
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copysubmitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may

be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sectionswith small overlaps. Each

original is also photographed in one exposure and is included in

reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road. Ann Arbor. M148106-1346 USA
313!761-4700 800/521-0600

Order Number 9506208

HAT (Hyper Analysis Toolkit): A tool for hypertext-based
dynamic systems analysis

He, Jingxiang, Ph.D.

University of Hawaii, 1994

U·M·I
300 N. ZeebRd.
Ann Arbor,MI48106

HAT (HYPER ANALYSIS TOOLKIT):

A TOOL FOR HYPERTEXT-BASED DYNAMIC SYSTEMS

ANALYSIS

A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF
THE UNIVERSITY OF HAWAII IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

COMMUNICATION AND INFORMATION SCIENCES

AUGUST 1994

By

JingXiang He

Dissertation Committee:

Kenneth A. Griggs, Chairperson
William E. Remus
Rosemary H. Wild
Larry N. Osborne
David C. H. Yang

© Copyright 1994

by

JingXiang He

All Rights Reserved

111

IV

ACKNOWLEDGMENTS

I am profoundly grateful to Dr. Kenneth Griggs for his advice and support

throughout this research. I am equally grateful to all other members of my committee, Dr.

William Remus, Dr. Rosemary Wild, Dr. Larry Osborne, and Dr. David Yang. Each of

them took time out from their busy schedules to help my progress. My special thanks to

Dr. Art Lew for editing and evaluating this dissertation.

Many thanks to Mr. Tien Lum for his participation in this project. I also own a

debt ofgratitude to Mr. Jon Fujiwara and my colleagues at the Computer Resources of the

College of Business Administration for their understanding and technical support. My

thanks also go to Dr. Timothy Hill and my friends in the CIS program for providing

information that makes this dissertation possible.

Last but not least, my special thanks to my wife XiaoMei for her love and

emotional support throughout the four-year endeavor of my Ph.D. I also want to express

gratitude to my parents in China for their continuous care and love.

v

ABSTRACT

Increasing system complexity necessitated the development of software

engineering methods and CASE (Computer Aided Software Engineering) tools. Many

software developers and businesses have adopted engineering principles and computer

aided tools to cope with the growing needs of software development and maintenance. In

practice, most software projects are initiated by the information needs of the end users.

Precise descriptions and understandings of these information needs are critical to

information systems. It is believed that increasing end user involvement and doing things

right in the early stages of software development processes are the most effective ways to

improve software quality.

This dissertation presents a research project to develop a tool, HAT (Hyper

Analysis Toolkit), to help the end users to understand and use the structured analysis

techniques. HAT provides a hypertext linkage of graphical models, such as DFDs (Data

Flow Diagrams) and EROs (Entity Relation Diagrams), with system description narratives

and other documents created during the system analysis. Hyperlinks placed in the diagrams

and documents provide an easy way for end users and system analysts to navigate and

cross-reference the system models.

Model evaluation is as important as model description. In addition to the

hypertext-based user interface for model description, this research incorporates a

simulation package and a rule-based expert system to estimate the dynamic features of a

DFD model. Dynamic evaluation of models at early stages will help system developers and

end users to have better control over software development processes.

VI

TABLE OF CONTENTS

Acknowledgments iv

Abstract V

List of Tables xii

List of Figures xiii

List of Abbreviations xvii

Chapter 1 Introduction 1

1.1 Software engineering and software lifecycle 2

1.2 Tools for structured techniques 7

1.3 CASE tools 10

1.4 Scope and constraints of this research 13

1.4.1 Making theuser interface more friendly 13

1.4.2 Discovering system dynamics 16

1.4.3 Levels of interactions 19

1.4.4 Environments for software engineering and simulation 21

1.4.5 What is HAT? 23

VII

Chapter 2 Literature review 26

2.1 Upper CASE studies 26

2.2 Hypertext and CASE 31

2.2.1 Hypertext and hypermedia 31

2.2.2 Apply hypertext to IS development 35

2.3 Simulation and IS dynamics 41

2.3.1 Dynamics of information systems 41

2.3.2 Apply simulation to discover IS dynamics 42

2.3.3 AI and simulation 49

2.3.4 Simulation environment.. 53

2.3.5 Visual interactive simulation 55

2.4 Summary ofliterature review 58

Chapter 3 Methodologies and tools 60

3.1 Issues in user interface design 61

3.1.1 User interface design concepts 61

3.1.2 User interface design methodologies 64

3.1.3 User interface tools 67

Vlll

3.1.4 Evolutionary development strategy for hypertext

applications 70

3.1. 5 The DEXTER hypertext reference model. 71

3.1.6 User interface evaluation 72

3.2 Object-oriented simulation and YANSL 73

3.2.1 Advantages ofobject-oriented simulation 73

3.2.2 YANSL - an object-oriented simulation package 75

3.3 Rule-based expert system and M4 78

3.3.1 Basic concepts of expert systems 78

3.3.2 The M4 expert system 79

3.3.3 Procedures for expert system development 81

3.4 Dynamic Data Exchange and Object Linking & Embedding

techniques 83

3.5 Object manager and object database 85

3.5.1 A file-based object-oriented storage service - Tools.h++......... 86

3.5.2 An object-oriented database - RAIMA Object Manager 87

3.6 Summary of tools and methodologies 88

Chapter 4 The system architecture 89

4. 1 The software architecture for HAT 90

IX

4.2 The user interface subsystem 93

4.2.1 The Hypertext Editor 97

4.2.2 The DFD Editor and the ERD Editor 99

4.2.3 The windows for process analysis 102

4.2.4 The windows for data analysis 104

4.2.5 Comments on the user interface design 105

4.3 The data repository subsystem 106

4.3.1 The DFD tree 108

4.3.2 The data relation graph and structures for the ERD 114

4.3.3 The dictionaries and their entries 118

4.4 The DDE interface 119

4.4.1 The data interface structure 120

4.4.2 The conversation protocols of the subsystems 122

4.5 The dynamic evaluation subsystem: DFD simulation 127

4.5.1 The structure of the simulation subsystem 128

4.5.2 The script language for simulation models 130

4.5.3 DFD model conversion rules 133

4.5.4 The DFD model converter 137

x

4.5.5 The simulation model generator and result parser 140

4.6 The intelligent help subsystem 141

4.6.1 Static DFD checking rules 141

4.6.2 The structure of the simulation expert system 142

4.6.3 The modeling rule base 144

4.6.4 The result explanation rule base 146

Chapter 5 Implementation issues 148

5.1 Windows programming environments 148

5.2 System integration 151

5.3 System testing and evaluation 155

5.4 Alternative integration strategies 159

5.5 Lessons learned through the implementation of HAT 162

Chapter 6 Conclusions 170

6.1 Contributions 170

6.2 Limitations 174

6.3 Future research 175

Appendix A An overview of object-oriented techniques 178

Appendix B Examples of systems analysis with HAT 186

XI

B.l Analysis of a TV inspection workshop operation: balance of

workflows 186

B.2 Analysis of an investment company: determine the system

bottleneck 193

Appendix C HAT survey questionnaire 199

Appendix D M4 rule-base examples in HAT 201

Appendix E Selective class descriptions of HAT 206

E.! The user interface 206

E.2 The data repository 218

E.3 Simulation subsystem 251

EA DDE Data interface 254

Bibliography 259

XII

LIST OF TABLES

Table 1.1. General models of software development.. 4

Table 1.2. A list of structured diagramming tools 8

Table 1.3. A list of some CASE tools 13

Table 2.1. Summary ofuser involvement.. 28

Table 2.2. JAD solutions to user involvement problems 30

Table 2.3. User preferences of navigation methods 33

Table 2.4. Comparative listing of hypertext and CASE 41

Table 3.1. User classification 62

Table 3.2. Pros and cons of user interface design tools 69

Table 4.1. Basic modes for DDE data transfer.. 119

Table 4.2. An example of the simulation script for a TV shop 132

Table 4.3. Steps to convert a DFD into a simulation model 139

Table 4.4. DFD connection rules 141

Table 5.1. The survey result of 16 HAT users 158

XIl1

LIST OF FIGURES

Figure 1.1. Evolution of the 'Waterfall' model 6

Figure 1.2. DFD symbols 9

Figure 1.3. An ERD example 9

Figure 1.4. The structure of a CASE environment.. 11

Figure 1.5. An example of hypertext linkages to a DFD 15

Figure 1.6. A revised SDLC model 17

Figure 1.7. Different levels of interactions in system development 20

Figure 1.8. Software engineering and simulation 22

Figure 1.9. An example of hyperlinks among document in HAT 24

Figure 2.1. Sources of software bugs 27

Figure 2.2. Hypertext as an intermediary agent in IS development.. 39

Figure 2.3. Steps in a simulation study 46

Figure 2.4. A taxonomy ofcombining ES and simulation .49

Figure 2.5. An extended ES and simulation modeL 51

Figure 2.6. SMDE architecture 54

XIV

Figure 3.1. Areas involved in this research 60

Figure 3.2. Norman's user interface cognitive modeL 63

Figure 3.3. Star life cycle for user interface development.. 64

Figure 3.4. Knowledge-based human-computer interaction model 65

Figure 3.5. Evolutionary development strategy for a hypertext system 71

Figure 3.6. An overview ofDEXTER models layers 72

Figure 3.7. Class structure of YANSL simulation language 77

Figure 3.8. The kernel structure ofM4 80

Figure 3.9. A generic procedure for expert system development 82

Figure 3.10. DDE as an information hub to connection different applications 83

Figure 4.1. An exploratory model to develop new systems 90

Figure 4.2. The architecture for HAT integration 92

Figure 4.3. Assembly structure of objects for the user interface 93

Figure 4.4. A snapshot of the user interface - default settings 95

Figure 4.5. The Tool Bar and Control Bar of the DFD Editor 96

Figure 4.6. Channels for hyperlinks among child-windows 97

Figure 4.7. The Structure of the Hypertext Editor 98

Figure 4.8. The Structure of the DFD Editor and ERD Editor.. 100

xv

Figure 4.9. A snapshot ofERD Editor 101

Figure 4.10. The windows for process analysis 103

Figure 4.11. The windows for data analysis 104

Figure 4.12. Connections between the user interface and data repository 107

Figure 4.13. Structure of the data repository 108

Figure 4.14. An example ofa DFD tree 109

Figure 4.15. Class structure ofa DFD 110

Figure 4.16. Structure ofDFD objects 111

Figure 4.17. A further description ofDFD-related objects based on Figure 4.16 113

Figure 4.18. An example ofa data relation graph 114

Figure 4.19. The structure of data-related objects 115

Figure 4.20. The structure of an ERD 116

Figure 4.21. The structure ofan Entity and a Relation 117

Figure 4.22. The origin ofa project dictionary and a data dictionary 118

Figure 4.23. The structure ofProjectEntry and DataEntry 119

Figure 4.24. The DDE data interface in HAT 120

Figure 4.25. The class structure ofDDE Data Interface 121

Figure 4.26. The structure of the simulation subsystem 129

XVI

Figure 4.27. The multiplexing effect ofa data store after conversion 135

Figure 4.28. Examples of pseudo sink nodes to avoid simulation deadlock 136

Figure 4.29. An example of converting a DFD model to a simulation mode!.. 137

Figure 4.30. Dialogue boxes for simulation parameters 138

Figure 4.31. State transition diagram of the model script interpreter 140

Figure 4.32. The structure of the simulation expert system 144

Figure 4.33. The decision tree for distribution selection 145

Figure 5. 1. Comparison of different Windows programming environment 149

Figure 5.2. Steps in systems integration 153

Figure 5.3. Class structures of subsystems and their handlers 154

Figure 5.4. The stages and the factors involved in testing 155

Figure 5.5 A Software integration scenario based on DEXTER model 162

LIST OF ABBREVIATIONS

XVII

API

CASE

DDE

DDEML

DFD

DIF

DLL

DSS

E-JAD

ERD

EMS

ESS

FIFO

4GL

GDI

GSS

GUI

HAM

IDE

IS

ISHYS

JAD

MDI

MFC

NEST

OLE

OWL

RAD

SA

Application Programming Interface

Computer Aided Software Engineering

Dynamic Data Exchange

DDE Management Library

Data Flow Diagram

Document Integration Facility

Dynamic Link Library

Decision Support Systems

Electronic JAD

Entity Relation Diagram

Electronic Meeting System

Expert Simulation System

First-in-first -out

4th Generation Language

Graphic Device Interface

Group Supporting System

Graphical User Interface

Hypertext Abstract Machine

Integrated Development Environment

Information System

Intelligent Software HYpertext System

Joint Application Design

Multiple Document Interface

Microsoft Fundamental Classes

NEtwork Simulation Testbed

Object Linking and Embedding

Object Window Library

Rapid Application Development

Systems Analysis

SD

SDLC

SE

SESSA

SILK

SMDE

SGML

SPG

UIDS

UIT

VBX

VIM

VIS

WAF

WIMP

Systems Design

System Development Life Cycle

Software Engineering

Statistical Expert System for Simulation Analysis

Speech, Image, Language and Knowledge

Simulation Model Development Environment

Standard Generalized Markup Language

Simulation Program Generator

User Interface Development Systems

User Interface Toolkits

Visual Basic eXtension

Visual Interactive Modeling

Visual Interactive Simulation

Windows Application Framework

Window, Icon, Menu and Point

XV1ll

CHAPTER 1 INTRODUCTION

The development ofcontemporary computer technology enables computer

applications in many areas and places increasing pressure on information system

professionals and end users. Because of the increased information system requirements,

more information systems need to be developed, maintained and upgraded. It is

paramount that computer scientists and information systemdevelopers deal with these

increasing demands.

This research addresses the problem of user requirement specifications and

informationsystem (IS) modelingat the systems analysis (SA) stage. Systems analysis is

the first stage in the software development life cycle (SDLC) in which users meet system

analysts. Requirement specifications for a target system are defined at this stage. The

cost of software modification increasesexponentially as the development process goes

from the SA stage to later stages of the SDLC [Sommerville 89]. Since changes can be

least expensively made at the SA stage, it is obvious that different alternatives should be

carefullyweighted to determine the most feasible solution at this stage. This thesis

reports on a project that incorporates hypertext, simulation and expert systemtechniques

to construct a tool- Hyper Analysis Toolkit (HAT). The essence of this project is

twofold: (1) to improve the communication amongusers and system analysts by

introducing a hypertext-based user interface, and (2) to enhance model evaluation by

integrating simulation and expert system techniques. This thesis reviewswhat has been

done in related areas and describes a unique architecturefeasible for the implementation

ofHAT. This architecture may also be used for visual interactivesimulation environment

and other simulation studies.

2

Several different fields are involved in this research. The first chapter begins with

some background information on software engineering and computer-aided software

engineering (CASE) tools. It answers the questions of 'what' and 'why' of this research.

The second chapter reviews what has been done on this and related subjects. The third

chapter summarizes the methodologies and tools used for this project, as well as some

theories behind them. The fourth chapter focuses on the description of the HAT

architecture and systems design. The fifth chapter discusses some implementation issues

and lessens learned from this project. The thesis concludes with the sixth chapter that

summarizes the strengths, weaknesses, contributions, as well as possible extensions of

this research.

1.1 Software Engineering and Software Life Cycle

The term 'software engineering' (SE) was first introduced in the late 1960's at a

conference held to discuss the 'software crisis'[Sommerville 89]. The software crisis

resulted from the introduction of third generation computers. The advanced hardware

technologies and powerful computers made the software methodologies inadequate to

meet the increasing needs for more and larger applications. After more than twenty

years, the software crisis is still with us. The demand for software has increased at a

faster rate than the improvement in the productivity of software engineers. Furthermore,

the advent of microcomputer systems has increased the awareness of computer

applications and brought more people into computer-related activities. However, some

of these people are not aware ofSE methodologies and are repeating the same mistakes

made by software engineers twenty years ago. Currently, there is a great need for better

tools, techniques, methodologies, and most importantly, better education and training for

IS developers as well as end users.

3

Although the definition of software engineering varies, the common factors are

that (1) SE is concerned with software systems which are built by teams rather than by

individual programmers, (2) SE uses engineering principles in the development of

information systems, and (3) SE consists of both technical and non-technical aspects. A

well-engineered software project should have the following features as described by

Sommerville [Sommerville 89]:

(1) The software should be maintainable: As long-life software is subject to regular

change, it is important that the software is written and documented in such a way

that changes can be made without undue cost.

(2) The software should be reliable: An appropriate level of reliability is essential if a

software system is to be of any use.

(3) The software should be effective and efficient: The software should perform

defined functions with a minimum cost of time and computer resources.

(4) The software should offer an appropriate user in/efface: The software cannot be

used to its full potential if a user interface makes it difficult to use. The user

interface design should take into account the capacity and background of the

intended users.

SE studies have developed a number of general models of software development.

Table 1.1 shows a list of some general models. Among these models, the 'waterfall'

model, which was proposed by Royce in 1970[Royce 70], is the earliest and most

frequently used model for IS development. It divides the software development life cycle

(SDLC) into five different stages: (1) systems analysis and definition; (2) systems

4

design; (3) implementation and unit testing; (4) system testing; and (5) operation and

maintenance.

Table J.I. General models ofsoftware development

The waterfall approach Viewa softwareprocessas being madeup of a number of stagesand
the softwareprocessfollows thesestagesone after another.

Exploring programming Developa workingsystem as quicklyas possible. and then modify that
systemuntil it performsin an adequate way.

Formal transformations Develop a formal specification of the softwaresystemand transform the
specification into a program.

End user computing End users are responsible for development of their own systems.

Assembly from reusable Useexisting reusable components to constructa new system. The
components development process is mostly assembly rather than creation.

There have been numerous refinements and variations of the original waterfal1 life

cycle model. Figure 1.1 shows an evolution process of the waterfall model. The original

model assumed that software development was a linear process. Later stages would not

be started until the previous stages have been finished. However, in practice, the

development stages overlap and feed information to each other. Each stage needs to go

through several iterations before passing on to the next stage. Later stages may feed

information back to the earlier stages and start a new iteration. This iterative process will

continue until the software is phased out.

Software development often takes several months or even years to finish. In the

original waterfall model, users will not see the system until after the implementation and

testing stage. Because the cost of software modification goes up exponentially as the

SDLC goes on, it will be too late and too expensive, if not impossible, for users to

suggest modifications after the implementation. In addition, the original SOLC model

assumes that a system is well specified prior to the system development. However, most

users do not know what they want until they 'feel' and 'see' their system in operation

5

[Sprague 82]. The 'rapid prototyping' technique provides users with an operational

version of system inputs and outputs. Once rapid prototyping is incorporated into the

SDLC model, the users can 'feel', 'see', and play with the system prototype at early

stages. Rapid prototyping often reveals omissions, inconsistencies and misunderstandings

of system requirements. If the system does not meet their expectation, users may suggest

modifications and see the changes quickly. Because system developers can get feedback

from users much earlier than that of the old SDLC models, modifications become easier

with less cost. Rapid prototyping also encourages users to become more involved and

committed to their system from the earliest stages of development. Since users actively

participate the development process, they are more ready to understand and accept the

new system [Lantz 87].

(i)

Feedback'--- - ---------------------.

I
I
I
I
I
I
I
I
I

(ii)

Operation&
Maintenance

6

(iii)

Figure 1. I. Evolution a/the 'Wale/fall' model

7

1.2 Tools for Structured Techniques

In the early days of information systems development, there were few tools other

than the programming languages themselves. SE research has brought tools and design

methodologies into every stage of the SDLC. The primary objective of these tools are:

(1) to achieve high-quality programs of predictable behavior, (2) to create programs that

are easily maintainable, (3) to simplify the programs and the programming process, (4) to

speed up system development, and (5) to lower the cost of system development [Martin

88].

Based on these objectives, 'Structured Techniques' evolved from a coding

methodology (structured programming) to techniques that include analysis, design,

testing methodologies, and prcject management concepts. Martin and McClure [Martin

88] summarize the basic principles of structured philosophy as:

(1) The principle ofabstraction: To solve a problem, separate the aspects that are

tied to a particular reality in order to represent the problem in a simplified,

general form.

(2) The principle offormality: Follow a rigorous, methodical approach to solve a

problem.

(3) The divide-and-conquer concept: Solve a difficult problem by dividing the

problem into a set of smaller, independent problems that are easier to understand

and to solve.

(4) The hierarchical ordering concept: Organize the components of a solution into a

tree-like hierarchical structure. Then the solution can be understood and

constructed level by level, each new level adding more details.

8

Diagrams are often used in software development to illustrate the structures and

ideas ofanalysis, design and implementation. Table 1.2 lists some structured diagram

tools for different stages of the SDLe.

Table 1.2. A list ofstructured diagramming tools

Analysis Tools Data Flow Diagram, Control Flow Diagram, Decision Table & Tree,
Matrix, Dependency Diagram, Decomposition Diagram. HIPO Diagram

Design Tools Structure Chart, Action Diagram, Wanier-Orr Diagram. Decision Table
& Tree, Pseudo Code, Flowcharts, Screen layouts, Dialog Flow

Programming Flowcharts. Pseudo Code. Action Diagram. Decision Table & Tree
Tools

Database Tools Entity Relation Diagram, Data Structure Diagram. Data Navigation
Diagram, Logical Records. Physical Database and Files. Data
Immediate Access Diagram, Data Dictionary

Among all the structured analysis tools, the Data Flow Diagram (DFD),

developed by Demarco and Yourdon [Yourdon 79], is frequently used for function-

oriented analysis to aid functional decomposition and process modeling. Figure 1.2

shows the four basic DFD symbols of Gane & Sarson method [Gane 79]. A 'Source or

Destination of Data' , also called 'External Node', is an entity outside the system that

sends or receives data. A 'Data Flow' is a collection of data elements in motion. A 'Data

Store' is a collection of data elements at rest. A 'Process' is an operation that transforms

data. System models are created using these symbols in a hierarchical fashion starting

with a single process context level diagram and 'exploding' the process to other more

detailed levels. A Process explosion is the linkage of the process to a sub-DFD for

purposes offunctional decomposition and encapsulation. Processes in sub-DFDs can be

further exploded until an atomic level is reached and the system has been fully,

functionally decomposed.

9

Symbol: 0 ..
Meaning:

Sourceor
Data FlowDestination of Data

Figure 1.2. DFD symbols

Data Store

D
Process

Entity Relation Diagrams (ERDs) are often used for data-oriented analysis to

describe the relationships ofdata entities and their attributes. Figure 1.3 is an example of

an ERD using the Chen method [Chen 76]. An ERD has two basic symbols: an entity

(the rectangle) and a relation (the diamond shape). Entities are collection of data

describing an important element in the information system, such as 'Seller'. Relationships

describe a logical connection between entities (e.g., owns). Cardinalities (numerical

relationships between entities) are labeled on relationships. Each entity-relationship set is

an expression of the underlying semantics of data. If properly constructed, an entity-

relation set can be read like a sentence in either direction. For example, the relationship

between 'Seller' and 'House' can be read as 'A seller owns M houses' and' A house is

owned by a seller' .

1.1

BrokcfClge
Cortr.!ct

House

Figure 1.3. An ERD example

listing

10

Function-oriented analysis and data-oriented analysis are complementary. ERDs

can be used to describe data components in a DFD; and DFDs can be used to model data

processing functions in data-oriented analysis.

1.3 CASE Tools

The objective of SE principles and methodologies is to improve the quality and

productivity of software development. However, it is very hard to create, modify, and

manage all kinds of diagrams and documents manually. Without computer-aided

automation, the software engineering paradigms will not be practical in software

development. McClure [McClure 89] concludes that: "Computer-aided software

engineering (CASE) is the automation of software development."

Automation of the software development process is not a new concept. Since the

early days of computer-based system development, assemblers and compilers have been

used to translate high level language into machine language. CASE differs from previous

computer-aided automation by enforcing software engineering methodologies in all

stages of the SDLC. It encourages evolutionary and incremental development. Some SE

concepts, such as abstraction, divide-and-conquer, hierarchical ordering, and step-wise

refinement, are embedded in CASE. With CASE tools, software developers can derive

the real benefit of SE methodologies.

There have been many CASE tools in the market for computer professionals.

Most of these tools are based on structured techniques used to support structured

analysis (SA), structured design (SD) and code generation. The recent development of

object-oriented techniques brings a new perspective to the enforcement and

implementation of basic SE philosophy. Several object-oriented CASE tools have been

1I

proposed [Coad 90, 91]. It is believed that object-oriented techniques will be the

dominant software development method of the next generation.

Although there are different variations, CASE tools have common goals to

support software development [McClure 89]: (1) Provide an interactive development

environment with rapid response time, dedicated resources, and early error checking. (2)

Automate many software development and maintenance tasks. (3) Provide powerful user

interface and visual programming capacity.

Data
dictionary

Skeleton
code

generator

Diagramming
tools

Central
information
repository

• ..

I Report
generation

facilities

Query
facilities

Form
creation

tools

Import/export
facilities

Figure 1..1. The structure ofa CASE environment

Figure 1.4 shows the structure of a CASE environment. There is a central

information repository as the information exchange center, from which other

components store and retrieve information. A database is often used to facilitate the

information repository. Other components can reside in the same computer as the

repository, or distribute over a local area network.

A graphical diagramming capacity is fundamental to CASE to create DFD, ERD

as well as other graphical models. A data dictionary is used to maintain names, labels,

data attributes and other information of system models. Checking tools verify the validity

12

of the models. Query facilities and a report generator are used to browse information and

examine completed designs. A code generator produces code or code segments from

designs stored in the central repository. Form creation tools enable the users to

customize the reports. Import-export facilities allow information interchange with other

CASE tools.

Technologies utilized to build a CASE environment may change, but the basic

functions that CASE provides to system developers should remain stable. Chen and

Nunamaker [Chen 89] summarize the following basic functions of a CASE environment:

(1) Elicitation: CASE tools should be able to help system developers describe

systems at analysis, design, and implementation levels.

(2) Analysis: CASE tools should be able to analyze the consistency and

completeness of an elicited system description, detect errors or evaluate design

alternatives.

(3) Transformation: CASE should help system developers to convert a system

description from one level to another.

(4) Information Storage: Information elicited by system developers or generated by

CASE must be stored so that project information can be shared and reused.

A complete CASE environment is a very complex piece of software. It may take

years of team-work to finish. As a result, CASE tools are often very expensive and used

mostly by computer professionals. Table 1.3 lists some information of commercial CASE

tools available in the market [Oman 90]. These CASE tools support multiple SE

techniques that help system developers in different stages of the SDLe. Unlike these

fully functional CASE tools, this research focuses an architecture for front-end CASE

13

that only support the systems analysis stage of the SOLe. It will be less expensive, more

compact and more user friendly to encourage user involvement in the development

process.

Table 1.3. A list ofsome CASE tools as of1990 [Oman 90J

CASE Tool Developer Description Platform Price

Cradle CASE Yourdon Inc. Supports all phases of the life Sun. UNIX $12,500
cycle. Uses Yourdon structured
method. (single user)

Jackson CASE Michael Jackson Maps closely to Jackson methods PC. DOS $8.000
Systems for system design

Card Tool Ready Systems An integrated set of requirements Sun. UNIX $7.000
and design tool .

Excelerator Index Provides multiple analysis and PC. DOS $8.400
Technology design tools to analyze. design and

document IS. Sun. UNIX

AdaGen Mark V Systems Supports both object-oriented and rc. DOS $7.850
traditional Ada development.

Sun. UNIX

1.4 Scope and Constraints of This Research

This section illustrates the need for more user involvement and dynamic model

evaluation. This research tries to meet these needs by introducing hypertext and

simulation into the system analysis process.

1.4.1 Making the user interface more friendly

The purpose of software engineering is to improve software quality. Like any

other product, the goal of a software product is to satisfy consumer's needs. The

definitions of quality have evolved from 'fitness of use' and 'conformance to established

requirements' to 'never ending improvement of product and service' and 'delight the

customers'. From this perspective, a CASE tool should not only focus on how to

14

implement a design efficiently, but also the need to improve the user interface to

communicate with users more effectively and earn their trust.

On the base of the SDLC coverage, CASE studies can be classified as 'upper

CASE' (front-end CASE) and 'lower CASE' (back-end CASE) [Chen 89, 92a]. Upper

CASE tools are used for information system planning, analysis, logical design, and some

other user related aspects of system development. Lower CASE tools are used for

physical design, code generation and programtesting. Sinceuser involvement and early

error detection are critical to developing correct and cost-effective information systems,

upper-CASE studies have drawn increasing attention.

Ives, Olson and Baroudi [Ives 83] have proved that greater user involvement

leads to greater systemsuccessand less user involvement results in malfunction and

unsatisfactory systems. To improve user involvement, many techniques have been

proposed, such as Joint Application Design (JAD), Rapid Application Development

(RAn), prototyping, and Group CASE [Yourdon 92].

Hypertext, whichwas originally designed for authoring and document

management, is viewed as one of the enabling technologies for CASE [Chen89].

Hypertext is a non-linear information network composed of information nodes,

hyperlinks and navigation methods. Experimentations have shown that well-organized

hypertext system mayresult in more friendly user interfaces and customized information

retrieval [McAleese 89, Mynatt 92].

15

ge
ts

F

Sellers

"------,- brokera--
"

--, conlrac--------- -,
"- , -......-'-,

received

• & lime
stamped

brokerage
contracts

'-

'--

contracts

Sellers s'lmctirrcompleted - _

brokerage contracts and when
. ~"

they are received ~,are "-_,,_

time-stamped and placedln-a" -',....,- "
contracts file ' "

'-....... _---

Hypertext NarrativeWindow DFD Drawing Window

Figure 1.5. An example ofhypertext linkages to a DFD

Figure 1.5. shows a structure to incorporate hypertext with a DFD. A text

window holds the description narratives of a DFD model and another graphical window

displays the graphical layout of the diagram. Hyperlinks are constructed while the model

is been developed. The hyperlinks provide various ways to view the model. These links

represent the thought path of the model designers (authors) and can be easily accessed

by reviewers (readers). As a result, hyperlinks provide another dimension (hyper­

dimension) in addition to the linear text and two-dimensional graphical model for

communication between designer and users as well as among users themselves.

A user interface with multiple windows and hypertext conveys richer information

to users. It is expected that once it is incorporated with a CASE tool, the hypertext

interface will increase users' comprehension of system models. Such an improved channel

of communication may help software developers to achieve more user involvement, less

misunderstanding, and fewer errors in software development.

16

On the other hand, a WIrvw (Window, Icon, Menu and Point) styled hypertext

interface may help users not only to understand models designed by other people, but

also to learn and to use the analysis techniques for their requirement specification. This

will provide an opportunity to extend structured techniques and CASE, which are used

mostly by computer professionals, toward end users. It will result in more user

involvement, improved communication and better tools for user requirement

specification.

1.4.2 Discovering system dynamics

In addition to the construction of system models, validation and evaluation of

these models are also important CASE functions. Model validation is to check if a model

is structurally valid and functionally correct. Model evaluation is to measure the

performance of a valid model and weight different alternatives.

Most CASE tools check for mechanical errors in a model and study some static

features, such as data balance, cardinality and data consistency. Noise and random

factors have not been taken into consideration in static analysis. However, information

systems are designed, implemented and used in a rapidly changing and turbulent

environment. The activities of software development and application are dynamic by

nature. Although prototyping techniques reveal some dynamic features and give a fast

glimpse on the system's behavior, they can only uncover some of the micro features, such

as what a user interface looks like, how it responds to users' requests and what functions

may be included in the system. Some macro features which reveal the overall system

performance, such as bottlenecks, job waiting time and resource utilization, still remain

unknown. Analytical methods can be used to statistically analyze these performance

features of system models [Ng 90]. Unfortunately, it is hard, if not impossible, to define

mathematical formulas that precisely represent the behaviors of a system model. Studies

17

have shown that static analysis based on mathematical approximation may result in

unrealistic conclusions in noisyand turbulent environments [Wild 91a]. Systematic

dynamic modeling strategies are needed to counter noise and turbulence that may occur

in system development [Sol 9 I].

Simulation is often used to model an unknown systemand reveal the statistical

features of the system performance when analytical solutions are not available.

Simulation is non-destructive, repetitive and dynamic. It can be used to test system

behaviors under different scenarioswithout implementation of the system. A study

conducted by Warren [Warren 92] shows that simulation orIS models can provide better

estimates of system performance and detect errors at early stages.

ext. dynamic feedback external feedback

f--:a~:-- - - - -- - -T ~~c~: ---~--t-s~a~i~-T-----f---- -- ---f--
I , t I 1 I I

, 'OIlIl: ~sYstems 'ft : : I

:, Analysis: static :

: static! I

: dynamic :

: : static/
: dynamic

Internal feedback

Figure 1.6. A revised SDLC model

-.
I
I
I
I,
I
I
I
I
I
I,
,
,
I
I

: static!
: dynamic

Figure 1.6 shows a revised SDLC model with a simulation package embedded in

the SE process. There are two kinds of feedback to users: static feedhack, such as verbal

or written reports and documents, and dynamic feedhack, such as demos, prototypes and

system previews. In the old SDLC model, users can, at most, get static feedback at the

systems analysis and design stages. The system performance dynamics will not be

18

available until the coding and testing periods when it is too late and too expensive to

make changes. The prototypingtechnique provides dynamic feedback on what the target

systemwiIllook like to users at an early stage. Users may have the chance to offer

suggestionsfor improvement when it is still feasible to change the system. However,

prototyping only provide a micro view of a system. An embedded simulation package

can be used to estimate the dynamics of overall system performance at an early stage and

provide a macro view of the system at the systems analysis stage. The macro views ofa

target system are more important for strategic decision making, such as to determine the

hardware and software configurations and to compare different design options. With

information from dynamic evaluation, users and the system developers mayhave better

control over the software development process.

To date, IS dynamic evaluation has not been routinely included in CASE tools.

The potential of dynamic model evaluation mayimprove the IS development processes in

the following ways:

(I) Improve system performance estimation Unlike static evaluation, dynamic

evaluation takes random factors into account and results in more precise

estimations of system parameters under turbulent situations, such as job-load,

service time, and average system response time.

2) Improve hardware platform selection Because of improved system performance

estimation, system analysts can reduce the chance of over-specifying or under­

specifying hardware configurations. It may save hardware costs and avoid

unsatisfied system requirements.

19

3) Improve software environment selection. Because system response time and data

volume are better estimated, software systems can be chosen on a cost-effective

basis.

4) Improve re-engineering process. Different re-engineering strategies can be

compared through dynamic evaluation before any decision is made. It provides

more control and quality assurance to the re-engineering team.

However, few users and system analysts are skillful at simulation techniques.

They may neither have the time nor the experience to develop a simulation model every

time an IS analysis problem occurs. They need help to determine simulation parameters

and generate simulation models. Furthermore, simulation results are not always

understandable and are very tedious. An expert system can provide suggestions and

insights to help users and improve the effectiveness of simulation. O'Keefe described a

different architecture incorporating a simulation system with an expert system [O'Keefe

86]. There have been other studies that incorporate an expert system in different

simulation tasks [Fox 89, Hill 87, Park 90]. It is necessary and feasible to build an expert

system that helps users to build simulation models and explain simulation results.

1.4.3 Levels of interactions

Software development involves different levels of interactions and activities. It

ranges from highly abstract conceptual modeling to very detailed coding and testing. As

described in the previous sections, the development is a team effort that can be viewed as

a process full of interactions between 'authors' and 'readers', 'users' and 'analysts', and

'designers' and 'programmers'. There are different concerns at each level that require

different tools.

20

Mittermeir and his colleagues add interaction into the water-fall model. They

view software development as consisting of two dimensions: interaction and refinement

[Mittermeir 90]. They propose 'outside in' and 'inside out' approaches to analyze the

interactions of a system; and 'top down' and 'bottom up' approaches to refine the

system functionality.

The interactions can be further decomposed into human to human interactions

and human to machine interactions. In a study of hypertext and CASE integration,

Oinas-Kukkonen focused on the human to human interaction among users and system

developers as well as system developers themselves [Oinas-Kukkonen 93]. He concludes

that hypertext is the right vehicle that serves as an intermediary among human actors.

Levels of Human-Computer Interaction

Sirniation&

AnalyticalEvaluation

Organizatlomal

Conceptual

TeclvWc81

Steps of
System Refinement

Levels of Human-Human Interaction

Figure 1.7. Different levels ofinteractions in system development

Figure 1.7 is a 3-dimensional model of interactions in software development. In

the first two dimensions, human to human interactions are presented throughout the

entire software development process. At the planning and systems analysis stage, human

to human interactions focus on the organizational level. People are more interested in

21

which department is involved in the new information system, how the development team

is organized, what is the budget for the project, what is the hardware and software

configurations. At the later part of systems analysis and logical system design stages,

information about the conceptual model of the proposed system needs to be circulated

among the end users, the developers, the management, and other interested groups. At

the implementation and testing stage, system developers are interested in technical details

of how to implement the conceptual models, the test strategies that should be used, and

the testing of code or functional modules. Hypertext is suitable for all the human to

human interactions by providing hyperlinks among documents and improving

understanding of the system.

In the human to computer interaction dimension, people must actively observe,

study, and test the computer system and control it within their expectations. It is obvious

that debugging and testing a real system is the most direct way to get feedback on

system performance. However, at the systems analysis stage, the only tools available to

study a non-existing system are simulation and some other analytical methods.

This project is to develop a tool that improves systems analysis by integrating

hypertext to enhance human to human interactions, and simulation to enrich human to

machine (models ofa proposed information system) interactions. Since systems analysis

is the corner-stone for later stages of the SOLe, improved system analysis greatly

enhances system development as a whole.

1.4.4 Environments for software engineering and simulation

Software engineering and simulation are two distinct but closely related areas.

Computer simulation involves the development of a simulation program. The principles

and tools for software engineering can be used to direct the development of simulation

22

programs and simulation environments. On the other hand, as stated in the last section,

simulation can be used as a tool to improve the software engineering process.

Each of the two areas has its own essentials. SE focuses efficient and effective

implementation. Simulation is concerned with statistical analysis and model evaluation.

Neither of the environments can replace the other. However, there are some

commonalties between the environments of SE and simulation.

Software Engineering Computer Simulation

(Visual, Interactive and Intelligent Environment

t
Hypertext/hypermedia and computer graphics

+
Artificiallnlelligence

Figure 1.8. Software engineering and simutatton

As hardware costs goes down and personal computing becomes more available,

software engineering and simulation analysis require more distributed, collaborative and

user friendly support environments. Figure 1.8 shows that enabling technologies, such as

computer graphics, hypertext/hypermedia along with breakthroughs in hardware, become

the foundation for a visual interactive environment. Artificial intelligence techniques

provide vehicles for inferenceand intellectual reasoning of computer systems. There is a

trend in software engineeringand simulation toward the development of integrated,

visual, interactive, and intelligent environments. The intention of this dissertation is to

follow this trend and search for ways to create better systems environments.

23

1.4.5 What is HAT?

HAT (Hypertext Analysis Toolkit) is designed to address the problems found in

upper CASE. A hypertext-based user interface is the fundamental component. It helps

end users and systemanalysts to plan an information system, define the user

requirements and analyze the systemwith DFD and ERD models. The goal ofHAT is to

encourage more user involvement, promote structured systems analysis methods,

improve communications among users and system analysts, and estimate system

performance at the early stages of the SDLC. This tool provides an opportunity to push

traditional methods such as the use of DFDs and ERDs, which are practiced by computer

professionals, toward end users and allowthem to describe their needs in a more

organized fashion. In addition, dynamic evaluation of information system models with an

embedded simulation package may overcomesome of the biases of static analysis and

provide statistical estimation of the general system dynamics. Different alternatives can

be judged and weighted before systems implementation.

Figure 1.9 shows an example ofhyperlinks in HAT. Direct hyperIinks (dashed

lines with arrow head) are constructed from requirement specifications of DFDs, ERDs

and other documents. These links are connected as the analysis process is developed.

Reviewers of the project can easily browse the models through hyperIinks and add new

links.

24

Requirements

-...".-----------

DFD2

Project
Dictionary

_--- DFD 1----
--~----- ".....

\ '--------',
ERD 1

ERD2

/CJ

I
I
I
I
I

t

Module 2

/
/

/

Module 1

... --..
'--------'~ -:---

I
I
I
I
I
I
I
I
I
I
I

I I
1 ----------------_1

Data
Dictionary ;/

Figure 1.9. An example ofhyper/inks among documents in HAT

The dynamic evaluation subsystem generates simulation models from DFDs and

feeds the result back to the user interface. A simulation expert system functions as a

helper to determine the parameters of a simulation model and explain the simulation

result. Dynamic Data Exchange (DDE) links are used as communication channels among

the user interface, the simulation package, and the simulation expert system.

The basic functions of HAT can be listed as:

(1) A WIMP (Window, Icon, Menu and Pointer) styled GUI (Graphical User

Interface) for friendly, easy user access, which includes:

(a) A graphical editor that provides graphical tools for drawing and editing

DFD and ERD models.

(b) A hypertext editor that provides tools to create and delete hyperwords

and connect them with graphical objects in DFD and ERD models.

25

(c) A browser and navigation methods for model query and retrieval.

(d) Interfaces to access the data dictionary and data model descriptions.

(e) A report generator that generates reports from DFD and ERD models in

a pre-defined format.

(f) Interfaces for simulation modeling and parameter setting.

(2) Model validation and evaluation subsystem:

(a) A static evaluator ofDFD models that checks for mechanical errors in a

DFD drawing and data flow balance.

(b) A dynamic evaluator ofDFD models that generates simulation models

from DFD model scripts and runs a simulation to get statistics of system

performance.

(c) A simulation supporting expert system that aids in simulation model

development and explains simulation results.

This research is an exploration of ways to integrate hypertext and simulation with

a CASE environment. These are two enabling techniques that may improve CASE

performance and software productivity in the future. HAT focuses exclusively on the

systems analysis stage and is an aid to effective communication with structured systems

development methods. HAT itself cannot work as a stand-alone CASE tool. However, it

may serve as a front-end CASE tool and a tutorial tool for educational purposes.

26

CHAPTER 2 LITERATURE REVIEW

The objective ofthis literature review is to support the underlying concepts of

Hyper Analysis Toolkit (HAT) and lay the foundation for its creation. This review

includes an explication of (1) the concepts of upper CASE and user-oriented techniques;

(2) an application of hypertext to CASE usage; (3) simulation systems and embedded

simulation in CASE; and (4) an integrated simulation environment with visual agents and

expert systems.

2.1 Upper CASE Studies

Software development is a labor-intensive process that ranges from several

months to many years. With the advance of hardware technology, especially

microcomputer technology, the cost of hardware is decreasing and CPU time is no

longer a scarce resource. Thus, sophisticated user interface technologies become

practical. In addition, new developments in software methodologies make it possible for

CASE and other software tools to support functions such as 4GL (4th Generation

Language), automatic code generation and automatic testing. As a result, software

developers are greatly relieved from the burden of programming and code optimization.

However, this does not mean the end of software crisis. The demand for software has

grown much faster than the improvement in the productivity of software engineers.

While new software development techniques relieve some programming and testing

urgency, overall time pressure for complex systems project completion is increasing.

More efforts are required to not only increase the efficiency of programming, but also to

improve the effectiveness of software development, especially in the early stages of the

SDLC.

27

Martin [Martin 88] identifies the principal source of software bugs as being in

the stages of analysis and design, not in the coding process itself As shown in Figure

2.1, 60% of software bugs come from systems analysis and 85% from analysis and

design combined. The study also showed that 80% of the time and effort required to

locate and debug software problems were due to logic errors. It is obvious that software

development time and cost will be significantly reduced if errors in analysis and design

are detected and corrected soon after they occur.

Design
25%

AnalysIS
60%

Figure 2.1. Sources a/software hugs as presented in [Towner 89}

Since the quality of systems analysis and design is of great importance, much

CASE research has paid special attention to upstream activities, such as analysis, logical

design, and some other user related aspects [Chen 89, 92a]. Chen further states that

because of the increasing demand for business application and widespread use of

microcomputers, the traditional SDLC model has been expanded to include business and

information system planning activities. More users and field experts are involved in the

planning and preliminary enalysis stages. In addition to structured analysis and design

tools, it requires upper CASE to provide IS planning tools representing high level

business objectives and organization structures, as well as their relationships with

business functions. These planning tools should allow users to navigate through

descriptions (in graphs or forms) of a system in various related aspects via hypertext­

styled links. Consistency within and across modeling aspects should be checked and

ensured by upper CASE.

Table 2.1. Summary ofuser involvement from fIves 84J

Features Descriptions

Type of 1. Consultative: Designdecisionsare madeby systemgroup. But the
participation objective and the formof the system is influencedby the needsof the user

department. (indirect involvement)

2. Representative: All levelsand functions of the affected user groupare
represented in the system design team. (direct involvement)

3. Consensus: An attempt is made to involve all workers in the user
department,at least through communications and consultation, through
the system design process. (highlydirect involvement)

Degree of I. No involvement: Usersare unwilling or not invited to participate.
participation

2. Symbolic involvement: User input is respected but ignored.
(the amount of
user influences 3. Involvement by advice: Useradviceis solicited through interview or
over the final questionnaires.
product)

4. Involvement by weak control: Users have 'sign off' responsibility at
each stage of system development process.

5. Involvement by doing: A user as design team memberor as liaison joins
the information development group.

6. Involvement by strong control: Users directly pay for the new
development out of their own budgets.

Outcome of user l. System quality: Moreuser involvement results in improved
involvement understandingof the system, improved assessment of the system needs.

and improved evaluation of system features.

2. System acceptance: More user involvement increases user perceived
ownership of the system. decreases resistance of change, and increases
commitment to the new system.

28

29

Ives and Olson define the term 'user involvement' as 'the participation in the

system development process by representatives ofthe target user group' [Ives 84]. They

indicate that the concept of user involvement can be traced to the theories and research

in Organization Behavior, including group problem solving, interpersonal communication

and individual motivation. Table 2.1 gives a summary of user involvement research.

Gould and Lewis [Gould 85] have also observed the complexity ofIS

development and the importance of user involvement. They assert that nobody can get it

right the first time and IS development is full of surprises. Furthermore, developing a

user-oriented system requires living in a 'sea of changes'. Ignoring the changes does not

eliminate the need for change. They recommend three principles of design: (1) Early

focus on users and tasks - understand user needs at the very beginning, (2) Encourage

the intended users to use prototypes and a simulation of the system, (3) Empirical

measurement - observe, record, and analysis of user response, and (4) Iterative design­

go through the cycle of design, user test, measure, and redesign.

