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NOMENCLATURE 

constant defined by Eq. (6b) 

specific heat of the convective fluid 

dimensionless stream function defined by Eq. (16) 

acceleration due to gravity 

local heat transfer coefficient 

average heat transfer coefficient defined by Eq. (33) 

permeability of the porous medium 

thermal conductivity of the porous medium 

length of the heating or cooling surface 

local Nusselt number, Nux = hx/k 

average Nusselt number, Nu = hL/k 

pressure 

over-all heat transfer rate 

local heat transfer rate 

modified Rayleigh number, Ra = I T - Tip gSKL/~a w 00 00 

modified local Rayleigh number, Ra = P 9sKIT -T Ix/~a x 00 w 00 

spanwise dimension 

temperature 

velocity component in x-direction 

velocity component .in y-direction 

horizontal coordinate 

vertical coordinate 

equivalent thermal diffusivity 

coefficient of thermal expansion 
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Subscript 

w 

momentum boundary layer thickness 

thermal boundary layer thickness 

dimensionless similarity variable defined by Eq. (15) 

value of n at the edge of momentum boundary layer 

value of n at the edge of thermal boundary layer 

dimensionless temperature defined by Eq. (17) 

constant defined by Eq. (6b) 

viscosity of convective fluid 

den~ity of convective fluid 

stream function 

condition at infinity 

condition at the wall 
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ABSTRACT 

Boundary-layer analysis is performed for the buoyancy-induced flows in 

a saturated porous medium adjacent to horizontal impermeable surfaces. 

Similarity solutions are obtained for the convective flow above a heated 

surface or below a cooled surface, where wall temperature is a power function 

of distance from the origin. Analytical expressions for boundary layer 

thickness, local and overall surface heat flux are obtained. Applications 

to convective flow in a liquid-dominated geothermal reservoir are discussed. 
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I. Introduction 

It is well known that if the temperature of a horizontal surface differs 

from that of the surrounding fluid, a vertical density gradient will be 

generated in the surrounding fluid which will induce a longitudinal pressure 

gradient. If the induced pressure gradient is greater than the buoyancy force, 

a convective movement in the direction of decreasing pressure is set up in the 

fluid adjacent to the surface. The buoyancy force in this situation is acting 

perpendicular to the direction of fluid motion. The problem has been studied 

theoretically by Stewartson (1958), Gill (1965), Rotem & Claasen (1969), Pera 

& Gebhart (1972), and Blanc and Gebhart (1974), among others. In all of these 

papers, boundary layer approximations are applied, and similarity solutions 

are obtained for wall temperature being a power function of distance from the 

leading edge. 

The corresponding' pr~blem of buoyancy induced flow in a saturated porous 

medium adjacent to an impermeable wall has received relatively little attention. 

The first analytical paper dealing with this problem appears to be that of McNabb 

(1965) who studied free convection in a saturated porous medium above a heated 

circular impermeable surface with wall temperature being a step function with 

respect to the radius; boundary layer approximations are invoked and approximate 

.solutions are obtained. In the present paper, we shall study free convection 

in a saturated porous medium above a heated horizontal impermeable surface or 

below a cooled horizontal impermeable surface where wall temperature is a power 

function of distance from the leading edge. The boundary layer approximations 

similar to those employed by Wooding (1963), McNabb (1965), and Cheng & Minkowycz 

(1975) are invoked, and similarity solutions for the problem are obtained. The 

problem has important applications to convective flow above the heated bedrock 

or below the cooled caprock in a liquid-dominated geothermal reservoir. 
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I I. Ana 1 ys i s 

Consider the problem of free convection in a saturated porous medium above 

a heated horizontal impermeable surface or below a cooled surface. The physical 

situation is shown in Fig. 1 where x and yare Cartesian coordinates in horizontal 

and vertical directions with positive y axis pointing toward the porous medium. 

The origin of the coordinate is chosen at the point on the impermeable surface 

where wall temperature begins to deviate from that of the surrounding fluid. 

