oriented principles for simulation

modeling and program design. The merit of OOS is that it conforms to the notion that



74

the world is composed of ‘objects’. For example, a hospital can be seen as an assembly
composed of many ‘objects’: doctors, nurses, medical records, and X-ray machines.
Objects can also describe things that are not physically presented, such as a concept, a
record in database, etc. As a result, OOS language and modeling have great intuitive

appeal [Lomow 91].

OOS preserves all the features of an object-oriented system, such as data
encapsulation, inheritance, abstraction, dynamic binding, software reuse, etc. Bischak
and Roberts [Bischak 91] point out that the most important virtues of OOS are
reusability and modularity. Because of the inheritance feature of OOS, model designers
can create their own version of simulation objects by defining new features and re-using
features inherited from the parent objects. With an OOS language, users do not have to
try to match what they want to do in a simulation model to the limited number of
constructs available in the simulation language. The OOS modularity allows all the
information about an object to be held in one place, which means that changing an object

or modifying its behavior can be easily achieved.

Brischak and Roberts foresee four areas in which the object orientation has

special potential [Brischak 91]:

o Graphical presentation: Objects in an QOS tend to represent ‘real-world’
entities and they ‘encapsulate’ these real-world behaviors. Graphical
representation can have almost one-to-one correspondence with the objects in the
simulation model. Furthermore, during the execution, such a correspondence can

produce a very convenient basis for animation.



75

o Combination of simulation and AI: Objects encapsulate their functionality and
that functionality can include ‘intelligence’. OOS program can exhibit learning

optimization ability by embedding Al algorithms into simulation objects.

o Parallel execution of simulation: Because of the encapsulation of information
needed for an object, individual objects can be assigned their own processors to

execute their behaviors in parallel.

o Possibility for ‘simulation software engineering’: The notion that users can build
their own simulation objects gives rise to the possibility of simulation software
engineering. Through object-oriented technology, a new category of simulation
professionals may emerge that develop simulation tools for simulation application

engineers who use simulation to solve real-world problems.

3.2.2 YANSL - an object-oriented simuiation package
YANSL was developed by Professor S. D. Roberts and his students at North
Carolina State University [Joines 92]. It uses C++ to develop a cluster of classes for

general purpose discrete-event simulation. Figure 3.7 shows the class tree of YANSL.

There are over forty classes in this class tree. SimObject and Link are the most
fundamental classes from which other classes of simulation objects are derived. Several
link-list classes are created to manage nodes in a simulation model, simulation events,
and simulation statistics. The class tree also includes a random number generator and a
distribution generators necessary to generate random streams. Because of the object-
oriented nature, YANSL is not limited to the classes described in this class tree. It is
extendible for different needs. For example, if a new distribution is needed for a

simulation, it is easy to add another class as sub-class of Random that generates the



76

distribution stream without changing any other classes. Similarly, new classes can be

added to describe special simulation nodes or collect specific statistics.

C++ provides different ways to create instances of objects statically or
dynamically at run time. YANSL provides a toolbox for simulation model designers that
contains building blocks for simulation modeling. Simulation model designers view
models as a network of elemental queuing processes. Building a simulation model
requires a designer to select from the pre-defined objects simulation toolbox and
integrate these objects into a network. Because of the data encapsulation, the designer
does not have to know the objects' internal structures to connect two objects. The
designer can use the concept of source nodes, resources, queues, servers, and sink nodes
to build an inter-connected network model and run this model on the framework

provided by YANSL.

HAT uses YANSL as the simulation kernel for dynamic DFD evaluation. Some
add-on features are added to the original YANSL classes to make them suitable for the

Windows environment.



77

Activity<BranchMethod>

<T| tion,BranchM elhod)l

FMathod> 1515
4

< AQueus<FIFOSTAT>
xDeslination 6’

P
/‘4&

StatResource<DecisionM elhod)l

ResowceS electionM elhodHORDEﬂ
[TD ynArrayRC<ResourceBase lat')l

List<AesourceBase>

EDyMrrayﬂC(SlatBaxe lax'ﬂ

,

List<Transaction>

[T DynAnrayRC<RequitementBase lar')l

[Random[—{Unitorm|
[Deterministic]

[BranchMcihod|—{PROBABILITY]

[Li:l(Nodn(Tvantaclion))]

ILisl(Noda( Tlanxaclion)::Evenl)l

Enk(Nodcdlan:aclion)::E verB}—LE_ve_nl]
Link< Transaction> HTwn:aclion'

Figure 3.7. Class structure of YANSL simulation language



78

3.3 Rule-Based Expert System and M4

3.3.1 Basic concepts of expert systems

As one of the most active branches of Artificial Intelligence, expert systems use
human knowledge and experience to solve problems that require special expertise.
Expert systems enhance productivity by making this expertise available to inexperienced
users, helping them make decisions and solve problem effectively. By using expert
systems to distribute the decision making and problem solving expertise, an organization

can optimize its resources, reduce its cost, and become more competitive.

An expert system is normally composed of a knowledge base, an inference
engine, knowledge acquisition facilities, explanation facilities, and a user interface. The
knowledge base of a rule-based expert system is constructed with facts and if-then rules.
An inference engine is a software system that locates knowledge and infers new
knowledge from the base knowledge. Two fundamental methods are often used by
inference engines: backward chaining and forward chaining. Backward chaining is a
top-down reasoning process that starts from the desired goal and works backward
toward the requisite conditions. Forward chaining is a bottom-up reasoning process that

starts with known conditions and works toward the desired goal.

Applications of expert systems exist in many areas, such as manufacturing,
finance and administration, data processing, management information systems,
engineering, and training and education. The types of applications fall into five distinct

areas: analysis, planning, design, selection and diagnosis [Keller 87].

o Analysis applications: Analysis or data interpretation involves monitoring data

streams and interpreting trends and other factors.



79

o Planning applications: Skeletal planning involves selecting a number of sub-
plans from a library of possibilities, integrating them into a generalized plan, and

then tailoring the plan to the current specific situation.

o Design applications: Skeletal design involves choosing one of a number of
design schemes, tailoring them to meet design constraints, and producing a

design document.

o Selection applications: Catalog selection involves mapping, or translating, from

terms that a user understands to features of items in a catalog database.

e Diagnosis applications: Fault diagnosis involves providing advice on what might
be wrong with an entity, that can be a piece of equipment, an organization, or a

person.

3.3.2 The M4 expert system

M4 is a general-purpose rule-based expert system developed by Cimflex
Teknowledge. It works in both DOS and Windows environments. The M4 expert system
kernel can be embedded into other C or C++ based applications. In the Windows
environment, M4 also provides a ready-to-use library that can be integrated with Visual
BASIC applications. Figure 3.8 shows the structure of the M4 kernel. It contains a
forward and backward chaining inference engine, knowledge base management facilities,
symbolic pattern matching mechanisms and an M4 script language interpreter. The kernel
is structured by different modules. Users can adjust environment parameters, modify or

replace modules, and fine-tune the expert system kernel for special applications.



80

Application Program & User Interface

i/0 Channels o
[ \ ‘
‘ 1 \ 1 ' ] M4
p— Kernel
Commands| |Meta-Facts | [Meta-Props s;s;:n;er Handler HEarv:glref M}-qe:::i?
)
\ ! i \ \ ' [

Inference Engine & Knowledge Base —

Figure 3.8. The kernel structure of M4

The activities of inferencing and interaction with the user interface are controlled

by major modules in the kernel. These modules include:

o Inference Engine: Performs forward and backward chaining inference with full

symbolic pattern matching.

e Response Processor: Prompts users with questions, collects the response, and

validates the resuit.

o FError Handler: Handles errors that occur while M4 is running, including

language parsing errors, variable errors, and run-time errors.

e Message Handler: Processes messages generated by M4 commands, meta-facts,

and meta-propositions.
o Lvent Handler: Processes events generated by the inference engine.

o J/0O Channel: Connects the M4 kernel and communicates with the user interface

through a set of different types of input and output.



81

Ma4 has its own knowledge representation language and language interpreter to
describe facts, rules, confidence factor of inference, and question / answer dialogues of a
consulting session. Therefore, a rule base can be directly loaded into the M4 inference
engine. Since the M4 expert system kernel takes care of the details of knowledge
processing, the major tasks for expert system development become knowledge

acquisition and knowledge representation with the M4 knowledge representation

language.

HAT uses M4 to build its intelligent help subsystem for simulation modeling and
simulation result explanation. All the basic M4 functions are preserved in the subsystem

which is implemented with Visual BASIC in Windows.

3.3.3 Procedures for expert system development

The development of an expert system requires similar steps and quality assurance
as any other software. In addition, expert system developers have to consider specific
problems of knowledge domain definition, knowledge acquisition, and knowledge
representation. Ignizio [Ignizio 91] summarizes general procedures of expert system
development as shown in Figure 3.9. This model assumes that the knowledge acquisition
and knowledge representation methods have been defined and developers know what an

expert can do and what an expert cannot do.

Simulation modeling and simulation result interpretation require a good
understanding of simulation modeling, statistics, and stochastic analysis. The domain
knowledge is specific and has been clearly documented. Knowledge for such an expert
system is available from simulation experts and simulation literature. HAT takes
advantage of the M4 expert system facilities to build the rule-base for the simulation

expert system and execute the rules on the M4 expert system kernel.



Problem identification

!

!

Problem statement & description

%

~ Can expert system No
( be justified? = e

' Yes

v

Can domain experts be )_NO
_identified & utilized? ' ’

\ Yes

!

L

Knowiedge Knowledge
acquisition representation |

~_ 7

Prototype validation

( Prototype No
acceptable? mmm—

~—

Yes

1

* Implementation \

Use other approach )
\\‘___.

Use alternative approach to
knowledge acquisition

Prototype development |~®-——-—————1

Figure 3.9. A generic procedure for expert system development

82



83

3.4 Dynamic Data Exchange and Object Linking & Embedding Techniques
Dynamic Data Exchange (DDE) is a MS Windows data exchange technology
developed by Microsoft for user-independent dynamic data transfer among Windows
applications. DDE is also the foundation of another important feature of Windows
environment — Object Linking and Embedding (OLE). DDE and OLE are the major
building blocks in the Microsoft vision of next generation computing. The concepts of
DDE and OLE have essentially altered the way users think of software and provide a

powerful tool for software integration.

Application
A

Applgation @ ~at——a-|Application
B

Appliéation
c

Figure 3.10. DDE as an information hub to connect different applications

DDE is a form of inter-process communication that uses shared memory to
exchange data among applications (see Figure 3.10). Applications can use DDE for one-
time data transfer (passive connection mode) as well as for on-going exchanges in which
the application sends updates from one to another as new data become available (active
connection mode). DDE is more powerful and flexible than a clipboard. A clipboard
operation often requires user intervention, such as ‘cut’ and ‘paste’, and does not hold
the connection after data transfer. DDE maintains the communication link and have the
capacity to transfer multiple data items as long as the two parties involved in the

communication want to keep the link. DDE does not need user intervention during data



&4

transfer. It is fully programmable and flexible to allow any Windows application to

participate in communication as long as it follows the DDE protocols.

DDE follows the client-server (destination-source) communication pattern.
Before any data transfer, a client (destination) specifies the requested service attributes
(service name, service topic, etc.) and initiates a DDE link. If the requested server
(source) is active, it will check the request from the client and reply with a positive or
negative acknowledgment. Once the DDE link is setup, data can be transferred in a
‘passive’ connection mode or ‘active’ connection mode from the server to its clients. In
addition to the passive and active connection mode, ‘poke’ mode allows a client to pass
a short message to its server. The DDE link will keep open until either the client or the
server requests for disconnection. Multiple DDE client-server relationship are allowed, in

which a client may have multiple servers and a server may serve multiple clients.

As a superset of DDE, OLE has potential to support higher level communication
between two Windows applications. OLE defines ‘packages’ and ‘verbs’ to define
embedded objects and the object actions. An OLE object can be an ‘alien resident’ in
another application as a special OLE ‘package’. When activated (normally by double-
clicking), the OLE objects execute its ‘native’ application and perform special operations
defined by its ‘verbs’. OLE techniques provide an easy way to connect two Windows
applications. The new Microsoft OLE 2.0 moves the original OLE concepts further to
include basic OLE functions, OLE Automation, and OLE Control [Pleas 94]. It is

believed that DDE and OLE will be a norm for sofiware integration in Windows.



85

3.5 Object Manager and Object Database
A data repository is the center of a CASE tool. Strong [Strong 90] reviewed the

major characteristics that a CASE environment requires for database support. These

requirements are:

o Support flexible data type: The database should support a variety of numeric

values and text strings up to some reasonable length.

o Support metadata: Metadata is a description of another set of data. A database
often uses metadata to structure its manipulation of data. It is also useful to

CASE tools as a guide to the handling of data in a data dictionary.

e Query language: CASE tools require that all data is reachable. Models and their

descriptions should be easily accessible through a SQL-type query mechanism.

o Integrity and internal consistency: CASE tools need to keep track of the
evolution of the design documents, programs, and program fragments. The
database has to maintain different versions and alternatives of designs, and keep

consistency at the same time.

Since HAT is an upper-CASE tool, not all these requirements are applicable to
HAT. In addition, HAT is developed with object-oriented concepts. Object-oriented
operations, such as persistent object storage and retrieval, are critical. In an object-
oriented system, the entities in memory are viewed as objects, and so are the files on the
peripheral storage. On top of the traditional bit-stream, record, file concepts, a higher
level management needs to be built - the object-oriented management that provides
service to store and retrieves information by objects. Persistent object storage and

retrieval are different from ordinary binary-based or ASCII-based files, in which all the



86

attributes and links with other objects are preserved. Applications view the object-
oriented persistent services as an object-based storage where they put and get objects

regardless of how the objects are stored on peripheral devices.

3.5.1 A file-based object-oriented storage service — Tools.h++

Tools.h++ is a cross-platform C++ class library developed by Rogue Wave, Inc.
It supports complicated object structures and object operations that reduce the burden
on application programmers. Tools.h++ provides file-based object-oriented persistent
storage and retrieval so that objects can be saved to disk and restored in a new address

space, even on a different operating system. Other Tools.h++ functions include:

o Smalltalk-like collection classes: A complete library of collection classes,
modeled after Smalltalk programming environment: Set, Bag, OrderedCollection,

SortedCollection, Dictionary, Stack, Queue, etc.

o Template based classes: A complete set of collection based on C++ templates:

single- and double-link lists, stacks, queues, has tables, sets, dictionaries, etc.

e Generic collection classes: As an alternative to template classes, generic classes

provides similar services to a non-template programming environment.

o String and character manipulation: A string operation class provides operators
and functions to manipulate character strings, including concatenation,

comparison, indexing, I/O and many other functions.

e Other services including time and date handling classes, B-Tree disk manager,

error handling, etc.



87

HAT uses Tools.h++ as the foundation to build its data repository as a storage
and retrieval subsystem. The services provided by the Tools.h++ class library have

greatly reduced the complexity of the implementation.

3.5.2 An object-oriented database - RAIMA Object Manager

Tools.h++ is limited to file-based services. Objects in different files cannot be
shared. Although, Tools.h++ is sufficient for the preliminary implementation of HAT,
object-oriented database services are required for large amounts of data in a multi-user
environment where data sharing is fundamental. The RAIMA Object Manager is an
object-oriented database developed by Raima Corporation. It is a C++ class library

which includes the following features:

¢ Uses RAIMA Database Manager (a database on which the Object Manager
operates) as the engine for its DBMS and makes use of the Database Manager's

direct access techniques.

» Provides support for multi-tasking, and for incremental opening and closing of

databases. Two databases of the same type can be used simultaneously.

e Automatic concurrency management enables multiple complex database

navigation without disturbing the currency of each navigation.

e Allows programmers to add persistence to objects. The methods of a storable
class that implement persistence can be either automatic or programmer
controlled. This simplifies the storage and retrieval of objects and automatically
maintains relationships between objects. Object-to-object relationships are
implemented by three separate access methods: Network database model,

Relational database model, Direct sequential access.



88

e Allows programmers to define container classes to manage arrays of storable
objects. Once the databases and classes are correctly defined, the programmer no
longer needs to be concerned about where an object came from or where it is

located.

e Another Raima product, QUERY, can be used in conjunction with Object

Manager to perform SQL-based queries on your database.

3.6 Summary of Tools and Methodologies

This chapter reviews the methodologies and tools used for the hypertext user
interface, object-oriented simulation, expert system, DDE data exchange and object-
oriented data storage. This chapter shows that the HAT implementation is feasible. The
goal of integrating hypertext, simulation and expert system with software development is
not only conceptually feasible, but also practical under the Windows environment with

object-oriented techniques.



89

CHAPTER 4 THE SYSTEM ARCHITECTURE

As has been illustrated in Chapter 3, the concepts of HAT are feasible with the
combination of existing techniques and programming environments. This chapter focuses
on an architecture to implement these concepts. The discussion focuses on the Windows
environment and the C++ programming language. In addition, Visual Basic is used to

build a Windows-based shell for the M4 expert system.

The architecture follows object-oriented conventions and emphasizes the
concepts of abstraction, data encapsulation, inheritance, polymorphism, and dynamic
binding. The Coad-Yourdon method [Coad 90, 91] is used to describe the classes and
objects. This method uses two major structures, Classification Structure and Assembly
Structure, to describe object classes. Appendix A is a brief review of object-oriented

analysis and design concepts as well as the Coad-Yourdon method.

An evolutionary development strategy coupled with the prototyping method is
used for the user interface design. Because of the HAT project, it was difficult to pre-
define what should be included in the system, what the user interface should look like
and what is achievable for a given situation. Prototypes are very helpful to determine

these factors and evaluate different alternatives for the implementation.

Figure 4.1 shows an exploratory model for developing a new system [Griggs 89],
which reflects the process of HAT development. The initial concept creation phase
consists of the formation of an idea and a researcher's introspection of his own
experiences and feelings about a problem domain coupled with existing research. The
second phase, trial and error construction, consists of developing computer software that

encapsulates the researcher's concepts. The ‘trial and error’ aspect of the process reflects



90

the fact that the move from concept to code involves a series of iterations. It may be

discovered that part of the original concepts may not be feasible with given constraints.

—————— .
(Concept Creation )

4———6’ial & Error Construction '
4——{ Demonstration '

Figure 4.1. An exploratory model to develop new systems

4.1 The Software Architecture for HAT

The central theme of HAT is the integration of existing techniques to improve
systems analysis. Since so many elements are involved in the system, it is wise to
organize the system into several loosely-coupled, autonomous subsystems or objects.
Therefore, each of the systems has the freedom to decide its own structure, processing
methods and implementation strategies. Within such an integration, controls from one
subsystem to another should be minimum to guarantee data encapsulation and prevent
unnecessary ripple effects and data contamination. On the other hand, the connections
for data and messages should be smooth and sufficient to link the subsystems into an

integral whole.

Figure 4.2 shows the architecture of HAT integration. Four subsystems are
presented: (1) the user interface, (2) the data repository, (3) the dynamic evaluator, and
(4) the expert system. Each subsystem has the liberty to choose its own implementation

strategy and environment. Since the user interface is the froni-end to users and requires



91

frequent access to the data repository, it is directly coupled with the data repository as a
single application, so that graphical objects and hyperlinks, and other objects created
during systems analysis can be stored and retrieved effectively. On the other hand, the
dynamic evaluator and expert system are both very complicated systems and are invoked
only at discrete points of systems analysis. HAT allows these two subsystems to be
independent from the user interface and the data repository as separate applications. This
loosely-coupled architecture makes the subsystems maximize the choice of different
alternatives and minimize the complexity of control. As a result, DDE data links are the
only channels that connect the dynamic evaluation and expert system with the user

interface.

For the user interface subsystem, visualization and interactivity are the primary
concerns. Graphical user interface techniques are used to focus on an easy to use
interface design. Since HAT is intended to be a front-end CASE tool, basic systems

analysis tools and user friendliness are fundamental.

The data repository is designed for HAT to handle different objects and the
hyperlinks among them. It requires flexible data structures, persistent object-oriented
storage-retrieval capability and easy access from the multiple-window user interface. The
data repository is also responsible to keep data consistency and manage a central log of

objects that have been created.

For the dynamic evaluator subsystem, simulation modeling and simulation
execution are critical. Calculation efficiency and accuracy are a top priority. More
efficient programming languages and fully tested simulation algorithms should be used.

The HAT architecture allows the simulation subsystem to inherit and reuse existing



92

simulation packages with little constraints from the design of either the user interface or

the expert system.

Data
Repository

Interactive
User Interface

DDE

Dynamic
Evaluator
(SIM)

0o

m O O

Expert
System
(ES)

Figure 4.2. The architecture for HAT integration

The major concern of the expert system is the efficiency and effectiveness of the

inference engine and rule-base management system. A general purpose rule-based expert

system is sufficient for the needs of the simulation expert system in HAT. Like the case

of the simulation subsystem, it is not necessary to create a specific expert system. A
Windows-based expert system can be incorporated into this triangular architecture and

monitor the simulation execution.

This architecture takes advantage of the Windows environment as well as
existing simulation systems and expert systems. It observes the principle of software

modularity and encourages software reuse. An architecture based on this triangular

structure with improved DDE data links and a more sophisticated expert system can be

used for reverse simulation and other simulation environments as well [He 94b].



93

4.2 The User Interface Subsystem
The user interface subsystem is a multiple windows application consisting of a
DFD Editor, ERD Editor, Hypertext Editor, DFD Browser, DFD Descriptor and

windows for project and data dictionaries.

Since HAT is targeted at novice, non-discretionary users, simplicity was a
guiding principle in the design of the user interface. All the functions can be
accomplished by simple ‘point’, ‘click’, ‘drag’ and ‘drop’ operations, that are standard
for most Windows applications. HAT also simplifies standard CASE functions so that
novice users can quickly grasp the principles of systems modeling. The design also

enforces basic rules of structured analysis to help users create correct system models.

HAT User lnterface

1|11'1 1|

. 2+ £ 2 2 2 02 1

Data Descrijtor  {DFD Editor ) (ERD Editar (Hypem@itor GFD Desc) tor {'Data Dictio DFD Browsyr

pry Project Diconary

— J\J  J J U _J

Figure 4.3. Assembly structure of objects for the user interface

The user interface is an object that inherits basic features of multiple-window
management from Microsoft MDI (Multiple Document Interface) Window. It is an
assembly structure of eight child-windows, shown as Figure 4.3. There are one-to-one
relationships between the main interface window and the child-windows, except for the
Data Descriptor, that has a one-to-many relationship. A one-to-one relationship means
that there is only one instance of a child-window corresponding to the main MDI
window when the interface is created, while a one-to-many relationship indicates that

many instances of the same object may occur in the user interface. The user interface



94

design maintains as many one-to-one relationships as possible to keep the interface
simple and clean. The DFD Editor, ERD Editor, and DFD Descriptor show the
descriptions of the current DFD and ERD. These windows are updated every time a user
chooses to change to other diagrams. The multiple instances Data Descriptor on the user
interface allows a user to cross-reference the definition of a data entity from top level to

lower levels. Unlike other child-windows, the Data Descriptor is small and simple.



Hypertext Editor

DFD Editor

I File Edit| Tool View Options

Window Help

B Hynertext Narrative Window ha

-~

OJE - Ken's Mail Order, Inc.

Customers send orders into the
order entry department of Ken’'s
Mail Order, Inc. via the mail.
Theima, an order entry clerk,
separates the mail into two parts
consisting of customer orders
containing checks and those

Orders containing checks are
validated for correctness by
Thelma and placed in the order
fulfiliment file. Invalid orders are
sent to Rosemary, the order
reconciliation clerk. Credit card
orders are passed to Fred who
performs an on-line credit card
Hverification for each order. Orders

containing credit card information.

Lt
]

El

Customers

Cu

P4
Cuztomer
Scrvice

Ds
Ltomerlnqury

G

I List DF3

%EE%EE

DF3: Contents ERD Editor- DFD Browser Description: No  Project Data Dictionary

Curient object  Dictionary N
. o\

—

Data Descriptor ERD Editor DFD Browser

DFD Descriptor

\,
N
\
N

Project Dictionary Data Dictionary

Figure 4.4. A snapshot of the user interface - default settings



96

Pointer

Eraser

Go upto parent DFD  Zoom in Delete current DFD Disconnect Arrange windows
External Entity 37 3
Process 2 5 DFD Control Bar
Data Store
Data Flow

Interface Connector
for different levels of DFDs

DFD Tool Bar

Figure 4.5. The Tool Bar and Control Bar of the DFD Editor

Figure 4.4 and Figure 4.5 shows the default setting of the user interface. The
system assumes that a user starts with a problem description and builds a DFD model.
Other child-windows are iconic to leave more space for the Hypertext Editor and DFD
Editor. A user has the choice of re-configuring the user interface to start with ERD
modeling instead of DFD modeling. The goal of this design is to keep the interface look
and feel simple. Child-windows and other information are withheld until requested by
users. Thus, the user can customize the work environment to suit individual preferences.

Also, the system provides a one-touch button that sets all windows to default settings.

As one of the most important features of HAT, inter-connectivity of child-
windows through hyperlinks is fundamental to the user interface. Figure 4.6 shows the
channels for hyperlinks built in by the system. The DFD Browser, DFD Descriptor, DID
Editor and Hypertext Editor are connected with ‘hot’ hyperlinks (thick lines in Figure
4.5), which means that a change in any one of the windows will immediately update
other windows. Connections among other windows are ‘warm’ or ‘cold’, which means

no update until the window is activated or users choose to refresh the window.



97

' Hypertext ' OFD DFD a—— 3| Data
Editor Browser Descriptor Descriptor

=

/
Project
fy -— Data ERD
(=)

Figure 4.6. Channels for hvperlinks among child-windows

A ‘hot’ hyperlink is more intuitive and easy to follow for users, but it is also more
difficult for the system to maintain. On the other hand, a ‘cold’ hyperlink consumes less
system resources and is sufficient for less frequently used windows. The trade-off of
‘hot’ and ‘cold’ hyperlinks is determined by the considerations of interface functionality

and implementation complexity.

The following sections are more detailed descriptions of the user interface. These
descriptions reveal the fundamental classes and their structures that implement the

hypertext-based user interface.

4.2.1 The Hypertext Editor

The Hypertext Editor is a hypertext window that allows users to specify problem
narratives, create hyperwords and connect hyperwords to the graphical objects in the
drawing windows. A typical early stage systems development scenario involves a gradual
development of system specifications. The process is investigative and not linear. During
an investigation, facts are uncovered gradually and each new fact leads to new questions
that, in turn, lead to more facts. Therefore, a network of processes is constructed along
with the investigation. Within this network, a process only makes sense in relation to
other processes and specifications. Obviously, hypertext is an ideal medium to support

this mode of work, in which hyperlinks created by users bridge one-dimensional text and



98

two-dimensional graphical models (DFD and ERD models). This ‘hyper-dimension’ is a

major feature that this research adds to the approach of conventional CASE tools.

The Hypertext Editor bases its components on the classes of the Borland OWL
(Object Windows Library). As indicated in Figure 4.7, the Hypertext Editor is inherited
from TFileWindow of OWL and has two components: HEditor and HyperwordList.
TFileWindow allows the Hypertext Editor to have basic ASCII file operations, that is
‘New’, ‘Open’, ‘Save’, ‘Save As’ and so forth. The Hypertext Editor redefines these

operations for its special hypertext and hyperlink features.

HEditor inherits all the editing functions from 7Editor of OWL, such as ‘Insert’,
‘Delete’, ‘Cut’ and ‘Paste’. In addition to these basic editing functions, HEditor can
highlight hyperwords with colors and underlining. Special care must be taken to create,
display, delete, scroll, paint and repaint hyperwords, since 7Editor does not provide any

of these services.

TFiIeWindoQ /
TEditor Hypertext Eqitor /- \
ye f RWCollectaple

—

1 1

HEditor Hyperwor

@

-

—/ N/

Figure 4.7. The Structure of the Hypertext Editor

HyperwordList is a local data manager that keeps track of all the hyperwords.

Since the hypertext editing functions are added on top of standard 7Zditor, the



99

information about the positions and links of the hyperwords must be kept in temporary
storage. This information is used by the HEditor to paint and position the hyperwords.
HyperwordList also keeps the information on hyperlinks from a hyperword to a DFD or
an ERD graphical object. It holds the key to bridge the narrative text and graphical
models. The hypertext and hyperlink information is stored and retrieved persistently as
part of the project data file. The basic saving and retrieving functions inherited from
TFileWindow are over-written by persistent saving and retrieval methods that are
inherited from the RWCollectable object of Tool.h++. Since the central data repository is
also built on the basis of Tool.h++ classes, HyperwordList is fully compatible and

cooperative with the data repository.

4.2.2 The DFD Editor and the ERD Editor

The DFD Editor and ERD Editor are the tools for users to create graphical
models. Although functionally and logically DFDs and ERDs are quite different, the
DFD Editor and ERD Editor share similar class structures and inherit from the same
graphical library as shown in Figure 4.8. All the graphical-relevant windows are derived
from GWindow of ObjectGraphics of Whitewater Group. Both the DFD Editor and the
ERD Editor are derived from ObjWin, which contains the common features used by both
editors to create and maintain graphical objects, such as moving, adding, zooming and
deleting. Both the DFD Editor and the ERD Editor use pre-defined icons to draw the
diagram. They have similar components: a drawing canvas for graphical objects, a tool-
bar palette for pre-defined tool, and a control-bar palette for special operations. General
features of these components are represented in the objects of DrawWind, ToolBar, and
ControlBar, from which DFD and ERD-specific canvas, tool-bar and control-bar are
derived. A user can choose these pre-defined functions to point, select, drag, and draw

graphical objects.



100

GWindow

ObjWin
1 } 1 { 1
DrawWin TooIBav\ ControlBar

~—

N

OFD Editor ERD Editor ') o

—

1 | [ | l 4 1
Dyawwiao ﬁ';ameEFD GFDTMIB) @RDTOOIB} DFDCtriBar) ( ERDCtriBar

\___J Y, Y,

Figure 4.8. The Structure of the DFD [Editor and ERD Editor

The basic symbols in DFDToolBar palette (data flow, data store, process and
external entity) follow the Gane and Sarson method [Gane 79]. The DFDCiriBar palette
contains a set of control buttons for different operations including navigating from one
level of DFD to another level, connecting and disconnecting to a hyperword, renaming
or deleting a current DFD, and triggering a floating menu to pop-up the DFD checking
rules. The DFDDraw differs from the ERD drawing canvas in that it connects to the
DFD-related data structures in the data repository and updates entries to the project
dictionary. DFDDraw also has the ‘hot hyperlinks’ that connects to DFD Browser, DFD

Descriptor and Hypertext Editor to update changes in the graphical window.



101

Control Bar

0 fERD Editor=DF3 T |
ponter | ML =] e B st contents

Get object from data dictionary
Disconnect

Connect

Eraser

Entity

Relation

Tool Bar

1 \

ERD Drawing Window

Figure 4.9. A snapshot of ERD Editor

The ERDToolBar contains the symbols necessary to draw ERD models using a
variation of the Chen method [Chen 76]. The control bar of the ERD Editor is much
simpler than that of the DFD Editor as seen in Figure 4.9, because an ERD does not
require a hierarchical structure to represent different levels of models. However, buttons
to create and delete hyperlinks are necessary. Similar to the DFD Editor, the ERD Editor
has a direct connection to the data analysis section of the data repository. It also has a
‘warm hyperlink” to Data Descriptor so that an entry to either Data Descriptor or ERD
Editor will be displayed in both windows. In addition to the hyperlink button, two more
buttons are used to set up links to the Data Dictionary and Data Descriptor windows.
The ‘GET’ button will ‘grab’ an existing data record in the data dictionary into the

current ERD. The ‘LIST’ button brings up the Data Descriptor corresponding to the

current ERD.

There can be two kinds of ERDs: Conceptual ERD and Implementation ERD. A

Conceptual ERD describes the overall aspects of data relationships. It is used as a



102

starting point for data analysis and may contain data entities that may not exist in an
implementation model. An Implementation ERD is used to describe the data
relationships for implementation purposes. It contains more information and reflects data
entities that will be implemented as files or relations. The ERD Editor supports both
conceptual and implementation ERDs and links them to the Data Descriptors and the

Data Dictionary.

4.2.3 The windows for process analysis

Process analysis is a description of the flow of data from one process to another.
In HAT, process analysis is described using layers of DFDs, starting from the context
level to a more detailed level of description. The DFD Editor is a visual graphical tool
that a user uses to interactively draw DFD models. In addition to the graphical model,
other tools are needed to navigate from one DFD to another, manage the descriptive text
of each graphical object, and keep track of the project dictionary. Figure 4.10 shows
snapshots of the three windows that perform this task: DFD Browser, DFD Descriptor,

and Project Dictionary.

In a hypertext system, a browser, a map or other navigation tools are often
provided to guide users through the information web. Without proper orientation tools,
users may easily get lost and cannot perform effective information retrieval. The problem
of ‘getting lost’” has been recognized in a lot of literature [Conklin 87]. HAT
incorporates a DFD browser to outline the layers of DFDs in a process analysis. The
DFD Browser is a window that contains a list-box. Entries to the list-box are names of
DFDs and graphical objects in a DFD. A double-click on a graphical object entry will
bring up the graphical object in DFD Editor; a double-click on a DFD name will toggle

to open or close the list of all the objects in the DFD.



103

a DFD Bro v|a
DNtE DFD <DFD Ken's Mail Order, Inc.
E1] Customers <EXT> |
P?) O/E <PRO> Ken's Mail Order, Inc. is a mail order
P4) Customer Service <PRO> company that has three departments. Ken
D3} Customer Orders <DF> is the head of the Customer service
D5) Customer Inqury <DF> r
9} System Level <DFD>... B ,
‘W jal N
DED Browser DFD Descriptor
[<DF>Customer Orders +
<DF>DF2-14 B
<DF>DF2-8
<DF>Vertied credit card orde—]
<EXT>Customers —
<PRO>Credit Verify
<PRO>Customer Service | |
<KPRO>OJE:. R
ow el the obje d10 cuTententy . l Step-in J L Show J ~|} - Show obiects inthe DFD Editor

Project Dictionary

Figure 4.10. The windows for process analysis

DFD Descriptor is a HyperCard-styled tool to manage the description of each
graphical object in a DFD. The text in the Hypertext Editor is often used to describe a
problem in general. The hyperwords in the hypertext window are connected to different
graphical objects depending on the user's choice. The DFD Descriptor, on the other
hand, contains a short description dedicated to a specific graphical object. This
description can be a detailed description of the object in addition to the general
description in the hypertext window. The two buttons at the bottom of DFD Descriptor

are used to browse through the graphical object in current DFD.

The Project Dictionary window shows the contents of the project dictionary. It
provides a tool for users to directly observe what is in the project dictionary. In addition,

the two buttons (‘Step in’ and ‘Show’) are used to list all the DFD graphical objects



104

associated with a selected dictionary entry and to show the object in the DFD Editor,

which provides another way to retrieve graphical objects.

4.2.4 The windows for data analysis

Data analysis focuses on describing the data entities and relationships among
them. An ERD is a tool used by many system analysts to describe data models. HAT
includes a data dictionary in its data repository that contains all the data-related objects,
such as data flows, data stores, data records, and data elements. For each data-related
object, except for a data element, there can be a list ‘exploded’ to describe its contents
and attributes of the object. The Data Descriptor is used to display and maintain these
contents lists. As data analysis proceeds, a network of data-related objects evolves. This

network is called the Data Relation Graph in HAT (see Section 4.3 for detailed

descriptions).