In practice, the needs for more interactive tools and more user involvement have

been widely recognized. Users are becoming involved at discrete points in the SDLC in

various forms, namely review, sign-off meetings, and weekly steering committee

meetings. These common techniques, however, are still insufficient to create enough user

involvement [Gould 85]. There are several reasons that more powerful, structural and

informative communication channels need to be created- (1) system analysts often do

not have the experience nor the expertise to fully understand the business, the people and

the politics in an application field, (2) as systems sophistication progresses, there has

been an increasing focus on the introduction ofcreative and innovative ideas into

information systems (often users, not designers, are innovators who bring novel solutions

to their own problems), (3) user requirements may change over time during the lengthy

30

software life cycle. There should be enough leverage for system developers to be well

informed of changes and reflect the changes in their design in a timely fashion.

Joint Application Design (lAD) presents some solutions to the problems. lAD

was originated at IBM in the late 70's. By the mid 80's, JAD gained recognition in the IS

community as an effective method to manage analysis and design stages in the systems

life cycle [August 91]. More recently, Martin [Martin 90a] created a variation of JAD

known as Rapid Application Development (RAD). IBM has built a very large program

to support JAD, both for its customers and for its massive internal development needs.

The principles ofJAD are to introduce structures and formats for 'how to run a design

meeting'. Once the principles were supported by software and built into the SDLC, lAD

became a methodology that centered on other activities from IS planning to system

maintenance. Although there has not been a rigid set of rules nor a single structure, lAD

provides 'soft' guidelines to solve some user involvement problems. Carmel, George and

Nunamaker [Carmel 92] summarize some lAD solutions as shown in Table 2.2. At the

systems analysis stage, the JAD solution is to encourage teamwork among the users to

define system requirements and some design details.

Table 2.2. JAD solutions to user involvement problems as presented in {Carmel 92/

User involvement problems JAD solutions

System analysis Have the users define the requirements and some design
details. synergy of group work.

System innovation Encourage creativity, brainstorming. pool experts together

Fluctuation of requirements Gather all decision makers in one place, group dynamics

There have been several recent studies in the incorporation of lAD with CASE,

group support systems (GSS), and electronic meeting systems (EMS) to achieve better

user involvement [Carmel 92, Liou 93]. The research takes advantage of state-of-the-art

31

computer network and group software techniques to complement the lack of user

attention found in some CASE tools and make lAD methods more accessible to users.

The Electronic lAD (E-lAD) proposed by Carmel provides GSS 'tool boxes' to support

traditional lAD sessions. Each 'tool box' is carefully orchestrated by a facilitator who

plays an active role in meeting planning and in supervising the meeting process. Users

can join lAD sessions from distributed locations and use tools in a given 'tool box'.

2.2 Hypertext and CASE

2.2.1 Hypertext and hypermedia

The term 'hypertext' was first coined by Ted Nelson in 1965. Nelson attributes

the underlying concept to Vannevar Bush and his Memex system in 1945. An easy

explanation of hypertext might be 'a non-linear network oflinked information nodes'.

Hypertext is non-sequential readingand writingthat allow authors to link information
to createpaths of related materials. annotations and existing text.

_.JeffConklin [Conklin 87)

Hypermedia is an extension of hypertext where the information nodes may

contain not only text and graphics but also sound, video and animation. There is not a

clear-cut distinction between hypertext and hypermedia. Hypertext is a more general

term. Discussions of hypertext are also suitable for hypermedia.

Conklin [Conklin 87] discusses three different views of Hypertext: View of

Linked-ness, View ofNodeness and View ofNavigation. These different views represent

features in a hypertext system.

• View ofLinked-ness: A Hypertext system is an information network connected

by hyperlinks. These hyperlinks encourage writers to make references and

readers to make their own decisions. With hyperlinks, a hypertext system has the

32

feature of nonlinear information retrieval that users can start from anywhere in

the information network and choose whatever ways they want to search for

information. Because of computer support, hyperlinks can be determined at run

time and it is very fast to go along hyperlinks to visit information nodes in the

network. There can be different kinds of hyperlinks in a hypertext system which

serve different purposes. They can be: Referential Links, Organizational Links,

Conditional Links, and Activation Links.

• View ofNodeness: Information nodes are the information carriers of a hypertext

system. An information node has natural correspondence with an object in the

real world. For example, we can view 'computer' as an information node and

'peripheral' as another information node.

• View ofNavigation: A set of navigation methods that guide users going through

the information network in a hypertext system. Users have the liberty to decide

where to go and how to go. The navigation method that a user applies may have

a direct impact on the result of information retrieval. Table 2.3 is a list of

navigation strategies and their usage.

Nelson [Nelson 87] points out that human thinking is not sequential but is based

on associations. It is often not reasonable to make every reader of hypertext read all the

materials in the information network. A hypertext system should allow its reader to

choose according to his/her interest.

33

Table 2.3. User preferences ofnavigation methods as presented in [Mc/ileece 89J

Navigation methods Text Graphics

Scanning ** **

Browsing *** *

Searching ** *

Exploring * **

Wandering * ***

Preferences; *; small. **:some. ***: high

Scanning covers a large area but without depth.
Browsing follows a path until a goal is reached.
Searching has an explicit goal and strives to find it.
Exploring finds out the content of a given information web without a pre-defined goal.
Wandering goes through the information web purposelessly and unstructurally.

As a non-linear information storage and retrieval method, hypertext has great

potential to be used in many areas from authoring and document management to tutorial

and entertainment. New developments in hardware, such as CD-ROM, high resolution

color monitors, fast microcomputers, allow for the creation of hypertext and hypermedia

applications. Some common features of hypertext and hypermedia applications can be

listed as following [Conklin 87]:

• Easy to trace reference: Hyperlinks can be constructed among information

nodes. Non-linear tracing along the hyperlinks can easily go from one node to

another.

• Easy to create new references: Most hypertext authoring systems allow users to

add and delete hyperlinks.

• Information structuring: Information nodes are connected by hyperlinks in

hyper-dimension space. They can be structured in many ways: tree, graph, hyper-

cube, hyper-tree and so on. These structures break the limit oflinear printed text

and 2-D graphics so that they can store and retrieve information more effectively.

34

• Global views: Browsers, indexes and maps are common navigation tools

provided by hypertext systems. Users can have global views of the whole

document as well as their own positions in the hypertext web.

• Customized documents: Users have the maximum liberty to go through the

information web with navigation methods provided by the system to any

reachable node. They may create their own search patterns and information sub­

net in the web.

• Modularity ojinformation: Each information node can be viewed as an

autonomous unit, like an object. It will not be affected by changes in other nodes.

• Consistency ojinformation: A well-organized information network should have

no redundant nodes. All references go through hyperlinks.

• Information collaboration: Hypertext can be a shared information resource on

which multiple users can work synchronously or asynchronously.

• Two problems - disorientation and cognitive overhead: Because hypertext and

hypermedia systems contain so many nodes and their structures have so many

variations, a user may 'get lost' in the jungles of information. To solve this

problem, browsers, indexes and maps are often used to guide users. These tools

may also help users to ease some of the cognitive problems so that users don't

have to always remember the paths they have gone through.

How effective is hypertext as an information retrieval tool? Some other studies

have proven that users read electronic documents more slowly than they read the same

documents on paper [Wright 83]. Mynatt and his colleagues [Mynatt 92] compare the

recall and readability of hypertext and printed book. A hypertext encyclopedia and an

35

identical printed copy of the encyclopedia are used for the experiments. The result shows

that hypertext was not superior over printed document for linear information retrieval.

However, when non-linearretrieval and more complexquestions are involved, the

performance of hypertext users is better than that of printed documents users.

2.2.2 Apply hypertext to IS development

Software development can be viewed as a special authoring process. The

products from this process are computer programs and software documents. The

management of these documents is one source of software development problems. It is

quite natural to employpowerful document management tools like hypertext to improve

software document management. Chen [Chen 89] lists hypertext as one of the enabling

techniques for the next generationof CASE tools.

Much of the difficulty in developing and maintaining a large software system is

inherent in the complexity of the tasks themselves. Brook [Brook 87] points out that the

complexity is the essential property of software and part of the problem is the inability to

visualize the system. Although Brook asserts that software structures cannot be

visualized because they contain higher dimensions of space, Carando argues that a lot of

the work in software design and analysis goes into conceptualizing these elements in

visual forms [Carando 89]. She points out that these limited attempts at visualization, if

not completely correct, are at least of some help in finding a direction to explore.

Furthermore, hypertext alleviates some of the problemsby providing (I) a repository for

all project information, (2) hyperlinks that describe internal relationships, and (3) an

interface that improves software visualization.

36

Hypertext tries to imitate associativehuman thinkingand offers a flexible solution

for managing various kinds of media (text, graphics, audio and video). Hypertext can

empower a CASE environment in the following ways [Oinas-Kukkonen 93]:

(a) Graphical user interface. Users may visually and interactively select and/or

define hyperlinks and zoom the information 'lens' to the desired level of details.

Different browsers of the hypertext system provide orientation of global views

that guide users through the information network.

(b) Supporting data/document repository. Hypertext can provide efficient data and

document storage and retrieval to integrate the file management in a CASE

environment. An advance hypertext systemalso supports document generation

and version controls that can further improve CASE performance.

(c) Representing semi-structured information. Hypertext combines the semantics of

natural languageand a node-link structure. It separates the logical and physical

structure of a document and makes it easier to capture the reasoning process

behind a design decision.

(d) Support collaboration. A Hypertext database provides a common hyperspace

that can be shared by different parties.

The history of hypertext applications in IS development extends over 20 years

ago when the Augment system was developed [Conklin 87]. Several examples of

hypertext systems that specially target applications for software engineering are as

follows:

Augment, developed at Stanford Research Institute, was the first hypertext

systemapplied to SE. Its research objectives were to develop principles and techniques

37

for designing an 'augmentation system' that conceptualize, visualize and organize

working materials. Incarnation of these ideas in current software products provides

office automation support for SE, including document preparation and the journalizing

of electronic mail entries [Carando 89, Conklin 87].

Neptune of Tektronix has an open layered architecture. Neptune has two distinct

parts: the front end - a SmallTalk user interface, and the back end - a transaction-based

server called the Hypertext Abstract Machine (HAM). HAM is a generic hypertext

model which provides operations for creating, modifying, and accessing nodes and links.

It maintains a complete version history of each node in hyper-documents and provides

rapid access to any version of a hyper-document. It also provides multi-user access over

a computer network. The Dynamic Design function in HAM allows great flexibility for

users to construct nodes and links [Bigelow 88, Conklin 87].

Shadow, developed at Schlumberger Laboratory for Computer Science,

incorporated AI with hypertext and SE. It represents software projects as a series of

models. Users can define annotations and relations among models and model

components. Shadow provides a highly visual, directly manipulatable interface that

supports element linking and traversal of the model network. In addition, Shadow has a

knowledge acquisition scheme that automatically captures information augmenting

elements, models and the links between them (Carando 89).

ISHYS and DIF, a ten-year-old project at the University of Southern California,

supports hypertext document management in the SDLC. DIF (Document Integration

Facility) provides all the basic functions of hypertext retrieval and software version

management. In addition, it also provides consistency and completeness checking of

documents, on-line software document inspection, as well as intra- and inter-document

38

tracing. ISHYS (Intelligent Software HYpertext System) adds intelligent behaviors to

DIF. It contains knowledge of the surrounding environment and has the ability to: (1)

automatically determine attributes of hypertext nodes, and (2) coordinate and schedule

agent tasks in the software life cycle [Garg 89].

HyperCASE, an on going project of Amdahl Australian Intelligent Tools

Program, integrates a collection of tools to provide a visual integrated and customized

SE environment. It consists of loosely coupled tools for both text and diagram

presentation. HyperCASE combines a hypertext-based user interface with a knowledge­

based document repository. It also includes an extensive natural language capacity

tailored for the CASE domain [Cybulski 92].

Hypertext Intermediary Agent, is an on-going hypertext-CASE integration

project conducted by the Department ofInformation Science of University ofOulu,

Finland. In the preliminary report of this project, Oinas-Kukkonen [Oinas-Kukkonen 93]

points out that a CASE environment itself is an evolutionary information system during

the development of the target IS. The communication and data gathering function during

this evolution becomes more and more problematic among different actors and actor

groups. He describes the use of a collaborative hypertext system as an intermediary agent

that conveys information among different parties. Figure 2.2 shows the basic idea of a

hypertext intermediary agent. There are four actor groups in this scenario: CASE

developers, CASE users, IS developers, and IS users. The people participating in each

process can use (reading) and alter (authoring) hypertext according to their needs. The

collaborative hypertext system allows all participating groups to share a common

hyperspace.

Reading

Authoring

Reading

Reading

Authoring

Authoring

Reading

Authoring

39

Figure 2.2. Hypertext as an intermediary agent in IS development

In this hypertext intermediary agent paradigm, an embedded hypertext system

improves communication and document management at three different levels: (I) the

organizational level, which defines the organizational role and context of the target IS;

(2) the conceptual level, which defines an 'implementation-independent' specification of

the IS; (3) the technical level, which defines the technical implementation of the IS. As a

result, the hypertext system becomes the center of communicative software in a CASE

environment and serves as an intermediary agent between other software agents and

different human actors.

The current trends in hypertext applications in IS development can be summarized as:

(1) Encourage user-oriented authoring and offer great flexibility for users to

manipulate documents. With a hypertext system, users have the freedom to

choose what to read and how to read. They can also alter the document for their

own need.

40

(2) Emphasis on highly interactive user interface and the visual expression of

software models. Hypertext is ideally suited for designing and implementing

adaptive user interface.

(3) The use of richer media. Earlier systems, like Augment and Neptune, are basically

text-based system with different browsers. Later systems like HyperCASE,

include not only text but also diagramming tools.

(4) The use of AI techniques to automatically generate hyperlinks, identify attributes

and support the modeling process.

(5) The coverage of more than one stage of the SDLC and whole-life-cycle

document management. A hypertext system can be the information exchange

center that conveys information for different people at different levels.

(6) The inclusion of consistency checks and validation capabilities.

41

Table 2.4. Comparative listing ofhypertext and CASE as presented in [Cybulski 92J

Hypertext CASE

Document authoring Diagram editing, Text-oriented tools

Browsing and navigation Traversing through program modules
and refinement levels

Document aggregation Module libraries, Data structure groups

Virtual structures Code generation

Dynamic computation Run time results

Revision management Software configuration management

Group work Project team development

Extendibility / tailor-ability Multiple methodologies

Concept annotation Design decision recording

Consistency checking Validation / verification

Completeness assessment Project plan tracking

These examples above show that hypertext applications in the SE process are

feasible and beneficial to software development. Table 2.4 compares functions of

hypertext and CASE. It is clear that hypertext can be applied to CASE in diverse ways to

solve or alleviate systems development problems.

2.3 Simulation and IS Dynamics

2.3.1 Dynamics of information systems

An information system is a cohesive part of an organization. An information

system is composed of people, hardware, software, data, and procedures. It collects,

transmits, processes, and stores data. It also retrieves and distributes information to

various users in an organization [Ahituv 90].

42

Because an information system is not isolated, it is subject to change with its

environment. Our society is dynamic by nature and organizations in the society must

accommodate these dynamics. Unfortunately, current information systems development

is stronglylinkedto the uses of static models, which often fail to express the system

dynamics. Many IS problemscan be traced to the nature ofIS design and its impact on

our way of thinking and modeling [Sol 91]. In addition, an information systemitself is

also dynamic by nature. A software system has different functions to perform different

missions from different initial points andvariable input data [Cobb 90]. New perspectives

and dynamic modeling methods are needed to cope with the dynamic aspects of

information systems.

IS dynamic modeling depends on two major factors [Warren 91]:

(1) The dynamic capability ofsystem components: the rate at whichjobs can be

processed. System components include combinations ofcomputer systems

(databases, operating systems, application software, and computer hardware),

non-computer factors in the operation of the IS, and people.

(2) The design ofthe IS: (a) how does work flow through the system components?

and (b) what are the performance requirements and objectives of the IS, such as

response time, available resources and budget limit?

The goal ofIS dynamic modeling is to determine the extent to which a set of

system components in an IS design satisfies the performance requirements of that IS

design.

2.3.2 Apply simulation to discover IS dynamics

Queuingnetworks are frequently used to model complex systems, such as

production systems, communication systems, computer systems and flexible

43

manufacturing systems. To describe the behaviorofa queuingsystem, five basic

characteristics of the process need to be specified: (1) the arrival pattern, (2) the number

of servers, (3) the service pattern, (4) the server discipline, and (5) the system capacity.

A queuing network model can represent time and stochastic factors of a system, which

are fundamental to dynamic modeling.

Queuing network problems can be solved by mathematical formulas or discrete­

event simulation. For manycomplex systems, there is no feasible analytical solution

derived from mathematical formulas. Simulation ofa mathematical model becomes the

only way to solve the problems [Law 91]. Unlike the testing of physical models, analysis

of mathematical models is non-destructive and repetitive. This distinction, when applied

to IS performance evaluation, can be translated to: (a) physical model experiment:

testing with a real computer system, and (b) mathematical model experiment: simulating

a queuing model. Simulation provides a way to test relevant aspects of a real system or

hypothetical system without actually building the system. This feature is ideal to evaluate

IS designs at an early stage whenthe actual system has not been developed.

Developing a simulation model is not trivial. It requires the same amount of

effort, attention and discipline as developing any other computer application. An invalid

or inaccurate simulation model may lead to wrong conclusions. Figure 2.3 describes ten

basic steps to carry out a simulation study [Law 91, Widman 89]:

(1) Formulate problem andplan the study: Every study must begin with a clear

statement of the study'soverall objective and specific issues to be addressed;

without such a statement there is little hope for success.

44

(2) Collect data and define a model: Information and data should be collected on the

systemof interest (ifit exists) and used to specify operating procedures and

probability distributions for randomvariables used in the model.

(3) Logic model validation: Whenthe model has been specified, it must be checked

with the decision maker and the intended model user to make sure that the model

represents the real system accurately and completely within the application

domain.

(4) Construct a computer program and verify: Selecta simulation language or

general purpose programming languageto construct a computer program based

on the model and verify that the program correctly represents the model's

function.

(5) Make pilot runs to verify the computer program: Pilot runs of the verified model

are made for validation purpose.

(6) Extensive model validation: Pilot runs can be used to test the sensitivity output

to small changes in an input parameter and improve the model if necessary.

(7) Design experiments: It must be decided which system design to simulate if there

are some alternatives. Decisions have to be madeon such issues as initial

conditions for simulation runs, the length of warm-up period, the lengthof

simulation runs and the number of independent simulation runs. Different

scenarioshave to be prepared on how the input parameters are going to change.

(8) Make production runs: Production runs are madeto provide performance data

on the system of interest.

45

(9) Analyze output data: Statistical techniques are used to analyze the output data

from production runs. Typical goals are to determine a confidence interval for a

measure of performance or to decide which simulated system is best to some

specific measure of performance.

(10) Document, present, and implement result: It is important to document the

assumptions of a simulation model. The result and recommendations should be

presented to users.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

No

No

46

(9) Analyze output data

(10) Document, present
and implement

Figure 2.3. Steps in a simulation study as presented in {Law 91J

47

The relevance of a queuing network model and IS dynamic evaluation can be

justified as: (a) an IS will entail a number of processeswhere often the input of one

process is the output of one or more other processes, (b) the rate at which a job is

completed in one process and sent to the next process can be estimated, (c) the amount

of time that jobs spendwaiting at some processes is an interesting parameterfor

evaluation. The dynamic aspects of an information systemcan be thought in terms of a

network ofqueuing systemswhere the outputs of some of the queuing systems connect

to the inputs of some of the others [Warren 91].

System simulation has been broadly applied in business. In fact, it has been the

second most frequently used OperationsResearch (OR) technique (after statistical

analysis) [Law 91]. The following sections review several successful simulation projects

for information systems.

Eich [Eich 89] presents a methodology for the simulation of database

architecture for performance evaluation. It is implemented in SLAM II and can be

modified readily to accommodate different architectures. It has three majorcomponents:

(a) a basic simulation model which defines the basic environment but does not detail the

hardware / softwarecomponents, (b) a system simulation model which defines the details

of hardware / software configurations, (c) an execution model which describes the exact

parameters to be examined and the simulation experiment design. Users can specify the

system simulation model at any desired level of detail.

QASE of Advance System Technologies allows users to graphically depict

software running on a hardware environment so that developers can study how certain

applications affect a proposed system's performance [Gore 90]. QASE allows modeling

48

ofwide area networks, where the type of hardware and operating system of each

computer can be specified. Performance evaluation can be derived rapidly by simulation.

Eddins [Eddins 90] proposes a method to enhance the traditional DFD approach

with some dynamic features and incorporate simulation with the traditional structured

analysis and design process. An expanded DFD model is converted into an equivalent

simulation model in SIMSCRIPT. Evaluation of the system dynamics can be achieved

from the simulation results. The research suggests that CASE should include the

capacities of simulation modeling and simulation analysis.

Wild and Griggs [Wild 91a] conducted research to compare the difference

between static and dynamic analysis ofDFD models in a noisy and turbulent

environment. A SIMAN simulation model is derived from a DFD. The result shows that

in a turbulent environment, static analysis may yield unrealistic results while simulation

analysis can still capture the dynamic and probabilistic features of the system.

Warren has developed a prototype of a CASE/Simulation system [Warren 92].

The system imports a DFD model from a CASE tool and converts the DFD model

automatically into a simulation model for dynamic evaluation. The prototype runs under

X Windows on a Sun Workstation. It automatically interprets a DFD model as a queuing

network and conducts simulation under specified parameters. A knowledge-based help

support system is built into the prototype to provide a model-based expert advice in

simulation modeling and simulation output interpretation. A series of behavioral studies

of system developers based on this prototype have shown that dynamic evaluation of

DFD models lead to more accurate assessments ofIS design dynamics.

49

2.3.3 AI and simulation

The incorporation of AI into simulation is twofold - first, the desire to make

simulation methods easier to use and more widely available, and second, the need to

model increasingly complex systems, particularly systems that include some elements of

human decision making [O'Keefe 89]. Widman [Widman 89] asserts that building and

using a simulation model is a skilled process requiring expertise in a number of

theoretical fields including statistics, system analysis, and numerical analysis. In addition,

experience is needed to use simulation as an effective tool. For these reasons, an expert

system can be applied to the simulation process. Furthermore, O'Keefe shows that AI

workers have an increasing need to include simulation in AI systems so that the effects of

a decision can be extrapolated over time and an expert system can use a model of a

system to aid in reasoning. He concludes that the interdisciplinary application of AI and

simulation is natural and practical.

(a)

Embedded

(b) (e)

Parallel

(d)

(e)

Cooperative

(I)

(g)

Intelligent front-end

Figure 2../. A taxonomy ojcombining ES and simulation as presented in IO'KeeJe 86]

50

In another research, O'Keefe [O'Keefe 86] summarizes seven patterns and four

types of AI and simulation integration (see Figure 2.4):

(1) Embedding: An expert system is embedded within a simulation model or vice

versa (pattern (a) and pattern (bj). The expert system is conceptually part of the

simulation environment.

(2) Parallel: Simulations and expert systems are designed, developed and

implemented as separate software in parallel. A simulation model can interrogate

an expert system (pattern (c) or the expert system can execute and use the result

from the simulation (pattern (dj). Pattern (c) is useful if a simulation is developed

for a system where an expert system has already existed for part of the decision

making in the system. Pattern (d) can be used to test an expert system in a

simulation instead of on a real system, so that the development time and cost of

the expert system can be reduced.

(3) Cooperative: AI and simulation share some data to fulfiIl certain tasks (pattern

(e» or they may be surrounded by a larger software system (pattern (f). A good

example of such a system is that an expert system can be a tool that helps the

simulation modeling.

(4) Intelligent front-end: An expert system sits between a simulation package and

the user, and generates the necessary instruction or code to use the simulation

package.

51

Simulation Tasks

Parallel

Embedded

Cooperative

Intelligent
Front-end

Experimental Output
Bi-directional Modeling Coding Design Analysis

Dynamic ~:i:~ectional~---~_-7<--::~------~-::'_------/~~~-----"
... " /"" I

",,'" /.... ... I

I \ .>
I /~

I I : -' I
-------T---------r----------j--------- .> :

I I 1 1,/
I ! I .r"
~ : : /,- I

--------r---------r----------t--------- .> l .-
I , , J//
I I I I
I I J '" t________ ~ L L / ,

" : : ', , ,
I , ,

Link Architecture

Figure 2.5. An extended ES and simulation model as presented in [Kwanjai 92]

Kwanjai and Wild [Kwanjai 92] extends O'Keefe's taxonomy to include two other

dimensions: dynamic linksand simulation tasks (see Figure 2.5). 'Dynamic links' refers

to the actual interaction between an expert system and a simulation program. It can be

unidirectional, in which data is transferred at some specified intervals and with only one

direction, or bi-directional, in which data is transferred through a dynamic link back and

forth at run time. Simulation tasks are associated with steps of simulation studies: from

modelingand coding to experimental design and output analysis.

Many simulation expert systems have been developed to support different

simulation tasks. The following are several expert systems that set good examples of AI

simulation integration.

Hill and Roberts [Hill 87] illustrate an expert system prototype that helps

students to develop simulation models. A knowledge base is constructed, which contains

the expertise of common problemsthat students may encounter during simulation

modelingwith the INSIGHT simulation language. The prototype system is developed in

52

PROLOG. It helps students solve their simulation modeling problems through question­

answer sessions.

MeIlichamp and Park [Mellichamp 89, Park 90] have developed the Statistical

Expert System for Simulation Analysis (SESSA) to provide support for the numerous

statistical issues in simulation. It addresses as many as eighteen simulation analysis

issues. Within each issue, the system helps users to identify particular methods for

different situations. Once a method is chosen, a statistical package embedded in the

system can perform the actual calculations on the input data. The system is implemented

on a PC and has 172 rules.

Frankel and Balci [Frankel 89] describe the help system for the Simulation Model

Development Environment (SMDE). The help system has two major components: (a)

the Assistant Manager that offers an introduction to the SMDE, tutorials on how to use

the tool, a glossary ofterms, and a help-update facility, and (b) a tool specific help

function provides the tool-implementor a set of routines to include in the application

code.

Kreutzer [Kreutzer 90] discusses the Modeller's Workbench and the Modeller's

Assistant. The Modeller's Workbench allows rapid prototyping of graphically animated

queuing scenarios. The Modeller's Assistant is a production rules-based intelligent help

system for the Modeller's Workbench. The system is implemented in SmallTalk on a Sun

Workstation.

Wu [Wu 90] discusses the concept of an expert simulation system (ESS)

combining simulation knowledge and domain knowledge into an environment which will

automatically generate working simulation models. ESS is an expert system with an

embedded simulation package. It includes: (I) a friendly user interface to input models

53

and data, (2) an automatic model generation, (3) a simulation execution, (4) an

automatic simulation analysis, (5) a simulation model adaptation, (6) a help and

interpretation facility, and (7) machine learning.

Wild and Pignatiello [Wild 91b] introduce a reverse simulation concept in which

expert systems and simulation can complement each other to enhance simulation

experimentation. Reverse simulation is a heuristic procedure which starts with a desired

performance target value or a range of values and dynamically adjusts the system design

to conform to these user-defined performance targets. The expert system and simulation

package negotiate a dynamic bi-directionallinkage between them to check with the user's

goals and adjust simulation parameters. As output, reverse simulation provides

information useful in determining initial feasible values for system design variables that

serve as a starting point for subsequent performance evaluation and optimization.

2.3.4 Simulation environment

Simulation environment is a term used to describe a variety of architectures and

products which support the simulation tasks by aiding different stages of the simulation

life cycle. To some extent, such an environment can be viewed as a special CASE

(Computer Aided Software Engineering or Computer Aided Simulation Environment)

tool for simulation studies. Some simulation development environments cover every step

in the simulation life cycle, while others may cover only part of the life cycle or are

specific to certain application domains.

Henriksen [Henriksen 83] describes and integrates a simulation environment that

covers the whole simulation life cycle. It includes a model design language, a model

editor, an input preparation subsystem, a statistics collection definition facility, an

experimental design facility, a program editor and compiler, and run-time support.

54

Balci and Nance [Balci 87, Balci 92] discuss a prototype of a discrete-event

Simulation Model Development Environment (SMDE), that has been under development

since 1983. It includes: (a) a cost-effective, integrated and automated support of

simulation model development throughout its entire life cycle, (b) an improvement in

model quality by effectively assisting in the quality assurance of the model, (c) increased

project team efficiency and productivity, and (d) decreased model development time. The

architecture of SMDE is composed of four layers: (1) hardware and operating system,

(2) kernel SMDE, (3) minimal SMDE, and (4) SMDEs (see Figure 2.6).

Figure 2.6. SA/DE architecture as presented in {Ba/ci 92]

Pflug and Prohaska [Pflug 90] introduce their Entity-Connection approach to

modeling and simulation. They point out that the nature of simulation studies is such that

the investigation of different model parameters, components, and structures is of primary

interest over the specific results of a particular simulation run. Based on this observation,

they conclude that a computer-aided tool for simulation should support easy model

modification. The Entity-Connection approach is to support modularity and hierarchy in

55

modeling and programming. It also includes a graphical user interface of simulation

models.

Graber, Ulrich and Bolay present their PetriNet-based object-oriented general

purpose simulation system [Graber 90]. The system had an interactive graphical user

interface to enable users to develop a model in a short time. The system has the same

user interface for low level programming and for high level modeling. The user interface

can be used by developers and by end users. Furthermore, the interface provides end

users a fair chance to access lower level models, because all the models incorporate the

same modeling philosophy.

Domain-specific simulation modeling environments are developed for specific

applications. Because of the specific nature of an application, these environments can

offer some special functions. An example of such a system is the NEtwork Simulation

Testbed (NEST) [Dupuy 90]. It is a UNIX-based graphical environment for simulation

and rapid prototyping of distributed networks and network protocols. NEST uses a

different approach to simulation. It extends a network operating environment to support

simulation modeling and efficient execution. This 'environment-based' approach offers a

few important features: (I) simulation is integrated with the tools supported by the

environment, (2) users need not develop extensive new skills or knowledge to use

simulation, (3) standard features of the environment can be used to enhance the range of

applicability. NEST uses client / server architecture that can serve multiple users

interactively over communication networks.

2.3.5 Visual interactive simulation

Visual Interactive Simulation (VIS) is an important part of Visual Interactive

Modeling (VIM), which includes both deterministic modeling, such as spreadsheet, and

56

dynamic modeling, such as simulation. VIM is a natural extension of Management

Science and Operations Research. It combines an interactive interface, a visual display of

computer-generated model status, and mathematical or symbolic models of a system to

aid in decision making [Bell 91]. As a part of VIM approach, VIS produces a dynamic

display of a system model and allows users to interact with the running simulation. It

breaks the tradition of batch simulation methods and provides users with a visual and

interactive simulation environment. VIS can be embedded into a Decision Support

Systems (DSS) and Executive Information Systems (EIS) to support the decision making

processes of non-technical managers and senior executives.

Bell and O'Keefe [Bell 87] suggest that a VIS environment should have three

basic facilities: (a) Visual Output,(b) User Interaction, and (c) Visual Input. Among

these three facilities, 'visual output' is absolutely necessary to visually describe a system,

and 'visual output' plus 'user interaction' are necessary and sufficient. The majority of

VISs have not provided sufficient support for 'visual input' so far [O'Keefe 87].

The major benefits of using VIS over traditional batch simulation methods are the

following [O'Keefe 87]:

(l) Selling: VIS, particularly visual output or animation, is a tremendous aid to

selling the simulation method, a simulation model or a specific solution. Users

can quickly understand the model behavior and validate the simulation by

following the dynamic display.

(2) Gaming: Using model determined interaction, user interaction can be

incorporated into the model. Decisions that are too difficult to encapsulate in a

model can be made by users. Gaming is particularly appropriate for complex

57

systems that are never allowed to reach steady-states due to a necessity for

frequent management interventions.

(3) Learning: In addition to being used as an analysis tool, a VIS can be used by

users to 'play' different scenarios of a system. The benefit to users is an increase

in understanding of the system behavior and some information that can help to

solve ill-structured problems.

Currently, there are no guidelines for VIS. New methods for statistical analysis

are needed that include the user intervention factors. There are questions as to the

efficacy of a VIS in simulation. Arguments have been made that in every simulation

study, there comes a time when it is necessary to shut off the visual display and run

properly designed statistics. There is a mistrust of the use ofa VIS for experimental

analysis and suggestions that using VIS for experimentation should be limited to

professional users [Bell 91]. A study conducted by O'Keefe and Bell shows that although

sometimes a more detailed analysis is required, a VIS is a good vehicle for simulation.

They indicate that VIS animation is valuable, that confidence in decisions is warranted,

and that the use of a VIS under a particular strategy leads to more efficient and better

use of the model [O'Keefe 92].

The development of systems that provide VIM and VIS capability represent a

major trend in the simulation area [Vujosevic 90]. Some general-purpose simulation

packages, such as GPSS, SIMSCRTPT and SIMAN, have included a number of

graphical features. They allow movement of objects in two dimensions or even three

dimensions, animation of transaction movement in block diagrams, and dynamic

statistical displays. Special-purpose VIS packages are primarily used in transportation

scheduling and project management [Bell 91].

58

Hurrion, who proposed the concept of VIS in 1976, proposes a structure for an

intelligent VIS that combines VIS and AI [Hurrion 91]. He asserts that without an expert

system, a VIS can only react passively to user directions for pre-programmed conditions.

An embedded expert system may add expertise to a VIS environment so that it will

become participative along with users in search of an acceptable solution to the original

problem.

2.4 Summary of Literature Review

This literature review provides support for the choice oftechniques and

architecture of HAT. While improving software quality is the focus of most computer

scientists and MIS developers, upper CASE has drawn increasing attention because of

the high probability of error and relatively low cost for error-correction in the early

stages of the SDLC.

As one of the enabling techniques to improve CASE tools, hypertext has been

used on several occasions in information systems to increase the user friendliness and

improve document management. The non-linear structure and flexible store and retrieval

capacity makes hypertext suitable for handling the complexity ofIS development and

provides both the computer professionals and users an easy access to design documents.

A more friendly and easy-to-use CASE tool encourages more user-involvement and

wide-spread use of software engineering methodologies such as JAD, DFD, ERD and so

forth. As a result, more friendly CASE tools will eventually improve the quality of

software products.

By embedding a simulation package within a CASE tool, the tool acquires

dynamic model evaluation capacity which alleviates the bias of static evaluation. An

expert system can be incorporated with a simulation package to aid the simulation

59

modeling and the simulation result explanation. There are several different architectures

for expert system and simulation combinations. A simulation environment itself can be

seen as a CASE tool that serves a special domain.

60

CHAPTER 3 METHODOLOGIES AND TOOLS

This researchis interdisciplinary by nature and consists of four topics: software

engineering, hypertext user interface, queuing network simulation, and rule-based expert

system. Among these topics, software engineering is the fundamental one. In a broader

sense, this research encompasses computer science, user behavior, Operations Research

(OR) and Artificial Intelligence (AI) as indicated in Figure 3.1. HAT is implemented

under Microsoft Windows with C++. MS Windows providesbasic features of multi­

window interface. The Dynamic Data Exchange (DDE) facilities ofMS Windows serve

as dynamic linksamong different system components. The C++ programming language

provides a vehicle for object-oriented design and implementation.

I

I
I

__ ~ .JComputer Science

---------~--~----I

User Behavior Study .:

I

I
I

<,

~-

~ ~"
Hypertext ,

I user-Intertac:--t'

I
I Design

, / /\----------' \.> /~'"
j (. Queuing "', ~=f~/Rul.-O".,\

Network ." '--:-::: / ~ Expert \
Simulation / '- . / \\system !
\ (!\ :

" \ .' I
<. \ / '~... ! /'

I "-'~ Software"--;;------
I '. Engineering

l M~~S ,
. ~ ~__~ . . J

o
::D

Figure 3.1. Areas involved in this research

61

3.1 Issues in User Interface Design

3.1.1 User interface design concepts

The user interface of a computer system should serve as both a connector and a

separator of the system. The user interface design principles builds on the concepts of

computer science, ergonomics, linguistics, psychology, and social science. Today's

system designers are expected to apply these interdisciplinary principles to improve user

satisfaction and productivity [Gerlach 91]. A typical interface design involves many

decisions concerning the functions and objects to include, how they are labeled and

displayed; whether the interface should use a command language, menus, or icons; and

how on-line help can be provided.

From a design perspective, discretionary capacities and levels of expertise are the

main distinguishing characteristics of users [Galitz 93]. Galitz summarizes these

differences of users as:

(1) Non-discretionary use: Users in this group must learn to adapt to a computer,

because this is the only way to get their job done. These users normally have

technical backgrounds and are willing to invest time and effort in learning to use

computers. They often have high motivation to use computer systems and can

overcome the low usability of the systems.

(2) Discretionary use: Users of this group are more self-directed - not being told

how to work but being evaluated on the result of their efforts. These users are

office executives, managers who have been working without computers for years.

They are neither willing to invest extra effort to learn computer systems nor are

they interested in technical details.

62

(3) Novice use: Novice users are new to computer systems. They heavily depend on

systemfeatures and facilities, such as menus, instructions, and help systems.

These users prefer to have very informative feedback, simple tasks and tutorials

to improve their system expertise.

(4) Expert use: Expert users rely on their experienceand recall. They expect rapid

system performance and less feedback. System efficiency is their primaryconcern

rather than surface features of a system.

Table 3.1 illustrates computer users based on this taxonomy. The primary target

of HAT is novice users ofnon-discretionary lise, namelythe users who have not much

experiencewith information system analysis and are willing to learn structured systems

analysis techniques. An extension to the architectureand concepts of HAT may result in

computer systems that include some discretionary users who are interested in using

structured techniques to model their day to day work.

Table 3.1. User classification

Novice Expert

Non-discretionary

Discretionary

computer operators. computer specialists.
field specialists. systemdevelopers
secretaries.

office executives. system managers.
managers of non project managers
computerdepartment

Many studies have been conducted on user behavior in accomplishing specific

tasks. The result of these studies are used to improvethe cognitive processes employed

in user interface design. Card [Card 91] proposes a three-stage user recognition cycle as

the basic behaviorfor understanding the psychology of a user interface. A user will: (1)

perceivethe computer presentation and encode it, (2) search long and short-term

63

memoryto determine a response, and (3) carry out the response through an action. A

more elaborated seven-stageuser interface model was proposed by Norman in 1986 (see

Figure 3.2) [Norman 86]. Norman's model expands the memory stage to include mental

activities, such as interpretation and evaluation of system responses, formulation of

personalgoals and intentions, as well as specification of action sequences.

>-_- Expectation

Figure 3.2. Norman's user interface cognitive model as presented in [Gerlach 91J

Gerlach [Gerlach 91] states that the goal of user interface design is to satisfy

users and their perspective needs: signalsmust be perceivable, and responses should be

within the rangeof a user's skill. He further states that the more important goal of user

interface design is to empowerthe memoryand cognitive capacity of users so that they

can learn and reason the systems behavior. A human being is a complex organism with a

variety of attributes that should be considered in user interface design. The attributes of

particular importance are: perception, memory, visual acuity, skill and individual

differences [Galitz 93].

64

3.1.2 User interface design methodologies

The design ofa user interface still remains more an art than a science. An

interfacecannot be viewed as an 'add on' part that is developed in isolation. The

methodologies for user interface design are part of the methodologies for interactive

systemsdevelopment.

Based on qualitative empirical observation of computer user interface developers,

Hartson and Hix [Hartson 89] discuss the pros and cons of current software engineering

methodologies for user interface design and conclude that user interface development

naturally occurs in 'alternating waves' of two kinds of complementary activities: upward

and downward where upward activities are synthetic, empirical and related to the end

user's view; and downward activities are analytic, structuring, and related to the system

view. These results suggest a 'star' life cycle for user interface development, as shown in

Figure 3.3. This star lifecycle, with evaluation as its center, supports iterative refinement

and rapid prototyping. Because of its high interconnectivity, this model allows almost

any orderingof development activities and promotes rapid alternation amongthem.

Task Analysisl
Functional Analvsi

Evaluation

Figure 3.3. Star life cycle for user interface development as presented in {Hartson 89]

Implicitcommunication
channel

65

Fischer [Fischer 89] echoes Hartson's opinion by stating that the best paradigm

for creating a user interface software is a communication model and a rapid-prototyping

approach that supports the evolution of specification and implementation. Furthermore,

Fischer points out that it is the human factor that distinguishes the user interface from

other software. A computer system should include knowledge of the human factors in its

user interface. Figure 3.4 is a knowledge-based human computer interaction model. The

explicit communication channels in the model are graphical screen, windows, menus,

pointing device, and audio/video input and output devices. The implicit communication

channels are layers of knowledge structures that support the human-machine interaction.

Knowledge of:
- problem domain
- communication process
- communication partner
- problems of the user

andtutorial intervention

;
I
I
Ie- ~

explicitcommunication
channel

Figure 3../. Knowledge-based human-computer interaction model as presented in rFischer 89}

The issues of user interface design have great depth and subtlety. There are no

concrete rules to guarantee a good design. Galitz [Galitz 93] proposes a set of guidelines

for user interface development:

• Consistency: A system should look, act, and feel the same throughout.

Consistent designs can reduce the requirement for human learning. Standard

formats and screen layouts should be used to achieve the consistency.

66

• Design tradeo.ffs: Human requirements must always take precedence over

machine processing requirements. When there is a conflict among different

requirements, users' requirements should go first.

• Flexibility: A system must be sensitiveto the different needs of its users.

Flexibility is the ability to respond to individual differences. A flexible system

should permit users to interact with it in a manner commensurate with their own

knowledge, skill, and experience.

• Complexity: A system should minimize its complexity to perform required

functions by hiding some information until it is needed. Uniformity and

consistency of design will also simplify a system.

• Closure: A system should provide organized sequences of actions with a

beginning, middle, and an end. Feedback should be available at the end of these

sequences. Closure with its informative feedback provides users the satisfaction

of accomplishment and a sense of relief

• Information load: A system should be commensurate with the capacity of users

and satisfy the users' information needs. Graphical and formatted displays can

reduce users' information load as opposed to powerful commands and complex

dialogues.

• Control: Users should control the interaction. All actions should be the results of

user inputs and these actions can be interrupted and terminated be users.

• Feedback: A system should acknowledge all actions by immediate execution,

change in status, confirm messages, or 'in progress' messages. Proper feedback

will shape users' performance and instill confidence.

67

• Recovery: A system shouldpermit commandsor actions to be aborted or

reversed.

• Command language: Command language should be logical, consistent, and

flexible.

• Error management: A system should have error prevention, detection, and

correction capacity. Good error management can save users' time and frustration

and improve user confidence.

• Response time: A system's response time should match the speed of human

thinking processes.

• Guidance and assistance: A system should provide on-linedocumentation that

supplements hard copy documentation and help facilities.

HAT is a user-oriented system. Its cardinal goal is to help users learn and use

structured systemsanalysis. The design of the HAT user interface observes the above

guidelines.

3.1.3 User interface tools

User interface software is often large, complexand difficult to debug and modify.

As user interfaces become more friendly, they become harder to create. The increasing

complexity comes from the 'easy-to-use' features of modern systems, such as elaborate

graphics, manyways to give the samecommand, control of many input devices, and

mode-free interactions. In some applications, 40-50% ofthe code and run-time memory

are devoted to interface functions [Myers89]. It is imperative that computer aided tools

and interactive design strategies are used for user interface designs.

68

User interface tools come in two general forms: user interface toolkit (UIT) and

user interface development system (UIDS). A UIT is a library of interaction techniques,

which provide ways to use physical input and output devices. Examples of interaction

techniques are menus, scroll bars, buttons and cursors. A UIDS is an integrated set of

tools that help programmers to create and manage many aspects of a user interface.

A UIT is often a cluster of application programs that supports interaction

techniques. It does not provide enough support for the design of interfaces or the

sequence of dialogue control. A system developed with a UIT often takes more time. A

UIDS helps the designers combine and sequence different interaction techniques and

provide interactive access to the techniques. There are language-based and graphical­

based UIDS. Some UIDS support automatic creation of user interfaces.

In the MS Windows environment, Microsoft provides a set of Windows

programming utilities, called the System Development Kit (SDK). These utility programs

can be used as a UIT to develop Windows applications. In addition to the SDK, Borland

provides an interactive Resource Workshop for interface design. The Resource

Workshop is a special UIDS for menus, icons, dialogue boxes, and bitmaps of Windows.

Users can define a user interface component in the Resource Workshop graphically and

the system will convert the resource description to computer code automatically. Other

Windows Programming environments, such as Visual BASIC and Visual C++ of

Microsoft, also offer visual programming capacity.

HAT uses another UIT package - ObjectGraphics, in addition to the functions

provided by MS Windows and Borland C++ programming environment. ObjectGraphics

is developed by the Whitewater Group and Application Vision Inc. It is built on top of

Borland OWL (Object Windows Library) and Microsoft SDK. It provides a set of

69

object-oriented classes for graphical object manipulation. HAT inherits some

ObjectGraphics objects and develops its own objects for DFD and ERD graphical

interface design.

Table 3.2. Pros and cons ofuser interface design tools from [Myers 89J

Advantages Disadvantages

• Design can be rapid prototyped before • Language-based tools are difficult to
coding. use and the specifications are hard

to understand.
• Quick feedback for modification.

• Not enough functionality is offered.
• Easier to investigate different user

interface styles. • Tool are often not portable.

• More efficient use of resources, • Interface evaluations are not
because tools can be used in many available.
projects and many times.

• Very hard to build tools.
• Easier for field specialists involved in

design. • Difficult to separate user interface
from the application.

• Code will be better structured and
more modular. • Designers are unwilling to accept

new tools.
• Code will be more reusable.

• Higher reliability of user interface

Myers [Myers 89] summarizes the pros and cons of current user interface tools

(see Table 3.2). It is expected that in the 90's the user interface technologies are

converging to Speech, Image, Language and Knowledge (SILK) capacities [Marcus 91].

The development of enabling technologies in areas of fast graphical processor, 3-D

hardware and software, hypertext and hypermedia, and virtual reality, will solve some of

the user interface problems we are facing now.

70

3.1.4 Evolutionary development strategy for hypertext applications

The development ofa hypertext application requires a good understanding of the

structure of the application. Again, software engineering principles should be applied.

This often means that applications have to be well-structured, which in many cases need

a hierarchical skeleton. The links that correspond to the hierarchy (e.g. vertical links

from one DFD to another) are easy to present. However, links that correspond to other

relationships (e.g. horizontal links from a data store to its data node) are more difficult to

manage, although they are necessary to constitute the hyperlink network.

There are many text books that claim to provide for structuring and managing

methods of hypertext application development [Martin 90b, Horton 90]. However, these

methods only provide guidance at a coarse level and have rather limited support for

teamwork [Oinas-Kukkonen 93]. Oinas-Kukkonen combines the evolutionary

development method in software engineering with a hypertext system design and

proposes a model for evolutionary hypertext application development shown in Figure

3.5.

