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ABSTRACT 

A series of 5 experiments were conducted on silage corn production 

in Hawaii, with assessment of a variety of genetic and environmental 

factors. Two corn hybrids were planted bimonthly for 2 years using 

6 different population densities, ranging from 50,000 to 200,000 

plants/ha. The optimum population density for silage yield was 

167,000 plants/ha, but for grain was much lower. Optimum populations 

for grain under unfavorable seasons (winter) were lower than those in 

favorable seasons (spring and sunnner). Significant population x 

season interaction for grain and stover yields would reconnnend lower 

population density in winter planting for silage production in 

Hawaii. 

Increasing population resulted in reduction of yield components 

and plant characters such as height, stem diameter, and leaf area. 

Grain and stover yields showed seasonal cyclic variations throughout 

the years, with higher yields in spring and summer, and lower yields 

in fall and winter seasons. Plant characters and yield components 

showed similar seasonal variations to those of grain and stover yields. 

Minimum temperature and solar radiation were important determinant 

factors for corn production in Hawaii. 

Brown midrib-3 mutant corn, low in lignin content and high in 

digestibility, was compared to normal counterpart corn to determine 

yield response and their components. Significant grain and stover 

yield reductions were observed in~. with average reductions of 

20 % for grain yield and 17 % for stover yield. Several hybrids 
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showed small reduction in total yield (6-7 %) , indicating possible use 

of bm3 for high quality corn silage. 

Mean squares of general combining ability (GCA) and specific 

combining ability (SCA) were highly significant for grain and stover 

yields. The GCA/SCA ratio for stover yield was much higher than that 

of grain yield, indicating that the GCA effect was more important than 

SCA in stover yields. The GCA/SCA ratio for filled ear length and 

number of kernels were much higher than those for grain y ield. This 

result indicated that the GCA effect was more significant for yield 

components than for grain yield. 

Corn genotypes were evaluated for yields and their characters, 

under normal daylength (average 12 hours) and extended daylength of 

additional 4 hours of light in Hawaii. Tasseling and silking were 

delayed under extended light for all genotypes. Plant characters, 

including plant height, ear height, number of stem nodes, LAI, and 

stem diameter increased significantly under extended light. The 

magnitude of increase for those characters depended on the 

sensitivity to photoperiod. 

Significant grain yield reduction was observed, but stover 

yield increased significantly under extended light. The interval from 

tasseling to silking was much longer under extended light, creating 

poor condition for pollination. No difference of total dry matter 

yield was observed between normal and extended daylength conditions. 

The increase in stover yield was offset by the decrease in grain 

yield. 

Tropical inbreds from wide genetic sources were evaluated for 
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silage yield and plant characters with Hawaiian tester inbreds. Among 

the 217 hybrids studies, about 5 % of those were superior for silage 

yields to the Hawaiian superior check hybrid. CIMMYT, H632, and ICA 

inbreds revealed superiority for silage production. These inbreds 

also had high GCA effects for grain yield. In general, the superior 

hybrids selected were later in flowering and maturity. The late 

maturing hybrids were 10-15 days longer in maturity than early 

maturing hybrids. The superior hybrids had an advantage for silage 

production because of much higher yield even in the longer growing 

period. 

_A 7-entry diallel set based on the factorial experiment was 

evaluated for silage yield and genetic characters. In general, late 

maturing hybrids showed higher grain and silage production. Stover 

yield was correlated with most of the plant characters and rust rating 

was negatively correlated to grain and stover yields. 

GCA and SCA were significant for both grain and stover yields. 

The GCA/SCA ratio indicated that additive genes were more important 

in the genetic variation. GCA x season and SCA x season interactions 

were significant for grain and stover yields, indicating that gene 

. effects were not stable for grain and stover yield under dissimilar 

environment. 
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1. INTRODUCTION 

Corn silage is widely used for ruminant livestock feeding. 

In addition to high yield, a silage corn should also be of good 

quality, palatable and preferred by the animals. Increasing silage 

corn yield and quality can be achieved by improvement of cultivation, 

fertilization, planting date, plant population, cultivar, and 

maturity. Much work has been done on the effects of planting density 

on grain yield of corn. However, relatively little work has been 

published on silage yield. The available reports indicate that the 

use of high populations and narrow rows can increase total silage 

yields. It is necessary to know the interacti9n of season and 

population and its effect on silage corn production in the tropics. 

Sensitivity to photoperiod limits the exchange of germplasm 

materials between temperate and tropical regions. Selection for 

photoperiod insensitive genotypes can result in increased exchange 

of cultivars between different latitudes. Another aspect of light 

is the intensity of radiation. Light intensity varies througout the 

year in Hawaii; it is much higher in the sunnner than in the winter. 

The silage yields of corn under tropical conditions are usually 

lower than those of temperate regions. Silage corn plantings in 

different seasons will provide information on genotype x environment 

interactions, as corn genotypes respond differently in different 

environmental conditions. 

The quality of corn silage is an important factor for ruminant 

animals. Lignin is an important limiting factor in the digestibility 
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and utilization of fibrous feedshy ruminants. Nutrient availability 

and utilization can be increased by chemical and genetic modification. 

Producing corn silage with a lowered lignin content is an important 

objective in improvement programs. The brown midrib genes of corn 

significantly reduce lignin contents. Maturity at harvest is 

recognized as an important factor in determining the quality of corn 

harvested for silage. Generally, late maturing genotypes produce 

higher silage yields than early maturing genotypes. 

Selection for yield can be less effective compared to selecting 

for specific yield components because many genes are involved in 

controlling yields of corn. Correlation studies among plant 

characters and yield components have provided valuable information 

for increasing grain and silage production. 

Several studies were conducted to investigate factors influencing 

silage production in relation to genetic and environmental effects, 

including populatiou density, hybrid background, daylength, and 

annual variations in light and temperature. Plant characters and 

yield components and their relation to grain and stover yield were 

studied. 
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2. LITERATURE REVIEW 

2.1. Effects of Population Density on Corn. 

2.1.1. Yield response to population density. 

Corn silage is a major feed component for all ruminant livestock 

in the Corn Belt area and is used widely in many countries. The 

yield of corn grain per unit land area is highly dependent upon 

population, plant distribution, fertility level, and growth 

characteristics of the hybrid adapted to that area. Rutger and 

Crowder (1967 a) obtained the highest yields of silage at 80,000 

plants/ha in New York in a study with six hybrids at populations 

vayring from 40,000 to 80,000 plants/ha. Highest grain yields were 

obtained at 70,000 plants/ha. Their results indicate that higher 

planting rates can be used for producing silage than grain. Genter 

and Camper (1973) observed maximum grain yield at 54,300 plants/ha, 

but obtained maximum yield of dry matter at 64,200 plants/ha in 

Virginia. Alessi and Power (1975) reported that optimum population 

for corn grain ranged from 30,000 to 40,000 plants/ha in North 

Dakota. 

Bryant and Blaser (1968) reported that the highest silage yield 

was obtained at 98,800 plants/ha in Virginia . They also found that 

the average yields of silage were higher and of grain smaller in the 

late than early hybrids. Grain yield increased significantly as 

plant population increased from 49,400 to 123,500 plants/ha, then 

dropped off at population above 148,000 plants/ha in Hawaii (Chung 

et al., 1982). They also reported that stover yields increased 
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about SO% as population increased from 49,000 to 123,500 plants/ha~ 

with no further increase at higher populations. They suggested that 

optimal population densities for silage corn production in Hawaii were 

between 98,800 and 135,900 plants/ha. Knapp and Reid (1981) reported 

that grain yields were highest when populations were between 48,000 

and 62,000 plants/ha in New York. They obtained highest silage yield 

at a population nearer 62,000 plants/ha. 

In general, silage yields maximize at a higher population than 

grain yields. The optimal population for either, however, varies with 

climate, soil, hybrid, and differences ~n manag-ement. Grain yields were 

increased as the population increased from 34,500 to 51,750 plants/ha 

in North Dakota (Nunez and Kamprath, 1969). Phipps (1975) obtained the 

highest dry matter yield of ears and total dry matter yield at 167,000 

plants/ha in England. Robinson and Murphy (1972) observed good yield 

of grain and silage at population up to 98,800 plants/ha when adequate 

fertility was provided. In Nebraska, Colville and Burnside (1963) 

obtained the highest grain yield at 58,000 plants/ha. Sotomayor-Rios 

et al. in Puerto Rico (1979) reported no yield advantage when 

densities were increased to 90,000 plants/ha, compared to 45,000 

plants/ha. 

Stivers et al. (1971) showed that a population of 69,000 plants/ha 

produced 4.0 % more dry matter than the 54,000 plants/ha in Indiana. 

Average grain yields of the 69,000 plant/ha were 2.3 % lower than at 

54,000 plant/ha in 11 location-year trials. They also reported that 

average grain yields were increased 7.3 % with 51 cm row spacing, and 

4.4 % with 76 cm row spacing in comparison to 102 cm row spacing. 
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Several researchers have found that corn yields increased with 

decreased row spacings (Hoff and Mederski, 1960; Lutz et al.,1971; 

Stickler, 1964). However, Bryan et al. (1940), Giesbrecht (1969), 

and Stickler and Laude (1960) reported no positive response of corn 

yields to narrow row spacings. Corn silage yield increased 

significantly as populations increased from 49,000 to 86,000 plants/ha 

in Georgia (Cummins and Dobson, 1973). Significantly higher silage 

yields were obtained in 51 than 102 cm rows. However, Rumawas et al. 

(1971) in Indiana found no difference in whole plant yield due to row 

spacing (50 and 75 cm) when harvesting stage at about 65 % moisture. 

Giebrecht (1969) reported maximum grain yield at 75,000 plants/ha in 

Canada, but row spacing did not affect grain yield. He also noted 

that varieties differed significantly in their yield response to 

increased plant population. 

Rutger and Crowder (1967) observed population x location 

interactions for both silage and grain yields. They also found a 

hybrid x population interaction for grain yield. Sotomayor-Rios et 

al. (1979) found no population x hybrid interaction for yield, yield 

components, and plant characters. They observed that hybrid X304C 

had the highest yield among 12 hybrids used. Several researchers 

have noted that for early hybrids the optimal population was higher 

than for later hybrids (Brown et al., 1970; Colville, 1966; Duncan 

1954; Hunter et al., 1970). This difference has been attributed to 

the smaller plant size and lower leaf area of most early hybrids. 

Moll and Kamprath (1977) in North Carolina found that increased 

population density resulted in greater yield per hectare in the 
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improved genotypes with recurrent selection, Yield of the five and 

ten cycle selections, averaged over densities were 27 and 42 % greater, 

respectively, than the yield of the original genotype. 

2.1.2 Plant Characters in Relation to Population Density. 

As plant population increased, the weight of the individual plant 

constituents decreased proportionately (Bryant and Blaser, 1960). 

They found no difference in maturity of the plant, as indicated by the 

percent dry matter, by increasing the plant population. Increased 

plant densities usually result in a long interval between anthesis and 

silking (Buren et al., 1974; El-Lankany and Russell, 1977; Woolley 

et al., 1962) and genotypes classified as density tolerant have a 

shorter pollen-shed to silk interval than intolerant genotypes. Mason 

et al. (1976) observed delayed days to mid-silking with increasing 

population density. 

Moll and Ka.mprath (1977) showed that ear height and plant height 

were significantly increased at higher populations. Giesbrecht (1969) 

observed increases in ear and plant heights with increases in 

population. Ear and plant heights at 75,000 plant/ha were 10 cm 

taller than those at 30,000 plants/ha. At high populations, ear 

height (but not plant height) was increased and stalk diameter 

decreased (Rutger and Crowder, 1967). As population increased, stalk 

diameter decreased significantly (Genter and Camper, 1973). They 

observed no difference in plant height but a slight increase in ear 

height with increasing population density. They also found 

significant reduction of ear weight as population increased. Chung 
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et al. (1982) reported that lodging at silage stage increased as 

population density increased, reaching almost 50 % at 296,400 

plants/ha. 

As plant populations are increased, the yield of individual 

plants is reduced. However, the total yield per unit area may increase 

because the small decrease in yield per plant is compensated for by 

the increase in plant numbers. Grain yield per plant has been found 

to decrease with increased population and the rate of decrease is 

affected by factors such as fertility level and variety (Hoff and 

Mederski, 1960; Duncan, 1958). The reduced production of individual 

corn plants with increasing population is due to increased 

environmental stress resulting from greater competition among plants. 

Phipps (1975) showed that increasing density significantly decreased 

ear weight and there was a significant negative correlation between 

weight of ear and population. Prine and Schroder (1964) reported that 

weight per ear and number of ears per plant decreased with increasing 

population. They concluded that the poorer light environment 

resulting from increased shading at high populations was the principal 

factor decreasing yield components. 

One of the major factors limiting high yield in corn grown at 

high population density is barrenness (Stinson and Moss, 1960; 

Woolley et al., 1962). As population increased, ear size decreased 

and barrenness increased (Colville and Burnside, 1963). Barren stalks 

increased from 3 % at 30,000 plants/ha to 15 % at 75,000 plants/ha 

(Giesbrecht, 1969). Mason et al. (1976) observed increased barren 

stalks with increasing population density. They also showed 
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significant reductions of ear weight as population increased. 

Stivers et al. (1971) found increase in barren stalks with increasing 

population densities. They observed 25 % of barren stalks in a 

54,000 population and 40 % in a 69,000 plants/ha population. The 

number of barren stalks was also significantly affected by population 

levels and hybrid used (Woolley et al., 1962). The barrenness was 2 % 

at 39,500 population, and 12 % at 60,000 plants/ha population. 

Number of barren stalks increased and ear weight decreased with 

increased population (Alessi and Power, 1974). Woolley et al. (1962) 

observed decreases of 100 seed weight as the population level increased 

but it was not significant. 

Usually correlation among the yield components and of yield 

components with yield would be most useful to corn breeders for 

prediction purposes. Ordas and Stucker (1977) reported that 

phenotypic and genotypic correlation were of the same magnitude and 

tended to increase with increasing planting density. They concluded 

that ear length appeared to be a satisfactory selection criterion for 

yield progress at high densities. El-Lankany and Russell (1971), 

using test crosses of 20 inbred selections, found the number of 

significant correlations increased as the planting density increased, 

indicating a higher degree of relationship among the traits at the 

level of greater environmental stress to the individual plants. 

Collins et al. (1965) in Iowa found that prolific hybrids were more 

consistent than single eared hybrids in yield performance as related 

to population density. Russell (1968) reported that prolific hybrid 

produced better than non prolific hybrid at higher plant densities, 
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because prolificacy seemed to give resistance to barrenness under 

stress conditions. Duvick (1974) showed that prolific corn was more 

resistant to barrenness in the higher population densities. 

DeLoughery (1979), Fery and Janick(1971), and Genter and Camper, 

(1973) found a decrease of harvest index (HI) with increasing 

population density. HI, the ratio of the grain dry weight to the total 

above ground dry weight of a crop at maturity, is an index similar to 

grain/stover ratios used to evaluate a crop's partitioning efficiency. 

Early maturing hybrids had higher HI than late maturing hybrids 

(Bonciarelli and Menotti, 1975; Bryant and Blaser, 1968). A high 

grain/stover ratio in silage may be as important as total dry matter 

production. Many feeders grow productive hybrids to produce a sil-age 

with high grain and low stalk ratios. 

2.1.3 Leaf area and leaf area index 

LAI and yields: 

The photosynthetic rate of a plant canopy per unit of land area is 

closely related to the area and orientation of its leaves . Canopy 

photosynthetic rates may range from 92 % of theoretical maxi.mum at LAI 

3.0 to 76 % at LAI 7.0 (Duncan, 1971). Duncan (1972) found a nearly 

linear increase of grain yield as LAI increased to 4.0, but no further 

increases above LAI of 4.7. Eik and Hanway (1966) showed a linear 

relationship between LAI at silking time and yield up to an LAI of 3.3, 

above which the linear relationship did not continue. Rutger et al. 

(1971) found that the relationship between grain yield and LAI varied 



10 

appreciably among genotypes , such that the y ield /LAI ratio showed wide 

differences. Hybrids with a high rat io were considered the most 

efficient types. Prior and Russell(l976) reported that the y ield/LAI 

ratio decr eased with increasing population density. This was due to 

the differences of increasing rates of yield and LAI with increasing 

population density, Optimum LAI should vary among hybrids depending 

upon the prolific potential of each hybrids. 

In North Carolina Nunez and Kamprath (19 69) found that a LAI of 

3.5 was reached at about 50,000 plants/ha which gave maximum yields. 

The LAI increased linearly as plant population increased from 34,000 

to 69,000 plants/ha. The leaf area per plant varies with hybrids, 

populations, and growth conditions. Long season hybrids usually have 

larger leaf area per plant than short season hybrids because the long 

season hybrids have more and larger leaves. Brown et al. (1970) found 

that at a given population the leaf area was 49 dm2 per plant for 

2D-XL65 and 65 dm per plant for P-309B. Hicks and Stucker (1972) found 

that among 18 hybrids, width of the leaf above the ear varied from 8.6 

to 11.2 cm and leaf length varied from 78 to 94 cm. For the two 

hybrids LAI varied from 2.7 at a population of 39,520 plants/ha to 5.5 

at a population of 88,920 plants/ha. Mason (1976) reported that LAI 

was positively correlated with grain yield, grain weight/ear, and 

population density. 

The photosynthetic capacity of crops expressed as LAI is much more 

variable in agricultural environments than the photosynthetic 

efficiency measured by net assimilation rate (NAR); for example, 

variation of nutrient supply by fertilizer application, and differences 
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between seasons in weather conditions, affect dry matter yield mainly 

varying LAI (Watson, 1958). The extent to which t he rate of dry matter 

production can be increased by increase in LAI will depend on how NAR 

is affected by change in LAI. As LAI increases, mutual shading of the 

leaves would be expected to decrease photosynthesis by part of the 

foliage, and so to decrease NAR. 

According to Pendleton and Hammond (1969), the relative 

photosynthetic potential of the corn leaves in the top one-third of the 

canopy was twice as high as middle leaves and five times as high as 

leaves in the bottom one-third. At the low population density (4,942 

plants/ha), the removal of the middle leaves has the greatest effect on 

grain yield. In all other plant populations, removal of the top 

leaves showed the greatest yield reduction. The NAR of corn was linear 

to the LAI when it was less than 2.7, but at higher LAI values it 

declined rapidly and showed a tendency to level off (Hoyt and Bradfield, 

1962). They also reported that the dry matter produced per square 

meter of leaf surface from grain initiation to muturity, showed that 

the top leaves were much more productive than the bottom leaves. The 

dry matter produced per square meter of leaf area in a stand with a LAI 

of 3.3 by the top, middle, and bottom leaves was of the ratio 4:2.2:1. 

It is suggested that the low amount of dry matter produced in the bottom 

leaves was due to reduction in light intensity from shading by the above 

leaf canopy, and that reduced production in the bottom leaves caused the 

decreasing NAR at high LAI. 

According to Scarsbrook and Doss (1973), the relationship between 

grain yield or stover yield and either LAI by segment or total LAI were 
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quadratic rather than linear equations. There was an excess LAI with 

the 80,000 plants/ha population which was not associated with an 

increase in grain yield. Generally the lower populations had LAI 

values below those associated with maximum yield. 

LAI was generally highest for the highest population and for the 

later maturing hybrids (Alessi and Power, 1975). Maximum LAI for high 

population ranged from 1.8 to 4.9. LAI per plant decreased with 

increasing population (Moll and Kamprath, 1977). Nunez and Kamprath 

(1969) observed that LAI increased and leaf area per plant decreased 

with increasing plant population. The reduction in leaf area per plant 

was at lower rate than the rate of increase in total leaf area as the 

population was increased. They found a linear relationship between 

yield of grain per plant and leaf area per plant. LAI increased with 

increasing population density (Williams et al., 1968). LAI ranged 

from 3.5 to 8.5 for densities 17,500 to 125,000 plants/ha. According 

to Williams et al. (1965), LAI was 20 at the 700,000 plant/ha population. 

They observed the highest dry matter yield at this population. This 

would certainly seem to indicate that excessive respiration in shaded 

leaves of corn with an LAI near 6 could not account for the yield 

decline at high populations. 

2.2 Corn Silage 

2.2.1. Maturity of Corn for silage. 

Maturity at harvest is an important factor influencing the quality 

of corn harvested for silage. Total yield of forage and plant 
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composition are important factors to consider in silage production. 

They could be appreciably influenced by maturity at harvest. Bryant et 

al. (1966) reported that corn ears at later harvests made up a 

considerably larger portion of the total silage yield than at earlier 

harvests. Leaves, stalks and husks were a smaller portion of the 

mature plant than of the innnature corn plant. They found that the 

total digestible nutrient values were slightly higher for the corn cut 

at the dent stage. 

The milk production of the cows fed mature (dent stage) silage was 

slightly higher than for those fed immature silage. Bryant et al. 

(1965) showed that persistency of milk production was higher on the 

mature than on immature corn silage. Average milk production on the 

immature corn silage was 32.3 lb compared to 33.1 lb per day for the 

mature corn silage. This increased milk production on the mature corn 

silage might have been due to higher consumption of mature corn silage 

than immature corn silage. They also found that the apparent dry 

matter digestibility of the immature and mature corn silage was 66.7 

and 68.6 %, respectively. 

It has been reported that corn silage quality increases with 

maturity up to the dent (dough) stage of the grain (Byers and Ormiston, 

1964; Johnson and McClure, 1968). Gordon et al. (1968) found a 

decrease in dry matter intake, and Johnson and ~cClure (1968) observed 

a decrease in dry matter digestibility with late harvested silage as 

compared to an earlier dent (dough) stage harvest. Cummins (1970) 

observed that~~ dry matter digestibility (IVDMD) of ears 

increased with maturity then leveled off. 
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Own (1967) reported that heavy fertilization of corn generally 

improves the nitrogen content of the resulting forage, but otherwise 

has little effects on nutritional quality. He found early maturing or 

high-grain varieties are usually equal or slightly superior in terms of 

daily lactation performance to late maturing silages of low-grain 

content. Rutger (1969) observed that fresh silage yields of late 

hybrids were considerably higher than those of early hybrids. However, 

dry matter yield of the early hybrid were nearly as high as those of 

late hybrids. Thus harvest and storage cost per unit of dry matter 

production would be higher for the late hybrids. He also found higher 

feeding value of silage made from late maturing hybrids, primarily 

because an animal can consume more dry silage per day than wet silage. 

In areas where early maturity is a major consideration it is 

suggested that hybrids used for silage should be fully as early as the 

best adapted grain hybrids for that region. Thompson (1968) reported 

that late maturing tropical corn grown in North Carolina produced 13 to 

41 % more dry matter and 4-28 % more estimated total digestible 

nutrients than check hybrids. He also found a decrease in protein 

content but increased fiber contents in late-maturing tropical corn. 

These data demonstrate the silage potential of late maturing tropical 

corn. However, increased production alone is not necessarily a 

convincing criterion for practical aspects. Tall growth is a major 

cause of the lodging problem. Thompson concluded that improving stalk 

strength by breeding would help to minimize but not eliminate the 

lodging hazard. 

Bryant and Blaser (1968) reported that stalks were a significantly 
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smaller proportion of the total dry matter in early than in late hybrids. 

However, Genter and Camper (1973) in Virginia reported that the early 

hybrids tended to be lower in grain yield and total dry matter than the 

later hybrids. The later maturing, taller hybrids were better adapted 

to competition in high populations than were the earlier hybrids 

(Giesbrecht, 1969). 

Rutger and Crowder (1967) and Termunde et al. (1963) showed no 

consistent relationship between maturity and response to different 

populations. In general, later- maturing corn hybrids have been 

reported to produce the highest grain and silage yield (Colville, 

1966; Knapp and Reid, 1981; Lutz et al., 1971; Lutz and Jones, 1969). 

Higher silage yield from late hybrids than from early and medium 

hybrids may be attributed to the longer period of time available for 

the corn to grow. Some studies have shown, however, that silage yield 

from different maturing hybrids were similar (Colville and McGill, 

1962). Other researchers have noted that longer-season hybrids produced 

higher silage yields but early hybrids had higher grain yield (Alessi 

and Power, 1974; Andrew and Peek, 1971; Bryant and Blaser, 1968). 

According to Stivers et al. (1971), full season corn hybrids generally 

produced higher yields of grain than either early or late hybrids in 

Indiana. 

