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ABSTRACT

Ciguatoxins, the causative agent of ciguatera fish poisoarega group of
potent neurotoxins produced worldwide in tropical and subtropiaaihe coastal
ecosystems by several dinoflagellate species withigehesGambierdiscus. It
has been hypothesized tila¢ multiple chemical congeners of ciguatoxin are
lipid-soluble molecules that are biologically magniftedough coral reef food
webs. This study attempts for the first time to quanhify biological
magnification via correlation between estimationsrattional trophic position
and estimations of ciguatoxin concentrations for indiviauéd-caught fish
within a known feeding relationship. This study focuseshe carnivorous

grouper,Cephalopholis argus, and 22 potentially ciguatoxic prey fish species.

Prevalence and concentration of ciguatoxin within thislgie/prey
relationship were analyzed using a mouse neuroblastoma lyiaas924C.
argus samples and 156 prey samples all collected from the admfig the south
and/or west shores of the Hawaiian Islands of Madi@ahu. To determine the
biological magnification of ciguatoxin, the bioassay fesswere combined with
the trophic position estimates obtained via compound-speatifogen isotope
analysis of amino acids (AA-CSIA). AA-CSIA is ave technigque which allows
for the estimation of fractional trophic position finganisms without the
necessity of separate analysis to determiné’fizNevalues of photoautotrophs
within the food web of interest. This technique theretmeumvents many of the

short-comings of bulk stable isotope analyses that madéibnally been applied
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for trophic position determination. AA-CSIA was perfodren 56 fish samples
consisting of botlC. argus and prey and trophic position was estimated using
three separate calculation methods for comparisoeseltesults were also
compared to trophic position estimations based on ston@tknt analysis as

reported on the websiteww.fishbase.orgwhich is a global database on the

ecology of fish. The results of these comparisodgate that an empirically
derived trophic enrichment between glutamic acid and phemyted (3.9 + 1.3
%0) applied for trophic positions greater than 2 (previouslyiphét trophic
enrichment of 7.6 £ 1.3 %o is applied for the step betweshic positions 1 and

2) yields the most accurate and precise estimatiomplhic position.

Of the 924, 41.3%. argus and 35% of the 156 prey samples contained
ciguatoxin above the detection limit of the mouse neusbdaa bioassay. An
increased frequency of ciguatoxicity with total body weighs found foIC.
argus, however, no such relationship was observed for pregiespeA significant
positive relationship was found between trophic positiontatad body weight
for C. argus that was not found for prey species. No significanitpes
relationship was found between ciguatoxin concentratiortrapttic position for
individual samples. The results of this study indiché trophic position alone is
not sufficient to explain variation in ciguatoxin conttations observed in
individual members of the studied fish population. Howetver results of this
study provide evidence to support the hypothesis of biologieghification of

ciguatoxin within the studied populations.
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CHAPTER 1

Introduction

Ciguatoxins (CTX) are a class of lipid-soluble neurotoxinzd are
concentrated, amplified and modified through tropical autatropical coral reef
food webs worldwide and are considered to be among thepotent toxins
known (Pearn 2001, Lewis and Holmes 1993). Ciguatera fishrppg¢CFP) in
humans results from the consumption of reef fish w@gtumulated CTX (Randall
1958). About 50,000 cases of CFP are reported globally each it is
estimated that this number could be as high as 500,000 wHenm@porting and
mis-diagnosis are considered, making CFP the most canfisfopoisoning
globally (Lewis 2001). Symptoms of CFP include gastroimtaktneurological
and cardiovascular disorders, and, although rare, oaslesith have been
reported (Pearn 2001). Carnivorous predatory reef fish, suCéphalopholis
argus are commonly implicated in cases of CFP due to assbioéxyical
magnification of CTX through the food web.

While the effects of biological magnification of CTXem relatively easy
to quantify in simple linear food chain models, the fagdelationships of coral
reef ecosystems are much more complicated and arecpessented with
complex food webs that are characterized using fradtiorahic levels (Pilos
and Strong 1996).

Bulk tissue nitrogen isotop&’fN) values have been widely used in food
web studies to establish trophic position of marine osgasi(Fry 2006).

However, interpreting th&"°N values of animals is complicated by the fact that
1



these values are a consequence of two variables ar&ation in the isotopic
composition of nitrogen available to primary producers aadtban number of
steps the consumer is removed from feeding directlyhytoplankton (Martinez
del Rio et al. 2009 and references within). Characteriirlg values at the base
of the food web is challenging because phytoplanktoesteba and heterotrophic
protists respond quickly to changes in biogeochemistry andifficeilt to isolate
and analyze (Hannides et al. 2009, Rolff 2000, O'Reilly €2GH2) .

Compound-specific nitrogen isotope analysis of amino 4&idsCSIA)
is a promising new technique that avoids many of the sloontrgs of traditional
bulk stable isotope analyses (McClelland and Montoya 200Ra€ishi et al.
2007). In samples of consumer muscle tissue, “sourceiaatids (e.g.
phenylalanine, glycine and serine) appear to retain the isatopiposition of the
nitrogen (N) sources at the base of the food web, \akeéteophic” amino acids
(e.g. glutamic acid, alanine, valine, leucine, isoleucine paaline) becomé&N
enriched at each step up in trophic level (Chikaraishi @089, Popp et al.
2007). On&ey advantage of this technique is that predator tissue slone
sufficient for quantitative determination of trophic pmsit making separate
analysis of the isotopic composition at the base@fdlbd web and the potential
dietary constituents unnecessary

The mouse neuroblastoma (N2a) bioassay that is usedefdetaction of
ciguatoxin in animal tissue is a sodium-channel-speciiasgsay (Manger et al.

1993 and 1995, Dickey et al. 1999 and Bienfang et al. 2008). Thisanetho



measures sodium channel disruption as a proxy for ciguatorirentration
(Bienfang et al. 2008).

Extensive analyses of ciguatoxXic argus around the main Hawaii Islands
indicate substantial spatial and temporal variability guatoxicity of fish (Figure
1). This study utilizes AA-CSIA of. argus and selected prey species in an
attempt to place CTX biomagnification into a food webtext. Prey species
targeted are a subset of prey species determined fromeadlegical study of.
argus undertaken bpierking (2007) who identified the prey items in 156 fdll
argus stomachs (Table 1). The families and species listed in Tabérésricted to
C. argus prey fish that are non-zooplanktivorous.

The controls on the distribution of ciguatoxic fishdaherefore the
potential for human iliness, have remained elusive (LewisHolmes 1993,
Dickey and Plakas 2010 and references within). Ciguatoxigsate as
gambiertoxins in the benthic dinoflagellate ge@asnbierdiscus and are later
transformed into CTX after entering the food web throlgtibivorous reef fish
(Yasumoto et al. 1977, Bomber and Aikman 1989). Factorsatlimy both the
abundance and toxin production@dmbierdiscus are yet to be fully understood
(Chinain et al. 1999), although sea surface temperature @hBigat et al.
2005), nutrient load (Lartigue et al. 2009), physical disturbahceral reefs and
algal cover as the preferred substratum@ambierdiscus spp. (Kaly and Jones
1994) have all been linked to changes in abundance of thisatjetéte.

The utilization of the N2a bioassay for the detectib@®X in fish tissue,

combined with AA-CSIA for the determination of trophicsg@n, allows for the
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guantification of the biological magnification of CTKly primary research
objective is thus to place CTX in a food web contextgighese techniques in an
effort to gain better understanding of the biomagnificabb@TX in the coral
reef ecosystems of the Hawaiian Islands of Maui@atu.

My overarching hypothesis is that CTX is concentratedogd web
magnification and the degree of magnification can be gieghwith the
determination of trophic position by AA-CSIA. Biomagnifican of CTX through
a food web has not been quantified in the published liter&audate, and this
work provides a unique opportunity to attempt this task. Artphéurinsight into
the occurrence of ciguatoxic fish in this ecosystem h&dy to prevent future

human illness due to CFP.



CHAPTER 2
Methods

Collection

Samples oC. argus were obtained through collaboration with local sports
fishermen who provided the date, approximate depth and locatitve catch.
Total body weight was recorded after the fish wereived from the fishermen,
and total length and standard length measurements werdedadter muscle
samples were taken from the fish. SampleS.@irgus prey species were
collected by scientific divers via spear using either SCldBAlosed circuit re-
breather from near-shore reefs around Oahu and Malgetailed descriptions
of date, depth and location of the catch were providedal body weight, total
length and standard length were recorded prior to musstleetsampling. Fish
length is reported here as total length to avoid unceytthat may result from
error in standard length measurements of the roundesdhiaih is characteristic
of C. argus.

For both AA-CSIA and N2a bioassay analysis lateral feusssue was

sampled from each fish, lyophilized and ground into a hommggpowder.