This model takes advantage of the easy-to-use tools in many hypertext

development environments (Toolbook, Plus, HyperCard, etc.) and emphasizes the use of

prototyping techniques. Prototyping is of value for creating hypertext applications and

making not only one but many evolving prototypes during the development is helpful.

The evaluation of these prototypes by developers and end users is of great benefit to the

design process. This model encourages 'quick-and-dirty' prototyping at many phases of

a development process. However, these prototypes should be thrown away, as the

author suggested, and implementation should proceed from a 'fresh start' to prevent

hidden obstacles for implementation retained in the prototypes [Oinas-Kukkonen 93].

71

Hypertext Application
Development

P
R
o
T
o
T
y
P
I

N
G

Critk:lzingand Evduallng Ides.

Figure 3.5. Evolutionary development strategy for a hypertext system

3.1.5 The DEXTER hypertext reference model

Halasz and Schwartz [Halasz 94] describe the DEXTER hypertext reference

model as an attempt to capture, both formally and informally, the important abstractions

in a wide range of hypertext systems. The goal of this model is to provide a basis for

comparing systems as well as for developing interchange and inter-operability standards.

Figure 3.6 shows an overview of the DEXTER reference model. A hypertext

system is divided into three layers: the run-time layer, the storage layer, and the within-

component layer. The run-time layer provides tools for users to access, view, and

manipulate a hypertext network. The storage layer focuses on the mechanism by which

link and non-link components ofa hypertext system are 'glued together' to form

hypertext networks. The within-component layer concerns the contents and structure

within the components of a hypertext system.

72

A crucial piece of the DEXTER Model is the interface between the storage layer

and the within component layer that addresses locations or items within the contents of

an individual component. This interface is known as Anchoring.

Run-Time Layer

Presentation of the hypertext;
User interaction; dynamics

Presentation Specifications

Storage Layer
A 'database' containing a

network of nodes and links

Anchoring

Within-component Layer
The content / structure inside
the node

Focus of the
DEXTER Model

Figure 3.6. An overview ofthe DEXTER model layers as presented in [Halasz 94]

Another important part ofDEXTER model is the interface between the run-time

layer and the storage layer, known as presentation specifications. Presentation

specifications are a mechanism to present information about how a hypertext component

network is to be presented to users.

Even though the development of the DEXTER Model is still in its very early

stages, the model is far more powerful than any existing hypertext system [Gronbaek

94]. It can provide the basis for developing a comprehensive standard for interchanging

hypertexts between different systems.

3.1.6 User interface evaluation

With the new GUI development techniques and environments, the temptation to

move applications to GUI increases. However, user interface design is often more

difficult than it looks. Evaluation of a GUI user interface is also a very expensive

73

process. It requires the support of cognitive scientists, such as psychologists and graphic

design specialists. The evaluation often involves designing and carrying out a series of

user experiments and statistical analyses. A complete evaluation is economically possible

and sensible only for large projects. The methodologies for complete user interface

evaluation are beyond the scope of this project. However, some simple evaluation

techniques can be carried out for a project like HAT:

• Questionnaires: Survey users with a questionnaire to collect information

about what users thought about the interface.

• Observation: Observe user working with the interface and record their

reactions to screen displays and window lay-outs.

• Video recording: Record user sessions and analyze the sessions for hand

movement, eye movement, facial expression, and etc.

• Embedded coding: Include a piece of software code that collects information

about the usage of facilities and errors.

• Comment insertion: Provide facilities to allow users to feedback comments to

system designers.

3.2 Object-Oriented Simulation and YANSL

3.2.1 Advantages of object-oriented simulation

Object-oriented programming is a design and programming discipline that

focuses on the objects that make up the system rather than on functions of the system.

Object-oriented simulation (OOS) uses object-oriented principles for simulation

modeling and program design. The merit of OOS is that it conforms to the notion that

74

the world is composed of'objects'. For example, a hospital can be seen as an assembly

composed of many 'objects': doctors, nurses, medical records, and X-ray machines.

Objects can also describe things that are not physically presented, such as a concept, a

record in database, etc. As a result, OOS language and modeling have great intuitive

appeal [Lomow 91].

OOS preserves all the features of an object-oriented system, such as data

encapsulation, inheritance, abstraction, dynamic binding, software reuse, etc. Bischak

and Roberts [Bischak 91] point out that the most important virtues ofOOS are

reusability and modularity. Because of the inheritance feature ofOOS, model designers

can create their own version of simulation objects by defining new features and re-using

features inherited from the parent objects. With an OOS language, users do not have to

try to match what they want to do in a simulation model to the limited number of

constructs available in the simulation language. The OOS modularity allows all the

information about an object to be held in one place, which means that changing an object

or modifying its behavior can be easily achieved.

Brischak and Roberts foresee four areas in which the object orientation has

special potential [Brischak 91]:

• Graphical presentation: Objects in an OOS tend to represent 'real-world'

entities and they 'encapsulate' these real-world behaviors. Graphical

representation can have almost one-to-one correspondence with the objects in the

simulation model. Furthermore, during the execution, such a correspondence can

produce a very convenient basis for animation.

75

• Combination ofsimulation and AI: Objects encapsulate their functionality and

that functionality can include 'intelligence'. OOS program can exhibit learning

optimization ability by embedding AI algorithms into simulation objects.

• Parallel execution ofsimulation: Because of the encapsulation of information

needed for an object, individual objects can be assigned their own processors to

execute their behaviors in parallel.

• Possibility for 'simulation software engineering ': The notion that users can build

their own simulation objects gives rise to the possibility of simulation software

engineering. Through object-oriented technology, a new category of simulation

professionals may emerge that develop simulation tools for simulation application

engineers who use simulation to solve real-world problems.

3.2.2 YANSL - an object-oriented simulation package

YANSL was developed by Professor S. D. Roberts and his students at North

Carolina State University [Joines 92]. It uses C++ to develop a cluster of classes for

general purpose discrete-event simulation. Figure 3.7 shows the class tree of YANSL.

There are over forty classes in this class tree. Simubject and Link are the most

fundamental classes from which other classes of simulation objects are derived. Several

link-list classes are created to manage nodes in a simulation model, simulation events,

and simulation statistics. The class tree also includes a random number generator and a

distribution generators necessary to generate random streams. Because of the object­

oriented nature, YANSL is not limited to the classes described in this class tree. It is

extendible for different needs. For example, if a new distribution is needed for a

simulation, it is easy to add another class as sub-class ofRandom that generates the

76

distribution stream without changing anyother classes. Similarly, new classes can be

added to describe special simulation nodes or collect specific statistics.

C++ provides different ways to create instances of objects statically or

dynamically at run time. YANSL provides a toolbox for simulation model designers that

containsbuilding blocks for simulation modeling. Simulation model designers view

models as a network of elemental queuing processes. Building a simulation model

requires a designer to select from the pre-defined objects simulation toolbox and

integrate these objects into a network. Because of the data encapsulation, the designer

does not have to know the objects' internal structures to connect two objects. The

designer can use the concept of source nodes, resources, queues, servers, and sink nodes

to build an inter-connected network model and run this model on the framework

provided by YANSL.

HAT uses YANSL as the simulation kernel for dynamic DFD evaluation. Some

add-on features are added to the original YANSL classesto make them suitable for the

Windows environment.

IR.sourc.S.leCli"nWelhod~

ITO,nArrayRC<Resou,ceBase lill") I
IList<Res"u,ceBe.e)I
ITOl'nArrB,nC<SlatBas. lar") I

llist<T Ilinsaction> I
lCap.uredR~Jourcesl

ITOynAneyRC<Aequi,emenlBBse fB'")I
IRequirement.1

!B,enchMclhodHpROBABllITVI

ILill<Node<Tranlaction» I
ILiII< Node<T'(SOllie.ion>::Evenl>I
llink<Node<T JllInsaction>::E venl>~

ILtnk.<Tronllllclion> HT,ansaclion)

SlalReSDurce<0 ecisionWelhod>

77

Figure 3.7. Class structure u!J:'lNSL simulation language

78

3.3 Rule-Based Expert System and M4

3.3.1 Basic concepts of expert systems

As one of the most active branches of Artificial Intelligence, expert systems use

human knowledge and experience to solve problems that require special expertise.

Expert systems enhance productivity by making this expertise available to inexperienced

users, helping them make decisions and solve problem effectively. By using expert

systems to distribute the decision making and problem solving expertise, an organization

can optimize its resources, reduce its cost, and become more competitive.

An expert system is normally composed of a knowledge base, an inference

engine, knowledge acquisition facilities, explanation facilities, and a user interface. The

knowledge base of a rule-based expert system is constructed with facts and if-then rules.

An inference engine is a software system that locates knowledge and infers new

knowledge from the base knowledge. Two fundamental methods are often used by

inference engines: backward chaining andfonvard chaining. Backward chaining is a

top-down reasoning process that starts from the desired goal and works backward

toward the requisite conditions. Forward chaining is a bottom-up reasoning process that

starts with known conditions and works toward the desired goal.

Applications of expert systems exist in many areas, such as manufacturing,

finance and administration, data processing, management information systems,

engineering, and training and education. The types of applications fall into five distinct

areas: analysis, planning, design, selection and diagnosis [Keller 87].

• Analysis applications: Analysis or data interpretation involves monitoring data

streams and interpreting trends and other factors.

79

• Planning applications: Skeletal planning involves selecting a number of sub­

plans from a library of possibilities, integrating them into a generalized plan, and

then tailoring the plan to the current specific situation.

• Design applications: Skeletal design involves choosing one of a number of

design schemes, tailoring them to meet design constraints, and producing a

design document.

• Selection applications: Catalog selection involves mapping, or translating, from

terms that a user understands to features of items in a catalog database.

• Diagnosis applications: Fault diagnosis involves providing advice on what might

be wrong with an entity, that can be a piece of equipment, an organization, or a

person.

3.3.2 The M4 expert system

M4 is a general-purpose rule-based expert system developed by Cimflex

Teknowledge. It works in both DOS and Windows environments. The M4 expert system

kernel can be embedded into other C or C++ based applications. In the Windows

environment, M4 also provides a ready-to-use library that can be integrated with Visual

BASIC applications. Figure 3.8 shows the structure of the M4 kernel. It contains a

forward and backward chaining inference engine, knowledge base management facilities,

symbolic pattern matching mechanisms and an M4 script language interpreter. The kernel

is structured by different modules. Users can adjust environment parameters, modify or

replace modules, and fine-tune the expert system kernel for special applications.

80

I Application Program & User Interface I

I I/O Channels r-

IcommandsIIMe~.Fa~ IIMe~.props II Response II Event II Error II Message IProcessor Handler Handler Handler

I Inference Engine & Knowledge Base 1--

M4
Kernel

Figure 3.8. The kernel structure ofM-I

The activities of inferencing and interaction with the user interface are controlled

by major modules in the kernel. These modules include:

• Inference Engine: Performs forward and backward chaining inference with full

symbolic pattern matching.

• Response Processor: Prompts users with questions, collects the response, and

validates the result.

• Error Handler: Handles errors that occur while M4 is running, including

language parsing errors, variable errors, and run-time errors.

• Message Handler: Processes messages generated by M4 commands, meta-facts,

and meta-propositions.

• Event Handler: Processes events generated by the inference engine.

• I/O Channel: Connects the M4 kernel and communicates with the user interface

through a set of different types of input and output.

81

M4 has its own knowledge representation language and language interpreter to

describe facts, rules, confidence factor of inference, and question / answer dialogues of a

consulting session. Therefore, a rule base can be directly loaded into the M4 inference

engine. Since the M4 expert system kernel takes care of the details of knowledge

processing, the major tasks for expert system development become knowledge

acquisition and knowledge representation with the M4 knowledge representation

language.

HAT uses M4 to build its intelligent help subsystem for simulation modeling and

simulation result explanation. All the basic M4 functions are preserved in the subsystem

which is implemented with Visual BASIC in Windows.

3.3.3 Procedures for expert system development

The development of an expert system requires similar steps and quality assurance

as any other software. In addition, expert system developers have to consider specific

problems of knowledge domain definition, knowledge acquisition, and knowledge

representation. Ignizio [Ignizio 91] summarizes general procedures of expert system

development as shown in Figure 3.9. This model assumes that the knowledge acquisition

and knowledge representation methods have been defined and developers know what an

expert can do and what an expert cannot do.

Simulation modeling and simulation result interpretation require a good

understanding of simulation modeling, statistics, and stochastic analysis. The domain

knowledge is specific and has been clearly documented. Knowledge for such an expert

system is available from simulation experts and simulation literature. HAT takes

advantage of the M4 expert system facilities to build the rule-base for the simulation

expert system and execute the rules on the M4 expert system kernel.

82

Problem identification

1
Problem statement &description

f
No

(
/ Can expert system")f-----:....:...::-__ ~~
<; be justified? /' ~('--~:~~_~)

I Yes,
__ Use alternative approach to

knowledge acquisition

,
--I

Prototype validation I

I-------~,

,......

(
Can domain experts be ·)-_N_O__
identified & utilized? . .

, I Yes /

~-~----
Prototype developmen]-------- ---------l

I I,
..... s-~Wledge I

l~_re_p_re_s_e_nt~_ti_o_n_J[;0
-

Knowledge
acquisition

Figure 3.9. A generic procedure for expert system development

83

3.4 Dynamic Data Exchange and Object Linking & Embedding Techniques

Dynamic Data Exchange (DDE) is a MS Windows data exchange technology

developed by Microsoft for user-independent dynamic data transfer among Windows

applications. DDE is also the foundation of another important feature of Windows

environment - Object Linking and Embedding (OLE). DDE and OLE are the major

building blocks in the Microsoft vision of next generation computing. The concepts of

DDE and OLE have essentially altered the way users think of software and provide a

powerful tool for software integration.

Figure 3.10. DDE as an information hub to connect different applications

DDE is a form of inter-process communication that uses shared memory to

exchange data among applications (see Figure 3.10). Applications can use DDE for one­

time data transfer (passive connection mode) as well as for on-going exchanges in which

the application sends updates from one to another as new data become available (active

connection mode). DDE is more powerful and flexible than a clipboard. A clipboard

operation often requires user intervention, such as 'cut' and 'paste', and does not hold

the connection after data transfer. DOE maintains the communication link and have the

capacity to transfer multiple data items as long as the two parties involved in the

communication want to keep the link. DDE does not need user intervention during data

84

transfer. It is fully programmable and flexible to allow any Windows application to

participate in communication as long as it follows the DDE protocols.

DDE follows the client-server (destination-source) communication pattern.

Before any data transfer, a client (destination) specifies the requested service attributes

(service name, service topic, etc.) and initiates a DDE link. If the requested server

(source) is active, it will check the request from the client and reply with a positiveor

negative acknowledgment. Once the DDE link is setup, data can be transferred in a

'passive' connection mode or 'active' connection mode from the server to its clients. In

addition to the passive and active connection mode, 'poke' mode allows a client to pass

a short message to its server. The DDE link will keep open until either the client or the

server requests for disconnection. Multiple DDE client-server relationship are allowed, in

which a client may have multiple servers and a server may serve multiple clients.

As a superset ofDDE, OLE has potential to support higher level communication

betweentwo Windows applications. OLE defines 'packages' and 'verbs' to define

embedded objects and the object actions. An OLE object can be an 'alien resident' in

another application as a special OLE 'package'. When activated (normally by double­

clicking), the OLE objects execute its 'native' application and perform special operations

defined by its 'verbs'. OLE techniques provide an easy way to connect two Windows

applications. The new Microsoft OLE 2.0 moves the original OLE concepts further to

include basic OLE functions, OLE Automation, and OLE Control [Pleas 94]. It is

believed that DDE and OLE will be a norm for software integration in Windows.

85

3.5 Object Manager and Object Database

A data repository is the center of a CASE tool. Strong [Strong 90] reviewed the

major characteristics that a CASE environment requires for database support. These

requirements are:

• Support flexible data type: The database should support a variety of numeric

values and text strings up to some reasonable length.

• Support metadata: Metadata is a description of another set of data. A database

often uses metadata to structure its manipulation of data. It is also useful to

CASE tools as a guide to the handling ofdata in a data dictionary.

• Query language: CASE tools require that all data is reachable. Models and their

descriptions should be easily accessible through a SQL-type query mechanism.

• Integrity and internal consistency: CASE tools need to keep track of the

evolution of the design documents, programs, and program fragments. The

database has to maintain different versions and alternatives of designs, and keep

consistency at the same time.

Since HAT is an upper-CASE tool, not all these requirements are applicable to

HAT. In addition, HAT is developed with object-oriented concepts. Object-oriented

operations, such as persistent object storage and retrieval, are critical. In an object­

oriented system, the entities in memory are viewed as objects, and so are the files on the

peripheral storage. On top of the traditional bit-stream, record, file concepts, a higher

level management needs to be built - the object-oriented management that provides

service to store and retrieves information by objects. Persistent object storage and

retrieval are different from ordinary binary-based or ASCII-based files, in which all the

86

attributes and links with other objects are preserved. Applications view the object­

oriented persistent services as an object-based storage where they put and get objects

regardless of how the objects are stored on peripheral devices.

3.5.1 A file-based object-oriented storage service - Tools.h++

Tools.h++ is a cross-platform C++ class library developed by Rogue Wave, Inc.

It supports complicated object structures and object operations that reduce the burden

on application programmers. Tools.h++ provides file-based object-oriented persistent

storage and retrieval so that objects can be saved to disk and restored in a new address

space, even on a different operating system. Other Tools.h++ functions include:

• Smalltalk-like collection classes: A complete library of collection classes,

modeled after Smalltalk programming environment: Set, Bag, OrderedCollection,

SortedCollection, Dictionary, Stack, Queue, etc.

• Template based classes: A complete set of collection based on C++ templates:

single- and double-link lists, stacks, queues, has tables, sets, dictionaries, etc.

• Generic collection classes: As an alternative to template classes, generic classes

provides similar services to a non-template programming environment.

• String and character manipulation: A string operation class provides operators

and functions to manipulate character strings, including concatenation,

comparison, indexing, I/O and many other functions.

• Other services including time and date handling classes, B-Tree disk manager,

error handling, etc.

87

HAT uses Tools.h++ as the foundation to build its data repository as a storage

and retrieval subsystem. The services provided by the Tools.h++ class library have

greatly reduced the complexity of the implementation.

3.5.2 An object-oriented database - RAIMA Object Manager

Tools.h++ is limited to file-based services. Objects in different files cannot be

shared. Although, Tools.h++ is sufficient for the preliminary implementation of HAT,

object-oriented database services are required for large amounts of data in a multi-user

environment where data sharing is fundamental. The RAIMA Object Manager is an

object-oriented database developed by Raima Corporation. It is a C++ class library

which includes the following features:

• Uses RAIMA Database Manager (a database on which the Object Manager

operates) as the engine for its DBMS and makes use of the Database Manager's

direct access techniques.

• Provides support for multi-tasking, and for incremental opening and closing of

databases. Two databases of the same type can be used simultaneously.

• Automatic concurrency management enables multiple complex database

navigation without disturbing the currency of each navigation.

• Allows programmers to add persistence to objects. The methods of a storable

class that implement persistence can be either automatic or programmer

controlled. This simplifies the storage and retrieval of objects and automatically

maintains relationships between objects. Object-to-object relationships are

implemented by three separate access methods: Network database model,

Relational database model, Direct sequential access.

88

• Allows programmers to define container classes to manage arrays of storable

objects. Once the databases and classes are correctly defined, the programmer no

longer needs to be concerned about where an object came from or where it is

located.

• Another Raima product, QUERY, can be used in conjunction with Object

Manager to perform SQL-based queries on your database.

3.6 Summary of Tools and Methodologies

This chapter reviews the methodologies and tools used for the hypertext user

interface, object-oriented simulation, expert system, DOE data exchange and object­

oriented data storage. This chapter shows that the HAT implementation is feasible. The

goal of integrating hypertext, simulation and expert system with software development is

not only conceptually feasible, but also practical under the Windows environment with

object-oriented techniques.

89

CHAPTER 4 THE SYSTEM ARCHITECTURE

As has been illustrated in Chapter 3, the concepts ofHAT are feasible with the

combination of existing techniques and programming environments. This chapter focuses

on an architecture to implement these concepts. The discussion focuses on the Windows

environment and the C++ programming language. In addition, Visual Basic is used to

build a Windows-based shell for the M4 expert system.

The architecture follows object-oriented conventions and emphasizes the

concepts of abstraction, data encapsulation, inheritance, polymorphism, and dynamic

binding. The Coad-Yourdon method [Coad 90, 91] is used to describe the classes and

objects. This method uses two major structures, Classification Structure and Assembly

Structure, to describe object classes. Appendix A is a brief review of object-oriented

analysis and design concepts as well as the Coad- Yourdon method.

An evolutionary development strategy coupled with the prototyping method is

used for the user interface design. Because of the HAT project, it was difficult to pre­

define what should be included in the system, what the user interface should look like

and what is achievable for a given situation. Prototypes are very helpful to determine

these factors and evaluate different alternatives for the implementation.

Figure 4.1 shows an exploratory model for developing a new system [Griggs 89],

which reflects the process of HAT development. The initial concept creation phase

consists of the formation of an idea and a researcher's introspection of his own

experiences and feelings about a problem domain coupled with existing research. The

second phase, trial and error construction, consists of developing computer software that

encapsulates the researcher's concepts. The 'trial and error' aspect of the process reflects

90

the fact that the move/rom concept to code involves a series of iterations. It may be

discovered that part of the original concepts may not be feasible with given constraints.

(Concept Creation)

-

Demonstration

\'----------"

(

Figure 4.1. An exploratory model to develop new systems

4.1 The Software Architecture for HAT

The central theme ofHAT is the integration of existing techniques to improve

systems analysis. Since so many elements are involved in the system, it is wise to

organize the system into several loosely-coupled, autonomous subsystems or objects.

Therefore, each of the systems has the freedom to decide its own structure, processing

methods and implementation strategies. Within such an integration, controls from one

subsystem to another should be minimum to guarantee data encapsulation and prevent

unnecessary ripple effects and data contamination. On the other hand, the connections

for data and messages should be smooth and sufficient to link the subsystems into an

integral whole.

Figure 4.2 shows the architecture ofHAT integration. Four subsystems are

presented: (1) the user interface, (2) the data repository, (3) the dynamic evaluator, and

(4) the expert system. Each subsystem has the liberty to choose its own implementation

strategy and environment. Since the user interface is the from-end to users and requires

91

frequent access to the data repository, it is directly coupled with the data repository as a

single application, so that graphical objects and hyperlinks, and other objects created

during systems analysis can be stored and retrieved effectively. On the other hand, the

dynamic evaluator and expert system are both very complicated systems and are invoked

only at discrete points of systemsanalysis. HAT allows these two subsystems to be

independent from the user interface and the data repository as separate applications. This

loosely-coupled architecture makes the subsystems maximize the choice of different

alternatives and minimize the complexity ofcontrol. As a result, DDE data links are the

only channels that connect the dynamic evaluationand expert system with the user

interface.

For the user interface subsystem, visualization and interactivity are the primary

concerns. Graphical user interfacetechniquesare used to focus on an easy to use

interface design. SinceHAT is intended to be a front-end CASE tool, basic systems

analysis tools and user friendliness are fundamental.

The data repository is designed for HAT to handle different objects and the

hyperlinks among them. It requires flexible data structures, persistent object-oriented

storage-retrieval capability and easy access from the multiple-window user interface. The

data repository is also responsible to keep data consistency and manage a central log of

objects that have been created.

For the dynamic evaluator subsystem, simulation modeling and simulation

execution are critical. Calculation efficiency and accuracy are a top priority. More

efficient programming languages and fully tested simulation algorithms should be used.

The HAT architecture allows the simulation subsystem to inherit and reuse existing

92

simulation packages with little constraints from the design of either the user interface or

the expert system.

I I

I
I Data
I
I

RepositoryI
I
I
I
I
I
I
I
I
I
f I
I Interactive

I

I I

I I

I User Interface I
I I
1 I

I DDE
I

I I

'-----7---~-

Dynamic D D Expert
Evaluator D 04 ~ D System

(81M) E E (E8)

~---------------------------------
I

Figure -1.2. The architecture for HAT integration

The major concern of the expert system is the efficiency and effectiveness of the

inference engine and rule-base management system. A general purpose rule-based expert

system is sufficient for the needs of the simulation expert system in HAT. Like the case

of the simulation subsystem, it is not necessary to create a specific expert system. A

Windows-based expert system can be incorporated into this triangular architecture and

monitor the simulation execution.

This architecture takes advantage of the Windows environment as well as

existing simulation systems and expert systems. It observes the principle of software

modularity and encourages software reuse. An architecture based on this triangular

structure with improved DDE data links and a more sophisticated expert system can be

used for reverse simulation and other simulation environments as well [He 94b].

93

4.2 The User Interface Subsystem

The user interface subsystem is a multiple windows application consisting of a

DFD Editor, ERD Editor, Hypertext Editor, DFD Browser, DFD Descriptor and

windows for project and data dictionaries.

Since HAT is targeted at novice, non-discretionary users, simplicity was a

guiding principle in the design of the user interface. All the functions can be

accomplished by simple 'point', 'click', 'drag' and 'drop' operations, that are standard

for most Windows applications. HAT also simplifies standard CASE functions so that

novice users can quickly grasp the principles of systems modeling. The design also

enforces basic rules of structured analysis to help users create correct system models.

-
HPj User Interi, e

1
111111111 1

L.~ .¢. -± L.~ ±- L.~ L.~ L.~
_.!:L ~ _c.!- _1- 1 _1

Data Descri 1I10r DFD Editor ERD Editor I Hypertext E~itor rDFD Deseri tor Data Dietio ry Prciect Die DFDBrows~

I I
onary

I I
) J-

Figure 4.3.Assembly structure ofobjects for the user interface

The user interface is an object that inherits basic features of multiple-window

management from Microsoft MDI (Multiple Document Interface) Window. It is an

assembly structure of eight child-windows, shown as Figure 4.3. There are one-to-one

relationships between the main interface window and the child-windows, except for the

Data Descriptor, that has a one-to-many relationship. A one-to-one relationship means

that there is only one instance of a child-window corresponding to the main MDI

window when the interface is created, while a one-to-many relationship indicates that

many instances of the same object may occur in the user interface. The user interface

94

design maintains as many one-to-one relationships as possible to keep the interface

simple and clean. The DFD Editor, ERD Editor, and DFD Descriptor show the

descriptions of the current DFD and ERD. These windows are updated every time a user

chooses to change to other diagrams. The multiple instances Data Descriptor on the user

interface allows a user to cross-reference the definition ofa data entity from top level to

lower levels. Unlike other child-windows, the Data Descriptor is small and simple.

..
+

03
Cu<lomer Order<

05
CultomerInqu,y

P4
CtJ!;tomer
Seevlee

~ IP2o CoOlE

+

a
81a
;;
.LI
II

..

Customers send orders into the
order entry department of Ken's
Mail Order. Inc. via the mail.
Thelma. an order entry clerk.
separates the mail into two parts
consisting of customer orders
containing checks and those
contalning credit card information.
Orders containing checks are
validated for correctness by
Thelma and placed in the order
fulfillment file. Invalid orders are
sent to Rosemary. the order
reconciliation clerk. Credit card
orders are passed to Fred who
performs an on-line credit card
verification for each order. Orders

~ ~ ~ ~ ~ ~
DF3: Contents ERD Editor- DFD Browser Description: No Project Data Diclionary

List DF3 Currenl object Dictionary "-
~

~,-,
-,,

Data Descriptor ERD Editor DFD Browser DFD Descriptor Project Dictionary Data Dictionary

Figure -/.-1. A snapshot ofthe user interface - default settings
\0
VI

96

Ext.rnal Entity

Interface Connector

for diff.r.nllev.ls of DFDs

DFD ControlBar

DFD ToolBar

Figure 4.5. The Tool Bar and Control Bar ofthe DFD Editor

Figure 4.4 and Figure 4.5 shows the default setting of the user interface. The

system assumes that a user starts with a problem description and builds a DFD model.

Other child-windows are iconic to leave more space for the Hypertext Editor and DFD

Editor. A user has the choice of re-configuring the user interface to start with ERD

modeling instead ofDFD modeling. The goal of this design is to keep the interface look

and feel simple. Child-windows and other information are withheld until requested by

users. Thus, the user can customize the work environment to suit individual preferences.

Also, the system provides a one-touch button that sets all windows to default settings.

As one of the most important features ofHAT, inter-connectivity of child-

windows through hyperlinks is fundamental to the user interface. Figure 4.6 shows the

channels for hyperlinks built in by the system. The DFD Browser, DFD Descriptor, DFD

Editor and Hypertext Editor are connected with 'hot' hyperlinks (thick lines in Figure

4.5), which means that a change in anyone of the windows will immediately update

other windows. Connections among other windows are 'warm' or 'cold', which means

no update until the window is activated or users choose to refresh the window.

97

Figure 4.6. Channels for hyperlinks among child-windows

A 'hot' hyperlink is more intuitive and easy to follow for users, but it is also more

difficult for the systemto maintain. On the other hand, a 'cold' hyperlink consumes less

system resources and is sufficient for less frequently usedwindows. The trade-offof

'hot' and 'cold' hyperlinks is determined by the considerations of interface functionality

and implementation complexity.

The following sections are more detailed descriptions of the user interface. These

descriptions reveal the fundamental classesand their structuresthat implement the

hypertext-based user interface.

4.2.1 The Hypertext Editor

The Hypertext Editor is a hypertext window that allows users to specify problem

narratives, create hyperwords and connect hyperwords to the graphical objects in the

drawing windows. A typical early stage systemsdevelopment scenario involves a gradual

development of system specifications. The process is investigative and not linear. During

an investigation, facts are uncovered graduallyand each newfact leads to new questions

that, in turn, lead to more facts. Therefore, a network of processes is constructed along

with the investigation. Within this network, a process only makes sense in relation to

other processesand specifications. Obviously, hypertext is an ideal medium to support

this mode of work, in which hyperlinks created by users bridge one-dimensional text and

98

two-dimensional graphical models (DFD and ERD models). This 'hyper-dimension' is a

major feature that this research adds to the approach of conventional CASE tools.

The Hypertext Editor bases its components on the classes of the Borland OWL

(Object Windows Library). As indicated in Figure 4.7, the Hypertext Editor is inherited

from TFile Window of OWL and has two components: HEditor and HyperwordList.

TFileWilldow allows the Hypertext Editor to have basic ASCII file operations, that is

'New', 'Open', 'Save', 'Save As' and so forth. The Hypertext Editor redefines these

operations for its special hypertext and hyperlink features.

HEditor inherits all the editing functions from TEditor of OWL, such as 'Insert',

'Delete', 'Cut' and 'Paste'. In addition to these basic editing functions, HEditor can

highlight hyperwords with colors and underlining. Special care must be taken to create,

display, delete, scroll, paint and repaint hyperwords, since TEditor does not provide any

of these services.

-
(TFileWindoi\!

I J-
o

TEditor Hypertext E iter
RWColiectabl

1~
o

f~L.~
1

HEd,lor \ Hyperwor ... is

I

-

e

Figure 4.7. The Structure ofthe Hypertext Editor

HyperwordList is a local data manager that keeps track of all the hyperwords.

Since the hypertext editing functions are added on top of standard Tliditor, the

99

information about the positions and links of the hyperwords must be kept in temporary

storage. This information is used by the REditor to paint and position the hyperwords.

HyperwordList also keeps the information on hyperlinks from a hyperword to a DFD or

an ERD graphical object. It holds the key to bridge the narrative text and graphical

models. The hypertext and hyperlink information is stored and retrieved persistently as

part of the project data file. The basic saving and retrieving functions inherited from

TFileWindow are over-written by persistent saving and retrieval methods that are

inherited from the RWCollectable object ofToo1.h++. Since the central data repository is

also built on the basis ofTool.h++ classes, HyperwordList is fully compatible and

cooperative with the data repository.

4.2.2 The DFD Editor and the ERD Editor

The DFD Editor and ERD Editor are the tools for users to create graphical

models. Although functionally and logically DFDs and ERDs are quite different, the

DFD Editor and ERD Editor share similar class structures and inherit from the same

graphical library as shown in Figure 4.8. All the graphical-relevant windows are derived

from GWindow of ObjectGraphics of Whitewater Group. Both the DFD Editor and the

ERD Editor are derived from ObjWin, which contains the common features used by both

editors to create and maintain graphical objects, such as moving, adding, zooming and

deleting. Both the DFD Editor and the ERD Editor use pre-defined icons to draw the

diagram. They have similar components: a drawing canvas for graphical objects, a tool­

bar palette for pre-defined tool, and a control-bar palette for special operations. General

features of these components are represented in the objects ofDrawh/ind, Too/Bar, and

Controlliar, from which DFD and ERD-specific canvas, tool-bar and control-bar are

derived. A user can choose these pre-defined functions to point, select, drag, and draw

graphical objects.

100

GWindow

-
ObjWin

1,11

i. ~ i. ~ i. ~___ 1
_.!... 1

I DrawWin ToolBar ControlBar

I
-,.- (OFD Editor (ERD Editor

"'- 11
V I \ J1 "'I

~
1

111.1 L.~ - 1
1- 1 1 1

(DrawWinO Ipl DrawWlnE~O OFDToolBa~ (ERDTooIBa (DFDCtrIBar I EROCtrlBar

I I II I I1
I) I \ J- - -

Figure 4.8. The Structure ofthe DFD Editor and ERD Editor

The basic symbols in DFDToolBar palette (dataflow, data store, process and

external entity) follow the Gane and Sarson method [Gane 79]. The DFDCtr/Bar palette

contains a set of control buttons for different operations including navigating from one

level of DFD to another level, connecting and disconnecting to a hyperword, renaming

or deleting a current DFD, and triggering a floating menu to pop-up the DFD checking

rules. The DFDDraw differs from the ERD drawing canvas in that it connects to the

DFD-related data structures in the data repository and updates entries to the project

dictionary. DFDDraw also has the 'hot hyperlinks' that connects to DFD Browser, DFD

Descriptor and Hypertext Editor to update changes in the graphical window.

101

Control Bar

list contents
Get object from data dictionary

Disconnect

Connect

Ic..to l ' 1 ~ lord., I.,,, -'---....~>------
h., I,M

Tool Bar

+
+ \

ERD Drawing Window

Figure 4.9. A snapshot ojERD Editor

+

The ERDToolBar contains the symbols necessary to draw ERD models using a

variation of the Chen method [Chen 76]. The control bar of the ERD Editor is much

simpler than that of the DFD Editor as seen in Figure 4.9, because an ERD does not

require a hierarchical structure to represent different levels of models. However, buttons

to create and delete hyperlinks are necessary. Similar to the DFD Editor, the ERD Editor

has a direct connection to the data analysis section of the data repository. It also has a

'warm hyperlink' to Data Descriptor so that an entry to either Data Descriptor or ERD

Editor will be displayed in both windows. In addition to the hyperlink button, two more

buttons are used to set up links to the Data Dictionary and Data Descriptor windows.

The 'GET' button will 'grab' an existing data record in the data dictionary into the

current ERD. The 'LIST' button brings up the Data Descriptor corresponding to the

current ERD.

There can be two kinds ofERDs: Conceptual ERD and Implementation EIW. A

Conceptual ERD describes the overall aspects of data relationships. It is used as a

102

starting point for data analysis and may contain data entities that may not exist in an

implementation model. An Implementation ERD is used to describe the data

relationships for implementation purposes. It contains more information and reflects data

entities that will be implemented as files or relations. The ERD Editor supports both

conceptual and implementation ERDs and links them to the Data Descriptors and the

Data Dictionary.

4.2.3 The windows for process analysis

Process analysis is a description of the flow of data from one process to another.

In HAT, process analysis is described using layers ofDFDs, starting from the context

level to a more detailed level of description. The DFD Editor is a visual graphical tool

that a user uses to interactively draw DFD models. In addition to the graphical model,

other tools are needed to navigate from one DFD to another, manage the descriptive text

of each graphical object, and keep track of the project dictionary. Figure 4.10 shows

snapshots of the three windows that perform this task: DFD Browser, DFD Descriptor,

and Project Dictionary.

In a hypertext system, a browser, a map or other navigation tools are often

provided to guide users through the information web. Without proper orientation tools,

users may easily get lost and cannot perform effective information retrieval. The problem

of 'getting lost' has been recognized in a lot of literature [Conklin 87]. HAT

incorporates a DFD browser to outline the layers ofDFDs in a process analysis. The

DFD Browser is a window that contains a list-box. Entries to the list-box are names of

DFDs and graphical objects in a DFD. A double-click on a graphical object entry will

bring up the graphical object in DFD Editor; a double-click on a DFD name will toggle

to open or close the list of all the objects in the DFD.

. -
E1) Customers <EXT>
P2) DIE <PRO>
P4) Customer Service <PRO>
03) Customer Orders <OF>
05) Customer Inqury <OF>

'I S stem Level <OFD>••.

DFD Browser

103

Ken's Mail Order. Inc. is a mail order
company that has three departments. Ken
is the head of the Customer service

+

NavlgaMnbuttons

DFD Descriptor

Show 81the objects connected to CLfWl1 wtry

•
<DF>Customer Orders
<OF>OF2-14
<OF>OF2-8
<DF>Verfied credit card ord
<EXT>Customers
<PRO>Credit Verify
<PRO>Customer Service

···1· Step-in II Show I Snow obiecls ln 1tle DFD Edllor

Project Dictionary

Figure 4.10. The windowsfor process analysis

DFD Descriptor is a HyperCard-styled tool to manage the description ofeach

graphical object in a DFD. The text in the Hypertext Editor is often used to describe a

problem in general. The hyperwords in the hypertext window are connected to different

graphical objects depending on the user's choice. The DFD Descriptor, on the other

hand, contains a short description dedicated to a specific graphical object. This

description can be a detailed description of the object in addition to the general

description in the hypertext window. The two buttons at the bottom ofDFD Descriptor

are used to browse through the graphical object in current DFD.

The Project Dictionary window shows the contents of the project dictionary. It

provides a tool for users to directly observe what is in the project dictionary. In addition,

the two buttons ('Step in' and 'Show') are used to list all the DFD graphical objects

104

associated with a selected dictionary entry and to show the object in the DFD Editor,

which provides another way to retrieve graphical objects.

4.2.4 The windows for data analysis

Data analysis focuses on describing the data entities and relationships among

them. An ERD is a tool used by many system analysts to describe data models. HAT

includes a data dictionary in its data repository that contains all the data-related objects,

such as data flows, data stores, data records, and data elements. For each data-related

object, except for a data element, there can be a list 'exploded' to describe its contents

and attributes of the object. The Data Descriptor is used to display and maintain these

contents lists. As data analysis proceeds, a network of data-related objects evolves. This

network is called the Data Relation Graph in HAT (see Section 4.3 for detailed

descriptions).

<Ele>Cust Num
<Ele>ltem It
<Ele>Oty
<Rcd>Cust Order
<Rcd>Customer
<Rcd>Customer Mast
<Rcd>DF5JE/1 +

, Add IIDelete II Close I
IEXPld!~

Data Dictionary

<Rcd>Orders

Data Descriptor

~ Adda newentry to data tlW!illY

~ Removean entryfrom currentisbng

IExpId I Explodea record for flXtherdeschpbon

IOwner I Ust ownersof currentdataobie,t

~ D,splaythe ERR of currentisbng

~ Get anob,ectfrom data <lebonary

IClose I ClosethiS",ndow

Figure ./.11. The windowsfor dolo analysis

As indicated in Figure 4.11, Data Dictionary and Data Descriptor are lists of

data-related objects. On one hand, the data dictionary is a non-duplicate list that contains

105

references to all data objects regardless of their relationships. On the other hand, an

instance Data Descriptor represents the 'parents-children' relationships in the Data

Relation Graph. The 'OWNER' and 'EXPLD' buttons in a Data Descriptor window can

display different levels of data objects in the Data Relation Graph. Both Data Dictionary

and Data Descriptor windows have direct connection with the ERD editor that will

display either a conceptual ERD to the whole project or an implementation ERD specific

to the selected data object.

4.2.5 Comments on the user interface design

The HAT user interface focuses on the implementation of hyperIinks through the

hyperlink channels described in Figure 4.5. These hyperlinks allow users to retrieve the

same information in many different ways. At the same time, to fulfill the prescribed

functions, the user interface employs one-touch buttons to trigger most of the

operations, so that users can visually touch and feel the effect of the changes. Several

easy-to-use dialogue boxes are also used for DFD and ERD inputs as well as simulation

parameter definitions (see Section 4.5.4 for more details). The WIMP (Window, Icon,

Menu and Point) devices are inherited from standard Windows classes that have uniform

format and are familiar to users.

The commands and buttons used in the user interface are consistent among

different child windows. Some of the buttons are decorated with bitmaps for easy

recognition. Since the system is developed in C++, the system response time is good.

Common DFD and ERD modeling errors are handled by the system. Although much

effort has been made to improve the user friendliness of the user interface, some of

Galitz's user interface design criteria [Galitz 93] (see Section 3.1.2) are not met. The

106

most obvious flaw is error recovery. The user interface has not included an 'undo'

function in the current design.

The author observed the beta testing ofHAT among a group of MIS

undergraduate students and found that most of the students could learn the basic

functions within one class session (less than an hour). Because most of the students had

had experience with Windows applications, they were not intimidated by the appearance

of the HAT user interface. On the contrary, some students became very involved in

testing and debugging this new tool and gave a lot of good suggestions for improvement.

Behavioral studies need to be done before the effectiveness ofHAT can be measured.

The author's expectation is to see a combination of the 'width' of user acceptance as a

result of hypertext techniques and the'depth' of user understanding because of dynamic

evaluation with simulation techniques.

4.3 The Data Repository Subsystem

The data repository subsystem is the central data storage for HAT. A centralized

data repository is the nucleus for interaction and cross-reference of the multiple-window

user interface. In an object-oriented system, the data repository operates on an object

basis; an object, instead of a data element, is the basic transaction unit.

Since HAT is a front-end CASE tool that has no systems design functionality, the

data repository is much simpler than would be found in the typical large CASE tool. As

indicated in Figure 4.12, the data repository subsystem is composed offour components:

the project dictionary, the DFD tree, the data dictionary, and the data relation graph.

Currently, HAT is limited to a file-based system. The information of a project is stored in

a single file, which is not sharable concurrently. A third-party software package -

107

Tools.h++, is used to manage object-oriented persistent file operations. Thus, the design

of the data repository focuses primarily on the management ofobjects in memory.

Hypertext DFD DFD Project ERD Data Data
Editor Editor Descriptor Dictionary Editor Descriptor Dictionary

I User Interface MDI Window I

Data Repository
I ID't' R,I,""o~I ProjectDictionary 1- --I DFD Tree I-I • IData Dictionary

Figure .f. J2. Connections between the user interface and data repository

The project dictionary itself contains a set ofproject entries that keep track of

conceptual information about a DFD object, such as names, types and descriptions.

Other DFD-related objects keep pointer references to the dictionary entry. Duplicate

entries are not allowed. A link-list is used for each project entry to keep track of DFD

objects that appear more than once in the project. This also serves as a back-pointer to

the DFD tree.

The data dictionary manages the descriptions of the data items in a data flow or a

data store. Similar to the project dictionary, the data dictionary is composed ofa set of

data entries. A data entry contains a data object and its connection lists. As analysis

progresses, a network that describes the ownership of one data object by another will

evolve. This network ofdata objects is called the'data relational graph', from which

ERD diagrams can be constructed and maintained.

108

A tree structure is used to represent the step by step decomposition process of

systems analysis. The top level DFD is the root of the DFD Tree. All other DFDs are

generated by a step-wise refinement as the children or grandchildren of the top level

DFD. Inside a DFD Tree, each DFD contains a number ofDFD Objects.

~WColiecta Ie

I

-
IDFDTreeMa~ager

,[,T
L.~ .t.~ .t.~, , ,

(Projectlhcti~nary DalaDictlon ry DalaRelGra~

I

-
Figure -1.13. Structure ofthe data repository

Since the data repository is built on top ofTools.h++, all the objects in the data

repository are derived from RWCollectahle ofTools.h++ (see Figure 4.13). An assembly

structure ofDFDTreeManager assembles the objects of the project and data dictionary

as well as the data relation graph. The DFDTreeManager also keeps a pointer to the root

and a pointer to the current DFD in the DFD tree so that it can save and retrieve the

whole DFD family, or set any of the DFDs to current.

4.3.1 The DFD tree

Systems analysis is a step-wise refinement process from the outlines of a problem

to more detailed problem descriptions. This process naturally generates layers of

documents with a hierarchical structure. When a DFD is used for systems analysis, a

DFD tree similar to Figure 4.14 will be generated through the analysis process. In this

109

example, the Root pointer ofDFDTreeManager constantly points to the root of the DFD

tree - the Context Level DFD 0, and the Current DFD pointer floats around to point to

the DFD currently displayed (in this example, the Detailed Level DFD 1.1).

Figure 4.14. An example ofa DFD tree

The object that describes a DFD has an assembly structure of other objects:

ConceptualDFD, VisuallrhD, Childl.ist, Parentl.ist, Nodel.ist, Flowl.ist, and Simkun.

As described in Figure 4.15, all the objects have the same ancestor, the RWCollectahle

ofTools.h++. Most of the objects of the data repository subsystem are descendants of

RWCoIlectable to take advantage of the object-oriented persistent storage and retrieval

feature in the object.

110

RWColiecta\>Ie

I

i
RWOList

OFO

I
~

1r 11

.L.~ ~~ ~ ~ L. ~ ~~ 1 ~ ~
1 1 1 1 L L--., SimRun (Conceptual ~FO VisualOFO) , NodeUst (FlowList ChildList , ParentList

I I I I I I I I
\ l \ I \ \ \-

Figure 4.J5. Class structure ofa DFD

A ConceptualDFD represents the conceptual features of a DFD, such as the DFD

name and special labels. The VisualDFD captures the visual aspects of a DFD that

describe how a DFD should be displayed in the DFD editor. Four lists are used to keep

information ofDFD nodes and DFD flows, as well as the pointers to the lower and

higher level DFDs in a DFD tree. In most of the cases, a parent list contains only one

pointer to the parent DFD. All the lists inherit from the RWDList class, which is a

standard double linked list provided by Tools.h++. RWDList itselfis a descendent of

RWCollectable and has persistent storage and retrieval capacity. A SimRun object keeps

the information necessary to carry out a simulation experiment (number of runs, warmup

period, and run length).

The content of a NodeList is a cluster ofDFDNodes that are derived from

DFDObject. All DFD symbols with node features are descendants ofDFDNode. They

are Externallintity, Process, DataStore and Interfaceblode (see Figure 4.16).