The maximum whole plant dry matter yield of corn is normally 

attained several days prior to the maximum grain day weight (Daynard 

et al., 1969). Daynard and Hunter (1975) reported that whole plant dry 

matter digestibility of corn was relatively constant over a range of 

moisture contents from 75 % to 56 %, indicating that digestibility 
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might not be a major factor in selecting a proper harvest stage for corn 

silage. Huber et al. (1965) and Chamberlain et al. (1971) observed 

reduced dry matter intake with ruminants when the moisture content of 

corn silage was higher than 65-58 %. Gordon et al. (1968) reported 

that the production of high quality silage from late harvesting was 

quite possible under good storage conditions, but the practice would be 

impractical because of high field losses. The mature corn silage was 

slightly superior to immature silage (Huffman and Duncan, 1956). 

Maximum yield of digestible energy per hectare would be achieved 

by harvesting between the dough-dent and glaze stage of maturity 

(Johnson and McClure, 1968). They concluded that the later the maturity, 

the more attention must be given to proper protein supplementation. 

Leask and Daynard (1973) reported that hybrids differed significantly 

in the yield, feeding value, and moisture percent of the stover fraction. 

They mentioned that selection is possible for hybrids that combine high 

grain yield and early maturity with desirable stover characteristics. 

Total dry matter production is of major importance in a forage 

feed program. However, composition of the dry matter as it affects 

palatability and digestibility may be even more important to feeders. 

A digestion study showed that calculated total digestible naturient (TDN) 

values increased with advancing maturity (Thorton et al., 1969). The 

calculated TDN values for ear corn at early milk, early dough, mid-dent 

and maturity stage were 80.7, 82.9, 90.2 and 91.7 %, respectively. Such 

calculations indicate that ear corn harvested at mid-dent stage compared 

favorably with mature ear corn and that there was considerable difference 

between ear corn of mid-dent and early dough stages of development. 
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White et al. (19 76) reported that corn grown for silage in Canada 

was well below the desired level of 30-35 % dry matter at the time of 

frost. Yield losses occured although allowing immature corn to stand 

a long period after · frost increased its dry matter content to the 

30-35 % level. In addition to a loss in dry matter yield, the 

quality of the crop declined, with increasing l osses of digestibility. 

They recommended that silage corn in Canada could be harvested prior 

to or immediately after being frozen to obtain maximum yield and 

quality. 

Highest total dr y matter yield was obtained between the dent and 

glaze stages (Johnson et al., 1966). No vegetative growth of the leaves 

and stalk occured during visible ear growth and maturation. These two 

components decreased in weight in the later stages of maturity when 

ear formation had completed. They explained this might be due to 

decreases in protein. It is common farm practice to judge the maturity 

of a field of corn by assessing the stage of maturity of the kernels, 

even though there is considerable variability between individual plants 

in the field. 

2.2.2, Brown midrib mutant for low lignin corn silage. 

Lignin is a limiting factor in the digestion and utilization of 

fibrous feed by ruminant animals. Improvement of corn silage quality 

for ruminant animals through the use of a low lignin brown midrib 

mutant has been reported by many researchers. The brown midrib mutant 

bm3 of corn produces lowered lignin contents of vegetative parts of 
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corn (Colenbrander et al., 1972, 1973, 1975; Lechtenberg et al., 1972 ) . 

Brown midrib mutant genotypes produced corn plants with nearly a 40 % 

reduction in lignin content in the whole plant comp red to normal corn 

(Muller et al., 1971). 

El-Tekriti et al. (1976) observed that the lignin percentage in 

leaves averaged 5.8 and 7.1 % for bm3 and normal plants, respectively. 

Lechtenberg et al. (1972) reported that the bm3 was the most effective 

of 4 mutants tested (bm, bm2, bm3 and bm4) in reducing lignin and 

increasing in vitro dry matter disappearance (IVDMD). 

Muller et al. (1972) reported that bm3 corn stover silage was 10 % 

higher in digestible dry matter than normal stover silage fed to sheep. 

Dry matter consumption was 29 % greater in bm3 stover silage than with 

normal stover silage. Colenbrander et al. (1972, 1973, 1975) and El­

Tekriti (1976) reported significantly lower cell wall constituents, 

acid detergent fibers and lignin in bm3 stover silage. Apparent 

digestibility of bm3 silage with Holstein cattle was significantly 

higher for dry matter, cell wall constituents, acid detergent fiber, 

hemi-cellulose and cellulose. Frenchick et al. (1976) reported that 

bm3 silage increased milk production, decreased milk fat percentage and 

increased body weight of Holstein cows with bm3 silage. These effects 

may have resulted from improved utilization primarily due to lowered 

lignin content and higher digestibility . 

Nutrient availability and utilization can be increased by chemical 

and genetic modification. Most studies of bm3 were with in vitro 

chemistry of digestion. Relatively little genetic work has been done. 

The bm3 hybrids produced less grain yields t han normal conterparts and 
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the differences were greater at higher populations (Tu and Bauman, 

1977). The yield reductions ranged from 16 % to 33 %. Frenchick 

et al. (1976) also reported that bm3 of corn decreased yield. The 

bm3 corn produced 16.1 T/ha wheras 

No information is available on bm3 

genetic characters. 

the normal 

of corn fo

corn 

r 

produced 

yield compon

19.3 T/ha. 

ents and 

2.2.3. Quality of corn silage. 

It has been reported that corn silage is superior to sorghum 

silage on ruminant animal feeding. Burris et al. (1981) noted that 

corn silage was better than sorghum silage for feeding steers. Schmid 

et al. (1976) observed lower acid detergent fiber in corn silage (29 %) 

than in sorghum silage (34%). They also noted that the high average 

daily gain of sheep fed corn silage (64.5 g compared to 18.1 g for 

sorghum silage) was primarily due to high daily dry matter intake and 

highly digestible dry matter compared to the sorghum silage. Schaffert 

et al. (1974) reported that tannins in sorghum grain resulted in 

decreased growth of ruminant animals. Harris et al. (1970) obtained 

a significant negative correlation between tannin content of sorghum 

grain and in vitro digestibility. They suggested that high tannin 

content reduces feed efficiency. 

Cummins and McCullough (1971) found no significant percentage 

difference between male-sterile and male fertile corn in digestibility 

of dry matter, crude protein, crude fiber and cellulose. Perry and 

Compton (1977) found that percent crude protein of leaves was twice 
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as large than that of stalk crude protein, indicating the impor t anc e 

of retention of leaf mater i al when harvesting corn silage. They also 

observed t hat ears contributed much of the digestible material in corn 

silage, but a considerable amount also crone from the digestible 

portions of leaves and stalks. 

2.3 Environmental and Genetic Factors affecting Corn Yield. 

2.3.1. Photoperiod response of corn. 

Most tropical lines are too sensitive to photoperiod for 

effective use as parents in temperate climates, whil e many temperate 

lines are too sensitive for use in the tropics. They become extremely 

early and small in height. Insensitivity to photoperiod would be a 

available addition to the tools currently available to the corn breeder. 

It will facilitate crossing of divergent materials from widely 

different latitudes and would promote an easy exchange of lines among 

programs of improvement in different countries. 

It has been reported that long photoperiods delay tassel 

initiation or flowering of plants (Garner and Allard, 1927; McClelland, 

1928). Francis et al. (1970), Hunter et al. (1974), and Breuer et al. 

(1976) observed temperature and photoperiod both significantly affected 

the number of days from planting to tassel initiation. "Long photo­

period (20 h) and low temperature (20 °c) independently increased the 

number of days between planting and tassel initiation. The interval 

between tassel initiation and silking was not affected by photoperiod. 

During the grain filling period, temperature had greater effects, 
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but a photoperiod x t emperature interaction occured. Hunter et al. 

(1974) showed a more detailed relationship between photoperiod and 

temperature. Their worksuggested that at long photoperiod the delay 

in tassel initiation was less at 30 °c than at 20 °c or 25~. 

Francis et al. (1969) and Arnold (1969) reported that extending 

the daylength did not delay the maturity of the corn belt lines 

(adapted to long photoperiod). Coligado and Brown (1975) observed 

that photoperiod increased the time to tassel initiation and number 

of leaves at all temperature, however, the increases were more 

pronounced at low temperature (15 
C
C). They concluded that the 

increases in leaf number with increasing photoperiod resulted from 

the prolongation of the time to tassel initiation. 

Francis et al. (1969) found insensitive inbred lines in a study 

under extended day length. They suggested that insensitivity could 

be incorporated into corn of different maturities and thus the 

developments of genotypes with very wide adaptation was possible. 

Brewbaker (1981) noted that hybrids could be bred with wide adapta­

bility to daylength abd also to the incident light variation of 

tropic and temperate regions. 

Most genotypes showed a delay in floral differentiation when 

grown in extended daylength (Francis et al., 1970). They also found 

that the magnitude of the delay in tassel initiation under long day 

conditions is related to the intensity of light used to lengthen a 

naturally short day. Several genotypes were quantitative in delay, 

but certain genotypes showed specific threshold intensity levels 

above which the delay was very pronounced, and below which there 
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might be less delay or none at all. Some sensitive genotypes showed 

a substantial delay in development under light intensities greater 

than about 5 fc (54 lux), and a significantly less pronounced delay 

at intensities between 1 to 2 fc (11 to 22 lux) and 5 fc (54 lux). 

Moss and Heslop-Harrison (1968) reported reduced leaf number on 

the principle axis, fewer tassel branches,and reduced pollen fertility 

under the short day (8 hour) in comparison with long day (18 hour). 

All of these effects were reduced by night interuption by light at low 

intensity level indicating direct or indirect effects of true photo­

periodic reactions. Ragland et al. (1966) observed that supplemen­

tary light treatment increased number of kernel rows. However, they 

found that there were fewer kernels per row and less grain weight per 

ear under the supplementary light treatment. The addition of 

artificial light to the corn field showed increased corn yield 

(Graham et al., 1972). The results show that the increase in yield 

was directly proportional to the amount of light added to the leaf 

area. 

With longer photoperiod, there was an increase in the amount of 

vegetative growth and development prior to tassel initiation (Hunter 

et al., 1974). It was ovserved that total leaf number, total stem 

length, and total plantdryweight were increased with longer 

photoperiod. The response was not consistent for each genotype. 

Pioneer X306 which is a subtropical hybrid showed much larger 

responses than Guelph GX122 which is adapted to Ontario, Canada. 

Stem length of Pioneer X306 at tassel initiation were 3.8 and 38.9 

cm when grown under 10 and 20 hour photoperiod, respectively. 
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In contrast, for the hybrid Guelph GX 122, increasing the photoperiod 

comparably resulted in less than doubling of stem length. Bonaparte 

(1975) reported that fewer leaves were developed in 12 h than in 16 h 

daylength in the same temperature regime. This could largely be 

attributed to higher leaf area per plant and greater average daily dry 

matter production. Leaf area and leaf number were increased with 

longer photoperiod under both high and low temperature treatments. 

However, 1000 kernels weight and number of kernel rows at maturity 

were increased only under low temperature conditions. 

2.3.2. Solar Radiation. 

Theoretically, with adequate fertility and population the next 

growth limiting factors of importance would be light penetrat i on 

related to leaf area and photosynthesis rate. Increasing plant 

population is a method for maximizing interception of incoming solar 

energy in crop species. Colville (1968) reported that the quantity of 

light reaching the soil through the leaf canopy was diminished with 

increasing plant population but remained stable at populations of 

49,400 or more plants/ha. He concluded that light was the only factor 

influenced significantly by planting patterns. 

Yao and Shaw (1964) reported greater light interception by plants 

grown in 53 cm rows than in 107 cm rows. Denmead et al. (1962) 

suggested that spacing rows narrower tban 102 cm could increase the 

energy available for photosynthesis by 15 to 20 %. They observed that 

after maxi.mum leaf area development, the net radiation at the ground 
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constituted only 25 % of the total net radiation measured above the 

crop. According to Williams et al. (1965), crop growth rate was 

increased with increasing amounts of light intercepted and light 

intercepted was increased as LAI increased. The LAI value at 95 % 

light interception was 8. Plant populations and row widths affected 

the amount of energy absorbed by the corn plant and by the soil 

(Aubertin and Peters, 1961). Greater amounts of energy were absorbed 

by the plants under narrow rows and high population combinations. 

Conversely, greater amounts of energy were absorbed by the soil under 

wide rows and low population combinations resulting in greater 

evaporation and higher soil temperatures. 

Hybrids tolerant of thick planting were also tolerant of shading, 

while hybrids less tolerant of thick planting were less tolerant of 

shading (Stinson and Moss, 1969). It is apparent that different 

yield response of various hybrids at high planting rates is in part 

a differential response to shading. Grain production of corn hybrids 

was reduced significantly by 60 % or higher shading treatment in all 

stages (Early et al., 1967). Their results showed that shading during 

the reproductive stage was most detrimental. Plants shaded during the 

reproductive stage had a full complement of normal leaves, but initiated 

and developed only a limited number of kernels and had reduced kernel 

weight. It was concluded that in the absence of a "sink" (kernels or 

ears) the leaves of these plants were essentially nonoperative 

although exposed fully to light. 

Moss (1962) reported reduction of co assimilation rate (40 to
2

60 % of control plants) upon removal of ears or prevention of ear 
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fertilization. Photosynthetic rate in crop plants is highly 

correlated with light intensity from a low intensity to light 

saturation of the leaves (Hesketh and Musgrave, 1962; Moss et al., 

1961). Moss et al. (1961) observed serious grain yield reduction of 

hybrids intolerant to dense planting because they failed to silk 

normally. 

Increased grain yields were observed under a high light environ­

ment (Pendleton et al., 1967). Grain yield was 26 % higher in the 

reflector areas than in normal sunlight and plants with extra light 

were shorter and had larger stalks. These results suggested that 

under field condition all leaves on a corn plant are not light 

saturated, therefore, light appears to be the primary factor limiting 

grain yield of corn when grown under highly productive conditions. 

Jong et al. (1982) in Hawaii observed that the cyclical change of 

grain yield and its components closely followed cyclical changes in 

climatic conditions. Grain yields were generally greatest for March 

to August plantings, and minimal yields were observed for November to 

January plantings. They found that the most influencial climatic 

factor affecting the yield component was solar radiation. 

2.3.3. Temperature and dry matter accumulation. 

The maturity of corn is frequently measured by recording the 

number of days from planting to silking. Such a method for comparing 

material grown at different locations and years is limited because 

the number of days from planting to silking varies widely with changes 

in environmental conditions. One of the needs confronting corn 



26 

breeders and producers is a means of classifying corn hybrids with 

respect to maturity. Classifying hybrids according to the number of 

days elapsed between planting or emergence and maturity lacks 

precision because environmental variations between years and locations 

may influence the number of days between planting and grain maturity. 

Aldrich (1943) defined maturity as the time at which maximum 

dry weight of the grain is first attained. This definition was later 

termed "physiological maturity" by Shaw and Loomis (1950). Moisture 

percentage as a basis for the prediction of maturity was shown to be 

unreliable by Shaw and Thom (1951). They reported that large 

differences in moisture percentage at the time of physiologic maturity 

existed among hybrids in any one year. Hillson and Penny (1964) 

reported that 95 % of physiologic maturity was more accurat ely 

determined than 100 %. They found that moisture percentage at the 

time of physiologic maturity have no indication of the rate of drying. 

Accumulated temperature is in index which has been used to 

determine physiological stages of plant maturity and climatically 

suited areas for corn production. Andrew et al. (1956) used accumulated 

thermal units to compare stages of maturity of two corn hybrids at 

two different locations. They concluded that accumulated thermal 

units above a base of 10 t were nearly equal in both locations for 

predicting maturity. Gilmore and Rogers (1958) reported that the 

use of temperatures taken at 3-hour intervals was slightly superior 

to daily maximum and minimum readings. It was concluded that the 

degree days method was more reliable than calendar days for predicting 

flowering dates for different planting dates. 
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Cross and Zuber (1972) used 22 different methods of computing 

thermal units to test their ability to account for variation in 

flowering dates. They observed that daily measurements were 

approximately as accurate as the hourly measurements. It was 

concluded that the best equation for predicting flowering dates on 

the basis of thermal units utilized a base temperature of 10°c and an 

optimum of 30 °c. The excess temperature above 30 
0 
C was subtracted to 

account for high temperature stress. Daynard (1972) in Canada 

observed that delayed planting resulted in an increased number of 

accumulated heat units from planting to midsilking and decreased heat 

accumulation from midsilking to maturity. As a result, the number of 

accumulated heat units from planting to maturity was only slightly 

reduced by delayed planting date. He concluded that accumulated 

heat units were superior to the number of days in determining the 

length of the interval from planting to midsilking, but not from 

midsilking to maturity. 

Gunn and Christensen (1963) showed that the number of 

accumulated heat units from planting to silking remained relatively 

constant for corn grown in different environments, while calendar 

days varied widely. Their study indicated that the time interval from 

silking to physiologic maturity was not constant but appeared to vary 

with climate and hybrid. They suggested that evaluation of the 

accumulated heat unit classification of hybrids should extend from 

planting to maturity rather than planting to silking. Mederski et al. 

(1973) reported that the accumulated heat unit methods were about half 

as variable as the calendar day method showing that growing degree 
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day methods of classifying corn hybrids was superior to calendar days. 

Dry matter accumulation: 

Analysis of dry matter accumulation showed that, as grain 

development progressed, the rate of grain fill began to exceed the 

rate of dry matter accumulation, indicating a net redistribution of 

stored assimilates (Jurgens et al., 1978). Johnson and Tanner (1972) 

reported that the growth of individual corn kernels starts immediately 

after fertilization as a non-linear period followed by a linear growth 

phase. Up to 90 % of the maximum kernel dry weight may accumulate 

during the linear phase. Dry weight accumulation continues after 

the linear phase, but at a continuously reduced rate until the kernel 

reaches physiological maturity. Tip kernels on an ear of corn have 

a shorter period of grain filling than base kernels, but the rate of 

growth is the same for individual kernels in either position 

(Tollenaar and Daynard, 1978). 

Poneleit and Egli (1979) observed that kernel dry weight 

accumulation rate was not affected by population density, however, 

effective filling period was 2.5 days less at the high population 

density. They also showed that yield per plant and per unit area in 

response to changes in population density were changed more by kernel 

number per plant than by kernel size. Hanway and Russell (1969) 

reported that the rate of dry matter accumulation in the grain was 

similar for all hybrids and plant populations, but length of time 

during which dry matter accumulated in the grain at the rapid rate 
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varied among the hybrids, resulting in markedly different final grain 

yields. Dry matter accumulation in many non-grain parts of the plants 

after silking and was later translocated to the grain. They observed 

that the average rate of dry matter accumulation was slightly higher, 

and the period of dry matter accumulation in the grain was silghtly 

shorter at the higher than at the lower population density. It was 

reported that photosynthesis throughout the upper two-thirds of the 

leaf area of corn supplied the dry matter that filled the grain 

(Allison, 1966). The estimated contributions of the top 5, the 

middle 4, and the bottom 6 leaves to dry matter production after 

flowering were about 40 %, 35-50 %, and 5-25 %, respectively. The 

decrease in stem weight caused by defoliation suggests that previously 

stored dry matter was moved to the grain. He noted that dry matter 

production after flowering was more than sufficient for grain growth, 

and previous photosynthsis probably contributed little to the grain. 

Egharevba et al. (1976) observed that defoliation within 30 days 

after silking significantly reduced total accumulated dry matter. 

More severe yield reductions (6.2 to 82 %) were observed by complete 

defoliation than partial defoliation (1.5 to 32.7 % yield reduction). 

The effect of removing all leaves above the ear was not significantly 

different from that obtained by removing all leaves below the ear. 

They showed that the number of kernels produced per unit area was 

strongly influenced by defoliation. However, at 10 days after mid­

silking, the weight of kernels was affected more than number of 

kernels when leaves were removed at 20 or 30 days after midsilking. 

These results suggest that stress at silking or up to 10 to 15 days 
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may reduce yield significantly because of a decrease in the number of 

kernels produced. Thereafter, yield losses are largely due to a 

decline in kernel weight. 

2.3.4 Yield Components of Corn 

Yield components have not been used extensively as selection 

criteria by plant breeders for improvement of yield. However, 

selection for the components may be effective during corn inbred 

development. If such inbreds had greater GCA for yield, the yield 

components would be useful selection criteria. El-Lankany and Russell 

(1971) observed relatively high phenotypic correlations between yield 

and three yield components, kernel depth, ear length, and ears per 

plant among test crosses of 20 inbred lines. Andrew and Peek (1971) 

found averaged highest coefficient of variability fot the unfavorable 

and lowest for the favorable environments. Bigger (1919) observed no 

relationship between number of kernel rows and grain yield, or 

between shelling percentage and grain yield. He found positive 

correlations between ear length, weight and yields but correlation 

coefficients were not large. It was concluded that there was no well 

marked basis for using ear characteristics to indicate yield 

possibilities. 

Hartfield et al. (1965) in Kentucky observed significant 

correlations between ear components and grain yield in 6 environmental 

conditions. They observed that the correlation of ear components 

~ith grain yield and was drastically affected by the environment, 

suggesting that the genetic yield potential of varieties cannot be 
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evaluated by component correlations except as these varieties react to 

a specific environment. Mass selection for increased and decreased 

ear length was conducted by Cortez-Mendoza (1979) in Illinois. 

Selection response for increase ear length was not accompanied by a 

correlated response in grain yield per plant. Selection response for 

decreased ear length, however, was accompanied by a significant 

reduction in grain yield per plant. Other correlated responses to 

selection for increased ear length were taller plants, later silking, 

and decreased ear diameter. On the other hand, selection for decreased 

ear length resulted in shorter plants, but there was no change in days 

to flowering, and ear diameter. 

Cross and Zuber (1973) obtained a significant correlation between 

plant height and number of leaves for most genotypes. They also found 

that the relationship between number of leaves at naturity and number 

of days from planting to anthesis was even lower than that for plant 

height and number of days from planting to anthesis. Significant 

positive correlations between the average number of leaves per plant 

and the number of days to mid-silking were observed (Chase and Nanda, 

1965). They (1967) also observed that there was a significant positive 

correlation between the number of leaves and number of days to anthesis. 

They reported that there were fewer leaves per plant in winter planting, 

and concluded that the number of leaves per hybrid was a highly 

reliable index to maturity classification. Geadelmann and Peterson 

(1978) reported that yield components selection programs did not 

increase yield in the highest yielding hybrid background, nor 

modified hybrids respond well to increased population density. 
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These results did not support wide use of backcross-selection for 

increased yield component expression as a general procedure to 

increase yield of corn hybrids. 

Resistance to stalk bending was affected by internode diameter, 

environmental conditions, and stage of development (Pickett et al., 

1969). Thompson (1972) observed increased lodging resistance after 

7 cycles of recurrent selection for resistance to lodgings. The 

percentage of erect plant had increased from 40.3 to 91.9, and rind 

thickness from 1.00 to 1.16 mm, while ear height and yield decreased. 

Considerable lodging occurs in many high eared corn hybrids when 

grown under modern corn production practices. Understanding of the 

ear height and associated characters is needed to determine the most 

effective breeding procedures necessary for selection of these 

characters. 

2.3.5 Environmental Interaction and Genetics of Corn 

Genotype x environment interaction has been widely observed to 

play a significant role in the expression of phenotypes. An 

alternative is to develop varieties which can more efficiently exploit 

favorable environments and at the same time are buffered against 

unfavorable genotype x environment interaction. The ideal corn 

genotype would produce high yields regardless of environmental 

conditions. In general, genotypes do not perform equally well in all 

environments, but some tend to be closer to ideal than others. 

Genotype response to differing environments can be measured statisti­

cally as genotype x environment interaction while those with large 

interaction would be called unstable. 
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Genotype x environment interactions were examined by Eberhart 

et al. (1973) in East Africa using 23 genotypes of corn. A large 

proportion of the genotype x environment interaction could be 

explained by differential responses among varieties to altitude and to 

environments. They concluded that varieties that originated or were 

selected at high altitudes were more responsive to altitude than were 

their low altitude counterparts. Darrah and Penny (1974) studied 

genotype x environment interaction using 15 varieties at 50 sites in 

East Africa and Nigeria. They reported that varieties that had been 

selected at high elevation showed higher responses that those from low 

altitudes. Differences among varieties were small at low altitudes 

and in poor environments, but they widened rapidly as either altitude 

or environmental index increased. Increased response was related to 

adaptability and to the need for inclusion of high altitude germplash 

in breeding populations. 

Stability of yield is important in corn hybrids, especially for 

those grown in fringe areas of production. Eberhart and Russell 

(1966) indicated that stability of performance differed among inbred 

lines tested in hybrid combinations. According to Scott (1967), a 

stable hybrid was defined as: (a) a hybrid that exhibits the least 

yield variation over all environments, and (b) a hybrid that does not 

change its relative performance with other entries in many environments. 