If we assume that (i) the convective fluid and the porous medium are everywhere 

in local thermodynamic equilibrium, (ii) the temperature of the fluid is 

everywhere below boiling point, (iii) properties of the fluid and the porous 

medium are constant, and (iv) the Boussinesq approximation is employed, the 

governing equations are given by 

(1) 

K ap u =---
1.1 ax ' (2) 

v = - ~ (~ + pg) ., 
1.1 ay-

(3) 

(4) 

p = p [1- S (T-T )] , 
00 00 

(5) 
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where the "+" sign in Eq. (3) refers to the case of a heated plate facing 

upward (Fig. 1b) while the "_" sign refers to the case of a cooled plate facing 

downward (Fig. 1a). In Eqs. (1-5), u and v are the velocity components in the 

horizontal and vertical directions, p, ~, and S are the density, viscosity, and 

the thermal expansion coefficient of the convecting fluid, K is the permeability 

of the porous medium, a = k/(PC)f is the equivalent thermal diffusivity with k 

denoting the thermal conductivity of the saturated porous medium and (PC)f the 

product of density and specific heat of the convecting fluid. T, p, and g are 

respectively the temperature, pressure, and the gravitational acceleration. 

The subscript "00" refers to the condition at infinity. 

The boundary conditions for the problem are 

T = T + Ax" , w 00- v = 0, (6a,b) 

y -+- 00, u = O. (7a,b) 

where A>O and the "+" and "_" signs in Eq. (6a) are for a heated plate facing 

upward and for a cooled plate facing downward respectively. Eq. (6a) shows that 

the prescribed wall temperature is a power function of distance from the origin. 

The continuity equation is automatically satsified by introducing the 

stream function ~ as 

and (8) 
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Eliminating p from Eqs. (2) and (3) by cross differentiation, the resulting 

equation in terms of ~ is 

(9) 

In terms of ~, Eq. (4) can be rewritten as 

(10) 

The appropriate boundary conditions for Eqs. (9) and (10) are 

y = 0, T = T + AxA, ,w c:l_ 
~ = o· ax ' (11a,b) 

y + 00, T = T 
(X) ' 

~= 0 'dy • 
(12a ,b) 

III. Similarity Solution 

From the numerical solutions for free convection in a geothermal reservoir 

(Cheng, Yeung & Lau, 1975), it is observed that thermal and momentum boundary 

layers exist along horizontal impermeable surfaces whenever wall temperature 

.differs from that of the surrounding fluid. If boundary layer approximations 

are invoked, Eqs. (9) and (10) become 

(13) 

and 
(14 ) 
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To seek similarity solutions to Eqs. (13) and (14) with boundary conditions 

(11) and (12), we now introduce the following dimensionless variables 

where Ra = p gB KIT -T Ix/~a is the modified local Rayleigh number. x <Xl w co 

In terms of new variables, it can be shown that the velocity components 

are given by 

2 

_ (KP~9BA)3 2>" -1 
x -3- f' (n) , 

u - a lla 

1 

rKpcogBA13 r"' -2~ I l 
v = -at ~a j ~1\3 nf + (1;>-) fJ x 

A-2 
-3-

Governing equations (13) and (14) in terms of the new variables are 

f" + Ae + (A;2)ne I = 0 , 

e" - Aef ' +(1;A}fe ' = 0 , 
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(16 ) 

(17) 

(18) 

(19) 

(20) 

(21) 



with boundary conditions given by 

8(0) = 1 f(O) = 0 , (22a,b) 

8(00)=0, fl(oo) = 0 , (23a,b) 

where the primes in Eqs. (20-23) denote differentiation with respect to n· 

IV. Results and Discussion 

Equations (20) and (21) are two coupled non-linear differential equations 

for 8 and f with two-point boundary conditions given by Eqs. (22) and (23). 

Numerical solutions can be obtained by the Range Kutta method by first converting 

the boundary-value problem to an initial-value problem and with a systematic 

guessing of slopes at n = 0 by the shooting method. Results for f, fl, 8, 

and 8 1 vs. n for selected values of A are presented in Figs. 2-7. 