<Elé>Cust N:Jm- * " <Red>Orders ddane enty o data deionary

<Ele>item # B Remave an enty rom curenl thg

s

<Rcd>DFSE/1 ¥ Disply the ERD of curentitr
I Ade lDelele' |Closc I ot an obiect from data dctona
‘Expld I l ERD \ . ( | ——

Data Dictionary Data Descriptor

Figure 4.11. The windows for data analvsis

As indicated in Figure 4.11, Data Dictionary and Data Descriptor are lists of

data-related objects. On one hand, the data dictionary is a non-duplicate list that contains



105

references to all data objects regardiess of their relationships. On the other hand, an
instance Data Descriptor represents the ‘parents-children’ relationships in the Data
Relation Graph. The ‘OWNER’ and ‘EXPLD’ buttons in a Data Descriptor window can
display different levels of data objects in the Data Relation Graph. Both Data Dictionary
and Data Descriptor windows have direct connection with the ERD editor that will
display either a conceptual ERD to the whole project or an implementation ERD specific

to the selected data object.

4.2.5 Comments on the user interface design

The HAT user interface focuses on the implementation of hyperlinks through the
hyperlink channels described in Figure 4.5. These hyperlinks allow users to retrieve the
same information in many different ways. At the same time, to fulfill the prescribed
functions, the user interface employs one-touch buttons to trigger most of the
operations, so that users can visually touch and feel the effect of the changes. Several
easy-to-use dialogue boxes are also used for DFD and ERD inputs as well as simulation
parameter definitions (see Section 4.5.4 for more details). The WIMP (Window, Icon,
Menu and Point) devices are inherited from standard Windows classes that have uniform

format and are familiar to users.

The commands and buttons used in the user interface are consistent among
different child windows. Some of the buttons are decorated with bitmaps for easy
recognition. Since the system is developed in C++, the system response time is good.
Common DFD and ERD modeling errors are handled by the system. Although much
effort has been made to improve the user friendliness of the user interface, some of

Galitz's user interface design criteria [Galitz 93] (see Section 3.1.2) are not met. The



106

most obvious flaw is error recovery. The user interface has not included an ‘undo’

function in the current design.

The author observed the beta testing of HAT among a group of MIS
undergraduate students and found that most of the students could learn the basic
functions within one class session (less than an hour). Because most of the students had
had experience with Windows applications, they were not intimidated by the appearance
of the HAT user interface. On the contrary, some students became very involved in
testing and debugging this new tool and gave a lot of good suggestions for improvement.
Behavioral studies need to be done before the effectiveness of HAT can be measured.
The author's expectation is to see a combination of the ‘width’ of user acceptance as a
result of hypertext techniques and the ‘depth’ of user understanding because of dynamic

evaluation with simulation techniques.

4.3 The Data Repository Subsystem

The data repository subsystem is the central data storage for HAT. A centralized
data repository is the nucleus for interaction and cross-reference of the multiple-window
user interface. In an object-oriented system, the data repository operates on an object

basis; an object, instead of a data element, is the basic transaction unit.

Since HAT is a front-end CASE tool that has no systems design functionality, the
data repository is much simpler than would be found in the typical large CASE tool. As
indicated in Figure 4.12, the data repository subsystem is composed of four components:
the project dictionary, the DFD tree, the data dictionary, and the data relation graph.
Currently, HAT is limited to a file-based system. The information of a project is stored in

a single file, which is not sharable concurrently. A third-party software package -



167

Tools.h++, is used to manage object-oriented persistent file operations. Thus, the design

of the data repository focuses primarily on the management of objects in memory.

Hypertext DFD DFD Project ERD Data Data
Editor Editor Descriptor | Dictionary Editor Descriptor Dictionary

l User Interface MDI Window

Data Repositol
P v rData Relation Graph

Project Dictionary ~at————p~| DFD Tree #=1 Data Dictionary

Figure 4.12. Connections between the user interface and data repository

The project dictionary itself contains a set of project entries that keep track of
conceptual information about a DFD object, such as names, types and descriptions.
Other DFD-related objects keep pointer references to the dictionary entry. Duplicate
entries are not allowed. A link-list is used for each project entry to keep track of DFD
objects that appear more than once in the project. This also serves as a back-pointer to

the DFD tree.

The data dictionary manages the descriptions of the data items in a data flow or a
data store. Similar to the project dictionary, the data dictionary is composed of a set of
data entries. A data entry contains a data object and its connection lists. As analysis
progresses, a network that describes the ownership of one data object by another will
evolve. This network of data objects is called the ‘data relational graph’, from which

ERD diagrams can be constructed and maintained.



108

A tree structure is used to represent the step by step decomposition process of
systems analysis. The top level DFD is the root of the DFD Tree. All other DFDs are
generated by a step-wise refinement as the children or grandchildren of the top level

DFD. Inside a DFD Tree, each DFD contains a number of DFD Objects.

WCollectalle

T

DFDTreeMahager

1 : 1 { 1
ProjectDictidnary DataDictionary DataRelGra

\___/ \___/

T

Figure 4.13. Structure of the data repository

Since the data repository is built on top of Tools.h++, all the objects in the data
repository are derived from RWCollectable of Tools.h++ (see Figure 4.13). An assembly
structure of DIFDTreeManager assembles the objects of the project and data dictionary
as well as the data relation graph. The DFDTreeManager also keeps a pointer to the root
and a pointer to the current DFD in the DFD tree so that it can save and retrieve the

whole DFD family, or set any of the DFDs to current.

4.3.1 The DFD tree

Systems analysis is a step-wise refinement process from the outlines of a problem
to more detailed problem descriptions. This process naturally generates layers of
documents with a hierarchicai structure. When a DFD is used for systems analysis, a

DFD tree similar to Figure 4.14 will be generated through the analysis process. In this



109

example, the Root pointer of DFDTreeManager constantly points to the root of the DFD
tree - the Context Level DFD 0, and the Current DFD pointer floats around to point to

the DFD currently displayed (in this example, the Detailed Level DFD 1.1).

Root
DFDTreeManager }----- -~ - mm{ Context Level
: DFD O

; System Level
: DFD 1
* Current / \
¢ DFD
gl Detailed Level Detaited Level
DFD 1.1 DFD 1.2
Detailed Level Detailed Level Detailed Level Detailed Level
DFD 1.1.1 DFD1.1.2 DFD 1.1.3 DFD 1.21

Figure 4.14. An example of a DFD tree

The object that describes a DFD has an assembly structure of other objects:
ConceptualDFD, VisualDFD, ChildList, ParentList, NodeList, FlowList, and SimRun.
As described in Figure 4.185, all the objects have the same ancestor, the RWCollectable
of Tools.h++. Most of the objects of the data repository subsystem are descendants of
RWCollectable to take advantage of the object-oriented persistent storage and retrieval

feature in the object.



110

RWCollectaple

RWDOList

DFD \ )
N/
1| 1|

:1 :1 :1 }1 L }1 =1
(" simRun ) ptual)FD ((VisualDFD NodelList ) Flowtist Y { childList ParentList

N2 U S ., . N\

=

Figure 4.15. Class structure of a DFD

A ConceptualDFD represents the conceptual features of a DFD, such as the DFD
name and special labels. The VisualDFD captures the visual aspects of a DFD that
describe how a DFD should be displayed in the DFD editor. Four lists are used to keep
information of DFD nodes and DFD flows, as well as the pointers to the lower and
higher level DFDs in a DFD tree. In most of the cases, a parent list contains only one
pointer to the parent DFD. All the lists inherit from the RWDList class, which is a
standard double linked list provided by Tools.h++ RWDList itself is a descendent of
RWCollectable and has persistent storage and retrieval capacity. A SimRun object keeps
the information necessary to carry out a simulation experiment (number of runs, warmup

period, and run length).

The content of a NodeList is a cluster of DFDNodes that are derived from
DFDObject. All DFD symbols with node features are descendants of DFDNode. They

are ExternalEntity, Process, DataStore and InterfaceNode (see Figure 4.16).



DFOObject

1 { DataNode \
ConceptuaK]bject
DFDNode
N /
P 1 N
1
ConcepluaMNpde
{ExtemalEntit Process Irter; DataStore (D-alaF‘ow
1 1 1 1 1
onceptEX P > >
ConceplPR ConceptiNF ConceptST! fo_nczme VisualEXT sualPRO VisualINF sualSTR (VTsuiIDF )
‘ ‘ -/ ‘ %_) \— \ L} L‘
1 1 1 1

Figure 4.16. Structure of DFD objects

[1I



112

Figure 4.16 also indicates that a DataFlow object is another descendent of
DFDObject. A DataFlow has different features than the nodes. Nevertheless, it inherits
common features of a DFDObject. The FlowList in a DFD is composed of a set of
DataFlow objects. It is also worth noting that both DataFlow and DataStore inherit
features from DataNode. This multiple inheritance enables a DataFlow object or a

DataStore object to acquire the features of both DataObject and DFDObject.

Systems analysis requires that a process node in a DFD has the ability to explode
to a detailed DFD to describe further analysis of this process. Therefore a Process object
has a special pointer pointing to its next level DFD. A reference to a next level DFD
pointer is also added to the child list of the DFD that contains the parent process. An
ExternalEntiy object is a mirror image of an external entity in a DFD that represents a
source or destination of a data flow. An Interface node is a special node defined to

connect data flows from one level of DFD to another.

Similar to the structure of a DFD, the structure of a DFDObject has three
sections: the left section, the central section, and the right section. A cluster of
conceptual objects constructs an object sub-tree on the left side of Figure 4.16 and a
cluster of visual objects on the right side of the diagram. Different levels of conceptual
and visual objects are connected to their DFD-related objects via assembly structure
linked to the central part of Figure 4.16. The separation of conceptual and visual aspects

of a DFD-related objects makes it easier to modify and maintain.

A further description of the structure in Figure 4.16 is given in Figure 4.17. The
conceptual aspect of a DFD-related object holds a direct connection to a project entry
corresponding to this object in the project dictionary, from which the information of

name, label, type and description of the DFD object is available. There is a one-to-many



113

relationship between a ProjectEntry and a DFDObject. Because multiple DFDObjects
may have the same name, type, and label, they have the same ProjectEntry. On the other
hand, the visual aspects of a DFD-related object contain the physical location
information in the DFD editor. The central part of a DFD-related object bridges the
conceptual and visual aspects. A DataNode object maintains lists of DataFlows coming
in and out of it. A Dataflow object contains the DataNode pair on the ends of the flow.

The connection information is accessible from both conceptual and visual sides.

DFDObject

DFD ptr, ———Q———

Conceptual(bject

-

1

1
M
GsualObja l
1 N
1 ! /—‘1
- DFDNode / \
Siminfor i
ProjectEnt ;) Locauo—ﬁ GrphicalObj
2
. ’ s 1 N
) 1 1
J) InFlowlL.ist OutFlowList

ExternalEntily fnterfaceNod! Process DataStore (D—

NextLevel pt __4___
1

7 1 I
! ! ! m:depair
‘ —
('L1 I 1 I 1 I 1 | 1 1
SimSource ) Simsm SimA@ Simcm SimResourde fS/ir:Constan'
" /U —

Figure 4.17. A further description of DFD-related objects based on Figure 4.16

In addition to the objects necessary for DFD drawing, simulation information is
also stored in the data repository. Each DFD-related object has at least a descendant of
SimlInfor object attached to it that contains information necessary to carry out simulation
modeling. Simulation results are also extracted and stored in SimInfor objects. The

arrangement for SimInfor objects is shown at the bottom of Figure 4.17: an external



114

entity or an interface node is either a source or a sink in a simulation model; a process
corresponds to a pair of a queues and an activity in a simulation model; a data store is
viewed as a resource used by a processes; and the time used for a data flow operation is

assumed to be constant.

4.3.2 The data relation graph and structures for the ERD

The data relational graph of a project is a list of DataNode objects. Each
DataNode is the data-related section of a DataFlow or a DataStore. Further descriptions
of a DataNode by a set of DataRecords and DataElements becomes a tree of data
descriptions (data tree). Multiple DataNodes construct a forest of data trees. A
DataRelationGraph object holds the root of each data tree and provides services to
expand, trim and maintain the forest.

* DataRelationGraph

DataNode1

VirtualDataNode)

DataNode2 ) » . @

DataRecord

DataRecord OataRecord

DataRecord

l DataElement '
IEataElement l

| DataElement

DataElement
Figure 4.18. An example of a data relation graph

Figure 4.18 illustrates an example of a data relation graph. When a data flow or a
data store is created, a DataNode object will be created. The DataNode is added as a
root to a data tree to the DataRelationGraph. Each DataNode has the potential to have
children as the analysis progresses and more details of data descriptions are added. These

children can be DataRecords and DataElements. A DataRecord has the potential to be



115

further described by other DataRecords and DataElements. However, a DataElement is a
terminator of a data tree that represents a basic component of a data description. A
DataRecord or a DataElement may belong to a different parent data objects or share the
same parents with others. The responsibility of a DataRelationGraph is to manage such a
network of data objects and provide services to other parts of the system. A
“VirtualDataNode’ is added to a DataRelationGraph to hold the data tree of a
conceptual ERD for data analysis. The VisualDataNode has no connection with any

DFD object, so that data analysis can be carried out independent of process analysis.

DataObject
(Datastore ( DataFiow 1 :
1 : 3 } 1 1 1
- J
] 3 J (DataEntry\ (ERD ) GarentList\ ChildList

o J o __J

1 1
fDataNode [Dalaltem\

M
Childitem

—

N
v 1

I:— 1
DataRecord

DataElemen!
1 1,0

(Keylnfor ) ( Entity

/ J/

Figure 4.19. The structure of data-related objects

A more elaborate description of the structure of a data object is presented in
Figure 4.19. The diagram shows that DataNode, DataRecord, and DataElement inherit
DataEntry, ERD, ParentList, and ChildList from DataObject. A DataNode always has
either a DataFlow or a DataStore connection in a DFD tree. That is where the DFD and
the ERD are connected. A Dataltem object represents those data objects that are not
directly associated with a DFD object and this group is further decomposed into

DataRecords and DataElements. Since a DataElement cannot have any child and ERD



116

connection, special methods have to be provided to invalidate operations on ChildList

and ERD.

A Childlist contains a list of ChildItems. Each ChildItem contains a DataObject
that is listed as a child to the parent. The KeyInfor object in a ChildItem represents the
relative position of the child with respect to other children in the list, i.e. if a child is a
primary key, a secondary key or a non-key member in the child list. An Entity object may
also be attached to a ChildItem, whose DataObject member is either a DataNode or a
DataRecord, to represent an entity in the ERD attached to the parent data object. For a
ChildItem whose DataObject member is only a DataElement, there is no Entity object

attached to it, because it will not show up in any ERD.

Because multiple occurrences of a data object can be represented by connections
to multiple child lists, it is not necessary to duplicate a data object in a data relation
graph. Though it may appear as a member of more than one ChildItem, a data object has
a one-to-one relationship to a data entry in the data dictionary. An ERD connection only
occurs in a DataNode or a DataReocrd. An ERD is used to describe the relationship of
the ChildItems in the child list. Therefore, a DataObject can at most have one ERD
associated with it.

ERD

RWDList

o/

T*’;&i

(.ll_J_j (P_H
EntityList RelationList

_J

Figure 4.20. The structure of an ERD



117

Figure 4.20 shows the structure of an ERD object. It contains an EntityList and a
RelationList. Both of the lists are inherited from RWDList to keep object persistence.
Similar to DFD structure, a VisualERD is used to represent visual aspect of an ERD. An
ERD object manages its component objects and provides insertion, deletion and retrieval

services to the ERD editor of the user interface.

The contents of the two lists in an ERD are described in Figure 4.21. An Entity
object has a pointer to the DataObject associated with it. Therefore, all the information
of the data object is shared by the entity. In addition to the connection to its data object,
an Entity object has a RelationList to keep records of all the relationships connected with
it. Physical location and connection to the graphical object shown in the drawing window

are also included in an Entity object.

{ Relation
DataObject{Ptr
%1
1 1 1 1 ! 1 1
ﬁelationLa ﬂocation\ GsualEntia (EntityPair\ fLabels ) Description VisualRelatiyn
__/ \ ) N Y 2 U 2

Figure 4.21. The structure of an Entity and a Relation

Since a relation is only significant in the context of entities connected by it, a
Relation object contains an EntityPair that represents the two entities at both ends of a
relation. A relation is not listed in the data dicticnary. Descriptions of a relation are kept
locally inside a Relation object. As in the previous cases, a visual object has to be

included to represent the graphical object on the ERD drawing canvas.



118

4.3.3 The dictionaries and their entries

Both ProjectDictionary and DataDictionary are collections of ProjectEntries and
DataEntries. There is no duplication in the dictionaries. Figure 4.22 shows that the two
dictionaries are derived from RWSet class of Tools.h++. The nature of set operations
guarantees the uniqueness of each entry in the dictionaries. Both of the dictionaries have
a back-pointer to the DFDTreeManager so that they can easily access infermation in the
DFD tree. Basic services provided by the dictionaries are similar, but differ in their
entries to the dictionaries.

RWSet

=

(P-vojectDich‘mary DataDictioNary
DFDTree\ ger Ptr. DFOTreeMahager Ptr.

Figure 4.22. The origin of a project dictionary and a data dictionary

A ProjectEntry and a DataEntry are different in the way that they hold
information for different models. A ProjectEntry holds information of a DFD-related
object, while a DataEntry holds that of a data-related object. Since a ProjectEntry may
have one-to-many relationships with DFD-related objects, a ConnectionList is used to
keep track of all the DFDObjects that are associated with the project entry (see Figure
4.23). A DataEntry has only a one-to-one relationship with a DataObject. Therefore, a
DataObject pointer is sufficient for a DataEntry to find its related data object. Both
ProjectEntry and DataEntry have Labels and Description objects to store the
information on the label, type, name, and free-format description of the corresponding

DFD or data object.



119

ProjedEnQ DataEntry
DataObj Ptr.
1 1:
1 1 1 1 5
rLabels Gescription\ @nnectio)bst rLabeIs {escription
/) ), __/

Figure 4.23. The structure of ProjectEntry and DataEntry

The data repository subsystem manages objects of various kinds with carefully
designed structures and provides services necessary for the user interface to create
system models visually and interactively. The data repository also provides services to

the simulation subsystem for simulation modeling and storage of simulation results.

4.4 The DDE Interface
The keys that hold the HAT subsystems together are the DDE data links. Each
subsystem depends on DDE links to transfer scripts of simulation modeling, questions

and answers, as well as other control information.

A DDE link creates a client/server (destination/source) relation during the
execution of two applications. The link will remain connected until one of the application
requests disconnection or terminates execution. There are three basic modes for DDE

data transfer as shown in Table 4.1. An application can be both a server and a client.

Table 4.1. Basic modes for DDE data transfer

Request A client initiates a request to its server for certain data items and the
server replies with the requested data.

Automatic | A server monitors the data buffer and automatically updates changes
to its clients.

Poke A client sends a short message to its server to relay special notice.




120

4.4.1 The data interface structure

HAT is composed of three separate Windows applications. Each application
should have the ability to “talk’ with the other part of the system fluently in a bi-
directional fashion. It is obvious that a DDE data interface embedded in each of the
applications should have the ability to serve as both a client and a server for data

exchange so that data can be transferred in both directions.

Other : Internal_
ot : Data Transfer
Application : Data _iranster
; DDE Data Interface
Data
r | -t
Data |

e e — -

f Server Sessi
DDE e erver Session Request
Client : Requast

DDE Server Agent

Request

DDE Client Agent
; Regquest | Data
l DDE !“ “““““““““““““““ 1 _I_
—
Server Data #>=1 Client Session

Figure 4.24. The DDE data interface in HAT

ZOoO—-——-4>»0—-——T1TVTUT>

Figure 4.24 illustrates the concept of the DDE data interface used in HAT. Each
DDE data interface contains a client agent and a server agent. An internal data channel is
created between a DDE data interface and the application associated with it through
message passing and function calls. The client agent manages all the client sessions
created during the execution. When the application has a data request, it forwards the
request to its DDE client agent. The DDE client agent creates a client session, sets up a
DDE data link and requests the data from its DDE server. If the application requests an
automatic data link with a server, the client agent chooses the automatic mode and
forwards new data to the application whenever it is available. The client session can also

poke short messages to its server upon request from the application.



The server agent handles data requests from other applications. For each new
request, it sets up a server session. The server session then forwards the request to its
application, where data is prepared according to the request. The server session returns
the data to the client that requested the data. In automatic mode, the server session will

monitor the changes in application through the internal data channels and start automatic

data transfer whenever a change occurs.

oD .! Data Interfabe
DDEML Dyfiamic Evaludor { Expert Sysh-m
./
1

\T g1__/ ﬁ_)
'

|1 I 1
ClienAgent ServerAgent

AppHandler

-

¥__) pa Z

User Interfa

®

L

P

\ e/ 1 1 1

(In-tHandIer GmHandID ESHandler

)

Figure 4.25. The class structure of DDE Data Interface

Figure 4.25 describes the objects that are used to implement the DDE data
interface described in Figure 4.24. Microsoft provides a DDE Manager Library
(DDEML) on top of Microsoft basic DDE utilities. The ClientAgent and ServerAgent in
a DDE Data Interface inherit from DDEML to obtain the ability for basic DDE

operations.

An AppHandler is the connection of the application attached to a DDE Data
Interface, where the internal connections for data exchanges are constructed. Different
subsystems have different data requirements. Therefore, they need different connections

to a DDE data interface. The AppHandler and its descendants handle all the different



122

subsystems and make the implementation of ClientAgent and ServerAgent independent
of the subsystems. A subsystem can take advantage of DDE data links once it has the

right application handler!.

4.4.2 The conversation protocols of the subsystems

The basic DDE ‘hand shaking’ protocols allow different applications to setup
DDE links for data transfer. However, to make a data transfer process meaningful, a set
of application-specific protocols is needed to define the conversations among

applications.

There are three bi-directional DDE data links in HAT: the user interface to/from
the simulation subsystem; the user interface to/from the simulation expert system; and
the simulation subsystem to/from the simulation expert system. The DDE conversations

are conducted as following:

1. The user interface to the simulation subsystem: A user creates a DFD model
from the user interface and requests dynamic analysis. The user interface will
convert the DFD model into a model script and forward the script to the

simulation subsystem. The procedure is:

1) The user interface ‘locks’ the DFD model and puts the model script in the

DDE transfer buffer

! The simulation expert system is implemented in Visual Basic and parts of the DDE features arc built-
in. The implementation of DDE data interface and ESHandler is a little bit different from the user
interface and the simulation subsystem. However, DDE data interfaces for all the three Windows
applications in HAT arc conceplually identical.



123

ii) The user interface starts a DDE data link to the simulation subsystem (the
simulation subsystem as the server and the user interface as the client,
Interface = Simulation), if the link has not been previously established.

The simulation subsystem will be executed if it is not currently active.

iii) The user interface pokes a message ‘Sinulation model ready’.

iv) Upon receiving this message from the user interface, the simulation
subsystem initiates a DDE link to the user interface (the user interface as
the server and the simulation subsystem as the client, Simulation =

Interface), if the link has not been previously established.

v) The simulation subsystem requests for the simulation model script

through the DDE data link.

2. The simulation subsystem to the user interface: After the simulation subsystem
generates a simulation model based on the model script and runs the simulation,
the simulation results are sent back to the user interface. If the simulation cannot
complete because of incomplete model scripts or simulation run time errors, the

simulation subsystem also reports the failure to the user interface.

1) The simulation subsystem checks if the DDE data link to the user

interface is still open. If not, the links are re-initiated.

i) The simulation subsystem pokes a message into the user interface

‘Simulation finished' or ‘Simulation failed because of .... (reasons)’.

iit) Upon receiving a successful message from the simulation subsystem, in

response, the user interface sends a request the simulation results and



124

distributes the results to the corresponding DFD objects in the data
repository. If a failure message is received, the user interface will inform

the user of the failure.
iv) The user interface ‘unlocks’ the simulated DFD model.

3. The conversation between the user interface and the simulation expert system:
The simulation expert system is consulted on two occasions; simulation modeling
and simulation result explanation. When a user requests help for specific

problems, the user interface will start a consulting session:
i) The user interface ‘locks’ the simulated DFD model.

ii) The user interface initializes a DDE data link to the simulation expert
system (the simulation expert system as the server and the user interface
as the client, Interface = ES), if the link has not been previously setup.

The simulation expert system will be executed if it is not currently active.

iii) The user interface puts the type of the question into the DDE buffer and

pokes a message: ‘I have a question’.

iv) Upon receiving this message from the user interface, the expert system
initiates a DDE link to the user interface (the user interface as the server
and the simulation expert system as the client, ES = Interface), if the link

has not previously been established.

v) The expert system requests a question type and initializes the

corresponding knowledge base.



125

vi) The expert system generates questions for further information from the

knowledge base and pokes: ‘I have a question.” to the user interface.

vil) The user interface picks up the message from the expert system and
requests the question. The answer to the question will be gathered from

either the data repository or from the user.

viii) Once the answer is available, the user interface pokes a message: ‘The

answer is ready.’

ix) The expert system requests the answer and continues the inference

process.

x) Repeat the steps (vi) to (ix) until the expert system reaches a conclusion

or fails. The expert system pokes: ‘The answer is ready.’
xi) The user interface requests the answer and ‘unlocks’ the DFD model.

4. The conversation between the expert system and the simulation subsystem: This
DDE data link is not used in the current HAT design. Nevertheless, the HAT
architecture provides the ability to setup dynamic data links between the expert
system and the simulation subsystem. Such links are especially valuable for
reverse simulation [Wild 91a], in which the expert system monitors the execution
of simulation and dynamically adjusts the simulation parameters. A scenario of
dynamic data link between the expert system and simulation subsystem in a

reverse simulation environment is described as following;



126

The user interface ‘locks’ the simulated DFD model and feeds the
simulation model script including the expected goals to the simulation

subsystem through the Interface < Simulation DDE data link.

The simulation subsystem starts a DDE data link to the expert system (the
expert system as the server and the simulation subsystem as the client,
Simulation = ES), if the link has not been previously setup. The expert

system will be executed if it is not currently active.

iii) The simulation subsystem puts the simulation goals and constraints into

the DDE buffer and pokes a message: ‘Goal is ready’.

iv) Upon receiving this message from the user interface, the expert system

V)

initiates a DDE link to the simulation subsystem (the simulation
subsystem as the server and the expert system as the client, ES =

Simulation), if the link has not previously been established.

The expert system requests the goal and alternative strategies and setups

an aufomatic data link to the simulation subsystem.

vi) The expert system loads the appropriate knowledge base and pokes a

message: ‘Start simulation.’

vii) The simulation subsystem responds to the message by setting its key

statistics (observation windows) to the DDE data buffer and starting the

simulation.



127

viii) Every time new statistics are generated in the simulation, the automatic
DDE link will forward the data to the expert system where the data is

checked with its goals.

ix) If the expert system finds that the statistics violate the target goals, it will
generate a set of new parameters and poke a message: ‘Stop. Try new

parameters.’

x) The simulation subsystem responds to this message by requesting the
simulation parameters. Then, the simulation subsystem alters the
parameters with new values, adjusts the observation windows and

continues the simulation.
xi) Repeat (viii) to (x) until the goals are reached or failed.

The DDE data interface allows the HAT subsystems to be loosely-coupled while
keeping sufficient communication among them. The user interface and the simulation
subsystem are operated in a ‘batch processing’ fashion, in which the user interface
delivers a job and waits for its completion. The user interface and the simulation expert
system have a series of ‘question and answer’ conversations to solve the pending

questions asked by a user.

4.5 The Dynamic Evaluation Subsystem: DFD Simulation

The simulation subsystem is the core to adding dynamic evaluation to the
software development process. The key issue of the simulation subsystem is to
automatically generate simulation models and execute the models on a simulation engine.
Kimbler and Watford [Kimbler 88] give a functional summary of a simulation program

generator (SPG) as following:



128

System Definition: To identify a specific boundary and restriction that a SPG
system can handle.

Problem Formulation: To determine the precise problem definition that a
simulation model is to address.

Model Development: To develop a model and translate the initially developed
form into a form suitable for computer execution.

Data Collection: To take advantage of the data collection facilities provided in
simulation languages and allow users to choose what to collect.

Coding: To generate executable code in a simulation language. Some SPG
systems may go one step further to address the operating system and
environment issues for the simulation runs.

Verification and Validation: To generate error-free code for all possible inputs,
to limit users to a specific domain that can be verified by the system, and to
continuously validate simulation programs throughout a SPG.

Experimental Design and Production Runs Analysis: To be able to select
alternatives and determine a decision based on simulation results.

Documentation and Reporting: To document all the inputs, test results, as well
as outputs of a SPG.

HAT limits its scope to simulating a DFD model to reveal the model's dynamic
features. Some of the issues of problem definition and model development are dealt with
in the user interface subsystem by allowing users to interactively define DFD models.
The simulation subsystem focuses on executing a DFD-based simulation model and
feeding the simulation results back to the user interface. However, HAT does not
address all the issues described by Kimbler and Watford. The above functional
descriptions, nevertheless, provide guidelines for the design and implementation of the

simulation subsystem and HAT as a whole.

4.5.1 The structure of the simulation subsystem
As described above, the major function of the simulation subsystem is to process

the simulation model script from the user interface, generate a simulation model based on



129

the script, and run the simulation. Figure 4.26 shows the components of the simulation
subsystem. A validated DFD model with add-on information necessary for simulation
modeling (number of runs, distributions, and so forth) is translated into a simulation
model script, which is transferred via a DDE data interface to the simulation subsystem.
The model generator parses the script and builds an executable simulation model for the
YANSL simulation engine. The simulation results are fed into a result parser where the
simulation statistics match each node in the script. The parsed results are then forwarded

to the user interface through the DDE data interface.

Since the simulation subsystem is designed as a separate Windows application,
independent input and output windows are included as the interface for direct model
input and result output. The input and output windows are quite helpful in debugging the
simulation subsystem. In addition, with its own input and output capacity, the simulation
subsystem can work as an independent simulation system. A user can describe a
simulation model in the input window and run the model immediately without the extra

steps of loading different modules to compile and run the simulation.

Object
Library

Script Input
construction Window
objects
7
simulation
DDEData | sewt | Model model | AN L fress gelResult Output
Interface Generator Engine Window
A
parsed rosults Result fesuts
Parser o

Figure 4.26. The structure of the simulation subsystem



130

4.5.2 The script language for simulation models

A simulation script language is specially designed to convey information of a

DFD model to the simulation subsystem. Within a simulation model script, a DFD model

is viewed as a queuing system defined in terms of a YANSL simulation model with

source nodes, queues, activities, and sink nodes. The script language is used as an

intermediate format that converts DFD objects to the objects in a YANSL simulation

model.

The script language has eight sections that have to be completed before a

simulation model can be generated. Table 4.2 is an example of a simulation script of a

TV repair shop. The syntax of each section can be described as follows:

1)

2)

Run:{ numberl; number2; number3;}

Defines the number of replications in a simulation experiment (numberl), the
length of warmup period (rumber2), and the length of each simulation run
(number3). Although increasing the number of replications and the length of the
simulation reduces the variance of the system statistics, too many number of runs
and too long a single run may result in a waste of computer resources and cause
memory overflow. On the other hand, the warm-up period should be long enough

to guarantee that the simulation statistics are stable and reliable.

Distribution: { type, name, parameter; }
Defines the distributions used in a simulation model. All distributions must be

declared in this section before they appear in other part of the model.



3)

4)

3)

6)

7)

8)

131

Resource: { type, name; }
Defines resources used by the queues and activities in a simulation model.
Resources must be declared in this section before they appear in the definitions of

queues and activities.

Source: { typel, typel, name, distribution, start, end; }

Defines the source nodes in a simulation model. Every line in this section
describes the type of transaction (type!), the type of branching method (1ype2),
name of the node, event distribution, and starting as well as ending times of the

event generation.

Queue: { type, name, resource; }
Defines queues in a simulation model. The type, name, and resources used by a

queue as defined in each line of script in this section.

Activity: { queue, resource, tvpe, name, distribution; }
Defines the activities in a simulation model. An activity may be directly
associated with a queue and a resource. The name and distribution of activity

time are described in each line of script in this section.

Sink: { name; }

Defines event exits in a simulation model.

Branch: { source, destination, probability; }

Defines the branches that connect other nodes in a simulation model



Table 4.2. An example of the simulation script for a TV shop

/! Simulation script of a TV shop
Run:{10; 150; 480;}

Distribution: //Format: type, name, parameters
{

Exponential, interArrival, 5.0;

Exponential, inspectTime, 3.5;

Exponential, repairTime, 8.0;

}

Resource: //Format: type, name
{

PRIORITY, inspector;
PRIORITY, repairman:

}

Source: //Format: typel, type2. name, distribution. start, end
{

TRANSACTION, DET, tvsource, interArrival, 0.0, 480

}

Queue: //Format: type, name, resource
{

FIFO, inspectQuecue, inspector:
FIFO, repairQuecuc, repairman:

}

Activity: //Formation: queue, resource, type. name, distribution

{
inspectQucue, inspector, PROB. inspection, inspectTime:
repairQueue, repairman, DET, repair, repairTime;

3

Sink: //Formation: name

{

finish;

b

Branch: //Format: sourcc. destination, probability
{

tvsource, inspectQucuc;

inspection, finish, 0.85:

inspection, repairQucue, 0.15;

repair, finish;

3

132



4.5.3 DFD model conversion rules

Since a conventional DFD does not contain enough information to convert into a
simulation model, additional information is needed to fill the gap [Wild 93]. To simplify
the conversion process, several assumptions are made. Although these assumptions may
not always hold in reality, they will only have an effect in the model conversion process,
but not in the performance of the architecture adopted by the system integration. The
author believes that the following assumptions are reasonable to show that dynamic

evaluation of DFD models can be done in the context of the HAT architecture.

Assumptions:

(1) A DFD is structurally correct before the simulation.
(2) There is no delay in a data flow.

(3) A data store is a mutually exclusive device that can be shared by different
processes at different times. The availability of this device depends only on the
sequence of the requests from processes. No preemption of data store resources

is allowed and the operation time of a data store is ignored.

(4) All nodes are connected with either probabilistic branches or a deterministic
branch, as opposed to many different branching methods in most simulation

languages (Cyclic, High/Low, and Conditional).

(5) All the queues in a model only have the FIFO (First-in-first-out) ranking method,
as opposed to other ranking methods in most simulation languages (High/Low,

Conditional, Random, etc.).

(6) Each external entity represents, at most, a single data in-flow.



134

(7) Identical discrete events are generated from source nodes during a simulation.
There should not be special attributes attached to an event. HAT assumes that all

simulation events have a single transaction type: TRANSACTION as default.

(8) HAT supports the replication/deletion method to analyze steady-state parameters
of a non-terminating simulation [Law 91], because the replication method is
relatively simple, even though it is more costly in terms of computer resources
and efficiency. The overhead caused by the warmup period of multiple

replications is not a major concern for the current system.

Conversion Rules:
(1) An external entity or an interface node is a source node if it is a source of a data
flow. Further information needed for simulation includes: start/end time for event
generation, event arrival distribution, connection assignment information

(probability for each branches, if there is more than one connection).

(2) An external entity or an interface node is a sink node, if'it is a destination of a

data flow. No further information is needed for a sink node.