Both types of stability have merit for selection in a desirable corn 

hybrid. However, these two types tend to be mutually exclusive. 

Corn breeders should decide which type of stability is more important 

in each program. If the origin is the fringe areas of production, 
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the type of stability defined in (a) would be more important. Where 

environmental conditions are generally favorable, the type of 

stability defined in (b) should be more important. Eberhart and 

Russell (1966) modified and applied their method to estimate stability 

of corn. The regression coefficients and deviations from regression 

were used as parameters. They concluded that reliable estimates of 

deviations from regression would require testing over a number of 

environments, while estimates of the less important regression coeffi­

cient would require fewer but widely different environment. 

Dhillon and Singh (1977) found that GCA was more important than 

SCA in the expression of mean yield. Generally, inbreds with high 

GCA effects for kernel depth and kernel rows per ear had high GCA 

effects for yield (Cross, 1977). He found significant interactions 

of GCA with environments for yield, ear length, and kernel rows. 

Significant SCA interactions with environments were for ear length. 

It was indicated that the absence of environmental interactions with 

GCA or SCA effects for ear traits might be important for development 

of high yielding hybrids from these inbreds. Corn breeders have 

devoted considerable effort and expense to the development of inbred 

lines with superior combining ability for grain yield. GCA of the 

original and modified lines was evaluated by testing their top­

crosses to the synthetic variety in two environments in Minnesota by 

Geadelmann and Peterson (1970). Average GCA for grain yield for 

modified ear per plant exceeded the original inbreds by 10 and 5 %, 

respectively. GCA of the modified lines, as measured by their average 

top-cross grain yield, was higher than their original inbreds for 
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some but not all inbreds. 

Harville et al. (1978) reported that the GCA effect was larger 

than SCA effects for ear height. They concluded that the inheritance 

of ear height was controlled primarily by additive gene effects. 

Significant changes of the estimate of the GCA effects were less with 

each succeeding cycle of generations, indicating less progress in 

lowering ear height with each succeeding cycle. Flowering-time and 

accumulated heat unit to flowering were largely determined by GCA 

effects and, thus, GCA estimates were higher than those of SCA 

(Rood and Major, 1980). They observed that GCA effects for flowering­

time and accumulated heat unit to flowering were generally consistent 

across years and environments. 

Gamble (1962) reported that the dominance gene effects were the 

most important contributors to the inheritance of plant height, ear 

length, ear diameter, and kernel weight. He also observed that 

additive gene effects were more important for plant and ear 

characters than for yield. They were relatively more important for 

the number of kernel rows, ear diameter, and kernel weight than for 

plant height and ear length. In other study, Gamble (1962), found 

that additive gene effects are relatively more important in the 

inheritance of plant and ear characters than for yield performance. 

Robinson et al. (1949) have also obtained results which indicate that 

additive genetic variation is greater in those characters. 

Giesbrecht (1961) observed that heritability estimates averaged 65.5, 

38.3, and 82.4 % for number of internodes, internode length, and ear 

height, respectively. The comparatively high heritability estimate 
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obtained for ear height suggested that it would be easier to select 

desired genotypes on the basis of ear height than on the number of 

internodes or internode length. 

Most of the studies on the inheritance of maturity have used the 

date of pollen shedding or silking as their basis of maturity. 

Giesbrecht (1960) reported that more than two genes were involved with 

some evidence of partial to complete dominance and epistasis. In a 

later study, Giesbrecht (1960) reported that 5 genes were involved for 

days to pollen shedding and 4 or 5 genes for days to silking. 

Mohamed (1959) obtained similar results in that the days from planting 

to pollen shedding and silking were controlled by 2 and 3 major gene 

pairs, respectively. Jones (1955) reported that 2 to 11 genes were 

involved with heritability values of 22 to 83 % for maturity. The 

heritability estimates in a broad and narrow sense were higher for 

flowering-time (Rood and Major, 1980). The average heritability 

estimate of narrow and broad sense over two years were 71 and 90 %, 

respectively. The high estimate of narrow-sense heritability 

suggests that selection for early flowering should be effective. 
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3 MATERIALS AND METHODS 

3.1 Effects of Population Density and Seasonal Changes on Grain and 

Stover Yields 

The objective of this study was to determine the responses of 

grain and silage yields and their yield components to increasing 

population densities in different seasons. Two corn hybrids were 

planted bimonthly using six different population densities at the 

Wa1manalo Research Station of the University of Hawaii. The Research 

Station is located at 21°N latitude in Oahu, Hawaii, and its soil 

type is a Typic Haplustoll with pH of around 6.5. 

Population densities used were 50,000, 75,000, 100,000, 125,000, 

150,000, and 200,000 plants/ha. The hybrids used were H763 (Hawaiian 

singlecross hybrid) and X304C (Pioneer tropical singlecross). A total 

of 12 plantings were made over the 2 year period (Table 1). The 

spacings adopted were 76 cm between rows and 26, 18, 13, 11, 9, and 

6.5 cm between plants. Marked nylon strings were used to keep 

correct planting distance during plantings. At higher population 

densities (150,000 and 200,000 plants/ha), plantings were done in 

paired rows, spaced 25 cm apart, retaining the 76 cm between pairs. 

Two border rows were planted around the experimental planting. Each 

experimental plot consisted of 2 rows of 5 m length. 

The experiment was conducted in a split plot design with 4 

replications. Genotypes were treated as mainplots with population 

densities in subplots. Two seeds were planted per hill and were 
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Table 1. Planting and harvesting dates of bimonthly plantings. 

Planting Planting Planting date Harvesting datenumber month 

l January Jan. 15, '80 May 20, '80 

2 March Mar. 15, '80 Jul. 24, '80 

3 May May 17, '80 Sep. 4, '80 

4 July Jul. 15, '80 Oct. 28, '80 

5 September Sep. 18, '80 Jan. 18, '81 

6 November Nov. 14, '80 Feb. 26, '81 

7 January Jan. 15, '81 May s, '81 

8 March Mar. 16, 1 81 Jul. 2, '81 

9 May May 15, 1 81 Aug. 31, '81 

10 July Jul. 16, '81 Nov. 9, '81 

11 September Sep . 15, '81 Jan . s, '82 

12 November Nov. 15, '81 Mar . 9, '82 
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thinned to one plant after 4 weeks. A preplant fertilizer applicatior. 

equivalent to N-P205-K 20 = 130-130-100 kg/ha was made and corn plants 

were sidedressed with 70 kg/ha of nitrogen as urea after thinning. 

The herbicide was incorporated to control weeds. Overhead sprinkler 

irrigation was used on a 5-day interval. 

Data on the following plant and ear characters were collectea· 

1) Days to tasseling, as the time in days from planting to the 

day of tassel emergence. 

2) Plant height, as the height in cm from ground to the tip of 

central axis of the tassel. 

3) Ear height, as the height in cm from the ground to the base 

of the upper most ear. 

4) Filled ear length, as the length in cm with fully developed 

kernels. 

5) Number of kernel rows. 

6) Number of kernels per row. 

7) Leaf area index (LAI) as the ratio of total leaf area to the 

area of planting space, using method of pearceet al. (1975). 

8) Stalk diameter, as the diameter of stalk in mm above the 

first node from the ground. 

9) Fusarium infection, as the percentage of fusarium infected 

kernels per ear. 

10) Grain yield, as the grain weight in metric tons per hectare 

adjusted to 15.5 % moisture content. 

11) Stover yield, as the stover weight in metric tons per 

hectare adjusted to oven dry moisture content. 
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Ten plants per plot were recorded for each plant character, and 

6 to 7 ears were sampled after harvestingformeasuring yield 

components. The size of harvested plot was 2 rows x 4 m. Grain ears 

were harvested by hand picking, and then stover was cut by sickle. 

After harvesting, 2-3 corn stalks were sampled and shredded at the 

field. Thes e shredded stalk samples were dried in a forced air dryer 

(60-65"C) to determine moisture content. Grain ears were shelled and 

tested for moisture content using a digital moisture tester. 

3.2 Effects of Brown Midrib Mutant (bm3) of Corn on Yields and Yield 

Components 

Fifteen hybrids from a 6-entry diallel were grown to assess the 

effects of bm3 on yields and yield components. Three of the inbreds 

-- Ant2, Hi27 and Hi 28 -- were tropical in origin, while B37, Mol7, 

and Oh545 were temperate. All inbreds used were University of Hawaii 

conversions to Mv (resistance to Maize Mosaic Virus), Rp-d (resistance 

to Puccinia sorghi) and Ht (resistance to Helminthosporium turcicum). 

Two trials were planted at the Wai.manalo Research Station of the 

University of Hawaii on August 12, 1980, and May 21, 1981. Four 

replicates were planted in a split-plot design, with hybrids as main 

plots and type (normal vs. bm3) as subplots. The population density 

was 60,000 plants/ha, with 76 cm between rows. Each plot consisted 

of a single 7 m row with 30 plants. Two seeds were planted per hill 

and thinned to a perfect stand. Other management factors including 

field preparation, fertilization, herbicide application, and 
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irrigation, were the same as those of population density experiments. 

Data were recorded for days to tasseling, plant height, leaf 

area index, number of stem nodes, stem diameter, filled ear length, 

number of kernel rows, number of kernels per row, grain and stover 

yield. The whole plot was harvested for grain and stover yields. 

Ten plants per plot were recorded for each plant characters, 6 or 7 

harvested ears were observed for grain yield components. Leaf area 

measured using the rapid method (Pearce et al., 1975). Grain yields 

were adjusted to 15.5 % moisture and two corn stalks were sampled for 

stover moisture content. These stalk samples were shredded and dried 

in a forced air dryer (60-65°C) to determine moisture content. 

Griffing's diallel method 4 was used for the combining ability test. 

3.3 Effect of Extended Daylength on Yields and Yield Components of 

Corn. 

The objectives of this study was to determine increase in total 

dry matter and grain yields, and their components, under 4-hour 

extended daylength conditions. Ten hybrids from a 5-entry diallel 

cross (Ant2, Hi28, Hi29, Hi31, and Mol7) together with control hybrids 

-- B37 x Hi25, B37 x Mol7, Pi3369A, and X304C -- were planted on 

September 18, 1980 and May 21, 1981, under the normal and extended 

light conditions at the Waimanalo Research Station. Population 

density was 60,000 plants/ha, with 76 cm between rows and 22 cm within 

rows. The plot size was 2.8 m x 2 rows with 24 plants. 

For the supplementary lighting system, 150 watt incandescent 

flood lamps were used at night. Lights were turned on after sunset 
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(September: 6 PM, May: 6:30 PM) for 4 hours. Lamps were spaced 4.6 m 

apart on a line at a height of 3.4 m above the ground. A clock 

timer was used to turn the lamps on and off. Average light intensity 

was about 161.5 lux (15 fc-c) (Lee, 1978). A r andomized complete 

block design with 4 replications was used. Other management 

practices were the same as those of the population density experiments. 

Observations were recorded on the following characters: days to 

tasseling , days to silking, plant height, ear height, LAI, number of 

stem nodes, filled ear length, number of kernel rows, number of 

kernels/row, stalk diameter, kernel fusarium, grain yield, and stover 

yield. 

3.4 Selection of the Superior Hybrid Corn from a 31 x 7 Factorial. 

The objective of this experiment was to identify superior hybrids 

for silage production, their plant characters and yield components. 

This experiment was conducted at the Waimanalo Research Station in 3 

different seasons. Plantings were made on March 24, May 29, and 

November 9, 1981. The total number of hybrids was 225, including 217 

from the factorial combinations of 31 tropical inbreds with 7 tester 

inbreds, and 8 check hybrids (Tabel 2). The 31 tropical inbreds 

were used as female parents and 7 tester inbreds as male parents. 

Two seeds were planted per hill and thinned to one plant after 

4 weeks. The population density was 60,000 plants/ha, with 76 cm 

between rows and 22 cm within rows. Plot size was 3.5 m long x 2 

rows, with 30 plants. Experimental design was a simple lattice 

design (15 x 15). Soil preparation, fertilizer application, 
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Table 2. Pedigrees of inbreds used in silage yield trials. 

Female parents: 

Number Inbred Source Number Inbred Source 

1 CIMMYT-A21 CIMMYT 16 INV443 Texas 

2 CIMMYT-TllES CIMMYT 17 INV534 Texas 

3 Fla.2AT-ll2 Florida 18 MITll DMR Thailand 

4 Fla. 2AT-114 Florida 19 Pi4243 U.H. 

5 Fla.2BT-54 Florida 20 Pi4257 U.H, 

6 H632A Kenya 21 Pi4283 U.H. 

7 H632F Kenya 22 Pi4287 U.H, 

8 H632G Kenya 23 SR52-F Zimbabwe 

9 ICA L25 Colombia 24 SR52-M Zimbabwe 

10 ICA L27 Colombia 25 Tuxpeno Thailand 

11 ICA L210 Colombia 26 Tx602 Texas 

12 ICA L221 Colombia 27 77-4407 U.H. 

13 ICA L223 Colombia 28 77-4412 U.H. 

14 INV138 Texas 29 77-4441 U.H. 

1 5 INV302 Texas 30 77-4449 U.H. 

31 77-4544 U.H, 

Male parents: Check hybrids: 

l Hi26 1 H636 (Hi29 x Hi33) 

2 Hi28 2 H650 (Hi28 x Hi33) 

3 Hi29 3 H763 (Hi34 x HiJl) 

4 Hi31 4 H767 (Hi29 x Hi31) 

5 Hi33 5 H823 (Hi28 x Hi34) 

6 Hi34 6 H824 (Hi29 x Hi34) 

7 Tx601 7 XlOSA 

8 X304C 
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erbicide incorporation, irrigation, and other management practices 

were the same as those for the previous experiments. 

Several characters were observed over 3 plantings, including 

grain yield, stover yield, days to tasseling, plant height, and ear 

height. However, yield components data, including filled ear length, 

number of kernel rows, number of kernels/row, and 100 kernel weights 

were recorded only in the March and May plantings. LAI, number of 

stem nodes, and stem diameters were measured only in March planting. 

Harvesting and sampling methods were described in population density 

experiments. 

3.5 Silage Yield Trial of 7-Entry Diallel. 

The objective of this experiment was to determine silage yields 

and their combining ability among a 7-entry diallel cross, utilizing 

male parent inbreds from the 31 x 7 factorial experiment. The 21 

hybrids (7-entry diallel) were planted in 3 different seasons at the 

Waimanalo Research Station. Planting dates were November 16, 1981, 

February 2, 1982, and May 5, 1982. Parent inbreds used were Hi26, 

Hi28, Hi29, Hi31, Hi33, Hi34, and Tx601. Plot size was 3.5 m x 2 

rows, with 30 plants. The experimental design was a randomized 

complete block design with 4 replications. Cultivation and 

management were the same as previous experiments. 

The following characters were observed: grain yield, stover 

yield, days to tasseling, plant height, ear height, filled ear length, 

number of kernel rows, number of kernels per row, 100 kernel weight, 
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and rust. Data on barren stalks were collected in the November 

planting and LAI was observed in the May plantings. Harvesting and 

sampling methods were the same as those of the previous experiments . 
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RESULTS AND DISCUSSION. 

4.1 Effects of Population Density and Seasonal Variations on Corn 

4.1.1 Yield response to population density 

The highest average total dry matter (TDM) yields over 12 

plantings were observed at 150,000 plants/ha for both H763 and X304C. 

The highest TDM yields of H763 and X304C were 14.8 and 17.4 T/ha, 

respectively, indicating that X304C was superior to H763 for silage 

production. The response of TDM to population density fitted well to 

2nd degree polynomial equation (Figure 1), with coefficient of 

determination was 0.99 for both H763 and X304C. Optimum population 

densities for maximum TDM yield from the 2nd degree polynomial 

equations were 169,100 and 166,700 plants/ha for H763 and X304C, 

respectively. 

Second degree polynomial equation for overall average over 12 

plantings showed that optimum population densities for maximum grain 

yield was 126,000 on H763 and 141,000 plants/ha for X304C (Figure 2). 

The highest grain yield of H763 was 6.8 T/ha at 125,000, while for 

X304C it was 8.4 T/ha at 150,000 plants/ha, showing that X304C had 

significantly higher grain yield than H763. At the lower population 

densities (50,000 - 75,000 plants/ha), the grain yield differences 

were 0.6-0.7 T/ha, while it was 1.3-1.8 T/ha at the higher population 

densities (125,000-200,000 plants/ha). This result indicated that the 

two hybrids were different in response to different population 

densities. 
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Responses of grain yields to population densities were different 

in different seasons (Figures 3, 4). The population densities for 

maximum grain yields in spring (January, March) and summer (May, July) 

were higher than those in fall (September) and winter (November) 

seasons except in one case. These differences might be due to the 

stressed environments in winter seasons; i.e. strong winds and 

concentrated rainfall that resulted in severe lodging. 

Optimum population densities for maximum grain yields in 

different plantings are presented in Table 3. In September plantings, 

optimum population densities were not observed on both hybrids. This 

indicated that grain yield decreased as population increased. 

Stover yield increased significantly with increasing population 

density up to 200,000 plants/ha for both hybrids (Figure 5). At the 

highest population density (200,000 plants/ha), stover yields of 

H763 and X304C were 8.6 and 9.4 T/ha, respectively. X304C was 0.5-

0.8 T/ha higher than H763 in all different populations. Theoretical 

optimum population densities for maximum stover yields were observed 

at 212,700 on H763, and 215,100 plants/ha on X304C. Coefficients of 

determination of the quadratic regression equations were highly 

significant for both hybrids. Linear regressions also were highly 

significant for H763 (r2=0.93) and X304C (r2=0.92). 

The responses of stover yields to population densities in 

different seasons were more consistent than those of grain yields for 

both hybrids (Figures 6, 7). In the September and November plantings, 

yield responses to population densities were similar to those in 

other plantings. Table 4 presents theoretical population densities 
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Table 3. Second degree polynomial equation of grain y ield with 
population density . 

Optimum pop.2
Hybrid Month Equation r density f or 

max. ield 

2
H763 Jan Y= 6.34 + O.Ol8x - 0 . 000048X 0.75 189.3 

";':2
Mar Y= 6.33 + o.050X - 0.00016 x 0 . 87 157.2 

2
May Y= 6 .17 + 0 . 070X - 0 .00028X 0 . 83 125 .4 

-;':-;':2
Jul Y= 7.28 + 0.035X - 0 .00016X 0 . 98 106.8 

"i':2
Sep. Y= 2.66 - o.oo33X - o.000015x 0.88 

2
Nov Y= 1.12 + o.0001sx - o.0000101x 0 . 77 7.4 

2
X304C Jan Y= 5.42 + 0 .038X - 0.00014X 0.85 133.3 

..,•:2
Mar Y= 3.96 + 0.102X - 0.00028X 0.93 185.5 

2
May Y= 4 .62 + 0.108X - 0 . 00042X 0 . 80 129 . 8 

..,':-;':2
Jul Y= 5 .1 4 + 0 . 091X - 0.00034X 0 .98 134 .8 

2
Sep Y= 3. 91 - 0 .00046X - 0.000027X o . 78 

-;':2
Nov Y= 1. 43 + o .Ol 8X - o.000066X 0.93 137.7 

Significant at 5 % level. - indicates negative value. 

Signif icant at 1 % level. 

http:o.000066X0.93
http:0.00028X0.93
http:0.00014X0.85
http:o.000015x0.88
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Table 4. Second degree polynomial equation of stover yield 
with population densities. 

Hybrid Month Equation 
2 

r 
0 pt imum pop. 
density for 
max. yield 

H763 Jan Y= 4. 71 + 0 .023X - 0.0000089X. 
2 -;':~':

0.98 
(1000 plants/ha) 

1297.9 

Mar Y= 3. 71 + 0.067X - 0 .0001SX
2 ..,_. .. 

0. 99"" 277. 9 

May Y= 3.81 + 0.072X - 0 .00020 4X 2 0 .97
...'ri: 

176.0 

Jul Y= 5 .19 + 0 .054X - 0 .00014X 
2 ;':-;': 

0.99 195 .3 

Sep Y= 2.62 + 0 .042X -0 .00011X
2 

0.82 196. 7 

Nov Y= 1.37 + o.02sx 0.000060X
2 ··-•..

0.99"" 207 .o 

X304C Jan Y= 4.99 + o .01sx - 0.000026X
2 

0.99
;':-;': 

286.5 

Mar Y= 4 .35 + 0 .075X - 0 .00025X
2 

0.93
-.·: 

152.9 

May Y= 6.84 + 0 .05@{ - 0 .00014X
2 .,....,. 

0. 96" " 193 .1 

Jul Y= 4.65 + 0.078X - o.0002ox
2 -;':

0.93 198. 7 

Sep Y= 2.93 + 0 .032X 0 .000040X
2- 1: 

0.88 403.8 

Nov Y Y= 1.57 + 0.035X - 0 .00077X2 
-;':--.':

0.99 439.2 

... 
Significant at 5 % level. 

...·:-.': 
Significant at 1 % level. 
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for maximum stover yields in different plantings. Seasonal plantings 

except January showed similar optimum population densities for H763. 

However, September and November plantings had higher optimum 

population densities than other seasons. Coefficients of determina­

tion for all plantings for both hybrids were either highly significant 

or significant except that for the September planting of H763. 

Combined analysis of variance for grain yield showed that 

population, population x hybrid, population x season, and population 

x season x hybrid interactions were highly significant (Table 5). 

These results suggested that hybrids were different in response to 

population density, and population densities were different in 

different seasons. Population and population x season interaction 

were highly significant for stover yield, however, population x hybrid 

interaction was not significant, indicating that 2 hybrids were similar 

in response to population densities. 

4.1.2 Plant Characters related to Population Density 

Days to tasseling was delayed about 1 day for both hybrids as 

population increased (Figure 8). Days to tasseling for H763 was 55 

days at lower populations (50,000 plants/ha), and 56 days at the 

highest population (200,000 plants/ha). Days to tasseling for X304C 

was 1-2 days longer than for H763. 

Plant height was significantly different in population densities. 

Plant height decreased with increase of population. Plant height of 

H763 was 248 cm at 50,000 plants/ha and 236 cm at 200,000 plants/ha. 
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Table 5. Analysis of variance of grain and stover yields over 
12 plantings. 

Mean squares 
Source df 

Grain yield Stover yield 

Season (S) 11 713 .08 279.99 

Reps in S 

Hybrid (H ) 

H X s 

36 

1 

11 

1.18 

187 .11 
t': ··k 

11.04
;':-;': 

0.75 
-.':-;':

84.35 
-.':;':

11 . 40 

Error (b) 

Population (P) 

p X s 
p X H 

p X S x H 

36 

5 

55 

5 

55 

0.64 
.,,,..,,: 

20.26 
..,•:..,':

3. 77 
'i':-;,':

5.32 
-.':'i': 

1.33 

0. 81 
i':··k 

118. 28 
-.':-"'i': 

2.74 

0.49 
-1: 

1.22 

Error (c) 360 0.55 0.72 

-.': 

;':-,': 

Significant at 5 % level. 
Significant at 1 % level. 
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X304C was 6-10 cm taller than H763. These taller plants may be one 

of the factors responsible for the higher stover yield of X304C. 

Highly significant negative correlations were observed between 

population densities and plant heights (Figure 9). Correlation 

coefficients of H763 and X304C were -0.98 and -0.93. respectively. 

The slopes of the linear regressions of the 2 hybrids were similar, 

showing similar response of the 2 hybrids to population densities for 

plant height. 

Ear height increased with an increase in population density for 

H763 and X304C (Figure 10). Ear heights at higher populations were 

6 cm higher than those at lower populations for the both H763 and 

X304C. Ear height of X304C was 4-6 cm higher than for H763 in all 

populations. 

Combined analysis of variance showed highly significant 

differences between hybrids and populations for days to tasseling, 

plant height, and ear height (Table 6). Population x hybrid inter­

actions were not significant for those characters, indicating that 

the two hybrids were not different in response to population density, 

however, the population x season interaction was significant. 

Leaf area per plant was measured using a rapid method (Pearce 

et al., 1975). Leaf area was not taken in the winter season 

(September and November plantings) due to severe lodging. Leaf area 

per plant decreased significantly with increasing population density. 

Leaf area at the lowest population (50,000 plants/ha) was 6383 cm 

and 4472 cm2 at higher population (200,000 plants/ha) indicating a 

30 % reduction of leaf area at high population. X304C showed 

2 
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Table 6. Analysis of variance of days to tasseling and plant 
characters over 12 bimonthly plantings . 