N2a Bioassay

This method follows that outlined in Bienfang et al. 2003.X was
extracted from fish tissue powder (~5-20 g wet weight)gu8id v/v methylene
chloride (CHCI,):fish powder. The 2:1 mixture was allowed to sit at room
temperature for at least 1 hour with gentile agitatioorgo overnight storage at 4

°C. After at least 16 hours, samples were sonicatel foin and vacuum filtered
5



(Whatman GF/F, nominal prosity Oum). The powdered fish was scraped from
the filter and the sonication/filtration process wagaated twice. The GBI,
containing CTX extract was dried using a rotary evaporatognstituted in ~ 5

ml CH,Cl,, sonicated for 30 sec and transferred to a clean 20 nillation vial.
The addition of ~5ml CKCl, and sonication process was repeated twice, and each
rinse was transferred to the scintillation vial. TH& -l of CHCl, was allowed

to evaporate overnight in a ventilation hood. An add#lo-2 — 3 ml CHCl, was
added to concentrate the dry CTX extract in the bottbiieoscintillation vial,

then allowed to dry overnight in the hood. The estsavere capped and stored at
-20°C before being submitted to the laboratory of Dr. PaaihBBng at the Center
for Oceans and Human Health at UHiia for analysis of sodium channel
activity via mouse neuroblastoma (N2a) bioassay.

The N2a used to assess changes in sodium channel actilotysf the
procedures as outlined by Manger et al. (1993 and 1995), Dicleky(#999) and
Bienfang et al. (2008). One day prior to analysis of CXiXaets, 96-well plates
were prepared with 1@0of mouse neuroblastoma cell suspension (200,000 cells
ml™) added to the 60 inner wells and a phosphate-buffered salites to the
outer perimeter wells. The plates were allowed tdiraate overnight in an
incubator at 37 °C with 5% C&enriched and humidified air. CTX extracts were
re-dissolved in 2 mL methanol and sonicated for 3-5 mihaalted to the
prepared plates. Plates were dosed with extragtljr2dl 3ul and 4l per well
concentrations, replicating each concentration in éswé&uabain (0.3 mM) and
veratridine (5uM) (O/V) were added to 3 of the 6 wells perceatration to

6



depolarize the cellular membranes and elucidate a sochiamael disruption as
caused by the presence of ciguatoxin in the extracts. [faiehalso contained 10
cells-only control wells (i.e., no sample or O/Vpresenting uninhibited growth
and 10 baseline wells (i.e., cells plus O/V) represgrihe baseline decrease in
cell viability as a result of the addition of thesewrticals. Well volumes were
brought to 200l using RPMI-1640 cell media and plates were allowed to
incubate overnight.

Following the incubation, 30 of CellTiter 96 Aqueous One Solution
(Promega, Inc., Madison, WI) was added to each well bogted to incubate for
1 hour. The tetrazolium compound in this solution is bioredury metabolically
active cells to produce a colorietric response thatmeassured via a Multiskan
MCC/340 Eliza plate reader (Thermo Labsystems, Cincin®@&t) at 492nM.
Results were analyzed using a Studettést to identify significant differences
between control and sample means. Wells containingoatily and extract were
used to assess the cytotoxcity of the extract toehe rior to interpretive
analysis of sodium channel activity. Wells were ab&®d non-cytotoxic when
sample means between extract-containing wells and coveitsl were not
significantly different (p > 0.05). Sodium channel dion analysis was
conducted on non-cytotoxic samples by comparing the resgmma wells with
extract plus O/V and control wells plus O/V to determfregnificant decreases
in cell metabolic activities occur. Differences in thean of control wells, both
with and without O/V (n=10 each), and the mean of exgpact O/V wells (n=3)
were used to determine statistical differences.
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The concentration of CTX muscle tissue of fish (pg/neg weight basis)
was determined using an N2a bioassay dose-response curvelfgrlPC
generated by two separate sets of experiments. The egdasioribing the data is

as follows:

where y is the percent control, x is the amount of RQ (nmol/L), yhigh = 100,
Yiow = 36.7, EC50 = 19.2 nmol, and n = 0.69. To calculate the anod @i X in

muscle tissue the inverse of equation 1 was used:

(2)

1/n
x = EC50x (M —1}

y - ylow

The equivalent wet weight of fish added to each wethefbioassay was used to
express the CTX concentration in units of pg CTX/mg fidte limit of detection
of this method is estimated to be ~0.07 pg/mg.

The larger sample size f@. argus (n=924) and the individual prey
specie<C. strigosus (n=74) allowed for the utilization of more elaboratethods
for the determination of median CTX concentratiome median concentration
for these groupings was inferred from plots of x vs. #ssi@ where x is the
individual value for logo[CTX] measured in a particular fish, and z-statistic is

defined as:



Z=

(X=H) 3)
ag

whereyp is the theoretical mean ands the theoretical standard deviation. The z-
statistic is back-calculated from the cumulative prolitgkb) associated with

each logo[CTX] value (x) using the computing software Matlab. Cilatiue
probability of x refers to the probability that a randpselected value from the
distribution of x will be less than or equal to x. sésning a normal distribution

for x, and using p, the inverse of the normal cumulatis&ibution yields the z-
statistic for x. If the data are normally distribditéhe plot of x vs. z-statistic is
linear and has an interceptigfand a slope af. The x value at z-statistic = 0 can
therefore be inferred as the median value of x. Mherse log of x is reported

as the median CTX concentration in fish.

Bulk Isotope Analysis

Bulk tissue nitrogen (N) and carbon (C) concentratant isotopic
compositions were determined from powdered and homogenizeddensasnples
(300-500ug) using either a Thermo Finnigan Confloll/Delta S maesgometer
coupled to a Carlo Erba NC2500 Elemental Analyzer or a Théinmgan
Deltd™*XP mass spectrometer coupled to a Costech Instrumernts| M010
Elemental Combustion System. The University of HaB#able Isotope
Biogeochemistry Laboratory underwent an equipment upgtadeg the time
frame of this study, and repeated isotopic analysederhal reference materials

of known isotopic composition (glycine and yellowfin tumascle) and NIST



certified reference materials were used to ensure ¢ensisin results. Isotopic
values are reported &notation relative to atmospherig nd V-PDB, for N and
C respectively. Average accuracy and precision of dllesiaotopic analyses
determined by replicate analysis of glycine and sampéesl@ss than +0.1%o. (1

S.D.).

Amino Acid Compound Specific Isotope Analysis

Prior to amino acid compound specific isotope analysisCSIA), dried
and homogenized fistmuscle tissue was subjected to acid hydrolysis,
esterification of the carboxyl terminus and trifluordgtagion of the amine group

(Macko et al. 1997/Popp et al. 2007).

Amino Acid Hydrolysis and Derivitization

Muscle tissue (~5 mg) of fish was hydrolyzed at 150 °CZ@minutes
using 6 N hydrochloric acid (HCI) in a culture tube that Washed with
dinitrogen gas (B and fitted with a Teflon-lined cap. The HCl was either
evaporated to dryness at°&5under a stream ofr using a Thermo Savant
Speed Vac concentrator coupled with a UVS400 &€56r 1.5 hr. The residue
was re-dissolved in 1 ml 0.01 N HCI and purified by filtratf@r5um
hydrophilic filter), and the filter washed with 1 ml 0.01 N H@mino acids were
separated from sugars and organic acids using a cation gect@omn (~ 5 cm
Dowex 50WX8-400 in a Pastuer pipette). The filtered hydrolysaseadded to
the ion exchange column in 0.01 N HCI and amino acids ewtadt ml
ammonium hydroxide and evaporated to dryness under a strédnab80°C.
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The samples were re-acidified by adding 0.5 ml of 0.2 N H€lyials were
flushed with N, heated to 110C for 5 minutes and then dried either at’&5
under a stream of Nor using the Speed Vac concentrator for 1.5 hr &55The
hydrolyzed muscle samples were esterified using 2-3 dioécetyl
chloride:isopropanol in Nflushed vials heated to 12C for 60 minutes. Excess
solvents were then dried under a stream0&dfN60°C. Trifluoroacetylation of
the amine group was accomplished by adding 3:1 methylene
chloride:trifluoroacetic anhydride (TFAA) to each vial anatieg to 100°C for
15 minutes. The samples were further purified by solvena&idn following
Ueda et al. (1989) using 2 ml of P-buffer (D, + NaHPQ, in distilled water,
pH 7). The acylated amino acids were partitioned intorofdom, the chloroform
evaporated to dryness and the trifluoroacetylation stggated to ensure full
derivitization. Samples were stored at -20 °C in 3:1 metigychloride:TFAA for

up to one month until isotope analysis.