The boundary layer approximations used in the analysis are valid if 

(i) a~» adx and (ii) v«u. From Eq. (15), it follows that y/x = 0(Rax- l / 3). 

Furthermore, the ratio of Eqs. (19) and (18) gives v/u = O(Ra -1/3). Thus, x 
the first and the second conditions are satisfied if Ra is large. Near the . x 
leading edge at x = 0, the boundary layer approximations are not expected to 

be valid. 

can be obtained if the edges of the boundary layers are defined as the points 

where 8 or u/uw (with Uw denoting the "slip velocity" along the wall) have 

a value of 0.01. From Figs. 2 and 4 we locate the edges of the boundary 

layers and denote these values by nm and nT. It follows from Eq. (15) 

that 

Om 
-= 

nm 
x (Ra ) 1/3 

x 

°T -= 
nT 

x (Ra ) 1 /3 
x 
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where the values of nm and nT for selected values of A are tabulated in 

Table 1, which shows that the momentum boundary layer thickness and the 

thermal boundary layer thickness have about the same order of magnitude. 

It is of interest to note that although u~ outside the momentum boundary 

layer, the value of vertical velocity in general is not zero there. This can 

be seen from Eq. (19) with (23b) to give 

(25) 

which shows that v is negative if A>-l, positive if A<-l, and zero if A=-l. ex> 

Furthermore, the magnitude of v is increasing with x if A>2, decreasing with ex> 

x if A<2, and independent of x if A=2. It is worth noting that the value 

f(oo) in Eq. (25) is finite as shown in Fig. 2. 

To obtain the pressure distribution, we substitute Eqs. (2), (8) and (17) 

into Eq. (13) and integrate the resulting expression from x=O to x, and from 

y to y=oo to give 

(26a) 

with 

(26b) 

where Pl is the pressure induced by the density gradient. Along the wall at 

y=O, Eq. (26a) reduces to 

fpex>98Al2/3 2(~+1) Joo 
p(x,o) = pw(x) = ~a l ~a J x e(n)dn , 

o 
(26c) 

which shows that Pw is increasing, decreasing, or constant with respect to x 

depending on whether A>-l, A<-l, or A=-l. 

The local surface heat flux can be computed from 
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q = _k(aT) . 
ay y=O 

(27) 

With the aid of Eqs. (17) and (15), Eq. (27) can be rewritten as 

[
KP gS]1/34A-2 

q(x) = kA4/ 3 :a x 3 [-el(O)J (28) 

which shows that q(x) increases as x is increased if A>1/2; q(x) decreases as 

x is increased if A<1/2; and q(x) is constant if A=1/2. 

We now examine the range of A for which the problem is physically realistic. 

Since the wall temperature is different from that of the surrounding fluid at 

x>O, both u and 0 must be increasing or at least constant with respect to x. 

It follows from Eqs. (18) and (25) that these conditions are satisfied if 

1/2<A~2. Let1s consider the variation of boundary layer thickness, vertical 

velocity at infinity, local surface heat flux, induced pressure and horizontal 

velocity at the wall with respect to x, as .given by Eqs. (18) and (24-28), for the 

limiting cases of A=1/2 and A=2. The case of A=1/2 corresponds to the constant 

heat flux case where Uw = constant, o~iX, v ~ l/VX, and p ~-x. For the case 
(X) w 

of A=2, both 0 and v are independent of x while q~x2, p ~_x2, and u ~x. 
(X) W w 

From the definition of the local Nusselt number Nux = hx/k = k(1X_T j 
w (X) 

(where h is the local heat transfer coefficient) and with the aid of Eq. (28), 

we have 

(29) 

which is presented for selected values of ~ in Table 1 and plotted in Fig. 6. 