Mean squares 
Source df Days to 

tasseling Plant height Ear height 

Season (S) 11 1815.85 125681.25 

Reps in S 

Hybrid (H) 

H X S 

36 

1 

11 

4.48 
"i':"i': 

346 .8 9 

30.61
"i':-;': 

291.58 
-;':-,':

9726 . 89 
"i':-;':

1373.94 

Error (b) 

Population (P) 

p X S 

36 

5 

55 

0.88 
..,•:..,':

25 .24 
..,•:

o.57 

114.45 
-;':-.':

1889.87 
';':

123.16 

p xH 5 0.1s 95.32 

p X S x H 55 0.27 121.83 

Error (c) 360 0.37 80.31 

..,,: 

..k-.': 

Significant at 5 i. 

Significant at 1 i. 

level. 

level. 

49626 .51 

191.28 
..,•:-:':

4367.01 
";':"'.':

881. 78 

76. 90 
..,.: ....': 

2407 .8 9 
..,•:

73 .47 

6.32 

52.81 

40 .05 
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similar r eduction of l eaf area per plant with increasing population 

and 3-6 % less than H763. However, LAI increased significantly as 

population increased. The rate of LAI increase was much higher than 

the rate of leaf area reduction. LAI of H763 was 3.22 and 9.03 at the 

lowest and highest population, respectively, showing almost a three­

fold i ncrease. 

Stem diameter was measured at the first node from the ground. 

As the popula tion increased, stem diameter decreased significantly. 

Highl y significant negative correlations were obtained between 

population density and stem diameter for both H763 and X304C 

(Figure 11). Corr elation coefficients of H763 and X304C were -0.97 

and -0.98, respectively. Stem diameter was 2.1-2.3 cm at low 

population, while it was 1.4-1.5 cm at high population, showing about 

30 % reduction at the high population density. This result suggested 

that ~eduction of stem diameter might be one factor for reduced stover 

yield . Stem diameter of X304C was 0.1-0.2 cm larger than H763. 

This could be one of the causes of the higher stover yield of X304C 

than H763. 

4.1.3 Response of yield components to population density 

Sev_eral yield components, including filled ear length, number of 

kernel rows, number of kernels/row, and 100 kernel weight, were 

measured after harvesting. Filled ear length was reduced significantly 

for both hybrids, with an increase in population density. Filled ear 

length of H763 was 13.2 cm at 50,000 plants/ha, while it was 8.5 cm 
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at 200,000 plants/ha indicating a 36 % reduction. X304C showed a 

similar decreasing rate, but was 1-2 cm larger than H763. There were 

highly significant negative correlations between populations and 

filled ear length (Figure 12). The slopes of linear regressions of 

both hybrids were similar to each other, indicating similar response 

to population for filled ear length. 

Number of kernel rows decreased significantly as the population 

increased, but the rate of reduction (8-16 %) at the higher population 

was much less than that of filled ear length (36 %). Number of 

kernels/row was significantly different between population densities. 

It was 28 and 16 at 50,000 and 200,000 plants/ha respectively for 

H763. The reduction rates were 43 % for H763 and 42 % for X304C. 

The reduced number of kernels/row could be the reason for low grain 

yield at higher population densities. H763 had 4-6 fewer kernels/row 

than X304C, and this could be the reason for low grain yield in H763. 

A linear relationship was observed between population density and 

number of kernels/row on both H763 and X304C, with highly significant 

negative correlations (Figure 13). 

Combined analysis of variance over 12 plantings indicated highly 

significant hybrid and population effects for yield components, 

including filled ear length, number of kernel rows, and number of 

kernels/row (Table 7). The population x hybrid interaction was 

significant only for number of kernel rows, while population x season 

interactions were significant for filled ear length and number of 

kernels/row. These results suggest that population responses for 

filled ear length and number of kernels/row were different in 
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Table 7. Analysis of variance of yield components over 
12 plantings. 

Mean squares 
Source df Filled ear Number of Number of kernels 

Length kernel rows per row 

Season (S) 11 148 .55 

Reps in S 

Hybrid (H) 

H X S 

12 

1 

11 

1.72 
...':"';'(

227.38 
..,.. ..,.. 

4.49"" 

Error (b) 

Population (P) 

p X S 

12 

5 

55 

0 .91 
..,....,. 

138.65"" 

2.35
i~': 

p X H 5 1.62 

p X H X S 55 1.06 

Error (c) 120 0.76 

"';'( 

"';':-;': 
Significant at 5 
Significant at 1 

i. 
i. 

48.83 

0.62 
'";'~':

51.85 
..,...,.. 

17.58"" 

0.76 
..,_,.. 

15.17"" 

o. 71 
";':"i':

1.98 

0.46 

0.46 

level. 
level. 

799.65 

10.14 
..,.....,.. 

1302.so"" 
17. 21 ;': 

4. 71 
968. 36;':;': 

14 • 25 ;':;': 

10.05 

8.41 

5.84 



68 

different seasons. 

Fusarium infection on kernels was found to be higher as the 

population increased in both hybrids. The response of fusarium 

infection to population density was different between hybrids. 

Fusarium infection was about 1.4% at 50,000 plants/ha for H763, while 

it was 4.2 % at 200,000 plants/ha. X304C showed much less kernel 

fusarium than H763. It ranged from 0.6 % at low to 1.5 % at high 

population for X304C. 

Lodging and Barrenness: 

In spring and summer plantings, 20-30 % lodging was observed at 

higher population (150,000-20,000 plants/ha) for H763. Stem diameter 

of H763 was 0.1-0.2 cm less than that of X304C. This smaller stem 

diameter might be the cause of more lodging of H763. However, 

severe lodging (more than 70 %) was noted at all population densities 

on both hybrids in the winter seasons. Lodging was the main factor 

for high barrenness resulting in reduction of grain yield in the 

winter seasons. 

High percentages of barren stalks were recorded for both H763 

and X304C in September and November plantings. The barrenness was 

found to be higher as the population increased. The barrenness of 

H763 and X304C were 9 and 2 %,respectively at 50,000 plants/ha, but 

increased to 37 and 21 % at 200,000 plants/ha. Highly significant 

correlations were observed between populations and barrenness 

percentage for both hybrids (Figure 14). 
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4.1.4 Seasonal changes of yields and their components 

Climatic conditions at the Waimanalo Research Station: 

Maximum and minimum temperature and daily solar radiation data 

were recorded during the experimental period. Figure 15 shows the 

monthly average climatic data. The average maximum t euperature 

ranged from 24 to 30°c, with higher temperature in June, July, August, 

and September, and lower temperature in November, December, and 

January. Minimum temperature ranged from 18 to 23 "c, showing similar 

cyclic change as maximum temperature. The average daily solar 

radiation showed the cyclic changes similar to that of maximum and 

minimum temperature. The cyclic change of solar radiation was 

approximately 2 months earlier than those of temperatures. Higher 

solar radiation began around May and continued to September, then 

decreased sharply in October in both years (1980 and 1981). In 

summer reasons, the average daily solar radiation was about 400-500 

-2 -1 -2 -1cal. cm . day , and in the winter it was 150-250 cal. cm • day 

The highest average daily solar radiation was 527 cal. cm-2.day-l 

in July, 1981 and the lowest value was 153 cal. cm-~ day-l 

in November, 1981. 

Figure 16 shows the average maximum and minimum temperature and 

average daily solar radiation during the growing period over 12 

bimonthly plantings. Temperature was higher in the May, July, and 

September plantings in both 1980 and 1981, while it was low in the 

January, March, and November plantings. The seasonal changes were 
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different for solar radiation, i.e. it was higher in January, March, 

May, and July, and lower in September and November plantings for both 

years. Therefore March, May, and July plantings were found to be 

favorable conditions, and September and November plantings were 

unfavorable seasons. Rainfall was generally higher in winter seasons 

and lower in sunnner, but it was quite variable from month to month 

and did not show cyclic change throughout the years. Rainfall is not 

disscussed in this study as an overhead sprinkler system was used in 

all experiments. 

Seasonal variation Ef yields and their components 

Seasonal variation of grain yield showed cyclic changes 

throughout both years with higher yields in March, May, and July 

plantings, and lower yields in September and November plantings 

(Figure 17). The monthly average grain yield of H763 over 6 different 

population densities ranged from 6 to 12 T/ha in favorable seasons, 

and ranged from 1 to 3 T/ha in unfavorable seasons (September and 

November plantings). X304C showed a response similar to that of H763. 

Grain yield ranged from 6 - 13 T/ha in January, March, May, and July 

plantings, and 2 - 4 T/ha in September and November plantings. The 

reduced grain yield in September and November could be attributed to 

l ower solar radiation and severe lodging. Severe lodging was observed 

in September and November plantings for both the hybrids. There were 

highly significant correlations between average dail y solar radiation 

during the growing period and grain yield over 12 bimonthly plantings 

(Figure 18). Correlation co efficients for H763 and X304C were 0.82 
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and 0.85, respectively. The slopes of linear regressions for both 

H763 and X304C were the same, indicating the responses of grain 

yield of two hybrids to solar radiation were similar. 

Seasonal variation of stover yield averaged over populations 

was similar to that of grain yield (Figure 19). In March, May, and 

July plantings, stover yield ranged from 8 to 12 T/ha, whereas it 

ranged from 3 to 8 T/ha in other plantings. The reduction in stover 

yield under unfavorable seasons was smaller than those for grain 

yield for both H763 and X304C. This was because barren stalks in 

winter seasons produced no grain, but had stover yields. Highly 

significant correlations between average daily solar radiation 

during the growing period over 12 plantings and stover yields were 

obtained for both hybrids (Figure 20). The slopes of linear 

regression were larger for X340C than for H763, showing that X304C 

was more efficient in ut i lizing the solar radiation for producing 

higher stover yield under high solar radiation conditions. 

Yield components, including filled ear l ength, number of kernels 

per row, showed cyclic changes over 12 plantings ( Figures 21, 22). 

Filled ear length in the spring and summer planting was about 2 times 

larger than that in winter seasons due to favorable seasonal eff ects. 

Filled ear length of X304C was 1 - 3 cm l arger than H763 i n all the 

plantings. The respose of number of kernels/row to dif f erent seasons 

was simi lar to that of filled ear l ength. In winter seasons, the 

number of kernels/row was about half of those under favorable 

s easons . X3 04C had 2-7 more kernels/row than H7 63 in a ll plantings. 

These r educt i ons in yield components could explain the reduct ion i n 
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grain yield in unfavorable conditions. Number of kernel rows 

reduced in winter plantings but the seasonal variations were rather 

noncyclic than that of other yield components. 

Table 8 shows highly significant correlations between yields 

and yield components, including filled ear length, number of kernel 

rows, and number of kernels/row for both H763 and X304C. The average 

correlation coefficients for two hybrids for filled ear length, 

number of kernel rows, and number of kernels/row were 0.89, 0.85, and 

0.92, respectively. This result suggests that number of kernels/row 

was the most important yield component. 

Plant Characters: 

Days to tasseling, plant height, and ear height showed cyclic 

changes throughout the years. Days to tasseling in November, January. 

and March were much longer than those in May, July, and September 

plantings. It ranged from 58 to 65 days in winter and spring, while 

it ranged from 45 to 55 days in sunnner seasons (Figure 23). 

Significant negative correlations were found between days to tasseling 

and average maximum and minimum temperature, but no correlation was 

observed with solar radiation. 

Plant and ear height showed similar seasonal changes to those 

of grain and stover yields (Figures 24, 25). Plant and ear height 

in winter seasons almost half of those in summer plantings. These 

reduced plant height might be the factor of r educed stover yields in 

winter plantings. 



Table 8. Correlations among yields, plant characters, ans yield components over 12 
bimonthly plantings. 

Stover Total dry Plant Ear Filled Number of Number of
Characters yield matter height height ear length kernel row kernel/row 

Grain yield 0. 91 ;':;': 
0 . 90·'.;': 

0. 99.':.': 
0. 98·':;': 

Stover yield 0. 96,'d: 
0. 96,':.': 

Total dry matter 
y ield 

Plant height 

Ear height 

Filled ear length 

Number of kernel rows 

0 .59·'· 
0.67·'· 

0. 81 ;'.;': 
0. 80,'d: 

0. 69;': 
0. 7 4,'.;': 

0 .66·'· 
o. 64;': 

0. 84,'d: 
0. 8Q,':.': 

0.74;':;': 
o. 73,b': 

0. 93;':;': 
0. 98,b': 

0. 88·':;': 
0. 8 9;'.;': 

o. 97;':;': 
0.89,'d: 

0. 93;':;': 
0. 91 ;':;': 

0 .86,':;': 
0. 84,':.': 

0. 86,':.': 
0. 83,':.': 

0. 86,':;': 
0 .84;':;': 

0. 89,':;': 
0. 74.·..·• 

0. 89,':.': 
0. 83;':;': 

0. 79,'o': 
0. 78,':;': 

0. 76,':;': 
0. 70,': 

0. 93;':;': 
0. 83,':.': 

0. 92,':.': 
0. 9 2,':;': 

0. 95,':.': 
0. 91 ;':;': 

0. 95,':.': 
0. 94,':;': 

0. 77,':;': 
0. 8 6,':;': 

0. 76,':;': 
0. 81 ;':;': 

0. 96,':.': 
0. 91 ;':;': 

0. 97,':;': 
0. 93,':.': 

Upper and lower values are H763 and X304C, respectively. ,': Significant at 5 % level. 
,':.': Significant at 1 % level. 
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Relationship between yields and climatic factors: 

Correlations between yields and their components, and climatic 

factors are presented in Table 9 . TDM, grain, and stover yields 

were significantly correlated with average solar radiation from 

planting to tasseling and to harvesting for both H763 and X304C. 

However, average maximum temperature was not correlated with yields 

except in stover yield of X304C. Average minimum temperature during ~I 

I 

the growing period was significantly correlated with total dry matter, 
11 

grain, and stover yields. This indicated that minimum temperature 

was a more important factor than maximum temperature for corn yields 

at Waimanalo. Plant characters, including plant height and ear 

height, and yield components were correlated with average solar 

radiation from planting to tasseling and to harvesting. In all cases, 

minimum temperature was more highly correlated with yields and their 

components than maximumtemperature. This result suggests that 

minimum temperature might be more important than maximum temperature 

for those characters as well as yields. 

Growing degree days (GDD) was calculated as follows: 

GDD = ( Maximum temperature+ Minimum temperature) / 2 - l0°C. 

There were significant correlations between GDD during the growing 

period and yields and the yield components excepting number of kernel 

rows. Multiple regression analysis was carried out using yields and 

their components as dependent variables, and average maximum and 

minimum temperature, and average solar radiation as independent 

variables. Table 10 shows multiple regression equations for yields 

and several characters with climatic factors, including average 



Table 9. Correlations between yields and their components and climatic factors. 

From planting to tasseling From planting to harvesting 

Characters Hybrids Average 
max. 
temp. 

Average 
min . 
temp . 

Average Growing 
solar degree 

radiation days 

Average 
max. 
t emp. 

Average 
min . 
temp. 

Average 
solar 

radia t ion 

Growing 
degree 

days 

Grain yield H763 
X30 4C 

0 .04 
0.09 

0.26 
0.32 

0. 74.·.- .·.-
0 .82·';;'; 

0.04 
0.19 

0.29 
0.36 

0. 62,', 
0. 68,': 

0. 82,'d; 
0. 85,':.'. 

0. 60,'.;'.-
0 . 59,', 

Stover yield H763 
X304C 

0.26 
0.34 

0.47 
0 .60·'· 

0 .Bl( :.': 
0. 90·'.-;': 

-0.32 
0.06 

a.so 
0. 60·'· 

0. 76·':;': 
0. 87,'d: 

0. 80·':;': 
0 .81 ·~;': 

0. 66·'· 
0. 66;': 

Total dry matter 
yield 

H763 
X304C 

0 .12 
0.20 

0.34 
0.45 

0. 79;':;': 
0. 88;':;': 

-0.10 
0.14 

0.37 
0.47 

0 .69·'· 
0. 78;':;': 

0. 83;':;': 
0. 85;'.;': 

0. 63·'• 
0. 6l,-.': 

Plant height H763 
X304C 

0 . 63;': 
0. 66;': 

0. 71 ;'.-
0. 74;':;'.-

0. 80;':;': 
0. 84;';;', 

-0.52 
-0.22 

0. 74;':;': 
0. 79;':;': 

0 .83;':;': 
0. 87;';;', 

0. 61 ;': 
0. 63;': 

0. 71.': 
0. 70-.': 

Ear height H763 
X304C 

0 . 48 
0 . 69,': 

0 . 64;', 
0. 79;':;': 

0. 7lp':;': 
0. 85,',;': 

-0.42 
-0.15 

0 . 63,': 
0 .83;':;': 

0. 80,',;', 
0. 90;':;': 

0. 61 ;': 
0 .62,': 

0 • 7 8,':.': 
0. 71 ;'.-;': 

Filled ear length H763 
X304C 

0.33 
0.37 

0 . 46 
0 .51 

0. 7 9;'.-;': 
0. 85;':;': 

-0.27 
0.03 

0.48 
o.s4 

0.72;':.': 
0. 73.·.--.·.-

0. 75,'.;': 
0. 75 ;':;': 

0. 71 ;':;': 
0. 70;'; 

Number of 
kernel rows 

H763 
X304C 

0 .26 
0.26 

o.3o 
0.30 

0. 75;':;': 
0. 75 ;':;': 

-0.18 
-0.01 

0.45 
0.45 

0 .60,': 
0 .60-.·.-

0. 78;':;': 
0. 78;':;': 

0.54 
0.54 

Number of 
kernels/row 

H763 
X304C 

0 .16 
0 .31 

0.30 
0.49 

0. 7 4,b': 
0 .86,'d: 

-0.12 
0.04 

0.38 
0.56 

0. 63;': 
0. 78,'d: 

0. 81 .,....,... 
0. 85;':.': 

0 . 59;': 
0. 70 ,': 

;•: Significant at 5 % level. 

-;':-:: Significant at 1 % l evel. 
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· of y1·elds and their components with average temperatureTable 1O. Multiple regression
and solar radiation from planting to tasseling 

f.qnat ,onCharacters Hybrids 

,\· 
H763 y = 40 .99 - 2.1sx + o.69X 2 + o.0 29X 0.66

Grain yield 1 
X304C v = 37 . 29 - 2.oox1 + o.11x 2 + o.o ox _ o.7~'"'" 

,,,, 
Stover yield H763 y = 1 . 82 - o. w,x1 + o. \z + t),,>l n. I\ • 1,, 

\ ,\ 
X304C y == 1 7 • 5 6 - l. 46~\ + 1.17X + U • U l t!X 3 

U. lPJ
2 

Total dry matter H763 Y = 56.81 3.09X1 + l.24X + 0.046X o. 71 
~·( 

2 3 ;':-.·:yield X304C Y = 55 .10 3.48X + l.90X + 0.048X 0.85
1 2 3 

Plant height H763 y = -231.76 + l0.3 9x1 + 4.77X + o.25x 0.73
-;': 

2 3 'i':;': 
X30l1C Y = -347.95 + 12.82X + 6.40X 2 + 0.32X 0.81

1 3 
-;': 

Filled ear H763 Y = 7.16 0.22X + 0.14X + O.Ol8X 0.63
1 2 3

length 'i': 
X304C Y = 5.45 0.037X1 + 0.059X + O.Ol7X o. 72

2 3 

Number of H763 Y = 33.76 - 0.76X1 - 0.39X 2 + 0.045X 3 
0.59 

'i':-;':kernels/row X304C Y = 29.19 - l.26X - 0.76X + 0.043X 0. 75
1 2 3 

* x1 , x
2

, and x are average maximum, m1nunum temperature, and average solar radiation,
3respectively, from planting to tasseling . 

00 
00 

~ . 

http:O.Ol8X0.63
http:0.32X0.81
http:o.25x0.73
http:0.048X0.85
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maximum and minimum temperature, and solar radiation from planting 

to tasseling. All of the regression equations were significant except 

number of kernels/row for H763. 

Effects of each climatic factors were calculated based on the 

standard partial regression coefficients. Standard partial regression 

coefficients could be calculated by the standard deviation and slope 

of each independent variable from the multiple regression equations. 

Effects of maximum and minimum temperature, and solar radiation from 

planting to tasseling on yields and their components are presented 

in Table 11. Average solar radiation had a higher effect than 

temperature on all the characters, indicating that solar radiation 

was more important than temperature in determining yields and their 

components. Average maximum temperature had negative effects on all 

characte·rs except plant height. This suggests that maximum 

temperature was less important than minimum temperature for yields 

and their components. 

Also, multiple regression analysis of yields and their 

components with climatic factors during the growing period indicated 

significant r 2 for all characters studied (Table 12). However, the 

effect of each climatic factor was different for those factors from 

planting to tasseling. Effects of minimum temperature were larger 

than those of solar radiation for all characters for both H763 and 

X304C (Table 11). For grain yield, the effect of minimum temperature 

was 0.87-0.89, while the effect of solar radiation was 0.62-0.63, 

indicating that minimum temperature might be more important than solar 

radiation in determining grain yield. Maximum temperature showed 

http:0.62-0.63
http:0.87-0.89
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Table 11. Effects of temperature and solar radiation from planting 
to tasseling on yields and their components. 

Average Average Average 
Characters Hybrids maximum minimum solar 

temp. temp. radiation 

Grain yield 

Stover yield 

Total dry matter 
yield 

Plant height 

Filled ear 
length 

Number of 
kernels/row 

H763 

X304C 

H763 

X304C 

H763 

X304C 

H763 

X304C 

H763 

X304C 

H763 

X304C 

-0.55 

-0.53 

-0 .41 

-0.56 

-0.51 

-0.56 

0.22 

0. 23 

-0.09 

-0.02 

-0.13 

-0.22 

0 . 25 

0 .28 

0.35 

0.65 

0.30 

0.44 

0.1s 

0.17 

0.08 

0.04 

0.10 

0.19 

0.82 

0.89 

0.83 

0.78 

0.84 

0.87 

0.61 

0.64 

0.78 • 
0.82 

0 . 86 

0.85 



Table 12. Multiple regression of yields and their components with average temperature 
and solar radiation during growing period. 

Charact ers Hybrids Equation r2 

Grain yield H763 

X304C 

y 

y 

= 20. 79 

= 13.13 

2.78X1 + 2.52X2 + 0 .026X
3 

2.30X1 + 2.34X 2 
+ o.02sx3 

;':o.,': 
o.ss 

;':;':
0.88 

Stover yield H763 

X304C 

y 

y 

= -0 .099 

= -6.41 

0.94X1 
o.1ox1 

+ l .39X2 + O.Ol2X3 
+ l.81X

2 
+ 0 .Ol2X 3 

....,...., 
0.81 

-;':·k
0.94 

Total dry matter 
yield 

H763 

X304C 

y 

y 

= 20 .69 

= 6.70 

3. 73X1 + 3. 91X 2 
3.31X1 + 4 .1SX 2 

+ 0.038X 3 
+ 0 .036X3 

··~·,0.86 
....,,., 

0. 93 

Plant height H763 

X304C 

y 

y 

= -387.34 + 7 .40X1 + 18 . 91X 2 
= -581.17 + 12.26X1 +21.86X

2 

+ 0.094X3 
+ o.19X

3 

;': 
o. 71 

··k-;':
0.79 

Filled 
length 

ear H763 

X304C 

y 

y 

= 1.4 3 - 0 • 9 3X1 + 1.42X
2 

+ O.Ol3X3 
= -1. 78 0 .47Xl + l.o7X 2 + o .onx3 

·/:
0.72 

-;':
o.7o 

Number of 
kernels/row 

H763 

X30L1C 

y 

y 

= 17.05 

= -4.20 

2.34X1 + 2.57X2 + 0.039X 3 
1.sox1 + 2 .81X

2 
+ 0 .034X3 

;': 
0.73 

;':1':
0.86 

;', x1 , x2, and x3 are average maximum, minimum temperature, and average solar 

radiation, respectively, during growing period. 

..... '° 
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Table 13. Effects of temperature and solar radiation during 
growing period on yields and their components. 

Characters Hybrids 
Average 
maximum 
temp. 

Average 
minimum 
temp. 

Average 
solar 
radiation 

Grain yield H763 

X304C 

-0.75 

-0.65 

0.89 

0.87 

0.62 

0.63 

Stover yield H763 

X304C 

-0.44 

-0.41 

0.84 

0.97 

a.so 
0.44 

Total dry matter 
yield 

H763 

X304C 

-0.65 

-0.57 

0.89 

0.93 

0.59 

o.ss 

Plant height H763 

X304C 

0.11 

0.24 

0.57 

o.ss 
0 .19 

0.20 

Filled 
length 

ear H763 

X304C 

-0.38 

-0. 22 

0. 77 

0.64 

0.48 

0.46 

Number of 
kernels/row 

H763 

X304C 

-0.42 

-0.28 

0 .61 

0 . 68 

0.63 

0.56 
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negative effects for most characters except plant height, suggesting 

that maximum temperature might be a less important factor in 

determining yields. 