(3) ADFD process node is a queue-activity pair. Further information needed for
simulation includes: activity server distribution and connection assignment

information.

(4) A data store has two roles in a simulation model. It is a resource that can be
shared by different processes at different time periods. It is also a data flow
multiplexer that connects the in-flows with the out-flows. Figure 4.27 shows an

example of the multiplexing effect of a data store after a conversion, where each



135

in-flow connects to each out-flow with multiplied probabilities on each branch.

Information needed for model conversion: connection assignment information.

3
___9;2_> Process 2
0.4 -~/

4

1
= Datags(me X '—i» Process 3
S

__—0'5_> Process &

|

D DataStore X
Process 2
4 | Timep2 [PrOB

3N
N\FFo_/

D DataStore X

D DataStore X
TN\ [P

06:0.3=018 Process 3
y 6x0.3 = 0.
2 | Timer1 |PROB PQueves )|6 | TimeP3 |PROB

NG

D DataStore X
Process 4
3 | Timers |PROB

7N
NGEFo_

Figure 4.27. The multiplexing effect of a data store after conversion



136

(5) A data flow corresponds to a branch between the two nodes in a simulation

model.

(6) Additional resources can be specified as the pre-requisite for processes. All

resources are allocated on an availability basis.

(7) A pseudo sink node should be added to a process to prevent deadlock when:
(ii) a process has only one outflow and the flow is to a datastore.

(i) a process has a loop with a data store whose only outflow points back to the

process (see Figure 4.28).

" X node \ D DataStore X
‘ : /_\ Process 1
PQueue | Timer1 JoET

Pseudo sink node 1

1 3
Process 1 Process 2 w
X Node

A
" V D DataStore Y

2 - Process 2
Data Store X Datallst i
E__-_ | ore Y | Timer2 JoET |
{ A single outflow A 00| h W
to a data store) ¢ P with 2

data store)

Pseudo sink node 2

Figure 4.28. Examples of pseudo sink nodes to avoid simulation deadlock

(8) Information necessary to conduct simulation experiments, such as the number of

runs, and run length, has to be defined before the conversion.

Considering the above conversion rules, an extended DFD model is converted
into a YANSL simulation model as shown in Figure 4.29. There are two additional
resources in this DFD model, which are represented with small squares on top of process

nodes. The simulation model is an equivalent of the simulation model script shown in

Table 4.2.



137

D inspector

1\}5 2 ~loss 3
e — TVDest

Dinspector
4 48-0 $ InspectQueuve }|3 IInspedTimelpROB F'S' h
inis
InterArrival J W
0.15
Drepauman
4 Repair
RepairQueue |5 ]RepairTimelDEr
NEro S

Figure 4.29. An example of converting a DFD model to a simulation model

The DFD model conversion is not a trivial task. It requires the user interface to
provide the ability to interactively define the additional information needed for simulation
and convert a DFD model into an equivalent simulation script. Therefore, a DFD model

converter is added to the user interface.

4.5.4 The DFD model converter

The DFD model converter scans the current DFD model and pops up dialogue
boxes for each DFD object in the model to get parameters needed for simulation
modeling. Figure 4.30 shows examples of these dialogue boxes. The additional
information extends the scope of traditional DFD modeling and encourages users to

think more deeply about the system's problems and to observe more aspects of the



138

system that they are modeling. The ‘Result’ and ‘Help’ buttons in the dialogue boxes are

used to display simulation results and trigger the intelligent help system.

. External Entity Sim_Infor - JIER "*- - Process Sim_lInfor: - :
Label: [T¥Src | Labe: |inspect ]
Distribution Distribution

Name: [interArrivall [ Hame: |inspectTime] B
Type: [Exponentiai B} Type: [Exponential |
Parameters: Eo ] Parameters: |35 |
Start/End Time: [ 0.00;48000 | Resources: linspector il
Assignment: inspect,1.00¢; | Assignment: [TVDest,0.850;Repai|

oK IganceI” Result l Help oK ( Q""“ﬂ'ﬁ“““ l Help |
(a) Dialogue Box for an External Entity (b) Dialogue Box for a Process

.-Experimental Sim “infor

'.é.:..,:Délé.'S'tOf.é Sim infor. - DFD Hame: Icontext level DFD I
E— ——— Number ofreplications:

Label: [DataStore X ] Warm up period:
Assignment: [inspect,1.000; | Length of simulation:

OK [Qanceﬂw[ﬂelp J | OK ‘gancel H Help J

(c) Dialogue Box for a Data Store (d) Dialogue Box for an Experimental Run

Figure 4.30. Dialogue boxes for simulation parameters

After simulation parameters have been collected, the model converter starts to
create a model script based on the current DFD model. Table 4.3 shows the steps used in
the conversion process. The converter is an assembly structure with each subclass
performing one step in the conversion process. The converter iiself is attached to the

user interface subsystem.



Table 4.3. Steps to convert a DFD into a simulation model

Steps for DFD _ simulation script conversion

(1) Create the run section based on the input from the experimental
dialogue box.

(2) Scan all the DFD objects in the current DFD, collects distribution
information. and create the distribution section of the script.

(3) List all the data stores in the current DFD and the additional
resources added to processes and create the resource section of the
script.

(4) Collect all the external entity and interface nodes with at least one
out- going data flow and create the source section of the script.

(5) Collect all the external entity and interface nodes with at least one
in- going data flow and create the sink section of the script.

(6) Create a queue-activity pair for each process in the current DFD,
with data store and additional resources attached to it.

(7) Create the branch section of the script following the connections of
data flows in the current DFD. Data flows to and from a data store

need special treatment to create multiplexed branches.

139



140

4.5.5 The simulation model generator and result parser

The model generator is a special language interpreter that translates the script
language defined in Section 4.5.2 into an executable simulation model. It parses the
script and creates the appropriate objects from the YANSL object base. During the
model generation process, a parsing table is created that can be used for the result
parser. Figure 4.31 is the state transition diagram of the simulation model generator.

Each state corresponds to a method that converts a piece of the script into executable

objects.
i ' {number;) {distribution;} {resource;}
un: | distribution: ' resource: I
' Distribution Resource
f. efror error error source:
eof.
{source;}
End -t ermor Source
queue:
eof.
error
{branch,} {sink;}
' ' {activity;}
{queue;)
branch: sink: activity:

Figure 4.31. State transition diagram of the mmodel script interpreter

After an executable simulation model is generated, the YANSL simulation engine
is called to run the model. There is no user intervention or any interruption throughout
the simulation. When the simulation is done, the simulation result is fed into the result

parser. The output is also sent to the output window of simulation subsystem.



141

The purpose of the result parser is to match the items of simulation results with
the names used in the model script. Since the model generator uses internal expressions
to represent an executable simulation model, the simulation results only contain reference
numbers to the objects created by the model generator. By referring to the parsing table
created during the model generation, the result parser makes the results more meaningful
by replacing the reference numbers with their original names. The parsed results will be

sent to the user interface and stored in the data repository.

4.6 The Intelligent Help Subsystem
The intelligent help subsystem has two parts: (1) A set of rules to check DFD
structure and data balance, and (2) an expert system that provides expert advice to users

on simulation modeling and result interpretation.

4.6.1 Static DFD checking rules

The static checking rules focus on the static structures of DFDs and their data
balances. A set of connection rules and data balance criteria have been defined and
widely used for checking DFD models [Whitten 89]. Table 4.4 is a summary of the

connection rules.

Table 4.4. DFD connection rules

process data-store external-cntity
process * * *
data-store * N X
external-entity * X X
*: valid connection
x: invalid connection

There are three cases of imbalance in a DFD: the ‘black hole’, the ‘gray hole’ and
the ‘miracle’. A black hole is a process or a data store that gets data flow inputs but

never has data flow outputs. A gray hole is a process or a data store with data flow



142

inputs insufficient for its outputs. A miracle occurs when a process or a data store

generates outputs without any input.

Based on these rules, an BalanceChecker object is designed to check the DFD
structures. Since the connection and balance checking rules are well defined and can be
easily implemented in a rule-based expert system, obviously, BalanceChecker can be an
object in the expert system. However, considering the dependence of DFD structural
information during a checking process, it is better to include a BalanceChecker as part of
the user interface subsystem, where access to the data repository is faster and easier.

This trade-off makes the implementation of BalanceChecker more compact and efficient.

Data flow imbalances may also occur between two DFDs at different levels.
BalanceChecker contains a set of methods that review all the data flow imbalance cases

along the DFD tree. All errors are reported to users from the user interface.

4.6.2 The structure of the simulation expert system

In the scope of HAT, the expert system limits its function to simple intelligent
advice. For this level of expertise, it may not be as efficient if the intelligent help
subsystem is directly embedded in the user interface subsystem. However, simulation-
based research involves more expertise than choosing simulation parameters and result
explanation. The idea of incorporating an expert system into HAT is to demonstrate that
the HAT architecture supports the integration of simulation, expert system and CASE.
More sophisticated expert systems can be constructed on this basis. The incorporation of
expert systems into simulations have been well described in the simulation research
literature [Hill87, Rao88, Taylor88, Mellichamp89, Frankel89, Park90]. The results of
these studies are useful for further work based on the HAT architecture. New research

may include more expertise in simulation model diagnosis, simulation validation and



143

verification, simulation experimental design, simulation result analysis, and simulation

monitoring.

The HAT simulation expert system has the following operational scenarios to
carry out a consulting session after a DFD model has been defined:
(1) A user sends a request: A user triggers the expert system by choosing the “Help’
button. The user interface sets up DDE data links to the expert system and a

consulting session begins.

(2) ES and user define problem: The ES asks questions about the nature of the

problem and understands the user's requirements.

(3) ES ‘thinks’ about the problem: and chooses the right knowledge base and

matches the user's requirements with conditions and rules.

(4) ES provides advice: After several iterations of step (2) and (3), the ES will advise

the user on how to define simulation models and how to run the simulation.

(5) The ES and the end user engage in a dialogue about the results: After the
stmulation is finished, the ES can be accessed again to check the significance of

the results and interpret the results with terms understandable to the user.

Similar to the stmulation subsystem, the simulation expert system gets requests
from the user interface and starts a consulting session via its DDE data interface. The
expert system will determine what type of questions a user asked and load either the
modeling rule base or the explanation rule base. As a separate Windows application, the
simulation expert system has its own user interface, through which a user can create and
modify rule bases. This ‘local’ expert user interface is very useful in developing and

debugging the rule base.



144

Modeling

Rule-bace Explanation

Rule-base

DDE Interface | questions/answers

- M4ES QA
Engine - === ESI/O

‘ [

expert advice ) expert advice

Figure 4.32. The structure of the simulation expert system

As indicated in Figure 4.32, the expert system engine has two modes: the stand-
alone mode and the server mode. In stand-alone mode, there is no DDE connection to
any other application. The expert system gets commands and displays outputs using its
own user interface. In the server mode, the expert system works as a server for other
client applications through DDE data links. All the questions and answers are directed to
the client applications. Since M4 is a general-purpose rule-based expert system shell,
there is no specific restriction that ties the simulation expert system to the HAT
environment. The simulation expert system can be used for other consulting tasks simply

by loading different rule bases.

4.6.3 The modeling rule base
Creating a correct simulation model is a complex task that requires clear
understanding of domain problems and rigid validation and verification processes.
Mastering the expertise of the whole simulation modeling process is beyond the scope of
the HAT expert system. The intelligent help system only tries to answer the following
questions:
(1) What distribution should be chosen?

(2) What should be the parameters for the distribution?

(3) How many replications should be run and what should be the length of the warmup
period?



145

Currently, there are only three distributions included in the YANSL prototype
environment: Exponential, Uniform, and Normal. More distributions can be derived from
the YANSL pseudo random number generator. Figure 4.33 is the decision tree that
determines the selection of a distribution and its parameters. This tree can be expanded

as more distributions become available.

There are only three
distributions available in
cutrent configuration.

Does the data have
randomness?

Random?

Put a constant value
into the field.

No distribution is
recommended.

Does the data have upper
and lower boundaries?
Yi

e

Upper/lower
boundaries?,
S No

L]

Uniform distribution is
recommended.

Please input the upper
and lower boundaries:

Exponential distribution is Normal distribution is
recommendad. recommended.

How many events happens What is the average rate:
during a unit time: What is the range of change:

Figure 4.33. The decision tree for distribution selection

Determining the number of replications, the warmup period, and the run length
requires more expertise than distribution selection. Statistical estimation of these
parameters needs pilot simulation runs and intensive statistical analysis, which is worthy
of a separate study of expert system applications in simulation. The current HAT expert
system offers only minor assistance in the design of a simulation experiment based on
pilot simulation runs. Instead of complete assistance, a set of empirical rules is used.

These rules take the following principles into consideration:



146

(1) The difference between simulation length and warmup period should be adequate
to allow a sufficiently high number of observations per simulation run to secure

the significance of simulation statistics.
(2) The warmup period should be long enough to cover the transition period.

(3) An increase in the number of replications or the simulation length should narrow
the confidence intervals of output parameters. However, too much overhead of

the simulation is inefficient and may cause system overflow.

With these principles in mind, the empirical rule requires that the simulation
length be at least 4 times longer than the warmup period. The default number of
replications is 10 and the default simulation length is 8 hours or 480 minutes. These
empirical rules are not sufficient to always generate statistically significant simulation
experiments. However, they are sufficient to test the HAT architecture. More

sophisticated expert system are possible in future research.

4.6.4 The result explanation rule base
A typical simulation output analysis includes testing the significance of a

simulation experiment. As part of this analysis, the following types of questions are

asked —

Is the warmup period long enough to cover the transient period of the simulation?

Docs the simulation have sufficient replications and length to fulfill the IID (Independent
Identical Distribution) assumption?

Are the variances of the estimated random variables kept within expectation?
If these conditions are not met, new experimental plans should be recommended
accompanied by a new set of simulation runs. It is clear that the simulation output
analysis and selection of simulation experimental parameters (step (3) of last section) are

iterative and closely related. The final evaluation is based on a satisfied output analysis.



147

An expert system that masters the expertise of a significant output analysis needs
several years to develop and requires a rule base of several hundred rules [Taylor 88].
Developing such a complex expert system is clearly too much for this project.
Nevertheless, previous studies have shown that an expert system with sophisticated

simulation expertise is doable in a personal computer environment.

HAT is focused only on the structural aspects of expert system integration in a
simulation environment. It omits the critical output analysis part and assumes that the
output from the simulation is final. This will produce biased system estimations and
cause the simulation results to be insignificant. Additional work needs to be done to

include the expertise of output analysis.

With limited output explanation functions, the explanation rule base provides
only a verbal explanation of the simulation results (mean, variance, utilization, time in
system, time in queue, etc.). It also includes several empirical rules to determine if a

process is under-used or becomes the bottleneck of a system.



148

CHAPTERS IMPLEMENTATION ISSUES

As in the case of many software development projects, there are many ways to
implement a concept or a software architecture. This is especially true in the
development of PC applications for which the tools and environments are evolving very
rapidly. This chapter is dedicated to the discussion of issues concerning the
implementation of the architecture described in Chapter 4 and the lessons learned

through this project.

5.1 Windows Programming Environments

HAT aims to help novice personal computer users. Because of the popularity of
Windows-based PC systems, Microsoft Windows is a natural choice for the HAT target
environment, As shown in Figure 5.1, several Windows programming environments
(PLUS , ToolBook 1.5, SmallTalk for Windows 1.0 and Microsoft C 7.0 etc.) are
examined based on two major criteria: the visualization (graphical user interface, user
friendly design environment) and the processing power (efficiency, effectiveness, and
functionality). Borland C++ 3.1 and Visual Basic 3.0 are chosen because for the

following reasons:

(1) C++ is powerful in representing object-oriented concepts and structures.
Though SmaliTalk is more object-oriented than C++, C++ is more efficient and
capable of representing basic object-oriented concepts. During a search for the
HAT implementation environment, the author found that an application
developed in the current version of SmallTalk for Windows takes large amount
of disk space and runs slower than an equivalent C++ application. On the other
hand, although other Windows programming environments, such as PLUS,

ToolBook, and Visual Basic, have strong support for the user interface design,



149

they are not sufficient to support the complicated class structures and object-

oriented concepts required by HAT.

Visualization

A PLliS Visual Basic
[ 4 )
ToolBook Borland C++ 4.0
®0 visual C++ 1.5

® ®Borland C++ 3.1

SmallTalk for Windows

Microsoft C 7.0
®

B
Processing Power

Figure 5.1. Comparison of different Windows programming environment

(2) C++ isclosely linked with the Windows operating system.
The Windows operating system is based on the C language. Various ready-to-use
C-++ Windows application frameworks and application packages are available.
These C++ packages directly interact with the Windows system kernel through
the Microsoft SDK (System Development Kit) and API (Application
Programming Interface), and provide many add-on features for Windows
programming. In addition, C and C++ are also very popular languages on
mainframe operating systems, such as UNIX. With the acceptance of object-
oriented concepts, C++ has become the de facto standard object-oriented

programming language in the software industry.

(3) C++ isresilient to change.
As an object-oriented programming language, C++ encapsulates data and

methods within an object. There will be little ripple effect incurred by



4

)

Q)

150

modification. This feature fits the exploratory nature of HAT development,

where changes are constantly made as the system evolves.

Borland C++ provides a user-friendly development environment.

The Integrated Development Environment (IDE) provided by Borland 3.1 was
the only real Windows-based C++ development environment at the time HAT
was designed. The Borland IDE integrates editing, compiling, linking and

debugging utilities. It also includes tools to visually create graphical resources.

C++ has third-party supports.

Because of inheritance and reusability in C++, many software companies have
dedicated their efforts to developing general purpose software packages that can
be used for graphical design, data processing, knowledge processing, data
structure development and data base operation. There are a large number of
reusable libraries written in C++. The availability of these libraries has saved time,

reduced the overall risk of failure, and improved the system quality.

Visual Basic is easy-to-use and compatible with existing software package.
Visual Basic (VB) is chosen because it has the ability to embed libraries
developed with other languages. VB is powerful for user interface design and
rapid prototyping. It also supports cross-application communications, such as
DDE and OLE. VBX (Visual Basic eXtension) is a special run-time Dynamic
Linking Library (DLL) format that can be added to the Visual Basic Workbench
as a special control object. A VB application can embed mission-critical VBXs
developed in more efficient languages, while remaining the user friendliness of a

Visual Basic. M4, the expert system used in HAT, is developed in C. The expert



151

system package provides a ready-to-use VBX, that makes it easy to integrate

with a Visual Basic application.

Windows programming environments are developing so fast that new compilers
with improved Windows programming supports, such as Borland 4.0, Visual C++ 1.0,
and 1.5, became available before this project was finished. These new products do not
negate the initial choice of Borland 3.1 and Visual Basic 3.0. On the contrary, the new
developments are indications that the choice of Windows environment and C++ language

provide a good foundation for further research and enhancements.

5.2 System Integration

Three subsystems in HAT are developed as separate Windows applications,
namely the user interface subsystem, the simulation subsystem, the simulation expert
system. The user interface subsystem is the most complicated subsystem in this project;
the hypertext editor, the graphical editors, and the data repository are developed. The

other two subsystems are based on reusing existing software packages.

An incremental approach is used for system integration. Naturally, the
development of a DDE communication framework is the first step toward system
integration, because all the subsystems are interconnected through DDE data links. As
indicated in Figure 5.2 (1), three functionally identical applications were created, each
having bi-directional DDE communication capacity. Each application has a general
application handler that contains the information of the names of server, client, topics,
and items of its DDE interface. An application handler is also an internal data channel to
a specific application. An application with its own handler can be directly ‘plugged’ into

an application handler ‘slot’, just like plugging an I/O card into a PC mother board.



152

The triangle structure of the DDE interfaces was tested in different modes: poke,
request, and automatic. Testing on this triangular back-bone helps to identify and
consolidate the problems with DDE communication between two C++ applications, as
well as a C++ application and a Visual Basic application. Since none of the HAT
subsystems were involved at this stage, the integration focused on DDE communications
among three simple and functionally identical applications so that the complications and

side effects of non-DDE factors are reduced to a minimum.



153

AppHandler

DDE Interface

(C+4)

AppHandler

DDE Interface

AppHandler

DDE Interface

{Ct+) ) (Visual Basic)

AppHandier
DDE Interface

Simulation (C++)

Subsystem

AppHandler

DDE Interface

(C++) (Visual Basic)
()
User
Interface
UlHandler
AppHandier
Simulation DDE interface (C++)
Subsystem
SimHandle
AppHandler AppHandier
DDE Interface | g 2| DDE Interface
(C++) (Visual Basic)
)
User
Interface

UlHandler

AppHandler
DDE Interface

Simulation
Subsystem
SimHandler|
AppHandler

DDE Interface

Expert
System

ESHandier

AppHandler

DDE Interface

|
K

(C++) (@ (Visual Basic)

Figure 5.2. Sieps in systems integration



154

The next step in integration is to add a simulation subsystem (see Figure 5.2 (2)).
The simulation subsystem has its own handler - SimHandler, which is a descendent of
AppHandler and has the same behaviors with AppHandler. SimHandler handles special
data transfers required by the simulation subsystem and passes the data onto

AppHandler. The relationships of each subsystem and the DDE-AppHandlers are
described in Figure 5.3.

SDEWindJD AppHandler
N 1
1 ~N
Simulation é ubsystem User interfa}e /.

-
{ _;l
-

1

1 I
SimHandler (JUIHandIer ESHandler

N

I

(

Figure 5.3. Class structures of subsystems and their handliers

Similarly, special handlers (UIHandler and ESHandler) are created for the user
interface and the expert system, through which the user interface and the expert system

are plugged into the triangle DDE communication backbone (see Figure 5.2 (3) and (4)).

When a new application is introduced to the DDE backbone, the handlers and
communications are tested to insure that the integration is working as expected. When
the three subsystems are connected, an integrated testing procedure is performed to

guarantee that all the subsystems are working independently as well as cooperatively.



155

5.3 System Testing and Evaluation

System testing involves both validation ( ‘Are we building the right product?’)
and verification (‘ Are we building the product right?’). Systematic program testing is a
complicated process that involves careful planning and test case generation. It is
important to understand that testing can never show that a system is correct. It is always
possible that undetected errors exist even after the most comprehensive testing. Program

testing demonstrates the presence of errors but not their absence [Sommerville 89].

Two methods are often used for program testing: ‘black box’ testing and ‘white
box’ testing. ‘Black box’ testing does not require a tester access to source code or
understand the program being tested. In contrast, ‘white box’ testing relies on a tester's
knowledge about the code and the structure of the program being tested. In general,
‘black box’ testing is suitable for end users who know what they want, but have no
knowledge of the details of coding, and ‘white box’ testing is often used by programmers

who know all the program details.

Unit ‘
Testing v
| M
odule
Testing i
Subsystem
Testing ‘
Integration |

Testing i

Acceptance
Testing
T
Programmers End-users
& &

White Box Method Black Box Method

Figure 5.4. The stages and the factors involved in testing

As indicated in Figure 5.4, project testing may have different stages from the

simplest components to a complex whole. The ‘Black box’ method is often used to find



156

out where a fault is, and the ‘white box’ method is used to determine how a fault
happens and the method to fix it. System developers are an inseparable part of the
system testing process. They know how to carry out ‘white box’ testing to fix bugs and
improve system performance. However, programmers are not the best system testers.
Psychologically, they consciously or subconsciously try to avoid the presence of errors
and the destruction of their creations, which is contradictory to the purpose of system
testing. Qutsiders, especially potential end users, should be employed in the testing

process to overcome the programmer's psychological bias.

The validation of this project focuses on the functionality of HAT to see if the
tools included in HAT are sufficient for simple systems analysis tasks. For two
consecutive semesters, HAT has been used as courseware for systems analysis and
design classes for undergraduate MIS students. Through these field tests, it has been

shown that HAT is sufficient for simple systems analysis cases in these classes.

System verification ranges from unit testing to integration testing and includes
both ‘black box’ testing and ‘white box’ testing. With ‘black box’ testing, a tester
performs different operations and matches the system output or behavior with the user's
expectation. Once an inconsistency or a bug is found, ‘white box’ testing method is used
with the help of debugging tools to examine the details of each module for a line by line,
value by value analysis of the reasons for the problem. Since a Windows application
receives many different events, messages, and their combinations, many testers should be
invited to test alpha and beta versions of a system to remove errors. The students who
used HAT for their homework assignments helped to detect many bugs and design faults
that were ignored by the HAT developers. Even though HAT has not been a bug-free
product, the extensive verification has made HAT correct and robust for most of the

required operations.



157

An extensive evaluation of a user interface design is a very expensive process. It
requires the support of cognitive scientists, such as psychologists and graphical design
specialists. The evaluation involves designing and carrying out a statistically significant
number of user experiments and is only economically possible for very large systems

development projects.

Obviously, this project does not have the resources to conduct an extensive
statistical evaluation of the HAT user interface. The size of this project does not justify
such an extensive study either. Nevertheless, some simple empirical user interface
evaluations were carried out among a group of undergraduate MIS students. Two

methods were used during the evaluation: observation and a questionnaire.

The survey result of 16 MIS students shows that all students have PCs at home
and most of them use HAT both at home and school. This result shows that HAT has
reached its goal as a personal front-end CASE tool to help novice users leaning the basic
systems analysis techniques. As shown in Table 5.1, the students generally give positive
comments on the HAT user interface and its performance. Most of them think HAT is
easy to use and can learn it within 2 hours, which is a much shorter learning curve than
other educational CASE tools, such as EXCELERATOR. The survey also shows that
some students have problems with the scheme of hyperlink creation and navigation

facilities. These are the clues that HAT should be further improved.



158

Table 5.1. The survey result of 16 HAT users

HAT helps in understanding DFD and ERD. | 1 (Disagree) 2 3 4 5 (Agrec) Total
Answers
0/0% 0/0% 3/18.8% 9/56.3% 4/25% 16
HAT is casy to use. 1 (Disagree) 2 3 4 5 (Agree)
0/0% 0/0% 4/25% 12/75% 0/0% 16
HAT improves understanding of relationships} 1 (Disagree) 2 3 4 5 (Agree)
between process and data modeling.
3/20% 3/20% 6/40% 2/13.3% 1/67% 15
How long did it take to learn HAT? <2 hours 2-5 hours 1 day > 1 day
10/62.5% 3/18.8% 1/6.3% 2/12.5% 16
Did hyperlinks between narrative text and | Very helpful Helpful Confusing | No effect
graphical objects help leaming?
1/63% 13/81.3% 1/6.3% 1/6.3% 16
How do you like the multi-window interface?| Easytouse | Acceptable Get lost
13/81.3% 3/18.8% 0/0% 16
How do you like the graphical tools? Like it Acceptable | Don'tlike it
10/62.5% 6/37.5% 0/0% 16
How do you like HAT navigation tools? Like it Acceptable | Confusing
8/50% 8/50% 0/0% 16
Was it casy to create hyperlinks? Easy Acceptable (Hard to leam
3/20% 12/ 80% 0/0% 15
Does the help facility help? Very helpful | Acceptable | Not helpful
5/31.3% 8/50% 3/18.8% 16
Is the reporting / printing function sufficient? | Sufficient Acceptable |Not sufficient
5/31.3% 9/56.3% 1/6.3% 16
Is the response time satisfactory? Yes No
11/68.8% 5/31.3% 16
Where do you usec HAT? Lab. Home Both
lab&home
1/63% 2/12.5% | 13/81.3% 16
Do you have computer at home? Yes No
16/ 100% 0/0% 16
Do you use HAT at home? Yes No
15/93.8% 1/6.3% 16
Have you used Windows application before? Yes No
16/ 100% 0/0% 16
What type of PC do you have? PC 486 PC 386 PC 286 PC 8088
9/60% 5/33.3% 0 1/6.7% 15




159

5.4 Alternative Integration Strategies
The DDE is not the only method to integrate the HAT subsystems. There are
different alternatives that may yield the same result, such as direct coupling, pipelining,

file sharing, dynamic link library (DLL), OLE, and networking.

Direct coupling of simulation and expert systems with CASE is difficult, and
error-prone, because the subsystems themselves have been very complicated
applications. Direct coupling may also require special internal structures that fail to reuse
existing packages. Nevertheless, a well-designed direct coupling integration can be more

efficient than other alternatives.

Pipelining is often used in single user, single tasking systems like DOS, or a
multi-tasking system like UNIX. In a single tasking system, applications can only run one
at a time. Pipelining only transfers data once an application is finished, which does not
meet the requirements of HAT. Although MS Windows is a multi-tasking system, it does
not provide the powerful tools for multi-tasking and concurrent programming as UNIX.
Application integration through multi-tasking pipelines and process communication is

difficult under MS Windows.

File sharing allows multiple applications have access to the same file through
‘single write - multiple read’ or ‘multiple write - multiple read’ file access control
conventions. File sharing is a good way to share data among different applications.
However, it does not provide sufficient controls mechanisms for the applications to
coordinate synchronized communications. HAT requires well-coordinated conversations

among its subsystems. Therefore, file sharing technique is not suitable to support HAT.

A Dynamic Link Library (DLL) is a library format supported by Windows. A

conventional library is linked to an executable program at linkage time. As part of the



160

executable program, a conventional library may have multiple occurrences in different
program executions. A DLL can be shared by multiple applications and linked to the
applications at run-time. There is at most one copy of a DLL in memory in contrast to
possible multiple occurrences in a conventional library. As a result, the DLL is a way for
applications to share and reuse common functions in Windows. All the libraries used in
HAT (Tools.h++, ObjectGraphics, YANSL, and M4) can be transformed into DLLs,
which will significantly reduce the size of the HAT executable module and save memory.
However, using DLLs for system integration is still a kind of direct coupling strategy. A
subsystem represented in DLLs cannot work as independent applications. Moreover,
programming and debugging in DLLs are often more difficult than that of conventional

programming.

As a superset of DDE, OLE can perform every DDE function. In addition, OLE
supports a more sophisticated data format and automates object linking and embedding.
It is possible to integrate the HAT subsystems with OLE instead of DDE. However,
DDE is more efficient and can be tailored for more user-dependent communication
among applications. DDE has the advantage of managing multiple items in a single
conversion, which often requires multiple conversation links in OLE. DDE has been
chosen over OLE as the linkage method for HAT subsystems because multiple data
items are exchanged depending on user choice. More recent versions of OLE provide
OLE Automation and OLE Controls and will eventually become universal

communication links that integrate Windows applications [Pleas 94].

There are several successful commercial products for system integration using
‘application suites’ and ‘cross application platform’ concepts of ‘pluggable’ applications
that include Borland Office 2.0, Lotus SmartSuite 2.0 and Microsoft Office 4.0. These

systems integrate a word processor, spreadsheet, database, electronic mail, as well as



161

graphical and presentation tools into a single platform that allows different applications
to share data and functions through DDE, OLE, and DLLs while keeping the
independence of each application. In light of these successful systems, HAT is an
application of the ‘cross application platform’ concepts to CASE, simulation and expert
system. The HAT architecture can be seen as a platform for visual interactive

CASE/Simulation systems.

Integrating applications on different machines over a computer network is
outside the scope of this project. Nevertheless, this research indicates a direction for
further study. There have been network DDE and netwerk OLE applications that apply
the same DDE and OLE principles over a local area network. An extension of the HAT
architecture based on the network version of DDE and OLE would be applicable for

distributed CASE/Simulation integration.

DDE and OLE concepts can also be combined with DEXTER model structure to
integrate diverse software packages. DEXTER model is a reference model that captures
the important abstractions in a wide range of hypertext systems [Halasz 94]. Figure 5.5
shows a scenario of DEXTER node integration based on a DDE / OLE network. This
scenario can be seen as a generalization of HAT architecture. Each application in this
scenario is constructed as a DEXTER node. The run-time layer is the user interface that
present information (text, graphics, image, voice, and video) in a uniformed format for
the integration. The storage layer manages the information storage and retrieval. In
addition, the storage layer also has DDE / OLE communication capacity that sends
information back and forth to other DEXTER nodes. The DDE / OLE media can be
constructed based on either networking or stand-alone DDE / OLE protocols. The
within-component layer is application specific, where details of each application are

implemented. The three layers of a DEXTER node are relative independent and can be



162

designed separately. The run-time layer and within-component layer can be plugged into
the storage layer through presentation interfaces and anchors. The storage layers of
different DEXTER nodes become the backbone of the integration. Different DEXTER
nodes can be designed in different environments as long as they can communication with

DDE / OLE protocols.

Run-Time Layer

Presentation of the hypertext;
User interfaction; dynamics
App4

Presentation Specifications

App2

App6

Storage Layer
A 'database’ containing a
network of nodes and links

.k\ T //" Anchoring

, . Within-component Layer
App1 J L The content/ structure inside

App7 the node
OLE & DDE
. Media ; Structure of a Dexter Node

App3 \ AppS

Figure 5.5. A sofiware integration scenario based on DEXTER model

5.5 Lessons Learned Through The Implementation of HAT

Although C++ is a powerful object-oriented language with strong links to the
Windows operating system, it is not without problems. Programming in C++ requires
that programmers be concerned with the details of object management. The power of
C++ comes at the cost of additional responsibility and risk for programmers. Unlike
interpreted languages, such as Visual Basic and PLUS, C++ needs extra time for
compilation and linkage. It also lacks the system support of object management and error

protection found in Visual Basic and PLUS.



163

There are two problems that require special attention in C++ programming: the
‘gone and forgotten’ problem and the ‘memory leak’ problem. One of the features of
object-oriented programming is dynamic binding, in which objects are created and
assoctated with methods at run-time. Because of the lack of object management in C++,
it is the programmer's responsibility to monitor memory use. If an object is created and
never deleted, it will become memory garbage that occupies system memory even after
the application is terminated. When sufficiently bad, memory leaks may result in total
operating system failure. The programmer is responsible for ‘garbage collection’ by
deleting objects from memory when the objects are no longer needed. However,
premature deletion or repeated deletion of an object will also cause an operating system
failure. This phenomenon is known as the ‘gone and forgotten’ problem. Therefore, it is
critical for programmers to manage objects in a timely and organized fashion. Much of
the object management in C++ relies on the programmer's experience, debugging tools

and well-designed object structures.

Other lessons learned throughout this project are:

(1) Reuse existing C++ classes and C++ code.
The inheritance feature of C++ made software reuse become a reality.
Software reuse will shorten development time and improve system reliability.
However, special care must be taken to insure the quality of class library
packages purchased from outside sources. Because of the additional

difficulties in reading and editing the code of others, bug detection is difficult.

Another potential problem with software reuse is updating and technical
supporting from package providers. This is especially true in new and rapidly

evolving systems, such as Windows. Many development environments are not



164

fully backward compatible. Application packages based on an old environment

often need major changes to take advantage of a new environment.

Two third-party C++ libraries are used in HAT: Tools.h++ and
ObjectGraphics. Tools.h++ uses ANSI standard C++ to provide a cross-
platform SmallTalk-like collection classes for data structure design. Tools.h++
has little difficulty with the change in different Windows programming
environments. On the other hand, ObjectGraphics is closely associated with
the Windows GDI (Graphic Device Interface) and the Borland OWL 1.0
(Object Windows Library) Windows Application Framework to provide
graphical programming support. A program developed with ObjectGraphics is
not portable to other GUI (Graphical User Interface) environment. It is also

very sensitive to changes in the Borland C++ programming environment.