Compound Specific Isotope Analysis

Just prior to isotope analysis of samples the 3:1 methybkloride: TFAA
was evaporated under a stream gat\room temperature and samples were re-
dissolved in 10Qul of ethyl acetate. The stable N isotope compositicthef
amino acids were determined using either a BE#t4P or Delta V plus mass
spectrometer interfaced with a Trace GC gas chromatoghapiigh a GC-C I
combustion furnace (980 °C), reduction furnace (650 °C)Jiquaidl nitrogen cold

trap. The samples (112) were injected (split/splitless injector in split dewith
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a 10:1 split ratio) onto a BPx5 capillary column (30m320am x 1.0um film
thickness) at an injector temperature of 180 °C with atemt helium flow rate of
1.4 ml min'. The column was initially held at 50 °C for 2 minuted #ren
increased to 190 °C at a rate of 8 °C per minute. Ont@0atC, the temperature
was increase at a rate of 10 °C per minute to 300 °C vitheses held for 7.5
minutes. Internal reference compounds, aminoadipitamad norleucine of
known nitrogen isotopic composition, were co-injected wamples and used to
normalize the measuréd®N values of unknown amino acids. All samples were
analyzed in triplicate and isotopic values are reporte@dniotation relative to
atmospheric B Reproducibility associated with isotopic analysis ofaytit acid
and phenylalanine averaged 0.40%0 and ranged from 0.04%o to 1.37%0.. The
accuracy of the measurements was determined by using thve BN value for
norleucine to determine the measud&iN value of aminoadipic acid as an

unknown. The accuracy averaged 0.67%o and ranged from 0.01%o #».1.97

Calculation of trophic position from AA-CSIA

The fractional trophic positions of fish samples wealewated in three
ways. The first (Method 1) utilizes the measus&tN values of glutamic acid and

phenylalanine as described by Chikaraishi et al. (2009).

_ (515Nglu —515Nglu) —ﬁ +1

TPTEF =76 ~ TEE (4)
1

In egn. 48 is the difference between th&N values of glutamic acid and

phenylalanine in marine photoautotrophs (assumed to be 3.4 + A¥d)EF is
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the trophic enrichment factor (assumed to be 7.6 £ 1.2%c(J EChikaraishi et
al. 2009).

The second method (Method 2) was adopted from Sheretoald (2010)
where the mean values for “source” (Sr-AA) and “troplia-AA) amino acids
are used. In this study, Sr-AA include glycine, serine amshylhlanine, and Tr-
AA include alanine, valine, leucine, isoleucine, proline andaghit acid. Using
a weighted average based on the uncertainty associdtethegse amino acids in
photoautotrophs and in feeding experiments as descrili&dikaraishi et al.
(2010), &3 value of 3.4 £ 0.6%0 and a TEFalue of 5.6 + 0.7%. were used for

equation 5:

15 _ 515 _
TF)TI._S. - (5 NTr—AA 5 NS’—AA) 18 +1
TEF,

(5)

To address concerns of underestimation of TP for fithh an expected
TP>2, an empirical derivation of TEF (TERvas utilized (Method 3). Using
AA-CSIA data for 123 marine fish across 29 species witbxgected TP>2

derived from FishBase (see below), BEFR3.9 £ 1.3%0 was calculated using

equation 6:

_(ONg, = 8Ny) = f-TER

TEF,
TP, — 2

This new TEF was then used to calculate TP using equation

- _ (0°Ny, —0*°N,.) - B-TEF, .\
TEF=39 TEF3

2 (@)
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so that TEEis applied between TP=1 and TP=2, and Ji&Rpplied for all
TP>2. This method was chosen to explore variatiddTiX concentrations in the

fish samples included in this study.

Expected TP (TR) was determined fromvww.fishbase.orgFishBase

uses the modeling software Ecopath (Polovina 1984, Christansepauly 1992,
1993; Pauly and Christensen 1993; Christensen and Pauly 1996inated P
from diet composition as determined by published stomawctenbstudies or by

individual food items when complete diet composition dataot available.

Propagation of Error

The uncertainty associated with the trophic positioouwtation was
determined by propagation of error using the uncertainyand the TEF
established by Chikaraishi et al. (2009, 2010) and the measurgticaal

reproducibility for the3*>N values of amino acids for each sample.
For Method 1.
2 2
o o[ TP ) o [ 0TP ) o (aTPY L (TP )
™ 00BN, | M (00BN, | N (98 ) 7 |9TER ) ™

For Method 2:

, otP ), ot Y oY , (atP )
O-TP = 3 s15n1 0-()—15 + 3 1501 0-()—15 +| — 0-,3 + O-TEF
05N, ) M | 00BN, | MNem | 0 JTEF, 2

2 2 2 2 2 2
g = \/ g +0 +0 +0 +0 +0
JlsNTr—AA JlsNAla JlsNVaJ JlsNLeJ Jlleso JlsNPro JlsNGlu

2
+
615N \/ 515NG| 615N g 5"Nep,
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For Method 3:
2 2 2 2 2
o2 = aT—P o> + aT—P o> + aT_P o>+ aT—P o>+ aT—P o2
™ 9 515Nglu 5Ny, d 515Nphe 5N e F) ,8 B aTEFl TEF, aTEF3 TEF,

Statistical Analysis

Normality and homogeneity of variance were examined using Kolmego
Smirnov (K-S) and Levene’s test, respectively. CTX concentratiens logo-
transformed to improve normality and homogeneity of variafi¢eeo value for all
statistical tests was set at 0.05 and analyses were performed usitabNiersion

16) software.
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CHAPTER 3
Results
Ciguatoxin concentration

The muscle tissue from 922 argus and 157 prey specimens from 20
species were collected from near-shore reef locatiartbe islands of Oahu and
Maui and analyzed using the N2a bioassay for the deteadtioiguatoxin (Table
2). Of the 924C. argustested, 382 tested positive (i.e., having a concentratio
exceeding the limit of detection, estimated to be beldvd7 pg/mg) for CTX
(CTX") (41.3%). 17.5% of th€. argus collected off the island of Oahu tested
CTX", and 55.3% of the specimens collected off the island of Mated CTX
(Table 2, Figure 2). Of the 157 prey specimens tested, 55 @§X¢d(35%).
31.9% of the prey specimens collected from Oahu were"Cand 37.5% of
those collected from Maui were CTKrable 2, Figure 2). Prey speci@s
strigosus andA. nigrofuscus had large enough sample sizes (n =74 and n = 22,
respectively) to assess in this mann@rstrigosus had CTX results in 47.3% of
samples, with 41.5% of samples from Oahu CTafd 56.3% of samples from
Maui CTX'. 45.5% ofA. nigrofuscus samples were CTX 11.1% of samples
from Oahu were CTX and 69.2% of samples from Maui were CTXable 2,
Figure 2).

Due to the high frequency of fish with non-detectablelegéCTX and
occasional high CTX concentrations, median CTX cotre¢ions in positive.
argus and prey were used to evaluate concentration acrass gheups. Median
CTX for CTX positiveC. argus was 1.50 pg/mg and ranged from 0.08 pg/mg to

16



71.78 pg/mg for individual fish. Median CTX concentratioiCiiX positive prey
was 2.93 pg/mg (Table 2) and ranged from 0.35 pg/mg to 514.13 pg/mg for
individual fish.

Histograms of % CTX positive (i.e., above limit oftéletion) by logo of
total body weight foC. argus (Figure 3a) indicates an increased frequency of
ciguatoxicity with increased body weight. No such relahip was found for all

prey orC. strigosus (Figure 3b and 3c, respectively).

Bulk Isotopic Analysis

Bulk tissue isotope analysis for both carbon and nitragenperformed
prior to selection of samples for AA-CSIA. 1@8argus samples and 126 prey
samples (including 7Q. strigosus, and 34A. nigrofuscus) from both Maui and
Oahu were analyzed for bulk C and N isotope valueslofop thed N (%) vs.
813C (%o) show groupings d. argus, C. strigosus andA. nigrofuscus (Figure 4).
Sample catch location (i.e., Maui or Oahu) had nectfbn the observed
grouping.

CTX is a lipid soluble compound; therefore, variable lipid concdatratin
muscle tissue samples could bias results. To address this condéémolar ratios
were used as a proxy for variable lipid content (Post et al. 2007id dyipthesis
favors the incorporation dfC, resulting in |OV\513C values for lipid-rich tissues

13
(Post et al 2007). To verify that there is no systematic bias@values due to

13
variation in C:N molar ratios, potential correlation between nfolAl ratios and C

values was examined. No correlation was found (Figure 5a). The Qobl oéti
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samples averaged 3.8 + 0.5 mol/mol@rargus and 3.8 + 0.1 mol/mol for prey, and
there is no significant correlation between C:N molar ratios and é@hcentration.
A significant (p<0.05) positive relationship was found between molar Cibrand

total body weight foC. argus (Figure 5b), but not fo€. stigosus or all prey.