The overall surface heat transfer rate for a rectangular surface with a 

length L and a width S can be computed from 

Q =sJ~ q(x)dx • 
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which can be integrated explicitly after q(x), given by Eq. (28), has been 

substituted in Eq. (30) to give 

tp 9SKJl/3 4>'+ 1 
Q = (._3_) [ _ e 1 (0) J S kA 413 CXl L 3 4>.+1 ].la . (31) 

The average Nusselt number is defined by Nu = hL/k where the average heat 

transfer coefficient h depends on the choice of the temperature difference 

between the wall and the temperature of the fluid away from the wall. If the 

temperature difference is based on the mean temperature difference defined by 

(32) 

and 

(33) 

then, the average Nusselt number is given by 

NU t(l+>.tI3 
(Ra)1/3.= 1+4>. [-8

1

(0)J (34) 

where Ra ::: /T .. ,-TJp",gSKL/lla. Eq. (34) for different values of >. is presented 
" -- --

in Table 2 and in Fig. 7. 

It'will be of interest to compare free convection in a saturated porous 

medium adjacent to a vertical flat plate with that of a horizontal plate. The 

corresponding expressions for thermal boundary layer thickness and the average 

Nusselt number for free convection about a vertical flat plate embedded in a 

saturated porous medium are (Cheng & Minkowycz, 1975) 

(35) 
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and 
-- 3/2 
Nu = 2fl+A) [-8 1 (0)] 

(Ra)1/2 1+3A) (36) 

A comparison of Eqs. (24a) and (34) to Eqs. (35) and (36) shows that (oT)v«oT)h 

and (Nu)v>(Nu)h where the subscripts v and h denote the vertical flat plate and 

a horizontal flat plate respectively. To gain some feeling of the order of 

magnitude of various physical quantities in a geothermal application, consider 

an upward facing heated horizontal impermeable surface, 1 km by 1 km, with a 

mean wall temperature of 573°K embedded in an aquifer at 288°K. For numerical 

computations the following physical properties are used: B = 2.8X10-4/oK 

Poo = 0.92X106g/m3, C = 4.2X103 Joule/kg-OK, and k = 2.4 Watt/m-oK. The value 

of ~ is a strong function of temperature varying from .54X10-3 Newton-sec/m2 

at 288°K to 0.042X10-3 Newton-sec/m2 at 573°K, whereas the value of K depends 

on the locality ranging from 10-14m2 at Wairakei, New Zealand, to 10-10m2 at 

Hawaii. If the value of ~ = 0.54X10-3 Newton-sec/m2 and K = 10-12m2 are used, 

it is found that the boundary layer thickness increases from zero at the 

origin of the horizontal heating surface to approximately 350m at 1 km, and 

the total heat transfer rate is approximately 10 MW. For a vertical heating 

surface of the same size, the boundary layer thickness increases from zero 

at the origin to 170m at 1 km with a total heat transfer rate of 30 MW. If 

the values of ~ = 0.042X10- 3 Newton-sec/m2 and K = 10-10m2 are used, the 

boundary layer thickness will be considerably thinner with an associated 

increase in heat transfer rate. 

V. Concluding Remarks 

The foregoing analysis is based on the boundary layer approximations 

which are applicable for large Rayleigh numbers. The analytical expressions 

for total surface heat transfer can be used for an approximate estimate of 
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energy transfer rate between a horizontal surface to the surrounding saturated 

porous medium when the temperature of the impermeable surface is different 

from that of the surrounding fluid. The first author (P. Cheng) is currently 

extending the analysis to an axisymmetric flow in a porous medium heated or 

cooled by a circular impermeable surface. Results of the analysis will be 

presented at a later time. 
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Table 1 Values of [-el(O)J, nT' and nm for Selected Values of A 

A [-el(O)J nT nm 

0.5 0.8164 5.0 6.4 

1.0 1.099 4.5 5.4 
1.5 1.351 4.0 4.4 

2.0 1.571 3.7 3.8 

Table 2 Values of Nu/(Ra)1/3 

A Nu/(Ra) 1/3 

0.5 1.402 
1.0 1.662 
1.5 1.965 
2.0 2.266 
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