Multiple regressions of yields and their components with GDD from 

planting to tasseling and to harvesting were not significant for yields, 

including TDM, grain, and stover yield, whereas they were significant 

for plant height and yield components. GDD from planting to 

harvesting had higher effects on all characters than GDD calculated 

from planting to tasseling. This result suggests that GDD during the 

growing period was more important than GOD from planting to tasseling. 

4.1.5 Discussion 

The average TDM yield of corn over 12 bimonthly planting 

increased significantly with increasing population density for both 

genotypes used. The population density for maximum TDM yield estimated 

from the curvilinear regression equations were 166,700 for X304C and 

169,100 plants/ha for H763. Phipps (1975) obtained the highest TDM 

yield at 167,000 plants/ha in England. Azih (1978) obtained the 

highest TDM yield at 114,813 plants/ha in Hawaii. Chung et al. 

(1982) reported that the optimum population density for silage corn 

production in Hawaii ranged from 98,000 to 135,000 plants/ha. 

In this study, the optimum population density for silage yield 

was higher than that for grain yield. Population densities for grain 

yields ranged from 126,000 (H763) to 141,000 plants/ha (X304C). 

Rutger and Crowder (1967 a) and Genter and Camper (1973) reported that 

1,, ! 

t!i!:'. 

'I , 
1.1 

1111· 

111!1 

., 
.,Ii 

1' ,,, 
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population density for silage was higher than those of grain yield. 

Knapp and Reid (1981) also obtained similar results as those of other 

workers. 

The response of grain yield to population density was different 

under different seasons. The optimum population densities in 

favorable growing seasons (spring and summer) were higher than those 

in unfavorable seasons (fall and winter). It was postulated t hat IJfif 

population density for maximum grain yield in unfavorable growing 

seasons would be higher than under favorab l e seasons, because poor 

environmental conditions such as short day length, and low solar 

radiation might be compensated for by the higher population density. 

lt!i~' 
lilt 

l, 
11!:t., 

'Iii• 
111:r 

However, in winter seasons, heavy rainfall and strong winds caused 

severe lodging of plants at all population densities. This severe 

lodging resulted in high barren stalk, especiall y at higher population. ',, 

Azih (1978) in Hawaii reported different response of grain yield 

to population density in different plantings. He observed that the 

population density for maximum yield was higher in the March than in 

,ii 
I,

,,' 

the August planting. However, stover yield increased significantly 

up to 200,000 plants/ha in both genotypes. This d i fference could be 

due to high barrenness at higher population density . In this study, 

high barrenness was observed at high population density in winter 

seasons. Increased barrenness was reported as population i ncreas ed 

(Colville and Burnside, 1963; Mason et al., 1976 ; Woolley et al., 

1962). Stivers et al . (1971) observed 25 % barrenness at 54 , 000 

plants/ha, and 40 % at 68,000 plants/ha. 

The grain/stover r a tio is an important factor to be considered 
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in corn silage production, as this indicates the quality of the corn 

silage. The grain/stover ratio decreased with increases in 

population density in this experiment. The result indicated that 

quality of the silage from the higher population was lower than those 

from the lower population density, even if the total silage production 

increased with increasing population. The optimum population density 

for maximum silage yield should be lower in practical farming than the 

optimum population obtained in this experiment if quality of corn 

silage is considered. The higher percentage of barren stalks in the 

winter season suggests that the quality of silage was poorer in winter 

than in the spring or summer seasons. 

Days to tasseling was delayed with increase in population. 

Mason et al. (1977) found a similar delay of tasseling with increasing 

population. Giesbrecht (1969), and Moll and Kamprath (1977) observed 

increased plant and ear height at higher population. In this study, 

ear height increased, while plant height was reduced significantly 

with increasing population density. The population densities used 

here were much higher than those used by other workers. Higher 

population densities in this experiment could cause more competition 

among plants. Azih (1978) in Hawaii reported decreased plant height 

as population increased. Rutger and Crowder (1967),and Gent er and 

Camper (1973) found no difference in plant height but ear height 

increased slightly with increase of population density. 

Stalk diameter decreased significantly as population increased 

in this study . Similar reduction of stem diameter with increase in 

l:. 

,//, 

'Ii"" 
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''"· 
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population was reported by Rutger and Crowder (1967), Genter and 
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Camper (1973), and Azih (1978). The reduced stem diameter as well 

as decreased plant height might be one of the factors for reduction 

of individual plant size. Stem diameter was reduced by about 30 % 

at the highest population compared to the lower population, but this 

reduction was calculated as 60 % reduction of cross-section area of 

the stem. Therefore, individual plant size decreased primarily due 

to reduction in stem diameter rather than decrease in plant height as 

population increased. 

Increasing population density is also known to increase the LAI 

(Duncan, 1971, 1972; Mason, 1976). LAI increased almost linearly, 

while leaf area/plant was reduced significantly as population 

increased. The increasing population increased LAI which is the 

main source of photosynthesis, but photosynthesis rate is reduced. 

Duncan (1971) reported that photosynthsis rate was 92 % of 

theoretical maximum at LAI 3.0 and 76 % at LAI 7.0. The reduced 

photosynthesis rate could be attributed to mutual shading, which 

resulted in less light penetration into the crop canopy. Excessive 

LAI with high population density was not associated with increasing 

grain yield. LAI at the highest population (200,000 plants/ha) was 

nearly 3 times larger than that at the lower population (50,000 

plants/ha). 

Leaf angle was not recorded in this experiment, but it was found 

that X304C had a more vertical leaf angle than H763. It was reported 

that vertical leaf orientation was more efficient in producing grain 

yield than horizontal leaf orientation (Pepper et al., 1977; Winter 

and Ohlrogge, 1973; Whigham and Woolley, 1974). X304C outyielded 
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H763 - in all population densities, but LAI was slightly less than H763. 

The superior yield of X304C with less LAI might be attributed to the 

·better leaf orientation. 

Plant-lodging ·increased with increase in population. In the 

winter season ~evere lodging was observed at all populations. This 

was due to strong wind followed by concentrated heavy rainfall. Under 

favorable spring or summer seasons, 20-30 % lodging was common at the 

higher populations (150,000-200,000 plants/ha). This high lodging 

might be due to weak plant structure such as reduced stem diameter. 

Yield components, such as filled ear length, number of kernel 
• 

rows, number of kernels/row, and 100 kernel weight, decreased as 

population increased. These reductions of yield components might be 

due to increased environmental stress resulting from higher competi­

tion among plants. Phipps (1975) observed decreased ear weight with 

population increase. Prine and Schroder (1964), Mason et al. (1976), 

and Alessi and Power (1974) also reported reduction of ear weight as I 

r 
population increased. Woolley et al. (1962) observed a decrease of ! 

100 seed weight as population increased. The reduction rates of 

filled ear length and number of kernels/row were 30-40 %. These 

reductions were higher than those of other yield components such as 

number of kernel rows and 100 kernel weight. There were negative 

correlations between population density and yield component s studied 

for H763 and X304C . X304C had superior yield components to those of 

R763, explaining its higher yield than H763. 

Kernel fusarium infection increased with the increase in 

population. The response to fusarium infection of the two geno t ypes 
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under different population densities was different. At a lower 

population (50,000 plants/ha) there was little difference between the 

two genotypes, while at a higher population (200,000 plants/ha) H763 

had higher infection than X304C. This result suggested that X304C 

was more resistant to kernel fusarium than H763. 

Year-round production of corn is possible in tropical regions. 

Bimonthly plantings under different population densities can provide 

information on the optimum population density for grain and stover 

yields of corn under different environmental conditions. Grain and 

stover yields showed cyclic seasonal variations througout the years 

with higher yield in the spring and summer, and lower yield in the 

autumn and winter seasons. Lee (1978) and Jong (1980) in Hawaii 

reported that grain yield of corn in winter was less than half of 

those in summer. This was confirmed by the results of this experi­

ment. However, the seasonal variation of stover yield was less than 

that of grain yield. This was due to the high percentage of barren­

ness in winter plantings. 

Lee (1978) found that temperature was the main factor in 

determining days to tasseling, and grain yield was more affected by 

solar radiation than other climatic factors. Jong ( 1980) reported 

that solar radiation was themainlimiting factor for corn production 

in Hawaii. In this study, days to tassel i ng were greater in the 

winter planting than in the spring and sunnner. Significant 

correlations between days to tasseling and maximum and minimum 

temperature, but not solar radiation, were observed . This relation­

ship suggested that temperature could be more important factor for 
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days to tasseling than solar radiation. 

The longer period for tasseling might have resulted in similar 

accumulation of heat unit under lower temperature conditions. The 

accumulated heat unit was expressed as growing degree (GDD). GDD 

during the growing period was more important than that from planting 

to tasseling. Gunn ~nd Cristensen (1963) and Daynard (1972) reported 

that the accumulated heat unit was superior to number of days in 

determining the flowering time. Mederski et al. (1973) observed that 

accumulated heat unit methods were less variable than the calendar 

day method for determining growth stages. GDD from planting to 

tasseling was less variable than calendar days for days to tasseling 

over 12 bimonthly plantings in this study. Days from planting to 

maturity were more variable than that from planting to tasseling 

through the years. In winter plantings, harvesting date was rather 

dependent on weather conditions. As mentioned earlier, severe 

lodging was observed during the winter. Lodged corn plants should 

be harvested earlier than in the summer planting. Therefore, it was 

difficult to correctly estimate the days from planting to maturity 

in winter plantings. 

Standard partial regression coefficients from multiple 

regression analysis showed that among the climatic factors from 

planting to tasseling, solar radiation was the most important factor 

determining yield and other characters. However, among the climatic 

factors during the growing period the minimum temperature was the 

most important determinant factor for corn production. Plant 

characters and yield components showed cyclic variations following 
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those of grain and stover yields. All of these components were 

highly correlated with yields, indicating that these characters 

could explain the yield variation. 

( 
I 

[. 
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4.2 Effects of brown-midrib-3 Mutant of Corn 

4.2.1 Yields and yield components 

Grain yields of brown midrib mutants were significantly below 

their normal counterparts (Figure 26). The grain yield reduction 

was consistent for all 15 hybrids in both trials, averaging a highly 
1,1 

'" 
significant 20 % decrease overall. Stover yields of the bm3 were :1! 

P' 

also less than the normal counterparts in both August and May 

' Iplantings for all hybrids (Figure 27). Yield reductions ranged from 

9 to 26 % and averaged 17 %. The rates of grain yield reductions 
'"' 
'" 

were quite different between hybrids. Some hybrids (Ant2 x Mol7, 

B37 x Oh545) showed only 6 - 7 % reduction, however, other hybrids 

had grain yield decreases up to 29 % compared to normal counterparts. , ,. 

Average grain and stover yields of the 2 plantings are presented 

in Table 13. No significant differences were observed in days to 

tasseling between bm3 and normal in August planting, while there 

were highly significant differences among hybrids. The average days 

to tasseling was 46 days in August planting and 48 days in May. 

The overall average plant height over 2 seasons showed that normal 

corn was 12 cm taller than bm3 (Table 14). Plant height of normal 

corn was 10 and 14 cm taller than bm3 in August and May planting, 

respectively. 

LAI was not significantly different between bm3 and normal, 

although it differed significantly among hybrids. The overall 

average LAI was 4.08 and 4.17 for bm3 and normal, respectively. No 

differences were observed in number of stem nodes between normal vs. 



Normal -

bm3 { l 

8 

6 

4 

12 
,,...... 

ct! 
.c-~ 10...._, 

'O 
rl 
Q) 

.,-t 8:,.., 

h 
,,-1 

ell 6H 
<...? 

Ant2 Ant2 Ant2 Ant2 Ant2 B37 B37 B37 B37 Hi27 Hi27 Hi27 Hi28 Hi28 Mol7 
X X X X X X X X X X X X X X X Mean 

B37 Hi27 Hi28 Mol7 Oh545 Hi28 Hi28 Mol7 Oh545 Hi28 Mol7 Oh545 Mol7 Oh545 Oh545 
t-' 

figure 26. Comparison of normal and bnt3 corn for grain yield in different seasons. 0 
N 



.c 
,..... 
rd - Normal-

E-< 
August, 1980 bm3 '-" 8 

"d l 
,-I 
(lJ-~ 
>, 6 
H 
(lJ 

:> 
0 
.µ L1 
Cf) 

,..... 
rd .c 

E-< -'--' 10 
"d 
,-I 
(lJ 

-~ 
>, 8 

H 
(lJ 

g 
.µ 6 
Cf) 

Ant2 Ant2 Ant2 Ant2 Ant2 B37 B37 B37 B37 Hi27 Hi27 

May, 1981 

Hi27 Hi28 Hi28 Mol 7 
X X X MeanX X X XX X X X X X X X 

B37 Hi27 Hi28 Mol 7 Oh5L15 Hi27 Hi28 Mo17 Oh5Li5 Hi28 Mol7 OhSL15 Mol7 Oh545 Oh5Li5 

Figure 27. Comparison of normal and bm3 corn for stover yield in different seasons. ,..... 
0 
w 



Table 14. Average yields, plant height and filled ear length of normal and 
bm3 mutant corn over 2 seasons. 

Grain Stover Plant Filled ear 
yie ld(T/ha) yield (T/ha) height (cm) length (cm) 

Hybrids 
Normal bm3 Normal bm3 Normal bm3 Normal bm3 

Ant2 x B3 7 10.29 8.61 8 .63 7 .31 274 273 17.0 14. 7 

Ant2 x H i27 10.03 7.41 9.34 7.02 278 263 16.0 14.1 

Ant2 x H i28 9. 88 8 .3 2 8.85 7.36 274 2 64 16.7 15.6 

Ant2 x Mol 7 9 .27 8 . 58 8.30 7.06 265 256 18.9 16.5 

Ant2 x Oh545 10.76 8 . 41 8.88 7,26 278 259 18.2 18.3 

B37 X Hi27 7. 91 7.00 7 .09 6,L19 269 263 15.1 13,5 

B37 x Hi28 9. 23 7.22 8 .43 7 .1 9 282 273 16 .8 14 .2 

B37 x Mol7 9. 21 7 , 91 7,56 6,28 266 251 18.2 15.9 

B37 x Oh545 7.87 7.22 7.00 6.35 261 250 17.7 16,2 

Hi27 x Hi28 8 . 39 6.02 8.49 7.13 280 268 15.4 13.6 

Hi27 x Mol7 9.74 7. 21 8 .1 9 6.07 265 250 17.3 14.2 

Hi2 7 X Oh545 9.03 7 .81 8 .03 6.46 275 257 17.8 17.8 

Hi28 x Mol7 10.30 7.42 8.01 6.27 274 262 17 ,5 15.8 

Hi28 x OhSL15 10.62 7.54 8.37 6 I 71 277 267 19.8 16.5 

Mol 7 x OhSL15 8 .55 6 .19 6.17 5 ,19 262 243 20.2 20.4 

Mean 9.41 7 .52 8.09 6.68 272 260 17.S 15.8 
,.... 
0 
.p.. 

: == =- -
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bm3, and between plantings. Filled ear length and number of kernels 

per row were significantly different between bm3 and normal corn, 

and among hybrids. The overall reduction of filled ear length was 

10 % in bm3. The overall number of kernels per row was 37 in normal 

and 32 in bm3, indicating a 12 % decrease in bm3. Reduced filled 

ear length and number of kernels per row would be therefore the main 

reasons for grain yield reductions in bm3. No significant difference 

was observed in number of kernel rows, but bm3 had slightly fewer 

kernel rows than normal corn. 

Combined analysis showed significant interactions between 

hybrids and season, and between types (bm3 vs. normal) and seasons 

in both grain and stover yields (Table 15). The mean square values 

of types were much larger than those of interactions in all characters 

tested. 

Correlation coefficients among yields, plant characters, and 

yield components of normal and bm3 are presented in Table 16. There 

were highly significant positive correlations between days to 

tasseling and grain yields, stover yields, ear height, and LAI in 

both normal and bm3. This indicated that late maturing hybrids 

generally had higher grain and stover yields. Combined data showed 

no significant correlations between plant height and stover yields 

in both types, however, separate analysis for each planting showed 

significant correlation except for normal corn in May (Figure 28). 

This difference resulted from the different response of plant height 

and stover yield to different seasons. Plant height was taller in 

the August plant ing than May, while stover yield was higher in the 



Table 15. Combined analysis of variance for several characters over two seasons 

Mean squares Mean squares
Source df df 

Grain Yield Stover Yield Plant Height LAI Ear Length No. of kernels 

Seasons (S) 1 244. 62 223.17 3473.20 1.58 1 134.00 1484.03 

Reps in s 6 0.74 2. 67 220.74 0.12 2 6.00 6 .12 

Hybrid (H) 14 9.31** 2.48** 887.17** 0.67** 14 20.78** 65.38** 

H X S 14 3.49** 2.45** 197.28 0.05 14 0.86 11.07* 

Error (a) 84 0.68 0.67 149.37 0.05 28 1.18 4.54 

Type (T) 1 212.21** 119.53** 8676.04** 0.44** 1 86.36** 615.63** 

T X s 1 2.65* 3.79** 230.10** 0.09 1 13.07** 21. 51 

T X H 14 2. 54** 0.88* 101. 58** 0.17** 14 2.38* 7.41 

T X 11 X S 14 0.39 0.25 83.99** 2.57** 14 0.46 3.00 

Error (b) 90 0.39 0.40 29.84 0.03 30 1.15 6.11 

* Significant at 5 i. probability level. 
** Significant at 1 % probability level. 



Table 16. Correlation matrix of 10 characters in normal and bm3 hybrids. 
Above diagonal: Normal 
Below diagonal: bm3 

Charactors Grain 
yield 

Stover 
yield 

Plant 
height 

Ear 
height 

LAI 
Filled 
ear 

length 

No. of 
k 1erne s 
per row 

Days to 
1tasse 

No.of 
stem 

nodes 

Stem 
diameter 

Stover yield 0.79** 0.54** 0.61** 0.40* 0.56** 0.81** 0.84** 0. 7 6** 

Plant height -0.22 -0.01 -0.44* -0.33 -0.03 0.25 -0.19 

Ear height 0.20 0.44* 0.62** 0.50** -0.30 0.03 0.69** 0.74** 0.14 

Leaf area index 0.29 0.58** 0.23 0.66** 0.04 0.31 0.66** 0.63** 0.35 

Filled ear length 0.56** 0.41* -0.66* -0.42* -0.12 0.85** 0.11 0.20 0.66** 

Number of kernels 0.71** 0.56** -0.53** -0.24 -0.11 0.90** 0.33 0.45* 0.61** 
per row 
Days to tasseling 0.51** 0.75** 0.05 0.71** 0.76** 0.07 0.20 o. 72** o. 63** 

Number of stem 0.39* 0.67** 0.56** 0,85** 0.63** -0.17 0.02 0.53** 
nodes 
Stem diameter 0.49** 0.68** -0.27 0.11 0.58** 0.46* 0.45* 0.65** 0.29 

Grain yield -0.14 0.33 0.49** 0.62** 0.69** 0.59** 0.74** 0.71** 

0.20 

* Significant at 5 % probability level. 

** Significant at 1 % probability level. 

..... 
0 
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May than in the August planting. This increase in stover yield in 

the May planting with its shorter plant height might be attributed 

to the increased stem diameter. The stem diameter of the August 

planting was 22 mm, whereas it was 25 mm in May. Highly significant 

correlations were observed between the number of stem nodes and 

several characters, including grain yield, stover yield, days to 

tasseling, plant height, and LAI in bm3 and normal corn, except one 

in normal plant height. LAI was correlated with grain yield of 

normal in May (Figure 29). Figure 30 shows the relationship between 

LAI and stover yield. Highly significant correlations were observed 

in both plantings except bm3 in August. 

There were highly significant correlations between grain yield, 

filled ear length, and number of kernels per row, but number of 

kernel rows was not correlated to grain yield. The average 

correlation coefficients of bm3 and normal corn for filled ear length, 

number of kernel rows, and number of kernels per row were 0.588**, 

0.015, and 0.701**, respectively. This indicated that the number of 

kernels per row was the most significant component for grain yield 

and number of kernel rows was less significant. 

4.2.2 Diallel analysis 

Combined analysis for gerneral combining ability (GCA) and 

specific combining ability (SCA) showed highly significant mean 

squares for grain and stover yields in both normal and bm3 (Table 17). 

Plant height, filled ear length, and number of kernels per row were 

highly significant in GCA for both t ypes, however SCA was 
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Table 17. Combined analysis of combining ability of normal and bm3 mutant corn 
over 2 seasons for yields, plant and ear height. 

Grain yield Stover yield Plant height Ear height 
Source df 

Nonnal bm3 Normal bm3 Nonnal bm3 Normal bm3 

GCA 5 
;'{-;': 

2.23 
;':;':

2.02 
;':;':

2.79 
,·~·,

1.69 
-.',;':

171.20 
;';;':

348.80 
;':;': 

1532.17 1475.85
·-):;': 

SCA 9 
··-};,':

1.47 
..}:...': 

0.79 
;';;': 

o.59 
"'k 

0.18 
;': 

47.22 
·k 

48.00 
";';;'; 

32.53 44.85
;':;': 

Season (S) l 
-;':..,':

37.28 
;':;';

24. 5 4 
;'~':

35.64 
....,....,

21.10 
;':-': 

239.00 
;';;':

686.00 
"".':;': 

236.63 12 .06
;';;': 

GCA X s 5 
;',,':

1.29 
;':;':

0.98 
-;,•,..,•: 

0.98 
,.,.._., 

0.43 
"'k

39.60 37.40 16.28 32. 90 
.,. 

·'· SCA X s 9 0.11 0.14 0.1s 0.09 34.00 32.44 18.53" 5 .52 

Error 84 0.14 0.13 0.19 0.08 20.53 24.08 9.64 10.31 

;': Significant at 5 lo probability level. 
;';;': Significant at l i. probability level. 

..... ..... 
N 
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significant for only plant height. Mean squares of seasons were 

highly significant for all yields and yield components. GCA x season 

interactions were highly significant for grain and stover yields, and 

were not significant for plant height, filled ear length, and number 

of kernels per row. No significant SCA x season interactions were 

observed for any of the characters tested. 

GCA effects were more important than SCA effects for both grain 

and stover yields, although GCA and SCA effects were highly 

significant. The GCA/SCA mean squares ratios were 1.52 in normal 

corn and 2.56 in bm3. The ratios of stover yields for both normal 

and bm3 were 3 - 4 ti.mes higher than those of grain yields. The 

GCA/SCA ratio for plant height in normal corn was 3.63 and was twice 

as high (7.27) in bm3. The GCA/SCA ratios for filled ear length and 

number of kernels per row were 5 - 15 ti.mes higher than those of 

grain yields. These high ratios in filled ear length and number of 

kernels indicates that the GCA effects (additive) were more important 

than SCA effects (non-additive) in determining yield components. 

Ant2, which is a tropical inbreds, had positive GCA effects while 

Oh545 and Hi27 had negative GCA effects for grain yield in both bm3 

and normal corn (Table 18). This confirmed the high combining 

ability of Ant2 and the poor combining ability of Hi27 and Oh545 for 

grain yields. For stover yield (Table 19) Ant2 and Hi28 showed 

positive GCA effects indicating good combiners, while Mol7 and Oh545 

showed negative GCA effects. Ant2 had high positive GCA effects for 

several characters observed with the exception of filled ear length 

of normal corn. These results showed that Ant2, which is a late 
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Table 18. Estimates of SCA and GCA effects for grain yield of normal 
and bm3 mutant corn over 2 seasons. 

SCA effects GCAInbreds effects
B37 Hi27 Hi28 Mol7 Oh545 

Ant2 o. 71 0.31 -0.68 -0.94 0.60 0.80 
0.08 -o.so o.14 0.20 0.08 0.93 

B37 -0.39 0.11 0.42 -0.86 -0.63 
-0.06 -0.11 0.38 -0.28 0.09 

Hi27 -0.88 0.81 0 .15 -0.48 
-0.69 0.31 0.94 -o.ss 

Hi28 o.53 o.n 0.35 
0.25 0.41 -0.28 

Mo17 -0.82 0.01 
-1.14 -0.08 

Oh545 -0.05 
-0.11 

Upper and lower values are normal and bm3, repectively. 
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Table 19, Estimates of SCA and GCA effects for stover yield 
of normal and bm3 mutant corn over 2 seasons. 