(2) Take advantage of Windows Application Framework (WAF) and User
Interface Toolkit (UIT).
The basic tools for Windows programming are Microsoft SDK (System
Development Kit) and API (Application Programming Interface). However,
programming directly with the SDK and API is very tedious and error prone.
There are several Windows Application Frameworks including the Object
Windows Library (OWL) from Borland and the Microsoft Fundamental
Classes (MFC) of Microsoft. These are the most popular C++-based WAFs
built on top of the SDK and APIL

UITs are also included in the Windows programming environment. Microsoft
AppStudio and the Borland WorkShop provide graphical tools to visually

design a user interface.



165

WATFSs and UITs provide a friendly user interface and result in more efficient
Windows programming. While gaining ease in Windows programming,
programmers lose the flexibility of direct access to the SDK and the API,
because WAFs only provide services for standard window operations.
Nevertheless, programmers can always use direct SDK and API calls from a
WAF to regain flexibility, when necessary, because the SDK and the API are
special C functions that can be called from any C++ applications. For instance,
several direct SDK calls are made in the HypertextWindow of HAT to
implement the hypertext display, while the HypertextWindow itself is a

descendent from the TFileWindow class of OWL.

(3) Organize a program around events and messages.
Fundamentally, HAT contains a hypertext-based user interface. Object-
oriented GUI design is an event-driven process. Objects and their associated
methods are organized in response to events from the WIMP user interface
and messages from one window to another. Event-driven programming
requires the identification of the events and messages handled by an object and
the construction of appropriate methods. This is in contrast to traditional
function-driven programming, where execution sequences are pre-defined
inside a program . In addition, there are no apparent execution sequences in an

event-driven program.

Event-driven programming is effective in handling graphical user interface
events and messages, where users may choose various event combinations
regardless of the sequence. However, end user freedom poses a ‘threat’ to
programmers. Programmers have to consider all the possible events, messages

and their combination effects in order to define the event-handler accordingly.



166

Because of the additional requirement for event handling, a graphical user
interface design is much more difficult than that of a command line user
interface. Programmers often rely heavily on GUI design tools, debugging
programs, and GUI design experience to cope with the increasing demand for

graphical interface design.

(4) Rely on good interactive debugging tools.
Because of the complexity inherent in graphical user interface design, it is
imperative that powerful debugging tools be used throughout the development
process. A good on-line debugger will help programmers visually examine
program execution flows, values of variables, stack and heap usage, class
structures, and source code. The original Borland C++ 3.1 only includes a
DOS-based debugging tool, which is not sufficient for complex Windows
programming. The recent versions of Borland C++ 4.0 and Visual C++ have

greatly improved interactive debugging tools.

During the development of HAT, investments in debugging and testing tools
exceeded the expense of programming environments. Several third-party
debugging tools were employed to assist in finding program bugs, logical
design errors, as well as memory leaks, pre-mature deletion, and repeated
deletion problems. Without these debugging tools, it would be difficult, if not

impossible, to develop the system.

(5) Rely on well designed class structures and documentation.
C++ offers programmers great flexibility for implementation, but does not
enforce rules for good system design. The quality of the source code as well

as the whole system lie in the hands of programmers. Using C++ does not



167

guarantee the benefits of object-oriented techniques, instead, methods for
object-oriented analysis and design must be followed. If global and public
variables and methods are not restricted, and class structures are not well

defined, a C++ program can be as bad as any other poorly designed program.

HAT uses the Coad-Yourdon method for system analysis and design. The
project benefited from carefully designed class structures. Due to the
exploratory nature of this project, systems details were not clearly defined at
its inception. Thus, object-oriented methods helped to define the system

components and permitted the system to evolve through many modifications.

(6) Follow examples and intelligent help facilities.
Examples help significantly in Windows programming, especiaily for
beginners. Given the level of sophistication in Windows programming, a
beginner is often overwhelmed by its complexity. A good example can provide
an entry to Windows programming. There are many functions and calling
conventions in the Windows environment and it is difficult to use them
correctly and efficiently all the time. Reference to examples or source code

from previous projects can save a lot of time.

Some Window programming systems include intelligent help facilities to
reduce the burden on programmers. Microsoft AppWizard, ClassWizard, and
Borland AppExpert, ClassExpert are good examples. These facilities let
programmers visually create graphical interface and generate skeleton code,
message map, and event handlers for the application. Also, the intelligent help
facilities save a lot of effort by specifying correct program structures and

connecting the program with graphical resources.



168

(7) User interface design is difficult.
The friendliness and ‘easy-to-use’ features of graphical user interfaces come at
the expense of higher requirements for coding and debugging. Myers notices
that 40-50% of the code and run-time memory are devoted to interface
functions in some application [Myers 89]. The ratio is getting larger as more

complicated graphical user interfaces emerge.

The graphical user interface is the focus of HAT. More than 60% of the
source code is dedicated to the manipulation of windows and graphical
objects. Even though HAT is not a bug-free product, it has taken several
months of debugging to make it run smoothly. The author believes that the
HAT experience is common to all GUI designs that one cannot expect a bug-
free GUI after a few runs. Given the powerful tools for programming and
debugging, GUI development is still not an easy programming job. A
substantial amount of time has to be allocated to design, testing and

debugging.

(8) System testing is iterative and requires involvement of many testers.
A software system often needs several rounds of modifications to satisfy its
requirement. Some software bugs are formidable and require time and many
rounds of testing to be isolated and fixed. There is a chance that modification
and bug-fixing may introduce new bugs and inconsistencies that causes new

problems. As a result, sysiem testing is an iterative process and is never over.

In addition, GUI user interface testing requires not only significant amounts of
time, but also the involvement of many testers, especially outside testers, to

explore the different ways the user interface is touched, clicked, moved, and



169

navigated. The author has observed that programmers are often trying to
prove the correctness of their system and follow certain testing patterns. They
are not effective testers. On the contrary, an outside tester often does not have
anything to prove or any pattern to follow. Observing how outside testers
interact with the system often lead to uncovering more bugs and ill-defined

functions that were never noticed by the system developers.



170

CHAPTER 6 CONCLUSIONS

This project presents an effort to improve the performance of upper-CASE by
introducing a new interface design and dynamic evaluation. The concept of the
integration of hypertext and simulation with the traditional structured analysis tool is
novel in CASE research. This research is inspired by the current trends of both software
engineering and simulation research: (1) the need for more user involvement, (2) the
need for IS dynamics, (3) the increasing level of system integration, (4) the potential
benefits of a visual and an interactive environment, (5) the development of an intelligent

and user friendly interface, and (6) the need to improve system portability and flexibility.

6.1 Contributions

This project chose hypertext to improve the user interface and simulation to
enhance system model evaluation. The integration of these techniques in a multiple
window environment provides a set of flexible and compact systems analysis tools. The

primary contributions of HAT are:

(1) Improvement of user involvement: One of the primary objectives of this research
is to improve user involvement. There are apparent necessities for more user
involvement [Ives 84]. The advances in hardware technology, especially micro-
computer technology, broadens the base of users who willingly participate in IS
development. HAT takes advantage of the state-of-the-art microcomputer
environment and techniques to provide an interactive, visual, hypertext-based
user interface. It provides an easy method for users and system developers to
understand the non-linear structure of system models and encourages users to
employ structured techniques. Subsequently, HAT makes the DFD and ERD

techniques more understandable and closer to the end users. The end users and



171

the system developers may communicate better because they are using the same

tools and following the same systems analysis philosophy.

A preliminary user survey shows that HAT does help novice user understand the
structured analysis methods and improve communication among instructors and

students.

(2) Complement approaches to JAD problems: The basic JAD problem is to find
ways to improve communications with end users and understand their
requirements better. JAD principles involve the introduction of structures and
formats for ‘how to run a design meeting’. Although it is powerful and effective
to organize a design meeting and convey information among users and system
developers, current JAD lacks the ability to evaluate overall system dynamics. In
addition, JAD introduces a set of new expression methods, from different
structured analysis methods. This may result in some conversion problems later in
the analysis process. HAT makes use of structured techniques (DFDs and ERDs)
to communication with users and estimate system dynamics directly. This
approach pushes DFD and ERD tools toward end users. It will convey the

information user requirement more effectively.

(3) Introduce IS dynamic analysis to CASE: Businesses and organizations are
dynamic by nature; the more complicated they become, the more dynamic
feedback they need. So far, CASE tools have not included dynamic analysis as a
routine task. It has been proved that dynamic analysis can improve system
performance estimation and decision making, especially in a noisy and turbulent
environment [Warren 92, Wild 91a]. HAT introduces an automatic DFD

simulation procedure of DFD models that provides a macro estimation of system



172

performance at the early stage of the SDLC. In previous studies, simulation
model generations are either manual or limited to automatic transfer of pre-

defined models. HAT provides greater integration and stronger dynamic linkages.

(4) Better system integration: HAT uses DDE data links for dynamic data transfer
among the user interface, the simulation package and the expert system — an
integration that previous studies have not implemented. In the testing systems of
Eddins [Eddins 90] and Wild-Griggs [Wild 91a], no automatic model generation
was implemented. Warren's study [Warren 92, 93] developed a prototype that
incorporates simulation with CASE. It supported automatic simulation model
generation but did not have an interactive user interface to input DFD models -
the models have to be pre-defined in another CASE tool before the automatic
model generation and simulation. HAT integrates a full-featured hypertext-based

DFD and ERD user interface and automates the process of DFD simulation.

(3) compact and flexible structure: HAT is developed in the Windows environment

with C++ and limits its function to system analysis only, which results in:

(a) The efficiency of C++ and the limited functionality make HAT more
compact and less costly than other CASE tools. HAT can be used on a
tap-top PC in the field for system analysis. Users may also have their own
copies of HAT and work on their own problems at home or at the office -
this represents one more step to bring CASE tools out of the computer

laboratory and closer to end users.

(b) The DDE link structure makes HAT very flexible. The HAT subsystems
are ‘pluggable’ and can be assembled at run-time, because they are

independent applications under Windows supporting DDE



173

communication. HAT can be easily down-sized to use the interface alone
for systems analysis, while the simulation subsystem and the expert

system serve other purposes.

(6) Provide a framework for other studies: The concepts proposed in this research

may find applications for purposes other than IS development:

(a) DFD is a very powerful modeling method. It can be used for the modeling
of office routines and work flows. These models do not necessarily lead
to an implementation of computerized systems, but rather are descriptions
of how businesses are handled in an office. Once these models are
described in DFDs, users can use HAT to evaluate the dynamic features

of these models and weight different alternatives.

(b) HAT can also be a simulation environment, where simulation models can
be described in DFDs and HAT can generate the simulation model
automatically. The intelligent help system may provide the same services

to aid simulation modeling and simulation result explanation.

(c) The dynamic links among subsystems can be improved to support
stronger interactions. Instead of using ‘batch processing’ mode to handle
simulation models, run-time interaction can be added to exchange
simulation parameters and update rule-bases. This will result in strong
dynamic links among the subsystems that can be used for reverse
simulation [Wild 91b] and simulation animation. Since the construction of
HAT is object-oriented and based on an open structure, the enhancement
toward stronger dynamic links based on current HAT architecture is

applicable [He 94b].



174

6.2 Limitations

HAT is limited to the support of the systems analysis stage of the SDLC with
DFD and ERD. Currently, HAT is a stand alone system. There have not been
connections of any kind with other CASE tools proposed in this project, though such
connections are possible and desired for CASE integration [Chen 92a and b]. User query
analysis has been limited to keyword search technique. Natural language processing

capacity has ot been incorporated with the user interface.

The file-based system of HAT is not sufficient to handle large and complex
projects. Moreover, users cannot access the same project at the same time. HAT has no

facilities to support cooperative IS development.

There is not enough interaction in the ‘batch processing’ simulation mode. Users
do not have interactive control over the simulation once it is started. The simulation

expert system is only a simple prototype that cannot undertake real simulation tasks.

The simulation package used in this project is only a prototype version. A lot of
modeling and statistical features common to most simulation languages are not included
in YANSL. A more advanced object-oriented simulation package is expected to improve
dynamic evaluation. In addition, the dynamic evaluator simulates only one DFD model at
a time. The correlation among different DFDs is not included. There is a potential to
expand the scope of dynamic evaluation to include all information system models in a

project.

The description of a process node in a DFD is nothing more than simple text,
which limits the capacity for further analysis. Formal or semi-formal expressions of a
process may improve the quality of the analysis, such as decision trees, decision tables,

and pseudo code.



175

The current hypertext editor is based on links and pointers, which is convenient
and practical for a prototype system. In the long run, a standard hypertext engine with
SGML (Standard Generalized Markup Language) parser is preferred to handle large
hypertext documents. SGML is more flexible and powerful in terms of hyperlink creation
and navigation, with which different hyperlinks and hyper-views of the same hypertext

documents can be created automatically by a hypertext engine.

6.3 Future Research
This project reveals more interesting questions on visual, interactive systems
analysis and simulation environments than it solves. The following are potential topics

for each subsystem that can be improved in future studies:

The user interface:

o Interface with other CASE tools that cover later stages of the SDLC.

o Improve the interactivity of the user interface by providing simulation
tracing, stepping and animating capacities to follow the details of system

dynamics.

o Extensive user behavior study on effectiveness of the HAT user interface
and dynamic evaluation functions. The subject of the study should be end
user or novice system developers. The purpose of this study is to see how
much this system will help novice users learn systems analysis techniques

and how effective they use it for their own problems.

The data repository:
The incorporation of an Object-Oriented database system, like RAIMA

Object Manager, for data repository management so that multiple users can



176

share information of the same project concurrently. This will also pave the

way for collaborative development based the HAT architecture.

The simulation subsystem:
o Use better simulation packages. Because YANSL is a primitive simulation
package, it is not powerful enough to provide more sophisticated modeling
and statistic capabilities. A verified commercial simulation package will

serve better within the HAT architecture.

e The conversion rules used in this project is YANSL specific. Some of the
assumptions and rules may not be suitable for other simulation languages.
More study is needed to create a generalized set of conversion rules for

non-FIFO and complex queuing systems.

» Larger simulation coverage. Expand the scope of simulation to include
muitiple DFD models of different levels. Give users the freedom to choose

the level of details they expected to investigate.

The expert system:
» Take advantage of the achievement of current Al and simulation
application studies and enhance the simulation expert system to cover more

simulation tasks.

o Expand the expert system in HAT to include intelligent hypertext
operations that recognize link patterns and group link clusters. Use special
marker languages, such as SGML, HTML, to represent hyperlinks so that
the expert system can manage the semantics of the text and create

hyperlinks automatically for different user levels.



177

The interface for dynamic data exchange:
o Upgrade the dynamic data exchange interface to advanced OLE operations
and enhance the current data interface functions and provide more data

services.

e Develop network DDE and OLE data interfaces and lay the ground work

for group system analysis tools.

In the long run, extensive research of the integration of hypertext, simulation and
expert systems along the lines of the HAT approach will include:
« Extension the HAT architecture toward an object-oriented systems analysis
toolkit that enforces object-oriented concepts and provides hypertext and

simulation support.

« Expansion to a reverse simulation environment that includes a visual
graphical interface, an expert system, and a simulation kennel. In the same
fashion, a visual interactive simulation (VIS) system can also be

constructed.

« Expansion to a visual interactive decision support tool by using different
graphical modeling methods and providing dynamic evaluations. Such a
tool can be incorporated into an management information system for
planning and process re-engineering. Decision makers can use a drawing
board o change the models and the system will give statistics of possible

impacts.



178

APPENDIX A. AN OVERVIEW OF OBJECT-ORIENTED TECHNIQUES

Object-oriented Analysis (OOA), Object-Oriented Design (OOD), and Object-

What are Object-Oriented Approaches?

Oriented Programming (OOP) are the most promising techniques of the 90's [Yourdon
92]. 1t is expected that OO Database and OO Operating Systems and all kinds of OO
applications will eventually replace and enhance traditional products. What is OO? Why
is it so powerful?

Software development has gone through several different stages before the

History of Data Processing Models

~o N 4.__‘;/
\,/‘\\ ~
e ) N
.’/ \
7 -
Ve ‘\
\.
Programs
______________________________________ o
Module T
s {,‘/ Data T .
7 AN
Programs

Programs

concepts of OO became practical. The following figure shows an outline of these
different stages.

Objects ——,

e

Program ]

—

+ N
Data

<
<

N
Program
+
Data |
I |

Messages

Stage (1): All data is exposed to programs. A program has access to any data
without any restriction. Programs are closely related by common data. Ripple
effects (changes in one program cause changes in other program) are very strong.
(i.e. BASIC, Assembler and FORTRAN II)

Stage (11): Data is defined as ‘public data’ and ‘local data’. Each program may
maintain its own data that is only accessible to itself. This effort reduces some
ripple effects, but programs are still tied to public data. (i.e. FORTRAN 77,

ALGOL 60)



179

Stage (I1]): Programs are defined as modules with their own local data and
algorithms. Data sharing among modules is minimized. However, data and
algorithm are still treated separately. (i.e. Pascal, ALGOL 68, C)

Stage (1V): Data and programs are tied together as an object. There is no direct
data sharing among objects. Objects communicate by sending messages and
providing services. This is the so called Object-Oriented approach. (i.e.
SmallTalk, C++)

Grady Booch [Booch 90] defined OO approaches as:

To view the world as a set of autonomous agents that perform
some high level behavior ...

This definition emphasizes that objects are ‘autonomous agents’. They have their
own ‘high level’ behavior and are relatively independent from the outside world. An
object provides services upon requests (messages) from its information clients. Each
object may also send messages to request services from its information providers. In any
event, outsiders have no control over how the services are provided and why the
information requests are generated.

Each object has its own data members (attributes) and methods (procedures that
provide services designated to the object). The object owns its attributes and methods
throughout its life cycle and has the following basic features:

(a) Abstraction is to ignore those aspects of a subject that are not relevant to the
current purpose, in order to concentrate more fully on those that are [Coad 90].
For an object, abstraction means both data abstraction and procedural
abstraction.

Data abstraction means that data is well organized in structures so that it can be
treated as a single type or types to feed into operations (procedures). Procedural
abstraction means a well-defined operation that can be treated as a single entity,

even though it may combine many other operations.

In an object, attributes are data abstractions of all the properties that the object
has. Although they may be as simple as a Boolean variable or as complicated as
combinations of other objects, the object treats it as a single attribute entry to its
methods. Similarly, a method provides unique service to its users. The users treat
the method as a single service even though it may contain complex operations.

(b) Encapsulation is also called ‘information hiding” which means that each object
should keep its design decisions as locally as possible. An object should not
reveal its attributes and the inner-structures of its methods to the outside world
unless it is necessary.



180

Encapsulation is fundamental to keep each object autonomous. Because of
encapsulation, objects are loosely coupled. The connections among them are
simply message paths. Direct controls and data access among objects should be
avoided.

Encapsulation also limits the ripple effect of modifications. Changes in one object
may have little effect on the other objects as long as messages and services
(interfaces) are unchanged.

(c) Inheritance is the ability to propagate characteristics from ancestors. Objects are
usually organized in family trees with more general objects on the top and more
specific objects at the bottom. A child object inherits properties from the parents.
In addition, a child object can add new properties and change those properties
inherited from its parents. A parent object may hide some of its properties as
‘private’ so that nobody else will be able to use or inherit these private
properties.

Inheritance makes it easier for software reuse. Useful properties of old designs
can be inherited and enhanced by new designs. Therefore, resources can be
focused on solving new problems rather than replicating old designs. Inheritance
also gives new ways to use third party's software. Some generic and fundamental
operations can be inherited from standard software package to make our
software production more effective and efficient.

(d) Polymorphism enables a function name to be shared within a class hierarchy
allowing each class in the hierarchy to implement the action in a manner
appropriate to itself. The particular version of a polymorphic function to be
executed is determined at run time. Dynamic binding supports the feature of
selecting the code to perform a particular function at the time the function is
invoked.

(e) Dynamic binding means that attributes and methods of an object are generated
and binded together at run time. The attributes and methods belong to this
specific object throughout its life cycle.

An object is described in terms of a class that contains all the descriptions of
attributes and methods for the object. When an object is generated from its class at run
time, an instance of the class will be created. This process is somewhat similar to
assembling a circuit based on its schematic.

Dynamic binding guarantees that all the objects generated from the same class
will have the same behavior. Since each object is autonomous, any two objects cannot
interfere with each other, even if they are generated from the same class. Therefore, each
object will keep its own dynamic status at run time while having the same basic features
as the objects generated from the same class.



181

Pros and Cons of Object-Oriented Approaches

Object-Oriented approaches bring new strategies for software development. They
break through the barrier between data and procedures and bring a new vision to every
stage of information system development. Some of the major advantages are listed as
following:

(1) Provide a frame work that supports basic methods of human cognition.
Behavioral studies reveal that human recognition has three basic patterns: (a) To
identify an object and its attributes; (b) To distinguish a whole object as its
components and (c) To distinguish among different objects. OO approaches
follow the similar patterns to identify and define objects to make a system more
understandable. OO approaches also make analysis and design focus on objects
and their relations rather than specific details of data and procedures.

(2) Focus primarily on problem space understanding. Because the feature of
abstraction, designers can concentrate on the certain level of abstraction at one
time and forget other irrelevant facts.

(3) Combine data and process models into an intrinsic whole. All the techniques
before OO separate data and process models. Although these approaches may let
the designers focus on one of the models at a time, different representations of
data and process models often cause misunderstanding and ambiguity during
system development. The Dynamic Binding feature allows data and procedures
being created and destroyed at the same time and eliminate all the side effects of
separate data and process models.

(4) Encourage reuse of software components. Because the feature of inheritance and
encapsulation, it is easy to reuse some components of previous designs or
standard package from third parties and reorganize them into a new system.

(5) Redluce development risk and expense. Because of software reuse and
inheritance, most mature designs can always be reused and inherited in new

products. Therefore, the new products will be more reliable and cost less than
from scratch.

(6) Leads to systems that are more resilient to change. Because of information
hiding, changes to the objects will limit the ripple effect to a minimum and make
the whole system more flexible.

(7) Allow to accommodate families of systems. This is an obvious result of

inheritance. New products inherit basic features from previous versions and add
new features.



182

Although there are many advantages in using OO, it is not a panacea to all
software development problems. There are some limitations in implementing an OO
system:

(1) OO approaches may not be quite suitable for number-crunching jobs. OO is
good at user interface design, process control and communication, database
management, and information system modeling. It may not be as efficient as
some existing methods in dealing with number-crunching jobs because OO
approaches require more resources to operate.

(2) Transition and start-up costs are high. OO approaches are relatively new when
compared with various information system technologies. Most installed systems
are not 00. The movement to OO based systems is not easy.

(3) Training requirements. Most software engineers are not trained in OO concepts
and a long learning curve is typical in making the transition to OO.

(4) Performance overhead. OO approaches need extra resources to handle messages
and pass services among objects. Management of objects may also take extra
CPU time and memory.

Object-Oriented Analysis: Coad-Yourdon O0A Method

Object-Oriented techniques are not only new programming techniques, but also a
set of methodologies that support the entire systems development life cycle. System
analysis is the first step in system development. Object-Oriented Analysis (OOA) can be
defined as following:

OO0A is a method of analysis that examines requirement from the prospective
of the classes and objects in the vocabulary of the problem domain.
~ Grady Booch ~

004 is the process of identifving and defining classes and objects.
~ Peter Coad ~

There is no standard for OOA. Some proprietary OOA methods have been used
for system development. Among them Coad-Yourdon Method [COAD 90] and Booch
Method [BOOCH 91] are popular.

The Coad-Yourdon OOA Method emphasizes the definition of objects and their
classes. It has five basic steps: Identifying Objects, Identifying Structures, Defining
Subjects, Defining Attributes, and Defining Services.

Identifying Objects: Considering requirement specification, system analysts will
identify concepts that represent the basic components in the requirements. Objects can be



183

the name of a problem domain, a picture, or an object in the real world. Once an object is
identified, it is normally named with a noun or adjective and noun.

It is not possible to identify all the objects necessary for system development at
this stage. However, it is vital to identify major objects in the requirements. Detailed and
specific objects can be identified as the decomposition proceeds.

Identifying structures: An object in the real world is often a complex whole of
smaller objects. Class structures are necessary to represent this complexity. The Coad-
Yourdon Method defines two types of class structures: Classification Structure and
Assembly Structure. The process of Identifying Structures is to categorize objects and
find the underlying detail.

Symbols of Coad-Yourdon Method

{ Object Name \ __O__ Classification Structure

Data Members

\ Services /

Object

m A bly Structure

v

=1

Classification Structure represents a generalization of a type of objects. For
example, ‘transportation tool’ is a Classification Structure of ‘Car’, ‘Plane’ and ‘Ship’;
‘Car’ is a Classification Structure of ‘Honda’, ‘Ford’ and ‘Toyota’. Different levels of
Classification Structure construct a concept tree with general concepts on the top and
specific concepts at the bottom.

)

Tragisportation Tols

«;J_
l

Plane Ship

3

il
.

Honda Ford Toyota

[
{

Example of Classification Structure

Assembly Structure represents an aggregation of different components in an
object. For example, A “‘Car’ is composed of ‘Engine’, ‘Body’, ‘Wheels’ ... A set of
Assembly Structure will form a component tree with a general object on the top and
different levels that reveal different details of the general object.



184

Car
1 4 1
1 1 m
Engine Body Wheels
N NS N

Example of Assembly Structure

Identifying Subject is to control how much of a model that analysts consider at
one time. This is to classify related objects into different layers so that analysts can focus
on specific objects at one time. Generally speaking, a subject should be limited to no
more than seven or so objects (Miller's Law) [Coad 91].

Identifying a Subject is different from Identifying Structures. A Subject depends
on requirements. It is the specific logical relation among objects for a given requirement
specification. Structures depend on concepts. It is the intrinsic relation among objects
that are independent from the requirements.

Defining Attributes: Attributes are data elements contained in an object that
describe its characters and status. Several objects may share some common attributes.
General and common attributes should be put into the objects on top of a class structure
tree and specific attributes should be put together with specific objects.

Defining Services is to define what methods should be included in an object to
provide the required service. There can be three different kinds of services:

Fundamental services such as initialization of an object, monitor and change of
status, and basic calculations.

Book-keeping services such as keeping object history and basic sequences.
Event Response Services such as response messages from other objects.

Object-Oriented Design: Coad- Yourdon O0OD Method

As the second stage of system development, system design is going to
decompose the result from system analysis toward implementation. Object-Oriented
Design (OOD) can be defined as following:

OO0D is a method of object-oriented decomposition and a notation for both
logical and physical as well as static and dynamic models.
~ Grady Booch ~



185

OOD is a process of adding details for system implementation, including
human interaction, task management and data management details.
~ Peter Coad ~

In addition to their OOA methods, P. Coad and E. Yourdon propose a set of
OOD methods. It contains four basic components: Problem Domain, Human
Interaction, Task Management, and Data Management.

The Problem Domain component is directly inherited from OOA and refined in
0OO0D. Coad-Yourdon methods provide a set of symbols that make OOA and OOD use
uniform representation. This will avoid some of the inconsistency conversion of different
representations. System analysts should strictly follow the results from OOA and not add
objects that are outside the problem domain.

The Human Interaction Component captures how humans will command the
system and how the system presents information to users. Human interfaces are vital for
system acceptance and system performance. OO techniques are good at interface design.
Humans can be treated as objects that send messages and requests for services.
Computer objects are triggered by these messages and provide services accordingly.

The Task Management component manages various kinds of tasks and
processes in a system. This component is specially important for large applications where
multiple tasks are running simultaneously. Task Management will identify the
coordinator, the event-driven tasks and clock-driven tasks to synchronize them.

The Data Management component provides uniform data service to other
objects. Data can be stored on different devices with different formats. In an OO system,
everything is treated as an object, including the storage device. The Data Management
component is an OO shell that wraps around the data storage to provide unified service
to other objects in the system. Other objects receive data from the Data Management
regardless of where it is stored.

Most system analysis and design methods in the past have different
representations. Conversion from one representation to another may cause information
distortion and misunderstanding. Coad-Yourdon OOA and OOD methods use a set of
uniform representation that make analysis and design intrinsically connected. The
transition from analysis to design can be very smooth. The Coad-Yourdon OOA and
OOD methods can be summarized as following diagram.

Subject Layer
Object Layer Human Problem Task Data
Structure Layer | Interaction | Domain Management | Management
Atftribute Layer Component | Component | Component | Component

Service Layer

Coad-Yourdon O0OA and OOD method summary



186

APPENDIX B. EXAMPLES OF SYSTEMS ANALYSIS WITH HAT

B.1. Analysis of a TV inspection workshop operation: balance of workflows

1) The problem description:

A TV inspection workshop receives TV sets from the production workshop, inspects the product, repairs
defective TV sets, and sends the TV sets to packaging workshop. New TV scts arrive at average rate of a
TV set every 4 minutes. Quality control (QC) group reports that 85% of the TV sets from the production
line are flawless, and 15% need to be repaired. The QC report also shows that inspection of a TV set
takes about 2 to 3 minutes. A defective TV set is repaired every 15-30 minutes.

Assume ihat there are one group of inspectors, another group of repairmen in this inspection shop, and
all the defective TV sets can be repaired. What is the throughput of this workshop? How busy are the
workers? What can be done to improve the system?

2) The system models and hyperlinks:

Based on the information above, a DFD model is created. Along with the DFD model. data models that
describe the data flows are also created. The following diagram shows a snapshot of HAT interface that
describes the TV inspection workshop.

" HAT: cAdfdydis\sourceltv.dfd - © o T

iegptions Window DDE Simulation ﬂelp

TEile Edit Tool

DFD Editor: - context level DFD [+]=

= |[Hypertext Narrative Window] v | -

A TV inspection workshop |+

|
receives TV sets from the ||
production workshop, inspect the ﬂ

product, repair defect TV sets, ‘ S 'r. TR 06 =
and send the TV sets to x|y = inzpect GoodTy VDt
packaging workshop. New TV ‘ TV arrival
setc—arriva at avarana rata.of a0 - - y
TV = Data Dictionary I'L‘ Repaied TV
cofl <RC AN | e okl Dad [A
ref|<Rcd| = [TV arrival: Contents Lisq v ]‘ -
fro <Rcd N i - clect TV |
. I:I:I:. P4
=| Project Dictionary [~ |+ F"“"
DF>DefectTV
<DF>Good TV lEx d l
<DF>Repaired TV p
<DF>TV arrival -
<KEXT>TVDest
<EXT>TVSrc ERD —— —
| PR)RC pair - i J‘*v,‘¥ c&iocv'\
I Slcp-in_l I Show j I I
DFD inspect - ’ | | ] >

Dr




187

3) Simulation parameters:

By double clicking on a DFD object, a user can access to the description of that object. The ‘SIM’ button
on the dialogue box leads to the definition of parameters necessary to carry out DFD simulation. In this
example, exponential distribution of 4 minutes inter-arrival rate is used to describe the arrival of TV
sets; uniform distribution is used for the inspection and repair.

The simulation run parameter dialogue box is invoked from the ‘Simulation’ menu bar. This example
looks at an 8-hour working day (480 minutes) with 120 minutes warm-up periods and 10 runs.

Note: Theoretically, the warm-up period should be determined by pilot runs of the specific simulation
model. This example simply assumes that warm-up period is 1/4 of the run length.

" External Entity Sim_infor =" Process Sim. Infor
Label: [TVSre | Label: [inspect |
Bistribution Distribution

Hame: [interArriual ]

Type: lgponential {

Parameters: [4 J Parameters: Bif
|
|

Type: {Uniform

Hame: [inspectTime 1
l
|

Start/End Time: Lo.oo;4ao_oo Resources: Iinspec(or ]

Assignment: [inspect,1.000; Assignment: |TVDest,0.850;Repail

I oK ”(_:anc(ﬂ| Result I Help oK ”gancel ” Result ” Help l

B - Experimental Sim_infor

Label: [Repair ] DFD Hame: [context level DFD__ |

Distribution Humber of replications:
NHame: Iﬂ,aiﬂ-ime __] Warm up period:
|

Length of simulation: |480.00

Type: [Uniform
Parameters: |15,3n l oK [(_Zancel Iu-l_elp ]

Resources: lrepairMan 4|

Assignment: [TyDest,1.000; |

oK JIgancel ] Result ” Help ]




188

4) HAT DFD model descriptions:

DFD Name: TV inspection DFD
Simulation parameter: Run, 10, 120, 480

DFD Node Descriptions:

Label: TVSrc Type: External Entity

A TV set arrives from the production workshop every 4
minutes. The arrival flow is continuous throughout an 8-hour
working day.
Simulation parameters:

Distribution: InterArrival, Exponential, 4;

Start/end time:0.0, 480;

Assignment: inspect, 1.0;

Label: TVDest  Type: External Entity
Receives tested/repaired TV scts.
Simulation parameters:

Label: inspect Type: Process

The inspection nceds an inspector to check TV sets. An
inspection takes 2-3 minutes. There may be 15% defect rate.
Simulation parameters:

Distribution: inspectTime, Uniform, 2, 3;

Resource: inspector;

Assignment; Repair, 0.15;TVDest, 0.85;

Label: Repair Type: Process

Repair defect TV sets. A repairman takes 15-30 minutes to
repair a TV set. The repaired TV scts are sent to the
packaging workshop.
Simulation parameters:

Distribution: repairTime, Uniform. 15, 30:

Resource: repairman;

Assignment: TVDest. 1.0;

DataFlow Descriptions:
Label: TV arrival Type: DataFlow
Source; TVSrc  Destination: inspect

Label: Good TV Type: DataFlow
Source: inspect  Destination: TVDest

Label: Defect TV Type: DataFlow
Source: inspect  Destination: Repair

Label: Repaired TV Type: DataFlow
Source: Repair Destination: TVDecst



189

5) The simulation model:

// context level DFD Simulation Model
Run:;
{ 10.00; 120.00; 480.00; }

Distribution:;

{

Exponential, interArrival, 4.0;
Uniform, inspectTime, 2, 3;
Uniform, repairTime, 15, 30;

}

Resource:;

{

PRIORITY, inspector;
PRIORITY, repairMan;
}

Source:;

{

TRANSACTION, DET, TVSr¢_SRC, interArrival, 0.00, 480.00;
}

Queuc:;

{

FIFO, inspect_Q, inspector;
FIFO, Repair_Q, repairMan;
}

Activity:;

{

inspect_Q, inspector, PROB, inspect ACT, inspectTime;
Repair_Q, repairMan, DET. Repair_ACT. rcpairTime:;

}

Sink::

{
TVDest_SINK;
}

Branch:;

{

TVSrc_SRC, inspect_Q;
inspect_ACT, TVDest_SINK, 0.850;
inspect_ACT, Repair_Q, 0.150;
Repair_ACT, TVDest_SINK:

}



190

6) Simulation result and discussions:

The simulation script is forwarded to the YANSL simulation subsystem. The simulation result shows
that the waiting time in the repair queue is much longer than the inspection queue (50.7 min. vs. 2.1
min.). The repairman is much busier than the inspector (89.6% vs. 52.8%). The dynamic information
based on the assumption of data flow distributions and processing patterns has gone beyond the
traditional DFD analysis. It suggests that the groups of inspcctors and repairmen should be adjusted to
balance the workload.