Figure 4.16. Structure ofDFD objects

112

Figure 4.16 also indicates that a DataFlow object is another descendent of

DFDObject. A Dataflow has different features than the nodes. Nevertheless, it inherits

common features of a DFDObject. The FlowList in a DFD is composed of a set of

Dataflow objects. It is also worth noting that both Dataflow and DataStore inherit

features from DataNode. This multiple inheritance enables a Dataflow object or a

DataStore object to acquire the features of both DataObject and DFDObject.

Systems analysis requires that a process node in a DFD has the ability to explode

to a detailed DFD to describe further analysis of this process. Therefore a Process object

has a special pointer pointing to its next level DFD. A reference to a next level DFD

pointer is also added to the child list of the DFD that contains the parent process. An

Externallintiy object is a mirror image of an external entity in a DFD that represents a

source or destination ofa data flow. An Jute/face node is a special node defined to

connect data flows from one level of DFD to another.

Similar to the structure ofa DFD, the structure ofa DFDObject has three

sections: the left section, the central section, and the right section. A cluster of

conceptual objects constructs an object sub-tree on the left side ofFigure 4. 16 and a

cluster of visual objects on the right side of the diagram. Different levels of conceptual

and visual objects are connected to their DFD-related objects via assembly structure

linked to the central part ofFigure 4.16. The separation of conceptual and visual aspects

of a DFD-related objects makes it easier to modify and maintain.

A further description of the structure in Figure 4.16 is given in Figure 4.17. The

conceptual aspect of a DFD-related object holds a direct connection to a project entry

corresponding to this object in the project dictionary, from which the information of

name, label, type and description of the DFD object is available. There is a one-to-many

113

relationship between a ProjectEntry and a DFDObject. Because multiple DFDObjects

may have the same name, type, and label, they have the same ProjectEntry. On the other

hand, the visual aspects of a DFD-related object contain the physical location

information in the DFD editor. The central part of a DFD-related object bridges the

conceptual and visual aspects. A DataNode object maintains lists ofDataFlows coming

in and out of it. A Dataflow object contains the DataNode pair on the ends of the flow.

The connection information is accessible from both conceptual and visual sides.

-- DFDObject

Conceplual bject DFDptr.
A

to...
, , 'I, V --

-'"M' _L
L ~ VisualObjec ...,

I' 'I --l 1,, -'--
Sin1lnfor DFDNode

, ProjectEnlr
I (Location \ GrphicalObl

A

1, l I'I,
J- ,

)

-
ExternalEntl\, nlerfaceNod,

1--_-11 I
))----"

InFlowList \ OlitFlowLisl

1----t11-----i

-
, , --:;- ,

~L.~ L~ L~
L.~

1 , , 1 , , 11,
SimSource SimSink SimActivitv SimQueue SimResour Ie

I
J--

, NodePair 1

I I
)

SimConstan

Figure ./.17. A further description ofDFD-related objects based on Figure ./.16

In addition to the objects necessary for DFD drawing, simulation information is

also stored in the data repository. Each DFD-related object has at least a descendant of

Simlrfor object attached to it that contains information necessary to carry out simulation

modeling. Simulation results are also extracted and stored in SimInfor objects. The

arrangement for SimInfor objects is shown at the bottom of Figure 4.17: an external

114

entity or an interface node is either a source or a sink in a simulation model; a process

corresponds to a pair of a queues and an activity in a simulation model; a data store is

viewed as a resource used by a processes; and the time used for a data flow operation is

assumed to be constant.

4.3.2 The data relation graph and structures for the ERD

The data relational graph of a project is a list ofDataNode objects. Each

DataNode is the data-related section of a Dataflow or a DataStore. Further descriptions

of a DataNode by a set ofDataRecords and DataElements becomes a tree ofdata

descriptions (data tree). Multiple DataNodes construct a forest of data trees. A

DataRelationGraph object holds the root of each data tree and provides services to

expand, trim and maintain the forest.

DataRelationGraph

Figure oJ. 18. An example ofa data relation graph

Figure 4.18 illustrates an example ofa data relation graph. When a data flow or a

data store is created, a DataNode object will be created. The DataNode is added as a

root to a data tree to the DataRelationGraph. Each DataNode has the potential to have

children as the analysis progresses and more details of data descriptions are added. These

children can be DataRecords and DataElements. A DataRecord has the potential to be

115

further described by other DataRecords and DataElements. However, a DataElement is a

terminator of a data tree that represents a basic component of a data description. A

DataRecord or a DataElement may belong to a different parent data objects or share the

same parents with others. The responsibility of a DataRelationGraph is to manage such a

network ofdata objects and provide services to other parts of the system. A

'VirtuaIDataNode' is added to a DataRelationGraph to hold the data tree ofa

conceptual ERD for data analysis. The VisualDataNode has no connection with any

DFD object, so that data analysis can be carried out independent of process analysis.

DalaObjecl

DalaSlore / DataFlow 1

1 L.~ L.~ L.~ L.~
1 1 1 1 1

11 1
DataEntry ERD ParentList ChildLisl

.J.~
1 IDalaNode Dataltem

j Childllem
/I.
V 1

-L -
~DalaRecord' DalaElemen

I -L 11.0
} (Keylnfor / Entity

I I
\. ~

Figure -I.J9. The structure ojdata-related objects

A more elaborate description of the structure of a data object is presented in

Figure 4.19. The diagram shows that DataNode, DataRecord, and DataElement inherit

DataEntry, ERD, Parentl.ist, and Chi/dList from DalaOhject. A DataNode always has

either a DataFlow or a DataStore connection in a DFD tree. That is where the DFD and

the ERD are connected. A DataItem object represents those data objects that are not

directly associated with a DFD object and this group is further decomposed into

DataRecords and DataElements. Since a DataElement cannot have any child and ERD

116

connection, special methods have to be provided to invalidate operations on ChildList

andERD.

A Childlist contains a list of ChildItems. Each ChildItem contains a DataObject

that is listed as a child to the parent. The Keylnfor object in a ChildItem represents the

relative position of the child with respect to other children in the list, i.e. if a child is a

primary key, a secondary key or a non-key member in the child list. An Entity object may

also be attached to a Childltem, whose DataObject member is either a DataNode or a

DataRecord, to represent an entity in the ERD attached to the parent data object. For a

ChildItem whose DataObject member is only a DataElement, there is no Entity object

attached to it, because it will not show up in any ERD.

Because multiple occurrences of a data object can be represented by connections

to multiple child lists, it is not necessary to duplicate a data object in a data relation

graph. Though it may appear as a member of more than one ChildItem, a data object has

a one-to-one relationship to a data entry in the data dictionary. An ERD connection only

occurs in a DataNode or a DataReocrd. An ERD is used to describe the relationship of

the ChildItems in the child list. Therefore, a DataObject can at most have one ERD

associated with it.

RWDLisl

Figure -1.20. The structure ofan E./?D

117

Figure 4.20 shows the structure of an ERD object. It contains an EntityList and a

RelationList. Both of the lists are inherited from RWDList to keep object persistence.

Similar to DFD structure, a VisualERD is used to represent visual aspect of an ERD. An

ERD object manages its component objects and provides insertion, deletion and retrieval

services to the ERD editor of the user interface.

The contents of the two lists in an ERD are described in Figure 4.21. An Entity

object has a pointer to the DataObject associated with it. Therefore, all the information

of the data object is shared by the entity. In addition to the connection to its data object,

an Entity object has a RelationList to keep records of all the relationships connected with

it. Physical location and connection to the graphical object shown in the drawing window

are also included in an Entity object.

RelationLisl

Entity ,

DataObiectlPtr

1_

Location
11

I VisualEntity

I
I
'--_./

Relation

Figure -1.21. The structure ofan Entity and a Relation

Since a relation is only significant in the context of entities connected by it, a

Relation object contains an EntityPair that represents the two entities at both ends of a

relation. A relation is not listed in the data dictionary. Descriptions of a relation are kept

locally inside a Relation object. As in the previous cases, a visual object has to be

included to represent the graphical object on the ERD drawing canvas.

118

4.3.3 The dictionaries and their entries

Both ProjectDictionary and DataDictionary are collections of ProjectEntries and

DataEntries. There is no duplication in the dictionaries. Figure 4.22 shows that the two

dictionaries are derived from RWSet class ofTools.h++. The nature of set operations

guarantees the uniqueness of each entry in the dictionaries. Both of the dictionaries have

a back-pointer to the DFDTreeManager so that they can easily access information in the

DFD tree. Basic services provided by the dictionaries are similar, but differ in their

entries to the dictionaries.

RWSel

DFDTreeMa aget Ptt.

Figure -1.22. The origin ofa project dictionary and a data dictionary

A ProjectEntry and a DataEntry are different in the way that they hold

information for different models. A ProjectEntry holds information of a DFD-related

object, while a DataEntry holds that of a data-related object. Since a ProjectEntry may

have one-to-many relationships with DFD-related objects, a ConnectionList is used to

keep track of all the DFDObjects that are associated with the project entry (see Figure

4.23). A DataEntry has only a one-to-one relationship with a DataObject. Therefore, a

DataObject pointer is sufficient for a DataEntry to find its related data object. Both

ProjectEntry and DataEntry have Labels and Description objects to store the

information on the label, type, name, and free-format description of the corresponding

DFD or data object.

119

ProjectEntrY

1
L. ~

L L- L
Labels IDescription Connection ~

I
}

st

DataEntry

DataObj Pl,.

Figure -1.23. The structure ofProjectEntry and DataEntry

The data repository subsystem manages objects ofvarious kinds with carefully

designed structures and provides services necessary for the user interface to create

system models visually and interactively. The data repository also provides services to

the simulation subsystem for simulation modeling and storage of simulation results.

4.4 The DDE Interface

The keys that hold the HAT subsystems together are the DDE data links. Each

subsystem depends on DDE links to transfer scripts of simulation modeling, questions

and answers, as well as other control information.

A DDE link creates a client/server (destination/source) relation during the

execution of two applications. The link will remain connected until one of the application

requests disconnection or terminates execution. There are three basic modes for DDE

data transfer as shown in Table 4.1. An application can be both a server and a client.

Table 4.J. Basic modesfor DDE data transfer

Request A client initiates a request to its server for certain data items and the
server replies with the requested data.

Automatic A server monitors the data buffer and automatically updates changes
to its clients.

Poke A client sends a short message to its server to relay special notice.

120

4.4.1 The data interface structure

HAT is composed of three separate Windows applications. Each application

should have the ability to 'talk' with the other part of the system fluently in a bi­

directional fashion. It is obvious that a DDE data interface embedded in each of the

applications should have the ability to serve as both a client and a server for data

exchange so that data can be transferred in both directions.

Other
Application

DOE Data Interface

Internal
DataTransfer

Data

A

P
P
L
I
C

A
T
I
o
N

Data

Request

Request

----------------..-

Client Session

ServerSession

DOEServerAgent

DOEClient Agent

Data

Data

Request______. . ,...c:::==~

DOE
Client

Figure -1.2-1. The DDE data interface inlfAT

Figure 4.24 illustrates the concept of the DOE data interface used in HAT. Each

DOE data interface contains a client agent and a server agent. An internal data channel is

created between a ODE data interface and the application associated with it through

message passing and function calls. The client agent manages all the client sessions

created during the execution. When the application has a data request, it forwards the

request to its DOE client agent. The DOE client agent creates a client session, sets up a

DOE data link and requests the data from its DOE server. If the application requests an

automatic data link with a server, the client agent chooses the automatic mode and

forwards new data to the application whenever it is available. The client session can also

poke short messages to its server upon request from the application.

121

The server agent handles data requests from other applications. For each new

request, it sets up a server session. The server session then forwards the request to its

application, where data is prepared according to the request. The server session returns

the data to the client that requested the data. In automatic mode, the server session will

monitor the changes in application through the internal data channels and start automatic

data transfer whenever a change occurs.

-
DDI Data Inlerfa~e - -DDEML DIl amic Evalu~or Expert Sys~

I I1 J J

~
-,- 1

.t.~ .t.~ L.~
1L L~ 1

GllenAgenl' ServerAgenl AppHandler \

I
J

User Inlerfa~e
- ~ .t.~1 .A

)
'Il

11 l-~ L-
IntHandler \ SimHandJer\ I ESHandler

I I I,,
- - -

m

Figure -1.25. The class structure ofDDE Data Interface

Figure 4.25 describes the objects that are used to implement the DOE data

interface described in Figure 4.24. Microsoft provides a OOE Manager Library

(DDEML) on top of Microsoft basic ODE utilities. The ClientAgent and ServerAgent in

a DOE Data Interface inherit from ODEML to obtain the ability for basic ODE

operations.

An AppHandler is the connection of the application attached to a DOE Data

Interface, where the internal connections for data exchanges are constructed. Different

subsystems have different data requirements. Therefore, they need different connections

to a DDE data interface. The AppHandler and its descendants handle all the different

122

subsystems and make the implementation of ClientAgent and ServerAgent independent

of the subsystems. A subsystem can take advantage ofDDE data links once it has the

right application handler'.

4.4.2 The conversation protocols of the subsystems

The basic DDE 'hand shaking' protocols allow different applications to setup

DDE linksfor data transfer. However, to makea data transfer process meaningful, a set

of application-specific protocols is needed to definethe conversationsamong

applications.

There are three bi-directional DDE data links in HAT: the user interface to/from

the simulation subsystem; the user interface to/from the simulation expert system; and

the simulation subsystem to/from the simulation expert system. The DDE conversations

are conducted as following:

1. The user interface to the simulation subsystem: A user creates a DFD model

from the user interface and requests dynamic analysis. The user interface will

convert the DFD model into a model script and forward the script to the

simulation subsystem. The procedure is:

i) The user interface 'locks' the DFD model and puts the model script in the

DDE transfer buffer

1 The simulation expert system is implemented in Visual Basic and parts of the DOE features arc built­
in. The implementation of DOE data interface and ESHandler is a little bit different from the user
interface and the simulation subsystem. However. DOE data interfaces for all the three Windows
applications in HAT arc conceptually identical.

123

ii) The user interface starts a DDE data link to the simulation subsystem (the

simulation subsystem as the server and the user interface as the client,

Interface ¢ Simulation), if the link has not been previously established.

The simulation subsystem will be executed if it is not currently active.

iii) The user interface pokes a message'Simulation model ready'.

iv) Upon receiving this message from the user interface, the simulation

subsystem initiates a DDE link to the user interface (the user interface as

the server and the simulation subsystem as the client, Simulation ¢

Interface), if the link has not been previously established.

v) The simulation subsystem requests for the simulation model script

through the DDE data link.

2. The simulation subsystem to the user interface: After the simulation subsystem

generates a simulation model based on the model script and runs the simulation,

the simulation results are sent back to the user interface. If the simulation cannot

complete because of incomplete model scripts or simulation run time errors, the

simulation subsystem also reports the failure to the user interface.

i) The simulation subsystem checks if the DOE data link to the user

interface is still open. If not, the links are re-initiated.

ii) The simulation subsystem pokes a message into the user interface

'Simulation finished" or 'Simulationfailed because 0/.... (reasons)'.

iii) Upon receiving a successful message from the simulation subsystem, in

response, the user interface sends a request the simulation results and

124

distributes the results to the corresponding DFD objects in the data

repository. If a failure message is received, the user interface will inform

the user of the failure.

iv) The user interface 'unlocks' the simulated DFD model.

3. The conversation between the user interface and the simulation expert system:

The simulation expert system is consulted on two occasions: simulation modeling

and simulation result explanation. When a user requests help for specific

problems, the user interface will start a consulting session:

i) The user interface 'locks' the simulated DFD model.

ii) The user interface initializes a DDE data link to the simulation expert

system (the simulation expert system as the server and the user interface

as the client, Interface c::> ES), if the link has not been previously setup.

The simulation expert system will be executed if it is not currently active.

iii) The user interface puts the type of the question into the DDE buffer and

pokes a message: '1 have a question'.

iv) Upon receiving this message from the user interface, the expert system

initiates a DDE link to the user interface (the user interface as the server

and the simulation expert system as the client, ES c::> Interface), if the link

has not previously been established.

v) The expert system requests a question type and initializes the

corresponding knowledge base.

125

vi) The expert system generates questions for further information from the

knowledge base and pokes: '1 have a question.' to the user interface.

vii) The user interface picks up the message from the expert system and

requests the question. The answer to the question will be gathered from

either the data repository or from the user.

viii) Once the answer is available, the user interface pokes a message: 'The

answer is ready. '

ix) The expert system requests the answer and continues the inference

process.

x) Repeat the steps (vi) to (ix) until the expert system reaches a conclusion

or fails. The expert system pokes: 'The answer is ready.'

xi) The user interface requests the answer and 'unlocks' the DFD model.

4. The conversation between the expert system and the simulation subsystem: This

DDE data link is not used in the current HAT design. Nevertheless, the HAT

architecture provides the ability to setup dynamic data links between the expert

system and the simulation subsystem. Such links are especially valuable for

reverse simulation [Wild 9Ia], in which the expert system monitors the execution

of simulation and dynamically adjusts the simulation parameters. A scenario of

dynamic data link between the expert system and simulation subsystem in a

reverse simulation environment is described as following:

126

i) The user interface 'locks' the simulated DFD model and feeds the

simulation model script including the expected goals to the simulation

subsystem through the Interface ¢::> Simulation DDE data link.

ii) The simulation subsystem starts a DDE data link to the expert system (the

expert system as the server and the simulation subsystem as the client,

Simulation ¢ ES), if the link has not been previously setup. The expert

system will be executed if it is not currently active.

iii) The simulation subsystem puts the simulation goals and constraints into

the DDE buffer andpokes a message: 'Goal is ready'.

iv) Upon receiving this message from the user interface, the expert system

initiates a DDE link to the simulation subsystem (the simulation

subsystem as the server and the expert system as the client, ES ¢

Simulation), if the link has not previously been established.

v) The expert systemrequests the goal and alternative strategies and setups

an automatic data link to the simulation subsystem.

vi) The expert systemloads the appropriate knowledge base and pokes a

message: 'Start simulation.'

vii)The simulation subsystem responds to the message by setting its key

statistics (observation windows) to the DDE data buffer and starting the

simulation.

127

viii) Every time new statistics are generated in the simulation, the automatic

DDE link will forward the data to the expert system where the data is

checked with its goals.

ix) If the expert system finds that the statistics violate the target goals, it will

generate a set of new parameters and poke a message: 'Stop. Try new

parameters. '

x) The simulation subsystem responds to this message by requesting the

simulation parameters. Then, the simulation subsystem alters the

parameters with new values, adjusts the observation windows and

continues the simulation.

xi) Repeat (viii) to (x) until the goals are reached or failed.

The DDE data interface allows the HAT subsystems to be loosely-coupled while

keeping sufficient communication among them. The user interface and the simulation

subsystem are operated in a 'batch processing' fashion, in which the user interface

delivers a job and waits for its completion. The user interface and the simulation expert

system have a series of' question and answer' conversations to solve the pending

questions asked by a user.

4.5 The Dynamic Evaluation Subsystem: DFD Simulation

The simulation subsystem is the core to adding dynamic evaluation to the

software development process. The key issue of the simulation subsystem is to

automatically generate simulation models and execute the models on a simulation engine.

Kimbler and Watford [Kimbler 88] give a functional summary of a simulation program

generator (SPG) as following:

128

System Definition: To identify a specific boundary and restriction that a SPG
system can handle.

Problem Formulation: To determine the precise problem definition that a
simulation model is to address.

Model Development: To develop a model and translate the initially developed
form into a form suitable for computer execution.

Data Collection: To take advantage of the data collection facilities provided in
simulation languages and allow users to choose what to collect.

Coding: To generate executable code in a simulation language. Some SPG
systems may go one step further to address the operating system and
environment issues for the simulation runs.

Verification and Validation: To generate error-free code for all possible inputs,
to limit users to a specific domain that can be verified by the system, and to
continuously validate simulation programs throughout a SPG.

Experimental Design and Production Runs Analysis: To be able to select
alternatives and determine a decision based on simulation results.

Documentation and Reporting: To document all the inputs, test results, as well
as outputs of a SPG.

HAT limits its scope to simulating a DFD model to reveal the model's dynamic

features. Some of the issues of problem definition and model development are dealt with

in the user interface subsystem by allowing users to interactively define DFD models.

The simulation subsystem focuses on executing a DFD-based simulation model and

feeding the simulation results back to the user interface. However, HAT does not

address all the issues described by Kimbler and Watford. The above functional

descriptions, nevertheless, provide guidelines for the design and implementation of the

simulation subsystem and HAT as a whole.

4.5.1 The structure of the simulation subsystem

As described above, the major function of the simulation subsystem is to process

the simulation model script from the user interface, generate a simulation model based on

129

the script, and run the simulation. Figure 4.26 shows the components of the simulation

subsystem. A validated DFD model with add-on information necessary for simulation

modeling (number of runs, distributions, and so forth) is translated into a simulation

model script, which is transferred via a DDE data interface to the simulation subsystem.

The model generator parses the script and builds an executable simulation model for the

YANSL simulation engine. The simulation results are fed into a result parser where the

simulation statistics match each node in the script. The parsed results are then forwarded

to the user interface through the DDE data interface.

Since the simulation subsystem is designed as a separate Windows application,

independent input and output windows are included as the interface for direct model

input and result output. The input and output windows are quite helpful in debugging the

simulation subsystem. In addition, with its own input and output capacity, the simulation

subsystem can work as an independent simulation system. A user can describe a

simulation model in the input window and run the model immediately without the extra

steps ofloading different modules to compile and run the simulation.

p~rsed r.,5u1s results

Figure 4.26. The structure ojthe simulation subsystem

130

4.5.2 The script language for simulation models

A simulation script language is specially designed to convey information of a

DFD model to the simulation subsystem. Within a simulation model script, a DFD model

is viewed as a queuing system defined in terms ofa YANSL simulation model with

source nodes, queues, activities, and sink nodes. The script language is used as an

intermediate format that converts DFD objectsto the objects in a YANSL simulation

model.

The script language has eight sectionsthat have to be completed before a

simulation model can be generated. Table4.2 is an example ofa simulation script ofa

TV repair shop. The syntaxof each section can be described as follows:

1) Run:[numberl; numbers; number3;}

Defines the number of replications in a simulation experiment (numbed), the

length of warmup period (numher2), and the lengthof each simulation run

(numhed). Although increasing the number of replications and the length of the

simulation reduces the variance of the system statistics, too many number of runs

and too longa single run may result in a waste of computer resources and cause

memory overflow. On the other hand, the warm-up period should be long enough

to guarantee that the simulation statistics are stable and reliable.

2) Distribution: [type, name, parameter; }

Defines the distributions used in a simulation model. All distributions must be

declared in this section before they appear in other part of the model.

131

3) Resource: {type, name;}

Defines resourcesused by the queues and activities in a simulation model.

Resources must be declared in this section before they appear in the definitions of

queues and activities.

4) Source: (type], type2, name, distribution, start, end;]

Defines the source nodes in a simulation model. Every line in this section

describes the type of transaction (typeJ), the type ofbranching method (type2),

nameof the node, event distribution, and starting as well as ending times of the

event generation.

5) Queue: { type, name, resource; }

Defines queues in a simulation model. The type, name, and resources used by a

queue as defined in each line of script in this section.

6) Activity: {queue, resource, type, name, distribution;}

Defines the activities in a simulation model. An activity may be directly

associated with a queue and a resource. The name and distribution of activity

time are described in each line of script in this section.

7) Sink: { name,'}

Defines event exits in a simulation model.

8) Branch: [source, destination, probability;}

Defines the branches that connect other nodes in a simulation model

Table 4.2. An example ofthe simulation scriptjor a TV shop

II Simulation script of a TV shop

Run:{ 10; 150; 480;}

Distribution: I/Format: type, name, parameters
{
Exponential, interArrival, 5.0;
Exponential, inspectTime, 3.5;
Exponential, repairTime, 8.0;
}

Resource: I/Format: type, name
{
PRIORITY, inspector;
PRIORITY, repairman:
}

Source: I/Format: typel, type2. name, distribution. start. end
{
TRANSACTION, DET, tvsource, interArrivaI. 0.0, 480:
}

Queue: I/Format: type, name, resource
{
FIFO, inspectQueue, inspector:
FIFO. repairQueue. repairman:
}

Activity: I/Formation: queue. resource. type. name. distribution
{

inspectQueue, inspector. PROB. inspection, inspect'I'irnc:
repairQueue, repairman, DET. repair. repair'I'irne;

}
Sink: I/Formation: name
{
finish:
}

Branch: I/Format: source. destination, probability
{
tvsource, inspectQueue:
inspection. finish, 0.85:
inspection, repairQueue. 0.15:
repair, finish:
}

132

133

4.5.3 DFD model conversion rules

Since a conventional DFD does not contain enough information to convert into a

simulation model, additional information is needed to fill the gap [Wild 93]. To simplify

the conversion process, several assumptions are made. Although these assumptions may

not always hold in reality, they will only have an effect in the model conversion process,

but not in the performance of the architecture adopted by the system integration. The

author believes that the following assumptions are reasonable to show that dynamic

evaluation ofDFD models can be done in the context of the HAT architecture.

Assumptions:

(1) A DFD is structurally correct before the simulation.

(2) There is no delay in a data flow.

(3) A data store is a mutually exclusive device that can be shared by different

processes at different times. The availability of this device depends only on the

sequence of the requests from processes. No preemption of data store resources

is allowed and the operation time of a data store is ignored.

(4) All nodes are connected with either probabilistic branches or a deterministic

branch, as opposed to many different branching methods in most simulation

languages (Cyclic, High/Low, and Conditional).

(5) All the queues in a model only have the FIFO (First-in-first-out) ranking method,

as opposed to other ranking methods in most simulation languages (High/Low,

Conditional, Random, etc.).

(6) Each external entity represents, at most, a single data in-flow.

134

(7) Identical discrete events are generated from source nodes during a simulation.

There should not be special attributes attached to an event. HAT assumes that all

simulation events have a single transaction type: TRANSACTION as default.

(8) HAT supports the replication/deletion method to analyze steady-state parameters

of a non-terminating simulation [Law 91], because the replication method is

relatively simple, even though it is more costly in terms of computer resources

and efficiency. The overhead caused by the warmup period of multiple

replications is not a majorconcern for the current system.

Conversion Rules:

(1) An external entity or an interface node is a source node if it is a source of a data

flow. Further information needed for simulation includes: start/end timefor event

generation, event arrival distribution, connectionassignment information

(probability for each branches, if there is more than one connection).

(2) An external entity or an interface node is a sink node, if it is a destination of a

data flow. No further information is needed for a sink node.

(3) A DFD process node is a queue-activity pair. Further information needed for

simulation includes: activity server distribution and connection assignment

information.

(4) A data store has two roles in a simulation model. It is a resource that can be

shared by different processes at different time periods. It is also a data flow

multiplexer that connects the in-flows with the out-flows. Figure4.27 shows an

example of the multiplexing effect of a data store after a conversion, where each

135

in-flowconnects to each out-flow with multiplied probabilities on each branch.

Information needed for model conversion: connection assignment information.

3
0.2 Process 2

0.4

1
Process 11-'0c.;.6_-t~ 2 0.3_~

DataStore X --c=J

05

PROS

PROS

PROS

figure 4.27. The multiplexing eJfectofa data store after conversion

136

(5) A data flow corresponds to a branch between the two nodes in a simulation

model.

(6) Additional resources can be specified as the pre-requisite for processes. All

resources are allocated on an availability basis.

(7) A pseudo sink node should be added to a process to prevent deadlock when:

(ii) a process has only one outflow and the flow is to a datastore.

(i) a process has a loop with a data store whose only outflow points back to the

process (see Figure 4.28).

1
Process 1

2
Data store X

(A single ou11low
to a datastore)

X node

4
Data Store Y

(A loop WItha
data store)

o DataStore X

X Node

DET

Pseudosinknode2

Figure 4.28. Examples ofpseudo sink nodes to avoid simulation deadlock

(8) Information necessary to conduct simulation experiments, such as the number of

runs, and run length, has to be defined before the conversion.

Considering the above conversion rules, an extended DFD model is converted

into a YANSL simulation model as shown in Figure 4.29. There are two additional

resources in this DFD model, which are represented with small squares on top of process

nodes. The simulation model is an equivalent of the simulation model script shown in

Table 4.2.

137

o inspector

0.15

repairman 0

Din,peeter

Figure 4.29. An example ofconverting a DFD model to a simulation model

The DFD model conversion is not a trivial task. It requires the user interface to

provide the ability to interactively define the additional information needed for simulation

and convert a DFD model into an equivalent simulation script. Therefore, a DFD model

converter is added to the user interface.

4.5.4 The DFD model converter

The DFD model converter scans the current DFD model and pops up dialogue

boxes for each DFD object in the model to get parameters needed for simulation

modeling. Figure 4.30 shows examples of these dialogue boxes. The additional

information extends the scope of traditional DFD modeling and encourages users to

think more deeply about the system's problems and to observe more aspects of the

138

system that they are modeling. The 'Result' and 'Help' buttons in the dialogue boxes are

used to display simulation results and trigger the intelligent help system.

label: I_T_v_sr_c ..J

Distribution---------,

Name: linterArrival1

Type: IEllponential

Parameters: 1_5._0 _

StartlEnd Time: I0.00;480.00

Assignment: linspect,i.000;

0BB~
(a) Dialogue Boxfor an External Entity

",' : Data.Store Sim~lnfor '

label: loataStore X I
Assignment: \inspect,i.000; I

0BB~
(c) Dialogue Boxfor a DataStore

label: Iinspect

Distribution----------,

Name: linspectTimel

Type: IExponential

Parameters: 13.5

Resources: !inspector

-;:::::::=====
Assignment: ITVOest,0.850jRepaiI
01 ~ancel II Besult II tlelp I

(b) Dialogue Boxfor a Process

... Experim:ental SimJnfor

OFD Name: Icontext level UFO

Number ofrepliclltions:li.00j

Warm up period: 1120.00 I
length of simulation: 1480.00 I
I QK II ~ancel II !!elp I

(d) Dialogue Boxfor an Experimental Run

Figure 4.30. Dialogue boxes for simulation parameters

After simulation parameters have been collected, the model converter starts to

create a model script based on the current DFD model. Table 4.3 shows the steps used in

the conversion process. The converter is an assembly structure with each subclass

performing one step in the conversion process. The converter itself is attached to the

user interface subsystem.

Table 4.3. Steps to convert a DFD into a simulation model

Steps for DFD _ simulation script conversion

(1) Create the run section based on the input from the experimental

dialogue box.

(2) Scan all the DFD objects in the current DFD, collects distribution

information. and create the distribution section of the script.

(3) List all the data stores in the current DFD and the additional

resources added to processes and create the resource section of the

script.

(4) Collect all the external entity and interface nodes with at least one

out- going data flow and create the source section of the script.

(5) Collect all the external entity and interface nodes with at least one

in- going data flow and create the sink section of the script.

(6) Create a queue-activity pair for each process in the current DFD,

with data store and additional resources attached to it.

(7) Create the branch section of the script following the connections of

data flows in the current DFD. Data flows to and from a data store

need special treatment to create multiplexed branches.

/

139

140

4.5.5 The simulation model generator and result parser

The model generator is a special language interpreter that translates the script

language defined in Section 4.5.2 into an executable simulation model. It parses the

script and creates the appropriate objects from the YANSL object base. During the

model generation process, a parsing table is created that can be used for the result

parser. Figure 4.31 is the state transition diagram of the simulation model generator.

Each state corresponds to a method that converts a piece of the script into executable

objects.

" "'''\n"

{source;}

{queue;}

Figure 4.31. State transition diagram ofthe model script interpreter

After an executable simulation model is generated, the YANSL simulation engine

is called to run the model. There is no user intervention or any interruption throughout

the simulation. When the simulation is done, the simulation result is fed into the result

parser. The output is also sent to the output window of simulation subsystem.

141

The purpose of the result parser is to match the items of simulation results with

the names used in the model script. Since the model generator uses internal expressions

to represent an executable simulation model, the simulation results only contain reference

numbers to the objects created by the model generator. By referring to the parsing table

created during the model generation, the result parser makes the results more meaningful

by replacing the reference numbers with their original names. The parsed results will be

sent to the user interface and stored in the data repository.

4.6 The Intelligent Help Subsystem

The intelligent help subsystem has two parts: (I) A set of rules to check DFD

structure and data balance, and (2) an expert system that provides expert advice to users

on simulation modeling and result interpretation.

4.6.1 Static DFD checking rules

The static checking rules focus on the static structures of DFDs and their data

balances. A set of connection rules and data balance criteria have been defined and

widely used for checking DFD models [Whitten 89]. Table 4.4 is a summary of the

connection rules.

Table ./,./. DFD connection rules

process data-store external-entitv
process * * *

data-store * x x
external-entity * x x

*: valid connection

x: invalid connection

There are three cases of imbalance in a DFD: the 'black hole', the 'gray hole' and

the 'miracle'. A black hole is a process or a data store that gets data flow inputs but

never has data flow outputs. A gray hole is a process or a data store with data flow

142

inputs insufficient for its outputs. A miracle occurs whena process or a data store

generates outputs without any input.

Based on these rules, an BalanceChecker object is designed to check the DFD

structures. Since the connectionand balance checkingrules are well defined and can be

easily implemented in a rule-based expert system, obviously, BalanceCheckercan be an

object in the expert system. However, consideringthe dependence ofDFD structural

information during a checking process, it is better to include a BalanceCheckeras part of

the user interface subsystem, where access to the data repository is faster and easier.

This trade-off makes the implementation ofBalanceChecker more compact and efficient.

Data flow imbalances mayalso occur between two DFDs at different levels.

BalanceChecker containsa set of methods that review all the data flow imbalance cases

along the DFD tree. All errors are reported to users from the user interface.

4.6.2 The structure of the simulation expert system

In the scopeofHAT, the expert system limits its function to simple intelligent

advice. For this level of expertise, it may not be as efficient if the intelligent help

subsystem is directly embedded in the user interface subsystem. However, simulation­

based research involves more expertise than choosing simulation parameters and result

explanation. The idea of incorporating an expert system into HAT is to demonstrate that

the HAT architecture supports the integrationof simulation, expert system and CASE.

More sophisticated expert systems can be constructed on this basis. The incorporation of

expert systemsinto simulations have been well described in the simulation research

literature [HiIl87, Ra088, Taylor88, Mellichamp89, Frankel89, Park90]. The results of

these studies are useful for further work based on the HAT architecture. New research

may include more expertise in simulation model diagnosis, simulation validation and

143

verification, simulation experimental design, simulation result analysis, and simulation

monitoring.

The HAT simulation expert system has the following operational scenarios to

carry out a consultingsession after a DFD model has been defined:

(1) A user sends a request: A user triggers the expert system by choosing the 'Help'

button. The user interface sets up DDE data linksto the expert system and a

consultingsessionbegins.

(2) ES and user define problem: The ES asks questions about the nature of the

problem and understands the user's requirements.

(3) ES 'thinks' about the problem: and chooses the right knowledge base and

matches the user's requirements with conditions and rules.

(4) ES provides advice: After several iterations of step (2) and (3), the ES will advise

the user on how to define simulation models and how to run the simulation.

(5) The ES and the end user engage in a dialogue about the results: After the

simulation is finished, the ES can be accessed again to check the significance of

the results and interpret the results with terms understandable to the user.

Similar to the simulation subsystem, the simulation expert system gets requests

from the user interfaceand starts a consulting session via its DDE data interface. The

expert system will determine what type ofquestions a user asked and load either the

modeling rule base or the explanation rule base. As a separate Windows application, the

simulation expert system has its own user interface, through which a user can create and

modify rule bases. This 'local' expert user interface is very useful in developing and

debugging the rule base.

144

questions/answers

..e~pert advice

Figure 4.32. The structure ofthe simulation expert system

As indicated in Figure 4.32, the expert system engine has two modes: the stand-

alone mode and the server mode. In stand-alone mode, there is no DDE connection to

any other application. The expert system gets commands and displays outputs using its

own user interface. In the server mode, the expert system works as a server for other

client applications through DDE data links. All the questions and answers are directed to

the client applications. Since M4 is a general-purpose rule-based expert system shell,

there is no specific restriction that ties the simulation expert system to the HAT

environment. The simulation expert system can be used for other consulting tasks simply

by loading different rule bases.

4.6.3 The modeling rule base

Creating a correct simulation model is a complex task that requires clear

understanding of domain problems and rigid validation and verification processes.

Mastering the expertise of the whole simulation modeling process is beyond the scope of

the HAT expert system. The intelligent help system only tries to answer the following

questions:

(l) What distribution should be chosen?

(2) What should be the parameters for the distribution?

(3) How many replications should be run and what should be the length of the warmup
period?

145

Currently, there are only three distributions included in the YANSL prototype

environment: Exponential, Uniform, and Normal. More distributions can be derived from

the YANSL pseudo random number generator. Figure 4.33 is the decision tree that

determines the selection of a distribution and its parameters. This tree can be expanded

as more distributions become available.

There arc only three
distributions available in
current configuration.

Does the data have upper
and lower boundaries?

Uniform distribution is
recommended.

Please input the upper
and lower boundaries:

Exponential distribution is
recommended

How many events happens
during a unit time:

Put a constant value
into the field.

No distribution is
recommended.

Normal distribution IS
recommended.

What is the average rate:
What is the range of change:

Figure ./.33. The decision tree for distribution selection

Determining the number of replications, the warmup period, and the run length

requires more expertise than distribution selection. Statistical estimation of these

parameters needs pilot simulation runs and intensive statistical analysis, which is worthy

of a separate study of expert system applications in simulation. The current HAT expert

system offers only minor assistance in the design of a simulation experiment based on

pilot simulation runs. Instead of complete assistance, a set of empirical rules is used.

These rules take the following principles into consideration:

146

(1) The difference between simulation length and warmup period should be adequate

to allow a sufficiently high number ofobservations per simulation run to secure

the significance ofsimulation statistics.

(2) The warmup period should be long enough to cover the transition period.

(3) An increase in the number of replications or the simulation length should narrow

the confidence intervals of output parameters. However, too much overhead of

the simulation is inefficient and maycause system overflow.

With these principles in mind, the empirical rule requires that the simulation

length be at least 4 times longer than the warmup period. The default number of

replications is 10 and the default simulation length is 8 hours or 480 minutes. These

empirical rules are not sufficient to always generate statistically significant simulation

experiments. However, they are sufficient to test the HAT architecture. More

sophisticated expert system are possible in future research.

4.6.4 The result explanation rule base

A typical simulation output analysis includes testing the significance of a

simulation experiment. As part of this analysis, the following types of questions are

asked -
Is the warmup period long enough to cover the transient period of the simulation?

Does the simulation have sufficient replications and length to fulfill the lID (Independent
Identical Distribution) assumption?

Are the variances of the estimated random variables kept within expectation?

If these conditions are not met, new experimental plans should be recommended

accompanied by a new set of simulation runs. It is clear that the simulation output

analysis and selection of simulation experimental parameters (step (3) oflast section) are

iterative and closely related. The final evaluation is based on a satisfied output analysis.

147

An expert system that masters the expertise of a significant output analysis needs

several years to develop and requires a rule base of several hundred rules [Taylor 88].

Developing such a complex expert systemis clearly too much for this project.

Nevertheless, previous studies have shown that an expert systemwith sophisticated

simulation expertise is doable in a personal computerenvironment.

HAT is focused only on the structural aspects of expert system integration in a

simulation environment. It omits the critical output analysis part and assumes that the

output from the simulation is final. This will produce biased system estimations and

cause the simulation results to be insignificant. Additional work needs to be done to

include the expertiseof output analysis.

With limited output explanation functions, the explanation rule base provides

only a verbal explanation of the simulation results (mean, variance, utilization, time in

system, time in queue, etc.). It also includes several empirical rules to determine if a

process is under-used or becomes the bottleneck ofa system.

148

CHAPTER 5 IMPLEMENTATION ISSUES

As in the case of many software development projects, there are many ways to

implement a concept or a software architecture. This is especially true in the

development of PC applications for which the tools and environments are evolving very

rapidly. This chapter is dedicated to the discussion of issues concerning the

implementation of the architecture described in Chapter 4 and the lessons learned

through this project.

5.1 Wlndows Programming Environments

HAT aims to help novice personal computer users. Because of the popularity of

Windows-based PC systems, Microsoft Windows is a natural choice for the HAT target

environment, As shown in Figure 5.1, several Windows programming environments

(PLUS, ToolBook 1.5, SmallTalk for Windows 1.0 and Microsoft C 7.0 etc.) are

examined based on two major criteria: the visualization (graphical user interface, user

friendly design environment) and the processing power (efficiency, effectiveness, and

functionality). Borland C++ 3.1 and Visual Basic 3.0 are chosen because for the

following reasons:

(1) C++ is powerful in representing object-oriented concepts and structures.

Though SmallTalk is more object-oriented than C++, C++ is more efficient and

capable of representing basic object-oriented concepts. During a search for the

HAT implementation environment, the author found that an application

developed in the current version of SmallTalk for Windows takes large amount

ofdisk space and runs slower than an equivalent C++ application. On the other

hand, although other Windows programming environments, such as PLUS,

ToolBook, and Visual Basic, have strong support for the user interface design,

149

they are not sufficient to support the complicated class structures and object­

oriented concepts required by HAT.

Visualization

PLUS Visual Basic
••

ToolBook
•

•
Borland C++ 4.0

.. Visual C++ 1.5

• Borland C++ 3.1
SmaliTalk for Windows

Microsoft C 7.0

•

Processing Power

Figure 5.1. Comparison ofdijferent Windows programming environment

(2) C++ is closely linked with the Windows operating system.

The Windows operating system is based on the C language. Various ready-to-use

C++ Windows application frameworks and application packages are available.

These C++ packages directly interact with the Windows system kernel through

the Microsoft SDK (System Development Kit) and API (Application

Programming Interface), and provide many add-on features for Windows

programming. In addition, C and C++ are also very popular languages on

mainframe operating systems, such as UNIX. With the acceptance of object­

oriented concepts, C++ has become the de facto standard object-oriented

programming language in the software industry.

(3) C++ is resilient to change.

As an object-oriented programming language, C++ encapsulates data and

methods within an object. There will be little ripple effect incurred by

150

modification. This feature fits the exploratory nature of HAT development,

where changes are constantly made as the system evolves.

(4) Borland C++ provides a user-friendly development environment.

The Integrated Development Environment (IDE) provided by Borland 3.1 was

the only real Windows-based C++ development environment at the time HAT

was designed. The Borland IDE integrates editing, compiling, linking and

debugging utilities. It also includes tools to visually create graphical resources.

(5) C++ has third-party supports.

Because of inheritance and reusability in C++, many software companies have

dedicated their efforts to developing general purpose software packages that can

be used for graphical design, data processing, knowledge processing, data

structure development and data base operation. There are a large number of

reusable libraries written in C++. The availability of these libraries has saved time,

reduced the overall risk of failure, and improved the system quality.

(6) Visual Basic is easy-to-use and compatible with existing software package.

Visual Basic (VB) is chosen because it has the ability to embed libraries

developed with other languages. VB is powerful for user interface design and

rapid prototyping. It also supports cross-application communications, such as

DDE and OLE. VBX (Visual Basic eXtension) is a special run-time Dynamic

Linking Library (DLL) format that can be added to the Visual Basic Workbench

as a special control object. A VB application can embed mission-critical VBXs

developed in more efficient languages, while remaining the user friendliness of a

Visual Basic. M4, the expert system used in HAT, is developed in C. The expert

151

system package provides a ready-to-use VBX, that makes it easy to integrate

with a Visual Basic application.

Windows programming environments are developingso fast that new compilers

with improved Windows programming supports, such as Borland 4.0, Visual C++ 1.0,

and 1.5, became available before this projectwas finished. These new products do not

negate the initial choice of Borland 3.1 and Visual Basic 3.0. On the contrary, the new

developments are indications that the choice ofWindows environment and C++ language

providea good foundation for further research and enhancements.

5.2 System Integration

Three subsystems in HAT are developed as separate Windows applications,

namely the user interface subsystem, the simulation subsystem, the simulation expert

system. The user interface subsystem is the most complicated subsystem in this project;

the hypertext editor, the graphical editors, and the data repository are developed. The

other two subsystems are based on reusing existing software packages.

An incremental approach is used for system integration. Naturally, the

development of a DDE communication framework is the first step toward system

integration, because all the subsystems are interconnected through DDE data links. As

indicated in Figure 5.2 (1), three functionally identical applications were created, each

having bi-directional DDE communication capacity. Each application has a general

application handler that contains the information of the names of server, client, topics,

and items of its DDE interface. An application handler is also an internal data channel to

a specific application. An application with its own handler can be directly 'plugged' into

an application handler 'slot', just like plugging an I/O card into a PC mother board.

152

The triangle structure of the DDE interfaces was tested in different modes: poke,

request, and automatic. Testing on this triangular back-bone helps to identify and

consolidate the problems with DDE communication between two C++ applications, as

well as a C++ application and a Visual Basic application. Since none of the HAT

subsystems were involved at this stage, the integration focused on DOE communications

among three simple and functionally identical applications so that the complications and

side effects of non-DOE factors are reduced to a minimum.

153

(C++) (1)
(Visual Basic)

(C++)
(2)

(Visual Basic)

(C++)
(3)

(Visual Basic)

(C++) (4) (Visual Basic)

Figure 5.2. Steps in systems integration

154

The next step in integration is to add a simulation subsystem (see Figure 5.2 (2)).

The simulation subsystem has its own handler - SimHandler, which is a descendent of

AppHandler and has the same behaviors with AppHandler. SimHandler handles special

data transfers required by the simulation subsystem and passes the data onto

AppHandler. The relationships of each subsystem and the DDE-AppHandlers are

described in Figure 5.3.

- -
bOEWind"" IAppHandler

I 1 I
I 1 "'I

J-
0

-l --Simulation ubsystem User I"terfa e
Expert Svst m

1 -;-,--- ,'--
.t. ~ L.~ .t.~

1 1 ,
u

Siml-landler I UIHandler ESHandler

I
J- -

Figure 5.3. Class structures ofsubsystems and their handlers

Similarly, special handlers (UIHandler and ESHandler) are created for the user

interface and the expert system, through which the user interface and the expert system

are plugged into the triangle DOE communication backbone (see Figure 5.2 (3) and (4)).

When a new application is introduced to the DOE backbone, the handlers and

communications are tested to insure that the integration is working as expected. When

the three subsystems are connected, an integrated testing procedure is performed to

guarantee that all the subsystems are working independently as well as cooperatively.

155

5.3 System Testing and Evaluation

System testing involves both validation ('Are we building the right product?')

and verification (' Are we building the product right?'). Systematic program testing is a

complicated process that involves careful planning and test case generation. It is

important to understand that testing can never show that a system is correct. It is always

possible that undetected errors exist even after the most comprehensive testing. Program

testing demonstrates the presence of errors but not their absence [Sommerville 89].