Inbreds 
B37 

SCA 

Hi27 

effects 

Hi28 Mol7 Oh545 

GCA 
effects 

... 
Ant2 

B37 

0.09 
-0.08 

0.19 
-o .26 

-0.74 
-0.19 

-0.56 
-0.29 

0.35 
o.14 

-0.12 
0.36 

0.46 
o.17 

0.40 
0.28 

-0.15 
-0.04 

0.89 
0.66 

-0.44 
0.06 

''31 

' "•• 

·II'. 

•· .. 

Hi27 -0 .19 
0 .19 

0.48 
0 .08 

0.26 
0.19 

0 .17 
-0.05 

~ 

Hi28 0.05 
-0.10 

0.36 
0.07 

0.43 
0.32 

Mol7 -0.86 
-a.so 

-o.ss 
-0.63 

Oh545 -0.50 
-0.35 

Upper and lower values are normal and bm3, respectively. 
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turing-inbred, was the best combiner among the 6 inbreds used in 

this study for silage production. Mo1 7 and Oh545 had positive GCA 

~fects for filled ear length and number of kernel per row. 

Heritability estimates were calculated for several characters 

( able 20). In general, high narrow sense heritability estimates 

ear height, days to tasseling, LAI, filled ear 

number of kernels per row, and number of stem nodes in both 

normal corn. The narrow sense heritability estimates of these 

Grain yield, stover yield, plant 

isht, and stem diameter showed relatively low narrow sense 

ritability estimates ranging from 6 to 66 %. Ear height, days to 

of stem nodes had high broad sense heritability 

in both bm3 and normal c-orn. 

2.3 Discussion 

t he quality of silage for ruminant animals is an important factor 

T improved utilization of feeding. The need for a good source of 

qual i ty feed for the beef and dairy industries has stimulated 

rch on the brown midrib mutants of corn which has lowered lignin 

vegetative parts of the plant and given high 

The advantage of bm3 corn silage was obvious from the 

Y .!£ Vitro chemical studies, however, some reports showed 

total production of corn silage from the bm3 of corn. 

to Frenchick et al. (1976), bm3 reduced total dry matter 

one hybrid by 17 % compared to the normal counterpart 

Tu and Bauman (197 7) reported 16 to 33% grain yield reduction 
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Table 20, Heritabil ity estimates of normal and bm3 
mutant corn for yields, plant characters 
ans yield components. (unit: %) 

Characters Type Narrow sense Broad sense 

Grain yield Normal 

bm3 

34 

52 

89 

87 

.. 

Stover yield Normal 

bm3 

41 

58 

77 

76 

Plant height Normal 

bm3 

42 

58 

69 

81 

Ear height Normal 

bm3 

93 

93 

98 

98 

Days to tasseling Normal 

bm3 

86 

93 

95 

93 

Filled ear length Normal 

bm3 

84 

83 

84 

88 

Number of kernels 
per row 

Normal 

bm3 

78 

81 

80 

81 
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in 3 bm3 hybrids. 

In this study, grain and stover yields were decreased significant­

ly compared to normal counterpart corn (17-20 %). This reduction of 

yields might be explained by the reduced yield components, including 

filled ear length and number of kernels per row, and by plant and 

ear height. Days to tasseling was highly correlated to grain and 

stover yields in both bm3 and normal corn. This indicated that late 

muturity genotypes produced higher yield than early mature genotypes. .. 
Ant2, which is late in maturity, was the best combiner am.ong 6 

inbreds used for grain and stover yields. Average TDM yield was 

reduced greatly in bm3 compared to normal corn, however, several 

genotypes (Ant2 x Mo17, B37 x Oh545) showed only 5-6 % reduction in 

summer planting. These small reductions of TDM yield indicated one 

potential of bm3 as a high quality corn silage. Frenchick et al. 

(1976) reported that milk production and body weight of Holstein cows 

were increased by 4-5 % with the bm3 corn silage feeding. Rising 

feeding costs is a major concern in livestock farming. It is 

estimated that a large portion of silage costs may be at tributed to 

handling, transportation, and storage. If the reduced volume of bm3 

corn silage is compensated for by its increased feeding value, bm3 

corn silage can r educ e the feeding costs. 

High population density is usually used for silage production to 

increase the total production although the quality of the silage 

declines slightly. With higher population density, lodging is common 

in Hawaii, especially when coupled with unfavorable weather conditions 

such as concentrated heavy rainfall and strong winds. Lodging was 
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not observed in this experiment because of favorable weather 

conditions. However, bm3 was likely to be more susceptible to lodginP, 

as indicated by a tendency of bm3 plants to lean after tasseling. 

Stem diameter of bm3 corn plants was a little smaller than for normal 

corn in both summer and spring plantings. This decreased stem 

diameter may be a reason for increased lodging in bm3 at high 

population density and during unfavorable weather conditions. 

GCA indicates the presence of genes having largely additive 

effects while SCA is an indication of genes having non-additive 

effects. Lee (1978) tested a diallel set in different seasons in 

Hawaii and concluded that the GCA was more important than SCA for 

grain yield and yield components. Among inbreds tested in this study , 

Ant2 had good GCA effects for almost all characters studied. In 

general, higher narrow sense heritability estimates were observed for 

days to tasseling, ear height, LAI, filled ear length, number of 

kernels per row, and number of stem nodes, indicating that additive 

genes were larger for yield components than for grain and stover 

yields. 
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4.3 Extended Daylength Effects on Corn Yields and their Components. 

4.3.1 Response of yields to extended light. 

Under extended 16-hr daylength conditions, grain yield of corn 

decreased significantly compared to the normal 12-hr conditions in 

both September and May plantings. The average grain yields under 

normal and extended light conditions for both plantings are presented 

in Figure 31. In September planting, average grain yield under 

normal and extended light were 4.0 and 3.0 T/ha, respectively, 

showing significant 25 % reduction under the extended light. The 

grain yield reduction under extended light were not consistent among 

genotypes. Some genotypes such as Ant2 x Hi29, Hi28 x Hi29, and 

X304C revealed more than 40 % reductions, but Ant2 x Mol7, Hi29 x 

Hi31 were reduced less than 5 % under extended light conditions. 

However, Hi28 x Hi31, Hi31 x Mol7 showed 3 - 6 % increases in grain 

yield under light. 

The grain yield responses of genotypes in May planting were 

similar to those in September, with a 22 % mean reduction in yield. 

Individual crosses performed differently in a few cases; e.g.Ant2 x 

Hi29 which showed 40 % reduction in September and a slight increase 

in grain yield in May. On the other hand, grain yield of Hi31 x Mol7 

increased about 6 % under light in September, but decreased 22 % in 

May planting. 

Stover yields increased significantly under the extended light 

environment in both seasons. The average stover yields in September 

planting were 5.0 and 6.2 T/ha under normal and extended light, 
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respectively, indicating 24 % increase under extended light 

(Figure 32). The rates of yield increase among genotypes were 

different; i.e. some genotypes (Hi28 x Mol7, X304C) showed a 30 - 40 

% increase, while others (Ant2 x Hi31, Hi29 x Hi31) indicated only a 

2 - 5 % increase under extended light conditions. An average increase 

of 17 % in stover yield was observed under extended light in the May 

planting, In both seasons, X304C showed the largest increase in 

stover yield under extended light conditions, indicating that it was 

the most sensitive genotype, while Ant2 x Hi31, Hi28 x Hi31, and 

Hi28 x Mo17 showed small differences between normal and light 

conditions, showing that these genotypes were relatively less 

sensitive to photoperiod. 

Total dry matter (TDM) yield was calculated by adding grain and 

stover yield. The overall average of TDM yield showed no significant 

difference between normal and extended light conditions in both 

plantings (Figure 33). TDM yields were 9.0 and 9.2 T/ha under normal 

and light, respectively. Among the 14 genotypes used, X304C showed 

the highest TDM yield, and Ant2 x Hi28, Ant2 x Hi29 also had 

relatively higher yields than other genotypes in both seasons. 

The temperate hybrid B37 x Hi25 had the lowest TD11 yield in both 

plantings. 

Combined analysis of variance revealed that genotype x daylength 

and genotype x season interactions were highly significant for both 

grain and stover yield (Table 21). These interactions indicated that 

genotypes were different in response to daylengt h , and seasons. 

For grain yield, season x daylength, and genotype x daylength x season 
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Reps in D 
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S X D 

Error (b) 

Genotype (G) 

G X D 

G X s 
G X D X S 

Error (c) 

Mean squares 
df 

Grain yield Stover yield 

1 138.76 109.33 

6 1.80 4.27 

1 1765.81 1292.40 
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1 18.34 2. 77 

6 1.82 4.15 
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interactions were significant, indicating daylength response was 

different in different seasons . 

4. 3.2 Plant characters and yield components. 

Tasseling was delayed by the extended photoperiod in all 

enotypes. The overall average over 2 seasons indicated 8 days 

d lay under light compared to normal (Table 22). Ant2 x Ri28, 

A.nt2 x Hi 29, Ant2 x Mo17, and X304C showed more than 10 days delay, 

tndicating that these genotypes were more sensitive to photoperiod. 

Other genotypes, including B37 x Hi25, B37 x Mo17, and Pi3369A were 

delayed 5 - 6 days, showing relatively less sensitivity to photo­

period. 

Si l king was delayed 11.7 days as an average of all genotypes, 

l=ost 50 % greater delay than that of days to tasseling. Days to 

t1lking was delayed '9 days in B37 x Hi25, B37 x Mo17, and Pi3369A, 

•reas X304C showed 20 days delay under extended light conditions. 

Th differ ence between days to t asseling and days to silking ranged 

!roo 2 .2 to 4.2 days under normal condit ion, and from 4.5 to 9.2 days 

der ext ended light condition . These longer periods from tasseling 

to s ilking under extended light might be a cause of grain yield 

uc tions due to poor pollination condition. 

Plant and ear height increased significantly under extended 

hbt. in b 
""'It oth seasons. The overall average plant and ear heights 

light showed 12 and 25 % increases, respectively, compared to 

Under normal conditions (Tabl e 22). This r esult suggests that 

elongat i on below t he ea r was larger under ex tended light than 



Table 22. Average days to tasseling and silking, and plant and ear height 
over 2 seasons under normal and extended light conditions. 

Days to tasseling Days to silking Plant height Ear height 
(day) (day) (cm) (cm)Hybrids 

Normal Light Normal Light Normal Light Normal Light 

Ant2 x Hi28 50.9 61.l 3~ .8 69.l 280 317 148 188 

Ant2 x Hi29 51.3 64.1 55.5 71.9 286 341 156 208 

Ant2 x Hi31 49.6 56.0 53.3 63.4 279 310 133 162 

Ant2 x Mol 7 49.l 60 .0 53.0 67.0 262 292 121 142 

Hi28 x Hi29 50.1 59.4 53.9 66.8 292 328 152 189 

Hi28 X Hi31 49.3 56.3 53.0 64.3 274 305 126 152 

Hi28 X Mol7 47.0 53.1 51.0 62.3 285 308 129 157 

Hi29 x Hi31 l19. l 5l1 0 9 52.9 61.l 279 309 128 154 

Hi29 x Mol7 47 .3 55.1 50.4 60.8 274 302 123 153 

Hi31 X Mol7 47 .3 52.9 50.3 58.4 265 287 105 129 

B37 x Hi25 46.9 51.8 49 . 5 59.3 261 289 95 123 

B37 X Mol7 46.3 52.0 49.5 57.9 252 283 95 121 

Pi3369A l17 .1 53.6 49.3 58.l 268 293 101 126 

X30l1C 52.6 67.3 55.9 75.8 293 347 ll17 197 

Mean 48.9 57 .0 52 .3 64.0 275 308 126 157 
..... 
N ..... 
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normal. The largest increase of plant and ear height were observed 

in Ant2 x Hi29 and X304C which showed 10 days delay for days to 

tasseling. This indicated that increased plant and ear height might 

be attributed to delayed tasseling. 

Number of stem nodes was increased significantly in both plantings 

(Figure 34). The increase in the number of stem node was consistent 

in all genotypes. The rates of increase were 13 % in September and 

20 % in May planting. Generally, genotypes which had high stover 

yields, late maturity and tall plant height had more stem nodes. 

LAI · was measured only ifi May planting, using the Pearce et al. 

(1975) rapid method. The overall average LAI under normal was 4.35, 

while under extended light it was 6.00, showing a 38 % increase under 

extended light. Ant2 x Hi28 and X304 which were sensitive to 

daylength had higher LAI values than relatively less sensitive 

genotypes (B37 x Hi25, Pi3369A). Highly significant correlations 

were observed be tween number of stem nodes and LAI under both normal 

and extended light conditions (Figure 35). LAI was significantly 

correlated wi th s t over yield under both normal and extended light 

(Figure 36). Correl ation coefficients were 0.73 and 0.91 under 

normal and extended light, respectively. Stem d i ameter was measured 

in both seasons. The average stem diameters were 24.3 and 26.4 mm 

under normal and light, r espectively. X304C which was sensitive to 

daylength had the largest stem diameter among the genotypes. 

Combined analysis of variance s howed that genotype x daylength 

and genotype x season interactionswere significant for days to 

tasseling and silking, and plant characters (Tabl e 21). These 
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results indicated that genotypes were different in their response to 

daylength and seasons. Season x daylength interaction was observed 

only for stem diameter, indicating that daylength response was 

different in different seasons. 

Yield components such as filled ear length and number of kernel 

rows, were not different between normal and light conditions. Number 

of kernels/row was reduced about 9 % under light compared to those 

under normal condition (Table 23). 100 kernel weights were observed 

in May planting. There was no difference between normal and light 

for 100 kernel weight. Genotypes showed significantly differences 

for all yield components. 

Combined analysis of variance showed that genotype x daylength 

int~raction was observed for number of kernels/row, and genotype x 

season interaction was observed for filled ear length and number of 

kernels/row (Table 24). However, there was no interaction for number 

of kernel rows. These results suggested that number of kernel rows 

were more stable to environmental changes than other yield 

components. 

Correlation coefficients over 2 seasons among yields, plant 

characters, and yield components are presented in Table 25. Grain 

yield was correlated to all characters, under normal condition, 

except stem diameter and number of kernel rows. However, grain 

yield under light was not correlated to plant characters and yield 

components. These results might be attributed to the low grain 

yield under the light, compared to the larger plant size. Stover 

yields under normal and light were correlated to all the plant 



Table 23. Average yield components over 2 seasons under normal and extended 
light conditions. 

Hybrids 

Filled ear 
length (cm) 

Number of 
kernel rows 

Number of 
kernels per row 

100 kernel 
weight (g) 

Normal Light Normal Light Normal Light Normal Light 

Ant2 x H i28 15.8 15.6 12.6 13.0 37.6 32.9 28.3 27.7 

Ant2 x H i29 17.9 16.3 13.8 13.5 38.8 33.7 29.2 28.5 

Ant2 x Hi31 15.6 16.0 13.8 13.8 34.4 33.6 30.0 32.5 

Ant2 x Mol7 15.6 15.6 12 . 8 12.5 39.3 31.4 29.7 29.4 

Hi28 x Hi29 16 . 7 15.3 13.6 13.7 35.8 27.7 31.5 29.6 

Hi28 X Hi31 16 .1 16.0 14.6 13.5 32.8 29.8 29.3 28.2 

Hi28 x Mol 7 16.5 17 .o 12.6 12.6 35.5 34.4 29.7 33.4 

Hi29 x Hi31 16.0 16.8 14 .1 14.3 31.9 33.4 31. 7 30.9 

Hi29 x Mol7 14.9 15.7 13.6 13.5 33.6 35.6 28.0 28.l 

Hi31 X Mol7 15.7 16.3 13.3 14. l 33.2 33.3 32.4 27.8 

B37 X Hi25 14.3 12. 9 13.2 13.5 30.l 27.0 29.6 30.4 

B37 X Mol7 15 .5 15.2 13.3 13.2 35.5 34.0 30.9 31.5 

Pi3369A 15.8 14. 7 13.2 13.5 38.2 33.3 33.7 32.7 

X304C 16.3 15.8 13.4 13 .o 35.4 28.1 30.2 34.5 

Mean 16.0 15.7 13.4 13.4 35.1 32.0 30.3 30.4 
..-
w 
w 
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Table 24. Combined analysis of variance for yield components 
evaluated under normal and extended light conditions 
in different seasons 

Mean squares 

Source df Filled ear Number of Number of 
length kernel rows kernels per row 

Daylength (D) 1 4.20 0.03 272 .19 

Reps in D 2 1.69 0.07 14.12 

Season (S) 1 842.06 32.36 2874.49 

S x D 1 7.67 0.06 9.03 

Error (b) 2 3.94 1.12 17 .16 

Genotype (G) 13 5.94** 1.85** 37.00** 

G x D 13 1. 73 0.42 22.50** 

G x s 13 4.80** 0.89 17.61* 

G X D X S 13 1.31 0.69 10.64 

Error (c) 52 1.43 0.68 9.20 

* Significant at 5 % probability level. 
** Significant at 1 % probability level . 



Table 25. Correlation coefficients among yields, plant characters and yield 
components under normal and extended light conditions . Above diagonal: Normal 

Below diagonal: Light 

Grain Stover Tassel Silk Plant Ear No. of Stern Filled No. of No. of 
yield yield date date height height Nodes dia. ear kernel kernels 

length rows per row 

Grain yield 
;':;'; ·k··k 

o.69 
-;':;•: 

o. 77 
;':··k 

0.66 
-;';;': 

0.82 
'"-':;': 

0.67 0 . 41 
..,....,.. 

0 . 67° -0 .12 
;': 

0.58 

Stover yield 

Days to 
tasseling 
Days to silking 

Plant height 

o.19 

o.18 

0 .17 

0.22 

0.94 
·};··k

0.96 

,·:·/:
0.83 

·k..·:: 

o. 98 

,·~·:
0.86 

'i':;'; 

o. 90 
·;'~':

0.89 
;':·k 

0.74 
·/:;': 

;h':
0.93 

;':·k 
0.86 

·,':;':
0 . 91 

-;':;': 
0.82 

-.·~·: 
0.85 

""l:;':
0 . 88 

-;':··::
0.79 

";'; 

0 . 66 
;':·i': 

0.73 
;': 

0.66 
;': 

o.64 

;': 
0 . 64 

o.52 
;': 

0 .61 

0.40 

0 . 22 

0 . 20 

0 . 20 

0.15 

0 . 39 

0 . 35 

0.37 

0.17 

Ear height 0.32 
;':;': 

0.85 
i':;':

0,86 
;':;': 

0.89 
"';,'; 

0.54 
-:: 

0.59 0.14 0 . 38 

Number of stern 
node 
Stem d iarneter 

0.33 

0.15 

;':;':
0.90 

..,·~·:
0.89 

;':;'; 
0.92 

;':-;': 
0.89 

...k;': 
o. 93 

;':;': 

0.92 

;':·}: 
o. 91 

;'ck 
o. 90 

;';;': 

0.86 

0.50 0.27 

0.19 

0.22 

0 . 06 

Filled ear length 
;': 

0.57 0.36 0.24 0.25 0.34 o.4o 0.31 0.33 -0.01 
-;':;': 

o. 71 

Number of kernel 0.32 -0.45 -0.33 -0.40 -0.10 -0.16 -0 . 22 -0 . 34 0 . 01 -0 . L12 

rows 
Number of 
kernels per row 

0.30 -0.22 -0.29 -0.34 -0.25 -0.14 -0 . 25 -Oo34 0.53 0.01 

;': Significant at 5 % probability level , 
--.':;': Significant at 1 % probability level. 

..... 
w 
V, 
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characters measured, but not correlated to yield components. Figure 

37 shows highly significant correlations between days to tasseling 

and stover yields under both daylength conditions in different 

plantings. This relationship could indicate that relatively late 

maturing genotypes were high in stover yield under both normal and 

extended light. 

4.3.4. Diallel Analysis 

GCA effects of 5 inbred for yields, plant characters, and yield 

components are presented in Table 26. Ant2 had positive GCA effects 

for grain yield, while Hi28 and Mo17 had negative effects under normal 

and light. Hi29 and Hi31 had negative GCA effects under normal, 

while those inbreds had positive values under light, indicating that 

genotypes were different under different daylength. Ant2 was good 

and Mo17 was a poor combiner under both normal and extended light 

conditions. For stover yields, Ant2, Hi28, and Hi29 had positive GCA 

effects, and Hi31 and Mo17 had negative effects under both normal and 

light. Ant2, which is a late tropical inbred, was the best combiner 

for grain and stover yield under both normal and light, while Hi31 

and Mo17, which are early maturing inbreds, were poor combiner for 

yields. These results showed that late maturing genotypes had high 

yields and early maturing genotypes were low in yield. 

GCA effects for plant characters, including days to tasseling, 

plant and ear height, number of stem node, and stem diameter, showed 

similar effects to that of stover yield. Ant2, Hi28, and Hi29 had 
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Table 26 . Estimates of GCA effects of 5 inbreds for yields, plant 
characters and yield components under normal and light. 

Inbreds 
Characters Daylength 

Ant2 Hi28 Hi29 Hi31 Mol7 

Grain yield Normal o. 71 -0.01 -0.02 -0.52 -0.16 
Light 0. 27 -0.43 0.43 0.31 -0.58 

Stover yield Normal 0.65 0.23 o.54 -0.37 -1.04 
Light 1.95 0.60 o.13 -1. 71 -0. 97 

Plant height Normal -1.13 7 .16 6.87 -4.63 -8.26 
Light 6.76 6.13 13.43 -9.16 -17 .16 

Ear height Normal 9.61 8.94 10.11 -12.14 -16 .52 
Light 15.63 10.92 16.54 -18.96 -24 .13 

Days to tasseling Normal 1.51 0.30 0.47 -0.37 -1.91 
Light 4.03 0.24 1.45 -3.05 -2.68 

Number of stem Normal 0.37 0.05 0.63 -0.40 -0.65 
node Light 0.96 0.29 0.87 -1.15 -o. 96 

Stem diameter Normal -0.01 0.24 0.45 0 .12 -0. 80 
Light 0.30 0.80 0.76 -0.99 -0.87 

Filled ear length Normal 0 .5 6 -0.02 0.15 - 0 .56 - 0.13 
Light -0 .25 -0.11 -0.04 0.29 0.11 

Number of kernel Normal -0.30 -0.17 0.39 0.62 -0.54 
rows Light - 0.35 -0.30 0.37 0.64 -0.35 

Number of kernels Normal 3.00 0. 20 -0. 38 -2.96 0.14 
/row Light 0 . 42 -1. 86 0.03 - 0 . 06 1.46 
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positive GCA effects, while Hi31 and Mol7 had negative effects for 

those characters under both normal and extended light conditions, 

except a few cases. GCA effects of yield components were quite 

different from those of yields and plant characters. Ant2 which was 

a good combiner for grain yield showed negative effects for number of 

kernel rows and positive effects for number of kernels/row. In 

general, genotypes which bad negative GCA effects for kernel rows 

showed positive effects for number of kernels/row. Ratios of 

GCA/SCA mean squares for those characters were high than those of 

grain yield. There were differences between normal and extended 

light for days to tasseling, plant and ear height, but the trends 

were not constant. 

Combined analysis of combining ability of yield components 

showed that GCA effects were less than SCA effects for filled ear 

length, indicating less importance of GCA effects. GCA and SCA mean 

squares did not show any trends (Table 27). GCA x season interaction 

was significant only for filled ear length under both daylengths, and 

number of kernels/row under light. However, SCA x season interactions 

were not observed for all yield components studied. 

Combined analysis of combining ability for grain and stover 

yields are presented in Table 28. GCA and SCA effects were highly 

significant for both yields under normal and light. GCA x season and 

SCA x season interactions were either highly significant or 

significant except grain yield under normal. GCA/SCA mean squares 

ratios were calculated. The ratio indicated that GCA mean squares 

were larger than those of SCA. The GCA/SCA ratios for grain yield 



Table 27. Combined analysis of combining ability for yield components evaluated 
under normal and extended light conditions over 2 seasons. 

Mean squares 

Source df Filled 
ear length 

Number 
kernel 

of 
rows 

Number of 
kernels/row 

Normal Light Normal Light Normal Light 

GCA 4 1.00 0.26 1. 42·'···· 1.32·'· 26. 97,';.': 8.65 

SCA 5 2. 23,':.': 0 • 8L1 0.40 0 .17 2.54 12.66·'· 

Season (S) 1 108 . 59,':.'; 176. 7 2,':.': 
5. 41 ·'···· 3 .53·':.': 409.56·':.': 4 7 5 . 81 -,·.~·. 