Unweighted Statistics

Number Name Min Max Mean Std. Dev # of OBS
1 inspect_Q:TIQ 0.000 18.371 2.143 1.194 1214.000
2 Repair_ Q:TIQ 0.000 184.903 50.674 32.023 208.000
3 TVDest_SINK:TIS 2.000 219.443 17.122 8.154 1214.000

Time Weighted Statistics

Number Name Min Max Mean Std. Dev Time of OBS
1 inspector:UTL 0.463 0.630 0.528 0.203 4800.000
2 repairMan:UTL 0.599 0.962 0.896 0.349 4800.000
3 inspect_Q:ANIQ 0.000 8.000 0.454 0.292 4800.000
4 Repair Q:ANIQ 0.000 10.000 1.839 1.381 4800.000
5 inspect_ ACT:UTL 0.463 0.630 0.528 0.064 4800.000
6 Repair_ACT:UTL 0.599 0.962 0.896 0.125 4800.000

One of the scenarios is to let the inspector help the repairman to repair TV scts. As a result, the
inspection becomes slower and the repair is faster. The following is the simulation output when
inspection time increased to 5-10 minutes and repair time reduced to 10-20 minutes. The result shows
that the utilization of the resources is more balanced (75.1% of repairman and 77.3% of inspector). The
overall system performance is also better (time in system of a TV set reduced to 16.1 min. from 17.1
min.). There arc more TV sets going through the system than before (1130 TV scts in the new
configuration vs. 1214 TV sets before the change).

Unweighted Statistics

Number Name Min Max Mean Std. Dev # of OBS
1 inspect_Q:TIQ 0.000 68.740 9.496 7.542 1130.000
2 Repair_ Q:TIQ 0.000 89.845 25.647 11.377 199.000
3 TVDest_SINK:TIS 3.000 157.800 16.122 7.609 1130.000

Time Weighted Statistics

Number Name Min Max Mean Std. Dev Time of OBS
1 inspector:UTL 0.665 0.932 0.773 0.283 4800.000
2 repairMan;UTL 0.538 0.938 0.751 0.429 4800.000
3 inspect_Q:ANIQ 0.000 20.000 2.280 2.074 4800.000
4 Repair_Q:ANIQ 0.000 5.000 1.058 0.845 4800.000
5 inspect ACT:UTL 0.665 0.932 0.773 0.283 4800.000
6 Repair ACT:UTL 0.538 0.938 0.751 0.429 4800.000

This example shows that HAT can help uscrs test different scenarios and assumptions of the system
workflow and understand the intrinsic dynamics of a DFD model.



191

7) Invoking the simulation help system

The simulation help system can be invoked at two different points: defining the simulation model and
explaining the result. The ‘Help’ button inside simulation parameter dialogue box invokes the M4
expert system via DDE and the consulting conversation begins.

" HAT: endfdvdistsource\tvadfd -

File Edit Tool |

View Options Window DDE Simulation
=|Hypertext Narrative Windd v |« ||| = DFD Editor: - context level DFD v~
ATV inspection workshop kd > 1 JREN B | BBy | oro- ) o | o | BB A12
receives TV sets from the | . |+ |
production workshep, inspect m ] ||
[3])
=] DFDObject Input | (i =g FVS“ wide | o0 e |
Name: ITVSrc '=| External Entity Sim_Infg==| Expert Consulting Session
Type: External Entity Label: ﬁVSrc Label: |TUSrc J
Description Distribution .
A TV set arrives from the Name: limer Arrival Expert Message:
production workshop every 4 ‘ Begin consulting ... Ed
Type: [Exponemlal Does the data have ||
d ?
I aK I Eanceﬂ [ SIM| | Parameters: |40 ;:; omness
repair. The QC report also no
shows that inspection of a T| Start/End Time: I 0.00;450.00 5
set takes about 2 to 3 minut¢ - -
N . . As ent: ,1.000; .
A defective TV set is repaire sianm ﬁ'spe“ 10 User ge:
- i . distribution shall | ch ?
| every 15-30 minutes [ oK l\glceTlBesun_ILﬂelp IWhat istribution shall | choose J
FO TVSic - r 0K I Lgancel |
Browser  description

The above snapshot shows that the TVSrc DFD object dialogue box was triggered (the left) first, then a
simulation parameter dialogue box (thec middle) was invoked by pressing ‘SIM’ button, and simulation
help conversation started (the right) by pressing ‘Help® button.

HAT does not claim to have a sophisticated expert system built-in. However, this example does show
that the conversation links between the user interface and expert system have been created. A user may
consult with the expert system to determinc how to choose simulation parameters and interpret

simulation result.

Note: The expert system is only an add-on feature of HAT. It docs not have direct impact on simulation.



192

8) DDE conversation log
a) A simulation task
Ul Simulation model Script....
UL Tam Ul
UI: The model script is ready
SIM: Simulation finished. The result is ready.
SIM: Simulation Result ...

b) A expert system consulting session
UI: Tam Ul
Ul:knowledge:distr.kb
UI: Data Ready
ES: Data Ready
ES:Begin consulting ...
Docs the data have randomness?
yes
no

Ulycs

UL Data Ready

ES: Data Ready

ES:Does the data have boundary?
yes

no

UL:no

UlL: Data Ready

ES: Data Ready

ES:Docs the data have a constant ratc?
yes

no

Ul:yes

UI Data Ready

ES: Data Ready

ES:What is the time interval between two transactions?
a number.

UIL:4.0
Ul Data Ready
ES: Data Ready
ES: distribution = Exponential distribution is recommended.
(100%) becausce kb-15.
parl = 4.0 (100%) because kb-16.
par2 = 0 (100%) becausc kb-17.

Consulting finished.



193

B.2. Analysis of an investment company: determine the system bottleneck

1) Problem description:

An investment company plans to develop an information system to manage its business transactions.

The current operation procedurc is as the following:

a) Buy/sell slips from the investment manager arrive to the company about every 15 minutes.

b) A clerk verifies the slips and may return 20% of the slips as they are invalid or not filled properly.

<) A typical verification process takes 5-10 minutes.

d) Verified slips are forwarded to the buy/sell clerks to execute the buy/sell operation.

€) A buy/sell clerk takes 10-20 minutes to file a transaction record and talk with investment firms.

f) Investment firms reply to the buy/sell clerks about every 30 minutes.

g) Transaction records have to be sorted and stored to a master file, which takes 3-5 minutes for each
record.

Use a DFD model to describe the necessary components in the investment information system and find

out the bottleneck in the system that should pay special attention upon implementation.

2) DFD model and hyperlinks:

Based on the problem description, a DFD model is created. The following diagram shows a snapshot of
HAT interface that describes the investment firm.,

e

i HAT:cAdfdidis\sourcelinvestdid
File

Tool View Options Window DDE Simulation Help

Edit

= ]tlypertext Narrative Windo\[ v ] ~lll= DFD Edito 0 D v]a
An investment company plans ||| 8 { BBy LiER ko=l be=} XY p¥ef Ray (=2
to develop an information | +

2]

system to manage its business
transactions. The

current operation procedure is
as the following:

1) Buy/sell slips from the
investment manager arrive to
the company about every 15
minutes.

2) A clerk velifies the slips and
may return 2096 of the slips as
they are invalid or not filled
properly.

3) A typical verification process
takes 5-10 minutes.

4) Verified slips are ferwarded to
the buy/sell clerks to execute L{
the buy/sell operation.

15] A buy/sell clerk takes 10-20

S |

NEN Malidata

n..nﬁ?é..;:...iﬂ ||
[0} ) Py

m
x
=

BEEHEI




194

3) DFD model descriptions:

DFD Name: DFD of an investment firm
Simulation parameter: Run, 10, 120, 480

DFD Node Descriptions:

Label: Inv. Mngr Type: External Entity
Investment managers send buy/sell slips at about every 15
minutes.
Simulation paramcters:

Distribution: Extl_DIS, Exponential, 15;

Start/end time: 0.0, 480,

Assignment: Validate, 1.0;

Label: Validate  Type: Process
Validate buy/sell slips from investment managcrs. 20% of the
slips may be returned to the investment managers:; 80% of the
slips are forwardced to buy/sell operations.
Simulation parameters:

Distribution; Pro2_DIS, Uniform, 5, 10

Resource:

Assignment: Inv. Mngr, 0.20;Buy/Scll.0.80

Label: Buy/Sell  Type: Process
Perform buy/sell operations. 10-20 minutes for each
transaction.
Simulation parametcrs:
Distribution: Pro3_DIS, Uniform, 10, 20;
Resource: Buy/Sell Rd;
Assignment: Buy/Sell Rd, 0.50:Inv. Firm, 0.50;

Label: FileRd  Type: Process
Sort and store transaction records into master file, 3-5 for
cach record.
Simulation paramecters:
Distribution; Pro3_DIS, Uniform, 3, 5.
Resource: Master File, Buy/Sell Rd;
Assignment: Master File, 1.0;

Label: Buy/Sell Rd Type: DataStore
Storage for transaction record.
Simulation parameters:

Assignment: File Rd, 1.0;

Label: Master Filc Type: DataStore
Master storage for all transactions.
Simulation parameters:

Label: Inv. Firm Type: ExternalEntity
Reccives buy/sell requests and reply at about every 30
minutes.



Simulation parameters:
Distribution: Ext7_DIS, Exponential, 30;
Start/end time: 30, 480,
Assignment: Buy/Sell, 1.0;

DataFlow Descriptions:

Label: Buy/Sell Slips
Source: Inv. Mngr

Label: Invalid Input
Source: Validate

Label: Buy/Sell Order
Source: Validate

Label: Buy/Sell Requests
Source: Buy/Sell

Type: DataFlow
Destination: Validate

Type: DataFlow
Destination: Inv. Mingr

Type: DataFlow
Destination: Buy/Sell

Type: DataFlow
Destination: Inv. Firm

Label: Buy/Sell Confirmation Type: DataFlow

Source: Inv. Firm

Label: Buy/Sell Records
Source: Buy/Sell

Label: Buy/Sell Records
Source: Buy/Sell Rd

Label: Sorted Records
Source: File Rd

Destination: Buy/Sell

Type: DataFlow
Destination: Buy/Sell Rd

Type: DataFlow
Destination: File Rd

Type: DataFlow
Destination: Master File

195



196

(]
inv. MAgr_SINK

D9
o - invald Input 7] 7 - E7
nv. Mnge | Veidate oo - BuyrSet o | i7V. Firm
08 . J ISel Orders
Buy/Sel Sips By
D13
V Buy/Seit Records
S5
Buy/Sel Rd
D14
‘ Buy/Sel Records
015
S6 Sorted Records
Master File
inv. Mngr_SRC
0:— D 7 Vedals_ACT 02
1 m $ Vaidate 0 ){3 |Proz_pis | PROB
interArrical FIFO
0.80
Jewiseira
Inv. F:)rrg SRC o 4 Buy/Sel_ACT 0.50
A E { Buyisen 5 PROB
8 W0 7 1 uy/Sell_Q Ipma_ms
[Cinteramical ] N&re /
0.50
OMaster Fite
[Jeuyiseirg

N/

10
Inv. Firkg_SINK

File Rd_ACT

File Rd_Q 7 |Pros_DIS IDET

DFD - Simulation model conversion: an example of an investment company



197

4) The Simulation model:

// context level DFD Simulation Model

Run:;

{ 10.00; 120.00; 480.00; }

Distribution:;

{

Exponential, Extl_DIS, 15;

Uniform, Pro2_DIS, 5,10;

Uniform, Pro3_DIS, 10,20;

Uniform, Pro4_DIS, 2,3;

Exponential, Ext7 DIS, 30;

}

Resource:;

{

PRIORITY, Buy/Sell Rd;

PRIORITY, Master File;

}

Source:;

{

TRANSACTION, DET, Inv. Mngr_SRC, Extl_DIS, 0.00, 480.00;,
TRANSACTION, DET, Inv. Firm_SRC, Ext7_DIS. 30.00, 480.00:
}

Queue:;

{

FIFO, Validate Q, NULL;

FIFO, Buy/Sell_Q, Buy/Sell Rd:

FIFO, File Rd_Q, Master Filc;

}

Activity:;

{

Validate_Q, NULL, PROB, Validate_ACT, Pro2_DIS;
Buy/Sell_Q, Buy/Sell Rd, PROB, Buy/Sell_ACT, Pro3_DIS:
File Rd_Q, (Master File, Buy/Sell Rd), DET, File Rd_ACT. Prod4_DIS:
}

Sink:;

{

Inv. Mngr_SINK;

File Rd_SINK;

Inv. Firm_SINK;

h

Branch:;

{

Inv. Mngr_SRC, Validate_Q;

Validate_ACT, Inv. Mngr_SINK, 0.200;

Validate_ ACT, Buy/Sell_Q, 0.800;

Buy/Scll_ACT, Inv. Firm_SINK, 0.500;
Buy/Sell_ACT, File Rd_Q, 0.500;

File Rd_ACT, File Rd_SINK:

Inv. Firm_SRC, Buy/Sell_Q;

}



198

5) Simulation result and discussion:

The simulation result of 10 runs shows that the Validate and File Rd queues have no delay at all. Since
there is no resource requirement and process capacity limit in this model, transactions to the Validate
queue should have no delay. However, it is worth noticing that the Validate activity docs have a
maximum number of 6 transactions in the activity at one time, which means that delay is possible if
there is a resource restriction to the Validate activity. In any event, the delay will not be significant
comparing with the total number of transactions going through the activity.

The biggest congestion in the system is obviously Buy/Scll queue. It has average waiting time of 86.147
minutes while other queues in the system do not have any delays. There are also a lot of transactions left
over in the Buy/Sell queue when the simulation finished: 413 transactions go in the queue and only 296
(149 + 147) transactions go out the queue in 10 simulation runs. That indicatcs that 28.3% of the
transactions are not finished in the same day. The busy rate of the Buy/Sell activity also echo the same
fact that the Buy/Sell process is very busy (86% busy ratc) and Buy/Sell record is the even busier (98.2%
busy rate). The simulation shows that this system is not very well functioned in current situation.

Based on the simulation result, we can see that the key issue of this information system development is
to focus on the Buy/Sell process and the Buy/Scll data store. The other two processes are less critical.

Unweighted Statistics

Number Name Min Max Mean Std. Dev # of OBS
1 Validate_Q:TIQ 0.000 0.000 0.000 0.000 309.000
2 Buy/Sell Q:TIQ 0.000 290.730 86.147 32.333 413.000
3 File Rd_Q:TIQ 0.000 0.000 0.000 0.000 149.000
4 Inv. Mngr_SINK:TIS | 5.068 9.947 7.271 0.576 66.000
5 File Rd_SINK:TIS 10.610 263.830 104.166 29.571 127.000
6 Inv. Firm_SINK:TIS | 18.300 300.200 105.736 7.609 147.000

Time Weighted Statistics

Number Name Min Max Mean Std. Dev Time of OBS
1 Buy/Sell Rd:UTL 0.977 0.989 0.982 0.010 4800.000
2 Master File:UTL 0.109 0.152 0.121 0.030 4800.000
3 Validate_Q:ANIQ 0.000 0.000 0.000 0.000 4800.000
4 Buy/Scll_Q:ANIQ 0.000 26.000 7.728 3.890 4800.000
5 File Rd_Q:ANIQ 0.000 0.000 0.000 0.000 4800.000
6 Validate ACT:UTL | 0.000 6.000 0.482 0.131 4800.000
7 Buy/Sell_ACT:UTL | 0.000 1.000 0.860 0.131 4800.000
8 File Rd_ACT:UTL 0.000 1.000 0.121 0.124 4800.000




199

APPENDIX C. HAT SURVEY QUESTIONNAIRE

HAT Questionnaire
1. Circle the number that indicates your lcvel of agreement with each statement-
1. HAT was very helpful in understanding process and data modeling?
I I I | I
1 2 3 4 5
disagree agree completely

2. HAT was casy to use

A I I R
1 2 3 4 5

disagree agree completely

3. There was NO relationship between the process and data modeling concepts in the
textbook and HAT helped to bridge the gap.

| I I | |

1 2 3 4 5
disagree agrec completely

I1. Pleasc respond to the following questions by circling the most appropriate answer
4. How long did it take to learn the basic functions of HAT (the DFD cditor. the ERD
editor. creating hyperlinks and browsing DFDs)?

(a) Less than 2 hours.

(b) 2-5 hours.

(c) One day.

(d) More than onc day.

5. Do vou think that the use of hypertext links between text in the narrative window and
graphical objects was helpful for learning about process and data modeling?

(a) Very helpful.

(b) Helpful.

(c) Confusing.

(d) The hyperlinks had not cffect.

6. How do you like the multiple-window user interface?
(a) Easy to usc. just like other Windows applications.
(b) I can manage it. but I'm not happy with the way it looks.
(c) T am totally lost in the windows.

7. How do vou like the graphical tools?
(a) I like the drag and drop features as well as the tool bars and
control bars.
(b) The tools are uscful. but could be designed better.
(c) I don't feel comfortable with the “look’ and *feel’ of the tools.

8. How do you like the navigation through DFDs via button clicks?
(a) Very easy to navigate among DFDs and helpful in
understanding functional decomposition.
(b) Helpful. but not casy to usc.
(c) Confusing, not helpful at all.



200

9, Was it easy to create a hyperwords and hyper links?
(a) Easy to use.
(b) I can learn it, but somewhat confusing.
(c) Hard to learn.

10. Does the HELP facility really help?
(a) Very helpful.
(b) OK, but it needs some work.
(c) Not helpful.

11. Is the reporting and printing function sufficicnt for your homework?
(a) I like it.
(b) I can live with it, but more work nceds to be done on the
printing function.
(c) It is terrible.

12. Is the response time for operations in HAT satisfactory?
(a) Yes (b) No

13. Where do you use HAT?
(a) In the student lab (b) At home ¢) Both (a) and (b)

14. Do you have computer at home?

(a) Yes (b) No
if yes, can HAT run on your home computer?
(a) Yes (b) No

15. Have you used any Windows applications before?
(a) Yes (b) No

III. Please answer each question as indicated.
16. Assuming that HAT were a bug-free commercial product. what would bc a fair price
forit? $

17. What type of computer do you have? CPU, RAM, hard drive size, screen size,
color/bw?

Please place additional comments about HAT on the lines below-

Thank you very much for taking this survey



201

APPENDIX D. M4 RULE-BASE EXAMPLES IN HAT

1) Determine a distribution

/* Goal */
goal = [distribution, parl, par2].

/* Facts */

distr(no_distribution) = ' No distribution is recommended.'.
distr(uniform) = 'Uniform distribution is reccommended.'.
distr(normal) = 'Normal distribution is reccommended.'.
distr(exponential) = 'Exponential distribution is recommended.’.
pl(no_random) = 0.

p2(no_random) = 0.

prepend(X) = float(1/X).

/* Rules */

/* no_random */
if random=no and distr(no_distribution) = N and par1=P1 and par2 = P2
then distribution = N.
if random = no and pl(no_random) =P
then parl =P.
if random = no and p2(no_random) =P
then par2 = P.

/* uniform */
if random and bounded and distr(uniform) = N and parl = P1 and par2 = P2
then distribution = N.
if random and bounded and lower =D
then parl =D.
if random and bounded and upper =D
then par2 =D.

/* exponential */
if random and bounded = no and const_rate and distr(cxponential) = N and
parl = Pl and par2 = P2
then distribution = N.
if random and bounded = no and const_ratc and num =D and 1/D =P
then parl =P.
if random and bounded = no and const_rate
then par2 =0,

/* normal */
if random and bounded = no and const_rate=no and distr(normal) = N and
parl=P1 and par2 = P2
then distribution = N.
if random and bounded = no and const_ratc =no and avg =D
then parl =D.



202

if random and bounded = no and const_ratc = no and var =D
then par2 =D.

/* Questions */
question(random) = 'Does the data have randomness?'.
legalvals(random) = [yes, no].

question(bounded) = 'Does the data have boundary?'.
legalvals(bounded) = [yes, no].

question(const_rate) = 'Does the data have a constant rate?'.
legalvals(const_rate) = [yes, no].

question(upper) = 'What is the upper boundary?'.
legalvals(upper) = number.

question(lower) = 'What is the lower boundary?'.
legalvals(lower) = number.

question(num) = 'How many evets happen in a unit time?'.
legalvals(num) = number.

question(avg) = 'What is the average of the data?'.
legalvals(avg) = number.

question(var) = ‘What is the range of change?'.
legalvals(num) = number.

2) Determine the runs, length, and warmup period

/* Goal */
goal = [run, length, warmup].

/* Facts (default values)*/
rdef = 10.
Idef = 480.

/* Rulcs */
/* use dcfault_val */
if def = yes and rdef =P
thenr=P.

if def = yes and ldef =P
then length = P.

ifdef=noand r=Pandrdef=Pl and P1>P
then r = Pl.

if def = no and 1 = P and Idef = P1 and P1>P
then length = P1.



iftength=Pand P/4 =W
then warmup = W.

/* use user input value */
if def = no and r = P and rdef =P1 and P>PI
thenr=P.

if def =no and 1=P and Idef=P1l and P > P1
then length = P.

/* conclusion */
if r =P and length = P1 and warmup = P2
then run =P,

/* Questions */
question(r) = 'How many runs?'.
legalvals(r) = integer.

question(l) = 'How long is each run?'.
legalvals(l) = integer.

question(def) = 'Do you want to use default value?'.
legalvals(def) = [yes, no].

3) Simulation result interpretation

/* Goal */
goal = [reccommendation].

/* Facts */

recom(time_in_Q, low) = 'Low time in Q. All transactions arc processed promptly with little
delay. This node is not a bottleneck in the system.'.

recom(time_in_Q, normal) = 'Time in Q is normal.'.

recom(time_in_Q, high) = "Time in Q is too long, possible bottleneck.'.

recom(time_in_Q, highmax) = 'Time in Q is normal. but maximum valuc is too high that
indecates short congestions.'.

recom(num_in_Q, low) = 'Low number in Q. All transactions arc processed promptly with little
delay. This node is not a bottleneck in the system.'.

recom(num_in_Q, normal) = 'Number in Q is normal.".

recom(num_in_Q, high) = 'Number in Q is too high. possible botticneck.'.

recom(num_in_Q, highmax) = 'Number in Q is normal, but maximum value is too high that
indecates short congestions.'.

recom(time_in_system, low) = 'Low time in system. All transactions are processed promptly
with little delay. The system has not a bottlencck.'.

recom(time_in_system, normal) = 'Timec in system is normal.".

recom(time_in_system. high) = 'Time in systcm is too long, possiblc bottlencck in the system.'.
recom(time_in_system, highmax) = 'Time in system is normal. but maximun value is too high
that indecates short congestion.'.



204

recom(resr_utl, low) = ‘Low resource utilization. The resource is idle most of the time.
Redundant or under performed resources.'.

recom(resr_utl, normal) = 'Resource utilization is normal.".

recom(resr_utl, high) = 'Resource utilization is too high, possible bottleneck.'.
recom(resr_utl, highmax) = 'Resource utilixation is normal, but maximum value is too high
that indecates short congestions.'.

recom(act_utl, low) = 'Low activity utilization. The activity is idle most of the time. Redundant
or under performed activity.'.

recom(act_utl, normal) = 'Activity utilization is normal.".

recom(act_utl, high) = 'Activity utilization is too high, possiblc bottlencck.'.

recom(act_utl, highmax) = 'Activity utilization is normal, but maximum value is too high that
indecates short congestions.'.

recom(norecom) = 'Sorry, I cannot provide any recommendation on this issuc'.

/* Rules */
/* time_in_Q */
if type = time_in_Q and length = P and mean = P1 and max = P2
and P1< P/10 and recom(time_in_Q,low) =R
then recommendation = R.
if type = time_in_Q and length = P and mean = P! and max = P2
and P1> P/10 and P1< P/4 and P2>P/4 and recom(time_in_Q,highmax) =R
then recommendation = R.
if type =time_in_Q and length = P and mean = P1 and max = P2
and P1> P/10 and P1< P/4 and P2<P/4 and recom(time_in_Q.normal) =R
then recommendation = R.
if type = time_in_Q and length = P and mean = P1 and max = P2
and P1> P/4 and recom(time_in_Q.high) =R
then recommendation = R.

/* time_in_system */
if type = time_in_system and length =P and mean =P and max = P2
and P1<P/5 and recom(time_in_system,low) =R
then recommendation = R.
if type = time_in_system and length = P and mcan = P1 and max = P2
and P1> P/5 and P1< P/2 and P2>P/2 and recom(time_in_system,highmax) =R
then recommendation = R.
if type = time_in_system and length = P and mcan = P1 and max = P2
and P1> P/5 and P1< P/2 and P2<P/2 and rccom(time_in_system.normal) =R
then recommendation = R.
if type = time_in_Q and length = P and mean = Pl and max = P2
and P1> P/2 and recom{timc_in_sysiem,high) = R
then recommendation =R.

/* resr_utl */
if type = resr_utl and mean = P1 and max = P2
and P1< 0.3 and P2 < 0.8 and recom(resr_utl.low) =R
then reccommendation = R.
if type = resr_utl and mean = P1 and max = P2
and P1> 0.3 and P1< 0.8 and P2>0.8 and recom(resr_uti.highmax) =R



205

then recommendation =R,

if type = resr_utl and mean = P1 and max = P2
and P1> 0.3 and P1< 0.8 and P2<0.8 and recom(resr_utl,normal) = R
then recommendation = R.

if type = resr_utl and mean = P1 and max = P2
and P1> 0.8 and recom(resr_utlhigh) =R
then recommendation = R.

/* act_utl */
if type = act_utl and mean = P1 and max = P2
and P1< 0.3 and P2 < 0.8 and recom(act_utl,low) =R
then recommendation =R.
if type = act_utl and mean = P1 and max = P2
and P1> 0.3 and P1< 0.8 and P2>0.8 and recom(act_utl,highmax) = R
then recommendation =R.
if type = act_utl and mean = P1 and max = P2
and P1> 0.3 and P1< 0.8 and P2<0.8 and recom(act.normal) = R
then recommendation =R.
if type = act_utl and mean = P1 and max = P2
and P1> 0.8 and recom(act_utl.high) =R
then recommendation = R.

/* no recommendation */
if recom(norecom) = P
then recommendation = P.

/* Questions */
question(type) = 'What type of statistics has been collected?'.
legalvals(type) = [time_in_Q, num_in_Q, time_in_system, resr_utl. act_utl].

question(run) = 'How many runs were tried?".
legalvals(run) = integer.

question(length) = 'How long was cach run?'.
legalvals(length) = integer.

question(max) = 'What is the maximum value?'.
legalvals(max) = number.

question(mean) = 'What is the avcrage valuc?'.
legalvals(mean) = number.

question(std) = 'What is the standard deviation?'.
legalvals(std) = number.

/* get more information of connections in complicated cases*/



APPENDIX E. SELECTIVE CLASS DESCRIPTIONS OF HAT

E.1. The user interface

1) The MDI base window

// Copyright (C) 1993 by University of Hawaii

// Hyper Analysis Toolkit (HAT) (R) Main Window

// MDI Base Window for all other windows

// Handling messages from its children and scheduling for different tasks.

/i superclass: MyDDEWindow
/! File: dfdwin.h

/ Author: Jackson He

// Date:  03/93

I Language:C++

// Modification notes:

#ifndef _DFDWIN_H
#definc__ DEFWIN H

#include "define.h"
#include "objdraw.h"
#include "mydde.h"

#dcfine CM_ArrangcAll 204

#define CM_Parameter 205

#define CM_RunSim 206

#define CM_ShowDDELog 207
#define D_ABOUT 111

#definc NumDataWin 30

#definc SCRIPTLEN 3000
_CLASSDEF(TEditWindow)

[/**** Declare TDFDApp. starting point of the program *#**x**//
class _CLASSTYPE TDFDApp : public TApplication
{
public:

TDFDApp(LPSTR name, HINSTANCE hinstance,

HINSTANCE hPrevinstance, LPSTR IpCind. int nCmdShow)
: TApplication(name, hinstance, hPrevlnstance. IpCmd, nCmdShow){ }:

virtual void InitMainWindow():

virtual void Initlnstance():
}. // end of TDFDApDP

Il ¥*** Declare TDFDWindow, the main MDI window *****//
class _CLASSTYPE TDFDWindow : public MyDDEWindow
{
fricnd UIAppHandle:
private:
Boolcan Lock:
virtual void SetupWindow(): // window sctup

206



207

TEditWindow* ShowTextWin(char* text, char* title);
Boolean TimeBomb(int day, int year);
virtual BOOL CanClose();
void LockMe();
void UnlockMe();
int IsActivate(RTMessage Msg);
void MenuEnable();
void MenuEnableND();
// enable menu for non-draw window

// message handler
virtual void DFDError(RTMessage Msg) = [WM_FIRST + WM_DFDError];
// Report DFD errors
virtual void DataWinClosed(RTMessage Msg) = [WM_FIRST + WM_DataWinClosed];
/ Msg when a DataWindow is closed
virtual void WMSize( TMessage& Message ) = [ WM_FIRST + WM_SIZE |;
// Resize window
virtual void ArrangeAll(RTMessage Msg) = [CM_FIRST + CM_ArrangeAll]:
// arrange all children
virtual void CMShowLog(RTMessage Msg) = [CM_FIRST + CM_ShowDDELog|
{ ShowTextWin((char*)ConvLog.data(), "DDE Conversation Log");} // show DDE log
virtual void CMAbout(RTMessage Msg) = [CM_FIRST + CM_ABOUT]; // about msg
virtual void CMFloating(RTMessage Msg) = [CM_FIRST + CM_FLOATING]:
// urn on/off floating label
virtual void OpenFile(RTMessage Msg) = [CM_FIRST + CM_FILEOPEN];
// open file operatio
virtual void NewFile(RTMessage Msg) = [CM_FIRST + CM_FILENEW]|;
// new file operation
virtual void CMFileSave(RTMessage Msg) = [CM_FIRST + CM_FILESAVE];
/I save file operation
virtual void CMFileSaveAs(RTMessage Msg) = [CM_FIRST + CM_FILESAVEAS]:
// saveas opertation
virtual void CMPrintProject (RTMessage Msg) = [CM_FIRST + CM_PRINTPROJECT]:
// print project
virtual void CMShowPDict(RTMessage Msg) = [CM_FIRST + CM_ShowPDict]:
// display ProjectDictionary
virtual void CMShowDDict(RTMessage Msg) = [CM_FIRST + CM_ShowDDict];
//display DataDictionary
virtual void WMShowERD(RTMessage Msg) = [WM_FIRST + WM_ShowERD};
// show ERD
virtual void WMShowDDWin(RTMessage Msg) = [WM_FIRST + WM_ShowDWin];
// show DataWindow
virtual void RenewDFD(RTMessage Msg) = [WM_FIRST + WM_RcenewList];
// reset all objects when a new project is started
virtual void ShowDFD(RTMessage Msg) = [WM_FIRST + WM_ShowDFD];
// msg when sclect a new DFD from broswer
virtual void ShowDFDObject(RTMessage Msg) = [WM_FIRST + WM_ShowDFDObject};
//show dfdobjects set by DataWinddow or project dictionary
virtual void ShowMsgWin(RTMessage Msg) = [WM_FIRST + WM_ ShowMsgWin];
// show message window after checking DFD
virtual void MarkNode(RTMessage Msg) = [WM_FIRST + WM_MarkNode]:
// Highlight currcnt DFD object, triggered by a msg



208

virtual void SetIndex(RTMessage Msg) = [WM_FIRST + WM_SctIndex];
// Set index in the DFD browser. msg when slect an object in DFDdraw window
virtual void ReExpand(RTMessage Msg) = [WM_FIRST + WM_RcExpandList]:
// msg when DFDdraw updates nodes
virtual void ShowScript(RTMessage Msg) = [WM_FIRST + WM_ShowScript].
// msg when description is shown with control button
virtual void UpdateDDict(RTMessage Msg) = [WM_FIRST + WM_UpdateDDict];
// update data dictionary
virtual void WMHyperWordSelected(RTMessage Msg) =
[WM_FIRST +WM_HyperWordSelect]; // msg when a hyperword is chosen
virtual void WMRedrawDFD(RTMessage Msg) = [WM_FIRST + WM_RedrawDFD];
// redraw current DFD
virtual void WMSetDataFocus(RTMessage Msg) = [WM_FIRST + WM_SetDataFocusj;
/1 set focus to a DataWindow
virtual void CMParameter(RTMessage Msg) = [CM_FIRST + CM_Parameter];
virtual void CMSimRun(RTMessage Msg) = [CM_FIRST + CM_RunSim|:
// handlers to the simulation menu
virtual void CMHelp(RTMessage Msg) = [CM_FIRST + CM_HELP}. // Help

// simulation methods
void SetRunParameter();

DFDSet* CheckSimParameter(DFDSet[]);

void PollSimParameter(); //poll every node in current DFD for simulation parameters
Boolean GenSimScript();, // Gencrate simulation script from DFD modcl

// simulation result parser

void ParseResult(char resuit{]);

int GetNextLine(char buffer(}, char temp]], int start);

int Getltems(char Line[], int from, int to, char temp[]):

public:
WORD ChildNum;
PTDFDDrawWindow DFDDraw:
PBrowserWindow Browser;
PTDescriptWindow Descript;
PpDictWindow pDict;
PdDictWindow dDict;
PTERDDrawWindow ERDWin;
PMessageWindow MsgWin;
DataWindow** DataWinHandle[NumDataWin|;
int DataWinCount,
PHyperTextWindow HTxtWin;
char ScriptBuffer[SCRIPTLEN];

TDFDWindow(LPSTR ATitle, LPSTR MenuName);

~TDFDWindow();,

UIAppHandle* GetAppHandle(){rcturn(UIAppHandlc*)Appl:}

virtual void CloseAuxWin(); // close auxilary windows, such as Dictionary Window

// misc methods

virtual void MarkNode(DFDObject* obj); /Highlight a given DFD Object
virtual void PrintText(char* text, int Ien);

virtual void RedrawDFD(DFD* dfd):



209

virtual void CMHWordConnect(); // connect current hyperword and a dfd object

virtual void CMHWordDisconnect(); // disconnect current hyperword and a dfd object
virtual void CMERDHW Connect(); // connect current hyperword and an ERD object
virtual void CMERDHWDisconnect(); // disconnect current hyperword and an ERD object

void GetWindowClass( WNDCLASS& WndClass ),
void HighlightDFDWin(RWCollectable* data, RTMessage Msg);
void HighlightEntity(RWCollectable* data, RTMessage Msg);
void HighlightRelation(RWCollectable* data, RTMessage Msg);
/ highlight object in DFD or ERD window once a data pointer
/1 is selected from the hypertext window
I8
#endif // end of TDFDWindow

2) The hypertext window

/I Copyright (C) 1993 by University of Hawaii

// Hyper Analysis Toolkit (R) HypertextWindow
/[File: htxtwin.h

//Date: 4/29/93

//Author: Tien Lum & Jackson He

#ifndef HTXTWIN_h
#define HTXTWIN_h

#include "hfilewin.h"
#define CM_REDRAW 860
#define CM_PRINT 706

[Pex¥xrxx HyperTextWindow ***¥kkxx//

class HyperTextWindow : public HyperFileWindow

{

protected:

virtual void CMFileNew(RTMessage Msg) = [CM_FIRST + CM_FILENEW]:
virtual void CMFileOpen(RTMessage msg) = [ CM_FIRST + CM_FILEOPEN |;
virtual void CMFileSaveAs(RTMessage msg) = | CM_FIRST + CM_FILESAVEAS |;
virtual void CMFileSave(RTMessage msg) = [ CM_FIRST + CM_FILESAVE |.
virtual void CMFilcPrint (RTMessage Msg) = [CM_FIRST + CM_PRINT];
/ivirtual void CMPrintProject (RTMessage Msg) = [CM_FIRST + CM_PRINTPROJECT];
virtual int IsActivate(RTMessage Msg) = [WM_FIRST + WM_CHILDACTIVATE];
virtual void CMRedraw(RTMessage Msg) = [CM_FIRST + CM_REDRAW]:
virtual void HyperWordSelected(RTMessage msg) = | WM_FIRST + WM_HyperWordSelect |-
virtual void SctupWindow(),
void MenuEnable();

public:
Boolean Close;
HyperTextWindow(PTWindowsObject parent, LPSTR title. LPSTR fname).
~HyperTextWindow();
Boolcan CanClear(){return TRUE;}
Boolean CanClose().
HyperWord *GetHyperWord(RWCollectable* data)



{ // return the hyperword for given user data
return GetHyperEditor()->GetHyperWord(data);
5
void ResetUserData(RWCollectable* data) { GetHyperEditor()->ResctUserData(data); }
void HighLight(RWCollectable* data),
void NewFile();
5
#endif /HyperTextWindow

3) The DFD editor window

/1 Copyright (C) 1993 by University of Hawaii

// Hyper Analysis Toolkit (R) DFDDrawWindow

// DFDDrawWindow

// Base Window for DrawWindowDFD and DFD tools
// interface with MDI window

/7 SuperClass: ObjectDrawWindow
/! File: dfddraw.h

/ Author: Jackson He

/! Date:  03/93

/" Language:C++

// Modification notes:

#ifndef _ DFDDRAW_H
#define _ DFDDRAW_H

#define __OBJDRAW_CPP
#include "objdraw.h"
_CLASSDEF(DrawWinDFD)

[fxxxxxdkxx TDFDDrawWindow *kdkkksdkokk/f
class TDFDDrawWindow : public ObjectDrawWindow
{
protected:
RWCString Text;
void PrepareText(DFD* dfd), // prepare Text for printing
void PrintDFD(DFD* dfd);// print DFD
virtual BOOL CanClose();
virtual void SctupWindow();
virtual int IsActivate(RTMessage Msg) = [WM_FIRST + WM_CHILDACTIVATE];
virtual void WMSize(RTMessage Msg) = [WM_FIRST + WM_SIZE].
virtual int FileSaveAs();
virtuai void Save();
void PrintProjectTrec():
virtual void LeftButtonUp(PTPoint MouscPt, WORD InputStates);
virtual void DefCommandProc(RTMessage Msg);
void MenuEnable();

public:
BOOL Close;
PTToolBar  ToolBar;

210



5

PTControlBar ControlBar;
TDFDDrawWindow(PTWindowsObject AParent, LPSTR ATitle);
~TDFDDrawWindow();

// message handler

virtual void CMFileNew(RTMessage Msg) = [CM_FIRST + CM_FILENEW};
virtual void CMFileOpen(RTMessage Msg) = [CM_FIRST + CM_FILEOPEN];
virtual void CMFileSave(RTMessage Msg) = [CM_FIRST + CM_FILESAVE];
virtual void CMFileSaveAs(RTMessage Msg) = [CM_FIRST + CM_FILESAVEAS];
virtual void CMFilePrint(RTMessage Msg) = [CM_FIRST + CM_PRINT];

virtual void CMActualSize(RTMessage Msg) = [CM_FIRST + CM_ACTUAL];
virtual void CMToolZoom() = [CM_FIRST + CM_ZOOM];

virtual void PrintProject (RTMessage Msg) = [CM_FIRST + CM_PRINTPROJECT];
virtual void SetTool(int Toolld); /! Called by DefWindProc

virtual void SetControl(int Controlid),

/futility

virtual void SetCaption();

virtual void SizeKids(};

PDrawWinDFD GetDrawWin(){return (DrawWinDFD*) DrawWindow:}

#endif /TDFDDrawWindow

4) The DFD drawing canvas

/I Copyright (C) 1993 by University of Hawaii

// Hyper Analysis Toolkit (R) DrawWindowDFD
/I provides drawing canvas for DFD drawing

// basic drawing operations and connections with
// data repository are setup

"
1
/"
"
1/
i

SuperClass: TDrawWiindow
File:  dwindfd.h

Author: Jackson He

Date:  03/93
Language:C++
Modification notes:

#ifndef _ DRAWWINDFD_H
#define _ DRAWWINDFD_H

#ifndef __GWINDOW_H
#include "gwindow.h"

#endif

#include "global.h"
#include "drawwin.h"

_CLASSDEF(DrawWinDFD)
_CLASSDEF(VisualRepDFD)
_CLASSDEF(DFD)

211



// e ok 3 o e ok ok ok DrawWinDFD **********//
class DrawWinDFD : public TDrawWindow

{

protected:

public:

// mouse move

virtual void LeftButtonDown(PTPoint MousePt, WORD InputStates);

virtual void BeginEraser(PTPoint MousePt, WORD InputStates);

virtual void BeginDFDDraw(PTPoint MouscPt, WORD InputStates, char* 1d, char* label);

virtual void Drag(PTPoint MousePt, WORD InputStates);
virtual void LeftButtonUp(PTPoint MousePt, WORD InputStates);
virtual void EndEraser(PTPoint MouscPt, WORD InputStatcs);

virtual void EndDFDDraw(PTPoint MousePt, WORD InputStates, char* Id. char* label);
virtual void EndSelectDrag(PTPoint MousePt, WORD InputStates).