Amino Acid Compound Specific Isotope Analysis

A subset of samples was selected for AA-CISA analysi5§6); 8 of
which were not analyzed for CTX concentration. Sasyolf both CTX (n=16)
and CTX (n=6)C. argus and CTX (n=20) and CTX(n=6) prey species were
also analyzed. Prey species incl@estrigosus (n=11),A. nigrofuscus (n=3), H.
cruentatus (n=3), S. xantherythrum (n=2), A. triostegus (n=1), A. thompsoni
(n=1), S dubius (n=1), S bursa (n=1) andS. psittacus (n=3).

A linear regression model of the fdP-3 gvs.total body weight (g) o€.
argus shows a significant positive relationship betweenwwevariables (p<0.05)
(Figure 6a). No such relationship is found for Caad CTXC. strigosus or all

prey (Figure 6b and 6c¢, respectively).

Quantification of Biological Magnification of Ciguatoxin

A linear regression model of the concentration ofgFR gvs. l0gCTX
(pg/mg) for all CTX species analyzed shows no significant relationship lestwe
the two variables (Figure 7).

Assuming that the samples chosen were not a statigtiendom
sampling of fish, median trophic position was comparet wiedian [CTX].

Comparison of median CTX concentrations and mediaastifhations show§.
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argus (TP of 3.9) has a median CTX concentration of 1.52 pg/rdgCadrigosus

(TP of 1.81) has a median CTX concentration of 0.39 pg/mg.
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CHAPTER 4
Discussion
Ciguatoxin

Frequency of detection

Patterns in the frequency of CTX. argus and prey species vary between
Oahu and Maui (Figure 2)C. argus and the prey speci€s strigosus andA.
nigrofuscus all showed an increased frequency in ciguatoxicity onsthed of
Maui compared to the island of Oahu, while all prey esmabined group shows
no such pattern. This increase in frequency could patribie the result of a
limited sample collection area on the island of Mhat was targeted for prey
collection upon reviewing the results of Dr. Paul Bienfarsgudy ofC. argus
(Figure 1). It is possible that this area may have bggerencing a relative
‘bloom’ of Gambierdiscus spp. during the course of these studies.

An increased frequency of CTXC. argus was found in fish with larger
total body weight (Figure 3a). However, while thera greater percentage of
CTX" in larger fish, there is no significant relationshipvismen total body weight
and CTX concentration. The large number of no-detaexrtssa all sizes of fish
could possibly be a contributing factor for this lackel&tionship. From a human
health standpoint, these findings are significant asitithgate a higher
likelihood of encountering a ciguatoxit argus when consuming larger fish.

Similar relationships are not found when all prey iteraseacombined or
whenC. strigosus was examined (Figure 3 b, ¢). These results indicatefdh
herbivorous fish such as &rigosus, there is a similar probability of
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ciguatoxicity regardless of fish size. The overabfiency of ciguatoxicity in
prey (35%) may have implications for the quantificatibbiological
magnification of CTX.

It is important to note that most prey specimens tardetethis study are
smaller than the maximum length of adults for eachispeEor example, max
standard length fo€. strigosusis 14.6 cm (Randall and Clements 2001), but the
largestC. stigosus used in this study is 13.6 cm (mean of 9.1 cm). Analysis of
156 full C. argus stomachs revealed that 83.5% of fish prey were less1f cm
in total length (mean of 7.2 cm) and 76.2% weighed lesslihan(mean
undigested weight of 11.4 g) (Dierking 2007). In light of thifasgings, smaller
C. strigosus and other prey specimens were targeted when possibleatteanpt
to constrain samples to those that are likely to bggat upon byC. argus.
However, the prey specimens included in this study aretl§liinger with a
mean weight of 48.5 g and a mean total length of 12.1 cra.latk of correlation
between the frequency of detection of CTX vs. total bodight (Figure 3b, 3c)
and between estimated TP vs. total body weight (Figuréd@hn prey species
indicates that this discrepancy is likely negligibkdditionally, many of the prey
species included in this study are herbivorous, and, thereaf@t is not likely to

change with increasing size.
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Median Concentration

The median concentration of CTX fGr argus andC. strigosus was
inferred from plots of x vs. z-statistic (Table 3).zAtatistic is a measure of the
divergence of an individual result from the most probabbult, the median. A z-
statistic is expressed in terms of the number of stdrmlariations from the mean
where x is the experimental valyeis the mean andl is the standard deviation
(Equation 3).

One key advantage to this method is that it allowsherdetermination of
a median concentration even if that concentratde below the limit of
detection for the N2a bioassay. This is accomplishedigir the inclusion of the
CTX samples (i.e., below the limit of detection) in cuativie probability
calculations required for the determination of the aased z-statistic.

A second advantage of this approach is the assumpt@amafmal
distribution of x can be confirmed via the linearitytlo¢ plot x vs. z-statistic.
Because the z-statistic represents the distance betiveeaw score and the
population mean in units of standard deviation, a plot & zastatistic should be
a straight line with the intercept equal to the mediashould be noted that
because x is normally distributed, the mean and theamexdix are equal, but the
mean and median of the inverse log of x are not nadbsequal. For this
reason, the inverse log of x at z-statistic = 0 is rebas the median [CTX].

The distribution of logy[CTX] in C. strigosus resembles the right side of a
normal distribution (Figure 8a), suggesting that theo@J X] is normally
distributed when CTXvalues are included and that CTnd CTX sample
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constitute a single distribution or population®fstrigosus. Confirmation of
single population with a log-normal distribution of CT&s attained via linearity
in X vs. z when CTXsamples are included in the calculation of the zsttatior

C. strigosus (Figure 8b). The y-intercept of x vs. z fOrstrigosus is -0.41, and

the inverse log of the y-intercept is 0.39.

Contrary to the distribution of CTX i@. strigosus, the distribution of
CTX" in C. argus s log-normal (K-S, p>0.15) without the inclusion of B&X’
samples (Figure 9a). This indicates two distinct populatefC. argus exist,
those that are CTX and those that are not. Non-linearity in x vs. zm@&X C.
argus are included in the calculation of the z-statistigFe 9b) further supports
the suggestion that two types@fargus are found in the study area. For the
calculation of median CTX concentrations, CTCXargus were not included in
the calculation of the z-statistic (Figure 9c). Thatgrcept of x vs. z fo€. agus
is 0.18, and the inverse lggf the y-intercept is 1.52.

One possible ecological explanation for the differanagistributions of
CTX may be found in behavioral differences betw€eargus and its prey.C.
argus is known to be a territorial species with a single no&leupying a large
territory with up to 12 females occupying sub-territoxgghin that region
(Shpigel and Fishelson 1989, 1991). Relative ‘bloom&arhbierdiscus spp. are
patchy in distribution (Lehane and Lewis 2000), so a paati€lilargus
occupying its territory may have a low likelihood of encotinteCTX' prey if

there is ndGambierdiscus blooms nearby. Prey species that may be less
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sedentary tha@. argus over their lifespan have an increased likelihood of
eventually encountering an area whefgaabierdiscus boom is occurring,
thereby being exposed to CTX. For examplenigrofuscus has been observed in
the Red Sea to undergo daily migrations of up to 1.5 krettirfg sites (Mazeroll
and Montgomery 1998). Additionally, an acoustic telemstugy of a territorial
species within the family Acanthuridae found two differe@havior patterns
within the species; one making daily migrations of sdvaradred meters
between daytime foraging areas and nighttime refuges liMeyer and Holland

2005).

Trophic Position Determination

Quantitative determination of TP was evaluated in thidysby
comparing stomach content analysis and various combisatiosotopic
analysis of individual amino acids. One key advantageing g$able isotopic
compositions for TP estimation is the relative eagge compared to stomach
content analysis) with which one can quantitativelyedwaine fractional trophic
level, and, therefore, have an ability to expresstimplexities of the food web

associated with coral reef ecosystems (Post 2002).

Stomach Content Analysis from FishBase

Trophic position using results in FishBase §d)Rs determined from
stomach content analysis (SCA) in combination witbEath software, and is
therefore susceptible to the shortcomings of SCA @ssumptions of TP of prey,
susceptibility to variation in digestions rates of preylufe to integrate long-term
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foraging habits, etc. (Hyslop 1980)). In cases where imgdiet composition
data from published stomach content studies are availabig sT€alculated as
the weighted mean TP of food items (weighted by couition of food items)

plus 1 (Christensen and Pauly 1992, 1993; Pauly and Christ&&38n
Christensen and Pauly 1995), which implicitly assumesthieal P of prey are
known. In addition, information from all diet studiesadable for a particular
species is used to calculate trophic position. Consequérgographic variation
in the TP of a species exists, the calculated TPbeibbiased towards the location
where the most complete diet data exist and that malenthe location of

interest.