GCA x S 4 1 • 7 6·':;'; 3. 21 ;':.': 0.37 0.59 5.88 14. 98·'· 

SCA x S 5 0.93 0.78 0.37 o.15 1.41 5.35 

Error 1 8 0 . 40 0.89 0 .26 o.43 4.94 4.64 

Significant at 5% level. 
Significant at 1% level. 
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Table 28. Combined analysis of combining ability for grain 
and stover yields evaluated under normal and 
extended light conditions over 2 seasons. 

Mean sguares 
Source df Grafo yieia Stover yieia 

NormaI t:ignt Normal 'Cignt 
-· 

GCA 4 1.20** 1.32** 2.97** 12.09** 

SCA 5 0.43** 0.63** 0.82** 1.86** 

Season (S) 1 212.91** 141.87** 121. 59** 146.50** 

GCA x s 4 0.59** 2.34** 0.44* 1.40* 

SCA x s 5 0.07 0.64** 0.57* 1.18* 

Error 54 0.11 0.16 0.17 0.48 

* Significant at 5 % level. 
** Significant at 1 % level . 
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were 2.8 and 2.1 under normal and light, respectively. The ratios for 

stover yields under normal and light were 3.6 and 6.5, respectively. 

GCA and SCA mean squares under normal and light were highly 

significant for days to tasseling, plant and ear height, except for 

a few cases (Table 29). However, GCA x season and SCA x season 

interactions were not significant for those characters except GCA x 

season under normal for days to tasseling. These results indicated 

that GCA and SCA effects for those characters were relatively less 

variable to environmental changes. 

Heritability estimates for yields, plant characters, and yield 

components are presented in Table 30. Ear height, days to tasseling, 

and number of stem nodes showed higher narrow and broad sense 

heritability estimates than other characters under normal and 

extended light environments. Heritability estimates of those charac­

ters ranged from 77 to 92 % for narrow, and from 90 to 95 % for broad 

sense. Heritability estimates of grain yield and stover yield were 

lower than those of ear height, number of stem nodes, and days to 

tasseling. Heritability estimates of yields ranged from 34 to 69 % 

for narrow sense and from 68 to 88% for broad sense. There was no 

difference between normal and light for those characters. Stem 

diameter, and yield components showed low heritability estimates and 

heritability estimates of broad sense were lower than those of 

narrow sense, in some case indicating negative dominance variance 

for those characters. 



Table 29. Combined analysis of combining ability for days to tasseling, plant and 
ear height evaluated under normal and extended light conditions over 2 seasons. 

Mean squares 

Source df Days to tasseling Plant height Ear height 

Normal Light Normal Light Normal Light 

GCA 4 9. 53;'d, 5 2. 31;',;', 283 .50;',;', 962.00;',;', 1041 • 98;',;', 2367 . 75;',;', 

SCA 5 0. 53;',;', 7 • 44;',;', 87. 60;',,', 145.20 41.43 214 .20;',;': 

Season (S) 1 0.03 3 9 . 8 8;',;', 2538. OO;':;': 5728 .OO;'d, 1369.50;',-.', 3309 .06;':;', 

GCA x S 4 0.53;', 2. 77 14.00 72.00 16.38 102 .oo 
SCA x S 5 0.08 2 .14 19.60 15.20 17.45 38 .21 

Error 54 0 .13 1.28 15 .17 70.29 19.64 57.38 

..,': 
Significant at 5% level. 

·{:·}: 

Significant at 1% l evel. 
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Table 30. Heritability estimates of y ields, plant 
characters and yield components under 
normal and light. (unit:%) 

Characters Daylength Narrow Broad 

Grain yield 

Stover yield 

Plant height 

Ear height 

Days to tasseling 

Number of stem node 

Stem diameter 

Filled ear length 

Number of kernel 
rows 

Number of kernels 
per row 

Normal 

Light 

Normal 

Light 

Normal 

Light 

Normal 

Light 

Normal 

Light 

Normal 

Light 

Normal 

Light 

Normal 

Light 

Normal 

Light 

Normal 

Light 

66 

34 

48 

69 

57 

77 

92 

85 

91 

77 

91 

90 

48 

62 

30 

45 

37 

81 

82 

23 

85 

68 

88 

88 

87 

81 

95 

93 

96 

93 

94 

90 

48 

62 

73 

45 

37 
81 

82 

52 
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4.3.4 Discussion 

Days to tasseling and silking were delayed in all the genotypes 

used under extended light. This delay in flowering was similar to 

those of other researchers. The magnitudes of delay in flowering 

were different among genotypes; i.e. photoperiod sensitive genotypes 

were delayed more and insensitive genotypes were delayed less. Lee 

(1978) also reported delay of flowering in Hawaii under conditions 

identical to the present study, with 4 hours of extended daylength. 

He observed that the difference in delay for flowering among 

genotypes depended on sensitivity to photoperiod. Francis et al. 

(1970) and Hunter et al. (1974) observed delayed tassel initiation 

with longer photoperiod. The interval between tassel initiation and 

silking was not affected by photoperiod. 

Plant characters, including plant height, ear height, number of 

stem nodes, and stem diameter, ~ere significantly increased under 

extended light. The degree of increase was prominent in photoperiod 

sensitive genotypes. Coligado and Brown (1975) observed increased 

number of leaves (i.e., nodes)under extended daylength. They stated 

that this increase of leaf number was due to prolongation of the time 

to tassel initiation. According to Hunter et al. (1974), leaf number 

and stem length increase with longer photoperiod. They also found 

that the magnitude of increase depended on sensitivity to 

photoperiod. 

Lee (1978) observed significant increase of plant and ear 

height under extended light, but the degree of increase was higher in 

sensitive than in insensitive genotypes. LAI increased significantly 
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under the light in this study. The increased LAI was primarily due 

to increased leaf number, because the size of individual leaf (leaf 

length and width) increased less than number of leaves. Bonaparts 

(1975) observed similar increase of LAI with longer photoperiod. 

Reductions of grain yields were observed in all genotypes studied 

except in one case . Lee (1978) also found reduction of grain yield 

under extended light. The reduction rate was higher in sensitive 

genotypes. In this experiment, the yield components, including filled 

ear length, number of kernel rows, and 100 kernels weight, were not 

reduced, but slight reduction in number of kernels/row was noticed. 

Average reduction of grain yield was 20-25 %. This reduction could 

not be explained by the small reduction of kernel number. The 

interval between tasseling and silking was much longer under light 

(7 days) than normal condition (3 days). This prolongation might 

have caused poor pollination under extended daylength. Lee (1978) 

observed reduced kernel weight, while Bonaparte (1975) reported 

increased kernel weight and number of kerne l rows wit h longer 

photoperiod. Ragland et al. (1966) observed increase of kernel rows, 

but decreased kernels/row and grain weight under supplementary light 

treatment. 

Stover yield increased signi ficantly under extended light in thi s 

experiment. This increase appears to be directly related to increased 

node and leaf number, plant height, and stem diameter . Hunter et al. 

(1974) reported that total dry weight increased with longer photo­

period. They a l s o observed that genotypes varied in r esponse to 

photoperiod for dry weight; i.e. photoperiod s ensit i ve genotype 
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increased more than insensitive genotypes. 

There was no difference of TDM yield between normal and extended 

daylength conditions. The increase of stover yield was offset by the 

reduction of grain yield. Several genotypes showed increased TDM 

yield in both seasons. These genotypes show potential use for silage 

production under longer daylength conditions. It was reported that 

photoperiod response was more prominent under lower temperature 

conditions (Coligado and Brown, 1975). In this study, September 

planting might be under lower temperature condition than May planting, 

but there was no photoperiod response for yields and their characters 

in different seasons. 

Combined analysis of variance over 2 seasons showed genotype x 

daylength interaction for both grain and stover yields. This 

suggested that genotypes were different in their photoperiod responses 

for silage production. Combining ability analysis indicated signifi­

cance of both GCA and SCA in contributing to t he genetic variation of 

grain and stover yields. The GCA/SCA ratio suggested that addit i ve 

gene effects predominate in the genetic variation. GCA/SCA ratio for 

stover yield was higher than that for gra i n yield, indicating that 

the additive gene action was more important for stover yield than for 

grain yield. Dhillon and Singh (1977) reported that GCA was more 

important than SCA for yield. 

Harville et al. (1978) observed that the GCA effect was larger 

than the SCA effect for ear height. They concluded that the 

inheritance of ear height was controlled primaril y by additive gene 

ef fects. Rood and Major (1980) r eported t hat flower i ng was largely 
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determined by GCA effects. Narrow sense heritability estimates were 

higher for ear height, days to tasseling, and number of stem nodes 

than for other characters observed. This indicates that it will be 

relatively easy to select for these characters. Heritability 

estimates of those characters were not different between normal and 

extended daylength conditions. 
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4.4. Selection of Superior Hybrids f or Silage Production 

To select superior hybrids for silage production, 217 single 

cross hybrids from a factorial combination of 31 inbreds as females 

wi th 7 male tester inbreds were evaluation with 8 check hybrids 

in 3 different seasons at the Waimanalo Research Station. The data 

presented below in 3 sections: 4.4.1 Yields, 4.4.2 Plant characters, 

and 4.4.3 Yield components. 

4.4.1. Yields 

The average total dry matter (TDM) yields of 225 hybrids over 

3 seasons are presented in Table 31. The best inbred among 31 female 

inbreds was CIMMYT-TllES; its average performance over 7 tester male 

inbreds was 13.56 T/ha. H632A and ICA L221 were also high yielding 

combiners, with TDM yields of over 13 T/ha. These superior inbreds 

were 12 % higher than the overall average (11.85 T/ha). The average 

grain yields of 225 hybrids over 3 seasons are presented in Table 32. 

77-4544 x Hi34 showed the highest grain yield (7.58 T/ha), showing 

17 % higher than X304C which is widely used in the topics. 

Data from the top 20 hybrids for grain and stover yields over 

3 plantings among the 217 combinations are presented in Table 33. 

Eleven hybrids showed higher TDM yield than H823 which was the best 

check hybrid. The highest TDM yield was 15.13 T/ha (H63 2A x Hi29). 

CIMMYT-TllES x Hi34 and ICA 1221 x Hi28 were also superior hybrids 

for TDM yiel d. H763 and X304C which were used i n the population 

density experiment showed mu ch l ower ( 10- 15 %) TDM yi elds than the 
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Table 31. Total dry matter yield of 225 hybrids evaluated 
during 3 different seasons. 

(unit : T/ha) 

Male 
Hi26 Hi28 Hi29 Hi31 Hi33 Hi34 Tx601 Mean

Female 

CIl1MYT-A 21 12.98 13.25 14.68 12.40 11.22 11.94 12.12 12.66 
CIl1MYT-Tl lES 1 4 .57 14.83 12. 98 13 .os 11.60 15.06 12.82 13.56 
Fla. 2AT-112 11.62 11.09 12.12 9.61 11.48 12.53 12.57 11.58 
Fla. 2AT-114 12. 92 13.31 12.68 10.80 10.90 13.89 12. 78 12.47 
Fla. 2BT-54 11.20 11.33 12 .09 9.(J9 10.34 13.11 13.05 11.46 
H632A 13.48 13.62 15.13 11.21 11.65 14.58 13.23 13.27 
H632F 13.86 12.39 13.61 9.80 12. 77 14.14 12.80 12. 76 
H632G 11.20 11.51 11.32 11.38 11.03 11.61 11.41 11.35 
ICA 125 13.53 11.98 13.11 11.28 11.81 12.93 11.40 12.29 
ICA 127 12.54 12.30 12.07 10.46 11.57 13.82 12.21 12.14 
ICA 1210 14.42 12.15 10.so 12.15 12.16 14.18 11.86 12.48 
ICA 1221 14.46 15.00 12.08 11.53 12.82 13.04 13.88 13.26 
ICA 1223 12.53 13. 91 11.24 11.07 11.93 14.04 13.82 12.65 
INV138 11.47 12.12 12. 70 9.94 10.74 12.82 12.10 11. 70 
INV302 12. 96 12. 79 13.40 9 .64 10.41 1 4.32 10.34 11. 98 
INV443 12.32 12.26 10 . 49 11.24 11.39 14.45 12.11 12.04 
INV534 12.60 12.45 12.55 11.33 12.42 14.30 12.54 12.60 
MITll DMR 11.80 12.53 11.19 11.41 11.28 13.18 12.64 12.00 
Pi4243 12.34 11.11 10.67 7.54 10.61 13.26 11.77 11.04 
Pi4257 11.30 11.20 12.28 9.49 10.22 11.51 10.80 11.27 
Pi4283 10.09 11.26 10.68 9 . 77 10.52 11.92 11.99 1 0 . 89 
Pi4287 10.70 10.92 10.34 7.13 7.98 10.09 12.09 9 . 92 
SR52-F 12. 99 11.89 11.68 12.02 10 .5 2 12 .53 11.03 11.83 
SR52-M 12.36 11.49 11.66 11.61 10.53 12.99 11.27 11.64 
Tuxpeno 13.22 10.58 11.26 8.88 9 .38 12. 95 11.59 11.12 
Tx602 12. 47 12.47 10. 95 11.39 10 . 00 13.87 9.69 11.55 
77-4407 11.62 12.56 11.02 7.23 10.55 11.04 12.44 10. 93 
77-4412 9 .93 11.32 11.53 6.92 11.18 11.36 11.99 10 .61 
77-4441 10.62 12.04 11.06 6.33 11.84 12.81 11.33 10 .65 
77-4449 12.96 12.58 11.99 7 .72 10.78 1 4 .14 11.40 11.65 
77-4544 11.33 12.25 12. 99 10.04 10 . 49 1 4 .81 11.16 11. 94 

Mean 12.32 12.27 12 .Ol 10.04 11.08 13.22 12.03 11.85 

H636 10.61 H650 11.21 H763 : 12 . 70 H767 .. 10. 47 
H823 14.3 8 H824 13.12 Xl05A: 13.23 X304C: 13.13 
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Table 32. Grain yield of 225 hybrids evaluated during 
3 different seasons. 

(unit : T/ha) 

Hi26 Hi28 Hi29 Hi31 Hi33 Hi34 Tx601 Mean 

CIMMYT-A21 6.50 6.63 6. 77 5.89 5.90 6.28 5.85 6.26 
CIMMYT-TllES 6.66 6.59 6.21 6.05 5.72 6.85 6.02 6.30 
Fla.2AT-112 5.66 5.60 6.00 4 .47 5.50 5.50 5.40 5.45 
Fla. 2AT-114 7.01 6.51 6.20 4.89 5.23 7.22 6.35 6.20 
Fla.2BT-54 5.46 5.54 5.60 4.47 5.28 6.15 5.83 5.48 
H632A 6.41 6.21 6.09 4.87 5.43 6. 77 5.37 5.88 
H632F 6.64 5.57 5.81 4.02 5.97 6.59 5.46 5.72 
H632G 5 .02 4.99 4.00 5.37 4 .93 5.27 4 .60 4.88 
ICA 125 6.16 5.67 5.53 5.39 5.86 6.20 5.33 5.73 
ICA 127 6.03 5.76 5 .61 4.60 5.42 6.54 5.81 5.68 
ICA 1210 6.76 5.72 5 .02 5.49 5 .92 6.92 5. 92 5 .96 
ICA 1221 6.83 6.98 5 .96 5 .73 6.61 5. 93 7 .17 6.46 
ICA 1223 6.37 7.30 5.53 5.31 5.98 6.99 5. 95 6.21 
INV138 5.53 6.22 5.99 4.60 5 .13 6.36 5.79 5.66 
INV302 6.21 6.39 6.17 4.57 5 .37 7 .14 5.06 5.84 
INV443 6.40 5.97 4.97 5.55 5.79 7 .13 5. 98 5.97 
INV 534 6.83 6.51 6.11 5.36 6.51 6.75 6.21 6.33 
MITll DMR 6.18 5.70 5.44 5.30 5.69 6.08 5.67 5.72 
Pi4243 5.87 5.50 5 .12 3.18 5.18 6.47 5.31 5.23 
Pi4257 5.32 5.01 5.32 4 .05 5.15 6.20 5.65 5.24 
Pi4283 4.92 5.84 4 . 96 4.55 5.24 5.80 5.55 5.27 
Pi4287 5.24 5.59 4.22 2.97 3.52 4 . 44 5.23 4 . 46 
SR52-F 5.99 5.47 5.28 5.82 4.80 5.40 4 .58 5.34 
SR52-M 5.82 5.70 4.89 4.74 5.66 5.83 4 .25 5.27 
Tuxpeno 5. 95 5 .21 4.68 3.87 4.33 5.90 5 .15 5.01 
Tx602 5 .94 5.53 4.99 5.22 4 . 84 6 . 41 4.11 5.29 
77-4407 5.85 6.19 5. 20 3 .21 5.37 5 .30 6.29 5.35 
77-4412 5.11 5.80 5.48 2.37 5 .12 5.34 5 . 95 5.03 
77-4441 5.35 6.04 5. 26 2.90 5.55 5.59 4 . 92 5 . 08 
77-4449 5.94 6.30 5.81 3.48 5 .34 6.94 5.34 5.59 
77-4544 5.97 6.02 6 .33 3.58 5 .34 7.58 5 .24 5.72 

Mean 5.98 5.93 5.52 4.54 5.43 6.27 5.53 5.60 

H636 5.08 H650 5.48 H763 : 6.47 H767 : 4.32 
H823 6.83 H824 : 6 .17 Xl05A: 6 .09 X304C: 6 . 49 
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Table 33. Superior hybrids selected from 225 hybrids evaluated 
over 3 different seasons for total dry matter yield. 

(unit: T/ha) 

Total dry Grain StoverRanking Hybrids G/S Ratio matter yield yield 

1 H632A x Hi29 15.13 6.09 9.04 0.67 

2 CIMMYT-TllES x Hi34 15.06 6.85 8.21 0.83 

3 ICA L221 X Hi28 15.00 6.98 8.02 0.87 

4 CIMMYT-TllES x Hi28 14.83 6 .59 8.24 a.so 

5 77-4544 x Hi34 14.81 7.58 7.23 1.os-

6 CIMMYT-A21 x Hi29 14.68 6. 77 7. 91 0.86 

7 H632A X Hi34 14.58 6. 77 7.81 0.87 

8 CIMMYT-TllES X Hi26 14.57 6.66 7. 91 0 .84 

9 ICA L221 X Hi26 14.46 6.83 7.63 0.90 

10 INV443 X Hi34 14.45 7.13 7.32 0.97 

11 ICA L210 X Hi26 14.42 6.76 7.66 0.88 

12 INV302 X Hi34 14.32 7 .14 7.18 0.99 

13 INV534 X Hi34 14.30 6.75 7.55 0.89 

14 ICA L210 X Hi34 14.18 6.92 7.26 0. 95 

15 77-4449 x Hi34 14.14 6.94 7.20 0.96 

16 H632F X Hi34 14.14 6.59 7.55 0.87 

17 ICA L223 X Hi34 14.04 6.99 7.05 0. 99 

18 ICA L223 x Hi28 13. 91 7.30 6. 61 1.10 

19 Fla •2AT-114 X Hi34 13.89 7.22 6.67 1.08 

20 ICA L221 X Tx601 13.88 7 .1 7 6. 71 1.07 

Check hybrids 
-;': H763 12. 70 6.47 6.23 1.04 
-,': H823 14.38 6. 83 7.55 0. 91 
..,': X304C 13.13 6.49 6 . 64 o. 98 
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20 superior hybrids. Among the 20 superior hybrids, CIMMYT-TllES had 

3 combinations and H632A, ICA L220, ICA L221, and ICA L223 had 2 

combinations with 7 male inbreds, indicating that these inbred were 

good combiners for TDM yields. Among the 7 male testers Hi34 had 11 

combinations, indicating that this is the best combiner for TDM 

yields, while Hi26 and Hi28 showed 3 combinations each. Grain/stover 

ratios of the 20 superior hybrids ranged from 0.67 to 1.10. H632A x 

Hi29 which had the highest yield showed the lowest grain/stover 

ratio (0. 67). 

The superior hybrids in summer season (March and May plantings) 

are presented in Table 34. H632A x Hi29 had the highest TDM yield 

(20.60 T/ha) in favorable seasons and 77-4544 x Hi34 and CIMMYT-TllES 

x Hi26 were also high in TDM yields. These hybrids were 6 to 11 % 

higher than the best check hybrid (H823). The highest grain yield 

under favorable seasons was obtained on 77-4544 x Hi34, showing 12 % 

higher than H823. 

The rankings of the superior hybrids in winter season (November 

planting) were different from those in summer season (Table 35). 

Among the 10 superior hybrids in summer season, only 4 hybrids were 

listed among the 10 superior hybrids in the winter season. The best 

hybr ids for TDM yield in winter was CIMMYT-TllES x Hi34 (7.93 T/ha), 

indicating 14 % higher yield than X304C which was the best among the 

check hybrids. INV443 x Hi34 and INVS34 x Hi34 had the highest grain 

yield in the winter planting with 57-62 % higher than X304C which 

was the best check in winter. 

Table 36 shows 20 superior hybrids for grain and stover yield 

,, . 
.:-· 
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Table 34. Top 10 hybrids selected from 217 hybrids evaluated 
in March and May. 

Total dryRanking Hybrids r.rain yieldmatter 
- -- ---·· 

T/ha 
1 H632A X Hi29 20.60 8.97 

2 77-4544 X Hi34 19.65 10.51 

3 CIMMYT-TllES x Hi26 19.56 9.51 

4 CIMMYT-A21 x Hi29 19.23 9.32 

5 ICA L221 X Hi26 18.98 9.53 

6 H632A X Hi34 18.86 9.47 

7 ICA L221 X Hi28 18.70 9.26 

8 Tx602 x Ri34 18. 63 9.06 

9 CIMMYT-TllES x Hi34 18.63 9.22 

10 CIMMYT-Tl lES X Hi28 18.52 8.64 

Check H763 17.12 9.27 
H823 18.50 9.38 
X304C 16.25 8. 77 
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Table 35. Top 10 hybrids selected from 217 hybrids evaluated 
in November. 

-·· 
Total dry

Ranking Hybrids Grain yieldmatter 

T/ha 

1 CIMMYT-TllES x Hi34 7.93 2 .11 

2 ICA L221 x Hi28 7.63 2 .45 

3 CIMMYT-Tl1ES X Hi28 7.49 2.51 

4 ICA L223 x Hi34 7.44 2.01 

5 INV443 x Hi34 7.34 3 . 20 

6 INV534 X Hi34 7.22 3.10 

7 ICA L210 x Hi26 6.87 2.46 

8 ICA L27 x Hi34 6.75 1.36 

9 77-4544 x Hi34 6.63 1. 73 

10 ICA L210 x Hi28 6.58 2·. 52 

Checks H763 3.86 0.88 
H823 6.16 1. 75 
X304C 6.93 1.98 
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Table 36. Superior hybrids selected from 225 hybrids evaluated 
over 3 different seasons for grain and stover yields. 

(unit : T/ha) 

For grain yield For stover yield 
Ranking 

Hybrids Yield Hybrids Yield 

1 77-4544 X Hi34 7.58 H632A X Hi29 9.04 

2 ICA 1223 X Hi28 7.30 CIMMYT-TllES x Hi28 8.24 

3 Fla.2AT-114 x Hi34 7.22 CIMMYT-TllES x Hi34 8. 21 

4 ICA 1221 X Tx601 7.17 ICA 1221 X Hi28 8.02 

5 INV302 x Hi34 7 .14 CIMMYT-TllES x Hi26 7. 91 

6 INV443 x Hi34 7.13 CIMMYT-A21 x Hi29 7. 91 

7 Fla.2AT-114 x Hi26 7.01 ICA 1223 x Tx601 7.87 

8 ICA 1223 X Hi34 6.99 H632A x Tx601 7.86 

9 ICA 1221 x Hi28 6.98 H632A X Hi34 7.81 

10 77-4449 X Hi34 6.94 H632F x Hi29 7.80 

11 ICA 1210 X Hi34 6 .92 ICA 1210 x Hi26 7.66 

12 CIMMYT-TllES x Hi34 6.85 ICA 1221 x Hi26 7.63 

13 ICA 1221 x Hi26 6 . 83 SR52-F X Hi34 7.59 

14 INV534 x Hi26 6.83 ICA 125 x Hi29 7.58 

15 CIMMYT-A21 x Hi29 6 . 77 H632F x Hi34 7.55 

16 H632A x Hi34 6. 77 INV534 x Hi34 7 . 55 

17 ICA 1210 x Hi26 6.76 H632A X Hi28 7. c1l 

18 CIMMYT-TllES x Hi26 6.66 ICA 125 X Hi26 7.37 

19 H632F X Hi26 6.64 H632F X Hi34 7 .34 

20 CIMMYT-A21 x Hi28 6 . 63 INV443 x Hi34 7.32 

Check hybrids 

H763 6.47 6 .23 
;,': H823 6. 83 7 . 55 

X304C 6.49 6 . 64 
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over 3 plantings. The highest grain yield was observed in 77-4544 x 

Hi34 (7.58 T/ha). Also, ICA 1223 x Hi28 and Fla.2AT-114 x Hi34 had 

7.30 and 7.22 T/ha, respectively. When compared to the best check 

hybrid (H823), these superior hybrids showed 6 to 11 % higher grain 

yield . 12 hybrids had higher grain yield than H823. The highest 

stover yield was observed in H623A x Hi29 (9.04 T/ha), showing 20 % 

higher than H823 which was the best check hybrid. Among the 217 

hybrids from 31 x 7 factorial combinations, 14 hybrids were better 

than H823 for stover yields. 