// Window Messages

virtual void WMRButtonDown (RTMessage Msg) =
[WM_FIRST + WM_RBUTTONDOWN];

virtual void WMLButtonDbIClk(RTMessage Msg) =
[WM_FIRST + WM_LBUTTONDBLCLK};

void WMChar(RTMessage msg) = [WM_FIRST + WM_CHAR]:

/I Misc

virtual void BindingDrag(PTPoint MousePt);

void RedrawDFD();

void ExplodePRO(Process* pro).

void GenlInterfaceNodes(Process* pro, DFD* subDFD);

void GotoParent();

void CMDeleteDFD(); // delete current DFD and move to parent:

DFD * CurDFD;

PTGraphic SNode, DNodec;
DrawWinDFD(PTGWindow AParcnt);
~DrawWinDFD():;

virtual BOOL Setlabel(DFDObject* obj);

virtual void MarkFlow(VisualRepDFD* vilow);
virtual void SetTool(int ToolID);

virtual void MarkPicture(VisualRepDFD* apicture):

VisualRepDFD * CreatcNode(char* label, int type, TPoint * center);

VisualRepDFD * CreatcFlow(char * label);
void CreateDFD();
void rcadDFDName(char* name, int opr);
void SetDFDName();
void MarkNode(DFDObject* obj);
void AddInterfaceNode(DFDNode*, DFD*, Boolean, int);
VisualRepDFD* GetBuddyLabel(VisualRepDFD* vflow);
VisualRepDFD* GetBuddyFlow(VisualRepDFD* viabel):
VisualRepDFD* GetBuddy(VisualRepDFD* vrep):
// from a flow find its label, and vise versa
void MarkBuddy(VisualRepDFD * vrep):

}; // end of DrawWinDFD

#endif

212



5) The ERD editor window

/1 Copyright (C) 1993 by University of Hawaii

// Hyper Analysis Toolkit (R) ERDDrawWindow

// Base Window for DrawWindowERD and ERD tools
// interface with MDI window

7 SuperClass: ObjectDrawWindow
1/ File: erddraw.h

/! Author: Jackson He

/! Date:  03/93

/" Language:C++

1/ Modification notes:

#ifndef _ ERDDRAW_H
#define _ ERDDRAW_H

#include "dwinerd.h"

#define _ OBIDRAW_CPP
#include "objdraw.h"

_CLASSDEF(DrawWinDFD)
_CLASSDEF(ERDCtrlBar)

// 25 ok o 2 o 3k e ok ok 3k 3k ok Sk TERDDraWWindow ************//
class TERDDrawWindow : public ObjectDrawWindow

{
protected:
RWCString Text;
void PrepareText();
// message handler
virtual void LefiButtonUp(PTPoint MousePt, WORD InputStates);
virtual void DefCommandProc(RTMessage Msg).
virtual void CMActualSize ~ (RTMessage Msg) = {CM_FIRST + CM_ACTUAL];
virtual void CMToolZoom (RTMessage Msg) = [CM_FIRST + CM_ZOOM]I.
virtual int IsActivate(RTMessage Msg) = [WM_FIRST + WM_CHILDACTIVATE];
virtual void WMSize(RTMcessage Msg) = [WM_FIRST + WM_SIZE};
virtual void CMFilePrint(RTMessage Msg) = [CM_FIRST + CM_PRINT]:
virtual BOOL CanClose():
virtual void SetupWindow();
public:

ER_Diagram* CurERD:;

PERDTool ToolBar;

PERDCtriBar  ControlBar;

Boolean Close;

TERDDrawWindow(PTWindowsObject AParent, ER_Diagram* curerd);
~TERDDrawWindow();

//tool
virtual void SetTool(int Toolld): // Called by DefWindProc
virtual void SctControl(int Controlld);

213



/utility

virtual void SetCaption();

virtual void SizeKids();

PDrawWinERD GetDrawWin(){return (DrawWinERD*) DrawWindow;};

void GrabDataObject(); // Grab selected data object from data dictionay window
// to current ERD

void ShowDataWindow(); // show the datawindow connected with current ERD

void MenuEnable();

}; //end of TERDDrawWindow

#endif

6) The ERD drawing canvas

Copyright (C) 1993 by University of Hawaii

// Hyper Analysis Toolkit (R) DrawWindowERD
//DrawWindowERD

/1 provides drawing canvas for ERD drawing

// basic drawing operations and conncctions with
// data repository are setup

/"
"
/"
"
"
"

SuperClass: TDrawWindow
File: dwinerd.h

Author: Jackson He

Date: 03/93
Language:C++
Modification notes:

#ifndef _ DRAWWINERD H
#define _ DRAWWINERD_H
#ifndef _ GWINDOW_H
#include "gwindow.h"

#endif

#include "global.h"
#include "drawwin.h"

_CLASSDEF(DrawWinERD)
_CLASSDEF(VisualRepERD)
_CLASSDEF(ER_Diagram)

//******* DrawWinERD ********//
class DrawWinERD : public TDrawWindow

{

protected:

virtual void SetupWindow() { TDrawWindow :: SctupWindow(): }
// mousc move

virtual void LeftButtonDown(PTPoint MousePt, WORD InputStates):
virtual void BeginEraser(PTPoint MouscPt, WORD InputStatcs):
virtual void BeginERDDraw(PTPoint MouscPt, WORD InputStates):
virtual void Drag(PTPoint MousePt, WORD InputStates);

virtual void LeftButtonUp(PTPoint MouscPt, WORD InputStates):
virtual void EndEraser(PTPoint MouscPt. WORD InputStates).

214



public:

}. // end

215

virtual void EndERDDraw(PTPoint MousePt, WORD InputStates);
virtual void EndSelectDrag(PTPoint MousePt, WORD InputStatcs);
// Window Messages
virtual void WMRButtonDown (RTMessage Msg) = [WM_FIRST + WM_RBUTTONDOWN];
virtual void WMLButtonDblClk(RTMessage Msg) =
[WM_FIRST+WM LBUTTONDBLCLK]:.

ER_Diagram * CurERD;

PTGraphic SNode, DNode;
DrawWinERD(PTGWindow AParent, ER_Diagram* curerd);
~DrawWinERD(),

// Misc

virtual void MarkRelation(VisualRepERD* vflow);
virtual void SetTool(int ToolID);

virtual void MarkPicture(VisualRepERD* apicture);
VisualRepERD * CreateEntity(TPoint * mouscPt):
VisualRepERD * CreateRelation();

void CreateERD();

virtual void BindingDrag(PTPoint MouscPt);

void RedrawERD();

void MarkNode(Entity* cntity);

void MarkRelation(Relation* relation);

of DrawWinERD

#endif / __ DRAWWINERD H/

7) The graphical object class for DFD

/I Copyri
// Hyper
// inherit
// shown
/!
/!
1/
//
/!
1/

ght (C) 1993 by University of Hawaii
Analysis Toolkit (R) VisualRepDFD
ed from VisualRep, serve as the objects
in the DFD drawing window
SuperClass: VisualRep

File:  visdfd.h

Author: Jackson He

Date:  03/93

Language:C++

Modification notes:

#ifndef _VisualRepDFD
#define _VisualRepDFD

#include

J] *EEEE

"visrep.h"

VisualRepDFD *kkkkokok//

class VisualRepDFD : public VisualRep

{
public;

VisualRepDFD* Buddy; //used for label object:;
VisualRepDFD(VisualObject * interface);

~VisualRepDFD();

// Basic operations

VisualObject * Getlnterface() {return(VisualObject*) Interface:}.



DFD* GetCurrentDFD();
DFDObject *GetDFDObject();
DataNode * GetDataNode();
void SctLabel(char * label);
DFDType GetType();
RWCString Getld();
int GetLevel();
char* GetLabel();
TPoint * GetCenter();
TPoint * GetStart(){ return Start;}
TPoint * GetEnd() { return End;}
RWDilistCollectables* GetInFlows(),
RWnDilistCollectables* GetOutFlows();
void Hilight(VisualRepDFD* picture);
// Draw DFD
void ConstructNode(DFDType type);
void ConstructFlow();
void DrawFlow(DFDNode* source, DFDNode* dest);
}; // end of VisualRepDFD
#endif

8) The graphical object for ERD

/1 Copyright (C) 1993 by University of Hawaii
// Hyper Analysis Toolkit (R) VisualRepERD
// inherited from VisualRep, serve as the objects
/f shown in the ERD drawing window

" SuperClass: VisualRep
1 File: viserd.h

1/ Author: Jackson He

/! Date:  03/93

/" Language:C++

7 Modification notes:

#ifndef _VisualRepERD
#define _VisualRcpERD

#include "visrep.h"
#include "erd.h"

I XHRERE Visual RepERD ****¥ %% //
class VisualRepERD : public VisualRep
{
public:
Boolcan IsEntity;

VisualRepERD(RWCollcctable * interface, Boolcan isEntity);

~VisualRepERD();

// Basic opcrations
RWCollcctable* Getlnterface(){return Interface;}

216



217

Entity *GetEntity()
{ if(IsEntity) return (Entity*)Interface;
else return NULL;
}
Relation* GetRelation()
{ if({IsEntity) return (Relation*)Interface;
else return NULL;
}
ER_Diagram * GetMyERD()
{ if(IsEntity) return GetEntity()->GetMyERD();

clse return GetRelation()->GetMyERD();
}
DataObject* GetDataObject() {return GetMyERD()->GetlInterface();}
TERDDrawWindow* GetERDWin() {return GetMyERD()->GetERDWin();}
void SetERDWin(TERDDrawWindow* erdWin) {GetMyERD()->SctERDWin(erdWin);}

void SetLabel(char * label) { GetDataObject()->SctName(label);}
DataType GetType() {return GetDataObject()->GetType();}
char* GetLabel() {return (char*)GetDataObject()->GetName().data();}
TPoint * GetCenter(Entity* entity)
{ Point* p = entity->GetCenter();
return new TPoint(p->X, p->Y);
}
TPoint * GetStart(){ return Start;}
TPoint * GetEnd() { return End;}
RWnDlistCollectables* GetRelationList(Entity* entity) {return entity->GetRelationList(); }
// Draw ERD
void ConstructEntity();
void ConstructRelation();
void DrawRelation(Entity* sourcc, Entity* dest);

}: // end of VisualRepERD

#endif



E.2. The data repesitory

1) DFD tree manager

// Copyright (C) 1993 by University of Hawaii

// Hyper Analysis Toolkit (R) DFDManager

// Data repository interface that contain DFD tree and
// pointers to dictionaries and data graph

/ SuperClass: RWCollectable
/! File: manager.h

/f Author: Jackson He

// Date:  03/93

/ Language:C++

/ Maodification notes:

#if ldefined (_ Manager)

#define _Manager

#include "drawogl.h"

#include "define.h"

#include "dhword.h"
_CLASSDEF (HyperTextWindow)

[/¥**%% DFDManager ******//
class DFDTrecManager: public RWCollectable
{ RWDECLARE_COLLECTABLE(DFDTrceManager)
protected:
RWCString ProjName;
DFD* Root;
DFD * CurrentDFD;
ProjectDictionary * PDictionary;
DataDictionary * DDictionary;

DataRelGraph * DGraph;
HyperTextWindow* HyperWin;
public:
DFDTrecManager();
DFDTrecManager(const RWCString & name);
~DFDTrecManager(),
// Inherited from class "RWCollectable":
unsigned binaryStoreSize() const,
int comparcTo(const RWCollectable*) const:
RWBoolcan isEqual(const RWCollectable*) const;
unsigned hash() const;
void restorcGuts(RWFile& ),
void restoreGuts(RWvistream&:),
void saveGuts(RWFile&) const;
void saveGuts(RWvostreamér) const;

RWCString & GetProjName() { return ProjName;};
ProjectDictionary * GetProjDictionary() { return PDictionary;}:
DataDictionary * GetDataDictionary() {rcturn DDictionary:}:
DataRelGraph * GetDataGraph() {return DGraph;}:

void Reset(); // move CurrentNode to Root:

void MoveTo(DFD * adfd); // move CurrentNode to specific node

218



219

DFD * GetRoot();
DFD * GetCurrentDFD();
DFD* ExplodeSubDFD(const RWCString & name, Process* parent);
// explore to next level DFD from CurrentDFD
void InsertDFD(DFD * adfd); // insert a DFD as a child of Current DFD
void RemoveDFD(DFD * adfd); // remove a DFD from CurrentDFD children list
DFD * FindDFD(const RWCString & name, DFD* start);
// retrieval a DFD in the tree for a given name from start point on
DFD * FindDFD(DFD* adfd); // call previous FindDFD to check in adfd is in current tree;
RWDlistCollectables BrowseTree(); // list all tree node in certain order
void PersistenceSave(char * filename); // persistence save to a file

/Imethods for HyperWord

void SetHyperWin(HyperTextWindow* hyperwin) {HyperWin=hyperwin:}

DFDObject* GetObjFromHWord(HyperWord* hword);

HyperWord* GetSelectedHWord();

HyperWord* GetDFDHWord(DFDObject* dobj);

HyperWord* ConnectDFDHWord(HyperWord* hword, DFDObject* dobj):
// connect a hyperword with a dfd object

RWBoolean DisconnectDFDHWord(DFDObject* dobj);
// disconnect all links with the dfd object

RWBoolean DisconnectDFDHWord(HyperWord* hword, DFDObject* dobj):
// disconnect the link of given hyperword */

// Operations on Current DFD

DFDObject * GetCurrentObject();

void SetCurrentObject(DFDObject * obj);

DFDNode * AddNode(const RWCString & label, DFDType type. Point * center);
//add DFDNode to DFD and Proj. Dictionary

RWBoolean DeleteNode(DFDNode *obj):
/f remove DFDNode from Data and Proj. dictionary

RWBoolean DcleteFlow(Flow * flow), // remove Flow from Proj and Data dictionary

Flow * AddFlow(const RWCString & label, DFDNode *source. DFDNode *dest):
// Add a flow to DFD and Proj. dictionary

Flow *GetFlow(DFDNode *source, DFDNode *dest):
// Get flow for given source and destination

DFDNode *GetNode(const RWCString &label, DFDType type).

Flow * GetFlow(const RWCString &label);

RWDilistCollectables * GetOutFlows(DFDNode *node):; // Get outflow for a node

RWDilistCollectables * GetInFlows(DFDNode *nodc); // Get inflow for a node

RWnDilistCollectables * GetNodeList(); // Get all nodes in this DFD

RWnDilistCollectables * GetFlowList();

RWCString & GetDFDName();

void SetDFDName(censt RWCString & namc):

Process * GetParent();

DFD* GetParentDFD();

void AddDFDChild(Process *proc, DFD *child);

void RemoveDFDChild(DFD *child),

int NumChildren();

RWnDilistCollectables * GetChildren();

}; // end of DFDTreeManager



2) The dictionary class family
/[Copyright (C) 1993 by University of Hawaii
// Hyper Analysis Toolkit (R) Dictionary

// objects for Project dictionary, data dictionary
// and their entries

/" SuperClass: DFDSet
1/ File:  dictnary.h

1/ Author: Jackson He
/! Date:  03/93

/" Language:C++

/ Modification notes:

#if !defined (_Dictionary)
#define _Dictionary

#include "define.h"
#include "dfdsct.h"”

[/ ¥¥*x*x¥% ProjectDictionary *****rk//
class ProjectDictionary : public DFDSet
{ RWDECLARE_COLLECTABLE(ProjectDictionary)
protected:
DFDTreeManager* Interface;
public:
ProjectDictionary(),
ProjectDictionary(DFDTreeManager* interface);
~ProjectDictionary();
DFDTreeManager* Getlnterface() { return Interface: }
ProjEntry * InsertDFDObject(DFDObject * dfdobj);
ProjEntry * InsertProjEntry(ProjEntry * pentry):
void RemoveDFDObject(DFDObject * dfdobj);
void RemoveProjEntry(ProjEntry * pentry);
ProjEntry * FindProjEntry(DFDObject * dfdobj);

// Inherited from class "RWCollectable":

unsigned binaryStoreSize() const;

void restoreGuts(RWFile&);

void restoreGuts(RWvistreamé&);
void saveGuts(RWFile&) const;
void saveGuts(RWvostrecamé) const;

}, // end of ProjectDictionary

// e ok e ok o ¥k ProjEnu—y ******//
class ProjEntry : public RWColicctable
{
RWDECLARE_COLLECTABLE(ProjEntry)
protected:
RWCString Label;
DFDType Type; // Type can be: EXT, PRO, STR, DF
DescriptionCard * Description;
RWDlistCollectables * Links;
Boolean CanMerge(DFDObject* dfdobj);

220



221

public:
ProjEntry();
ProjEntry(const RWCString & label, DFDType type);
~ProjEntry();

RWCString& GetLabel() {return Label;};

Boolean SetLabel(const RWCString & label, DFDObject* dfdobj);
DFDType GetType();

DFDObject* InsertLinks(DFDObject * dfdobj);

DFDObject* RemoveLinks(DFDQObject * dfdobj);

RWBoolcan IsLinkEmpty();

RWnDIlistCollectables * GetLinks();

RWCString& GetDescript();

void SetDescript( const RWCString & descript);

void CleanUp(); // clean links before delete the entry

// Inherited from class "RWCollectable":

unsigned binaryStoreSize() const;

int compareTo(const RWCollectable*) const:
RWBoolean isEqual(const RWCollectable*) const;
unsigned hash() const;

void restoreGuts(RWFile&);

void restoreGuts(RWvistream&);

void saveGuts(RWFile&) const;

void saveGuts(RWvostreamé&) const;

}; // end of ProjEntry

/P¥*¥* DescriptionCard **¥**x%//
class DescriptionCard : public RWCollectable
{ RWDECLARE_COLLECTABLE(DescriptionCard)
protected:
RWCString Descript:
public:
DescriptionCard();
DescriptionCard(const RWCString & descript):
~DescriptionCard();
RWCString & GetDescript();
void SctDescript( const RWCString & descript);

// Inherited from class "RWCollectable":

unsigned binaryStorcSize() const;

void restoreGuts(RWFile&);

void restorcGuts(RWvistream&),
void saveGuis(RWFile&) const:
void saveGuts(RWvostrcam&) const:

}; // end of DescriptionCard

[Fx¥xkrx DataDictionary ***¥*xxx//

class DataDictionary : public DFDSet

{ RWDECLARE_COLLECTABLE(DataDictionary)
protected:



222

DFDTreeManager * Interface;

public:

DataDictionary();

DataDictionary(DFDTrecManager * interface);

~DataDictionary();

DFDTreeManager * GetInterfacce() { return Interface; }:

DataEntry * InsertDataObject(DataObject * dataabj);

DataEntry * InsertDataEntry(DataEntry * dentry);

void RemoveDataObject(DataObject * dataobj);

DataEntry * FindDataEntry(DataObject * dataobj);

DataEntry * FindDataEntry(const RWCString& namie, int type);
RWDiistCollectables * listDictionary(); // list all entires in dictionary

// Inherited from class "RWCollectable":

unsigned binaryStoreSize() const;
void restorcGuts(RWFile&);
void restoreGuts(RWvistream&);
void saveGuts(RWFile&) const;
void saveGuts(RWvostream&) .

}; // end of DataDictionary

Vet g DataEnu-y deokkekkkk ff

class DataEntry : public RWCollectable

{RWDECLARE_COLLECTABLE(DataEntry)
protected:

public:

RWCString Name;

DataType Type; // Type can be: DataFlow, DataStore, Record, Element
int isKey;

int isCombKey;

int CombKey;

DataObject * DObject;

RWCSiring Attrib;

int Length;

DescriptionCard* Script;

DataEntry();
DataEntry(const RWCString & name, DataType type,
const RWCString& attr, int L. const RWCString& s. DataObject * dobj);
~DataEntry();
DataObject * GetDataObiject() {return DObject: }:
void SctName(const RWCString &);
RWCString & GetName();
DataType GetType();
DataDictionary* GetDataDictionary();
void CleanUp(); // clean up before deleting
RWCString& GetAttrib() { return Attrib;}
void SctAttrib(const RWCString& attr) { Attrib = attr:}
int GetLength(){rcturn Length:}
void SetLength(int 1){Length =1}
RWCString& GetScript() { return Script->GetDescript(): }
void SetScript(const RWCString& s) { Script->SctDescript(s):}



// Inherited from class "RWCollectable":

unsigned binaryStorcSize() const;
int compareTo(const RWCollectable*) const;
RWBoolcan isEqual(const RWCol'ectable*) const;
unsigned hash() const;
void restoreGuts(RWFile&);
void restoreGuts(RWvistrcamé);
void saveGuts(RWFile&) const;
void saveGuts(RWvostrcam&) const;
}; // end of DataEntry

#endif

3) The Data relation graph and data object
/] Copyright (C) 1993 by University of Hawaii

// Hyper Analysis Toolkit (R)

// Object for data relation graph and basic data objects

1 SuperClass: RWCollectable
7 File:  data_rel.h

/" Author: Jackson He

/! Date:  03/93

I Language:C++

1/ Modification notes:

#if !defined (_DataRel)
#define _DataRel

#include "define.h"

#include "dictnary.h"

_CLASSDEF (DataWindow)

//DataRelGraph

class DataRelGraph : public RWCollectable

{ RWDECLARE_COLLECTABLE(DataRelGraph)

protected:

RWDlistCollectables * Nodes: // list for all the DataNodcs in graph - roots of data trees
DFDTrecManager * Interface; // pointer back to DFDTrecManager
DataObject* HyperParent;
// HyperParent serve as parent for Dataltems that created without parent
//this DataObject will not be in DataDictionary

public:
DataRelGraph();
DataRelGraph(DFDTrecManager * interface).
~DataRelGraph();
// Inherited from class "RWCollectable":
unsigned binaryStoreSize() const:
void restoreGuts(RWFile& ),
void restoreGuts(RWvistrcam&.),
void saveGuts(RWFile&) const;
void saveGuts(RWvostrcamé ) const:

DataNode *AddDataNode(const RWCString &name. DataType type.



224

Childltem *child, ConceptObject * interface);
// create and add a DataNode to data dictioanry
Dataltem *AddDataltem(const RWCString &name, DataType type,int i,
RWBoolean iskey, RWBoolean iscombkey, int combkey,
DataObject *parent, ChildItem *child,
const RWCString& attr, int 1, const RWCString& s);

// Create and add a Dataltem to data dictionary as i-th child of its parent
void DeleteDataObject(DataObject *obj); // delete a dataobject from graph and data dicctionary
void DeleteDataNode(DataNode* node, ConceptObject* cobj);
RWDIistCollectables *GetChildren(DataObject *node); // Get children list of a node
RWDiIistCollectables *GetParents(DataObject *nodc), // get parents list of a node
void ConnectObjects(DataObject * source, ChildItem* child, int i);

// connect two data object with key attributesdest is i-th child of source
ChildItem* DisconnectObjects(DataObject *source, ChildItem *dest);
ChildItem* DisconnectObjects(DataObject *source, DataObject* dest),

/! disconncet two dataobject
DataNode* FindDataNode(DataNode* obj)

{ return (DataNode*)Nodes->find((RWCollectable*)obj); }

DataObject* FindDataObject(DataObject* obj);

DataObject* FindDataObject(const RWCString& name, int type):
DataDictionary * GetDataDictionary();

DFDTreeManager* Getlnterface() { return Interface:};
DataObject* GetHyperParent() {return HyperParent;};

}; // end of DataRelGraph

// e o ok o 3 e ok e o Chlldllcm *******************//

class ChildItem: public RWCollectable

{RWDECLARE_COLLECTABLE(ChildItem)
protected:

public:

DataObject * Child,
int isKey:

int isCombKey;

int CombKey;
Entity* MyEntity;

ChildItem();

ChildItem(DataObject* obj. RWBoolcan iskey,
RWBoolcan iscombkey, int combkey):

~ChildItem();

RWBoolean IsKey(){return isKey; };
void SctKey(RWBoolean key) {isKey = key:. }:
RWBoolecan IsCombKey(){ rcturn isCombKey;};

void SetCombKey(RWBoolean iscombkey, int combkey)
{ isCombKey = iscombkey:;

if(isCombKey) CombKcy = combkey;

clse CombKey = 0;
}

int GetCombKey(){ return CombKey: }.



DataObject * GetChild(){ return Child;};
Entity* GetMyEntity(){rcturn MyEntity;}

// Inherited from class "RWCollectable":

unsigned binaryStoreSize() const;
int comparcTo(const RWCollectable*) const;
RWBoolean isEqual(const RWCollectable*) const;
unsigned hash() const;
void restoreGuts(RWFile& ),
void restoreGuts(RWvistream&),
void saveGuts(RWFile&) const;
void saveGuts(RWvostream&) const:
}: // end of ChildItem

// Ak ok ok kok DataObjcct *******//

class DataObject : public RWCollectable

{ RWDECLARE_COLLECTABLE(DataObject)
protected:

public:

DataEntry * Entry;
RWDlistCollectables * Children:
RWDlistCollectables * Parents;
DataRelGraph * Container;
ER_Diagram* MyERD;

DataWindow * DataWin;

DataObject();

DataObject(const RWCString & name, DataType type,
const RWCString& attr, int 1, const RWCString& s.
DataRelGraph * container);

~DataObiject();

//Basic opertations
RWCString & GetName();
void SetName(const RWCString & name); // set a new name

DataObject *SctLabel(const RWCString & label); // change name, make it unique.

void DumpChildren();

void DumpParents(); // cut off children and parents conncctions
DataType GetType();

DataEntry * GetDataEntry();

void SetDataEntry(DataEntry * entry),

RWDlistCollectables * GetChildren();

void MergeChildList(DataObject* obj):

RWDIlistCollectables * GetParents();

void MergeParentList(DataObject* obj);

ER_Diagram* GetMyERD(){return MyERD;}

// List operations

void InsertAChild(ChildItem* child); // insert a child with key attributes
void InsertAChildAfter(int index, ChildItem* child):

void InsertAParent(DataObject * dataobject);

Childltem* RemoveAChild(Childltem * dataobject. Boolcan fromERD);

225



226

void RemoveAParent(DataObject * dataobject);

ChildItem * FindAChild(DataObject * adata);

DataObject * FindAParent(DataObject * adata);

DataObject * GetFirstParent() { return (DataObject*) Parents->first().}

RWnDilistCollectables Connectionlist(); // find all the connected Nodes with this node
/! directly and indirectly;

DataRelGraph * GetContainer();

int GetNumParents() { return Parents->entries(); }:

RWDlistCollectables SubList(),

ChildItem * GetChildItem(DataObject* parent),

// key operations

RWBoolean IsKey(DataObject * parent);

void SetKey(DataObject* parent, RWBoolean iskey);

RWBoolean IsCombKey(DataObject * parent);

void SetCombKey(DataObject* parent, RWBoolcan iscombkey. int combkey):
int GetCombKey(DataObject* parent);

void CleanUp();

// attributes

RWCString& GetAttrib() { return Entry->GetAttrib(); }

void SetAttrib(const RWCString& attr) { Entry->SctAttrib(attr); }
int GetLength(){rcturn Entry->GetLength();}

void SetLength(int 1){ Entry->SetLength(l); }

RWCString& GetScript() { return Entry->GetScript();}

void SctScript(const RWCString& s) { Entry->SetScript(s).}

// Inherited from class "RWCollectable Persistance methods

unsigned binaryStoreSize() const;

int comparcTo(const RWCollectable*) const:
RWBoolean isEqual(const RWCollectable*) const:
unsigned hash() const;

void restoreGuts(RWFile&);

void restoreGuts(RWyvistrcamé& ),

void saveGuts(RWFile&) const;

void saveGuts(RWvostream&) const;

}; /lend of DataObject

// ok ok ok Ak DataNodc *********//
class DataNodc : public DataObject
{ RWDECLARE_COLLECTABLE(DataNodc)
protected:
ConceplObject * Interface:
public:
DataNode();
DataNode(const RWCString & name, DataType type,
DataRelGraph * container, ConceptObject* interfacc);
~DataNode():

ConceptObject * Getlnterface() { return Interface: };
DFDObject * GetDFDObject();
void SetLabel(const RWCString & label, ConceptObject* cobj).