Two methods are often used for program testing: 'black box' testing and 'white

box' testing. 'Black box' testing does not require a tester access to source code or

understand the program being tested. In contrast, 'white box' testing relies on a tester's

knowledge about the code and the structure of the program being tested. In general,

'black box' testing is suitable for end users who know what they want, but have no

knowledge of the details of coding, and 'white box' testing is often used by programmers

who know all the program details.

Programmers
&

White BoxMethod

End-users
&

BlackBoxMethod

Figure 5..1. The stages and the factors involved in testing

As indicated in Figure 5.4, project testing may have different stages from the

simplest components to a complex whole. The 'Black box' method is often used to find

156

out where a fault is, and the 'white box' method is used to determine how a fault

happens and the method to fix it. System developers are an inseparable part of the

system testing process. They know how to carry out 'white box' testing to fix bugs and

improve system performance. However, programmers are not the best system testers.

Psychologically, they consciously or subconsciously try to avoid the presence of errors

and the destruction of their creations, which is contradictory to the purpose of system

testing. Outsiders, especially potential end users, should be employed in the testing

process to overcome the programmer's psychological bias.

The validation of this project focuses on the functionality of HAT to see if the

tools included in HAT are sufficient for simple systems analysis tasks. For two

consecutive semesters, HAT has been used as courseware for systems analysis and

design classes for undergraduate MIS students. Through these field tests, it has been

shown that HAT is sufficient for simple systems analysis cases in these classes.

System verification ranges from unit testing to integration testing and includes

both 'black box' testing and 'white box' testing. With 'black box' testing, a tester

performs different operations and matches the system output or behavior with the user's

expectation. Once an inconsistency or a bug is found, 'white box' testing method is used

with the help of debugging tools to examine the details of each module for a line by line,

value by value analysis of the reasons for the problem. Since a Windows application

receives many different events, messages, and their combinations, many testers should be

invited to test alpha and beta versions of a system to remove errors. The students who

used HAT for their homework assignments helped to detect many bugs and design faults

that were ignored by the HAT developers. Even though HAT has not been a bug-free

product, the extensive verification has made HAT correct and robust for most of the

required operations.

157

An extensive evaluation ofa user interface design is a very expensive process. It

requires the support of cognitive scientists, such as psychologists and graphical design

specialists. The evaluation involves designing and carrying out a statistically significant

number of user experiments and is only economically possible for very large systems

development projects.

Obviously, this project does not have the resources to conduct an extensive

statistical evaluation of the HAT user interface. The size of this project does not justify

such an extensive study either. Nevertheless, some simple empirical user interface

evaluations were carried out among a group of undergraduate MIS students. Two

methods were used during the evaluation: observation and a questionnaire.

The survey result of 16 MIS students shows that all students have PCs at home

and most ofthem use HAT both at home and school. This result shows that HAT has

reached its goal as a personal front-end CASE tool to help novice users leaning the basic

systems analysis techniques. As shown in Table 5.1, the students generally give positive

comments on the HAT user interface and its performance. Most of them think HAT is

easy to use and can learn it within 2 hours, which is a much shorter learning curve than

other educational CASE tools, such as EXCELERATOR. The survey also shows that

some students have problems with the scheme of hyperlink creation and navigation

facilities. These are the clues that HAT should be further improved.

Table 5.1. Thesurvey result of16 HATusers

158

HAT helps in understanding DFD and ERD. I (Disagree) 2 3 4 5 (Agree) Total
Answers

0/0% 0/0% 3/18.8% 9156.3% 4/25% 16

HAT is easy to use. I (Disagree) 2 3 4 5 (Agree)

0/0% 0/0% 4/25% 12/75% 010% 16

HAT improves understanding of relationships I (Disagree) 2 3 4 5 (Agree)
between process and data modeling.

3/20% 3/20% 6/40% 2/13.3% 1/6.7% 15

How long did it take to learn HAT? <2 hours 2-5 hours I day > I day

10/62.5% 3118.8% 1/6.3% 2/12.5% 16

Did hyperlinks between narrative text and Very helpful Helpful Confusing No effect
graphical objects help learning?

1/6.3% 13/81.3% 116.3% 1/6.3% 16

How do you like the multi-window interface? Easy to use Acceptable Get lost

13/81.3% 3/18.8% 0/0% 16

How do you like the graphical tools? Like it Acceptable Don~ like it

10/62.5% 6/37.5% 0/0% 16

How do you like HAT navigation tools? Like it Acceptable Confusing

8/50% 8/50% 0/0% 16

Was it easy to create hypcrlinks? Easy Acceptable Hard to learn

3/20% 12/80% 010% 15

Does the help facility help? Very helpful Acceptable Not helpful

5/31.3% 8/50% 3/18.8% 16

Is the reporting I printing function sufficient? Sufficient Acceptable Not sufficient

5/31.3% 9156.3% 1/6.3% 16

Is the response time satisfactory? Yes No

11/68.8% 5/31.3% 16

Where do you use HAT? L~h. Home Both
lab&home

1/6.3% 2/12.5% 13/81.3% 16

Do you have computer at home? Yes No

161 100% o/ O~n 16

Do you use HAT at home? Yes No

15193.8% 116.3% 16

Have you used Windows application before? Yes No

161 100% 0/0% 16

What type of PC do you have? PC 486 PC 386 PC 286 PC 8088

9/60% 5/33.3% 0 1/6.7% 15

159

5.4 Alternative Integration Strategies

The DOE is not the only method to integrate the HAT subsystems. There are

different alternatives that may yield the same result, such as direct coupling, pipelining,

file sharing, dynamic link library (DLL), OLE, and networking.

Direct coupling of simulation and expert systems with CASE is difficult, and

error-prone, because the subsystems themselves have been very complicated

applications. Direct coupling may also require special internal structures that fail to reuse

existing packages. Nevertheless, a well-designed direct coupling integration can be more

efficient than other alternatives.

Pipelining is often used in single user, single tasking systems like DOS, or a

multi-tasking system like UNIX. In a single tasking system, applications can only run one

at a time. Pipelining only transfers data once an application is finished, which does not

meet the requirements ofHAT. Although MS Windows is a multi-tasking system, it does

not provide the powerful tools for multi-tasking and concurrent programming as UNIX.

Application integration through multi-tasking pipelines and process communication is

difficult under MS Windows.

File sharing allows multiple applications have access to the same file through

'single write - multiple read' or 'multiple write - multiple read' file access control

conventions. File sharing is a good way to share data among different applications.

However, it does not provide sufficient controls mechanisms for the applications to

coordinate synchronized communications. HAT requires well-coordinated conversations

among its subsystems. Therefore, file sharing technique is not suitable to support HAT.

A Dynamic Link Library (DLL) is a library format supported by Windows. A

conventional library is linked to an executable program at linkage time. As part of the

160

executable program, a conventional library may have multiple occurrences in different

program executions. A DLL can be shared by multiple applications and linked to the

applications at run-time. There is at most one copy of a DLL in memory in contrast to

possible multiple occurrences in a conventional library. As a result, the DLL is a way for

applications to share and reuse common functions in Windows. All the libraries used in

HAT (Tools.h++, ObjectGraphics, YANSL, and M4) can be transformed into DLLs,

which will significantly reduce the size of the HAT executable module and save memory.

However, using DLLs for system integration is still a kind of direct coupling strategy. A

subsystem represented in DLLs cannot work as independent applications. Moreover,

programming and debugging in DLLs are often more difficult than that of conventional

programmmg.

As a superset ofDDE, OLE can perform every DDE function. In addition, OLE

supports a more sophisticated data format and automates object linking and embedding.

It is possible to integrate the HAT subsystems with OLE instead ofDDE. However,

DDE is more efficient and can be tailored for more user-dependent communication

among applications. DDE has the advantage of managing multiple items in a single

conversion, which often requires multiple conversation links in OLE. DDE has been

chosen over OLE as the linkage method for HAT subsystems because multiple data

items are exchanged depending on user choice. More recent versions of OLE provide

OLE Automation and OLE Controls and will eventually become universal

communication links that integrate Windows applications [Pleas 94].

There are several successful commercial products for system integration using

'application suites' and 'cross application platform' concepts of 'pluggable' applications

that include Borland Office 2.0, Lotus SmartSuite 2.0 and Microsoft Office 4.0. These

systems integrate a word processor, spreadsheet, database, electronic mail, as well as

161

graphical and presentation tools into a single platform that allows different applications

to share data and functions through DOE, OLE, and DLLs while keeping the

independence of each application. In light of these successful systems, HAT is an

application of the 'cross application platform' concepts to CASE, simulation and expert

system. The HAT architecture can be seen as a platform for visual interactive

CASE/Simulation systems.

Integrating applications on different machines over a computer network is

outside the scope of this project. Nevertheless, this research indicates a direction for

further study. There have been network DOE and network OLE applications that apply

the same DDE and OLE principles over a local area network. An extension of the HAT

architecture based on the network version ofDOE and OLE would be applicable for

distributed CASE/Simulation integration.

ODE and OLE concepts can also be combined with DEXTER model structure to

integrate diverse software packages. DEXTER model is a reference model that captures

the important abstractions in a wide range of hypertext systems [Halasz 94]. Figure 5.5

shows a scenario of DEXTER node integration based on a DDE / OLE network. This

scenario can be seen as a generalization of HAT architecture. Each application in this

scenario is constructed as a DEXTER node. The run-time layer is the user interface that

present information (text, graphics, image, voice, and video) in a uniformed format for

the integration. The storage layer manages the information storage and retrieval. In

addition, the storage layer also has DDE / OLE communication capacity that sends

information back and forth to other DEXTER nodes. The DDE / OLE media can be

constructed based on either networking or stand-alone DDE / OLE protocols. The

within-component layer is application specific, where details of each application are

implemented. The three layers of a DEXTER node are relative independent and can be

162

designed separately. The run-time layer and within-component layer can be plugged into

the storage layer through presentation interfaces and anchors. The storage layers of

different DEXTER nodes become the backbone ofthe integration. Different DEXTER

nodes can be designed in different environments as long as they can communication with

DDE / OLE protocols.

App2

§\
\

-,

\
»:

App4

;§ App6

Run-Time Layer

Presentation of the hypertext;
User interfaction; dynamics

Presentation Specifications

Storage Layer
A 'database' containing a

network ofnodes and links

Anchoring

App1

~

Within-component Layer
The content / structure inside
the node

Structure of a Dexter Node

Figure 5.5. A software integration scenario based on D£\TER model

5.5 Lessons Learned Through The Implementation of HAT

Although c++ is a powerful object-oriented language with strong links to the

Windows operating system, it is not without problems. Programming in C++ requires

that programmers be concerned with the details of object management. The power of

C++ comes at the cost of additional responsibility and risk for programmers. Unlike

interpreted languages, such as Visual Basic and PLUS, C++ needs extra time for

compilation and linkage. It also lacks the system support of object management and error

protection found in Visual Basic and PLUS.

163

There are two problems that requirespecial attention in C++ programming: the

'gone and forgotten' problem and the 'memory leak' problem. One of the features of

object-oriented programming is dynamic binding, in which objects are created and

associated with methods at run-time. Because of the lack of object management in C++,

it is the programmer's responsibility to monitormemory use. If an object is created and

neverdeleted, it will become memorygarbage that occupies system memory evenafter

the application is terminated. When sufficiently bad, memory leaks may result in total

operatingsystem failure. The programmer is responsible for 'garbage collection' by

deleting objects from memory when the objectsare no longer needed. However,

premature deletion or repeated deletion of an object will also cause an operating system

failure. This phenomenon is known as the'gone and forgotten' problem. Therefore, it is

critical for programmers to manage objects in a timely and organized fashion. Much of

the object management in C++ relies on the programmer's experience, debugging tools

and well-designed object structures.

Other lessons learned throughout this project are:

(I) Reuse existing C++ classes and C++ code.

The inheritance feature of C++ madesoftware reuse become a reality.

Software reuse will shorten development time and improve system reliability.

However, special care must be taken to insure the quality of class library

packages purchased from outside sources. Because of the additional

difficulties in reading and editingthe code of others, bug detection is difficult.

Another potential problem with software reuse is updating and technical

supportingfrom package providers. This is especially true in new and rapidly

evolving systems, such as Windows. Many development environments are not

164

fully backward compatible. Application packages based on an old environment

often need major changes to take advantage of a new environment.

Two third-party C++ libraries are used in HAT: Tools.h++ and

ObjectGraphics. Tools.h++ uses ANSI standard C++ to provide a cross­

platform SmallTalk-like collection classes for data structure design. Tools.h++

has little difficulty with the change in different Windows programming

environments. On the other hand, ObjectGraphics is closely associated with

the Windows GDI (Graphic Device Interface) and the Borland OWL 1.0

(Object Windows Library) Windows Application Framework to provide

graphical programming support. A program developed with ObjectGraphics is

not portable to other GUI (Graphical User Interface) environment. It is also

very sensitive to changes in the Borland C++ programming environment.

(2) Take advantage of Windows Application Framework (WAF) and User

Interface Toolkit ann.
The basic tools for Windows programming are Microsoft SDK (System

Development Kit) and API (Application Programming Interface). However,

programming directly with the SDK and API is very tedious and error prone.

There are several Windows Application Frameworks including the Object

Windows Library (OWL) from Borland and the Microsoft Fundamental

Classes (MFC) of Microsoft. These are the most popular C++-based WAFs

built on top of the SDK and API.

UITs are also included in the Windows programming environment. Microsoft

AppStudio and the Borland WorkShop provide graphical tools to visually

design a user interface.

165

WAFs and UITs provide a friendly user interface and result in more efficient

Windows programming. While gaining ease in Windows programming,

programmers lose the flexibility of direct access to the SDK and the API,

because WAFs only provide services for standard window operations.

Nevertheless, programmers can always use direct SDK and API calls from a

WAF to regain flexibility, when necessary, because the SDK and the API are

special C functions that can be called from any C++ applications. For instance,

several direct SDK calls are made in the HypertextWindow of HAT to

implement the hypertext display, while the HypertextWindow itself is a

descendent from the TFileWindow class of OWL.

(3) Organize a program around events and messages.

Fundamentally, HAT contains a hypertext-based user interface. Object­

oriented GUI design is an event-driven process. Objects and their associated

methods are organized in response to events from the WIMP user interface

and messages from one window to another. Event-driven programming

requires the identification of the events and messages handled by an object and

the construction of appropriate methods. This is in contrast to traditional

function-driven programming, where execution sequences are pre-defined

inside a program. In addition, there are no apparent execution sequences in an

event-driven program.

Event-driven programming is effective in handling graphical user interface

events and messages, where users may choose various event combinations

regardless of the sequence. However, end user freedom poses a 'threat' to

programmers. Programmers have to consider all the possible events, messages

and their combination effects in order to define the event-handler accordingly.

166

Because of the additional requirement for event handling, a graphical user

interfacedesign is much more difficult than that ofa command line user

interface. Programmers often rely heavily on GUI design tools, debugging

programs, and GUI design experienceto cope with the increasingdemand for

graphical interface design.

(4) Rely 011 good interactive debugging tools.

Because of the complexityinherent in graphical user interface design, it is

imperative that powerful debugging tools be used throughout the development

process. A good on-line debugger will help programmers visually examine

program execution flows, values of variables, stack and heap usage, class

structures, and source code. The original Borland C++ 3. I only includes a

DOS-based debugging tool, which is not sufficient for complexWindows

programming. The recent versions ofBorland C++ 4.0 and Visual C++ have

greatly improved interactive debugging tools.

During the development of HAT, investments in debugging and testing tools

exceeded the expense of programming environments. Several third-party

debugging tools were employed to assist in finding program bugs, logical

design errors, as well as memory leaks, pre-mature deletion, and repeated

deletion problems. Without these debugging tools, it would be difficult, ifnot

impossible, to develop the system.

(5) Rely on well designed class structures and documentation.

C++ offers programmers great flexibility for implementation, but does not

enforce rules for good system design. The quality of the source code as well

as the whole system lie in the hands of programmers. Using C++ does not

167

guarantee the benefits of object-oriented techniques, instead, methods for

object-oriented analysis and design must be followed. Ifglobal and public

variables and methods are not restricted, and class structures are not well

defined, a c++ program can be as badas any other poorly designed program.

HAT uses the Coad-Yourdon method for system analysis and design. The

project benefited from carefully designed class structures. Due to the

exploratorynature of this project, systems details were not clearly defined at

its inception. Thus, object-oriented methods helped to define the system

components and permitted the system to evolve through many modifications.

(6) Follow examples and intelligent helpfacilities.

Examples help significantly in Windows programming, especially for

beginners. Given the level of sophistication in Windows programming, a

beginner is often overwhelmed by its complexity. A good example can provide

an entry to Windows programming. There are manyfunctions and calling

conventions in the Windows environment and it is difficult to use them

correctly and efficiently all the time. Reference to examples or source code

from previous projects can save a lot of time.

Some Window programming systems include intelligent help facilities to

reduce the burden on programmers. Microsoft AppWizard, ClassWizard, and

Borland AppExpert, ClassExpert are good examples. These facilities let

programmers visually create graphical interface and generate skeleton code,

message map, and event handlers for the application. Also, the intelligent help

facilities save a lot of effort by specifying correct program structures and

connecting the program withgraphical resources.

168

(7) User interface design is difficult.

The friendliness and 'easy-to-use' features of graphical user interfaces come at

the expense of higher requirements for coding and debugging. Myers notices

that 40-50% of the code and run-time memory are devoted to interface

functions in some application [Myers 89]. The ratio is getting larger as more

complicated graphical user interfaces emerge.

The graphical user interface is the focus ofHAT. More than 60% of the

source code is dedicated to the manipulation of windows and graphical

objects. Even though HAT is not a bug-free product, it has taken several

months of debugging to make it run smoothly. The author believes that the

HAT experience is common to all GUI designs that one cannot expect a bug­

free GUI after a few runs. Given the powerful tools for programming and

debugging, GUI development is still not an easy programming job. A

substantial amount of time has to be allocated to design, testing and

debugging.

(8) System testing is iterative and requires involvement ofmany testers.

A software system often needs several rounds of modifications to satisfy its

requirement. Some software bugs are formidable and require time and many

rounds of testing to be isolated and fixed. There is a chance that modification

and bug-fixing may introduce new bugs and inconsistencies that causes new

problems. As a result, system testing is an iterative process and is never over.

In addition, GUI user interface testing requires not only significant amounts of

time, but also the involvement of many testers, especially outside testers, to

explore the different ways the user interface is touched, clicked, moved, and

169

navigated. The author has observed that programmers are often trying to

prove the correctness of their system and follow certain testing patterns. They

are not effective testers. On the contrary, an outside tester often does not have

anything to prove or any pattern to follow. Observing how outside testers

interact with the system often lead to uncovering more bugs and ill-defined

functions that were never noticed by the system developers.

170

CHAPTER 6 CONCLUSIONS

This project presents an effort to improve the performance of upper-CASE by

introducing a new interface design and dynamic evaluation. The concept of the

integration of hypertext and simulation with the traditional structured analysis tool is

novel in CASE research. This research is inspired by the current trends of both software

engineering and simulation research: (1) the need for more user involvement, (2) the

need for IS dynamics, (3) the increasing level of system integration, (4) the potential

benefits of a visual and an interactive environment, (5) the development of an intelligent

and user friendly interface, and (6) the need to improve system portability and flexibility.

6.1 Contributions

This project chose hypertext to improve the user interface and simulation to

enhance system model evaluation. The integration of these techniques in a multiple

window environment provides a set of flexible and compact systems analysis tools. The

primary contributions of HAT are:

(1) Improvement ofuser involvement: One of the primary objectives of this research

is to improve user involvement. There are apparent necessities for more user

involvement [Ives 84]. The advances in hardware technology, especially micro­

computer technology, broadens the base of users who willingly participate in IS

development. HAT takes advantage of the state-of-the-art microcomputer

environment and techniques to provide an interactive, visual, hypertext-based

user interface. It provides an easy method for users and system developers to

understand the non-linear structure of system models and encourages users to

employ structured techniques. Subsequently, HAT makes the DFD and ERD

techniques more understandable and closer to the end users. The end users and

171

the system developers may communicate better because they are using the same

tools and following the same systems analysis philosophy.

A preliminary user survey shows that HAT does help novice user understand the

structured analysis methods and improvecommunication among instructors and

students.

(2) Complement approaches to JAD problems: The basic lAD problem is to find

ways to improve communications with end users and understand their

requirementsbetter. lAD principles involve the introduction of structures and

formats for 'how to run a design meeting'. Although it is powerful and effective

to organize a design meetingand convey information among users and system

developers, current lAD lacks the ability to evaluate overall system dynamics. In

addition, lAD introduces a set of new expression methods, from different

structured analysis methods. This may result in some conversion problems later in

the analysis process. HAT makes use of structured techniques (DFDs and ERDs)

to communication with users and estimate systemdynamics directly. This

approach pushes DFD and ERD tools toward end users. It will convey the

information user requirement more effectively.

(3) Introduce IS dynamic analysis to CASE: Businesses and organizations are

dynamic by nature; the more complicated they become, the more dynamic

feedback they need. So far, CASE tools have not included dynamic analysis as a

routine task. It has been proved that dynamic analysis can improve system

performance estimation and decision making, especially in a noisy and turbulent

environment [Warren 92, Wild 91a]. HAT introduces an automatic DFD

simulation procedure of DFD models that provides a macro estimation of system

172

performance at the early stage of the SDLC. In previous studies, simulation

model generations are either manual or limited to automatic transfer of pre­

defined models. HAT provides greater integration and stronger dynamic linkages.

(4) Better system integration: HAT uses DOE data links for dynamic data transfer

among the user interface, the simulation package and the expert system - an

integration that previous studies have not implemented. In the testing systems of

Eddins [Eddins 90] and Wild-Griggs [Wild 91a], no automatic model generation

was implemented. Warren's study [Warren 92, 93] developed a prototype that

incorporates simulation with CASE. It supported automatic simulation model

generation but did not have an interactive user interface to input DFD models ­

the models have to be pre-defined in another CASE tool before the automatic

model generation and simulation. HAT integrates a full-featured hypertext-based

DFD and ERD user interface and automates the process ofDFD simulation.

(5) compact andflexible structure: HAT is developed in the Windows environment

with C++ and limits its function to system analysis only, which results in:

(a) The efficiency of C++ and the limited functionality make HAT more

compact and less costly than other CASE tools. HAT can be used on a

lap-top PC in the field for system analysis. Users may also have their own

copies of HAT and work on their own problems at home or at the office­

this represents one more step to bring CASE tools out of the computer

laboratory and closer to end users.

(b) The DOE link structure makes HAT very flexible. The HAT subsystems

are 'pluggable' and can be assembled at run-time, because they are

independent applications under Windows supporting DOE

173

communication. HAT can be easily down-sized to use the interface alone

for systems analysis, while the simulation subsystem and the expert

system serve other purposes.

(6) Provide aframeworkfor other studies: The concepts proposed in this research

may find applications for purposes other than IS development:

(a) DFD is a very powerful modeling method. It can be used for the modeling

of office routines and work flows. These models do not necessarily lead

to an implementation of computerized systems, but rather are descriptions

of how businesses are handled in an office. Once these models are

described in DFDs, users can use HAT to evaluate the dynamic features

of these models and weight different alternatives.

(b) HAT can also be a simulation environment, where simulation models can

be described in DFDs and HAT can generate the simulation model

automatically. The intelligent help system may provide the same services

to aid simulation modeling and simulation result explanation.

(c) The dynamic links among subsystems can be improved to support

stronger interactions. Instead of using 'batch processing' mode to handle

simulation models, run-time interaction can be added to exchange

simulation parameters and update rule-bases. This will result in strong

dynamic links among the subsystems that can be used for reverse

simulation [Wild 91b] and simulation animation. Since the construction of

HAT is object-oriented and based on an open structure, the enhancement

toward stronger dynamic links based on current HAT architecture is

applicable [He 94b].

174

6.2 Limitations

HAT is limited to the support of the systems analysis stage of the SDLC with

DFD and ERD. Currently, HAT is a stand alone system. There have not been

connections of any kind with other CASE tools proposed in this project, though such

connections are possible and desired for CASE integration [Chen 92a and b]. User query

analysis has been limited to keyword search technique. Natural language processing

capacity has ..,ot been incorporated with the user interface.

The file-based system of HAT is not sufficient to handle large and complex

projects. Moreover, users cannot access the same project at the same time. HAT has no

facilities to support cooperative IS development.

There is not enough interaction in the 'batch processing' simulation mode. Users

do not have interactive control over the simulation once it is started. The simulation

expert system is only a simple prototype that cannot undertake real simulation tasks.

The simulation package used in this project is only a prototype version. A lot of

modeling and statistical features common to most simulation languages are not included

in YANSL. A more advanced object-oriented simulation package is expected to improve

dynamic evaluation. In addition, the dynamic evaluator simulates only one DFD model at

a time. The correlation among different DFDs is not included. There is a potential to

expand the scope of dynamic evaluation to include all information system models in a

project.

The description of a process node in a DFD is nothing more than simple text,

which limits the capacity for further analysis. Formal or semi-formal expressions ofa

process may improve the quality of the analysis, such as decision trees, decision tables,

and pseudo code.

175

The current hypertext editor is based on links and pointers, which is convenient

and practical for a prototype system. In the long run, a standard hypertext engine with

SGML (Standard Generalized Markup Language) parser is preferred to handle large

hypertext documents. SGMLis more flexible and powerful in terms of hyperlink creation

and navigation, with which different hyperlinks and hyper-views of the same hypertext

documents can be created automatically by a hypertext engine.

6.3 Future Research

This project reveals more interesting questions on visual, interactive systems

analysis and simulation environments than it solves. The following are potential topics

for each subsystemthat canbe improved in future studies:

The user interface:

• Interface with other CASE tools that cover later stages of the SDLC.

• Improve the interactivity of the user interface by providing simulation

tracing, stepping and animating capacities to follow the details of system

dynamics.

• Extensive user behavior study on effectiveness of the HAT user interface

and dynamic evaluation functions. The subject of the study should be end

user or novice system developers. The purpose of this study is to see how

much this system will help novice users learn systems analysis techniques

and how effective they use it for their own problems.

The data repository:

The incorporation of an Object-Oriented database system, like RAIMA

Object Manager, for data repository management so that multiple users can

176

share information of the same project concurrently. This will also pave the

way for collaborative developmentbased the HAT architecture.

The simulation subsystem:

• Use better simulation packages. Because YANSL is a primitive simulation

package, it is not powerful enough to provide more sophisticated modeling

and statistic capabilities. A verified commercial simulation package will

serve better within the HAT architecture.

• The conversion rules used in this project is YANSL specific. Some of the

assumptions and rules may not be suitable for other simulation languages.

More study is needed to create a generalized set of conversion rules for

non-FIFO and complex queuing systems.

• Larger simulation coverage. Expand the scope of simulation to include

multiple DFD models of different levels. Give users the freedom to choose

the level of details they expected to investigate.

The expert system:

• Take advantage of the achievement of current AI and simulation

application studies and enhance the simulation expert system to cover more

simulation tasks.

• Expand the expert system in HAT to include intelligent hypertext

operations that recognize link patterns and group link clusters. Use special

marker languages, such as SGML, HTML, to represent hyperlinks so that

the expert system can manage the semantics of the text and create

hyperlinks automatically for different user levels.

177

The interface for dynamic data exchange:

• Upgrade the dynamic data exchange interfaceto advanced OLE operations

and enhance the current data interface functions and provide more data

services.

• Develop network DDE and OLE data interfacesand laythe ground work

for group system analysis tools.

In the long run, extensive research of the integration of hypertext, simulation and

expert systems along the lines of the HAT approach will include:

• Extension the HAT architecture toward an object-oriented systems analysis

toolkit that enforces object-oriented concepts and provides hypertext and

simulation support.

• Expansion to a reverse simulation environment that includesa visual

graphical interface, an expert system, and a simulation kennel. In the same

fashion, a visual interactive simulation (VIS) system can also be

constructed.

• Expansionto a visual interactivedecision support tool by using different

graphical modeling methods and providingdynamic evaluations. Such a

tool can be incorporated into an management information systemfor

planning and process re-engineering. Decision makers can use a drawing

board to change the modelsand the system will give statistics of possible

impacts.

178

APPENDIX A. AN OVERVIEW OF OBJECT-ORIENTED TECHNIQUES

Object-oriented Analysis (OOA), Object-Oriented Design (OOD), and Object­
Oriented Programming (OOP) are the most promising techniques of the 90's [Yourdon
92]. It is expected that 00 Database and 00 Operating Systems and all kinds of00
applications will eventually replace and enhance traditional products. What is OO? Why
is it so powerful?

What are Object-Oriented Approaches?

Software development has gone through several different stages before the
concepts of 00 became practical. The following figure shows an outline of these
different stages.

History of Data Processing Models

IV.

---+ .

"Program 1

..-: l Da~a f"

·'·;"';11"_-_I.8
;~ta J! Messages I~~~J

\,

~l

CJ
\

\

\"

o

Data

/

Modules ,-----­
(

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

P I I Programs IIrograms . : .

._---------------------------------~-------------------------------------_.I
I

: Objects
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Programs I '
_______~__+~ • __._~_. __..J

III.

Stage (1): All data is exposed to programs. A program has access to any data
without any restriction. Programs are closely related by common data. Ripple
effects (changes in one program cause changes in other program) are very strong.
(i.e. BASIC, Assembler and FORTRAN II)

Stage (JI): Data is defined as 'public data' and 'local data'. Each program may
maintain its own data that is only accessible to itself This effort reduces some
ripple effects, but programs are still tied to public data. (i.e. FORTRAN 77,
ALGOL 60)

179

Stage (111): Programs are defined as modules with their own local data and
algorithms. Data sharing among modules is minimized. However, data and
algorithm are still treated separately. (i.e. Pascal, ALGOL 68, C)

Stage (IV): Data and programs are tied together as an object. There is no direct
data sharing among objects. Objects communicate by sending messages and
providing services. This is the so called Object-Oriented approach. (i.e.
SmallTalk, C++)

Grady Booch [Booch 90] defined 00 approaches as:

To view the world as a set ofautonomous agents that perform
some high level behavior ...

This definition emphasizes that objects are 'autonomous agents'. They have their
own 'high level' behavior and are relatively independent from the outside world. An
object provides services upon requests (messages) from its information clients. Each
object may also send messages to request services from its information providers. In any
event, outsiders have no control over how the services are provided and why the
information requests are generated.

Each object has its own data members (attributes) and methods (procedures that
provide services designated to the object). The object owns its attributes and methods
throughout its life cycle and has the following basic features:

(a) Abstraction is to ignore those aspects of a subject that are not relevant to the
current purpose, in order to concentrate more fully on those that are [Coad 90].
For an object, abstraction means both data abstraction and procedural
abstraction.

Data abstraction means that data is well organized in structures so that it can be
treated as a single type or types to feed into operations (procedures). Procedural
abstraction means a well-defined operation that can be treated as a single entity,
even though it may combine many other operations.

In an object, attributes are data abstractions of all the properties that the object
has. Although they may be as simple as a Boolean variable or as complicated as
combinations of other objects, the object treats it as a single attribute entry to its
methods. Similarly, a method provides unique service to its users. The users treat
the method as a single service even though it may contain complex operations.

(b) Encapsulation is also called 'information hiding' which means that each object
should keep its design decisions as locally as possible. An object should not
reveal its attributes and the inner-structures of its methods to the outside world
unless it is necessary.

180

Encapsulation is fundamental to keep each object autonomous. Because of
encapsulation, objects are loosely coupled. The connections among them are
simply message paths. Direct controls and data access among objects should be
avoided.

Encapsulation also limits the ripple effect of modifications. Changes in one object
may have little effect on the other objects as long as messages and services
(interfaces) are unchanged.

(c) Inheritance is the ability to propagate characteristics from ancestors. Objects are
usually organized in family trees with more general objects on the top and more
specific objects at the bottom. A child object inherits properties from the parents.
In addition, a child object can add new properties and change those properties
inherited from its parents. A parent object may hide some of its properties as
'private' so that nobody else will be able to use or inherit these private
properties.

Inheritance makes it easier for software reuse. Useful properties of old designs
can be inherited and enhanced by new designs. Therefore, resources can be
focused on solving new problems rather than replicating old designs. Inheritance
also gives new ways to use third party's software. Some generic and fundamental
operations can be inherited from standard software package to make our
software production more effective and efficient.

(d) Polymorphism enables a function name to be shared within a class hierarchy
allowing each class in the hierarchy to implement the action in a manner
appropriate to itself. The particular version of a polymorphic function to be
executed is determined at run time. Dynamic binding supports the feature of
selecting the code to perform a particular function at the time the function is
invoked.

(e) Dynamic binding means that attributes and methods of an object are generated
and binded together at run time. The attributes and methods belong to this
specific object throughout its life cycle.

An object is described in terms of a class that contains all the descriptions of
attributes and methods for the object. When an object is generated from its class at run
time, an instance of the class will be created. This process is somewhat similar to
assembling a circuit based on its schematic.

Dynamic binding guarantees that all the objects generated from the same class
will have the same behavior. Since each object is autonomous, any two objects cannot
interfere with each other, even if they are generated from the same class. Therefore, each
object will keep itsown dynamic status at run time while having the same basic features
as the objects generated from the same class.

181

Pros and Cons ofObject-Oriented Approaches
Object-Oriented approaches bring new strategies for software development. They

break through the barrier between data and procedures and bring a new vision to every
stage of information system development. Some of the major advantages are listed as
following:

(1) Provide a frame work that supports basic methods ofhuman cognition.
Behavioral studies reveal that human recognition has three basic patterns: (a) To
identify an object and its attributes; (b) To distinguish a whole object as its
components and (c) To distinguish among different objects. 00 approaches
follow the similar patterns to identify and define objects to make a system more
understandable. 00 approaches also make analysis and design focus on objects
and their relations rather than specific details of data and procedures.

(2) Focus primarily on problem space understanding. Because the feature of
abstraction, designers can concentrate on the certain level of abstraction at one
time and forget other irrelevant facts.

(3) Combine data and process models into an intrinsic whole. All the techniques
before 00 separate data and process models. Although these approaches may let
the designers focus on one of the models at a time, different representations of
data and process models often cause misunderstanding and ambiguity during
system development. The Dynamic Binding feature allows data and procedures
being created and destroyed at the same time and eliminate all the side effects of
separate data and process models.

(4) Encourage reuse ofsoftware components. Because the feature of inheritance and
encapsulation, it is easy to reuse some components of previous designs or
standard package from third parties and reorganize them into a new system.

(5) Reduce development risk and expense. Because of software reuse and
inheritance, most mature designs can always be reused and inherited in new
products. Therefore, the new products will be more reliable and cost less than
from scratch.

(6) Leadsto systems that are more resilient to change. Because of information
hiding, changes to the objects will limit the ripple effect to a minimum and make
the whole system more flexible.

(7) Allow to accommodate families ofsystems. This is an obvious result of
inheritance. New products inherit basic features from previous versions and add
new features.

182

Although there are many advantages in using 00, it is not a panacea to all
software development problems. There are some limitations in implementing an 00
system:

(1) 00 approaches may not be quite suitable for number-crunchingjobs. 00 is
good at user interface design, process control and communication, database
management, and information system modeling. It may not be as efficient as
some existing methods in dealing with number-crunching jobs because 00
approaches require more resources to operate.

(2) Transition and start-up costs are high. 00 approaches are relatively new when
compared with various information system technologies. Most installed systems
are not 00. The movement to 00 based systems is not easy.

(3) Training requirements. Most software engineers are not trained in 00 concepts
and a long learning curve is typical in making the transition to 00.

(4) Performance overhead 00 approaches need extra resources to handle messages
and pass services among objects. Management of objects may also take extra
CPU time and memory.

Object-Oriented Analysis: Coaa- Yourdon OOA Method

Object-Oriented techniques are not only new programming techniques, but also a
set of methodologies that support the entire systems development life cycle. System
analysis is the first step in system development. Object-Oriented Analysis (OOA) can be
defined as following:

00.'1 is a method ofanalysis that examines requirement from the prospective
a/the classes and objects in the vocabulary ofthe problem domain.

- Grady Booch -

00.'1 is the process ofidentifying and defining classes and objects.
- Peter Coad>-

There is no standard for OOA. Some proprietary OOA methods have been used
for system development. Among them Coad-Yourdon Method [COAD 90] and Booch
Method [BOOCH 91] are popular.

The Coad-Yourdon OOA Method emphasizes the definition of objects and their
classes. It has five basic steps: Identifying Objects, Identifying Structures, Defining
Subjects, Defining Attributes, and Defining Services.

Identifying Objects: Considering requirement specification, system analysts will
identify concepts that represent the basic components in the requirements. Objects can be

183

the name of a problem domain, a picture, or an object in the real world. Once an object is
identified, it is normally named with a noun or adjective and noun.

It is not possible to identify all the objects necessary for system development at
this stage. However, it is vital to identify major objects in the requirements. Detailed and
specific objects can be identified as the decomposition proceeds.

Identifying structures: An object in the real world is often a complex whole of
smaller objects. Class structures are necessary to represent this complexity. The Coad­
y ourdon Method defines two types of class structures: Classification Structure and
Assembly Structure. The process of Identifying Structures is to categorize objects and
find the underlying detail.

Symbols of ccad-vcurdon Method

Object Nam~

Data Members

-0- Classification Structure

Services ~ Assembly Structure

Object

Classification Structure represents a generalization of a type of objects. For
example, 'transportation too\' is a Classification Structure of' Car', 'Plane' and' Ship';
'Car' is a Classification Structure of 'Honda', 'Ford' and 'Toyota'. Different levels of
Classification Structure construct a concept tree with general concepts on the top and
specific concepts at the bottom.

Example ofClassification Structure

Assembly Structure represents an aggregation of different components in an
object. For example, A 'Car' is composed of 'Engine', 'Body', 'Wheels' ... A set of
Assembly Structure will form a component tree with a general object on the top and
different levels that reveal different details of the general object.

184

Car

,---__--1
1T1111------,

*
Engine Body Wheels

Example ofAssembly Structure

Identifying Subject is to control how much of a model that analysts consider at
one time. This is to classify related objects into different layers so that analysts can focus
on specific objects at one time. Generally speaking, a subject should be limited to no
more than seven or so objects (Miller's Law) [Coad 91].

Identifying a Subject is different from Identifying Structures. A Subject depends
on requirements. It is the specific logical relation among objects for a given requirement
specification. Structures depend on concepts. It is the intrinsic relation among objects
that are independent from the requirements.

Defining Attributes: Attributes are data elements contained in an object that
describe its characters and status. Several objects may share some common attributes.
General and common attributes should be put into the objects on top of a class structure
tree and specific attributes should be put together with specific objects.

Defining Services is to define what methods should be included in an object to
provide the required service. There can be three different kinds of services:

Fundamental services such as initialization of an object, monitor and change of
status, and basic calculations.
Book-keeping services such as keeping object history and basic sequences.
Event Response Services such as response messages from other objects.

Object-Oriented Design: Coad- Yourdon 00]) Method

As the second stage of system development, system design is going to
decompose the result from system analysis toward implementation. Object-Oriented
Design (000) can be defined as following:

OOD is a method ofobject-oriented decomposition and a notation for both
logical and physical as well as static and dynamic models.

- Gra{zv Booch -

185

OOD is a process ofadding details for system implementation, including
human interaction, task management and data management details.

- Peter Coad -

In addition to their OOA methods, P. Coad and E. Yourdon propose a set of
OOD methods. It contains four basic components: Problem Domain, Human
Interaction, Task Management, and Data Management.

The Problem Domain component is directly inherited from OOA and refined in
OOD. Coad-Yourdon methods provide a set of symbols that make OOA and OOD use
uniform representation. This will avoid some of the inconsistency conversion ofdifferent
representations. System analysts should strictly follow the results from OOA and not add
objects that are outside the problem domain.

The Human Interaction Component captures how humans will command the
system and how the system presents information to users. Human interfaces are vital for
system acceptance and system performance. 00 techniques are good at interface design.
Humans can be treated as objects that send messages and requests for services.
Computer objects are triggered by these messages and provide services accordingly.

The Task Management component manages various kinds of tasks and
processes in a system. This component is specially important for large applications where
multiple tasks are running simultaneously. Task Management will identify the
coordinator, the event-driven tasks and clock-driven tasks to synchronize them.

The Data Management component provides uniform data service to other
objects. Data can be stored on different devices with different formats. In an 00 system,
everything is treated as an object, including the storage device. The Data Management
component is an 00 shell that wraps around the data storage to provide unified service
to other objects in the system. Other objects receive data from the Data Management
regardless of where it is stored.

Most system analysis and design methods in the past have different
representations. Conversion from one representation to another may cause information
distortion and misunderstanding. Coad-Yourdon OOA and OOD methods use a set of
uniform representation that make analysis and design intrinsically connected. The
transition from analysis to design can be very smooth. The Coad-Yourdon OOA and
OOD methods can be summarized as following diagram.

Subject Layer -
Object Laver Human Problem Task Data -
StructureLaver Interaction Domain Management Management -
Attribute Layer Component Component Component Component -
ServiceLaver -

Coad-Yourdon OOA and OOD method summary

186

APPENDIX B. EXAMPLES OF SYSTEMS ANALYSIS WITH HAT

8.1. Analysis of a TV inspection workshop operation: balance of workflows

1) The problem description:

A TV inspection workshop receives TV sets from the production workshop, inspects the product, repairs
defective TV sets. and sends the TV sets to packaging workshop. New TV sets arrive at average rate of a
TV set every 4 minutes. Quality control (QC) group reports that 85% of the TV sets from the production
line are flawless. and 15% need to be repaired. The QC report also shows that inspection of a TV set
takes about 2 to 3 minutes. A defective TV set is repaired every 15-30 minutes.

Assume that there are one group of inspectors, another group of repairmen in this inspection shop, and
all the defective TV sets can be repaired. What is the throughput ofthis workshop? How busy are the
workers? What can be done to improve the system?

2) The system models and hyperlinks:

Based on the information above, a DFD model is created. Along with the DFD model. data models that
describe the data flows are also created. The following diagram shows a snapshot of HAT interface that
describes the TV inspection workshop.

..

..

..

+

1.1

05
TV;uri...;)1

•

07
DdcctTV

ITVS< 1__1•1__-< Produ0>-----1 ~i~d
I\~::,

..

DFD Editor: - context level DFD
=-==:::r==:r==~.l-...l....-tll

Window QDE .simulation Help

co Hy ertext Narrative Windo

file fdit Iool ~iew .Qptions

DFD inspect-

Project Dictionary
<DF>Defect TV
<DF>Good TV
<DF>Repaired TV
<DF>TV arrival
<EXT>TVDest
<EXT>TVSrc
<PRO>Re air

I Step-in II Show

A TV inspection workshop
receives TV sets from the
production workshop. insbect the
product. repair defect TV sets.
and send the TV sets to
packaging workshop. New TV
se~~~=.!!~~~~~~~'F=:!;]

TV co Data Dictionary

co <Rc~~=~=~~==~~':!:!::!!~;,\1

re <Rc
fro <Rc

187

3) Simulation parameters:
By doubleclicking on a DFD object, a user can accessto the description of that object. The 'SIM' button
on the dialoguebox leads to the definitionof parametersnecessary to carry out DFD simulation. In this
example, exponential distributionof 4 minutes inter-arrival rate is used to describe the arrival of TV
sets; uniform distribution is used for the inspectionand repair.

The simulation run parameter dialoguebox is invoked from the 'Simulation' menu bar. This example
looks at an 8-hour working day (480 minutes)with 120minuteswarm-up periods and to runs.

Note: Theoretically, the warm-upperiodshould be determined by pilot runs of the specific simulation
model. This examplesimplyassumesthat warm-upperiod is 1/4of the run length.

Label: I_T_V_s_rc ---J

Distribution----------,

Hame: !interArriual I
Type: IExponential I

Parameters: 14 1

startiEnd Time: I0.00;480.00 I
Assignment: linspect,1.000; I

0~~~

Label: I_Re_p:...a_i_r _

Distribution--------..,

Hame: IrepairTime

Type: luniform

Parameters: 115,30

Resources: !repairMan

Assignment: ITVOest,1.000j

01 ~ancel II gesult II !!elp I

Label: linspect

Distribution----------,

Hame: linspectTime

Type: !uniform

Parameters: 12,3

Resources: linspector

--;:::::::=======
Assignment: ITVOest,0.850;Repal l
01 ~ancel II Hesult II !!elp I

Of0 t~ame: Icontext leuel Of0

t~umber of replications: 110.00

Warm up period: 1120.00 I
Length of simulation: 1480.00

I Q.K II ~ancel II !!elp

4) HAT DFD model descriptions:

DFD Name: TV inspection DFD
Simulation parameter: Run, 10, 120,480

DFD Node Descriptions:
Label: TVSrc Type: External Entity
A TV set arrives from the production workshop every 4

minutes. The arrival flow is continuous throughout an 8-hour
working day.
Simulation parameters:
Distribution: InterArrival, Exponential, 4;
Start/end time:O.O, 480;
Assignment: inspect, 1.0;

Label: TVDest Type: External Entity
Receives tested/repaired TV sets.

Simulation parameters:

Label: inspect Type: Process
The inspection needs an inspector to check TV sets. An

inspection takes 2-3 minutes. There may be 15% defect rate.
Simulation parameters:
Distribution: inspectTime, Uniform. 2. 3:
Resource: inspector:
Assignment: Repair, 0.15;TVDest, 0.85:

Label: Repair Type: Process
Repair defect TV sets. A repairman takes 15-30 minutes to

repair a TV set. The repaired TV sets are sent to the
packaging workshop.
Simulation parameters:
Distribution: rcpairTlme, Uniform. IS. 30:
Resource: repairman:
Assignment: rvnea, 1.0:

DataFlow Descriptions:
Label: TVarrival Type: Dataflow
Source: TVSrc Destination: inspect

Label: Good TV Type: DataFlow
Source: inspect Destination: TVDest

Label: Defect TV Type: DataFlow
Source: inspect Destination: Repair

188

Label: Repaired TV
Source: Repair

Type: DataFlow
Destination: TVDest

5) The simulation model:

II context level DFD Simulation Model
Run.;
{ 10.00; 120.00; 480.00; }

Distribution.;
{
Exponential, interArrival, 4.0;
Uniform, inspectTime, 2,3;
Uniform, repairTime, 15, 30;
}

Resource.;
{
PRIORITY, inspector;
PRIORITY, repairMan;
}

Sourcc.;
{
TRANSACTION, DET, TVSrc_SRC, interArrival. 0.00,480.00;
}

Queue.;
{
FIFO. inspect_Q, inspector;
FIFO, Repair_Q, repairMan;
}

Activity.;
{
inspect_Q, inspector, PROB, inspect_ACT, inspectTime:
Repair_Q. repairMan. DET. Repair_ACT. rcpair'Timc;
}

Sink.:
{
TVDest_SINK;
}

Branch.:
{
TVSrc_SRC, inspectQ;
inspect_ACT, TVDest_SINK, 0.850;
inspect_ACT, Repair_Q, 0.150;
Repair_ACT, TVDest_SINK:
}

189

190

6) Simulation result and discussions:
The simulation script is forwarded to the YANSL simulation subsystem. The simulation result shows
that the waiting time in the repair queue is much longer than the inspection queue (50.7 min. vs. 2.1
min.). The repairman is much busier than the inspector (89.6% vs. 52.8%). The dynamic information
based on the assumption of data flow distributions and processing patterns has gone beyond the
traditional DFD analysis. It suggests that the groups of inspectors and repairmen should be adjusted to
balance the workload.