In the second approach utilized by FishBasegT$calculated using TP
for a number of individual food items by a random resargpioutine (Sachs
1984). The individual food items approach requires certsaraptions about the
relative importance of food items and their TP basedroempirical model
derived from examination of data entered into FishBasémiat-1999
(www.fishbase.org). These assumptions make the individodlitem estimate
of TP the weaker of the two approaches, and weresftrer, only used in this
study with species for which no complete diet compasitiata was availablé€(
strigosus, A. triostegus, A. nigrorisandS. psittacus). For some prey species, the
only TP estimations available were either based upaméedood item or upon
size and TP of the closest relatives; nggMalues were used for these spectes (

dubius).
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Bulk Isotope Analysis

A plot of thed™N (%o) vs.8™C (%o) show groupings dE. argus, C.
strigosus andA. nigrofuscus (Figure 4). Sample catch location (i.e., Maui or
Oahu) had no effect on the observed groupings. The groupyngsecies are not
entirely unexpected as species-specific feeding habitaff@ct isotope values.
Given that botrA. nirgofuscus andC. strigosus are herbivorous, the distinction
observed in the two groups is likely due to specific feedeftabior associate
with each specieg. nigrofuscus is known to feed on filamentous and turf algae
(Sano et al. 1984) while. strigosus feeds on plants and detritus by whisking its

comb-like teeth over substrate as it closes its m@titimebrink 1990).

Amino Acid Compound Specific Isotope Analysis
Method 1

TP calculated using method 1 (EP-7¢ resulted in TP estimates that
were consistent with SCA for known herbivorous fish.(iTRg=2), however, for
all omnivorous and carnivorous fishes (i.e.sd P 2), TRer=7.6Systematically
underestimated trophic position compared tegI(Figure 10). Two critical
assumptions exist when estimating TP from AA-CSIA: tpastant difference
between thé™*N values of source and trophic amino acids in primary praduce
(B value), and 2) a constaliN trophic enrichment factor (i.e., the extent

enrichment between source and trophic amino acidsnsucoers).
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The first critical assumption has likely been suéfidly addressed for
most marine environments. Chikaraishi et al. (2009) examirmedattstancy
between thé™*N values of source and trophic amino acids in primary praduce
by analyzing AAS™N values in 25 photoautotrophs from various locations and
growth experiments, including cyanobacteria, green algdealgae, brown
macroalgae as well as mixed ice algae. Results ofjsasmbf these organisms
were combined with published data for cyanobacteria (Mc@idlet al. 2003),
green algae (McClelland and Montoya 2002), red and brownocgee
(Chikaraishi et al. 2007) and a diatom (McCarthy et al. 20079 .phatterns of
8N values for amino acids were amazingly similar fosamples regardless of
whether they were natural or cultured samples. Chikaraisal. (2009) found a
constant difference (3.4 +1.0%0) between &\ values of phenylalanine and
glutamic acid, which is very close to the 4%. differenagioally found by
McClelland and Montoya (2002). However, most natural $asngsed to
calculate} = 3.4%0. were photoautotrophs sampled from Japanese waterthev
exception of the sample of ice algae from Antarcti@aikaraishi et al. 2009) and
the equatorial Pacific diatom (McCarthey et al. 2007 yetioee lacking a truly
extensive evaluation of the spatial variabilityBinIn particular, zooxanthelle,
which are important components of the photosynthestcaded with coral reef
ecosystems (Falkowski et al. 1984), have not been eedlwath respect t@
values in the published literature to date.

The second assumption concerning a constant trophiherent factor
has been examined in only a limited number of organigsssie types and
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physiological conditions. Chikaraishi et al. (2009) examihedrophic
enrichment factor in four controlled feeding experimersisig green algae,
zooplankton and newly hatched fish. They foundsti value of phenylalanine
changed slightly (0.4 + 0.5%o, 1stdev) and & value of glutamic acid
changed markedly (8.0 £ 1.2%0) with each trophic positiosyltig in an
enrichment factor of 7.6%.. The uncertainty in this vadae be calculated from
the standard deviations BN trophic transfer for phenylalanine and glutamic acid
and is 1.3%o. Chikaraishi et al. (2009) conclude that the mosb e pair for
precise estimates of TP is glu/phe, witha3.4 £ 1.0% and TEF = 7.6 + 1.3%o.
However, TEF=7.6%o is based upon very few direct and preyiqusilished
feeding studies for organisms with a3 with no evaluation of TEF for fish
with TP>3 (Chikaraishi et al. 2009).

To address some of these concerns, samples of pen-{aistobmoides
filamentosus and feed items were provided by Dr. Clyde Tamura and BnisC
Kelley with the Hawaiian Institute of Marine BiologMIMB). These
carnivorous fish (TR =3.64 + 0.49) were reared in pens at HIMB for between 4
and 15 years and fed a regular diet of squid (41.1%), k8ilF'¢p), and either
anchovies or sardines (41.1%) for about 1 year prior t@oalysis. The fish
component of diet was composed of only anchovies forettiims prior to this
study, and, therefore, anchovies were the only fisluated here. The feed in
this time period was provided by a single distributor locatédonterey, Ca.
who verified that all squid and fish (~84% of diet) weagight in the Monterey
Bay area. This factor is important because sample=edfdver time were not
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available for analysis, so consistency in the isotopmposition of the feed must
be assumed for these purposes. It should be noted #raamiual variability of
a few permil in5*°N values of zooplankton has been observed off Calif&rnia
central coast (Rau et al. 2003), thus the results ofrtimsstudy should be
interpreted with some caution.

The source of the krill was less consistent, but coelddsrowed down to
the N. Pacific. However, the krill only compose ~16%h&f regular diet,
implying less concern for variability associated witletes in catch location and
thus8™N value. The consistency in diet and long time franade these samples
somewhat analogous to a controlled feeding experimeditpiavide the
opportunity to evaluate TEF for higher level carnivores.

Recent AA-CSIA results from the muscle tissues oftifwavn stingray
Dasyatis lata and the hammerhead sh&ghyrna lenini from Kaneohe Bay,
Oahu, Hawaii suggest that the TEF =7.6 may be too largaddemobranchs
(Dale et al. 2011). These authors suggested that the Id¥ecduld be related to
the use of urea for osmoregulation and specifically¢oemsed importance of the
glutamate-glutamine-urea pathway in sharks and rays, wbiald result in lower
glutamate catabolism (see Speers-Roesch et al. 20062dunzkd>N enrichment
in glutamic acid in muscle tissue. Elasmobranchs useque carbamoyl
phosphate synthetase (CPSase lll) that utilizes glagamithe pool of free amino
acids in liver mitochondrial cells as the nitrogen-dowpsubstrate rather than
ammonia for urea formation (Julsrud et al. 1998). Dalé €2@11) thus
speculated that reduced hepatic glutamate catabolisnecgulowerN
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enrichment of glutamic acid in muscle tissuéofata andS lenini. The
findings of Dale et al. (2011) highlight the need for cdestion of biochemical
controls ont°N enrichment of amino acids and while a TEF of 7.6%. may be
appropriate for herbivorous organisms, the Dale et al. (2@ELjts cast doubt
that a TEF of 7.6%o for glu and phe is can be used to calchiate all marine
organisms.

Because all of the fish evaluated in this study producearum as a
waste product as opposed to urea formation in elasmolsaNER was evaluated
using AA-CSIA and bulk isotope analysis of b&tHilamentosus and feed. Bulk
isotope analysis was performed foP5Silamentosus, 4 anchovy, 3 squid and 3
krill samples. The results of the bulk isotope analymiicate a high level of
consistency i*°N values within each feed type (Figure 11), so a subget (5
filamentosus, 2 anchovies, 1 squid and 1 sample of krill) of samplkes analyzed
using AA-CSIA. These results were utilized for thalewation of the TEF for a
nitrogen isotope shift of glu and phe across one trophé [@EF =5"°N-(glu-
phe)consumer 8-°N-(glu-phe)eed. The averags™®N values for glieqand pheeq
were weighted by the relative contribution of eacld fgge to total diet. The
results are summarized in Table 4 and yield a TEF toagt phe of only 1.7%e.
In contrast, the TEF associated with bulk tistl values for these samples is
3.0 + 0.91% a value that is in agreement with estimations & BN trophic
enrichment observed for carnivorous fish in previous stytfasderkilt and

Posnard 2003, McCutchan et al. 2003, Post 2002).
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These results indicated a substantial decrease in di6Esaglu and phe
for carnivorous fish and highlight a need for further itigagion into the
biochemical controls on this value. The value of 1.7%ugpect in light of the
uncertainty associated with tBEN values for feed over time. It is also important
to note that these fish may not be representativaldfpepulations due to the
length of time they were reared in captivity. For tieigson, further study of both
natural systems and controlled feeding experiments arigechéo fully constrain
TEFs for marine organisms. However, the results takgether suggest that a
TEF of <7.6%cmay be required to calculate TP for marine fish Wi»2 using

the 8N values of glutamic acid and phenylalanine.