227

void SetConceptData(ConceptObject* cobj, DataNode* dobj);

void Insert AParent(ConceptObject * cobject) { Parents->insert((RWCollectable*) cobject); };

void MergcParentList(DataNode*);

void RemoveAParent(ConceptObject * cobject)
{Parents->rcmoveReference((RWCollectable*)cobject); };

void CleanUp();

// Inherited from class "RWCollectable":

unsigned binaryStoreSize() const;

void restoreGuts(RWFile&);

void restoreGuts(RWyvistreamé&),

void saveGuts(RWFile&) const,;

void saveGuts(RWvostream&) const;,
}: //end of DataNode

JARdkkiork Pyataltem *% % kdokokkokdokkok /f

class Dataltem : public DataObject
{ RWDECLARE COLLECTABLE(Dataltem)
public:
Dataltem();
Dataltem(const RWCString & name, DataType typce,
const RWCString& attr, int 1, const RWCString& s,
DataRelGraph * container);
~Dataltem();
}; // end of Dataltem

]} FHdAxkExk DataElement ¥¥* ¥k %x*//
class DataElement ; public Dataltem
{ RWDECLARE_COLLECTABLE(DataElcment)
public:
DataElement();
DataElement(const RWCString & name,
const RWCString& attr. int . const RWCString& s.
DataRelGraph * container):
~DataElement();
}: //end of DataElement

// 35 ok ok ok ok e ek Da(aRccord ********//

class DataRecord: public Dataltcm

{ RWDECLARE_COLLECTABLE(DataRecord)

public:
DataRecord().
DataRecord(const RWCString & name.
const RWCSiring& attr, int 1, const RWCString& s.
DataRelGraph * container);

~DataRecord():

}. // end of DataRecord

#endif

4) The DFD class family
// Copyright (C) 1993 by University of Hawaii



228

// Hyper Analysis Toolkit (R) DFD
// Objects of all DFD and DFD clements

1
/
/
/
"
"

SuperClass: RWCollectable
File: dfd.h

Author: Jackson He

Date:  03/93
Language:C++
Modification notes:

#if |defined (_DFD)
#define DFD

#include "define.h"
#include "data_rel.h"
#include "dictnary.h"
#include "manager.h"
#include "visual.h"
#include "siminfor.h"

// *xkkkx DED ******//
class DFD : public RWCollectable
{ RWDECLARE_COLLECTABLE(DFD)

protected:

RWnDlistCollectables * Nodes; // list of DFDNodes
RWDlistCollectables * Flows; // list for Flow
RWDlistCollectables * Children; // list of children DFDs
RWBoolean HasParent:

Process * Parent; // list containes a pointer to Process from which it is explored
DFDTreeManager * Manager; // pointer to DFDTrecManager
int Counter; // counter for visual, need to be saved

int Level; // Level in DFD Tree

ConceptDFD * CDFD; // Pointer to buddy concept DFD
VisualDFD * VDFD: // pointer to buddy visual DFD
DFDObject * CurrentObject: // pointer to current DFDobject

Boolean AdjustinterfaceNode(InterfaceNode* inf); // called by ReAllienInterface()
SimRun* simRun;

public:

DFD();
DFD(const RWCString & name, int level,Process* parent. DFDTrecManager * manager);
~DFD();
int GetLevel(){rcturn Level;}
int Generateld();
SimRun* GetsimRun(){return simRun:}
Id AddId(); // return a combined Id for display
void SetCounter(int ¢) { Counter = c;};
DFDObject * GetCurrentObject() { return CurrentObject; }
void SetCurrentObject(DFDObject * obj) {CurrentObject = obj: }
DFDNode * AddNode(const RWCString & label, DFDTypce type. Point * center):
//add DFDNode to DFD and Proj. Dictionary
DFDNode *DFD::AddNode(DFDNode *node); // Adding operation
RWBoolean DeleteNode(DFDNode *obj):. // remove DFDNode from Data and Proj. dictionary



RWBoolean DeleteFlow(Flow * flow); // remove Flow from Proj and Data dictiontioary
Flow * AddFlow(const RWCString & label, DFDNode *source, DFDNodc *dest);
// Add a flow to DFD and Proj. dictionary
Flow *GetFlow(DFDNode *source, DFDNode *dest), // Get flow for given source and
destination
DFDNode *GetNode(const RWCString &label, DFDType type);
Flow * GetFlow(const RWCString &label);
RWnDlistCollectables * GetOutFlows(DFDNode *node); // Get outflow for a node
RWnDlistCollectables * GetInFlows(DFDNode *node); // Get inflow for a node
RWDlistCollectables * GetNodeList(); // Get all nodes in this DFD
RWnDilistCollectables * GetFlowList() { return Flows;};
RWCString & GetName(),
void SetName(const RWCString & name);
Process * GetParent();
DFD* GetParentDFD();
void AddDFDChild(Process *proc, DFD *child);
void RemoveDFDChild(DFD *child),
int NumChildren() { return Children->entries(); }:
DFDTreeManager *GetManager(),
void SetManager(DFDTreeManager * manager);
DataRelGraph * GetDataGraph() { return Manager->GetDataGraph(). }.
ProjectDictionary * GetProjDictionary();
DataDictionary * GetDataDictionary();
RWnDilistCollectables * GetChildren() { return Children:};
void ReAllienInterface();
/I check for connection to its parent and set interface node accordingly
Boolean HasInterfaceNode(DFDNode* node, Boolean isFrom);
/ test if a node has its corresponding interface node test method
void prntDFDList(); // Inherited from class "RWCollectable":

unsigned binaryStoreSize() const:

int comparcTo(const RWCollectable*) const:
RWBoolean isEqual(const RWCollectablc*) const:
unsigned hash() const;

void restoreGuts(RWFile&),

void restoreGuts(RWvistrecamé& ),

void saveGuts(RWFilc&) const;

void saveGuts(RWvostream&) const;

}; // end of DFD

[RF ARk Kk DFDObJCC( ded ko kokokok ok ok kok ok ff

class DFDObject : public RWCollectable
{ RWDECLARE_COLLECTABLE(DFDObject)
protected:
ConceptObject * CObject:
VisualObject * VObiject:
DFD * Container:
public:
DFDObject();
DFDObject(DFD * container); // create conceptual and viisual objects
~DFDObject();

Id GetDisld(): //void SetDisld(Id id).



230

RWCString& GetLabel();

void SetLabel(const RWCString & label);

DFDType GetType();

DFD * GetContainer();

VisualObject * GetVisual() {return VObject; };

ConceptObject * GetConcept() {return CObject; };

ProjEntry* GetProjEntry();

RWCString & GetDescript();

void SctDescript( const RWCString & descript);

void CleanUpVisual(); // clean up visual part before deleting the whole project

// Inherited from class "RWCollectable":

unsigned binaryStoreSize() const,
int comparcTo(const RWCollectable*) const;
RWBoolean isEqual(const RWCollectable*) const;
unsigned hash() const;
void restoreGuts(RWFile& ),
void restoreGuts(RWvistreamé);
void saveGuts(RWFile&) const;
void saveGuts(RWvostream&) const;
}; // end of DFDObject

//******** DFDNOdC **********//

class DFDNode : public DFDObject

{ RWDECLARE COLLECTABLE(DFDNode)

protected:
RWDiIistCollectables * InFlow;
RWDilistCollectables * QutFlow;
RWDilistCollectableslterator * InList;
RWnDlistCollectableslterator * OutList;
public:

DFDNode();
DFDNode(DFD * container);
~DFDNode()
RWDlistCollectables * GetInFlow();
RWDlistCollectables * GetOutFlow();
VisualNode* GetVisualNode() {return (VisualNode*) GetVisual(), }:
ConceptNade * GetConceptNode() {return (ConceptNode*) GetConcept(): }:
Point * GetCenter() { return GetVisualNode()->GetCenter(): }:
void SctCenter(Point* Pt) { GetVisualNode()->SctCenter(Pt): }:
Flow * GetNextInFlow();
Flow * GetNextOutFlow();
Flow * InsertAnInFlow(Flow * aflow);
Flow * InscrtAnQOutFlow(Flow * afllow);
void RemoveAnInFlow(Flow * aflow);
void RemoveAnQutFlow(Flow * aflow);
Flow * FindAnInFlow(Flow * aflow);
Flow * FindAnOutFlow(Flow * aflow);
DbList* BuildAssignList(): // retricve outflows and build assignment list for simulation
virtual void SetSimDescript(char* str);
virtual RWCString& GetSimDescript():
virtual RWCString* ListSimStats().



231

// inherited from class "RWCollectable":

unsigned binaryStoreSize() const;

void rcstoreGuts(RWFile&),

void restoreGuts(RWvistream& ),
void saveGuts(RWFile&) const;
void saveGuts(RWvostreamé&) const;

}; // End of DFDNode

J/¥kkRdokkkdkk Dracege K kokdkkokokok Kok kokkokok //

class Process: public DFDNode
{ RWDECLARE_COLLECTABLE(Process)
protected:
DFD* NextLevel;
Boolean HasNextLevel,
SimQ* simQ;
SimAct* simAct;
public:
Process();
Process(Id id, const RWCString & label, Point * center, DFD * container),
~Process();

SimQ* GetsimQ(){return simQ;}

SimAct* GetsimAct(){return simAct;}

DFD * GetNextLevel();

void SetNextLevel(DFD * dfd);

void RemoveNextLevel();

void ResctNextLevel() { SetNextLevel(NULL);}
virtual void SetSimDescript(char* str);

virtual RWCString& GetSimDescript();

virtual RWCString* ListSimStats():

// Inherited from class "RWCollectable":

unsigned binaryStoreSize() const:

void restoreGuts(RWFile&);,

void restorcGuts(RWvistream& ),

void saveGuts(RWFile&) const;

void saveGuts(RWvostreamé:) const;
}: // End of Process

JPRERRRAR Quare dkokkskkk//

class Store : public DFDNode
{ RWDECLARE_COLLECTABLE(Slorc)
protected:
SimResource* simResourcc;
public:
Store();
Store(Id id. const RWCString & label, Point* center. DFD * container);
~Store();

DataNode * GetData();



void SetData(DataNodc * data);

SimResource* GetsimResource(){return simResource; }
virtual void SetSimDescript(char* str);

virtual RWCString& GetSimDescript();

virtual RWCString* ListSimStats();

void restoreGuts(RWFile&);

void restoreGuts(RWyistream&);
void saveGuts(RWFile&) const;
void saveGuts(RWvostream&) const;

}; // End of Store

] Hdkkskkk Bloyw *%kkkdkokok /f

class Flow : public DFDObject
{ RWDECLARE_COLLECTABLE(Flow)
protected:
DFDNode * Source;
DFDNode * Destination;
SimFlow* simFlow:
public:
Flow():
Flow(ld id, const RWCString & label, RWDlistCollectables* path,
DFDNode * s, DFDNode * d, DFD* container);
~Flow();

SimFlow * GetsimFlow(){return simFlow;}

DataNode * GetData();

void SetData(DataNodc * data);

VisualFlow * GetVisualFlow();

void SetVisualFlow(VisualFlow * visualflow);

DFDNode * GetSource() {return Source; };

DFDNode* GetDestination() { rcturn Destination; };

ConceptFlow * GetConceptFlow() {return (ConceptFiow*) GetConcept():}:

// Inherited from class "RWCollcctable":

unsigned binaryStoreSize() const;,
void restoreGuts(RWFile&);,
void restorcGuts(RWvistrcam&),
void saveGuts(RWFile&) const;
void saveGuts(RWvostream&) const;
}. // end of Flow
J #rEEEE ExEntity ¥ %% 5w/

class ExtEntity: public DFDNode

{ RWDECLARE_COLLECTABLE(EXtEntity)

protected:
SimSrc* simSrc;
SimSink* simSink;

public:

ExtEntity():
ExtEntity(Id id. const RWCString & label, Point* center, DFD * container):

232



233

~ExtEntity();

SimSrc* GetsimSrc(){return simSrc;}
SimSink* GetsimSink(){return simSink;}
virtual void SetSimDescript(char* str);
virtual RWCString& GetSimDescript();
virtual RWCString* ListSimStats();

void restoreGuts(RWFile&);

void restoreGuts(RWvistreamé&);

void saveGuts(RWFile&) const;

void saveGuts(RWvostreamé&) coust;
}: // end of ExtEntity

[¥*x%xx InterfaceNode ******xk//

class InterfaceNode : public DFDNode

{ RWDECLARE_COLLECTABLE(InterfaccNodc)

protected:
SimSrc* simSrc;
SimSink* simSink;

public:
InterfaceNode();
InterfaceNode(Id id, const RWCString & label, Point* center, DFD * container,
DFDNode* intnode);

~InterfaceNode(){delete simSrc; delete simSink; };
ConceptINFNode* GetCINFNode() { return (ConceptINFNode*) CObject: }
DFDNode * GetlnterfaceNode();
void SetInterfaceNode(DFDNode* intnode);

// Simulation-related operations

SimSrc* GetsimSrc(){return simSrc;}
SimSink* GetsimSink(){return simSink:}
virtual void SetSimDescript(char* str):
virtual RWCString& GetSimDescript();
virtual RWCString* ListSimStats();

// Persistent methods

void restoreGuts(RWFile&),

void restoreGuts(RWyvistrcamé):

void saveGuts(RWFile&) const;

void saveGuts(RWvostreamé&) const;
}; // end of InterfaceNode

#endif

5) The Conceptual DFD class family
/! Copyright (C) 1993 by University of Hawaii
// Hyper Analysis Toolkit (R) Concept

// contains all the conceptual objects of DFD

I SuperClass: RWCollectable
7 File:  concept.h
I Author: Jackson He

Vi Date:  03/93



"
"

234

Language.C++
Modification notes:

#if !defined ( CONCEPT)
#define _CONCEPT
#include "define.h"
#include "data_rcLh"
#include "manager.h"
#include "dfd.h"

//***** COﬂCCplDFD *******//

class ConceptDFD : public RWCollectable

{ RWDECLARE_COLLECTABLE(ConceptDFD)
protected:

DFD *Interface; // pointer back to DFD
RWCString Name; // DFDName

public:

ConceptDFD();

ConceptDFD( const RWCString & name, DFD *interface);
~ConceptDFDY();

// Inherited from class "RWCollectable":

unsigned binaryStoreSize() const;

int comparcTo(const RWCollectablc*) const:
RWBoolean isEqual(const RWCollcctable*) const:
unsigned hash() const;

void restoreGuts(RWFile&):

void restoreGuts(RWvistream&);

void saveGuis(RWFile&) const;

void saveGuts(RWvostrecamé&) const;

// basic operations
RWCString & GetName():
void SetName(const RWCString & name);
ConceptFlow *GetFlow(ConceptNode *source. ConceptNode *dest):
//return conceptfloe for given source and dest.
RWDlistCollcctables GetOutFlows(ConceptNode *node); //list outflows of a node
RWDilistCollectables GetInFlows(ConceptNode *node); // list Inflows of a nodc
RWnDalistCollectables GetAllFlows(ConceptNode *node): // list both in and out flows of a node

}; // end of ConceptDFD

// ook ok ok o ok ok ConceplObjcct ********//

class ConceptObject : public RWCollectable

{ RWDECLARE_COLLECTABLE(ConceptObject)
protected:

ProjEntry * Entry; // entry to proj. dictionary.
DFDObject * Interface; // pointer back to it buddy DFDObject

public;

ConceptObject():

ConceptObject(const RWCString & label. DFDType type.DFDObject * interface):
~ConceptObject();

// Inherited from class "RWCollcctable":



unsigned binaryStoreSize() const;

int comparcTo(const RWCollectable*) const;
RWBoolean isEqual(const RWCollectable*) const;
unsigned hash() const;

void restoreGuts(RWFile&);

void restoreGuts(RWvistream&),

void saveGuts(RWFile&) const;

void saveGuts(RWvostream&) const;
//ConceptObject methods

RWCString& GetLabel(),

void SetLabel(const RWCString & label);

DataType GetType();

RWCString& GetDisId(){return Interface->GetDisId();}
DFDObject * Getinterface();
void SctEntry(ProjEntry * cntry);
void ResetEntry(ProjEntry* entry) {Entry = entry;}
ProjEntry * GetProjEntry();
ProjectDictionary * GetProjDictionary();  // return proj. dictionary
DataDictionary * GetDataDictionary(); // return data dictionary
DataRelGraph * GetDataGraph() // retain data relation graph
{ return Interface->GetContainer()->GetManager()->GetDataGraph(); }
RWCString& GetDescripi();
void SetDescript( const RWCString & descript);
}; //end of ConceptObject

// ok ok ok ok ok ok ok COﬂCCp[NOde **********//
ciass ConceptNode : public ConceptObiject
{ RWDECLARE_COLLECTABLE(ConceptNode)
public:
ConceptNode();

ConceptNode(const RWCString & label. DFDType type, DFDObject * interface):

~ConceptNode();

RWnDilistCollectables * GetInFlow();

RWDilistCollectables * GetOutFlow():

Flow * GetNextInFlow();

Flow * GetNextOutFlow();

void InsertAnInFlow(Flow * aflow);

void InsertAnQutFlow(Flow * aflow);

void RemoveAnInFlow(Flow * aflow);

void RemoveAnOutFlow(Flow * aflow);

Flow * FindAnInFlow(Flow * aflow):

Flow * FindAnOutFlow(Flow * aflow);
}.  // end of ConceptNode

[x¥xEX¥ ConceptProcess *¥***+xx//

class ConceptProcess: public ConceptNode

{ RWDECLARE_COLLECTABLE(ConcpetProcess)

public:

ConceptProcess();
ConceptProcess(const RWCString & label, DFDObject * interface):
~ConceptProcess();

}. /7 end of ConceptProcess

235



//******** CO“CCptSlOfC *********//
class ConceptStore ; public ConceptNode
{ RWDECLARE_COLLECTABLE(ConceptStore)
protected:
DataNode * Data;
public:
ConceptStore();
ConceptStore(const RWCString & label, DFDObject * interface);
~ConceptStore();

// Inherited from class "RWCollectable":
unsigned binaryStoreSize() const;

void restoreGuts(RWFile&),

void restoreGuts(RWvistream&);
void saveGuts(RWFile&) const;
void saveGuts(RWvostream&) const;

DataNode * GetData();
void SetData(DataNode * data);
}. // end of ConceptStore

// 3k ok o o o e ok ok ok %k Kk COHCCP[F]OW ***********//
class ConceptFlow : public ConceptObject
{ RWDECLARE_COLLECTABLE(ConceptFlow)
protected:
DataNode * Data;

public:
ConceptFlow(),
ConceptFlow(const RWCString & label, DFDObject * interface);
~ConceptFlow();
// Inherited from class "RWCollectable":
unsigned binaryStoreSizc() const;
void restoreGuts(RWFile&);
void restorcGuts(RWvistream&):
void saveGuts(RWFile&) const;
void saveGuts(RWvostreamé&) const;

DataNode * GetData();
void SetData(DataNode * data);
}; // end of ConceptFlow

// 2k ok 3 2k ok 3k e kok COHCGP[EXtEn[i[y ***********//

class ConceptExtEntity: public ConceptNode

{ RWDECLARE_COLLECTABLE(ConceptExtEntity)

public:

ConceptExtEntity();
ConceptExtEntity(const RWCString & label. DFDObject * interface):
~ConceptExtEntity();

}. // end of ConceptExtEntity

// 24 o8 e 3 s 3 ok e COHCCptINFNOdC *********//
class ConceptINFNode: public ConceptNode

236



237

{ RWDECLARE_COLLECTABLE(ConceptINFNode)
protected:
DFDNode * IntNode;
Boolean Haslnterface;
public:
ConceptINFNode();
ConceptINFNode(const RWCString & label, DFDObject * interface, DFDNode* intnode);
~ConceptINFNode();
DFDNode * GetInterfaceNode();
void SetInterfaceNode(DFDNode* intnode);
// persistent methods for RWCollectable

unsigned binaryStoreSize() const;

void restoreGuts(RWFile&),

void restoreGuts(RWvistreamé&);

void saveGuts(RWFile&) const;

void saveGuts(RWvostreamé&) const;
}; // end of ConceptINFNode

#endif

6) The Visual DFD class family

// Copyright (C) 1993 by University of Hawaii

// Hyper Analysis Toolkit (R) Visual

// Contains all the objects for DFD visual features

/f SuperClass: RWCollectable
/ File: visual.h

/ Author: Jackson He

/! Date: 03/93

/l Language:C++

1/ Modification notes:

#if !defined (_Visual)
#define _Visual

#include "define.h"
_CLASSDEF (VisualRepDFD)

[ ¥¥*xx \jgual DFD *¥*kkk /f
class VisualDFD : public RWCollectable
{ RWDECLARE COLLECTABLE(VisualDFD)
protected:
DFD *Interface,
public;
VisualDFD();
VisualDFD(DFD *interfacc),
~VisualDFD();
void SetInterface(DFD *inter) { Interface = inter; }
DFD *Getinterface() { return Interface; }
VisualFlow * GetFlow(VisualNode *source, VisualNode *dcst):
RWDlistCollectables * GetOutFlows(VisualNode * nodc):
RWDlistCollectables * GetInFlows(VisualNode * node);
RWDlistCollectables GetAllFows(VisualNode * node);



// Inherited from class "RWCollectable" for persistent store and retricval

unsigned binaryStoreSize() const;

void restoreGuts(RWFile&);

void restoreGuts(RWvistream&);
void saveGuts(RWFile&) const;
void saveGuts(RWvostream&) const;

}; // end of VisualDFD

[P VisualObject **xxkkkx//

class VisualObject : public RWColiectable

{ RWDECLARE_COLLECTABLE(VisualObject)
protected:

public:

Id ID:
DFDObject * Interface;
VisualRepDFD * VRep; graph object from VisualRepDFD or other graph tool

VisualObject();

VisualObject(Id id, DFDObject * interface),
~VisualObject();

VisualRepDFD * GetVRep():

void SetVRep(VisualRepDFD* vrep) { VRep=vrep:}
Id Getld();

void Setld(Id id);

DFDObject * Getlnterface() {rcturn Interface:}.
DFDType GetType();

RWCString * GetLabel();

// Inherited from class "RWCollectablc":
unsigned binaryStoreSize() const;

void restoreGuts(RWFile& );

void restoreGuts(RWvistreamé&),
void saveGuts(RWFile&) const;
void saveGuts(RWvostreamé& ) const;

}; // end of VisualObject

/] *%%* VisualNodg ****** /f

class VisualNode: public VisualObject

{ RWDECLARE_COLLECTABLE(VisualNode)
protected:

Point * Center:

public:

VisualNodce(),

VisualNode(Id id. Point* center, DFDObject * interface).
~VisualNode().

void SetCenter(Point * center);

Point * GetCenter();

// Inherited from class "RWCollectable":

unsigned binaryStoreSize() const;
void restoreGuts(RWFile&);
void restoreGuts(RWvistreamé&):

void saveGuts(RWFile&) const:

238



void saveGuts(RWvostreamé&) const;
}. // end of VisualNode

[¥¥%%x \VigualProcess*****¥//

class VisualProcess: public VisualNode

{ RWDECLARE_COLLECTABLE(VisualProcess)

public:

VisualProcess(){};
VisualProcess(Id id, Point* center, DFDObject * interface);
// Get label from interface with GetLabel()
~VisualProcess(){ };

}. // end of VisualProcess

[/**%* VisualStore *****//

class VisualStore: public VisualNode

{RWDECLARE_COLLECTABLE(VisualStore)

public:

VisualStore(){};
VisualStore(Id id, Point * center, DFDObject * interface):
~VisualStore(){ };

}: // end of VisualStore

I/ ¥k Visnal EXtEntity **tksx/
class VisualExtEntity: public VisualNode
{ RWDECLARE_COLLECTABLE(VisualExtEntity)
public:
VisualExtEntity(){ };

VisualExtEntity(Id id, Point * center, DFDObject * interface);

~VisualExtEntity(){};
}; // end of VisualExtEntity

J/RRx%%% VigualINFNode * ¥k ***
class VisualINFNode: public VisualNode
{ RWDECLARE_COLLECTABLE(VisualINFNode)
public:
VisualINFNode(){ };

VisualINFNode(Id id, Point * center, DFDObject * interface):

~VisualINFNode(){}:
}; // end of VisualINFNode

[ wxdkk VigyualFlow dxokkokk
class VisualFlow : public VisualObject
{ RWDECLARE_COLLECTABLE(VisualFlow)
protected:
RWDilistCollectables * Path;
void FillPtArray():
void FillPath() const;
public:
Point* PtArray[5];
VisualRepDFD * ConnectorHandlc[4];
VisualRepDFD* FLabel; / pointer to floating label
VisualFlow();

239



VisualFlow(Id id, RWDlistCollectables * path, DFDObject* interface);

~VisualFlow();

void InsertAPoint(Point * apoint);

void RemoveAPoint(Point * apoint);
Point * GetStart();

Point * GetEnd();

void SetStart(Point * point);

void SetEnd(Point * point);

void SetNth(int ind, Point * point);
Point * GetNth(int ind);

void InsertB4Nth(int ind, Point * point);
void DeleteB4Nth(int ind);

// Inherited from class "RWCollectable™:

unsigned binaryStoreSize() const;

void restoreGuts(RWFile&),

void restorceGuts(RWvistrcam&);

void saveGuts(RWFile&) const;

void saveGuts(RWvostreamé&) const;
}: /7 end of VisualFlow

#endif

7) The ERD class family

/1 Copyright (C) 1993 by University of Hawaii
// Hyper Analysis Toolkit (R) ERD

// Objects of all ERD and ERD elements

/ SuperClass: RWCollectable
/" File:  crdh

/" Author: Jackson He

1/ Date:  03/93

/" Language:C++

/ Modification notes:

#ifndef _ERD.H
#define _ERD H

#include "define.h"
#include "data_rel.h"
#include "visual.h"

[/RxERk¥RRk ER Diagram ***********//
class ER_Diagram: public RWCollectable
{ RWDECLARE_COLLECTABLE(ER Diagram)
protected:
DataObject * Interface;
DbList* EntityList;

DbList* RelationList; // two lists hold entities and relations
TERDDrawWindow * ERDWin; // pointer to drawing window

RWCString Name;
public:
int Count; // counter for number nodes in the graph

RW(Collectable* CurObject. // pointer to current object

240



ER_Diagram();

ER_Diagram(DataObject* interface);

~ER_Diagram();

/foasic opertations

DataObject* GetInterface(){return Interface;}

DbList* GetEntityList(){rcturn EntityList;}

DbList* GetRelationList(){return RelationList;}
TERDDrawWindow* GetERDWin(}{rcturn ERDWin;}

void SetERDWin(TERDDrawWindow* drwin){ERDWin = drwin; }

RWCString & GetERDName()
{ if(Interface!=NULL)
return Interface->GetName();
else
{ Name="Top Level ERD";

return Nanic;

}

}
Entity* AddEntity(const RWCString &name, DataType type,

RWBoolean iskey, RWBoolcan iscombkey, int combkey. Point* center);

Entity* AddEntity(ChildItem* child);, // Add new data to dictionary

Relation* AddRelation(Entity* source, Entity* dest. const RWCString& labcl,
const RWCString& s_rel, const RWCString& d_rel.
const RWCString& s);

Entity* DcleteEntity(Entity* entity. Boolcan fromERD);

Entity* DeleteEntity(Childltem* child, Boolcan fromERD):

void DeleteRelation(Relation* rel);

/[Persistence methods from RWCollectable

unsigned binaryStoreSize() const:

void restoreGuts(RWFile&),

void restoreGuts(RWvistream&),

void saveGuts(RWFile&) const;

void saveGuts{RWvostream&) const;

}; // end of ER_Diagram

] ROk Enuty stk ok e ok ook ke dokok /f

class Entity : public RWCollectable
{ RWDECLARE_COLLECTABLE(Entity)
protected:
DataObject* Interface;
DbList* RelationList:
Point * Center;
VisualRepERD* VEntity:
public:
Entity();
Entity(DataObject* interface):
~Entity();
//Basic operations
DataObject * GetInterface(){rcturn Intcrface:}
DbList* GetRelationList(){rcturn RelationList; }
Point * GetCenter(){rcturn Center.}
void SctCenter(Point * center){ Center = new Point(center->X, center->Y): }

241



242

VisualRepERD* GetVEntity(){return VEntity;}

void SetVEntity(VisualRepERD* ventity) { VEntity = ventity; }
char* GetName(){rcturn (char*){ Interface->GetName().data();}
ER_Diagram* GetMyERD(){return Interface->GetMyERD(); }
RWCString& GetScript() {return Interface->GetScript();}

// ADD & Delete relation

Relation * AddRelation(Relation* rel);
Relation * RemoveRelation(Relation* rel);
Relation * FindARelation(Relation* rel);
Relation * FindARelation(Entity* entity);

//Persistence methods from RWCollectable
unsigned binaryStoreSize() const;

int compareTo(const RWCollectable*) const;
RWBoolcan isEqual(const RWCollectablc*) const;
unsigned hash() const;

void restorcGuts(RWFile&);

void restorceGuts(RWvistrecamé&);

void saveGuts(RWFile&) const;

void saveGuts(RWvostrcamé&) const;

}; // end of Entity

Jf FAkddkkk Roalqatjgn Kkkkdokkkkok//

class Relation : public RWCollectable
{ RWDECLARE_COLLECTABLE(Relation)
protected:

public:

RWCString Label;
VisualRepERD* VRelation:
RWCString Rell;
RWCString Rel2;
DescriptionCard* Script;
Entity * EI;

Entity * E2;

Relation();

Relation(Entity* el. Entity* ¢2, const RWCString& label.
const RWCString& rell, const RWCString& rel2, const RWCString& s):

~Relation();

//Basic Opcrations

Entity * GetE1(){rcturn E1;}

Entity * GetE2(){return E2;}

void SctE1(Entity* entity){E1 = entity:}

void SctE2(Entity* entity){E2 = entity;}

RWCString& GetLabel(){rcturn Label;}

void SetLabel(const RWCString& label) {Label=labcl;}

VisualRepERD* GetVRclation(){rcturn VRelation:}

void SetVRelation(VisualRepERD* vrel) { VRelation = vrel:}

RWCString& GetRell(){rcturn Rell;}

void SctRell(const RWCString & rell){Rell =rell:}

RWCString& GetRel2(){rcturn Rel2:}



243

void SetRel2(const RWCString & rel2){Rel2 =rel2;}
ER_Diagram* GetMyERD(){return GetE1()->GetMyERD();}
RWCString& GetScript(){rcturn Script->GetDescript();}

void SetScript(const RWCString& s){ Script->SectDescript(s); }

//Persistence methods from RWCollectable
unsigned binaryStoreSize() const;
int compareTo(const RWCollectable*) const;
RWBoolean isEqual(const RWCollcctable*) const:
void restoreGuts(RWFile&);
void restoreGuts(RWvistream&);
void saveGuts(RWFile&) const;
void saveGuts(RWvostrcam&) const;

}; // end of Relation

#endif

8) Simulation information classes

// Copyright (C) 1993 by University of Hawaii
// Hyper Analysis Toolkit (R) SimInfor

// Objects to hold simulation information

/" SuperClass: RWCollectable
/ File:  siminfor.h

/" Author: Jackson He 02/94
/" Language C++

#ifndef _SimInfor H
#define _SimInfor_H

#include "define.h"

#define NumBranch 1
#define Weighted 1
#define Unweighted 0
#define Mini 0
#define Maxi 1
#define Mean 2
#define Std 3
#define Obs 4
#define Sum 5

// kg ok s ok ook ok SimResult ********//

class SimResult : public RWCollectable

{ RWDECLARE COLLECTABLE(SimRcsuit)

public:

float Stats[2][6];
RWCString Description;
SimResult();
~SimResult(){ };
void ParseWtResult(char* str); // parsc time-weighted result
void ParseUwResult(char* str); // parse unweighted result
Boolean HasResult():
RWCString& GenDescription():



RWCString& AppendDescription(const RWCStringé& str);

// Inherited from class "RWCollectable":

unsigned binaryStoreSize() const;

void restoreGuts(RWvistrcam&),

void saveGuts(RWvostreamé&) const;
}; // end of SimResult

// e o Aok o o ok DlSlnbUllon *********//
class Distribution : public RWCollectable
{ RWDECLARE_COLLECTABLE(Distribution)

public:

¥

RWCString Name, Type, Parameters, CmdLing;
Distribution():Name(""), Type(""), Parameters(""){}

Distribution(const RWCString& name, const RWCString& type="",

const RWCString& parameters=""):
~Distribution(){ };
RWCString& GenCmdLine();
virtual Boolean IsDefined();

// Inherited from class "RWCollectable":

unsigned binaryStoreSize() const:

void restoreGuts(RWyvistreamé);

void saveGuts(RWvostreamé&) const;

int compareTo(const RWCollectable* c) const

{ Distribution* b = (Distribution¥*)c;
if(Name == b->Name) return 0;
return Name>b->Name? 1: -1;

}

RWBoolean isEqual(const RWCollectablc* c) const

{ const Distribution* b = (Distribution*) c;
return Name == b->Name,

}

// ok ok ok ok k Assignmcnt *********//
class Assignment : public RWCollectable

{

RWDECLARE_COLLECTABLE(Assignment)

public:

RWCString Branch;
float Prob;
Assignment():Branch(""){Prob = 0.0:}
Assignment(const RWCString& branch, float prob=0.0);
~Assignment(){ }:
int comparcTo({const RWCollcctable* ¢) const
{ Assignment* b = (Assignment*)c;
if(Branch == b->Branch) return 0:,
return Branch>b->Branch? 1: -1;
}
RWBoolcan isEqual(const RWCollcctable* ¢) const
{ const Assignment* b = (Assignment*) c;

244



245

return Branch == b->Branch;,

}
// Inherited from class "RWCollectable":
unsigned binaryStoreSize() const;
void restoreGuts(RWyvistreamé&);
void saveGuts(RWvostream&) const;
//Collectable methods

}: // end of Distribution

// ¢ o e ok ok ok SimRUn Aok sk ok kK
class SimRun : public RWCollectable
{ RWDECLARE_COLLECTABLE(SimRun)
protected:
DFD* MyDFD,
float Run;
float Warmup;
float Length;
RWCString CmdLine;
public:
SimRun(){MyDFD = NULL; Run = 0.0; Warmup = 0.0; Length = 0.0.}.
SimRun(DFD* dfd, float r=1, float w=120, float 1=480);
~SimRun(){};
Boolean IsDefined();
DFD* GetMyDFD(){return MyDFD;}
virtual RWCString& GenCmdLinc();
float GetRun() {return Run:}
void SetRun(float r) {Run =r;}
float GetWarmup(){return Warmup;}
void SetWarmup (float w){ Warmup = w;}
float GetLength(){ return Length;}
void SetLength(float 1){ Length = 1;}

// Inherited from class "RWCollectable":

unsigned binaryStoreSize() const;
void restoreGuts(RWyvistreamé& ),
void saveGuts(RWvostream&) const;

¥ // end of SimRun

[ FxEkxkkkk QimInfor k¥kkkkxk

class SimInfor: public RWCollcctable
{ RWDECLARE_COLLECTABLE(SimInfor)
protected:

RWCString Name, CmdLing;
DFDObject* dfdObj;,
int Type;
SimResult * Result;

public:
SimInfor():Name("")}{Result = NULL; dfdObj = NULL:Type = 0;}:
SimInfor(DFDObject* obj, int type);
~SimInfor();



int GetType(){return Type;}
virtual RWCString & GetName();
virtual RWCString& GenCmdLine();
virtual Boolean IsDefined() {rcturn TRUE;}
SimResult* GetResult(){return Result;}
int compareTo(const RWCollectable* c) const
{ SimInfor* b = (SimInfor*)c;
if(Name == b->GetName()) return 0;
return Name>b->GetName()? 1: -1;

}
RWBoolean isEqual(const RWCollectable* ¢) const
{ SimInfor* b = (SimInfor*) c;
return Name == b->GetName(),
}
// Inherited from class "RWCollcctable™:
unsigned binaryStoreSize() const;
void restoreGuts(RWvistreamé&);
void saveGuts(RWvostreamd&) const;
}; // end of SimInfor

// ook Aok SimASSign *******//

class SimAssign: public SimInfor

{ RWDECLARE_COLLECTABLE(SimAssign)
protected:

public:

DbList* Assign;

SimAssign(){ Assign = NULL; };
SimAssign(DFDObject* obj. int type);
~SimAssign(),

DbList * GetAssignList(){rcturn Assign;}
void SetAssignList(DbList* list);
Assignment * GetAssign(int i)
{ if(1<0) return NULL;
return (Assignment*)Assign->at(i);
}
Assignment * GetAssign(const RWCString& a):
float GetAssignProb(const RWCString& a);
float GetAssignProb(Assignment* a);
void SetAssignProb(float p, int i);
void SetAssignProb(float p. const RWCString & a).
void SetAssign(Assignment* a. int i);
int GetBranches(){return Assign->cntries();}

// Inherited from class "RWCollectable":

unsigned binaryStoreSize() const:
void restorcGuts(RWvistrcamé& ),
void saveGuts(RWvostream&) const;

}; // end of SimAssign

246



[f #kpEkx SimResource **¥¥¥xx//

class SimResource : public SimAssign

{ RWDECLARE_COLLECTABLE(SimResource)
protected:

public:

RWCString Priority Mode;

SimResource():Priority_Mode(""){};
SimResource(DFDObject* obj);
SimResource(const RWCString& name);
~SimResource();

virtual RWCString& GetName();

virtual RWCString& GenCmdLine();

// Inherited from class "RWCollectable":

unsigned binaryStoreSize() const;
void restoreGuts(RWvistrecam&),
void saveGuts(RWvostreamd&) const;

}; // end of SimResource

/] x¥*¥xx SimSre deokokokokok [/

class SimSrc : public SimAssign
{ RWDECLARE_COLLECTABLE(SimSrc)
protected:

public:

Distribution* Distr;

float Start;

float End;

RWCString Event_Mode;

RWCString Assign_Mode: // sct by a DFDObject depends on conncctions

SimSrc(){}:
SimSrc(DFDObject* obj):
~SimSrc():

Distribution* GetDistr() { return Distr;}
void SetDistr(Distribution* d)
{ if(Distr{=NULL)

{ Distr->Name = d->Name;
Distr->Type = d->Type;
Distr->Parameters = d->Parameters;
delete d:

3

else Distr=d;

}

float GetStart(){ rcturn Start;}

void SetStart(float s){ Start =s.}

float GetEnd(){ return End;}

void SetEnd(float €){ End = ¢;}

RWCString& GetEvent_Mode(){ return Event_Mode:}

RWCString& GetAssign_Mode()

{ if (GetBranches() >1) Assign_Mode = "PROB";
clse Assign_Mode = "DET";

return Assign_Mode;

247



248

}

virtual Boolean IsDefined();
virtual RWCString & GetName();
virtual RWCString& GenCmdLine();

// Inherited from class "RWCollectable":

unsigned binaryStoreSize() const;

void restoreGuts(RWvistream& ),

void saveGuts(RWvostreamé&) const;
}; // end of SimSrc

[/ FERAkkdkkk Qi Qiple ¥kskkkkokok //

class SimSink : public SimInfor
{ RWDECLARE_COLLECTABLE(SimSink)
public:
SimSink(){};
SimSink(DFDObject* obj);
~SimSink(){};
virtual RWCString & GetName();
virtual RWCString& GenCmdLine();
}; //end of SimSink

// ek 3 ok o ofe ok Sin’lFlO\V *******//
class SimFlow : public SimInfor
{ RWDECLARE_COLLECTABLE(SimFlow)
protected:
RWCString Source, Destine;
float Prob;
public:
SimFlow(){Source = ""; Destine = ""; Prob = 0.0;}
SimFlow(DFDObject* obj);
~SimFlow(){};
virtual RWCString & GetName().
virtual RWCString & GetSrcName();
virtual RWCString & GetDestNamey),
float GetProb();
void SctProb(float p);
SimBranch* ConvertToBranch(),
SimBranch* ConvertToBranch(SimFlow* f);
//multiplex two flows
}; // end of SimFlow

[/ Rk ok ke ok ok ok SimBl’anCh **********//

class SimBranch : public RWCollectable
{ RWDECLARE_COLLECTABLE(SimBranch)
protected:
RWCString Source, Destine, CmdLine;
float Prob;
public:
SimBranch(){Source = ""; Destine =""; Prob = 0.0:}
SimBranch(const RWCString& src, const RWCString& dest, float p=1.0);
~SimBranch(){}



249

virtual RWCString& GenCmdLine();

RWCString& GetSource(){return Source;}
RWCString& GetDestine(){return Destine; }

float GetProb() {return Prob;}

void SetSource(const RWCString& s) {Source =s;}
void SetDestine(const RWCString& d) {Destine = d;}
void SetProb(float p){Prob = p;}

int compareTo(const RWCollectable* c) const

{ SimBranch* b = (SimBranch*)c;
if(Source == b->GetSource(}) return 0;
return Source>b->GetSource()? 1: -1;
}
RWBoolean isEqual(const RWCollectable* ¢) const
{ SimBranch* b = (SimBranch*) c;
return (Source == b->GetSource()&&Destine==b->Ge¢tDestine());
}
}; // end of SimBranch

/%K k% SlmQ dokkkokokk//

class SimQ : public SimInfor
{ RWDECLARE_COLLECTABLE(SimQ)
protected:

public:

RWCString Priority Mode;
RWCString Resource;

SimQ():Priority_Mode(""), Resource(""){}:
SimQ(DFDObject* obj);

~SimQQ){}

RWCString& GetP_Mode(){return Priority_Modc:}
RWCString& GetResource(){return Resource;}

void SetResource(const RWCString r) {Resource=r;}
virtual RWCString & GetName();

virtual RWCString& GenCmdLine();

// Inherited from class "RWCollectable":

unsigned binaryStoreSize() const;
void restoreGuts(RWvistreamé&);
void saveGuts(RWvostrcam&) const.