Unweighted Statistics

Number Name Min Max Mean Std. Dev # ofDBS

1 inspect Q:TIQ 0.000 18.371 2.143 1.194 1214.000

2 Repair Q:TIQ 0.000 184.903 50.674 32.023 208.000

3 TVDest SINK:TIS 2.000 219.443 17.122 8.154 1214.000

Time Weighted Statistics
Number Name Min Max Mean Std. Dev TimeofDBS

1 inspector:UTL 0.463 0.630 0.528 0.203 4800.000

2 repairMan:UTL 0.599 0.962 0.896 0.349 4800.000

3 inspect Q:ANIQ 0.000 8.000 0.454 0.292 4800.000

4 Repair Q:ANIQ 0.000 10.000 1.839 1.381 4800.000

5 inspect ACT:UTL 0.463 0.630 0.528 0.064 4800.000

6 Repair ACT:UTL 0.599 0.962 0.896 0.125 4800.000

One of the scenarios is to let the inspector help the repairman to repair TV sets. As a result the
inspection becomes slower and the repair is faster. The following is the simulation output when
inspection time increased to 5-10 minutes and repair time reduced to 10-20 minutes. The result shows
that the utilization of the resources is more balanced (75.1% of repairman and 77.3% of inspector). The
overall system performance is also better (time in system of a TV set reduced to 16.1 min. from 17.1
min.). There are more TV sets going through the system than before (I 130 TV sets in the new
configuration vs. 1214 TV sets before the change).

Unweighted Statistics
Number Name Min Max Mean Std. Dev # ofDBS

1 inspect Q:TIQ 0.000 68.740 9.496 7.542 1130.000

2 Repair Q:TIQ 0.000 89.845 25.647 11.377 199.000

3 TVDest SINK:TIS 3.000 157.800 16.122 7.609 1130.000

Time Weighted Statistics
Number Name Min Max Mean Std. Dev Time ofOBS

1 inspector:UTL 0.665 0.932 0.773 0.283 4800.000

2 repairMan:UTL 0.538 0.938 0.751 0.429 4800.000

3 inspect Q:ANIQ 0.000 20.000 2.280 2.074 4800.000

4 Repair Q:ANIQ 0.000 5.000 1.058 0.845 4800.000

5 inspect ACT:UTL 0.665 0.932 0.773 0.283 4800.000

6 Repair ACT:UTL 0.538 0.938 0.751 0.429 4800.000

This example shows that HAT can help users test different scenarios and assumptions of the system
workflow and understand the intrinsic dynamics of a DFD model.

191

7) Invoking the simulation help system

The simulation help system can be invoked at two different points: defining the simulation model and
explaining the result. The 'Help' button inside simulation parameter dialogue box invokes the M4
expert system via DDE and the consulting conversation begins.

-
+

•-
-

Q.K I~ancel I

Label: IL-T_v_S_rc _

Expert Message:

Begin consulting ...
Does the data have
randomness?
yes
no

Distribution--------1

II£ancel I

IC'

Browser description

Name: ~T~V~S~r~c-:--,:--:-- -t-'---;:::======~~=t--l:""=~~~~~~~~~~~111
Type: External Entity

Description-------1
A TV set arrives from the
production workshop eyery ..

repair. e report a so
shows that inspection of a
set takes about 2 to 3 mlnut
A defective TVset is repaire
every 15-30 minutes.

Eile ,Edit 1001 ~iew .Qptions Window QDE ~imulation

DFDObject Input

ATV inspection workshop
receives TVsets from the
production workshop. inspect

"" Hypertext Narrative Wind

The above snapshot shows that the TVSrc DFD object dialogue box was triggered (the left) first. then a
simulation parameter dialogue box (the middle) was invoked by pressing 'SIM' button, and simulation
help conversation started (the right) by pressing 'Help' button.

HAT does not claim to have a sophisticated expert system built-in. However, this example docs show
that the conversation links between the user interface and expert system have been created. A user may
consult with the expert system to determine how to choose simulation parameters and interpret
simulation result.

Note: The expert system is only an add-on feature of HAT. It does not have direct impact on simulation.

8) DDE conversation log
a) A simulation task

UI: Simulation model Script....
UI: I am UI
UI: The model script is ready
SIM: Simulationfinished. The result is ready.
SIM: Simulation Result ...

b) A expert system consulting session
UI: I am UI
UI:knowledge:distr.kb
UI: DataReady
ES: Data Ready
ES:Begin consulting ..,
Docsthe data have randomness?
yes
no

VI:yes
VI: DataReady
ES: DataReady
ES:Does the data have boundary?
yes
no

UI:no
VI: DataReady
ES: DataReady
ES:Does the data have a constant rate?
yes
no

Ul.ycs
UI: DataReady
ES: DataReady
ES:Whatis the time interval between two transactions?
a number.

UI:4.0
VI: Data Ready
ES: Data Ready
ES: distribution = Exponential distribution is recommended.

(100%) because kb-15.
pari = 4.0 (100%)because kb-I6.
par2=0 (100%) becausekb-17.

Consulting finished.

192

193

B.2. Analysis of an investment company: determine the system bottleneck

1) Problem description:
An investment companyplans to develop an informationsystem to manage its business transactions.
The current operation procedure is as the following:
a) Buy/sell slips from the investment manager arrive to the companyabout every 15 minutes.
b) A clerk verifies the slips and may return 20% of the slips as they are invalid or not filled properly.
c) A typical verification processtakes 5-10 minutes.
d) Verified slips are forwarded to the buy/sellclerks to execute the buy/sell operation.
e) A buy/sell clerk takes 10-20 minutes to file a transaction record and talk with investmentfirms.
f) Investment firms reply to the buy/sell clerks about every 30 minutes.
g) Transaction records have to be sorted and stored to a master file, which takes 3-5 minutes for each

record.
Use a DFD model to describethe necessary components in the investment information system and find
out the bottleneck in the system that should pay specialattention upon implementation.

2) DFD model and hyperlinks:
Based on the problem description, a DFD model is created. The following diagram showsa snapshot of
HAT interface that describesthe investment firm.

+

Eile f,dit 1001 ~iew .Qptions

., Hypertext Narrative Windo

An investment company plans
to develop an information
system to menage its business
transactions. The
current operation procedure is
as the following:
1) Buy/sell slips from the
investment manager arrive to
the company about every 15
minutes.
2) A clerk vekifies the slips and
may return 20% of the slips as
they are invalid or not filled
properly.
3) A typical verification process
takes 5-10 minutes.
4) Verified slips are forwarded to
the buy/sell clerics to execute
the buy/sell operation.
5) A buy/sell cleric takes 10-20 + +

+

3) DFD model descriptions:

DFD Name: DFD of an investment firm
Simulation parameter: Run, 10, 120,480

DFD Node Descriptions:
Label: Inv. Mngr Type: External Entity
Investment managers send buy/sell slips at about every 15
minutes.
Simulation parameters:
Distribution: Extl_DIS, Exponential, 15;
Start/end time: 0.0, 480;
Assignment: Validate, 1.0;

Label: Validate Type: Process
Validate buy/sell slips from investment managers. 20% of the
slips may be returned to the investment managers: 80% of the
slips are forwarded to buy/sell operations.
Simulation parameters:
Distribution: Pro2_DIS, Uniform. 5, 10
Resource:
Assignment: Inv. Mngr, 0.20;Buy/SelLO.80

Label: Buy/Sell Type: Process
Perform buy/sell operations. 10-20 minutes for each
transaction.
Simulation parameters:
Distribution: Pro3_DIS, Uniform. 10.20;
Resource: Buy/Sell Rd;
Assignment: Buy/Sell Rd. 0.50:Inv. Firm. 0.50:

Label: File Rd Type: Process
Sort and store transaction records into master file. 3-5 for
each record.
Simulation parameters:
Distribution: Pro3_DIS, Uniform, 3, 5:
Resource: Master File. Buy/Sell Rd:
Assignment: Master File. 1.0;

194

Label: Buy/Sell Rd
Storage for transaction record.
Simulation parameters:
Assignment: File Rd, 1.0:

Type: DataStore

Label: Master File Type: DataStore
Master storage for all transactions.
Simulation parameters:

Label: Inv. Firm Type: ExternalEntity
Receives buy/sell requests and reply at about every 30
minutes.

Simulation parameters:
Distribution: Ext7_DIS, Exponential, 30:
Start/end time: 30, 480;
Assignment: Buy/Sell, 1.0;