Method 2

Determination of TP via AA-CSIA relying on values for phlvo AAs
(i.e., glu and phe) can be susceptible to error assdor@th any single value.
McCarthy et al. (2007) and Sherwood et al. (2010) suggestedpbteraially
more robust approach utilizes the difference in averafjpsoadly grouped
“source” amino acids (Sr-AAs) (i.e., gly, ser and p&edl “trophic” amino acids
(Tr-AAs) (i.e., ala, val, leu, iso, pro and glu). ealing this approach, TP was
estimated for a subset of sample€oérgus and prey. For this subset, a weighted
average based on the uncertainty associated withdnggse acids in
photoautotrophs and feeding experiments described by Chikaetsh(2010)
was used to estimateaand TEF. The key advantage to using the weighted
average to calculate these values is that the restlBngstimation is more
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strongly based upon the AA in which the isotopic relatiom are best constrained
by the available data. This approached yielded estimatesr ¢tothose reported
in FishBase; however, the propagation of analytical doro®sr-AAs and Tr-AAs

in error calculations for TP leads to large associase@bility in TP (Figure 12).

Method 3

To address concerns with methods 1 and 2, an empiricaiyedelrEF
(TER) for fish with TP>2 was used to calculate TP for gtiedy. While several
studies (Chikaraishi et al. 2009, McClelland and Montoya 2002) suaenge
TEF for glu and phe between photoautotrophs and herbivorgasisms,
evidence from the evaluation of TEF ferfilamentosus (described above)
indicates a substantially lower TEF between herbivoamasomnivorous and
carnivorous fishes. This change in TEFs from herbivtodsgher TP's is
potentially the result of differences in assimilat&fficiencies. Assimilation
efficiencies for herbivores are notably lower (~10-20%htfor carnivores (~95-
98%) due to a high amount indigestible plant materiakibivorous diets (Horn
et al. 1989). Studies investigating the assimilation effyeof protein and/or
nitrogen in herbivorous fish have shown that, while tlefseiencies can be
much higher than 10-20%, they still fall below the 95-98%efficies observed
in carnivorous fish (Edwards and Horn 982, Lassuy 1984). Bethagrocesses
of ingestion, assimilation and excretion occur in an gystem, the larger
fraction of material going to excretion in herbivoregymesult in a relatively

large associated isotopic fractionation (Fry, 2006). éler, a meta-analysis
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performed by Vanderkilt and Posnard (2003) evaluating vamiatiorophic
enrichment in bulls*N values (evaluation of 134 estimates from controlled
studies of consumer-digt°N values) found that carnivores and herbivores are not
significantly different in this respect. Discrepandme$ween our findings and
those for bulk tissu&N trophic enrichment in several studies (Vanderkilt and
Posnard 2003, McCutchan et al. 2003, Post 2002) speak agaimsethéor
further investigation in this regard.

In an initial attempt to address this isstf&N values of glu and phe for
123 marine fishes, combined with expected TP from FishBa=e, used to
calculate TEF for fish with TP>2 using equation 6. Hpproached yielded a
TEF =3.9 + 1.3 for TP>2. TEF=7.6 was applied for the begpveen TP=1 and
TP=2, and the new TEF was applied for all steps abow2 TBing equation 7.
This method of TP estimation most closely agreed witle$timations based on
SCA from FishBase and had an acceptable level of agsdaariability (Figure
13). For these reasons, this method was chosen fam tlse study. A concern
to note about this method is the use oggl@r the derivation of TEF, and, thus it

is susceptible to the same shortcomings as was disciasseGA.

Ciguatoxin and Amino Acid Compound Specific Isotope Analysis
There is a significant positive relationship betweergfR jand total
body weight forC. argus (Figure 5a). Combining this relationship and the

relationship between frequency of toxicity and total baéyght as described
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above, there is evidence to support a higher frequency efttowith increased
TP for this species.

Due to a high degree of variability associated with tlggisg¢ion and
concentration of CTX in fish, reliable data on CTXcentration is only available
for C. argus andC. strigosus. An attempt to quantify the biological magnification
of CTX therefore relies on the examination of thise species alone. For this
predator/prey relationship we find an indication of biologmagnification of
CTX via multiple approaches to TP estimation.

FishBase estimates the TP@fstrigosus to be 2 £ 0 based upon
individual food items (i.e., the weaker of the two appreaadltilized by
FishBase). TP estimation f@: strigosus based upon AA-CSIA is in fairly close
agreement to T# across multiple approaches.tER76(n = 11) ranges from
1.66 to 2.09 with a mean of 1.90. sfR(n = 5)ranges from 1.79 to 2.29 with a
mean of 2.05. TRr=39(n = 11) ranges from 1.33 to 2.18 with a mean of 1.81.

FishBase estimates the TP@fargusto be 4.48 + 0.79 based upon diet
composition data. Average TP estimation based upon AA@8s within this
range for both methods. F&-76(n = 26) ranges from 2.41 to 3.41 with a mean
of 2.95. TRt (n =4) ranges from 3.43 to 4.14 with a mean of 3.6~y
(n = 26) ranges from 3.10 to 4.75 with a mean of 3.90.

It is well established that CTX are initially produced by thnoflagellate
genusGambierdiscus and propagated up the food web via consumption of prey by
predators (Randall 1958, Banner et al. 1960, 1966, Bannefielficch 1964,
Yasumoto et al. 1977, Bomber and Aikman 1989). Biologicgnifigation is
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defined as increased concentration of a substance abfaime lower trophic
positions by organisms at higher trophic positions (Bienfarmd €011). With
this definition in mind, there is clear evidence in suppbthe biological
magnification of CTX. The inclusion of only two spexia the attempt to
guantify this biomagnification is clearly a shortcomingho$ study; however,
using the change in TP betwe@nstrigosus andC. argus via TPrgr=39(2.09 TPS)
and the median [CTX] estimates found in Table 3, itlmaconcluded that there
is a 0.54 pg/mg increase in CTX concentration per tropte feund for this
predator/prey relationship.

This study fails to constrain for several factors asgediwith
Gambierdiscus abundance and ciguatoxin production. For example, spatil
temporal variability in abundance and toxicity@dmbierdiscus spp. is well
documented in the literature; however, the environmeotatrols on this
variability are still poorly understood (Lewis 2000 and refees within). The
sampling efforts for this study were somewhat opportuniatid therefore did not
constrain spatial and temporal variability; an aspetitimy be necessary to fully
understand the biological magnification of ciguatoxin in argisystem.

Another important factor that was not addressed in thdyss the retention time
of ciguatoxin in fish tissue. This factor is also poamgerstood, though one
study found that after 30 months captive feeding of a ogris-tliet, red snapper

showed no significant decline in toxicity (Banner etl866).
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Conclusions

This study has provided insight into the yet to be resadeederns for the
guantitative estimation of trophic position using AA-CSbA carnivorous marine
fish. Additionally, it has evaluated ciguatoxin concatitms for the predatdz.
argus and its prey specid€s strigosus with an initial evaluation of 21 other prey
species.

The quantitative determination of trophic position via £&IA requires
further investigation into the biochemical control$BN enrichment between
consumers and diet for specific amino acids. Reswolis this investigation are
incomplete in this regard, but provide evidence of a deatéaserophic
enrichment of glutamic acid for carnivorous fish.

The increase in frequency of toxic fish that is obsdrin largelC. argus
has implications for human health. It has beerepiesl that repeated exposures
to ciguatoxin may be associated with more severe sympmbmguatera fish
poisoning (Bagnis et al. 1979), indicating that frequency pbsure is an
important factor when evaluating risk of ciguatera fistspoing. An increased
frequency of toxicity in carnivorous fish with size ilgs an increase in
frequency of exposure to ciguatoxin when large carnivoreesaageted for catch
and consumption, as they often are.

My overarching hypothesis at the initiation of this study weat
ciguatoxin is concentrated via food web magnificationthad the degree of the
magnification could be quantified with the determinatibtraphic position by
AA-CSIA. Trophic position estimated via AA-CSIA alone da®t explain
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variations in concentrations of ciguatoxin for individtiash. However, evidence
from this study supports the hypothesis of biological magatibn of ciguatoxin
across trophic positions in the near-shore reef et&rsym the main Hawaiian
Islands. This initial effort to quantify biological magoation is unique in its

attempt and provides the foundation for further work towdridsgoal.
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Table 1. SelectC. argus prey by family and their index of relative importance
(Pinkas et al. 1971) and percent weight as determinedigrking, unpublished
PhD dissertation. The families and species listedable 1 are restricted (0.
argus prey fish that are non-zooplanktivorous.