}; // end of SimQ

] FEEREK SlmAC[ ok % ko ok Kok

class SimAct : public SimAssign
{ RWDECLARE_COLLECTABLE(SimAct)
protected:

public:

RWCString Resource;
Distribution * Distr;
RWCString Assign_Mode;

SimAct():Assign_Mode(""), Resource("") {Distr = NULL:};
SimAct(DFDObject* obj);

~SimAct();

virtual Boolcan IsDefined();



250

Distribution* GetDistr() { rcturn Distr;}
void SetDistr(Distribution* d)
{ if(Distr!=NULL)
{ Distr->Name = d->Namc;
Distr->Type = d->Type;
Distr->Parameters = d->Parameters;

delete d;
}
else Distr=d;
H
RWCString& GetQ();

RWCString& GetResource(){rcturn Resource; }
void SetResource(SimResource* r)
{ if(r!'=NULL)
Resource = r->GetName();
}
void SetResource(const RWCStringé& r) { Resource=r;}
RWCString& GetAssign_Mode()
{ if (GetBranches() >1) Assign_Modec = "PROB";
else Assign_Mode = "DET";
rcturn Assign_Mode;

}

virtual RWCString & GetName();
virtual RWCString& GenCmdLine();
// Inherited from class "RWCollcctable":

unsigned binaryStoreSizc() const;
void restoreGuts(RWvistreamé&),
void saveGuts(RWvostream& ) const;

}; // end of SimAct
#endif



E.3. Simulation subsystem

1) The main window

/1 Copyright (C) 1993 by University of Hawaii
// Hyper Analysis Toolkit (R) SimInfor

// Main window of simulation subsystem

/" SuperClass: RWCollectable
7 File: siminfor.h

/] Author: Jackson He 02/94
1/ Language C++

#ifndef YANSLWindow
#define _YANSLWindow

#define CM_Run 100

#include <owl.h>
#include <filewnd.h>
#include "mydde.h"

_CLASSDEF(YANSLApp)
_CLASSDEF(YANSLWindow)
_CLASSDEF(SimModelGen)

/P*** Declare YANSLApp. a TApplication descendant *****//
class _CLASSTYPE YANSLApp : public TApplication

{
public:

YANSLApp(LPSTR name, HINSTANCE hlnstance,

HINSTANCE hPrevInstance, LPSTR IpCmd. int nCmdShow)
: TApplication(name, hinstance, hPrevinstance. IpCmd. nCmdShow) {}:

virtual void InitMainWindow();

virtual void InitInstance();
}; // end of YANSLApp

/1 **** Declare YANSLWindow, a TMDIFrame descendant ****//
class _CLASSTYPE YANSLWindow : public MyDDEWindow

{
protected:
virtual void SetupWindow();
virtual void NewFile(RTMessage Msg) = [CM_FIRST + CM_MDIFILENEW];
virtual void OpenFile(RTMessage Msg) = [CM_FIRST + CM_MDIFILEOPENTJ;
virtual void CMRun(RTMessage Msg) = [CM_FIRST + CM_Run}:
void ShowResult();
PTFileWindow Model, Result;
SimModelGen * Simulator;
void GetWindowClass( WNDCLASS& WndClass ):
public:

YANSLWindow(LPSTR ATitle, LPSTR MecnuNamc);
~YANSLWindow();

}; // end of YANSL Window

#endif

251



2) The model generator

// Copyright (C) 1993 by University of Hawaii
// Hyper Analysis Toolkit (R) ModelGen

// Simulation model generator

/ SuperClass: RWCollectable
/! File: siminfor.h

/! Author: Jackson He 02/94
/" Language C++

#ifndef _SimModelGen
#define _SimModelGen
#include <owl. h>
#include <filewnd.h>
#include <mdi.h>
#include <string.h>
#include <io.h>
#include "rw/cstring.h"
#include "yanslwin.h"

#define ModelSize 2500

#definc BlockSize 2500

#define LineLen 150

#define KeyLen 35

#define NumP 6 // number of parameters in a command line

_CLASSDEF(SimModelGen)
_CLASSDEF(Simulation)
_CLASSDEF(Command)
_CLASSDEF(Random)

/I ¥*** QObject to hold a simulation command ***
class Command
{
private:
RWCSiring Name;
RWCString Type;
public:
RWCString Opr, pl, p2, p3, p4. p5;
void * CmdObyj;
Command* Next;

Command(const RWCString& name, const RWCString& type):

~Command(){}

const RWCString& GetName() const;

const RWCString& GetType() const;

Boolean operator == {const Commandé& ¢) const:

Boolean operator <(const Commandé& p) const;
}; // end of Command

252



253

[/ *xFxxEk SimModelGen *¥**%//
class SimModelGen

{

public:

SimModelGen(PY ANSL Window parent);
~SimModelGen();
BOOL RunSimModel();

protected:

PYANSLWindow Parent;

Command* CmdListHead;

void ClearCmdList(); / string operations

int FindNext(char* buffer, char* str, int start); //find next location of str in buffer

int GetNextLine(char buffer[], char temp[], int start); // return next line of buffer to temp
int GetNextBlock(char buffer[], char temp([], int start); // return a block of buffer divided by {}
void De_Space(char*); // get rid of redundant spaces

// list operations

Command* FindACommand(char* str, char* type);

Command* FindACommand(Command* cmd);

Command* AppendACommand(Command* cmd);

/I parser operations

Simulation* ParseRun(char* str);

int ParseDistributions(char* str);

int ParscResources(char* str);

int ParseSources(char* str).

int ParseQueues(char* str);

int ParseActivities(char* str);

int ParseSinks(char* str);

int ParseBranches(char* str);

void ParscCommand(char* line, char* pl. char* p2, char* p3. char* p4. char* p5, char* p6):
Random* GetDistribution(char*);

void* GetCommandObj(char*);

Command* GetCommand(char*);

}: // end of SimModelGen

#endif



E.4. DDE Data interface

1. DDE Window
// Copyright (C) 1993 by University of Hawaii
// Hyper Analysis Toolkit (R) MyDDE

// DDE data interface

/" SuperClass: TMDIFrame
7 File:  myddeh

I Author: Jackson He 02/94
" Language C++

#ifndef MyDDE
#define_MyDDE

#include <owl.h>
#include <inputdia.h>
#include <ddeml.h>
#include <stdio.h>
#include <string.h>
#include <mdi.h>
#include "ddedef h"
#include "rw/cstring.h"
#include "apphdl.h"

#define BufLen 2000
#define NumDDE 2
#define Numltem 1

_CLASSDEF(MyDDEWindow)
class MyDDEWindow : public TMDIFrame
{
friend AppHandle;
friend SimAppHandle;
protected:
// client agent
AppHandle* Appl;
MyDDEWindow( LPSTR, LPSTR );
virtual ~MyDDEWindow();
virtual void SetupWindow(),
virtual void Initial App();
virtual void SctupClient();
virtual void CloseClient();
Boolean ConnectToServer(int clientld);

virtual void SendRequest(int clientld, int reqld):

virtual void SendPoke(int clientId, int reqld, char* pokeMsg):

Boolean StartAdvice(int clientld, int reqld, DWORD*);

Boolcan StopAdvice(int clientld, int reqld. DWORD*);

virtual void WMInitMenu( RTMessage ) = [WM_FIRST + WM_INITMENU]:
virtual void CMEXxit( RTMessage ) = [CM_FIRST + CM_EXIT];

virtual void CMConnect1{ RTMessage ) = [CM_FIRST + CM_Connectl];
virtual void CMConncct2( RTMessage ) = [CM_FIRST + CM_Conncct2]:

254



255

virtual void CMRequest1{ RTMessage ) = [CM_FIRST + CM_Request1];

virtual void CMRequest2( RTMessage ) = [CM_FIRST + CM_Request2];

virtual void CMPokel( RTMessage ) = [CM_FIRST + CM_Pokel];

virtual void CMPoke2( RTMessage ) = [CM_FIRST + CM_Poke2];

virtual void CMDisconnectl( RTMessage ) = [CM_FIRST + CM_Disconnectl};

virtual void CMDisconnect2( RTMessage ) = [CM_FIRST + CM_Disconnect2}];

virtual void CMUHelpAbout( RTMessage ) = [CM_FIRST + CM_U_HELPABOQUT];

virtual void ReceivedData( HDDEDATA, int);

static HDDEDATA FAR PASCAL _export ClientCallBack( WORD, WORD,
HCONV, HSZ, HSZ, HDDEDATA, DWORD, DWORD ),

DWORD idInstClient;

HCONV hConvClient[NumDDE];

BOOL tfLoopClient;

HSZ hszServiceClt[NumDDE}, hszTopicClt{NumDDE], hszltemCl{{NumDDE];
FARPROC IpClientCallBack;

int IsMyClientConv(HCONYV hConv):

//server agent

virtual void CloseServer();

virtual void SetupServer();

virtual BOOL MatchTopicAndService( HSZ, HSZ );

virtual int MatchTopicAndItem( HSZ, HSZ );

virtual HDDEDATA WildConnect( HSZ, HSZ, WORD ):

virtual HDDEDATA DataRequested( WORD, int ):

virtual void UpdateData();

static HDDEDATA FAR PASCAL _export ServerCallBack( WORD, WORD,
HCONV, HSZ, HSZ, HDDEDATA, DWORD. DWORD );

DWORD idInstServer;

HCONYV hConvServer,

BOOL tfLoopServer,

HSZ hszServiceSvr, hszTopicSvr, hszltemSvr,
FARPROC IpServerCallBack;

}; // end of my DDE

#endif

2. Application handlers
#ifndef _AppHandle
#idefinc _AppHanle
#include "rw/cstring.h"

#define Numltem 1

#define NumDDE 2
_CLASSDEF(MyDDEWindow)
_CLASSDEF(YANSLWindow)

[Pexxxsx AppHandler******//
class AppHandle

{



public:

256

AppHandle(MyDDEWindow* interface) : NullStr("") { ParentWin = interface; }

// server methods
void SetServerName(const RWCString& sname) { SName = sname; }
RWCString & GetServerName() { return SName;}
void SetServerService(const RWCString& sserve) { SService = sserve; }
RWCString & GetServerService() { return SService;}
void SetServerTopic(const RWCString& stopic) { STopic = stopic;}
RWCString & GetServerTopic() { return STopic;}
void SetServerltem(const RWCString& sitem, int j)
{ if(j7>=0 && j<Numltem) Sltem[}] = sitem;}
RWCString & GetServerltem(int j)
{ if(j>=0 && j<Numltem) return Slteml[j];
else return NuliStr;
} // set and get the j-th item
virtual RWCString& PreparcData(int i, const RWCString& request = ""):
virtual void PokeMsgHandler(char *);

// Client methods
void SetClicntName(const RWCString& cname) { CName = cname; }
RWCString & GetClientName() { return CName;}
void SectClientService(const RWCString& cserve, int i)
{ if(i>=0 && i<NumDDE) CService[i] = cserve;}
RWCString & GetClientService(int 1)
{ if(i>=0 && i<NumDDE) return CService[i]:
else return NullStr;
}
void SetClientTopic(const RWCString& ctopic, int i)
{ if(i>=0 && i<NumDDE) CTopicli] = ctopic:}
RWCString & GetClientTopic(int i)
{ if(i>=0 && i<NumDDE) return CTopic]i};
clsc return NullStr;

}

void SetClientltem(const RWCString& citem, int i. int j)

{ if(i>=0 && i<=NumDDE && j>=0 && j<Numltem)
Cltem[i][j] = citem;

}

RWCString & GetClientitem(int i, int j)

{ if(i>=0 && i<=NumDDE && j>=0 && j<Numltem)
return Cltem[i][j];
clse return NullStr;

}

void SetClientBuffer(const RWCString& cbuf, int i)
{ if(i>=0 && i<NumDDE) CBuffer|i] = cbuf’}
RWCString & GetClicntBuffer(int i)
{ if(i>=0 && i<NumDDE) return CBufTer|i];
clse return NullStr;
} // set and get the j-th item of i-th clicnt
virtual RWCString& RecciveData(int i);
RWCString& GetDataBuffer(){rcturn DataBuffer:}
void SetDataBuffer(const RWCString& s){DataBuffer = s:}



protected:

MyDDEWindow* ParentWin;
RWCString NullStr;

RWCString DataBuffer;

// Server attributes

RWCString SName;

RWCString SService;
RWCString STopic;

RWCString Sltem[NumlItem];

// Client attributes

RWCString CName;

RWCString CService[NumDDEJ;
RWCString CTopic[NumDDE];
RWCString Cltem[NumDDE][NumlItem];
RWCString CBuffer[NumDDE];

¥}, // end of AppHandle

Jf ¥tk 1 (User Interface) Handle *kkdokk//
class UIAppHandle:public AppHandle

{
public:

UIAppHandle(MyDDEWindow* myDad): AppHandle(myDad){}
virtual RWCString& PrepareData(int i. const RWCString& request = ""):
virtual void PokeMsgHandler(char *);

virtual RWCString& ReceiveData(int i);

virtual void ConnectToSim();

virtual void ConnectToES();

virtual RWCString& RequestFromSim();

virtual RWCString& RequestFromES();

virtual void PokeToSim{char* msg);

virtual void PokeToES(char* msg);

RWCString& PrepareESData(const RWCString& request);
RWCString& PrepareSimData(const RWCString& request);
Boolean IsConnected(int i);

}: // end of UIAppHandle

/] ¥¥¥k¥ SimAppHandle *****x//
class SimAppHandle:public AppHandle

{
public:

SimAppHandle(Y ANSLWindow* myDad);

virtual RWCString& PreparcData(int i, const RWCString& request = ""):
virtual void PokeMsgHandler(char *).

virtual RWCString& ReceiveData(int i);

virtual void ConnectToUl();

virtual void ConnectToES();

virtual RWCString& RequestFromUI():

virtual RWCString& RequestFromES();

virtual void PokeToUl(char* msg);

virtual void PokeToEs(char* msg);

257



258

RWCString& PrepareESData(const RWCString& request),
RWCString& PrepareUIData(const RWCString& request);
Boolean IsConnected(int i},

5

#endif



[Abowd 89]

[Ahituv 90]

[August 91]

[Balci 87]

[Balci 92]

[Bell 87]

[Bell 91]

[Bischak 91]

[Brooks 87]

[Carando 89]

[Card 91]

259

BIBLIOGRAPHY

Abowd, G., Bowen, J,, Dix. A., Harrison, M., and Took, R. “User
Interface Languages: A Survey of Existing Methods”,
Programming Research Group Report PRG-TR-5-89, Oxford
University Computing Laboratory, October, 1989

Ahituv, N. and Neumann, S. “Principles of Information Systems for
Management, 3rd edition”, C. Brown Publishers, 1990

August, J. H. “Joint Application Design”, Yourdon Press, 1992

Balci, O. and Nance, R. “Simulation Support: prototyping the
automation-based paradigm”, Proceedings of the 1987 Winter
Simulation Conference, Dec. 1987, pp 495-502

Balci, O. and Nance, R. “The Simulation Model Environment: An
Overview”, Proceedings of the 1992 Winter Simulation
Conference, Dec. 1992, 726-736

Bell, P. C. and O'Keefe R. M. “Visual Interactive Simulation -
History, Recent Developments, and Major Issues”, Simulation,
Vol. 49, No. 3, March 1987, pp 109-116

Bell, P. C. “Visual Interactive Modeling: The Past, the Present, and
the prospects”, European Journal of Operational Research, Vol.
54,1991, pp 274-286

Bischak, D. P. and Roberts, S. D. “Object-Oriented Simulation”,
Proceedings of the Winter Simulation Conference, 1991, pp 194-
203

Brooks, F. P. “No silver bullet: essence and accidents of software
engineering”, IEEE Computer, April 1987

Carando, P. “SHADOW: Fusing Hypertext with AI”, IEEE
Expert, Winter 1989, pp65-78

Card, S.K., Robertson, G.G., and Mackinlay, J.D. “The
Information Visualizer: An Information Workspace” Proceedings
of CHI'91 Human Factors in Computing Systems, New Orleans,
LA, 1991, pp 181-188



[Carmel 92]

[Chen 76]

[Chen 89]

[Chen 92a]

[Chen 92b]

[Coad 90]

[Coad 91]

[Cobb 90]

[Conklin 87]

[Cybulski 92]

[Dupuy 90]

[Eddins 90]

[Eich 89]

260

Carmel, E., G., Joey F. and Nunamaker, J. F. Jr. “Supporting joint
application development (JAD) and electronic meeting system:
moving the CASE concept into new areas of software
development”, Proceedings of the HICSS, Maui 1992, vol. 3

Chen, P. “Entity-relation Approach”, ACM Trans. Database
System Vol. 1. 1, 1976

Chen, M., Nunamaker J. F. Jr. and Weber, E. S. “Computer-aided
software engineering: present status and future directions”, Data
Base, Spring, 1989

Chen, M. and Norman, R. J. “Integrated CASE: adoption,
implementation and impacts”, Proceedings of the HICSS, Maui
1992, vol. 3

Chen, M., Norman, R. J. “A Frame for Integrated CASE”, IEEE
Computer, Mar. 1992

Coad, P. and Yourdon, E. “Object-oriented Analysis”, Prentice
Hall Inc. 1990

Coad P. and Yourdon, E. “Object-oriented Design”, Prentice Hall
Inc. 1991

Cobb, R. H. and Mills, H. D. “Engineering Software under
Statistical Quality Control”, IEEE Software, Nov. 1990, pp 44-54

Conklin, J. “Hypertext: An Introduction and Survey”, IEEE
Computer, Vol. 20 No. 9, 1987 pp 17-37

Cybulski, J. L. and Reed, K. “A hypertext based software
engineering environment”, IEEE Software, Mar. 1992, pp 62-68

Dupuy, A., Schwartz, J., Yemimi, Y. and Bacon, D. “NEST: a
network simulation and prototyping testbed”, Communications of
the ACM, Vol. 33, No. 10, October 1990

Eddins, W, Crosslin, R. Sutherland, D. E. “Using Modeling and
Simulation in the Analysis and Design of Information Systems”,
Proceedings of International Working Conference on Dynamic
Modeling of Information Systems, April, 1990

Eich, M, Fan, C., Sun, W. and Rafiqi, S. “A methodology for
simulation of database systems”, Simulation, June 1989, 241-254



[Fischer 89]

[Fox 89]

[Frankel 89]

[Galitz 93]

[Gane 79]

[Gane 90]

[Gerlach 91]

[Gould 85]

[Gore 90]

[Graber 90]

[Griggs 89]

[Gronbaek 94]

261

Fischer, G. “Human-computer interface software: Lessons
Learned, Challenges ahead”, IEEE Software, Jan. 1989, pp 44-52

Fox, M. S., Husain, N., McRoberts, M. and Reddy, Y. V.
“Knowledge-Based Simulation: An Artificial Intelligence Approach
to System Modeling and Automating the Simulation Life Cycle”,
Artificial Intelligence, Simulation and Modeling, John Wiley&Sons
Inc., 1989, pp447-485

Frankel, V. L. and Balci, O. “An on-line assistance system for the
simulation model development environment”, International Journal
of Man-Machine Studies, Vol. 31, pp699-716

Galitz, W. O. “User-Interface Screen Design”, QED Information
Sciences, Inc. 1993

Gane, C. and Sarson, T. “Structured systems analysis: tools and
techniques”, Prentice Hall Inc., 1979

Gane, C. “CASE: the methodologies, the products and the future”,
Prentice Hall Inc., 1990

Gerlach, J. H. and Kuo, F. Y. “Understanding Human-Computer
Interaction for Information System Design”, MIS Quarterly, Dec.
1991, pp527-549

Gould, J. D. and Lewis, C. “Designing for usability: key principles
and what the users think”, Communications of the ACM, Vol. 28,
No. 3, March 1985, pp 300-311

Gore, A. “QASE to configure huge systems”, MACWEEK, Nov.
13, 1990

Graber, A, Ulrich, H. and Bolay, F. “Object-Oriented General
Purpose Simulator Based on Interactive Petri Nets”, Proceedings
of 1990 Summer Simulation Conference 1990, pp 843-847

Griggs K. “GDI: (Goal Directed Interface): An intelligent, Iconic,
object-oriented interface for office systems”, Ph.D. Dissertation,
University of Arizona, 1989

Gronbaek K. and Trigg R. H. “Design issues for a DEXTER-based
hypertext system”, Communications of the ACM February 1994,
pp40-49



[Hartson 89]

[Halasz 94]

[He 94a]

[He 94b]

[Henriksen 83]

[Hill 87]

[Horton 90]

[Hurrion 91]

[Ignizio 91]

[Ives 83]

[Ives 84]

[Joines 92]

[Keller 87]

262

Hartson, H. R. and Hix, D. “Human-computer Interface
Development: Concepts and Systems for its Management”, ACM
Computer Survey, Vol. 21 No.1, Mar. 1989, pp 5-85

Halasz, F. and Schwartz “The Dexter hypertext reference model”,
Communications of the ACM, February 1994, pp 30-39

He, j. and Griggs, K. “A Tool for Hypertext-based Systems
Analysis and Dynamic Evaluation”. Proceeding of 27th HICSS,
Maui, Hawaii, Jan. 4-7, 1994

He, J. Wild, R. and Griggs K. “An architecture to support reverse
simulation”, The 1994 Summer Conference on Computer
Simulation

Henriksen, J. O. “The Integrated Simulation Environment”,
Operation Research Vol. 31, No.6, Nov.-Dec. 1983 pp 10531072

Hill, T. R. and Roberts, S. D. “A prototype knowledge-based
simulation support system”, Simulation, April 1987

Horton, W. K. “Design and writing on-line documentation: help
file to hypertext”, John Wiley & Sons, New York, 1290

Hurrion, R. D. “Intelligent Visual Interactive Modeling”, European
Journal of Operational Research, Vol. 54, 1991, pp 349-356

Ignizio, J. P. “An Introduction to expert systems”, McGraw-Hill,
Inc., 1991

Ives, B, Olson, M. and Baroudi, J. “The Measurement of user
information satisfaction”, Communications of the ACM, Vol. 26,
No. 10, pp 785-793, Oct. 1983

Ives, B and Olson, M “User involvement and MIS success: a
review of research”, Management Science, 30, pp 586-603

Joines, J. A., Powell, K. A. Jr and Roberts, S. D. “Object-oriented
modeling and simulation with C++”, Proceedings of the 1992
Winter Simulation Conference

Keller, R. “Expert System Technology”, Yourdon Press, A
Prentice Hall Company, 1987



[Kimbler 88]

[Kreutzer 90]

[Kwanjai 92]

[Lantz 87]

[Law 91]

{Liou 93]

[Lomow 90]

[Marcus 91]

[Martin 88]

[Martin 90a]

[Martin 90b]

[McAleese 89]

[McAleese 90]

263

Kimbler, D. L. and Watford, B. A. “Simulation program
generation: A functional perspective”, Proceedings of the SCS
Multiconference on Al and Simulation, Feb. 3-5 1988, San Diego,
CA

Kreutzer, W. “The modeler's Assistant - a first step toward
integration of knowledge bases and modeling systems”,
Proceedings of Summer Computer Simulation Conference, July
1990, pp 874-879

Kwanjai, N. K. and Wild, R. H. “A Recursive Expert System to
Facilitate Simulation Experimentation: Discussion and Prospects for
a Reverse Simulation Technique”, Proceedings of Winter
Simulation Conference, 1992, Washington

Lantz, K. E. “The Prototyping Methodology”, Prentice Hall Inc.
1987

Law, A. M. and Kelton, W. D. “Simulation modeling and analysis,
2nd edition”, McGraw-Hill Inc., 1991

Liou, Y. I. and Chen, M. “Integrating Group Supporting Systems,
Joint Application Development, and Computer-Aided Software
Engineering for Requirement Specification”, Proceedings of
HICSS, Maui, Hawaii 1993

Lomow, G. and Baezner, D. “A Tutorial Introduction to Object-
Oriented Simulation and Sim++”, Proceedings of the Winter
Simulation Conference, 1990, pp 149-153

Marcus, A. “User-interface development in the nineties”, IEEE
Computer, Sep. 1991

Martin, J. and McClure, C. “Structured Techniques: The Basis for
CASE”, Prentice Hall Inc., 1988

Martin, J. “Use of Automated tools Crucial to RAD life cycle
success”’, PC Week, January 15, 1990

Martin, J. “Hyperdocuments and how to create them”, Prentice-
Hall, Englewood Cliffs, New Jersey, 1990.

McAleese, R. “Hypertext: theory into practice”, Ablext Publishing
Corporation, 1989

McAleese, R. “Hypertext: state of the art”, Ablext Publishing
Corporation, 1990



[McClure 89]

[Mellichamp 89]

[Mittermeir 90}

[Myers 89]

[Mynatt 92]

[Norman 86]

264

McClure, C. “CASE is sofiware automation”, Prentice Hall Inc.,
1989

Mellichamp, J. M. and Park, Y. H. “A statistic expert system for
simulation analysis”, Simulation, April 1989, pp134-139

Mittermeir, R. T. and Rossak, N. "Reusability”, Chapter 7 of
“Modern software Engineering”, VNR, New York, pp 205 - 235

Myers, B. A. “User-Interface Tocls: Introduction and Survey”,
IEEE Software, Jan. 1989, pp 15-23

Mynatt, B. T. Leventhal, L. M, Instone, K. Farhat, J., Rohlman, D.
“Hypertext or Book: Which is better for Answering Questions?”,
Proceedings of CHI'92, Mar. 1992, pp 19-25

Norman, D. A. and Draper, S. W. “User-Centered System
Design”, Hillsale, NJ. Lawrence Erlbaum, 1986

[Oinas-Kukkonen 93] Oinas-Kukkonen, H. “Intermediary Hypertext Systems in CASE

[O'Keefe 86]

[O'Keefe 87]

[OKeefe 89]

[O'Keefe 92]

[Oman 90]

[Park 90]

[Pleas 94]

Environments”, Research Papers Series A16, Department of
Information Processing Science, University of Qulu, Finland

O'Keefe, R. “Simulation and Expert System - a taxonomy and
some examples”, Simulation, Jan. 1986 pp10-15

O'Keefe, R. M. “What is Visual Interactive Simulation?”,
Proceedings of the 1987 Winter Simulation Conference, 1987, pp
461-464

O'Keefe, R. “The Role of Artificial Intelligence in Discrete-Event
Simulation”, Artificial Intelligence, Simulation and Modeling,
John Wiley&Sons Inc., 1989, pp359-379

O'Keefe, R. M. and Bell, P. C. “Findings from Behavioral Research
in Visual Interactive Simulation”, Proceedings of the 1992 Summer
Simulation Conference, July 1992, pp 751-755

Oman, P. W. “CASE analysis and design tools”, IEEE Software,
May 1990, pp37-43

Park, Y. H. and Mellichap, J. M. “A statistical expert system for
simulation analysis”, Proceedings of Summer Simulation
Conference, 1990

Pleas, K. “OLE 2.0: Putting the pieces together”, Visual Basic
Programmer's Journal, March / April 1994



[Rao 88]

[Royce 70]

[Sol 91]

[Sommerville 89]

[Sprague 82]

[Strong 90]

[Taylor 88]

[Towner 89]

[Vujosevic 90]

[Warren 91]

[Warren 92]

[Warren 93]

265

Rao, M. J. and Sargent, R. G. “An experimental advisory system
for operational validity”, Proceedings of the SCS Multiconference
on Al and Simulation, Feb. 3-5 1988, San Diego, CA

Royce, W. W. “Managing the development of large software
system”, Proceedings of WESTCON 1970, CA, USA

Sol, H. G. “Dynamics in information system”, Proceedings of
Dynamic Modeling of Information System II, 1991

Sommerville, I. “Software Engineering, 3rd edition”, Addison-
Wesley Publishing Company, 1989

Sprague, R. H. and Carlson, E. D. “Building Effective Decision
Support Systems”, Prentice Hall, 1982

Strong, B. “Requirements for database support in CASE”, from
“Modern Software Engineering”, edited by P. Ng and R. Yeh, Van
Nostrand Reinhold, 1990

Taylor, R. P. and Hurrion, R. D. “An expert advisor for simulation
experimental design and analysis”, Proceedings of the SCS
Multiconference on Al and Simulation, Feb. 3-5 1988, San Diego,
CA

Towner, L. E. “CASE: Concept and Implementation”, McGraw-
Hill Book Company, Inc. 1989

Vujosevic, R. “Object-Oriented Visual Interactive Simulation”,
Proceedings of the Winter Simulation Conference, 1990, pp 490-
498

Warren, J. R. and Stott, J. W. “CASE/Simulation: making
performance evaluation a normal part of information system
development”, Proceedings Dynamic Modeling of Information
System I, 1991

Warren, J. R., Stott, J. W. and Norcio, A. F. “Stochastic simulation
of information system design from data flow diagrams”, Journal of
Systems Software, May 1992

Warren, J. R. and Canfield, G.C. “Information systems
performance evaluation: a study of the relationship between
decision accuracy of systems analysis and design simulation usage”,
Technical Report #CSIS-93-005, Department of Computer Science
and Information Systems, The American University



[Whitten 89]

[Widman 89]

[Wild 91a]

[Wild 91b]

[Wild 93]

[Wright 83]

[Wu 90]

[Yourdon 79]

[Yourdon 89]

[Yourdon 92]

[Zhang 89]

266

Whitten, J., Bentley, L. and Barlow, V. “Systems analysis & design
methods, 2nd edition”, Richard D. Irwin, Inc. 1989

Widman, L. E. “Artificial Intelligence, Simulation, and Modeling:
A Critical Survey”, Artificial Intelligence, Simulation and
Modeling, John Wiley&Sons Inc., 1989, ppl-44

Wild, R. H. and Griggs, K. A. “Improving the Quality of
Information Systems Analysis and Design Through Simulation
Modeling”, Proceedings of ISAGA 1991

Wild, R. H. and Pignatiello, J. J. “An Expert System-based Reverse
Simulation Technique”, Proceedings of 1991 Summer Simulation
Conference, July 1991, pp 352-357

Wild, R. H. and Griggs, K. A. “Design robust information
systems”, Proceedings of the 26th Hawaii International Conference
on System Science, Vol. IV, pp 419-428, Jan 4-7, 1993

Wright, P and Lickorish, A. “Proof-reading texts on screen and
paper”, Behavior and information Technology, Vol. 2 No. 3, 1983,
pp227-235

Wu, X. “On Expert Simulation System”, Proceedings of 1990
Summer Simulation Conference, July 1990, pp 715-720

Yourdon, E. “Structured walkthroughs, 2rd edition”, Prentice Hall
1979

Yourdon, E. “Managing the Structured Techniques, 4th edition”,
Prentice Hall Inc., 1989

Yourdon, E. “The Decline and Fall of the American
Programmers”, Prentice Hall Inc., 1992

Zhang, Q. and Zeigler, B. P. “The system entity structure:
knowledge representation for simulation modeling and design”,
Artificial Intelligence, Simulation and Modeling, John Wiley&Sons
Inc., 1989, pp47-73