DataFlow Descriptions:
Label: Buy/Sell Slips Type: DataFlow

Source: Inv. Mngr Destination: Validate

195

Label: Invalid Input
Source: Validate

Label: Buy/Sell Order
Source: Validate

Type: DataFlow
Destination: Inv. Mngr

Type: DataFlow
Destination: Buy/Sell

Label: Buy/Sell Requests Type: Dataflow
Source: Buy/Sell Destination: Inv, Firm

Label: Buy/Sell Confirmation
Source: Inv. Firm

Type: DataFlow
Destination: Buy/Sell

Label: Buy/Sell Records
Source: Buy/Sell

Label: Buy/Sell Records
Source: Buy/Sell Rd

Label: Sorted Records
Source: File Rd

Type: DataFlow
Destination: Buy/Sell Rd

Type: DataFlow
Destination: File Rd

Type: DataFlow
Destination: Master File

196

S6
MaslerFi1e

09
Invald 1"4l\.C

08
BuyISeI Sips

Inv.~~I-------i~

~~~~:)i~E~~~~~~~:""_---------------i,~. M _SINK

0.50

050

DFD - Simulation model conversion: an example ofan investment company



4) The Simulation model:

// context level DFD Simulation Model
Run.;
{ 10.00; 120.00; 480.00; }
Distribution:;
{
Exponential, Extl_DIS, 15;
Uniform, Pro2_DIS, 5,10;
Uniform, Pro3_DIS, 10,20;
Uniform, Pro4_DIS, 2,3;
Exponential, Ext7_DIS, 30;
}
Resource.:
{
PRIORITY, Buy/Sell Rd;
PRIORITY, Master File;
}
Source::
{
TRANSACTION, DET, Inv. Mngr_SRC, Extl_DIS, 0.00,480.00;
TRANSACTION, DET. Inv. Firm_SRC, Ext7_DIS. 30.00. 480.00:
}
Queue.;
{
FIFO, Validate_Q, NULL:
FIFO, Buy/Sell_Q, Buy/Sell Rd:
FIFO, File Rd_Q, Master File;
}
Activity:;
{
Validate_Q, NULL, PROB, Validate_ACT, Pro2_DIS:
Buy/Sell_Q, Buy/Sell Rd, PROB, Buy/Sell_ACT, Pro3_DIS:
File Rd_Q, (Master File, Buy/Sell Rd), DET. File Rd_ACT. Pro4_DIS:
}
Sink.:
{
Inv. Mngr_SINK;
File Rd_SINK;
Inv. Firm_SINK;
}
Branch.;
{
Inv. Mngr_SRC, ValidateQ;
Validate_ACT, Inv. Mngr_SINK, 0.200;
Validate_ACT, Buy/Sell_Q,0.800;
Buy/Sell_ACT, Inv. Firm_SINK, 0.500;
Buy/Sell_ACT, File Rd_Q, 0.500;
File Rd_ACT. File Rd_SINK:
Inv. Firm_SRC, Buy/Sell_Q:
}

197



198

5) Simulation result and discussion:
The simulation result of 10 runs shows that the Validate and File Rd queues have no delay at all. Since
there is no resource requirement and process capacity limit in this model, transactions to the Validate
queue should have no delay. However, it is worth noticing that the Validate activity does have a
maximum number of 6 transactions in the activity at one time, which means that delay is possible if
there is a resource restriction to the Validate activity. In any event, the delay will not be significant
comparing with the total number of transactions going through the activity.

The biggest congestion in the system is obviously Buy/Sell queue. It has average waiting time of 86.147
minutes while other queues in the system do not have any delays. There are also a lot of transactions left
over in the Buy/Sell queue when the simulation finished: 413 transactions go in the queue and only 296
(149 + 147) transactions go out the queue in 10 simulation runs. That indicates that 28.3% of the
transactions are not finished in the same day. The busy rate of the Buy/Sell activity also echo the same
fact that the Buy/Sell process is very busy (86% busy rate) and Buy/Sell record is the even busier (98.2%
busy rate). The simulation shows that this system is not very well functioned in current situation.

Based on the simulation result, we can see that the key issue of this information system development is
to focus on the Buy/Sell process and the Buy/Sell data store. The other two processes are less critical.

Unweighted Statistics
Number Name Min Max Mean Std. Dev # ofOBS

1 Validate Q:TIQ 0.000 0.000 0.000 0.000 309.000

2 Buy/Sell Q:TIQ 0.000 290.730 86.147 32.333 413.000

3 File Rd Q:TIQ 0.000 0.000 0.000 0.000 149.000

4 Inv. Mngr SI~:TIS 5.068 9.947 7.271 0.576 66.000
5 File Rd SI~:TIS 10.610 263.830 104.166 29.571 127.000

6 Inv. Firm SI~:TIS 18.300 300.200 105.736 7.609 147.000

Time Weighted Statistics

Number Name Min Max Mean Std. De\' Time ofOBS

I Buy/Sell Rd:UTL 0.977 0.989 0.982 0.010 4800.000

2 Master File:UTL 0.109 0.152 0.121 0.030 4800.000

3 Validate Q:ANIQ 0.000 0.000 0.000 0.000 4800.000
4 Buy/Sell Q:ANIQ 0.000 26.000 7.728 3.890 4800.000

5 File Rd Q:ANIQ 0.000 0.000 0.000 0.000 4800.000

6 Validate ACT:UTL 0.000 6.000 0.482 0.131 4800.000

7 Buy/Sell ACT:UTL 0.000 1.000 0.860 0.131 4800.000

8 File Rd_ACT:UTL 0.000 l.000 0.121 0.124 4800.000



APPENDIX C. HAT SURVEY QUESTIONNAIRE

HAT Questionnaire
1. Circle the number that indicates your level of agreement with each statement­
1. HAT was very helpful in understanding process and data modeling?

1_1_1_1_1
1 2 3 4 5

disagree agree completely

2. HAT was easy to use
1_1_1_1_1
12345

disagree agree completely

3. There was NO relationship between the process and data modeling concepts in the
textbook and HAT helped to bridge the gap.

1_1_1_1_1
1 2 3 4 5

disagree agree completely

11. Please respond to the following questions by circling the most appropriate answer
4. How long did it take to learn the basic functions of HAT (the DFD editor, the ERD

editor, creating hyperlinks and browsing DFDs)?
(a) Less than 2 hours.
(b) 2-5 hours.
(c) One day.
(d) More than one day.

5. Do you think that the use of hypertext links between text in the narrative window and
graphical objects was helpful for learning about process and data modeling?

(a) Very helpful.
(b) Helpful.
(c) Confusing.
(d) The hyperlinks had not effect.

6. How do you like the multiple-window user interface?
(a) Easy to use, just like other Windows applications.
(b) I can manage it. but I'm not happy with the way it looks.
(c) I am totally lost in the windows.

199

7. How do you like the graphical tools?
(a) 1 like the drag and drop features as well as the tool bars and

control bars.
(b) The tools are useful. but could be designed better,
(c) I don't feci comfortable with the 'look' and 'feci' of the tools.

8. How do you like the navigation through DFDs via button clicks?
(a) Vel)' easy to navigate among DFDs and helpful in

understanding functional decomposition.
(b) Helpful. but not easy to use.
(c) Confusing, not helpful at all.



9. Was it easy to create a hyperwords and hyper links?
(a) Easy to usc.
(b) I can learn it, but somewhatconfusing.
(c) Hard to learn.

10. Does the HELP facility really help?
(a) Very helpful.
(b) OK, but it needs some work.
(c) Not helpful.

11. Is the reporting and printing functionsufficient for your homework?
(a) I like it.
(b) I can live with it, but more work needs to be done on the

printing function.
(c) It is terrible.

12. Is the response time for operations in HAT satisfactory?
(a) Yes (b) No

200

13. Wheredo you use HAT?
(a) In the student lab (b) At home c) Both (a) and (b)

14. Do you have computer at home?
(a) Yes (b) No

if yes, can HAT run on your home computer?
(a) Yes (b) No

15. Haveyou used any Windows applicationsbefore?
(a) Yes (b) No

III. Please answer each questionas indicated.
16. Assuming that HAT were a bug-freecommercial product. what would be a fair price
for it? $----

17. What typeof computer do you have? CPU. RAM. hard drive size. screen size.
color/bw?

Please place additional comments aboutHAT on the lines below-

Thank you very much for taking this survey



APPENDIX D. M4 RULE-BASE EXAMPLES IN HAT

1) Determine a distribution

/* Goal */
goal = [distribution, pari, par2).

/* Facts */
distr(no_distribution)= ' No distribution is recommended.'.
distr(uniform) = 'Uniform distribution is recommended.'.
distr(normal) = 'Normal distribution is recommended.'.
distr(exponential) = 'Exponential distribution is recommended.'.
pltnorandom) =O.
p2(no_random) = O.
prepend(X) = float(llX).

/* Rules */

/* no random */
ifrandom=no and distr(no_distribution) = Nand parl=PI and par2 = P2
then distribution = N.

if random = no and plmorandom) =P
then pari = P.

if random = no and p2(noJandom) =P
then par2 = P.

/* uniform */
ifrandom and bounded and distr(uniform) = N and pari = PI and par2 = P2

then distribution = N.
if random and boundedand lower = D

then pari = D.
if random and boundedand upper = D

then par2 = D.

/* exponential */
ifrandom and bounded = no and const_rate and distr(exponential) = Nand
pari = PI and par2 = P2

then distribution = N.
if random and bounded= no and const rate and num = D and lID = P

then pari = P.
if random and bounded = no and const rate

then par2 = O.

/* normal */
if random and bounded= no and const_rate=no and distr(normal) = Nand
par I=PI and par2 = P2

then distribution = N.
if random and bounded= no and const rate = no and avg = D

then pari = D.

201



if random and bounded = no and const_rate= no and var = D
then par2 = D.

/* Questions */
question(random)= 'Doesthe data have randomness?'.
legalvals(random)= [yes, no].

question(bounded) = 'Does the data have boundary?'.
legalvals(bounded) = [yes, no].

questiomconst rate) = 'Doesthe data have a constant rate?'.
legalvalstconsr rate) = [yes, no].

question(upper)= 'What is the upper boundary?'.
legalvals(upper) = number.

question(1ower) = 'What is the lower boundary?'.
legalvals(lower) = number.

question(num) = 'Howmanyevets happen in a unit time?'.
legalvals(num) = number.

question(avg)= 'What is the average of the data?'.
legalvals(avg) = number.

question(var)= 'What is the range of change?'.
legalvals(num)= number.

2) Determine the runs, length, and warmup period

/* Goal */
goal = [run. length, warmup].

/* Facts (default values)*/
rdef= 10.
Idef= 480.

/* Rules */
/* use default val */

if def = yes and rdef = P
then r = P.

if def = yesand Idef= P
then length = P.

if def= no and r = P and rdef= PI and PI > P
then r = PI.

if def= no and I = P and Idef= PI and PI>P
then length = PI.

202



203

if length = P and P/4 = W
then warmup = W.

/* use user input value */
if def= no and r = P and rdef= PI and P>PI
then r = P.

if def= no and 1=P and Idcf= PI and P > PI
then length = P.

/* conclusion */
ifr = P and length = PI and warmup = P2

then run = P.

/* Questions */
question(r) = 'How many runs?'.
legalvals(r) = integer.

question(I) = 'How long is each run?'.
legalvals(l) = integer.

question(def) = 'Do you want to use default value?'.
legalvals(dcf) = [yes, no).

3) Simulation result interpretation

/* Goal */
goal = [recommendation).

/* Facts */
recom(timc_in_Q. low)= 'Low timc in Q. All transactions are processed promptly with little
delay. This node is not a bottleneck in thc system.'.
recom(time_in_Q, normal) = 'Time in Q is normal.'.
recom(timc_in_Q, high) = 'Time in Q is too long, possible bottleneck.'.
recom(time_in_Q, highmax) = 'Time in Q is normal. but maximum value is too high that
indecates short congestions.'.

reconunumjnQ, low) = 'Low number in Q. All transactions are processed promptly with little
delay. This node is not a bottleneck in the system.'.
recom(num_in_Q, normal) = 'Number in Q is normal.'.
recom(num_in_Q, high) = 'Number in Q is too high. possiblebottleneck.'.
recom(num_in_Q, highmax) = 'Number in Q is normal, but maximum value is too high that
indecates short congestions.'.

recom(timc_in_system, low) = 'Low time in system. All transactions are processed promptly
with little delay. The system has not a bottleneck.'.
recom(time_in_system, normal) = 'Time in system is normal.'.
recom(time_in_system. high) = 'Time in system is too long. possible bottleneck in the system.'.
recomuimejnsystem, highrnax)= 'Time in system is normal. but maximum value is too high
that indecates short congestion.'.



204

recom(resr_utl, low) ='Low resource utilization. The resource is idle most of the time.
Redundant or under performed resources. '.
recom(resr_utl, normal) = 'Resource utilization is normal.'.
recom(resr_uti, high) = 'Resource utilization is too high, possible bottleneck.'.
recom(resr_utl. highmax) ='Resource utilixation is normal. but maximum value is too high
that indecates short congestions.'.

recom(act_utl, low) = 'Low activity utilization. The activity is idle most of the time. Redundant
or under performed activity.'.
recom(act_utl, normal) = 'Activity utilization is normal.'.
recom(act_utl, high) = 'Activity utilization is too high, possible bottleneck.'.
recom(act_utl, highmax) = 'Activity utilization is normal, but maximum value is too high that
indecates short congestions.'.

recom(norecom) = 'Sorry. I cannot provide any recommendation on this issue'.

I'" Rules "'I
I'" timejnQ "'I
if type =timejn_Q and length = P and mean = PI and max = P2

and PI< PlIO and recom(time_in_Q,low) = R
then recommendation = R.

if type = time_in_Q and length = P and mean = PI and max =P2
and PI> PlIO and PI< P/4 and P2>P/4 and recom(timejn_Q,highmax) = R
then recommendation = R.

if type = time_in_Q and Icngth = P and mean = PI and max = P2
and PI> PlIO and PI< P/4 and P2<P/4 and recom(timejn_Q.normal) = R
then recommendation = R.

if type = timejnQ and length = P and mean = PI and max = P2
and PI> P/4 and recom(time_in_Q.high) = R
then recommendation = R.

I'" time_in_system "'I
if type = timejnsystem and length = P and mean =PI and max = P2

and PI< P/5 and recomtumejnsystem.low) = R
then recommendation = R.

if type = timejn_system and length = P and mean = P I and max = P2
and PI> P/5 and PI < P/2 and P2>P/2 and recom(time_in_system.highmax) = R
then recommendation = R.

if type = timc_in_system and length = P and mean =PI and max = P2
and PI> P/5 and PI < P/2 and P2<P/2 and rccomttimcjnsystcm.normal) = R
then recommendation = R.

if type = time_in_Q and length = P and mean = PI and max = P2
and PI> P/2 and recom(limc_in_systcm,high) = R
then recommendation = R.

I'" resr uti "'I
if type = resr_utl and mean =PI and max =P2

and PI < 0.3 and P2 < 0.8 and recom(rcsr_utUow) = R
then recommendation =R.

iftypc = resr_utl and mean = PI and max =P2
and PI> 0.3 and PI < 0.8 and P2>O.8 and recom(resr_utl.highmax) = R



then recommendation =R.
if type = resr_uti and mean =P I and max = P2

and PI> 0.3 and PI< 0.8 and P2<0.8 and recom(resr_utl,normal) = R
then recommendation = R.

if type = resr_uti and mean =P I and max = P2
and PI> 0.8 and recom(resr_utl,high) =R
then recommendation =R.

/* act_uti */
if type = act_uti and mean =PI and max =P2

and PI< 0.3 and P2 < 0.8 and recom(act_utl,low) = R
then recommendation = R.

if type = act_uti and mean =PI and max = P2
and PI> 0.3 and PI < 0.8 and P2>0.8 and recom(act_utl,highmax) = R
then recommendation =R.

if type = act_uti and mean = PI and max = P2
and PI> 0.3 and PI< 0.8 and P2<0.8 and recomtact.normal) = R
then recommendation = R.

if type = act_uti and mean =PI and max = P2
and PI> 0.8 and recom(act_utI.high) = R
then recommendation = R.

/* no recommendation */
ifrecom(norecom) =P

then recommendation = P.

/* Questions */
question(type) = 'What type of statistics has been collected?'.
legalvals(type) = [timejn_Q, numjnQ, time_in_system, resr_uti. act_uti].

question(run) = 'How many runs were tried?'.
legalvals(run) = integer.

question(1ength) = 'How long was each run?'.
legalvals(1ength) = integer.

question(max) = 'What is the maximum value?'.
legalvalsimax) = number.

question(mean) = 'What is the average value?'.
legalvals(mean) = number.

question(std) = 'What is the standard deviation?'.
legalvals(std) = number.

/* get more information of connections in complicated cases*/

205



APPENDIX E. SELECTIVE CLASS DESCRIPTIONS OF HAT

E.!. The user interface

J) The MDI base window
II Copyright (C) 1993 by University of Hawaii
II Hyper Analysis Toolkit (HAT) (R) Main Window
II MDI Base Window for all other windows
II Handling messages from its children and scheduling for different tasks.

II superclass: MyDDEWindow
II File: dfdwin.h
II Author: Jackson He
II Date: 03/93
II Language:C++
II Modification notes:

#ifndef DFDWIN H- -
#define _DEFWIN_H

#include "define.h"
#include "objdraw.h"
#include "mydde.h"

#define CM_ArrangeAll 204
#define CM Parameter 205
#define CM RunSim 206
#define CM_ShowDDELog 207
#define D ABOUT III
#define NumDataWin 30
#define SCRIPTLEN 3000
_CLASSDEF(TEditWindow)

11**** Declare TDFDApp. starting point of the program ******11
class _CLASSTYPE TDFDApp : public TApplication
{
public:

TDFDApp(LPSTR name. HINSTANCE hlnstance,
HINSTANCE hPrevlnstance. LPSTR IpCmd. int nCmdShow)

: TApplication(name. hlnstancc, hPrevlnstance. IpCmd. nCmdShow){}:
virtual void InitMainWindowO:
virtual void lnitlnstancct):

}; II end ofTDFDApp

II **** Declare TDFDWindow. the main MDI window *****11
class _CLASSTYPE TDFDWindow : public MyDDEWindow
{

friend UIAppHandle:
private:

Boolean Lock:
virtual void Setupwindowi): II window setup

206



TEditWindow* ShowTextWin(char* text, char* title);
Boolean TimeBomb(int day, int year);
virtual BOOL CarrCloset);
void Locklvlef);
void Unlocklvlet);
int IsActivate(RTMessage Msg);
void Menufinablet);
void MenuEnableNDO;

II enable menu for non-draw window

II message handler
virtual void DFDError(RTMessage Msg) = [WMJlRST + WM_DFDError);

II Report DFD errors
virtual void DataWinClosed(RTMessage Msg) = [WMJIRST + WM_DataWinClosed];

II Msg when a DataWindow is closed
virtual void WMSize( TMessage& Message) = [WM]IRST + WM_SIZE I;

II Resize window
virtual void ArrangeAlI(RTMessage Msg) = [CM]IRST + CM_ArrangeAII]:

II arrange all children
virtual void CMShowLog(RTMessage Msg) = [CM]IRST + CM_ShowDDELog]

{ ShowTextWin«char*)ConvLog.dataO, "DDE Conversation Log");} II show DDE log
virtual void CMAbout(RTMessage Msg) =[CM]IRST + CM_ABOUT]: II about msg
virtual void CMFloating(RTMessage Msg) = [CM]IRST + CMJLOATING):

II tum on/off floating label
virtual void OpenFile(RTMessage Msg) = [CMJIRST + CM]ILEOPEN];

II open file operatio
virtual void NewFile(RTMessage Msg) = [CMJIRST + CM]ILENEWI;

II new file operation
virtual void CMFileSave(RTMessage Msg) = [CM]IRST + CM]ILESAVE);

II save file operation
virtual void CMFileSavcAs(RTMessage Msg) = [CM]IRST + CM_FILESAVEAS):

II saveas opcrtation
virtual void CMPrintProject (RTMessage Msg) = [CMJIRST + CM]RINTPROJECT]:

II print project
virtual void CMShowPDict(RTMessage Msg) = [CM_FIRST + CM_ShowPDictj:

II display ProjectDictionary
virtual void CMShowDDict(RTMessage Msg) = [CM]IRST + CM_ShowDDict]:

Iidisplay DataDictionary
virtual void W!vlShowERD(RTMessage Msg) = [WM]IRST + WM_ShowERD];

II show ERD
virtual void WMShowDDWin(RTMessage Msg) = [WMJIRST + WM_ShowDWin):

II show DataWindow
virtual void RenewDFD(RTMessage Msg) = [WM]IRST + WM_RcncwListJ;

II reset all objects when a new project is started
virtual void ShowDFD(RTMessage Msg) = [WM]IRST + WM_ShowDFD]:

II msg when select a new DFD from broswer
virtual void ShowDFDObject(RTMessage Msg) = [WM]IRST + WM_ShowDFDObject]:

Iishow dfdobjects set by DataWinddow or project dictionary
virtual void ShowMsgWin(RTMessage Msg) = [WM]IRST + WM_ShowMsgWin]:

II show message window after checking DFD
virtual void MarkNode(RTMessage Msg) = [WMJIRST + WM_MarkNode]:

II Highlight current DFD object, triggered by a msg

207



public:

virtual void SetIndex(RTMessage Msg) = [WM]IRST + WM_SetIndex);
II Set index in the DFD browser. msg when sleet an object in DFDdraw window

virtual void ReExpand(RTMessage Msg) = [WM_FIRST + WM_ReExpandList):
II msg when DFDdraw updates nodes

virtual void ShowScript(RTMessage Msg) = [WM]IRST + WM_ShowScript):
II msg when description is shown with control button

virtual void UpdateDDict(RTMessage Msg) = [WM]IRST + WM_UpdatcDDict);
II update data dictionary

virtual void WMHyperWordSelected(RTMessage Msg) =

[WM]IRST +WM_HyperWordSelect); II msg when a hyperword is chosen
virtual void WMRedrawDFD(RTMessage Msg) = [WM]IRST + WM_RedrawDFD);

II redraw current DFD
virtual void WMSetDataFocus(RTMessage Msg) = [WM]IRST + WM_SetDataFocus);

II set focus to a DataWindow
virtual void CMParameter(RTMessage Msg) = [CM]IRST + CM_Parameter);
virtual void CMSimRun(RTMessage Msg) = [CM]IRST + CM_RunSiml:

II handlers to the simulation menu
virtual void CMHelp(RTMessage Msg) = [CM]IRST + CM_HELP): II Help

II simulation methods
void Setkunl'arameten);
DFDSet* CheckSimParameter(DFDSet[]):
void Pollfliml'arametert); IlpolI every node in current DFD for simulation parameters
Boolean GenSimScriptO: II Generate simulation script from DFD model
II simulation result parser
void ParseResult(char result[]);
int GetNextLine(char bufferl], char templ], int start):
int GetItems(char Line[), int from, int to, char temp[]):

WORD ChiidNum;
PIDFDDrawWindow DFDDraw:
PBrowserWindow Browser;
PIDescriptWindow Dcscript;
PpDictWindow pDict;
PdDictWindow dDict;
PTERDDrawWindow ERDWin:
PMessageWindow MsgWin;
DataWindow** DataWinHandle[NumDataWin):
int DataWinCount:
PHyperTextWindow HTxtWin:
char ScriptBulfer[SCRIPTLEN]:

TDFDWindow(LPSTR ATitle. LPSTR MenuNamc):
- IDFDWindowO;
UIAppHandle* GetAppHandleO{ return(UIAppHandlc*)Appl:}
virtual void CloseAuxWinO: II close auxilary windows. such as Dictionary Window

II mise methods
virtual void MarkNode(DFDObject* obj); /lHighlight a given DFD Object
virtual void PrintText(char* text. int len):
virtual void RedrawDFD(DFD* dfd):

208



209

virtual void CMHWordConnectO; II connect current hyperword and a dfd object
virtual void CMHWordDisconnectO; II disconnect current hypcrword and a dfd object
virtual void CMERDHWConnectO; II connect current hyperword and an ERD object
virtual void CMERDHWDisconnectO; II disconnect current hyperword and an ERD object

void GetWindowClass( WNDCLASS& WndClass );
void HighlightDFDWin(RWCollectable* data, RTMessage Msg);
void HighlightEntity(RWCollectable* data, RTMessage Msg);

void HighlightRelation(RWCollectable* data, RTMessage Msg);
II highlight object in DFD or ERD window once a data pointer
II is selected from the hypertext window

};
#endif II end ofTDFDWindow

2) The hypertext window
II Copyright (C) 1993 by University of Hawaii
II Hyper Analysis Toolkit (R) HypertextWindow
IlFile: htxtwin.h
I/Date: 4/29/93
IIAuthor: Tien Lum & Jackson He

#ifndef HTXTWIN h
#define HTXTWIN_h

#include "hfilewin.h"
#define CM REDRAW
#define CM]RINT

860
706

11******** HyperTextWindow ********11
class HyperTextWindow : public HyperFileWindow
{

protected:
virtual void CMFileNew(RTMessage Msg) =[CMJIRST + CMJILENEWj:
virtual void CMFileOpen(RTMessage msg) = [CMJIRST + CMJILEOPEN I:
virtual void CMFileSaveAs(RTMessage msg) = [ CMJIRST + CMJILESAVEAS ]:
virtual void CMFileSave(RTMessage msg) = [CM_FIRST + CMJILESAVE j:
virtual void CMFilePrint (RTMessage Msg) = [CMJIRST + CM]R1NT];
Ilvirtualvoid CMPrintProject (RTMessage Msg) = [CMJIRST + CM_PRlNTPROJECTj:
virtual int IsActivate(RTMessage Msg) =[WM_FIRST+ WM_CHILDACTIVATEj:
virtual void CMRedraw(RTMessage Msg) = [CMJIRST + CM_REDRAW):
virtual void HyperWordSelected(RTMessage msg) = [ WM_FIRST+ WM_HyperWordSelect j:
virtual void SetupWindowO:
void Menulinablct);

public:
Boolean Close;
HyperTextWindow(PTWindowsObject parent, LPSTR title. LPSTR fnamc);
-Hyper'TcxtWindowt);
Boolean CanClearO{return TRUE;}
Boolean Canf'loset);
HyperWord *GetHyperWord(RWCollectablc* data)



{ II return the hyperword for given user data
return GetHyperEditorO->GetHyperWord(data);

};
void ResetUserData(RWCollectable* data) { GetHyperEditorO->ResetUserData(data);}
void HighLight(RWCollectable'" data);
void Newlrilet);

};
#endif IlHyperTextWindow

3) The DFD editor window
II Copyright (C) 1993 by University of Hawaii
II Hyper Analysis Toolkit (R) DFDDrawWindow
II DFDDrawWindow
II Base Window for DrawWindowDFD and DFD tools
II interface with MDI window

210

II
II
II
II
II
II

SuperClass: ObjectDrawWindow
File: dfddraw.h
Author: Jackson He
Date: 03/93
Language: C++
Modification notes:

#ifndef _DFDDRAW_H
#define DFDDRAW H- -

#define OBJDRAW_CPP
#include "objdraw.h"
_CLASSDEF(DrawWinDFD)

11"""****"'** TDFDDrawWindow ***********11
class TDFDDrawWindow : public ObjectDrawWindow
{
protected:

RWCString Text;
void PrepareText(DFD* dfd); II prepare Text for printing
void PrintDFD(DFD* dfd);/I print DFD
virtual BOOL CanCloset);
virtual void SetupWindowO:
virtual int IsActivate(RTMessage Msg) = [WM]IRST + WM_CHILDACTIVATEj:
virtual void WMSize(RTMessage Msg) = [WM]IRST + WM_SIZEI:
virtual int FileSaveAsO:
virtual void Saver);
void Printl-roject'Treer);
virtual void LeftBullonUp(PTPoint MousePt. WORD InputStates):
virtual void DefCommandProc(RTMessage Msg);
void MenuEnableO:

public:
BOOL Close;
PTToolBar ToolBar:



PTControlBar ControlBar;
TDFDDrawWindow(PTWindowsObject AParent, LPSTR ATitle);
- TDFDOrawWindowO;

II message handler
virtual void CMFileNew(RTMessage Msg) = [CM]IRST + CM]ILENEW];
virtual void CMFileOpen(RTMessage Msg) = [CM]IRST + CM]ILEOPEN];
virtual void CMFileSave(RTMessage Msg) = [CM]IRST + CM_FILESAVE);
virtual void CMFileSaveAs(RTMessage Msg) = [CM]IRST + CM]ILESAVEAS);
virtual void CMFilePrint(RTMessage Msg) = [CM_FIRST + CM]RINT);
virtual void CMActualSize(RTMessage Msg) = [CM]IRST + CM_ACTUAL);
virtual void CMToolZoomO =[CM]IRST + CM_ZOOM];
virtual void PrintProject (RTMessage Msg) = [CM_FIRST + CM]RINTPROJECT);
virtual void SetTool(int Toolld); II Called by DefWindProc
virtual void SetControl(int Controlld);
lIutility
virtual void SetCaptionO;
virtual void Sizekidst);
PDrawWinDFD GetDrawWinO{return (DrawWinDFD*) DrawWindow:}

};
#endif IITDFDDrawWindow

4) The DFD drawing canvas
II Copyright (C) 1993 by University of Hawaii
II Hyper Analysis Toolkit (R) DrawWindowDFD
II provides drawing canvas for DFD drawing
1/basic drawing operations and connections with
1/data repository are setup

II SuperClass: TDrawWiindow
1/ File: dwindfd.h
1/ Author: Jackson He
II Date: 03/93
II Language:C++
1/ Modification notes:

#ifndef_ORAWWINDFD_H
#define _ORAWWINDFD_H

#ifndef _ GWINDOW_H
#include "gwindow.h"
#endif

#include "global.h"
#include "drawwin.h"

_CLASSDEF(DrawWinDFD)
_CLASSDEF(VisuaIRepDFD)
_CLASSDEF(DFO)

211



II ******** DrawWinDFD **********11
class DrawWinDFD : public TDrawWindow
{
protected:

II mouse move
virtual void LeftButtonDown(pTPoint MousePt, WORD InputStates);
virtual void BeginEraser(PTPoint MousePt, WORD Inputstates);
virtual void BeginDFDDraw(PTPoint MousePt, WORD InputStates, char* Id, char* label);
virtual void Drag(PTPoint MousePt, WORD InputStates);
virtual void LeftButtonUp(PTPoint MousePt, WORD Inputstates);
virtual void EndEraser(pTPoint MousePt, WORD InputStates);
virtual void EndDFDDraw(PTPoint MousePt, WORD InputStates, char* Id. char* label);
virtual void EndSelectDrag(PTPoint MousePt, WORD InputStates):

II Window Messages
virtual void WMRButtonDown (RTMessage Msg) =

[WM]IRST + WM_RBUTTONDOWN];
virtual void WMLButtonDblClk(RTMessage Msg) =

[WM]IRST + WM_LBUTTONDBLCLK];
void WMChar(RTMessage msg) = [WM]IRST + WM_CHAR]:

II Mise
virtual void BindingDrag(PTPoint MousePt);
void RedrawDFD();
void ExplodePRO(Process* pro):
void GenlnterfaceNodes(Process* pro, DFD* subDFD):
void Gotol'arenu);
void CMDeleteDFDO; II delete current DFD and move to parent:

public:
DFD * CurDFD;
PTGraphic SNode, DNode:
DrawWinDFD(PTGWindow Af'arent);
-DrawWinDFDO:
virtual BaaL Setiabel(DFDObject* obj);
virtual void MarkFlow(VisuaIRepDFD* vflow);
virtual void SetTool(int ToolID):
virtual void MarkPicture(VisuaIRepDFD* apicture):
VisualRepDFD * CreateNode(char* label. int type. TPoint * center):
VisualRepDFD * CreateFlow(char * label);
void CreateDFDO;
void readDFDName(char* name. int opr):
void SetDFDNameO;
void MarkNode(DFDObject* obj);
void AddInterfaceNode(DFDNode*, DFD*, Boolean, int):
VisualRepDFD* GetBuddyLabel(VisuaIRepDFD* vflow);
VisualRepDFD* GetBuddyFlow(VisuaIRepDFD* vlabel);
VisualRepDFD* GetBuddy(VisuaIRepDFD* vrep);

II from a flow find its label, and vise versa
void MarkBuddy(VisualRepDFD * vrcp):

}; II end of DrawWinDFD
#endif

212



5) The ERD editor window
II Copyright (C) 1993 by University of Hawaii
II HYPCi Analysis Toolkit (R) ERDDrawWindow
II Base Window for DrawWindowERD and ERD tools
II interface with MDI window
II SuperClass: ObjectDrawWindow
II File: erddraw.h
II Author: Jackson He
II Date: 03/93
II Language:C++
II Modification notes:

#ifndef_ERDDRAW_H
#define _ERDDRAW_H

#include "dwinerd.h"

#define OBJDRAW_CPP
#include "objdraw.h"

_CLASSDEF(DrawWinDFD)
_CLASSDEF(ERDCtrIBar)

II ************* TERDDrawWindow ************11
class TERDDrawWindow : public ObjectDrawWindow
{
protected:

RWCString Text;
void Prepare'Iexu);
II message handler
virtual void LcftButtonUp(pTPoint MousePt, WORD Inputxtatcs):
virtual void DefCommandProc(RTMessage Msg);
virtual void CMActualSize (RTMessage Msg) == [CM]IRST + CM_ACTUAL):
virtual void CMToolZoom (RTMessage Msg) = [CM]IRST + CM_ZOOM]:
virtual int IsActivate(RTMessage Msg) == [WM]IRST + WM_CHILDACTIVATE):
virtual void WMSize(RTMessage Msg) = [WM]IRST + WM_SIZE):
virtual void CMFilePrint(RTMessage Msg) == [CM_FIRST + CM]RINTI:
virtual BOOL CauClcsef):

virtual void SetupWindowt);
public:

ER_Diagram* CurERD:
PERDTool ToolBar;
PERDCtrlBar Control Bar;
Boolean Close;
TERDDrawWindow(PTWindowsObject AParent. ER_Diagram* curcrd):
- TERDDrawWindowO;

Iltool
virtual void SetTool(int Toolld); II Called by DelWindProc
virtual void SetControl(int Controlld);

213



Ilutility
virtual void Setf'aptionf);
virtual void Sizekidst);
PDrawWinERD GetDrawWinO{retum (DrawWinERD*) DrawWindow;};
void GrabDataObjectO; II Grab selected data object from data dictionay window

II to current ERD
void ShowDataWindowO; II show the datawindow connected with current ERD
void Menufinablet);

}; IlendofTERDDrawWindow
#endif

6) The ERD drawing canvas
Copyright (C) 1993 by University of Hawaii
II Hyper Analysis Toolkit (R) DrawWindowERD
IIDrawWindowERD
II provides drawing canvas for ERD drawing
II basic drawing operations and connections with
II data repository are setup
II SuperClass: TDrawWindow
II File: dwinerd.h
II Author: Jackson He
II Date: 03/93
II Language.Cs-e
II Modification notes:

#ifndef_DRAWWlNERD_H
#define _DRAWWlNERD_H
#ifndef _ GWINDOW_H
#include "gwindow.h"
#endif

#include "global.h"
#includc "drawwin.h"

_CLASSDEF(DrawWinERD)
_CLASSDEF(VisuaIRepERD)
_CLASSDEF(ER_Diagram)

11***"'*** DrawWinERD ********11
class DrawWinERD : public TDrawWindow
{
protected:

virtual void SetupWindowO {TDrawWindow:: SetupWindowO: }
II mouse move
virtual void LeftButtonDown(PTPoint MousePt. WORD InputStates):
virtual void BeginEraser(PTPoint MousePt. WORD InpurStatcs):
virtual void BeginERDDraw(PTPoint MousePt, WORD InputStates):
virtual void Drag(PTPoint MousePt, WORD InputStatcs):
virtual void LeftButtonUp(PTPoint MousePt. WORD InputStates):
virtual void EndEraser(pTPoint MousePt. WORD InputStates):

214



215

virtual void EndERDDraw(pTPoint Mousel't, WORD InputStates);
virtual void EndSelectDrag(PTPoint Mousel-t, WORD InpuiStates);
II Window Messages
virtual void WMRButtonDown (RTMessage Msg) = [WM]IRST + WM_RBUTTONDOWNJ;
virtual void WMLButtonDblClk(RTMessage Msg) =

[WM_FIRST+WM_LBUTTONDBLCLK]:
public:

ER_Diagram * CurERD;
PTGraphic SNode, DNode;
DrawWinERD(pTGWindow AParent, ER_Diagram* curerd);
-DrawWinERDO;
II Mise
virtual void MarkRelation(VisuaIRepERD* vflow);
virtual void SetTool(int TooIID);
virtual void MarkPicture(VisuaIRepERD* apicture);
VisualRepERD * CreateEntity(TPoint * mousePt);
VisualRepERD * Createkelatioru);
void CreateERDO;
virtual void BindingDrag(PTPoint MousePt);
void RedrawERDO;
void MarkNode(Entity* entity);
void MarkRelation(Relation* relation);

}; II end of DrawWinERD
#endif II _DRAWWINERD_HlI

7) The graphical object classfor D}7J
II Copyright (C) 1993 by University of Hawaii
II Hyper Analysis Toolkit (R) VisualRepDFD
II inherited from VisualRep, serve as the objects
II shown in the DFD drawing window
II SuperClass: VisualRep
II File: visdfd.h
II Author: Jackson He
II Date: 03/93
II Language: C++
II Modification notes:

#ifndef _VisualRepDFD
#define _VisualRepDFD

#include "visrep.h"

II ***** VisualRepDFD ********11
class VisualRepDFD : public VisualRep
{

public:
VisualRepDFD* Buddy; Ilused for label object;
VisualRepDFD(VisualObject * interface);
-VisualRepDFDO;
II Basic operations
VisualObject * Getlnterfacci) {return(VisualObject*) Intcrfacc.};



DFD* GetCurrentDFDO;
DFDObject *GetDFDObjectO;
DataNode * GetDataNodeO;
void SetLabel(char * label);
DFDTypc GetTypeO;
RWCString GetIdO;
int Getl.evelt);
char* Getl.abeli);
TPoint * Getflenterf);
TPoint * GetStartO{ return Start.}
TPoint * GetEndO { return End;}

RWDlistCollectables* Gctlnf'lowst);
RWDlistCollectables* GetOutFlowsO;
void Hilight(VisualRepDFD* picture);
IIDrawDFD

void ConstructNode(DFDType type);
void Constructf'lowt);
void DrawFlow(DFDNode* source, DFDNode* dcst);

}; II end ofVisualRepDFD
#endif

8) The graphical objectfor ERD
II Copyright (C) 1993 by University of Hawaii
II Hyper Analysis Toolkit (R) VisualRepERD
II inherited from VisualRep, serve as the objects
II shown in the ERD drawing window
II SuperClass: VisualRep
II File: viserd.h
II Author: Jackson He
II Date: 03/93
II Language:C++
II Modification notes:

#ifndef _VisualRepERD
#define _VisualRepERD

#include "visrep.h"
#include "erd.h"

II ****** VisualRepERD *******11
class VisualRepERD : public VisualRep
{

public:
Boolean IsEntity;
VisualRepERD(RWCollectable * interface. Boolean isEntity):
- VisualRepERDO;

II Basic operations
RWCollectable* Getlnterfacetj] return Intcrface.}

216



Entity *GetEntityO
{ if(lsEntity) return (Entity*)Interface;

else return NULL;
}
Relation* Getkelatioru)
{ if(!lsEntity) return (Relation*)Interface;

else return NULL;
}
ER_Diagram * GetMyERDO
{ if(lsEntity) return GetEntityO->GetMyERDO;

else return GetRelationO->GetMyERDO;
}
DataObject* GetDataObjectO {return GetMyERDO->GetInterfaceO;}
TERDDrawWindow* GetERDWinO {return GetMyERDO->GetERDWinO;}
void SetERDWin(TERDDrawWindow* erdWin) {GetMyERDO->SetERDWin(erdWin);}

void SetLabel(char * label) {GetDataObjectO->SetName(labcl);}
DataType Get'Iypet) {return GetDataObjectO->GetTypeO;}
char* Getl.abelt) {return (char*)GetDataObjectO->GetNameO.dataO;}
TPoint * GetCenter(Entity* entity)
{ Point* p = entity-c-Getf'entcrt);

return new TPoint(p->X, r->Y);
}
TPoint * GetStartO{ return Start;}
TPoint * GetEndO { return End;}
RWDlistCollectables* GetReiationList(Entity* entity) {return entity->GetRclationListO;}
II Draw ERD

void Constructlintityt);
void Constructkelationt);
void DrawRelation(Entity* source, Entity* dest);

}; II end ofVisualRepERD
#endif

217



E.2. The data repository

1) DFD tree manager
II Copyright (C) 1993 by University of Hawaii
II Hyper Analysis Toolkit (R) DFDManager
II Data repository interface that contain DFD tree and
II pointers to dictionaries and data graph
II SuperClass: RWCollectable
II File: manager.h
II Author: Jackson He
II Date: 03/93
II Language:C++
II Modification notes:

#if !defined LManager)
#define _Manager
#include "drawogl.h"
#include "define.h"
#include "dhword.h"
_CLASSDEF (HypcrTextWindow)

11***** DFDManager ******11
class DFDTreeManager: public RWCollectable
{ RWDECLARE_COLLECTABLE(DFDTreeManager)

protected:
RWCString ProjName;
DFD* Root;
DFD * CurrentDFD;
ProjectDictionary * PDictionary:
DataDictionary * DDictionary;
DataRelGraph * DGraph:
HyperTextWindow* HyperWin;

public:
DFDTreeManagerO;
DFDTreeManager(const RWCString & name):
-DFDTreeManagerO;
II Inherited from class "RWCollectable":
unsigned binaryStoreSizeO const;
int compareTo(const RWCollectable*) const:
RWBoolean isEqual(const RWCollectable*) const:
unsigned hasht) const:
void restoreGuts(RWFile&):
void restoreGuts(RWvistream&);
void saveGuts(RWFile&) const:
void saveGuts(RWvostream&) const:
RWCString & GetProjNameO { return ProjName;};
ProjectDictionary * GetProjDictionaryO { return PDictionary:}:
DataDictionary * GetDataDictionaryO {return Dfrictionary.}:
DataRelGraph * GetDataGraphO {return DGraph:}:
void Rescu); II move CurrentNode to Root:
void MoveTo(DFD * adfd): II move CurrentNode to specific node

218



DFD >I< Getlcooti);
DFD * GetCurrentDFDO;
DFD* ExplodeSubDFD(const RWCString & name, Process* parent);

II explore to next level DFD from CurrentDFD
void InsertDFD(DFD >I< adfd); II insert a DFD as a child of Current DFD
void RemoveDFD(DFD * adfd); II remove a DFD from CurrentDFD children list
DFD * FindDFD(const RWCString & name, DFD* start);

II retrieval a DFD in the tree for a given name from start point on
DFD * FindDFD(DFD* adfd); II call previous FindDFD to check in adfd is in current tree;
RWDlistCoIIectables Browse'Ireet); II list all tree node in certain order
void PersistenceSave(char * filename); II persistence save to a file

Ilmethods for HyperWord
void SetHyperWin(HyperTextWindow* hyperwin) {HyperWin=hyperwin:}
DFDObject* GetObjFromHWord(HyperWord* hword);
HyperWord* GetSelectedHWordO;
HyperWord* GetDFDHWord(DFDObject* dobj);
HyperWord* ConnectDFDHWord(HyperWord* hword, DFDObject* dobj):

II connect a hyperword with a dfd object
RWBoolean DisconnectDFDHWord(DFDObject* dobj);

II disconnect all links with the dfd object
RWBoolean DisconnectDFDHWord(HyperWord* hword, DFDObject* dobj);

II disconnect the link of given hyperword *1

II Operations on Current DFD
DFDObject * GetCurrentObjectO;
void SetCurrentObject(DFDObject * obj);
DFDNode * AddNode(const RWCString & label, DFDType type. Point * center):

Iladd DFDNode to DFD and Proj. Dictionary
RWBoolean DeleteNode(DFDNode *obj):

II remove DFDNode from Data and Proj. dictionary
RWBoolean DcIeteFlow(Flow * flow); II remove Flow from Proj and Data dictionary
Flow * AddFlow(const RWCString & label, DFDNode *source. DFDNode *dest):

II Add a flow to DFD and Proj. dictionary
Flow *GetFlow(DFDNode *source, DFDNode *dest):

II Get flow for given source and destination
DFDNode *GetNode(const RWCString &labeL DFDType type):
Flow * GetFlow(const RWCString &label);
RWDlistCoIIcctables * GetOutFlows(DFDNode *node): II Get outflow for a node
RWDlistCoIIectables * GetInFlows(DFDNode *node): II Get inflow for a node
RWDlistCoIIcctables * Gctblodel.isu); II Get all nodes in this DFD
RWDlistColIectables * GetFlowListO:
RWCString & GetDFDNameO:
void SetDFDName(const RWCString & name):
Process * Gctl'arcnu):
DFD* GetParentDFDO:
void AddDFDChild(process *proc, DFD *child);
void RemoveDFDChild(DFD *child):
int Numf'hildreru);
RWDlistColIectables * GetChildrenO;

}; II end ofDFDTreeManager

219



2) The dictionary classjamily
//Copyright (C) 1993 by University of Hawaii
/I Hyper Analysis Toolkit (R) Dictionary
/I objects for Project dictionary, data dictionary
/I and their entries
/I SuperClass: DFDSet
/I File: dictnary.h
/I Author: Jackson He
/I Date: 03/93
/I Language:C++
/I Modification notes:

#if !defined CDictionary)
#define _Dictionary

#include "define.h"
#include "dfdset.h"

/I ******* ProjectDictionary *******/1
class ProjectDictionary : public DFDSet
{ RWDECLARE_COLLECTABLE(projectDictionary)

protected:
DFDTreeManager* Interface;

public:
Projectlfictionaryt);
ProjectDictionary(DFDTrecManager* interface);
-Projectlfictionaryr);

DFDTreeManager* Getl nterfacct) { return Intcrface.}
ProjEntry * InsertDFDObject(DFDObject * dfdobj);
ProjEntry * InsertProjEntry(ProjEnti)' * pentry):
void RemoveDFDObject(DFDObject * dfdobj);
void RemoveProjEntry(ProjEntry * pentry);
ProjEntry * FindProjEntry(DFDObjcct * dfdobj);

/I Inherited from class "RWCoIIectable":
unsigned binaryStoreSizeO const;
void restoreGuts(RWFile&);
void restoreGuts(RWvistream&):
void saveGuts(RWFile&) const;
void saveGuts(RWvostream&) const;

}; /I end ofProjectDictionary

/I ****** ProjEntry ******/1
class ProjEntry : public RWColiectable
{
RWDECLARE_COLLECTABLE(ProjEntry}
protected:

RWCString Label;
DFDType Type; /I Type can be: EXT. PRO. STR. DF
DescriptionCard * Description;
RWDlistCoIIectables * Links;
Boolean CanMerge(DFDObject*dfdobj):

220



public:
Projfintryi);
ProjEntry(constRWCString& label, DFDType type);
-Projfintryt);

RWCString& GetLabelO {return Label.};
Boolean SetLabel(const RWCString& label, DFDObject* dfdobj);
DFDType GetTypeO;
DFDObject* InsertLinks(DFDObject * dfdobj);
DFDObject* RemoveLinks(DFDObject * dfdobj);
RWBooleanIsl.inklimptyt);
RWDIistCoIIectables * Getl.inksi);
RWCString& Getlzescriptt);
void SetDescript(const RWCString & descript);
void Cleanllpr); II clean links before delete the entry

II Inherited from class IRWCoIIectable":

221

unsigned
int
RWBoolean
unsigned
void
void
void
void

}; II end ofProjEntry

binaryStoreSizeO const;
compareTo(const RWCoIIectable*) const;
isEqual(constRWCoIIectable*) const:
hashi) const:
restoreGuts(RWFile&);
restoreGuts(RWvistream&);
saveGuts(RWFile&) const;
saveGuts(RWvostream&) const:

11**** DescriptionCard *******11
class DescriptionCard : publicRWCollectable
{ RWDECLARE_COLLECTABLE(DescriplionCard)

protected:
RWCString Dcscript;

public:
Descriptionf'ardt);
DescriptionCard(const RWCString & descript):
-DescriptionCardi);
RWCSlring & Getlrescripu);
void SetDescripl(const RWCSlring& descript);

II Inherited from class "RWCoIIectable":
unsigned binaryStoreSizeO const:
void restoreGuls(RWFile&);
void restoreGuts(RWvistream&);
void saveGuls(RWFile&) const:
void saveGuls(RWvoslream&) const:

}; II end of DescriplionCard

11******* Datafrictionary ********11
class DataDictionary : public DFDSet
{ RWDECLARE_COLLECTABLE(DataDictionary)

protected:



DFDTreeManager • Interface;
public:

Datalrictionaryi);
DataDictionary(DFDTreeManagcr • interface);
-Datalrictionaryt);
Df'D'I'reelvlanager " Getlnterfaccei) { return Interface.};
Datafintry • InsertDataObject(DataObject • dataobj);
DataEntry • InsertDataEntry(DataEntry • dentry);
void RemoveDataObject(DataObject • dataobj);
Datafintry • FindDataEntry(DataObject • dataobj);
DataEntry * FindDataEntry(const RWCString& name, int type);
RWDlistCollectables • listfrictionaryt); II list alI entires in dictionary

II Inherited from class lRWCollectable":
unsigned binaryStoreSizeO const;
void restoreGuts(RWFile&);
void restoreGuts(RWvistream&);
void saveGuts(RWFile&) const:
void saveGuts(RWvostream&) ;

}; II end of DataDictionary

11·***·* Datafintry *******11
class DataEntry : public RWCollectable
{RWDECLARE_COLLECTABLE(DataEntry)

protected:
RWCString Name;
DataType Type; II Type can be: Dataf'low, Datastorc, Record. Element
int isKey;
int isCombKey;
int CombKey;
DataObject * DObject;
RWCString Attrib;
int Length;
DescriptionCard* Script;

public:
Datafintryi);
DataEntry(const RWCString & name. DataType type.

const RWCString& attr, int l. const RWCString& s. DataObject * dobj);
-Datalintryt);
DataObject * GetDataObjectO {return DObject};
void SetName(const RWCString &);
RWCString & Gctl-lamei);
DataType GctTypcf);
Datalrictionary" Getlratalrictionaryt);
void Clcanlfpt); II clean up before deleting
RWCString& GetAttribO { return Attrib.}
void SetAttrib(const RWCString& attr) { Attrib = attr.}
int Getl.cngtluj] return Lcngth.}
void SetLcngth(int I){Length = I;}
RWCString& GetScriptO { return Script-c-Gctlrcscripu).}
void SetScript(const RWCString& s) { Script->SetDescript(s);}

222



II Inherited from class "RWColIectable":

223

unsigned
int
RWBoolean
unsigned
void
void
void
void

}; II end ofDataEntry
#endif

binarystorcsizet) const;
compareTo(const RWCollectable*) const;
isEqual(const RWCoHectable*) const;
hashO const;
restoreGuts(RWFile&);
restoreGuts(RWvistream&);
saveGuts(RWFile&) const;
saveGuts(RWvostream&) const;

3) The Data relation graph and data object
II Copyright (C) 1993 by University of Hawaii
II Hyper Analysis Toolkit (R)
II Object for data relation graph and basic data objects
II SuperClass: RWColIectable
II File: data_rel.h
II Author: Jackson He
II Date: 03/93
II Language: C++
II Modification notes:

#if !defined LDataRel)
#define _DataRel

#include "define.h"
#include "dictnary.h"
_CLASSDEF (Data Window)
IlDataRelGraph
class DataRelGraph : public RWCollectable
{ RWDECLARE_COLLECTABLE(DataReIGraph)

protected:
RWDlistCollectables * Nodes: II list for all the DataNodes in graph - roots of data trees
DFDTreeManager * Interface; II pointer back to DFDTreeManager
DataObject* HyperParent;
II HyperParent serve as parent [or DataItems that created without parent
IithisDataObject will not be in Datalrictionary

public:
DataRelGraphO;
DataRelGraph(DFDTreeManager * interface):
-DatakcbGraplu);

II Inherited from class "RWCollectablc":
unsigned binaryStoreSizeO const:
void restoreGuts(RWFile&);
void restoreGuts(RWvistream&);
void saveGuts(RWFile&) const:
void saveGuts(RW\,ostream&) const:

DataNodc *AddDataNode(const RWCString &name. DataType type.



224

Childltem *child, ConceptObject * interface);
II create and add a DataNode to data dictioanry

Dataltem *AddDataItem(const RWCString &name, DataType type,int i,
RWBoolean iskey, RWBoolean iscombkey, int combkey,
DataObject *parent, Childltem *child,
const RWCString& attr, int I, const RWCString& s);

II Create and add a Dataltem to data dictionary as i-th child of its parent
void DeleteDataObject(DataObject *obj); II delete a dataobject from graph and data dicctionary
void DeleteDataNode(DataNode* node, ConceptObject* cobj);
RWDlistCollectables *GetChildren(DataObject *node); II Get children list of a node
RWDlistCollectables *GetParents(DataObject *node); II get parents list of a node
void ConnectObjects(DataObject * source, ChiidItem* child, int i);

II connect two data object with key attributesdest is i-th child of source
ChildItem* DisconnectObjects(DataObject *source, Childltem *dest);
ChildItem* DisconnectObjects(DataObject *source, DataObject* dest);

II disconncet two dataobject
DataNode* FindDataNode(DataNode* obj)

{ return (DataNode*)Nodes->find«RWCollectable*)obj);}
DataObject* FindDataObject(DataObject* obj);
DataObject* FindDataObject(const RWCString& name, int type):
DataDictionary * Getfratalnctionaryt);
DFDTreeManager* Getlntcrfacet) { return Interface:L
DataObject* GetHyperParentO {return HyperParent;};

}; II end of DataRelGraph

II ********* Childitem *******************11
class ChildItem: public RWCollectable
{RWDECLARE_COLLECT ABLE(ChildItem)

protected:
DataObject * Child;
int isKey:
int isCombKey;
int CombKey;
Entity* MyEntity;

public:
Childlterru);
ChiidItem(DataObject* obj, RWBoolean iskey,

RWBoolean iscornbkey, int cornbkey):
-Childlterm);

RWBoolean IsKeYO{return isKey;};
void SetKey(RWBoolean key) {isKey = key.};
RWBoolean IsCombKeyO{ return isCombKey;};

void SetCombKey(RWBoolean iscombkey, int cornbkcy)
{ isCombKey = iscombkey;

if(isCombKey) CombKey = combkey;
else CombKey = 0;

}

int GetCombKeyO{ return Combkcy.}:



DataObject * GetChildO{ return Child;};
Entity* GetMyEntitYO{return MyEntity;}

II Inherited from class IRWCollectable":
unsigned binaryStoreSizeO const;
int compareTo(const RWCoIIectable*) const;
RWBoolean isEqual(const RWCoIIectable*) const;
unsigned hasht) const;
void restoreGuts(RWFile&);
void restoreGuts(RWvistream&);
void saveGuts(RWFilc&) const;
void saveGuts(RWvostream&) const:

}; II end of ChildItem

II ******* DataObject *******11
class DataObject : public RWCollectable
{ RWDECLARE_COLLECTABLE(DataObject)
protected:

DataEntry * Entry;
RWDlistCollectables * Children;
RWDlistCollectables * Parents;
DataRelGraph * Container;
ER_Diagram* MyERD;

public:
DataWindow * DataWin;
Dataobjccn);
DataObject(const RWCString & name, DataType type,

const RWCString& attr, int I, const RWCString& s,
DataRclGraph * container);

-Dataobjectr);

I/Basic opertations
RWCString & Getblamet);
void SetName(const RWCString & name); II set a new name
DataObject *SetLabel(const RWCString & label); II change name, make it unique.
void DumpChildren();
void DumpParents(); II cut ofTchildren and parents connections
DataType GetType();
DataEntry * GetDataEntryO;
void SetDataEntry(DataEntry * entry);
RWDlistCollectables * GetChildren();
void MergeChildList(DataObject* obj):
RWDlistCollectables * Getl'arentst);
void MergeParentList(DataObject* obj);
ER_Diagram* GetMyERDO{return MyERD;}

II List operations
void InsertAChild(ChildItem* child); II insert a child with key attributes
void InsertAChildAfter(int index, ChildItem* child);
void InsertAParent(DataObject * dataobject);
ChildItem* RemoveAChild(Childitem * dataobject, Boolean fromERD);

225



void RemoveAParent(DataObject II< dataobject);
ChildItem * FindAChild(DataObject II< adata);
DataObject* FindAParent(DataObject II< adata);
DataObject II< GetFirstParentO { return (DataObject*) Parents-c-firstt).]
RWDlistCollectables Connectionllstt): II find all the connected Nodeswith this node
II directlyand indirectly;

DataRelGraph ... GetContainerO;
int GetNumParentsO { return Parents-c-entriest).};
RWDlistCollectables SubListO;
ChildItem * GetChildItem(DataObject* parent);

II key operations
RWBoolean IsKey(DataObject ... parent);
void SetKey(DataObject* parent, RWBoolean iskey);
RWBoolcan IsCombKey(DataObject'" parent);
void SetCombKey(DataObject* parent,RWBoolean iscombkey, int cornbkcy):
int GetCombKey(DataObject* parent):
void Cleantlpt);

II attributes
RWCString&GetAttribO { return Entry->GetAttribO;}

void SetAttrib(const RWCString& attr) { Entry->SetAttrib(attr);}
int Gctl.engthtj] return Entry->GetLengthO;}
void SetLength(int I){Entry->SetLength(1);}
RWCString&GetScriptO { return Entry->GetScriptO;}
void SetScript(const RWCString& s) { Entry->SetScript(s);}

II Inherited from class "RWCollectable Persistance methods
unsigned binaryStoreSizeO const;
int compareTo(const RWCollectable*) const:
RWBoolean isEqual(const RWCoIlectablell<) const;
unsigned haslu) const;
void restoreGuts(RWFile&);
void restoreGuts(RWvistream&);
void saveGuts(RWFile&) const:
void saveGuts(RWvostream&) const:

}; Ilend of DataObject

II ****** DataNode *********11
classDataNode : public DataObject
{ RWDECLARE_COLLECTABLE(DataNode)

protected:
ConceptObject* Interface:

public:
DataNodeO;
DataNode(const RWCString& name, DataType type,

DataRelGraph * container, ConceptObject* interface):
-Datablodet);

ConceptObject * Getlnterfacet) { return Interface.};
DFDObject * GetDFDObjectO:
void SetLabel(const RWCString & label, ConceptObject* cobj);

226



227

void SetConceptData(ConceptObject* cobj, DataNode* dobj);
void InsertAParent(ConccptObject * cobjcct) { Parcnts->inscrt((RWCollcctablc*) cobjcct);};
void MergeParentList(DataNode*);
void RemoveAParent(ConceptObject * cobject)

{Parents->removeReference((RWCollectablc*)cobject);};
void Cleantlpi);

II Inherited from class "RWCollectable":
unsigned binaryStoreSizeO const;
void restoreGuts(RWFile&);
void restoreGuts(RWvistream&);
void saveGuts(RWFile&) const;
void saveGuts(RWvostream&) const:

}; IlendofDataNode

11******** Dataltem *************/1
class DataItem : public DataObject
{ RWDECLARE_COLLECTABLE(DataItem)
public:

Dataltemt);
DataItem(const RWCString & name, DataType type,

const RWCString& attr, int I, const RWCString& s,
DataRelGraph * container);

-Dataltemt);
}; II end of Dataltem

II ********* DataElement ********//
class DataElement : public DataItem
{ RWDECLARE_COLLECTABLE(DataElement)

public:
Datafilcmenu);
DataElement(const RWCString & name,

const RWCString& attr. int L const RWCString& s.
DataRclGraph * container);
-Datalilcmcnu);

}; Ilend of DataElement

II ******** DataRccord ********11
class DataRecord: public Dataltem
{ RWDECLARE_COLLECTABLE(DataRecord)

public:
DataRecord();
DataRecord(const RWCString & name,
const RWCSlring& aur, int I, const RWCString& s.

DataRelGraph * container);
-Datakecordi):

}; II end of DataRccord
#endif

4) The DFD class family
II Copyright (C) 1993 by University of Hawaii



228

II Hyper Analysis Toolkit (R) DFD
II Objects of all DFD and DFD clements
II SuperClass: RWCoIlectable
II File: dfd.h
II Author: Jackson He
II Date: 03/93
II Language:C++
II Modification notes:

#if !defined LDFD)
#define _DFD

#include "define.h"
#include "data_rel.h"
#include "dictnary.h"
#include "manager.h"
#include "visual.h"
#include "siminfor.h"

II ****** DFD ******11
class DFD : public RWColIectable
{ RWDECLARE_COLLECTABLE(DFD)

protected:
RWDlistCollectables * Nodes: II list ofDFDNodes
RWDlistCollectables * Flows: II list for Flow
RWDlistColIectables * Children: II list of children DFDs
RWBoolean HasParent:
Process * Parent; II list containes a pointer to Process from which it is explored
DFDTreeManager * Manager; II pointer to DFDTreeManager
int Counter: II counter for visual. need to be saved
int Level: II Level in DFD Tree
ConceptDFD * CDFD; II Pointer to buddy concept DFD
VisualDFD * VDFD: II pointer to buddy visual DFD
DFDObject * CurrentObject: II pointer to current DFDobject

Boolean AdjustInterfaceNode(InterfaceNode* inf); II called by ReAllienlnterfaceO
SimRun* simRun:

public:
DFDO;
DFD(const RWCString & name. int level.Process" parent. DFDTreeManager * manager);
-DFDO;
int Getl.cveltjj rctum Level;}
int Gcneratcldi);
SimRun* GctsimRunO{return simRun:}
Id Addldr); II return a combined Id for display
void SetCounter(int c) { Counter =c.I;
DFDObject * GetCurrentObjectO { return CurrentObject; }
void SetCurrentObject(DFDObject * obj) {CurrentObject =obj.}
DFDNode * AddNode(const RWCString & label. DFDType type. Point * center):

Iladd DFDNode to DFD and Proj. Dictionary
DFDNode *DFD::AddNode(DFDNode *node): II Adding operation
RWBoolean DelcteNode(DFDNode *obj): II remove DFDNode from Data and Proj. dictionary



RWBoolean DeleteFlow(Flow * flow); II remove Flow from Proj and Data dictiontioary
Flow * AddFlow(const RWCString & label, DFDNode *source, DFDNode *dest);

II Add a flow to DFD and Proj. dictionary
Flow *GetFlow(DFDNode *source, DFDNode "'dest); II Get flow for given source and

destination
DFDNode *GetNode(const RWCString &Iabel, DFDType type);
Flow * GetFlow(const RWCString &Iabel);
RWDlistCoIIectables '" GetOutFlows(DFDNode "'node); II Get outflow for a node
RWDlistCoIIectables * GetInFlows(DFDNode *node); II Get inflow for a node
RWDlistCoIIectables * Getblodcl.istf); II Get all nodes in this DFD
RWDlistCoIIectables * GetFlowListO { return Flows;};
RWCString & GetNameO;
void SetName(const RWCString & name);
Process t Getl'arentt);
DFD'" GetParentDFDO;
void AddDFDChild(process "'proc. DFD *child);
void RemoveDFDChild(DFD "'child);
int NumChildrenO { return Children-c-cntricst).};
DFDTreeManager *GetManagerO;
void SetManager(DFDTreeManager * manager):
DataRelGraph'" GetDataGraphO { return Manager->GetDataGraphO:}:
ProjectDictionary '" Getl'rojfrictionaryi);
DataDictionary '" Getlrataljictionaryi);
RWDlistCoIIectables * GetChildrenO { return Childrcn.};
void RaAllicnlnterfacet);

II check for connection to its parent and set interface node accordingly
Boolean HasInterfaceNode(DFDNode'" node, Boolean isFrom);

II test if a node has its corresponding interface node test method
void prntDFDListO; II Inherited from class "RWColIectable":
unsigned binaryStoreSizeO const:
int compareTo(const RWColIectable*) const:
RWBoolean isEqual(const RWColIectable*) const:
unsigned hasht) const;
void restoreGuts(RWFile&);
void restoreGuts(RWvistream&):
void saveGuts(RWFile&) const;
void saveGuts(RWvostream&) const;

}; II end ofDFD

11*******"''''** DFDObject **************11
class DFDObject : public RWColIectable
{ RWDECLARE_COLLECTABLE(DFDObject)

protected:
ConceptObject * CObject:
VisualObject * VObject;
DFD * Container:

public:
DFDObjectO;
DFDObject(DFD >/< container): II create conceptual and viisual objects