C. argus prey taxon % IRI % W
Fish 97.7 94.5
Scaridae 25.2 27.8
Scarus psittacus
Acanthuridae 17.3 12

Acanthurus nigrofuscus
Acanthurus nigrosis
Acanthurus triostegus
Zebrasoma flavescens
Ctenochaetus strigosus
Ctenochaetus striatus

Priacanthidae 8.6 10.9
Heteropriacanthus cruentatus

Balistidae 1.3 55
Xanthichthys auromar ginatus

Monacanthidae 12.7 4.6

Pervagor aspricaudus
Cantherhines verecundus

Holocentridae 16.4 4.6
Sargocentron diadema
Sargocentron xantherythrum
Pomacentridae 0.9 3.1
Labridae 0.5 2.6
Total 82.9 71.1
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Table 3. Median ciguatoxin (CTX) concentration inferred fromtplof x vs. z-
statistic (see text). Also showing total sample ,s@&X positive sample size,
mean TRer=3 9with StDev and median FPr=39

Median Median Mean StDev
n nCTX " [CTX] TPrer=ss TPrer=so TPrer=3s
C.arqus 924 382 1.52 3.90 3.85 0.44
C. drigosus 74 35 0.39 1.81 1.81 0.24

Table 4. Nitrogen isotope value$’N) for glutamic acid and phenylalaninefn
filamentosus and feed used to calculate trophic enrichment fromtdiebnsumer
in carnivorous fish (TEF). The TEF for this experimenass calculated using TEF
= 315N-(9|U-phe)P. filamentosus 815N'(gIu'phe)\/veighted total fee@@Nd 1S 1.7 %o.

% Diet Contribution 8N glu 6 6°N glu 3°N phe 6 6°N phe

P. filamentosus 25.95 0.38 8.75 1.26
Ancovy 41.17 23.66 0.35 9.12 0.18
Squid 41.17 25.25 0.03 7.23 0.66
Krill 16.67 16.33 0.30 4.80 0.26
Weighted Totaleq 100 23.10 0.47 7.61 0.73
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Figure 2. Percent fish tested positive (CTXfor ciguatoxin by location.
Comparison of the percent of fish that tested posiveCTX for C. argus, all

prey,C. strigosus, and A nigrofuscus evaluated by catch location (island-scale)
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Figure 4. Bulk isotope results fo€. argus and prey. 8N (%o) vs.5*C (%) for
108 C. argus samples and 126 prey samples (includingC7&rigosus and 34A.
nigrofuscus).
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Figure 6. Trophic position (TP) estimated using a trophic enrichrfator of 3.9
for TP>2 and a trophic enrichment factor of 7.6 for TP 1 B 2T (TRgr=39
versus total body weight (g). a) #dP-=3.9Vvs. Total Body Weight (g) fo€. argus.
b). TPrer=3.0vs. Total Body Weight (g) foC. strigosus ¢) TPrer=3.9vs. Total Body

Weight (g) for all prey.
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Figure 7. Ciguatoxin concentration ([CTX]) as a function tadphic position

(TP) calculated using a trophic enrichment factor of 3.9 ®¥2 and 7.6 for TP 1
to TP 2 (TRer=39 (see text) for individual fish within sampled commuynit
Linear regression analysis show no significant refestigp between the two
variables (p>0.05).
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Figure 8. Median ciguatoxin (CTX) concentration determined by xzvstatistic
for C. strigosus.  a) Histogram of Log of CTX concentrations (pg/mg). b) Plot of
X Vvs. z-statistic when CTX negativ€. strigosus are not included in the
calculation of the cumulative probability for the deteration of the z-statistic
(see text). c) Plot of x vs. z-statistic when Ch¥gativeC. strigosus are
included in the calculation of the cumulative probabildy the determination of
the z-statistic (see textf=0.966.
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Figure 9. Median CTX concentration determined by x vs. z-diatfer C. argus.
9a) Histogram of Log of CTX concentrations (pg/mg). 9b) Plot of x vs. z-
statistic when CTX negativ€. argus are included in the calculation of the
cumulative probability for the determination of the atistic (see text). 9c) Plot
of x vs. z-statistic for CTX positiv€. argus only are used in calculation of the
cumulative probability for the determination of thetatistic (see text)0.995.
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Figure 10. Trophic position determined using a trophic enrichmenbfaut 7.6
versus trophic position as determined by FishBaseo gtiewn is the 1:1 line. A
linear regression analysis yields®.89 for the equation y = 0.504x + 0.914.
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Figure 11.Bulk nitrogen and carbon isotope valuesRarfilamentosus and feed.
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Figure 12 Plot of trophic position estimates from FishBase versaphic

position estimates using “trophic” and “source” amino agrdupings. Also
shown is the 1:1 line. A regression analysis yiefd®.89 for the equation y =
0.651x + 0.838.

P vs. TP,

TR-SR

TPTR-SR

55



Figure 13 Plot of trophic position determined from FishBase versaphic
position calculated using a trophic enrichment factor of b&ween
photoautotrophs and a trophic enrichment factor of 3.@llotrophic positions
greater than 2. Also shown is the 1:1 line. A regresaitaiysis yields?=0.878
for the equation y = 0.981x — 0.116.
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Table 2. Ciguatoxin metadata. Information including genus, specieghca
location by island and ciguatoxin (CTX) concentration $amples that tested
above the limit of detection (limit of detection istiemated to be about 0.07

pg/mg).

Genus Species Location ( % )
Acanthurus nigrofuscus Maui 7.94
Acanthurus nigrofuscus Maui 2.96
Acanthurus nigrofuscus Maui 2.23
Acanthurus nigrofuscus Maui 5.05
Acanthurus nigrofuscus Maui 2.58
Acanthurus nigrofuscus Maui 0.98
Acanthurus nigrofuscus Maui 4.76
Acanthurus nigrofuscus Maui 2.72
Acanthurus nigrofuscus Maui 5.04
Acanthurus nigrofuscus Maui -
Acanthurus nigrofuscus Maui -
Acanthurus nigrofuscus Maui -
Acanthurus nigrofuscus Maui -
Acanthurus nigrofuscus Oahu 5.02
Acanthurus nigrofuscus Oahu -
Acanthurus nigrofuscus Oahu -
Acanthurus nigrofuscus Oahu -
Acanthurus nigrofuscus Oahu -
Acanthurus nigrofuscus Oahu -
Acanthurus nigrofuscus Oahu -
Acanthurus nigrofuscus Oahu -
Acanthurus nigrofuscus Oahu -
Acanthurus nigroris Maui -
Acanthurus olivaceous Maui -
Acanthurus olivaceous Maui -
Acanthurus olivaceous Maui -
Acanthurus olivaceous Maui -
Acanthurus olivaceous Maui -
Acanthurus thompsoni Maui 0.83
Acanthurus thompsoni Maui -
Acanthurus thompsoni Maui -
Acanthurus thompsoni Maui -
Acanthurus thompsoni Oahu -
Catherhines verecundus Oahu -

Chlorurus sordidus Maui 1.70
Chlorurus sordidus Maui 0.35
Chlorurus sordidus Maui -
Chromis agilis Oahu -
Ctenochaetus strigosus Maui 7.07
Ctenochaetus strigosus Maui 2.55
Ctenochaetus strigosus Maui 1.90
Ctenochaetus strigosus Maui 1.27
Ctenochaetus strigosus Maui 1.15
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Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus

strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus

Maui
Maui
Maui
Maui
Maui
Maui
Maui
Maui
Maui
Maui
Maui
Maui
Maui
Maui
Maui
Maui
Maui
Maui
Maui
Maui
Maui
Maui
Maui
Maui
Maui
Maui
Maui
Maui
Oahu
Oahu
Oahu
Oahu
Oahu
Oahu
Oahu
Oahu
Oahu
Oahu
Oahu
Oahu
Oahu
Oahu
Oahu
Oahu
Oahu
Oahu
Oahu
Oahu
Oahu
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Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Ctenochaetus
Gomphosus
Heteropriacanthus
Heteropriacanthus
Heteropriacanthus
Heteropriacanthus
Heteropriacanthus
Heteropriacanthus
Naso
Pervagor
Pervagor
Priacanthus
Priacanthus
Sargocentron
Sargocentron
Sargocentron
Sargocentron
Sargocentron
Sargocentron
Sargocentron
Sargocentron
Sargocentron
Scarus
Scarus
Scarus
Scarus
Scarus
Scarus
Sufflamen
Sufflamen

strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
strigosus
varius
cruentatus
cruentatus
cruentatus
cruentatus
cruentatus
cruentatus
hexacanthus
aspricaudus
aspricaudus
meeki
meeki
diadema
diadema
diadema
xantherythrum
xantherythrum
xantherythrum
xantherythrum
xantherythrum
xantherythrum
dubius
dubius
dubius
psittacus
psittacus
psittacus
bursa
bursa