-DFDObjectO;

Id GctDisldO; Ilvoid SctDisld(ld id);

229



RWCString& Getl.abeli);
void SetLabel(const RWCString & label);
DFDType GetTypeO;
DFD * GetContainerO;
VisualObject * GetVisualO {return VObject;};
ConceptObject * GetConceptO {return CObject;};
ProjEntry* GetProjEntryO;
RWCString & GetDescriptO;
void SetDescript( const RWCString & descript);
void CleanlfpVisualf); II clean up visual part before deleting the whole project

II Inherited from class "RWCollectable":

230

unsigned
int
RWBoolean
unsigned
void
void
void
void

}; II end ofDFDObject

binaryStoreSizeO const;
compareTo(const RWCoIlectable*) const;
isEqual(const RWCoIlectable*) const;
hashO const;
restoreGuts(R WFile&);
restoreGuts(RWvistream&);
saveGuts(RWFile&) const;
saveGuts(RWvostream&) const;

11******** DFDNode **********11
class DFDNode : public DFDObject

{ RWDECLARE_COLLECTABLE(DFDNode)
protected:

RWDlistCollectables * Inflow;
RWDlistCollectables * Outflow;
RWDlistCollectablesIterator * Inl.ist;
RWDlistCollectablesIterator * OutList;

public:
DFDNodcO:
DFDNodc(DFD * container):
-DFDNodeO
RWDlistCollectables * Getlnf'lowt);
RWDlistCollectables * GetOutFlowO;
VisualNode* GetVisualNodcO {return (VisuaINode*) GetVisuaIO;}:
ConceptNode * GetConceptNodeO {return (ConceptNode*) Gctf'onccptt).};
Point * GetCenterO { return GetVisuaINodeO->GetCenterO:}:
void SetCenter(Point* Pt) { GetVisuaINodeO->SetCenter(Pt):}:
Flow * Getlvextlnf'Iowt);
Flow * GetNextOutFlowO;
Flow * InsertAnInFlow(Flow * aflow);
Flow >I< InsertAnOutFlow(Flow * aflow);
void RemoveAnInFlow(Flow * aflow):
void RemoveAnOutFlow(Flow * aflow);
Flow >I< FindAnInFlow(Flow * allow);
Flow * FindAnOutFlow(Flow * allow):
DbList* Buildassignl.istt): II retrieve outflows and build assignment list for simulation
virtual void SetSimDcscript(char* str);
virtual RWCString& GetSimDescriptO:
virtual RWCString* ListSimStatsO:



// Inherited from class IRWCollectable":
unsigned binaryStoreSizeO const;
void rC5toreGuts(RWFile&);
void restoreGuts(RWvistream&);
void saveGuts(RWFile&) const;
void saveGuts(RWvostream&) const;

}; // End ofDFDNode

//•••••••••• Process **.****/1
class Process: public DFDNode
{ RWDECLARE_COLLECTABLE(process)
protected:

DFD* NextLevel;
Boolean HasNextLevel;
SimQ* simQ;
SimAct* simact;

public:
Processi);
Process(ld id, const RWCString & label, Point * center. DFD * container):
-Processt);

SimQ* GetsimQO{return simQ;}
SimAct* GetsimActO{return simAct;}
DFD * Getblextl.eveli);
void SetNextLevel(DFD * dfd);
void Removelvextl.evelt);
void ResetNextLevelO { SetNextLevel(NULL);}
virtual void SetSimDescript(char* str);
virtual RWCString& GetSimDescriptO;
virtual RWCString* ListSimStatsO:

// Inherited from class IRWCollectable":
unsigned binaryStoreSizeO const:
void restoreGuts(RWFile&};
void restoreGuts(RWvistream&);
void saveGuts(RWFile&) const;
void saveGuts(RWvostream&) canst:

}; // End of Process

//******* Store ********//
class Store: public DFDNode
{ RWDECLARE_COLLECTABLE(Store)
protected:

SimResource* simResource;
public:

Storer);
Store(ld id, const RWCString & label, Point* center. DFD * container);
-Storei);

DataNode * Gctlratat);

231



void SetData(DataNode * data);
SimResource* GetsimResourceO{return simResource;}
virtual void SetSimDescript(char* str);
virtual RWCString& GetSimDescriptO;
virtual RWCString* ListSimStatsO;

232

void
void
void
void

}; II End of Store

restoreGuts(RWFile&);
restoreGuts(RWvistream&);
saveGuts(RWFile&) const;
saveGuts(RWvostream&) const;

II ******* Flow ********//
class Flow: public DFDObject
{ RWDECLARE_COLLECTABLE(Flow)

protected:
DFDNode * Source;
DFDNode * Destination;
SimFlow* simf'low;

public:
Flowt);
Flow(Id id, const RWCString & label. RWDlistCol1ectables* path.

DFDNode * s, DFDNode * d, DFD* container):
-FlowO;

SimFlow * GetsimFlowO{ return simFlow;}
DataNode * Getlratat);
void SetData(DataNode * data):
VisualFlow * GetVisualFlowO;
void SetVisualFlow(VisualFlow * visualflow);
DFDNodc * GetSourceO {return Source;};
DFDNode* GetDestinationO { return Destination;};
ConceptFlow * GetConccptFlowC) {return (ConeeptFlow*) Gcrt'oncepu).}:

II Inherited from class "RWCol1ectable":
unsigned binaryStoreSizeO const;
void restoreGuts(RWFile&):
void restoreGuts(RWvistream&);
void saveGuts(RWFile&) const;
void saveGuts(RWvostream&) const:

}; II end of Flow

II ****** ExtEntity *******11
class ExtEntity: public DFDNode
{ RWDECLARE_COLLECTABLE(ExtEntity)
protected:

SimSrc* simSrc;
SimSink* simSink:

public:
ExtEntityC):
ExtEntity(Id id, const RWCString & label. Point* center. DFD * container):



-ExtEntityO;

SimSrc* GetsimSrcO{return simSrc;}
SimSink* GetsimSinkO{return simSink;}
virtual void SetSimDescript(char* str);
virtual RWCString& GetSimDescriptO;
virtual RWCString* ListSimStatsO;

233

void
void
void
void

}; II end of ExtEntity

restoreGuts(RWFile&);
restoreGuts(RWvistream&);
saveGuts(RWFile&) const;
saveGuts(RWvostream&) const;

11****** InterfaceNode ********11
class InterfaceNode : public DFDNode
{ RWDECLARE_COLLECTABLE(InterfaceNode)
protected:

SimSrc* simSrc;
SimSink* simSink;

public:
Interfacefsodet);
InterfaceNode(Id id, const RWCString & label, Point* center. DFD * container.

DFDNode* intnode);
-InterfaceNodeO{delete simSrc; delete simSink;}:
ConceptINFNode* GetCINFNodeO { return (ConceptINFNode*) CObject:}
DFDNode * Getlnterfaceblodct);
void SetInterfaceNode(DFDNode* intnode);

II Simulation-related operations
SimSrc* GetsimSrcO{ return simSrc:}
SimSink* GetsimSinkO{ return simSink:}
virtual void SetSimDescript(char* str):
virtual RWCString& GetSimDescriptO;
virtual RWCString* ListSimStatsO:

II Persistent methods
void restoreGuts(RWFile&);
void restoreGuts(RWvistream&):
void saveGuts(RWFile&) const;
void saveGuts(RWvostream&) const:

}; II end oflnterfaceNode
#endif

5) The Conceptual DFD classfamily
II Copyright (C) 1993 by University of Hawaii
II Hyper Analysis Toolkit (R) Concept
II contains all the conceptual objects of DFD
II SuperClass: RWCollectable
II File: concept.h
II Author: Jackson He
II Date: 03/93



234

II Language:C++
II Modificationnotes:

#if !definedLCONCEPT)
#define_CONCEPT
#include "define.h"
#include "data_rel.h"
#include "manager.h"
#include "dfd.h"

11**"* ConceptDFD *******11
class ConceptDFD : public RWCollectable
{ RWDECLARE_COLLECTABLE(ConceptDFD)
protected:

DFD *Interface; II pointerback to DFD
RWCString Name; II DFDName

public:
ConceptDFDO;
ConceptDFD( const RWCString & name. DFD *interface);
-ConceptDFDO;

II Inherited from class "RWCoIlectable":
unsigned
int
RWBoolean
unsigned
void
void
void
void

binaryStoreSizeO const;
compareTo(const RWCoIlectable*) const:
isEqual(const RWCoIlectable*) const:
hasht)const;
restoreGuts(RWFile&);
restoreGuts(RWvistream&);
saveGuts(RWFile&) const:
saveGuts(RWvostream&) const;

II basic operations
RWCString & Getblarnet);
void SetName(const RWCString & name);
ConceptFlow *GetFlow(ConceptNode *source. ConceptNode *des!):

Ilreturn conceptfloe for givensource and dest.
RWDlistCollectables GetOutFlows(ConceptNode *node); lilist outflows of a node
RWDlistCollectables GetInFlows(ConceptNode *node): II list Inflows of a node
RWDlistCollectables GetAIIFlows(ConceptNode *node): II list both in and out flows of a node

}; II end of ConceptDFD

II ********ConceptObject ********11
class ConceptObject : publicRWCoIlectable
{ RWDECLARE_COLLECTABLE(ConceplObjecl)
protected:

ProjEntry * Entry; II entry to proj. dictionary.
DFDObject * Interface; II pointer backto it buddy DFDObject

public:
Conceptobiectt);
ConceptObject(const RWCString & label. DFDTypetype.DFDObject * interface):
-Conceptobjectt);
II Inherited from class "RWCollectable":



unsigned binaryStoreSizeO const;
int compareTo(const RWCollectablc*) const;
RWBoolean isEqual(const RWCollectable*) const;
unsigned hashO const;
void restoreGuts(RWFile&);
void restoreGuts(RWvistream&);
void savcGuts(RWFile&) const;
void saveGuts(RWvostream&) const;
IIConceptObject methods
RWCString& GetLabelO;
void SetLabel(const RWCString & label);
DataType GetTypeO;
RWCString& GetDisldO{return Interface->GetDisIdO;}
DFDObject * Getlnterfacei);
void SetEntry(projEntry * entry);
void ResetEntry(projEntry* entry) {Entry =entry.}
ProjEntry * GetProjEntryO;
ProjectDictionary * GetProjDictionaryO; II return proj. dictionary
DataDictionary * Getlratalrlctionaryt); II return data dictionary
DataRelGraph * GetDataGraphO II retain data relation graph
{ return Interface->GetContainerO->GetManagerO->GetDataGraphO;}
RWCString& Getlrescripu);
void SetDescript( const RWCString & descript):

}; Ilend of ConceptObject

II *********** ConceptNode **********11
class ConceptNode : public ConceptObject
{ RWDECLARE_COLLECTABLE(ConceptNode)

public:
Conceptblodct);
ConceptNode(const RWCString & label. DFDType type, DFDObject * interface);
-Conceptblodct);
RWDlistCollectables * GetInFlowO;
RWDlistCollectables * GetOutFlowO;
Flow * Getblextlnftowt);
Flow * GetNextOutFlowO;
void InsertAnInFlow(Flow >I< aflow);
void InsertAnOutFlow(Flow * aflow);
void RemoveAnInFlow(Flow * aflow);
void RemoveAnOutFlow(Flow * aflow);
Flow * FindAnInFlow(Flow * aflow):
Flow * FindAnOutFlow(Flow * aflow);

}; II end of ConceptNode

/1****** ConceptProcess ********11
class ConceptProcess: public ConceptNode
{ RWDECLARE_COLLECTABLE(ConcpetProcess)

public:
Conceptl'roccsst);
ConceptProcess(const RWCString & label, DFDObject >I< interface);
-Conceptl'rocesst);

}; /1 end of ConceptProcess

235



11******** ConceptStore *********11
class ConceptStore : public ConceptNode
{ RWDECLARE_COLLECTABLE(ConceptStore)

protected:
DataNode * Data;

public:
Conceptstoret);
ConceptStore(const RWCString & label, DFDObject * interface);
-ConceptStoreO;

II Inherited from class "RWCollectable":
unsigned binaryStoreSizeO const;
void restoreGuts(RWFile&);
void restoreGuts(RWvistream&);
void saveGuts(RWFile&) const;
void saveGuts(RWvostream&) const:

DataNode * Getlratat);
void SetData(DataNode * data);

}; II end of ConceptStore

II************ ConceptFlow ***********11
class ConceptFlow : public ConceptObject
{ RWDECLARE_COLLECTABLE(ConceptFlow)

protected:
DataNode * Data;

public:
Conceptf'lowt);
ConceptFlow(const RWCString & label, DFDObject * interface);
-Conceptf'lowt);
II Inherited from class "RWCollectablc":
unsigned binaryStoreSizcO const;
void rcstorcGuts(RWFile&);
void restorcGuts(RWvistrcam&);
void savcGuts(RWFile&) const;
void saveGuts(RWvostream&) const:
DataNode * Getfiatai);
void SetData(DataNode * data);

}; IIend of ConccptFlow

II********* ConceptExtEntity ***********11
class ConccptExtEntity: public ConceptNode
{ RWDECLARE_COLLECTABLE( ConccptExtEntity)

public:
Conccptfixtlinuty/);
ConceptExtEntity(const RWCString & label. DFDObject * interface);
-Conceptfixtfintityt);

}; IIend of ConccptExtEntity

II******** ConceptINFNode *********11
class ConceptINFNode: public ConccptNode

236



{ RWDECLARE_COLLECTA.BLE(ConceptINFNode)
protected:

DFDNode * IntNode;
BooleanHaslnterface;

public:
ConceptINFNodeO;
ConceptINFNode(const RWCString& label, DFDObject * interface.DFDNode* intnode);
-ConceptINFNodeO;
DFDNode * Getlnterfaceblodet);
void SetInterfaceNode(DFDNode* intnode);
II persistentmethodsfor RWCollectable
unsigned binaryStoreSizeO const;
void restoreGuts(RWFile&);
void restoreGuts(RWvistream&);
void saveGuts(RWFile&) const;
void saveGuts(RWvostream&) const:

}; II end of ConceptINFNode
#endif

6) The Visual DFD class family
II Copyright(C) 1993 by Universityof Hawaii
II HyperAnalysis Toolkit (R) Visual
II Containsall the objects for DFD visual features
II SuperClass: RWCollectable
II File: visual.h
II Author: Jackson He
II Date: 03/93
II Language:C++
II Modification notes:

#if !defined L Visual)
#define_Visual

#include "define.h"
_CLASSDEF (VisualRepDFD)

II ***** VisualDFD ******II
class VisualDFD : publicRWCollectable
{ R\\'DECLARE_COLLECTABLE(VisuaIDFD)

protected:
DFD *Interface;

public:
VisuaIDFDO;
VisuaIDFD(DFD *interface);
-VisualDFDO;
void SetInterface(DFD *inter) { Interface=inter: }
DFD *GetInterfaceO { return Interface; }
VisualFlow * GctFlow(VisualNode *sourcc, VisualNode *dest);

RWDlistCollcctables * GetOutFlows(VisualNode * node);
RWDlistCollcctables * GetInFlows(VisualNode * node);
RWDlistCollcctables GetAIIFows(VisualNode * node):

237



II Inherited from class "RWColIectable" for persistent store and retrieval
unsigned binaryStoreSizeO const;
void restoreGuts(RWFile&);
void restoreGuts(RWvistream&);
void saveGuts(RWFile&) const;
void saveGuts(RWvostream&) const;

}; IIend ofVisualDFD

II"""""""""" VisualObject """"""""**""""""11
class VisualObject : public RWCoIlectable
{ RWDECLARE_COLLECTABLE(VisualObject)
protected:

Id ID;
DFDObject "" Interface;
VisualRepDFD "" VRep; graph object from VisualRepDFD or other graph tool

public:
Visualobjecu):
VisualObject(ld id, DFDObject "" interface);
-Visualobjectt);
VisualRepDFD "" Getvkepr);
void SetVRep(VisualRepDFD"" vrep) {VRep=vrep;}
Id GetIdO;
void SetId(ld id);
DFDObject "" Getlnterfacci) {return Interface.};
DFDType Gct'Iypet);
RWCString * Getl.abeli):

II Inherited from class "RWCollectable":
unsigned binaryStoreSizeO const:
void restoreGuts(RWFile&);
void restoreGuts(RWvistream&);
void saveGuts(RWFile&) const:
void saveGuts(RWvostream&) const;

}; IIend of VisualObject

II """""""" VisualNode """""""""""" II
class VisualNode: public VisualObject
{ RWDECLARE_COLLECTABLE(VisualNode)

protected:
Point"" Center;

public:
VisualNodeO;
VisualNode(Id id, Point" center. DFDObject * interface);
-Visualblodet):
void SetCenter(Point "" center);
Point"" Gctf'entert);
II Inherited from class "RWCollectable":
unsigned binaryStoreSizeO const:
void restoreGuts(RWFile&);
void restoreGuts(RWvistream&);
void saveGuts(RWFile&) const:

238



void saveGuts(RWvostream&) const;
}; IIend of VisualNode

II"""""""""" VisuaIProcess""*""""""""11
class VisualProcess: public VisualNode
{ RWDECLARE_COLLECTABLE(VisuaIProcess)

public:
VisuaIProcessO{} ;
VisualProcess(Id id, Point" center, DFDObject "" interface);
IIGet label from interface with GetLabelO
-Visuall'rocessf)! };

}; IIend of Visual Process

II""""*"" VisualStore *",,""""""11
class VisualStore: public VisualNode
{RWDECLARE_COLLECTABLE(VisuaIStore)

public:
VisualStoreO{ };
VisualStore(Id id, Point * center. DFDObject * interface):
-Visualxtoret)! };

}; IIend of VisualS tore

II **"""""" VisualExtEntity *""*""**1
class VisualExtEntity: public VisualNode
{ RWDECLARE_COLLECTABLE(VisuaIExtEntity)

public:
VisualExtEntityO{ };
VisualExtEntity(Id id, Point * center, DFDObject * interface):
- VisualExtEntityOO;

}; IIend ofVisualExtEntity

11****** VisualINFNode *******
class VisualINFNode: public VisualNode
{ RWDECLARE_COLLECTABLE(VisuaIINFNode)

public:
VisualINFNodeO{ };
VisualINFNode(Id id, Point * center, DFDObject * interface):
-VisuaIINFNodeO{};

}; IIend ofVisualINFNode

II **",,** VisualFlow *******
class VisualFlow : public VisualObject
{ RWDECLARE_COLLECTABLE(VisuaIFlow)

protected:
RWDlistCollectables * Path;
void FillPtArrayO:
void FiIIPathO const;

public:
Point* PtArray[5];
VisualRepDFD * ConnectorHandle[4];
VisualRepDFD* Fl.abel; II pointer to floating label
VisualFlowO:

239



VisualFlow(ld id, RWDlistCo11ectables '" path, DFDObject* interface):
- Visualf'lowt);
void InsertAPoint(Point * apoint);
void RemoveAPoint(point '" apoint);
Point * Getstartt);
Point * GetEndO;
void SetStart(Point * point);
void SetEnd(point * point);
void SetNth(int ind, Point * point);
Point * GetNth(int ind);
void InsertB4Nth(int ind, Point * point);
void DeleteB4Nth(int ind);
II Inherited from class "RWCo11ectable":
unsigned binaryStoreSizeO const;
void restoreGuts(RWFile&);
void restoreGuts(RWvistream&);
void saveGuts(RWFile&) const;
void saveGuts(RWvostream&) const;

}; II end of VisualFlow
#endif

7) The EIW classfamily
II Copyright (C) 1993 by University of Hawaii
II Hyper Analysis Toolkit (R) ERD
II Objects ofa11 ERD and ERD elements
II SuperClass: RWCo11ectable
II File: erd.h
II Author: Jackson He
II Date: 03/93
II Language:C++
II Modification notes:

#ifndef _ERD.H
#define _ERD.H

#include "define.h''
#inc1ude "datarel.h"
#include "visual.h"

11******** ER_Diagram ***********11
class ER_Diagram: public RWCo11ectable
{ RWDECLARE_COLLECTABLE(ER_ Diagram)

protected:
DataObject * Interface;
DbList* Entityl.ist;
DbList* Relationl.ist; II two lists hold entities and relations
TERDDrawWindow * ERDWin; II pointer to drawing window
RWCString Name;

public:
int Count: II counter for number nodes in the graph
RWCoIlectable* CurObject II pointer to current object

240



ER_DiagramO;
ER_Diagram(DataObject* interface);
-ER_Diagramt);
Ilbasic opertations
DataObject* GetInterfaceC}{return Interface;}
DbList* GetEntityListC}{return EntityList;}
Dbl.ist" GetRelationListC}{return RelationList;}
TERDDrawWindow* GetERDWinC}{returnERDWin;}
void SetERDWin(TERDDrawWindow* drwin){ERDWin = drwin;}
RWCString & GetERDNameC}
{ if(lnterface!=NULL)

return Interface->GetNameC};
else
{ Name="Top Level ERD";

return Name;
}

}
Entity* AddEntity(const RWCString &name, Data'Iype type,

RWBooIean iskey, RWBoolean iscombkey, int combkey, Point* center):
Entity" AddEntity(Childftem* child); II Add new data to dictionary
Relation* AddReIation(Entity* source, Entity* dest, const RWCString& label,

const RWCString& srel, const RWCString& d_rel,
const RWCString& s);

Entity* DeleteEntity(Entity* entity, Boolean fromERD);
Entity* DeleteEntity(ChildItem* child, Boolean fromERD):
void DeleteRelation(Relation* rei);
I/Persistence methods from RWCollectable

unsigned binaryStoreSizeO const:
void restoreGuts(RWFile&);
void restoreGuts(RWvistream&);
void saveGuts(RWFile&) const;
void saveGuts(RWvostream&) const;

}; IIend ofER_Diagram

II ******** Entity ***"'**********11
class Entity: public RWCollectable
{ RWDECLARE_COLLECTABLE(Entity)

protected:
DataObjeet* Interface;
Dbl.ist" RelationList:
Point * Center:
VisualRepERD* VEntity:

public:
Entityr);
Entity(DataObject* interface);
-Entityt);
IlBasic operations
DataObject * GetInterfaceC}{return Intcrfacc.}
DbList* GetRelationListC}{return Rclationl.ist.}
Point * GetCenterC}{return Center:}
void SetCenter(Point * center){ Center = new Point(center->X, center-> Y):}

241



VisualRepERD* GetVEntityO{return VEntity;}
void SetVEntity(VisuaIRcpERD* ventity) {VEntity = ventity;}
char" GetNameO{return (char*){ Interface-c-Gctfvametj.datau.}
ER_Diagram* GetMyERDO{return Interface·>GetMyERDO;}
RWCString& GetScriptO {return Interface->GetScriptO;}

II ADD& Deleterelation
Relation* AddRelation(Relation* reI);
Relation * RemoveRelation(Relation* rel);
Relation * FindARelation(Relation* rel);
Relation * FindARelation(Entity* entity);

IlPersistence methods from RWCollectable
unsigned binaryStoreSizeO const;
int compareTo(const RWCollectable*) const;
RWBoolean isEqual(const RWCollectable*) const;
unsigned hasht) const;
void restoreGuts(RWFile&);
void restoreGuts(RWvistream&);
void saveGuts(RWFile&) const;
void saveGuts(RWvostream&) const;

}; II end of Entity

II ********Relation **********11
class Relation: publicRWCollectable
{ RWDECLARE_COLLECTABLE(Relation)

protected:
RWCString Label;
VisualRepERD* VRelation;
RWCString Rell;
RWCStringRe12;
DescriptionCard* Script:
Entity * EI:
Entity * E2;

public:
Relationi);
Relation(Entity* el, Entity" c2, const RWCString& label.

const RWCString& rcll, const RWCString& re12. const RWCString& s):
-Relatioru);
I/Basic Operations
Entity * GetEIO{return EI;}
Entity * GetE20{returnE2;}

void SctEl(Entity* entity){EI = entity;}
void SetE2(Entity* entity){E2 = entity;}
RWCString& GetLabelO{return Label;}
void SetLabel(const RWCString&label) {Labcl-Iabcl.}
VisualRepERD* GetVRclationO{return VRelation;}
void SetVRelation(VisuaIRcpERD* vrel) {VRclation = vrel.}
RWCString& GctRell0 {return ReiI;}
void SetRcll(constRWCString& rcll){Rcll = rell.}
RWCString& GetRel20{rcturnRel2;}

242



void SetRe12(const RWCString & re12){Rel2= reI2;}
ER_Diagram* GetMyERDO{rcturn GetEIO->GctMyERDO;}
RWCString& GetScriptO{rcturn Script->GetDescriptO;}
void SetScript(const RWCString& s){ Script->SetDescript(s);}

IlPersistence methods from RWCoIlectable
unsigned binaryStoreSizeO const;
int compareTo(const RWCoIlectable*) const;
RWBoolcan isEqual(const RWCoIlectable*) const;
void restoreGuts(RWFile&);
void restoreGuts(RWvistream&);
void saveGuts(RWFile&) const;
void saveGuts(RWvostrcam&) const;

}; II end of Relation
#endif

8) Simulation information classes
II Copyright (C) 1993 by University of Hawaii
II Hyper Analysis Toolkit (R) Simlnfor
II Objects to hold simulation information
II SuperClass: RWCoIlectable
II File: siminfor.h
II Author: Jackson He 02/94
II Language C++

#ifndef_Simlnfor_H
#define _Simlnfor_H

#include "define.h"
#define NumBranch 10
#define Weighted 1
#define Unweighted 0
#define Mini 0
#define Maxi 1
#define Mean 2
#define Std 3
#define Obs 4
#define Sum 5

II ******** SimResult ********11
class SimResult : public RWCollectable
{ RWDECLARE_COLLECTABLE(SimResult)

public:
float Stats[2][6];
RWCString Description;
Simkesulu);

-Simkesulti)] };
void ParseWtResult(char* str); II parse time-weighted result
void ParseUwResult(char* str): II parse unweighted result
Boolean HasResultO;
RWCString& Genfrescriptioru):

243



RWCString& AppendDescription(const RWCString& str);

II Inherited from class "RWCollectable":
unsigned binaryStoreSizeO const;
void restoreGuts(RWvistream&);
void saveGuts(RWvostream&) const;

}; II end of SimResult

II ******* Distribution *********11
class Distribution: public RWCollectable
{ RWDECLARE_COLLECTABLE(Distribution)

public:
RWCString Name,Type, Parameters, CmdLine;
DistributionO:Name(""),Type(""), Parameters(""){}
Distribution(const RWCString& name, const RWCString& type='''',

const RWCString& parameters=""):
-Distributioru)] };
RWCString& GerrCmdl.inet);
virtual Boolean Isfrefinedr);

II Inherited from class "RWCollectable":
unsigned binaryStoreSizeO const:
void restoreGuts(RWvistream&);
void saveGuts(RWvostream&) const;
int compareTo(const RWCollectable* c) const
{ Distribution" b = (Distribution*)c;

if(Name == b->Name) return 0:
return Name>b->Name? 1: -1;

}
RWBoolean isEqual(const RWCollectable* c) const
{ const Distribution* b = (Distribution*) c:

return Name == b-e-Name:

};

II ****** Assignment *********11
class Assignment: public RWCollectable
{
RWDECLARE_COLLECTABLE(Assignment)
public:

RWCString Branch;
float Prob:
AssignmentO:Branch(""){Prob = O.O:}
Assignment(const RWCString& branch, float prob-O.O):
-Assignmenuj] };
int compareTo(const RWCollectable* c) const

{ Assignment* b = (Assigmnent*)c:
if(Branch == b->Branch) return 0;
return Branch>b->Branch? 1: -1:

}
RWBoolean isEqual(const RWCollectable* c) const
{ const Assignment* b = (Assignment") c:

244



return Branch == b->Branch;
}

/I Inherited from class "RWCollectable":
unsigned binaryStoreSizeO const;
void restoreGuts(RWvistream&);
void saveGuts(RWvostream&) const;
IICollectablemethods

}; II end of Distribution

II *••••• SimRun ......
class SimRun : public RWCollectable
{ RWDECLARE_COLLECTABLE(SimRun)
protected:

DFD·MyDFD;
float Run;
float Warmup;
float Length;
RWCString CmdLine;

public:
SimRunO{MyDFD = NULL:Run = 0.0; Warmup= 0.0; Length = O.O:}:
SimRun(DFD· dfd, float FI, float w=120, float [=480);
-SimRunO{};
Boolean Islrefinedt);
DFD'" GetMyDFDO{return MyDFD;}
virtual RWCString& Genf'mdl.inct);
float Getkum) {return Run.}
void SetRun(float r) {Run =r.}
float GetWarmupO{ return Warmup.}
void SetWarmup (float w){ Warmup = w.}
float Getl.engtlu)] return Length.}
void SetLength(float [){ Length = I;}

II Inherited from class "RWCollectab[e":
unsigned binaryStoreSize(} const:
void restoreGuts(RWvistrearnec);
void saveGuts(RWvostream&) const:

}; II end ofSimRun

II "'."'''''''''''''''' Simlnfor ********
class Simlnfor: public RWCollectab[e
{ RWDECLARE_COLLECTABLE(SimInfor)

protected:
RWCSlring Name, Cmdl.ine;
DFDObjecl* dfdObj;
int Type;
Simkesult * Result;

public:
SimlnforO:Name(""){Result = NULL; dfdObj = NULL:Typc = O;}:
Simlnfor(DFDObject* obj, int type);
-Simlnfort):

245



int GetTypeO{return Type;}
virtual RWCString & GetNameO;
virtual RWCString& Genf'mdl.inet);
virtual Boolean IsDefinedO {return TRUE;}
SimResult* GetResultO{return Result.}
int compareTo(const RWCoIIectable* c) const
{ SimInfor* b = (SimInfor*)c;

if(Name = b->GetName()) return 0;
return Name>b->GetNameO? 1: -1;

}
RWBoolean isEqual(const RWCoIIectable* c) const
{ SimInfor* b =(SimInfor*) c;

return Name == b->GetNameO;
}

II Inherited from class "RWCollectable":
unsigned binaryStoreSizeO const;
void restoreGuts(RWvistream&);
void saveGuts(RWvostream&) const;

}; II end ofSimlnfor

II ****** SimAssign *******11
class SimAssign: public SimInfor
{ RWDECLARE_COLLECTABLE(SimAssign)

protected:
DbList* Assign;

public:
SimAssignO{Assign =NULL;};
SimAssign(DFDObject* obj. int type);
-Sim.Assigru);

DbList * GetAssignListO{return Assign;}
void SetAssignList(DbList* list);
Assignment * GetAssign(int i)
{ if(i<O) return NULL;

return (Assignment*)Assign->at(i):
}
Assignment * GetAssign(const RWCString& a):
float GetAssignProb(const RWCString& a);
float GetAssignProb(Assignment* a);
void SetAssignProb(float p, int i);
void SetAssignProb(float p, const RWCString & a);
void SetAssign(Assignment* a. int i);
int GetBranchesO{ return Assign-c-entriestj.}

II Inherited from class "RWCoIIectable":
unsigned binaryStoreSizeO const:
void restoreGuts(RWvistrcam&);
void saveGuts(RWvostrcarn&) const:

}; II end of SimAssign

246



// *****""" SimResource **"""***//
class SimResource : public SimAssign
{ RWDECLARE_COLLECTABLE(SimResource)

protected:
RWCString Priority_Mode;

public:
Simkesourcetj.Priority_Mode(""){};
SimResource(DFDObject* obj);
SimResource(const RWCString& name);
-Simkesourcet);
virtual RWCString& Gctblarnef);
virtual RWCString& Genflmdl.inel);

// Inherited from class "RWCollectable":
unsigned binaryStoreSizeO const;
void restoreGuts(RWvistrcam&);
void saveGuts(RWvostream&) const;

}; // end ofSimResource

// ****** SimSrc ******"""/1
class SimSrc : public SimAssign
{ RWDECLARE_COLLECTABLE(SimSrc)

protected:
Distribution* Distr;
float Start:
float End;
RWCString Event Mode;
RWCString Assign Mode; II set by a DFDObject depends on connections

public:
SimSrcO{}:
SimSrc(DFDObject* obj);
-SimSrcO:

Distribution" GetDistrO { return Distr:}
void SetDistr(Distribution* d)
{ if(Distr!=NULL)

{ Distr->Name = d-e-Name;
Distr->Type = d->Type:
Distr->Parameters = d->Parameters:
delete d;

}
else Distr=d:

}
float GetStartO{ return Start.}
void SetStart(float s){ Start = s.}
float GetEndO{ return End;}
void SetEnd(float e){ End = e;}
RWCString& GetEvent_ModcO{ return Evcnt Modc.}
RWCString& GetAssign_ModeO
{ if (GetBranchesO > I) Assign Mode = "PROB";

else Assign_Mode = "DET":
return Assign Mode;

247



}
virtual Boolean Islrefinedt);
virtual RWCString & GetNameO;
virtual RWCString& Gent'mdl.inet);

II Inherited from class "RWColIectable":
unsigned binaryStoreSizeO const;
void restoreGuts(RWvistream&);
void saveGuts(RWvostream&) const;

}; II end of SimSrc

II ********* SimSink ********11
class SimSink : public SimInfor
{ RWDECLARE_COLLECTABLE(SimSink)

public:
SimSinkO{};
SimSink(DFDObject* obj);
-SimSinkO{};
virtual RWCString & Getblamer);
virtual RWCString& Genf'mdl.inet);

}; Ilend of SimSink

II ******* SimFlow *******11
class SimFlow : public SimInfor
{ RWDECLARE_COLLECTABLE(SimFlow)

protected:
RWCString Source,Destine;
float Prob;

public:
SimFlowO{Source = ""; Destine = ""; Prob = O.O;}
SimFlow(DFDObject* obj);
-SimFlowO{ };
virtual RWCString & Gctlvamct);
virtual RWCString & GetSrcName();
virtual RWCString & GetDestNameO;
float Getl'robt);
void SetProb(floatp);
SimBranch* ConverrTolsranchr);
SimBranch* ConvertToBranch(SimFlow* 1);

Ilmultiplex two flows
}; II end ofSimFlow

11*********** SimBranch **********11
class SimBranch : public RWColIectablc
{ RWDECLARE_COLLECTABLE(SimBranch)

protected:
RWCString Source,Destine, Cmdl.ine:
float Prob;

public:
SimBranchO{Source= ""; Destine = ''''; Prob = O.O:}
SimBranch(const RWCString& src, const RWCString& dest, float p=1.0);
-SimBranchO{ }

248



virtual RWCString&Genomdl.inet);
RWCString& Getsourcentreturn Source;}
RWCString& GetDestineO{return Destine;}
float GetProbO {return Prob.}
void SetSource(const RWCString& s) {Source =s;}
void SetDestine(const RWCString& d) {Destine = d.}
void SetProb(float p){Prob= p.}
int compareTo(const RWCollectable* c) const
{ SimBranch*b = (SimBranch*)c;

if(Source== b->GetSource(» return 0;
return Source>b->GetSourceO? 1: -1;

}
RWBoolean isEqual(const RWCollectable* c) const
{ SimBranch*b = (SimBranch*) c;

return (Source= b->GetSourceO&&Destine==b->GetDestine(»:
}

}; II end of SimBranch

11******** SimQ *******11
class SimQ : public SimInfor
{ RWDECLARE_COLLECTABLE(SimQ)
protected:

RWCString Priority_Mode;
RWCStringResource;

public:
SimQO:Priority_Mode(""), Resource('"'){}:
SimQ(DFDObject* obj);
-SimQO{}
RWCString& GetP_ModeO{return Priority Modc.}
RWCString& Getkcsourcetjtretum Resource;}
void SetResource(const RWCString r) {Resource=r;}
virtual RWCString& Gctblamet);
virtual RWCString& Genf'rndl.inet):

II Inherited from class "RWCollectable":
unsigned binaryStoreSizeO const;
void restoreGuts(RWvistream&);
void saveGuts(RWvostrcam&) const;

}; II end of SimQ

II ****** SimAct ********
class SimAct : public SimAssign
{ RWDECLARE_COLLECTABLE(SimAct)
protected:

RWCStringResource;
Distribution * Distr;
RWCString Assign Mode;

public:
SimActO:Assign_Mode('"'). Resourcc("") {Distr = NULL:}:
SimAct(DFDObject* obj);
-SimActO:
virtual Boolean IsDefinedO:

249



Distribution* Getliistn) { return Distr;}
void SetDistr(Distribution* d)
{ if(Distr!=NULL)

{ Distr->Name = d->Name;
Distr->Type= d->Type;
Distr->Parameters= d->Parameters;
deleted;

}
else Distr=d;

}
RWCString& GetQO;
RWCString& GetResourceO{return Resource;}
void SetResource(SimResource* r)
{ if(r!=NULL)

Resource= r-c-Gctblarnet);
}
void SctResource(const RWCString& r) {Resource-r.}
RWCString& GetAssign_Moder)
{ if (GetBranchesO >I) Assign_Mode = "PROB";

else Assign_Mode = "DET";
return Assign Mode;

}

virtual RWCString & GetNameO;
virtual RWCString& GenCmdl.inef);
II Inherited from class "RWCollectable":
unsigned binaryStoreSizeO const;
void restoreGuts(RWvistream&);
void saveGuts(RWvostream&) const;

}; II end ofSimAct
#endif

250



E.3. Simulation subsystem
J) The main window
II Copyright (C) 1993 by University of Hawaii
II Hyper Analysis Toolkit (R) SimInfor
II Main window of simulation subsystem
II SuperClass: RWCoIlectable
II File: siminfor.h
II Author: Jackson He 02/94
II Language C++

#ifndef _YANSLWindow
#define _YANSLWindow

#define CM_Run 100

#include <owI.h>
#include <filewnd.h>
#include "mydde.h"

_CLASSDEF(YANSLApp)
_CLASSDEF(YANSLWindow)
_CLASSDEF(SimModeIGen)

11**** Declare YANSLApp, a TApplication descendant *****11
class _CLASSTYPE YANSLApp : public TApplication
{
public:

YANSLApp(LPSTR name, HINSTANCE hlnstance,
HINST ANCE hPrevInstance, LPSTR IpCmd. int nCmdShow)

: TApplication(name. hlnstance, hPrevInstance. IpCmd. nCmdShow) {}:
virtual void InitMainWindowO:
virtual void Initlnstancet);

}; II end ofYANSLApp

II**** Declare YANSLWindow. a TMDIFrame descendant ****11
class _CLASSTYPE YANSLWindow: public MyDDEWindow
{
protected:

virtual void SetupWindowO:
virtual void NewFile(RTMessage Msg) = [CM]IRST + CM_MDIFILENEW);
virtual void OpenFile(RTMessage Msg) = [CM]IRST + CM_MDIFlLEOPEN);
virtual void CMRun(RTMessage Msg) = [CM]IRST + CM_Run):
void Showkesulu);
PTFileWindow Model, Result:
SimModelGen * Simulator:
void GetWindowClass( WNDCLASS& WndClass ):

public:
YANSLWindow(LPSTR ATitie. LPSTR MenuName):
- YANSLWindowr);

}; II end ofYANSLWindow
#endif

251



2) The model generator
II Copyright (C) 1993 by University of Hawaii
II Hyper Analysis Toolkit (R) ModelGen
II Simulation model generator
II SuperClass: RWCollectable
II File: siminfor.h
II Author: Jackson He 02/94
II Language C++

#ifndef _SimModelGen
#define _SimModelGen
#include <owl.h>
#include <filewnd.h>
#include <mdi.h>
#include <string.h>
#include <io.h>
#include "rw/cstring.h"
#include "yanslwin.h"

#define ModelSize 2500
#define BlockSize 2500
#define Linel.en 150
#define KeyLen 35
#define NumP 6 II number of parameters in a command line

_CLASSDEF(SimModeIGen)
_CLASSDEF(Simulalion)
_CLASSDEF(Command)
_CLASSDEF(Random)

II **** Object to hold a simulation command ***
class Command
{
private:

RWCString Name;
RWCString Type;

public:
RWCString apr, p l, p2, p3, p4. p5;
void * CmdObj;
Command* Next
Command(const RWCString& name, const RWCString& type):
-Commandtj] }
const RWCString& GetNameO const;
const RWCString& Get'Iypet) const;
Boolean operator == (const Command& c) const:
Boolean operator <tconst Command& p) const:

}; II end of Command

252



253

II ****** SimModelGen *****11
class SimModelGen
{
public:

SimModelGen(pYANSLWindow parent);
-SimModeIGenO;
BOOLRunSimModelO;

protected:
PYANSLWindow Parent;
Command* CmdListHead;
void Clearf'mdl.istf); II string operations
int FindNext(char* buffer, char* str, int start); lifind next location of str in buffer
int GetNextLine(char buffer[], char temp[], int start); II return next line of buffer to temp
int GetNextBlock(char buffer[] , char temp[], int start); II return a blockofbulTerdivided by {}
void De_Space(char*); II get rid of redundantspaces
II list operations
Command* FindACommand(char* str, char" type);
Command* FindACommand(Command* cmd);
Command* AppendACommand(Command* cmd);
II parser operations
Simulation* ParseRun(char* str);
int ParseDistributions(char* str);
int ParseRcsources(char* str);
int ParseSources(char* str):
int ParseQueues(char* str);
int ParseActivities(char* str);
int ParseSinks(char* str);
int ParseBranches(char* str);
voidParseCommand(char* line, char* pl , char* p2, char* p3, char* p4, char* p5, char* p6):
Random* GetDistribution(char*);
void* GetCommandObj(char*);
Command" GetCommand(char*):

}; II end of SimModelGen
#endif



EA. DDE Data interface

J. DDE Window
II Copyright (C) 1993 by University of Hawaii
II Hyper Analysis Toolkit (R) MyDDE
II DDE data interface
II SuperClass:TMDIFrame
II File: mydde.h
II Author: Jackson He 02/94
II Language C++

#ifndef_MyDDE
#define _MyDDE

#inc1ude <owl.h>
#inc1ude <inputdia.h>
#inc1ude <ddeml.h>
#inc1ude <stdio.h>
#inc1ude <string.h>
#inc1ude <mdi.h>
#inc1ude "ddedef.h"
#inc1ude "rw/cstring.h"
#inc1ude "apphdl.h"

#define BufLen 2000
#define NumDDE 2
#define NumItem 1

_CLASSDEF(MyDDEWindow)
class MyDDEWindow : public TMDIFrame
{
friend AppHandle;
friend SimAppHandle;
protected:

II client agent
AppHandle* Appl;
MyDDEWindow( LPSTR, LPSTR ):
virtual -MyDDEWindowO:
virtual void SetupWindowO:
virtual void Initial Appt);
virtual void SetupClienu);
virtual void Closef'lientr);
Boolean ConnectToServer(int clientld);
virtual void SendRcquest(int clientld, int reqld);
virtual void SendPokc(int clientld, int reqld, char* pokcMsg):
Boolean StartAdvice(int clientld, int reqId, DWORD*):
Boolean StopAdvice(int clientld, int reqld, DWORD*);
virtual void WMlnitMenu( RTMessage) = [WM]IRST + WMJNITMENU]:
virtual void CMExit( RTMcssage) = rCM]IRST + CM_EXIT):
virtual void CMConnectl( RTMessage) = [CM]IRST + CM_ConncctIl:
virtual void CMConncct2( RTMessagc) = [CM]IRST + CM_Conncct21:

254



virtual void CMRequestl( RTMessagc) = [CM]IRST + CM_Rcqucstl);
virtual void CMRequest2( RTMcssage) = [CM]IRST + CM_Rcqucst2);
virtual void CMPokel( RTMcssage) = [CM]IRST + CM]okel];
virtual void CMPoke2( RTMessagc) = [CM]IRST + CM]oke2];
virtual void CMDisconnectl( RTMessage) = [CM]IRST + CM_Disconncctl];
virtual void CMDisconncct2( RTMessagc) = [CM_FIRST + CM_Disconncct2];
virtual void CMUHelpAbout( RTMessage) = [CM]IRST + CM_U_HELPABOUT];
virtual void RcceivedData( HDDEDATA, int);
static HDDEDATA FAR PASCAL _export ClientCallBack( WORD, WORD,

HCONV, HSZ, HSZ, HDDEDATA, DWORD, DWORD );

DWORD idlnstClient;
HCONV hConvClient[NumDDEj;
soot, tfLoopClient;
HSZ hszServiceClt[NumDDE], hszTopicCIt[NumDDE], hszItemCIt[NumDDE];
FARPROC IpClientCallBack;
int IsMyClicntConv(HCONV hConv);

Iiserver agent
virtual void Close'Servert);
virtual void Setupservert);
virtual BOOL MatchTopicAndScrvicc( HSZ, HSZ );
virtual int MatchTopicAndItcm( HSZ, HSZ );
virtual HDDEDATA WildConncct( HSZ, HSZ, WORD);
virtual HDDEDATA DataRequcsted( WORD, int );
virtual void Updatelratat);
static HDDEDATA FAR PASCAL _cxport ServcrCallBack( WORD, WORD,

HCONV, HSZ, HSZ, HDDEDATA, DWORD, DWORD);

DWORD idlnstServer:
HCONV hConvServer;
BOOL tfLoopServer;
HSZ hszServiceSvr, hszTopicSvr, hszItcmSvr;
FARPROC IpServcrCallBack;

}; IIend of my DDE
#cndif

2, Application handlers
#ifndef _AppHandle
#dcfine _AppHanle
#includc "rw/cstring.h"

#definc NumItcm 1
#define NumDDE 2
_CLASSDEF(MyDDEWindow)
_CLASSDEF(yANSLWindow)

11****** AppHandlcr******11
class AppHandle
{

255



public:
AppHandle(MyDDEWindow* interface) : NuIIStr('"') { ParentWin = interface.}

II server methods
void SetServerName(const RWCString& sname) { SName = sname;}
RWCString & GetServerNameO {return SName;}
void SetServerService(const RWCString& sserve) { SService = sserve.}
RWCString & GetServerServiceO { return SService;}
void SetServerTopic(const RWCString& stopie) { STopic = stopic.}
RWCString & GetServerTopicO { return STopic;}
void SetServerItem(const RWCString& sitem, intj)

{ if(j>=O&&j<NumItem) SItem[j] = sitem;}
RWCString & GetServerItem(int j)
{ if(j>=O&&j<NumItem) return SItemUJ;

else return NullStr;
} II set and get the j-th item
virtual RWCString& PrepareData(int i, const RWCString& request = 1111):
virtual void PokeMsgHandler(char *);

II Client methods
void SetClientName(const RWCString& cname) { CName = cname;}
RWCString & GetClientNameO { return CName;}
void SetClientService(const RWCString& cserve, int i)

{ if(i>=O&& i<NumDDE) CService[i] = cserve.}
RWCString & GetClientService(int i)
{ if(i>=O&& i<NumDDE) return CService[i]:

else return NulIStr;
}
void SetClientTopic(const RWCString& ctopic, int i)

{ if(i>=O&& i<NumDDE) CTopic[i] = ctopic.}
RWCString & GetClientTopic(int i)
{ if(i>=O&& i<NumDDE) return CTopic[ij;

else return NullStr;
}
void SetClientItem(const RWCString& citem, int i, int j)
{ if(i>=O&& i<=NumDDE && j>=O && j<Numltem)

Cltemjijjj] = citem;
}
RWCString & GetClientltem(int i, intj)
{ if(i>=O&& i<=NumDDE && j>=O && j<Numltem)

return CItem[iWJ:
else return NulIStr:

}
void SetClientBufTer(const RWCString& cbuf int i)

{ if(i>=O&& i<NumDDE) CBufTer[ij = cbuf.}
RWCString & GetClientBufTcr(int i)
{ if(i>=O&& i<NumDDE) return CBufTer[ij:

else return NullStr;
} II set and get the j-th item of i-th client
virtual RWCString& ReceiveData(int i);
RWCString& GetDataBuffer(){ return Datafiuffcr.}
void SetDataBuffer(const RWCString& s){DataBufTer= s:}

256



protected:
MyDDEWindow* ParentWin;
RWCString NullStr;
RWCString DataBuffer;
II Server attributes
RWCString SName;
RWCString SService;
RWCString STopic;
RWCString SItem[NumItem);
II Client attributes
RWCString CName;
RWCString CService[NumDDE);
RWCString CTopic[NumDDE);
RWCString CItem[NumDDE)[NumItem);
RWCString CBuffer[NumDDE);

}; II end of AppHandle

II ****** UI (User Interface) Handle *******11
class UIAppHandle:public AppHandle
{
public:

UIAppHandle(MyDDEWindow* myDad):AppHandle(myDad){}
virtual RWCString& PrepareData(int i, const RWCString& request = ""):

virtual void PokeMsgHandler(char *);
virtual RWCString& ReceiveData(int i);
virtual void Connect'Io'Simt);
virtual void ConnectToESO:
virtual RWCString& Requestfromxinu);
virtual RWCString& RequestFromESO;
virtual void PokeToSim(char* msg);
virtual void PokeToES(char* msg);
RWCString& PrepareESData(const RWCString& request);
RWCString& PrepareSimData(const RWCString& request);
Boolean IsConnected(int i);

}; II end ofUlAppHandle

II ***** SimAppHandle ******11
class SimAppHandle:public AppHandle
{

public:
SimAppHandle(YANSL Window* myDad);
virtual RWCString& PrepareData(int i, const RWCString& request = ""):

virtual void PokeMsgHandler(char *);
virtual RWCString& ReceiveData(int i);
virtual void Connect'I'otllt);
virtual void ConnectToESO;
virtual RWCString& Requestfroml.llf):
virtual RWCString& RequestFromESO:
virtual void PokeToUl(char* msg);
virtual void PokeToEs(char* msg);

257



};
#endif

RWCString& PrepareESData(const RWCString& request);
RWCString& PrepareUIData(const RWCString& request);
Boolean IsConnected(int i);

258



[Abowd 89]

[Ahituv 90]

[August 91]

[Balci 87]

[Balci 92]

[Bell 87]

[Bell 91]

[Bischak 91]

[Brooks 87]

[Carando 89]

[Card 91]

259

BIBLIOGRAPHY

Abowd, G., Bowen, J., Dix. A, Harrison, M., and Took, R. "User
Interface Languages: A Survey ofExisting Methods",
Programming Research Group Report PRG-TR-5-89, Oxford
University Computing Laboratory, October, 1989

Ahituv, N. and Neumann, S. "Principles ofInformation Systems for
Management, 3rd edition", C. Brown Publishers, 1990

August, 1. H. "Joint Application Design", Yourdon Press, 1992

Balci, O. and Nance, R. "Simulation Support: prototyping the
automation-based paradigm", Proceedings of the 1987 Winter
Simulation Conference, Dec. 1987, pp 495-502

Balci, O. and Nance, R. "The Simulation Model Environment: An
Overview", Proceedings of the 1992 Winter Simulation
Conference, Dec. 1992, 726-736

Bell, P. C. and O'Keefe R. M. "Visual Interactive Simulation ­
History, Recent Developments, and Major Issues", Simulation,
Vol. 49, No.3, March 1987, pp 109-116

Bell, P. C. "Visual Interactive Modeling: The Past, the Present, and
the prospects", European Journal of Operational Research, Vol.
54, 1991, pp 274-286

Bischak, D. P. and Roberts, S. D. "Object-Oriented Simulation",
Proceedings of the Winter Simulation Conference, 1991, pp 194­
203

Brooks, F. P. "No silver bullet: essence and accidents of software
engineering", IEEE Computer, April 1987

Carando, P. "SHADOW: Fusing Hypertext with AI", IEEE
Expert, Winter 1989, pp65-78

Card, S.K., Robertson, G.G., and Mackinlay, J.D. "The
Information Visualizer: An Information Workspace" Proceedings
ofCHI'91 Human Factors in Computing Systems, New Orleans,
LA, 1991, pp 181-188



[Carmel 92]

[Chen 76]

[Chen 89]

[Chen 92a]

[Chen 92b]

[Coad 90]

[Coad 91]

[Cobb 90]

[Conklin 87]

[Cybulski 92]

[Dupuy 90]

[Eddins 90]

[Eich 89]

260

Carmel, E., G., Joey F. and Nunamaker, 1. F. Jr. "Supporting joint
application development (JAD) and electronic meeting system:
moving the CASE concept into new areas of software
development", Proceedings of the HICS S, Maui 1992, vol. 3

Chen, P. "Entity-relation Approach", ACM Trans. Database
System Vol. 1. 1, 1976

Chen, M., Nunamaker 1. F. Jr. and Weber, E. S. "Computer-aided
software engineering: present status and future directions", Data
Base, Spring, 1989

Chen, M. and Norman, R. 1. "Integrated CASE: adoption,
implementation and impacts", Proceedings of the HICSS, Maui
1992, vol. 3

Chen, M., Norman, R. 1. "A Frame for Integrated CASE", IEEE
Computer, Mar. 1992

Coad, P. and Yourdon, E. "Object-oriented Analysis", Prentice
Hall Inc. 1990

Coad P. and Yourdon, E. "Object-oriented Design", Prentice Hall
Inc. 1991

Cobb, R. H. and Mills, H. D. "Engineering Software under
Statistical Quality Control", IEEE Software, Nov. 1990, pp 44-54

Conklin, 1. "Hypertext: An Introduction and Survey", IEEE
Computer, Vol. 20 No.9, 1987 pp 17-37

Cybulski, 1. L. and Reed, K. "A hypertext based software
engineering environment", IEEE Software, Mar. 1992, pp 62-68

Dupuy, A, Schwartz, J., Yemimi, Y. and Bacon, D. "NEST: a
network simulation and prototyping testbed", Communications of
the ACM, Vol. 33, No. 10, October 1990

Eddins, W., Crosslin, R. Sutherland, D. E. "Using Modeling and
Simulation in the Analysis and Design of Information Systems",
Proceedings of International Working Conference on Dynamic
Modeling of Information Systems, April, 1990

Eich, M, Fan, C., Sun, W. and Rafiqi, S. "A methodology for
simulation of database systems", Simulation, June 1989, 241-254



[Fischer 89]

[Fox 89]

[Frankel 89]

[Galitz 93]

[Gane 79]

[Gane 90]

[Gerlach 91]

[Gould 85]

[Gore 90]

[Graber 90]

[Griggs 89]

[Gronbaek 94]

261

Fischer, G. "Human-computer interface software: Lessons
Learned, Challenges ahead", IEEE Software, Jan. 1989, pp 44-52

Fox, M. S., Husain, N., McRoberts, M. and Reddy, Y. V.
"Knowledge-Based Simulation: An Artificial Intelligence Approach
to System Modeling and Automating the Simulation Life Cycle",
Artificial Intelligence, Simulation and Modeling, John Wiley&Sons
Inc., 1989, pp447-485

Frankel, V. L. and Balci, O. "An on-line assistance system for the
simulation model development environment", International Journal
ofMan-Machine Studies, Vol. 31, pp699-716

Galitz, W. O. "User-Interface Screen Design", QED Information
Sciences, Inc. 1993

Gane, C. and Sarson, T. "Structured systems analysis: tools and
techniques", Prentice Hall Inc., 1979

Gane, C. "CASE: the methodologies, the products and the future",
Prentice Hall Inc., 1990

Gerlach, J. H. and Kuo, F. Y. "Understanding Human-Computer
Interaction for Information System Design", MIS Quarterly, Dec.
1991, pp527-549

Gould, J. D. and Lewis, C. "Designing for usability: key principles
and what the users think", Communications of the ACM, Vol. 28,
No.3, March 1985, pp 300-311

Gore, A. "QASE to configure huge systems", MACWEEK, Nov.
13, 1990

Graber, A., Ulrich, H. and Bolay, F. "Object-Oriented General
Purpose Simulator Based on Interactive Petri Nets", Proceedings
of 1990 Summer Simulation Conference 1990, pp 843-847

Griggs K. "GDI: (Goal Directed Interface): An intelligent, Iconic,
object-oriented interface for office systems", Ph.D. Dissertation,
University of Arizona, 1989

Gronbaek K. and Trigg R. H. "Design issues for a DEXTER-based
hypertext system", Communications of the ACM February 1994,
pp40-49



[Hartson 89]

[Halasz 94]

[He 94a]

[He 94b]

[Henriksen 83]

[Hill 87]

[Horton 90]

[Hurrion 91]

[Ignizio 91]

[Ives 83]

[Ives 84]

[Joines 92]

[Keller 87]

262

Hartson, H. R. and Hix, D. "Human-computer Interface
Development: Concepts and Systems for its Management", ACM
Computer Survey, Vol. 21 No.1, Mar. 1989, pp 5-85

Halasz, F. and Schwartz "The Dexter hypertext reference model",
Communications of the ACM, February 1994, pp 30-39

He, j. and Griggs, K. "A Tool for Hypertext-based Systems
Analysis and Dynamic Evaluation". Proceeding of 27th HICSS,
Maui, Hawaii, Jan. 4-7, 1994

He, 1. Wild, R. and Griggs K. "An architecture to support reverse
simulation", The 1994 Summer Conference on Computer
Simulation

Henriksen, J. O. "The Integrated Simulation Environment",
Operation Research Vol. 31, No.6, Nov.-Dec. 1983 pp 1053-1072

Hill, T. R. and Roberts, S. D. "A prototype knowledge-based
simulation support system", Simulation, April 1987

Horton, W. K. "Design and writing on-line documentation: help
file to hypertext", John Wiley & Sons, New York, ~·9.g0

Hurrion, R. D. "Intelligent Visual Interactive Modeling", European
Journal of Operational Research, Vol. 54, 1991, pp 349-356

Ignizio,1. P. "An Introduction to expert systems", McGraw-Hill,
Inc., 1991

Ives, B, Olson, M. and Baroudi, 1. "The Measurement of user
information satisfaction", Communications of the ACM, Vol. 26,
No. 10, pp 785-793, Oct. 1983

Ives, B and Olson, M "User involvement and MIS success: a
review of research", Management Science, 30, pp 586-603

Joines,1. A, Powell, K A Jr and Roberts, S. D. "Object-oriented
modeling and simulation with C++", Proceedings of the 1992
Winter Simulation Conference

Keller, R. "Expert System Technology", Yourdon Press, A
Prentice Hall Company, 1987



[Kimbler 88]

[Kreutzer 90]

[Kwanjai 92]

[Lantz 87]

[Law 91]

[Liou 93]

[Lomow 90]

[Marcus 91]

[Martin 88]

[Martin 90a]

[Martin 90b]

[McAleese 89]

[McAleese 90]

263

Kimbler, D. L. and Watford, B. A. "Simulation program
generation: A functional perspective", Proceedings of the SCS
Multiconference on AI and Simulation, Feb. 3-5 1988, San Diego,
CA

Kreutzer, W. "The modeler's Assistant - a first step toward
integration of knowledge bases and modeling systems",
Proceedings of Summer Computer SimulationConference, July
1990, pp 874-879

Kwanjai, N. K. and Wild, R. H. "A Recursive Expert System to
Facilitate SimulationExperimentation: Discussion and Prospects for
a Reverse Simulation Technique", Proceedings of Winter
Simulation Conference, 1992, Washington

Lantz, K. E. "The Prototyping Methodology", Prentice Hall Inc.
1987

Law, A. M. and Kelton, W. D. "Simulation modeling and analysis,
2nd edition", McGraw-Hili Inc., 1991

Liou, Y. I. and Chen, M. "Integrating Group Supporting Systems,
Joint Application Development, and Computer-Aided Software
Engineering for Requirement Specification", Proceedings of
HICSS, Maui, Hawaii 1993

Lomow, G. and Baezner, D. "A Tutorial Introduction to Object­
Oriented Simulationand Sim++", Proceedings of the Winter
Simulation Conference, 1990, pp 149-153

Marcus, A. "User-interface development in the nineties", IEEE
Computer, Sep. 1991

Martin.T. and McClure, C. "Structured Techniques: The Basis for
CASE", Prentice Hall Inc., 1988

Martin, J. "Use of Automated tools Crucial to RAD life cycle
success", PC Week, January 15, 1990

Martin.T, "Hyperdocuments and how to create them", Prentice­
Hall, Englewood Cliffs, New Jersey, 1990.

McAleese, R. "Hypertext: theory into practice", Ablext Publishing
Corporation, 1989

McAleese, R. "Hypertext: state of the art", Ablext Publishing
Corporation, 1990



[McClure 89]

[Mellichamp 89]

[Mittermeir 90]

[Myers 89]

[Mynatt 92]

[Norman 86]

264

McClure, C. "CASE is software automation", Prentice Hall Inc.,
1989

Mellichamp,1. M. and Park, Y. H. "A statistic expert system for
simulation analysis", Simulation, April 1989, pp134-139

Mittermeir, R. 1. and Rossak, N. "Reusability", Chapter 7 of
"Modern software Engineering", VNR, New York, pp 205 - 235

Myers, B. A. "User-Interface Toels: Introduction and Survey",
IEEE Software, Jan. 1989, pp 15-23

Mynatt, B. 1. Leventhal, L. M., Instone, K. Farhat, 1., Rohlman, D.
"Hypertext or Book: Which is better for Answering Questions?",
Proceedings of CHI'92, Mar. 1992, pp 19-25

Norman, D. A. and Draper, S. W. "User-Centered System
Design", Hillsale, N1. Lawrence Eribaum, 1986

[Oinas-Kukkonen 93] Oinas-Kukkonen, H. "Intermediary Hypertext Systems in CASE
Environments", Research Papers Series A16, Department of
Information Processing Science, University of Oulu, Finland

[O'Keefe 86]

[O'Keefe 87]

[O'Keefe 89]

[O'Keefe 92]

[Oman 90]

[Park 90]

[Pleas 94]

O'Keefe, R. "Simulation and Expert System - a taxonomy and
some examples", Simulation, Jan. 1986 pp 10-15

O'Keefe, R. M. "What is Visual Interactive Simulation?",
Proceedings of the 1987 Winter Simulation Conference, 1987, pp
461-464

O'Keefe, R. "The Role of Artificial Intelligence in Discrete-Event
Simulation", Artificial Intelligence, Simulation and Modeling,
John Wiley&Sons Inc., 1989, pp359-379

O'Keefe, R. M. and Bell, P. C. "Findings from Behavioral Research
in Visual Interactive Simulation", Proceedings of the 1992 Summer
Simulation Conference, July 1992, pp 751-755

Oman, P. W. "CASE analysis and design tools", IEEE Software,
May 1990, pp37-43

Park, Y. H. and Mellichap, 1. M. "A statistical expert system for
simulation analysis", Proceedings of Summer Simulation
Conference, 1990

Pleas, K. "OLE 2.0: Putting the pieces together", Visual Basic
Programmer's Journal, March / April 1994



[Rao 88]

[Royce 70]

[Sol 91]

[Sommerville 89]

[Sprague 82]

[Strong 90]

[Taylor 88]

[Towner 89]

[Vujosevic 90]

[Warren 91]

[Warren 92]

[Warren 93]

265

Rao, M. 1. and Sargent, R. G. "An experimental advisory system
for operational validity", Proceedings of the SCS Multiconference
on AI and Simulation, Feb. 3-5 1988, San Diego, CA

Royce, W. W. "Managingthe development of large software
system", Proceedings ofWESTCON 1970, CA, USA

Sol, H. G. "Dynamics in information system", Proceedings of
DynamicModeling ofInformation System II, 1991

Sommerville, I. "Software Engineering, 3rd edition", Addison­
WesleyPublishing Company, 1989

Sprague, R. H. and Carlson,E. D. "BuildingEffective Decision
Support Systems", PrenticeHall, 1982

Strong, B. "Requirementsfor database support in CASE", from
"Modern Software Engineering", edited by P. Ng and R. Yeh, Van
Nostrand Reinhold, 1990

Taylor, R. P. and Hurrion, R. D. "An expert advisor for simulation
experimental design and analysis", Proceedings of the SCS
Multiconference on AI and Simulation, Feb. 3-5 1988, San Diego,
CA

Towner, L. E. "CASE: Concept and Implementation", McGraw­
Hill Book Company, Inc. 1989

Vujosevic, R. "Object-Oriented Visual Interactive Simulation",
Proceedings of the Winter Simulation Conference, 1990, pp 490­
498

Warren, 1. R. and Stott, 1. W. "CASE/Simulation: making
performance evaluationa normal part of information system
development", ProceedingsDynamicModeling of Information
System II, 1991

Warren, 1. R., Stott, 1. W. and Norcio, A. F. "Stochastic simulation
of information system design from data flow diagrams", Journal of
Systems Software, May 1992

Warren, 1. R. and Canfield, G.c. "Information systems
performance evaluation: a study of the relationship between
decision accuracy of systems analysisand design simulation usage",
Technical Report #CSIS-93-005, Department of Computer Science
and Information Systems, The American University



[Whitten 89]

[Widman 89]

[Wild 91a]

[Wild 91b]

[Wild 93]

[Wright 83]

[Wu 90]

[Yourdon 79]

[Yourdon 89]

[Yourdon 92]

[Zhang 89]

266

Whitten, 1., Bentley, L. and Barlow, V. "Systems analysis & design
methods, 2nd edition", Richard D. Irwin, Inc. 1989

Widman, L. E. "Artificial Intelligence, Simulation, and Modeling:
A Critical Survey", Artificial Intelligence, Simulation and
Modeling, John Wiley&Sons Inc., 1989, pp1-44

Wild, R. H. and Griggs, K. A. "Improvingthe Quality of
Information Systems Analysis and Design Through Simulation
Modeling", Proceedings ofISAGA 1991

Wild, R. H. and Pignatiello, 1. 1. "An Expert System-based Reverse
Simulation Technique", Proceedingsof 1991 Summer Simulation
Conference, July 1991, pp 352-357

Wild, R. H. and Griggs, K. A. "Design robust information
systems", Proceedings of the 26th Hawaii International Conference
on System Science, Vol. IV, pp 419-428, Jan 4-7, 1993

Wright, P and Lickorish, A. "Proof-reading texts on screen and
paper", Behavior and information Technology, Vol. 2 No.3, 1983,
pp227-235

Wu, X. "On Expert Simulation System", Proceedings of 1990
SummerSimulation Conference, July 1990, pp 715-720

Yourdon, E. "Structured walkthroughs, 2rd edition", Prentice Hall
1979

Yourdon, E. "Managing the Structured Techniques, 4th edition",
Prentice Hall Inc., 1989

Yourdon, E. "The Decline and Fall of the American
Programmers", Prentice Hall Inc., 1992

Zhang, Q. and Zeigler, B. P. "The systementity structure:
knowledge representationfor simulation modeling and design",
Artificial Intelligence, Simulation and Modeling, John Wiley&Sons
Inc., 1989, pp47-73