Oahu -
Oahu -
Oahu -
Oahu -
Oahu -
Oahu -
Oahu -
Oahu -
Oahu -
Oahu -
Oahu -
Oahu -
Oahu -
Oahu -
Oahu -
Oahu -
Oahu -
Oahu -
Oahu -
Oahu -
Maui 38.30
Maui 2.29
Oahu 23.21
Oahu 3.55
Oahu -
Oahu -
Oahu -
Maui -
Maui -
Oahu -
Maui -
Maui -
Oahu -
Oahu -
Oahu -
Maui 34.01
Maui -
Maui -
Maui -
Maui -
Maui -
Maui 0.97
Maui -
Maui -
Maui -
Maui -
Maui -
Oahu 9.70
Oahu -
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Thalassoma
Thalassoma
Xanthichthys
Zebrasoma
Zebrasoma
Zebrasoma
Zebrasoma
Zebrasoma
Zebrasoma
Zebrasoma
Zebrasoma
Zebrasoma
Zebrasoma
Zebrasoma
Zebrasoma
Zebrasoma

duperrey
duperrey
auromarginatus

flavescens
flavescens
flavescens
flavescens
flavescens
flavescens
flavescens
flavescens
flavescens
flavescens
flavescens
flavescens
flavescens

Maui
Maui
Oahu
Maui
Maui
Maui
Maui
Maui
Maui
Maui
Maui
Maui
Oahu
Oahu
Oahu
Oahu
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Table 5. Bulk isotope metadata. Information including nitrogenapetvalue
(8*N), carbon isotope valué’fC) and molar carbon to nitrogen ratio (Molar
C:N).

Species "N (%) 8"°C (%) Molar C:N
A. nigrofuscus 6.90 -17.69 3.74
A. nigrofuscus 5.80 -18.10 3.87
A. nigrofuscus 6.70 -18.30 3.83
A. nigrofuscus 6.10 -18.20 3.81
A. nigrofuscus 6.82 -16.85 3.63
A. nigrofuscus 6.65 -17.59 3.77
A. nigrofuscus 6.52 -17.47 3.82
A. nigrofuscus 7.40 -16.96 3.69
A. nigrofuscus 7.23 -17.21 3.74
A. nigrofuscus 7.41 -17.45 3.84
A. nigrofuscus 6.37 -18.13 3.70
A. nigrofuscus 7.04 -17.88 3.72
A. nigrofuscus 6.90 -17.08 3.92
A. nigrofuscus 6.66 -16.86 3.85
A. nigrofuscus 6.56 -19.14 3.92
A. nigrofuscus 6.77 -17.12 3.94
A. nigrofuscus 6.47 -17.09 4.00
A. nigrofuscus 6.56 -18.03 3.84
A. nigrofuscus 7.39 -15.81 3.86
A. nigrofuscus 7.39 -16.65 3.90
A. nigrofuscus 6.47 -18.15 3.84
A. nigrofuscus 7.33 -17.59 3.78
A. nigrofuscus 7.37 -17.21 3.84
A. nigrofuscus 7.50 -16.54 3.89
A. nigrofuscus 6.33 -18.10 3.69
A. nigrofuscus 7.09 -15.72 3.88
A. nigrofuscus 7.51 -17.07 3.73
A. nigrofuscus 7.30 -16.90 3.81
A. nigrofuscus 7.90 -17.38 3.65
A. nigrofuscus 7.30 -17.85 3.73
A. nigrofuscus 6.79 -18.11 3.78
A. nigrofuscus 7.74 -17.26 3.74
A. nigrofuscus 6.90 -17.34 3.68
C. argus 9.56 -15.18 3.86
C. argus 10.27 -13.72 3.61
C. argus 8.95 -13.90 3.72
C. argus 10.25 -13.77 3.56
C. argus 10.95 -13.77 3.68
C. argus 10.42 -14.11 3.68
C. argus 10.32 -13.70 3.57
C. argus 10.01 -13.13 3.63
C. argus 9.72 -13.07 3.67
C. argus 9.41 -13.65 3.68
C. argus 10.12 -12.88 3.65
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9.75
9.83
9.95
9.13
10.37
9.76
9.60
9.91
8.98
9.34
9.17
9.25
9.75
8.90
9.23
9.57
9.68
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9.74
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-14.11
-14.82
-14.37
-16.88
-14.96
-14.41
-13.84
-13.92
-16.03
-13.34
-13.34
-13.82
-12.99
-13.46
-13.61
-13.85
-14.23
-13.06
-13.02
-16.53
-17.95
-14.41
-14.31
-13.37
-12.75
-12.92
-13.80
-13.36
-13.05
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-14.98
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-14.63
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-13.87
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9.67
9.62
10.24
9.30
9.30
9.11
9.41
10.08
9.32
9.20
9.32
9.05
9.65
9.07
9.35
9.49
10.00
9.54
8.85
10.16
9.56
9.20
9.47
9.40
9.89
10.81
9.07
8.34
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9.21
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10.60
9.25
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9.81
9.64
9.86
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10.55
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9.40
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-13.50
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-14.16
-14.36
-14.03
-14.19
-14.48
-13.88
-14.93
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3.95
3.51
3.76
3.56
3.77
3.85
3.95
3.59
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APPENDIX B

Trophic Position Propagated Error Calculations from Amino Acid Isotopic
Analyses Using the New TEF for TP>2

(515NGLU B 515NPHE - :3 - A)
TEF

TP=2+

TEF =39+13

go (_aP Y . (_aP Y . (oTP ZUZ{ETUZ{N_PTUZ
" L00°Ng, ) O Mee (00°Nge ) PN (98 ) 7 Loa ) " \oTEF) ™

To Calculate:

o’ = AL 202 o 9P zaz + aT_PZUZJr(aT_PTUH( e TUZ
T lad®Ng, ) M 00BNy ) M= | 9B ) 7 \oan) ® \oTEF) ™

oTP _ 1 _ 1
00N, TEF 39

ey, = (stdeveng, )?
oTP _ -1 -1

00N, TEF 39

0%, = (stdevs®n,,)?

opP_ -1 _-1

08 TEF 39

o5=(0.97

gap_-1_-1

oA A 76
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oTP

OTEF
1 (05N, 05N =1 (o 15
o . e —34- 7.6)_F21 (06°Ng, ~38"N,, - 34-76)

0% = (L.3f

o2 = ([%j *(stdev &n, )2) + ([;—;jz *(stdev &N, . )2) + ([;—;jz *(0.9)2)

+ ([;—éj *(1.2)2) + ([%(515NGLU _515NPHE _3-4_7'6)j2* (1'3)2 )
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Trophic Position Propagated Error Calculations from Amino Acid Isotopic
Analyses Using TEF = 7.6

(515NGLU B 515NPHE - ,3)
TEF
TEF = 76+12

TP =1+

To Calculate:
2 2 2 2
5 J0TP 2 JTP 2 TP 2 J0TP 2
Op = 15 0515N + 15 0515N 55 Uﬁ 3= | 92
007 Ng, 6Lu 00Ny s 0TEF

o _ 1
905Ny, 76
0% = (stdevsn,, )

Ny

AL
905N, 76
0%, = (stdevs™n, )

3 Npye

oTP -1
OTEF  57.76
UTZEF = (1-2)2

(6"°Ngy, =8N, - 34)

o4, = ([%jz*(stdev 5N, )2) + ((%jz*(stdev JlsNPHE)Z) + ([%jz*(o_g)Z)

2
+ ([5;—;6(515NGLU N —3.4)) * (127 )
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Trophic Position Propagated Error Calculations from Amino Acid Isotopic
Analyses Using Trophic and Source AAs

(515NTr—AA B 515NS‘—AA - ,3)
TEF

TPTr g = 1+

TEF =56+ 0.7

oP 1
00°N, . 76
T o =\ Tsin, * T, * T, * i, + Ty, + T,
TP _ -1
00°N,_,, 76
O = JUQN@ Ol T Oy
TP _ -1
B 7.6
o5=(0.97
TP -1
= O®N, . —O0"N._,,.—-34
OTEF 57.76( oA SR )
UTZEF = (1-2)2

o4, = ([%jz*(stdev 5N, )2) + ((%jz*(stdev JlszHE)z) + ([%jz*(o_g)Z)

2
+ ([5;—;6(515NTr_AA—515NS_AA—3.4)j “ (L2¢ )
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