GCA effects of 31 female inbreds for grain and stover yields over 

3 plantings are shown in Table 37. In general, positive GCA effects 

for grain yield were observed in CIMMYT, H632, and ICA inbreds, 

indicating good combiner for grain yield. CIMMYT-A21, CIMMYT-TllES, 

ICA 1221, and INV534 showed high GCA effects, while all of Pi inbreds, 

SR52-F, SR52-M, Tuxpeno, Tx602, and all UH 77-lines except 77-4544 

had negative GCA effects, indicating that they are poor combiners for 

grain yield. The highest GCA effect was observed in ICA 1221, 

indicating the best combiner for grain y ield. The performance of 

31 inbreds as female for stover yields were similar to those of grain 

yi eld except a few cases. The high positive GCA ef fects for stover 

yields were observed in CIMMYT-TllES, H63 2A,H632F, and ICA 1221. All 

of the Pi inbreds and UH new lines had negative GCA effects. INV138, 

INV302, and INV443 showed positive effects for grain yield, while 

those inbreds had negative effects for stover yield. These inbreds 

might be used for grain yields r ather than stover y ields. However, 

R632A and H632F had higher GCA eff ects for stover yiel ds than for 
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Table 37. Estimates of GCA effects for yields and plant characters 
of 31 female inbreds evaluated over 3 seasons. 

Female Grain Stover Days to Plant Ear 
parent yield yield tasseling height height ,_ 

- · 
CIMMYT-A21 0.66 0.14 1.05 7.32 8.83 
CIMMYT-TllES 0.70 1.01 2.46 2.95 7.43 
Fla.ZAT-112 -0.15 -0.13 -0.93 -13 .86 -12.07 
Fla. ZAT-114 0.60 0.02 -1.40 -13.22 -11.24 
Fla.2BT-54 -o .12 -0.27 -0.24 6.83 5.50 
H632A 0.29 1.14 2.19 11.95 9.78 
H632F 0.12 0.79 1.50 14.19 11.07 
H632G -0.72 0.21 0.24 13.09 9.28 
ICA 125 0.13 0.30 o.79 13.61 10.52 
!CA 127 0.08 0.20 1.17 3.54 -0.07 
!CA 1210 0.36 0.27 0.24 4.59 2.55 
ICA 1221 0.86 o.55 1.24 9.04 2.52 
ICA 1223 0.60 o.19 1.48 8.61 4.88 
INV138 0.06 -0.22 -0.81 12.30 7.66 
INV302 0.24 -0.12 -0 .31 1.38 4.83 
INV443 0.37 -0.19 -1.59 -12.15 -9.65 
I NV534 0.73 0.02 -2.43 -15.55 -8.62 
MITll DMR 0 .12 0.03 -0.04 4.66 6.35 
Pi4243 -0.37 -0.45 -1.28 -0.89 -4.41 
Pi4257 -0.36 -0.23 -1.04 -2.58 -7 .17 
Pi4283 -0.34 -0.63 -0.74 -3.67 -4.98 
Pi4287 -1.15 -0.79 -1.02 -17. 96 -10.07 
SR52-F -0.27 0.24 -0.24 5 .16 -0.50 
SR52-M -0.33 0.11 -0.31 6 .19 -0.41 
Tuxpeno -0.59 -0.14 -0.47 -0.93 4.52 
Tx602 -0.31 0.01 0.93 2.59 1.38 
77-4407 -0.26 -0.67 0.55 -15. 20 -5.98 
77-4412 -0.57 -0.67 o. 74 -17.86 -8.60 
77-4441 -0.52 -0.48 -o. 71 -15.03 -7 .31 
77-4449 -0.01 -0.19 -0.40 -10 .03 -5.65 
77-4544 0.12 -0.04 -0.64 10.92 -0.36 
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grain yields. Also, SR52-F and SR52-M had negative GCA effects for 

grain yield, while positive effects for stover yields. These results 

suggested that those inbreds would be better for stover yield production 

than for grain yield. 

GCA effects of 7 male testers over 31 inbreds as female showed 

that Hi34 had the highest positive GCA effects for grain and stover 

yields (Table 38). Hi26 and Hi28 also had positive effects for those 

yields. Hi31 and Hi33 had negative GCA effects for both yields, while 

Hi29 and Tx601 were negative for grain yield and positive for stover 

yield. Therefore, it might be suggested that Hi34 was the best inbred 

for silage production and Hi26 and Hi28 also might be used for silage 

corn. However, Hi31 and Hi33 were poor combiners for silage production. 

4 .4.2. Plant Characters 

Days to tasseling of 225 hybrids over 3 plantings ranged from 53 

to 62 days with CIMMYT-TllES x Hi34 and CIMMYT-TllES x Tx601 tasseling 

at 62 days, while INV443 x Hi33 tasseled at 53 days for days to 

tasseling. The average days to tasseling of 31 female over 7 male 

testers ranged from 54 to 59 days. CIMMYT-TllES and H632A which had 

higher GCA effects for grain and stover yields also took longer to 

tasseling (59 days). In general, GCA effects of 31 inbreds as 

female for days to tasseling revealed that inbreds which had positive 

GCA effects for grain and stover yields showed positive GCA effects 

for days to tasseling except a few cases (Table 37). This result 

suggested that late-maturing hybrids generally had higher silage 
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Table 38. Est:ilnates of GCA effects of 7 male inbreds for yields, 
plant characters, and yield components. 

Male parent 
Characters 

Hi26 Hi28 Hi29 Hi31 Hi33 Hi34 Tx601 

Grain yield 0.38 0.33 -0.08 -1.06 -0.17 0.67 -0.07 

Stover yield 0.08 0.09 0.23 -0.75 -0.60 0.69 0 .25 

Plant height -0.06 -1.43 5.65 -4.91 -9.60 2.43 7 .92 

tar height -0.17 4.35 4.32 -7.96 -8.93 6.11 2.28 

Days to 
tasseling 
Filled ear 
length 
Nwnber of 
kernel rows 
Number kernels/ 
row 
100 kernel-
weight 
L\I 

-0.19 

0.36 

0.24 

1.09 

0.38 

0.20 

-o.71 

-0.31 

0.67 

-0.35 

-0.0l 

-0.08 

-0.36 

-0 .02 

0.26 

-0.66 

0.59 

-0.17 

-0.58 

-1.10 

0.27 

- 4 .98 

-0.80 

-0.20 

-2.20 

0.74 

-0.56 

2.51 

-0.32 

-0 .16 

2.02 

0.54 

-1.31 

1.91 

1.68 

0.65 

2.02 

-0.22 

0.44 

1.50 

-1.51 

-0.25 

Number of 
stem node 
Stem diameter 

-0.21 

0.75 

-0.28 

-0.12 

0.33 

0.12 

-0.1 4 

-0.08 

-0.88 

-0.95 

-0.21 

0.10 

1.39 

0.1s 
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yields. GCA effects of 7 male testers for days to tasseling showed 

positive effects in Hi34 and Tx601 inbreds, indicating lateness in 

maturity, while other 5 inbreds had negative effects. 

Plant heights of 225 hybrids ranged from 210 to 282 cm with 

H632F x Hi29 having the tallest and 77-4441 x Hi31 having the shortest 

plants. The highest positive GCA effect among 31 inbreds as female 

for plant height was observed on H632F, while Pi4287 had the highest 

negative effects. Generally, high GCA effects for plant height were 

observed on the inbreds which had high GCA effects for stover yield. 

CIMMYT inbreds, H632 inbreds, and ICA inbreds had positive GCA effects, 

indicating that these inbreds had taller plant heights, while Florida 

inbreds, Pi inbreds, and UH77-inbreds had negative GCA effects, 

showing short plant height. Among the 7 male testers, Tx601 was the 

tallest, and Hi29 and Hi34 also was 3 to 6 cm taller than the overall 

overall average, while Hi33 was the shortest in plant height. 

GCA effects of ear height indicated similar results to those of 

plant height, with a few exceptions. CIMMYT inbreds and H632 inbreds 

had positive GCA effects, and Pi inbreds and UH 77-inbreds had 

negative effects. Hi34 had higher ear height and Hi31 was l ow in ear 

height. 

LAI, number of stem nodes, and stem diameter were measured only 

in the March planting. LAI was highest in H632F x Hi34 (5.53), while 

Tuxpeno x Hi33 had the lowest value (3.22). It was found that H632 

inbreds had positive GCA effects, while Pi inbreds and UH77-inbreds 

had lower or negative GCA effects (Table 39) . Among the 7 male testers, 

Hi34 had the highest LAI value (4.86) and Tx601 t he lowest (3 . 96) . 
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Table 39. Estimates of GCA effects for LAI, number of 
stem node and stem diameter of 31 female inbreds. 

Female Number of StemLAIparent stem nodes diameter 

CIMMYT-A21 -0.09 0.62 0.04 
CIMMYT-TllES 0 .27 0.93 0.40 
Fla.2AT-112 -0.06 -0.21 -0.68 
Fla. 2AT-114 0.04 -0.06 o.18 
Fla.2BT-54 -0.29 -0.16 -0.53 
H632A 0.44 0 .41 1.47 
H632F 0.29 0.39 1.33 
H632G 0.23 -0.09 0.90 
ICA L25 0.36 0.42 0.97 
ICA L27 0.13 0.29 -0.60 
ICA L210 0.13 0.04 -0.82 
ICA L221 0.34 o.oo 0.40 
ICA L223 0.29 0.37 0.83 
INV138 -0.12 -0.31 -0.25 
INV302 0.02 0.09 -0.03 
INV443 0.01 -0 .90 -0.68 
INV534 -0.28 -0.48 -1.46 
MIT 11 DMR -0.25 -0.26 -1. 75 
Pi4243 -0.35 -0.37 -0.39 
Pi4257 -0.30 -0.33 -0.18 
Pi4283 0.07 -0.28 0.90 
Pi4287 -0.17 o.oo 0.33 
SR52-F 0.31 -0 .42 0.54 
SR52-M 0.47 -0.54 o.18 
Tuxpeno -0.64 0.39 0.75 
Tx602 -0.20 0.80 -0.46 
77-4407 o.oo -0.21 -0.75 
77-4412 -0 .02 -0.27 -0.89 
77-4441 -0.18 0.09 -0.03 
77-4449 -o .21 -0.11 0.18 
77-4544 -0.22 0 .15 0.11 
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Hi26 also had a relatively high LAI value. 

The range of number of stem nodes was from 12.4 (Pi4283 x Hi33 

and SR52-F x Hi33) to 16.6 (CIMMYT-TllES x Tx601). CIMMYT-A21 and 

CIMMYT-TllES which were high in TDM yield had 14.5-14.9, and Pi 

inbreds which showed low yield had 13.6-13.9 of stem nodes. Tx601 

had the highest and Hi33 had the lowest number of stem nodes among the 

7 male inbreds. The number of stem nodes of the 8 check hybrids 

ranged from 13.1 to 13.8, showing relatively small variation among 

the hybrids. 

Stem diameter was measured at the first stem from the ground. 

Stem diameter of 225 hybrids ranged from 20.0 (INV534 x Hi33) to 27.0 

mm (H632A x Tx601, H632F x Hi26, H632F x Hi29, and H632G x Hi28). 

The average stem diameter of 31 female inbreds over 7 male testers 

indicated that H632A and H632F which were superior inbreds for stover 

yields had the largest stem diameter (24.6-24.8 mm). MIT 11 DMR had 

the smallest stem diameter (21.6 mm). GCA effects for stem diameter 

of 7 male testers showed that Hi26, Hi29, Hi34, and Tx601 had positive 

effects, indicating that these inbreds had big stem diameters, while 

Hi28, Hi31, and Hi33 had negative GCA effects. 

Relative maturity of 225 hybrids was evaluated in the March 

planting on the basis of grading from 1 to 5. Grade 1 was very early 

and 5 was very late in maturity. Maturity grading of 225 hybrids 

varied from 1.0 to 5.0. The difference between 1.0 (very early) to 

5.0 (very late) was about 10-15 days. INV138 x Hi31 and Pi4243 x Hi31 

were classified as very early maturing hybrids , while CIMMYT-TllES x 

Hi26, Fla.2BT-54 x Tx601, and H632A x Hi26, Hi28, Hi29, Hi31, Hi34, 
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Tx601, were very late in maturity. Among the 31 inbreds over 7 male 

testers, H632 was the latest (4.7) and MIT 11 was the earliest (2.1) 

in maturity. CIMMYT-TllES, !CA L27, !CA L221, SR52-F and SR52-M, 

were late, while Fla.2AT-112, INV302, Pi inbreds belonged to early­

maturity inbreds. Hi34 was the latest (4.0) in maturity among 7 

male testers over 31 inbreds as female, while Hi34 was the earliest. 

Hi26 and Tx601 were a little late, and Ri28 and Hi29 were medium in 

maturity. Among the check hybrids, the superior H823 was a little 

later than H763 and X304C in maturity. 

Rust ratings were evaluated over 3 seasons. The rating scale 

was from 1 to 7 with a rating of 1 being highly resistant and 7 being 

highly susceptible. The overall average rust rating was recorded as 

3.5. The ratings ranged from 1.8 (CIMMYT-A21 x Tx601, and CIMMYT­

TllES x Tx601) to 6.0 (Fla.2AT-112 x Hi31 and Pi4243 x Hi31). Among 

the 31 inbreds, CIMMYT-A21 and CIMMYT- TllES which had high yield 

showed the lowest rust rat i ng (2.3-2.6) . Other superior inbreds, 

including H632A, H632F, !CA L221, and !CA L223, were slightly 

resistant to rust. However, Fla.2AT-112 , all of the Pi inbreds, and 

some of UH 77-inbreds were relatively susceptible to rust. It was 

found that Hi34 and Tx601 were resistant to rust (2.8-2.9), and Hi31 

and Hi33 were susceptible (4.0-4.7). Hi 26, Hi28, and Hi29 showed 

medium resistance to rust. Wi thin the check hybrids, X105A was 

highly resistant and H767 was hi ghly suscept i ble to rust. H823, the 

superior hybrid, was resistant to rust. 

4.4 . 3. Yield Components 
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Yield components, including filled ear length, number of kernel 

rows, number of kernels/row, and 100 kernel weight, were observed over 

2 seasons (March and May plantings). In November plantings, no grain 

yields were observed in several hybrids, therefore, yield components 

data was not taken. Filled ear length varied widely among hybrids. 

ICA L221 x Hi34 had the longest filled ear length (19.4 cm), while 

77-4441 x Hi31 had the shortest length (11.6 cm). GCA effects of 

yield components (Table 40) showed that CIMMYT, H632, ICA, and SR52 

inbreds had long ear lengths, while INV, Pi, and UH 77-inbreds had 

short ear lengths. These results suggested that inbreds which were 

high in grain yields generally had longer filled ear length. H823 

which had the highest grain yield among the check hybrids showed the 

longer filled ear length, while H763 had medium ear lengths. 

Number of kernel rows followed different patterns from those of 

filled ear lengths. In general, inbreds which had longer filled ear 

lengths had fewer kernel rows, with a few exceptions. The range was 

from 17.7 (CIMMYT-A21 x Hi28) to 10.7 (Fla.2BT-54 x Hi34). GCA 

effects showed that CIMMYT, INV, and Pi inbred had positive effects 

while Florida, H632, and SR52 inbred had negative values. 

Number of kernels/row varied widely among the 225 hybrids. The 

range of number of kernels/row was from 18.9 (77-4412 x Hi31) to 40.6 

(ICA L210 x Hi33). The superior check hybrid, H823, had 39.2 kernels/ 

row. Estimates of GCA effect (Table 40) showed that the number of 

kernels/row were not consistent within the same source of inbreds; 

i.e . CIMMYT-Tll ES had more kernels than CIMMYT-A21, and H632F and 

H632G had more than H632A. These results were also found in ICA, 
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Table 40. Estlillates of GCA effects for yield components of 
31 female inbreds evaluated over 2 seasons. 

Female Filled Number of Number of 100 kernel 
parent ear length kernel rows kernels/row weight 

CIMMYT-A21 0.24 1.27 -0.92 -0.13 
CIMMYT-TllES 0.65 0.53 2.47 -0.82 
Fla.2AT-112 -0.23 -0.09 o.oo -1.42 
Fla.2AT-114 0.81 -0.99 1.80 0.79 
Fla.2BT-114 0.69 -0.75 2.27 -0.21 
H632A 1.06 -1.20 -0.41 4.96 
H632F 1.64 -0.54 0.62 2.19 
H632G 1.06 -0.68 0.98 1.21 
ICA L25 0.37 0.13 -0.05 1.38 
ICA L27 0.02 0.51 -2.15 2.47 
ICA L210 0.36 -0.28 0.97 0.28 
ICA L221 1.52 -0.27 1.15 2.29 
ICA 1223 0.88 0.41 -1. 33 4.07 
INV138 -0.08 o. 71 -1.20 -0.21 
INV302 -0.62 o. 77 0.62 -3.00 
INV443 -2.05 0.47 -3.28 1.48 
INV534 0.46 -0.32 2.18 -0.91 
MIT11 DMR 0 .27 0.04 0.27 -1.40 
Pi4243 -0.20 0.38 2.08 -5.01 
Pi4257 -1.75 1.35 -1.39 -2.80 
Pi4283 -0.62 0.86 -1. 99 -0.32 
Pi4287 -1.91 - 0.20 -5.16 -1.12 
SR52-F 0.75 -0 .93 1.15 2.97 
SR52-M 0.82 -1.56 1.46 3.49 
Tuxpeno -0.58 -1.00 0.55 -0.80 
Tx602 0.35 0.22 0.96 -1. 71 
77-4407 -0.54 -0.24 1.17 -2.02 
77-4412 -1.25 0.12 - 2.11 -1.83 
77-4441 -1.42 0.62 -0.87 -2.32 
77-4449 -1.20 -0.94 -0.96 -2.51 
77-4544 0.49 -0.30 1.16 0.97 
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INV, Pi, and UH 77-inbreds. 

The range of 100 kernel weight was from 18.7 g (Pi4243 x Hi31) 

to 37.5 g (77-4544 x Hi34). GCA effects indicated that H632, ICA, 

and SR52 inbreds had larger kernel weight, however, CIMMYT inbreds 

which were good combiners for grain yield showed smaller kernel weight. 

H632A and ICA L223 which were higher in grain yield had larger 

kernel weight. All of the Pi inbred and UH 77-inbreds except 

77-4544 had negative GCA effects, indicating that these inbreds had 

smaller kernel weight. 

In the November planting, severe barrenness was observed in all 

hybrids. The barrenness was due to concentrated heavy rainfall and 

strong wind resulting in almost 100 % lodging in all hybrids. This 

lodging occured twice during the vegetative stage (4-5 weeks after 

planting). Stalk breakage was observed in many hybrids due to the 

second lodging. Barrenness ranged from 15 to 100 i,. Among the 225 

hybrids, INV534 x Hi34 were the most tolerant to barrenness (15 %), 

while several hybrids, such as Fla.2AT-112 x Hi31 and Pi4243 x Hi 31 

showed 100 % barrenness, indicating highly susceptibility to 

barrenness. Average performance of 31 inbreds over 7 male tester 

inbreds showed that CIMMYT- A21, ICA L210, and INV534 were tolerant 

(less than 40 %), while H632G and Pi4287 were highly susceptible to 

barrenness (more than 80 %). H823, the superior check hybrid had 

28 %, while H763 had 61 % barrenness. Among the 7 male testers, Hi3 4 

was tolerant (41 %), and Hi31 was susceptibl e (78 %) to barrenness 

under stressed conditions. Hi26, Hi28, and Hi29 were average or 

slightly resistant while Hi33 and Tx601 were susceptible to 
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barrenness. The resistance to barrenness might be an important factor 

to be considered for corn production under stressed unfavorable 

environments. 

Estimates of GCA effects of 7 male testers for yield components 

showed that Hi26, Hi33, and Hi34 had positive GCA effects for filled 

ear length, number of kernels/row, and 100 kernel weight, while Hi28 

and Hi31 had negative values for those components (Table 38). In 

general, inbreds which had positive GCA effects for filled ear length 

and number of kernels/row show negative GCA effects for number of 

kernel rows. 

Analysis of variance revealed that blocks within replication 

were highly significant for grain and stover yields except in one 

case (Tables 41, 42). Plant and ear height also were significant for 

blocks within replications in all plantings (Tables 43, 44). Those 

results indicate that the lattice design was more efficient than a 

randomized complete block design for those characters. The block 

effects with replications were not significant for yield components 

except in a few cases, suggesting that blocking within replications 

was not as effecient as a randomized complete block design. Average 

efficiencies of the lattice design for yield over 3 plantings were 

9 % (grain) and 16 % (stover) higher than with a randomized complete 

block design. Efficiency for plant and ear height was increased 28-

29 % by blocking within replications compared to the randomized 

complete block design. For yield components, efficiency was not 

increased (1-3 %) except 100 kernel weight (10 %). 

Heritability estimates of female and male inbreds for yield and 
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Table 41. Analysis of variance for grain yield of 225 hybrids 
in different seasons. 

Mean squares 
Source df 

March May 

Replication 1 8.00 1.57 

Hybrid (Unadj .) 224 2.88 2.95 
"';'rl: -.'rl: 

Block within rep. (Adj.) 28 0.88 1.66 

Intra-block error 196 0.26 0.80 

Randomized complete block 224 0.34 0.91 
error 

~·d: Significant at 1 % probability level. 

Table 42. Analysis of variance for stover yield of 225 hybrids 
in different seasons. 

Mean squares 

November 

0.28 

0.95 

0.09 

0.07 

0.08 

Source df 
March May November 

Replication 1 1.00 11.40 4.68 

Hybrid (Unadj.) 224 2.66 3.99 1.34 

Block within rep (Adj.) 28 
~':-;':

1.86 
..l:--;': 

2. 71 
-!:-!: 

0.63 

Intra-block error 196 o.43 1.38 0. 2.4 

Randomized complete block 224 0.61 1.54 0.29 
error 

** Significant at 1 % probability level. 
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Table 43. Analysis of variance for plant height of 225 hybrids 
in different seasons. 

Mean squares 
Source df 

March May November 

Replication 

Hybrid (Unad j.) 

Block within rep (Adj.) 

Intra-block error 

Randomized complete block 
error 

1 

224 

28 

196 

224 

20085 .12 

668.06 
..,....,. 

456.32"" 

61.31 

110 .68 

162.61 1493.00 

852.25 141.25 
J-1· ... 

606 .16" .. 61.62" 

181.22 37 .18 

234.33 40.24 

* Significant at 5 i. level. 
,b': Significant at 1 7. level. 

Table 44. Analysis of variance for ear height of 225 hybrids 
in different seasons. 

Mean squares 
Source df 

March May November 

Replication 1 2726.46 2132.08 22.30 

Hybrid (Unadj.) 224 346 .13 600.50 54.22 
~':-!: i:-;':

Block within rep (Adj.) 28 179.18 459.75** 70.81 

Intra-block error 196 33. 71 133. 43 17.46 

Randomized complete block 224 51.90 174.22 24.13 
error 

,': Significant at 5 i. level. 
,':-/: Significant at 1 i. level. 



171 

other characters are presented in Table 45. Heritability estimates 

of days to tasseling and plant height were higher than other 

characters . .Among the yield components, number of kernel rows was 

higher than other components for heritability. Male testers were a 

little higher than parents as fem.ale for heritability of grain and 

stover yields. For other plant characters and yield components 

parents as female showed higher heritability estimates than male 

testers. 

In summary, about 5 % of 217 factorial combinations were 

superior to the best check hybrid for silage production of corn. 

Among the 31 tropical inbreds used in this experiment, CIMMYT, H632, 

and !CA inbreds had good combining ability for silage yield. These 

inbreds also were good combiners for grain yields. Brewbaker (1974) 

reported that most tropical races were tall and late in maturity, 

silking at 65 to 75 days, while Corn Belt genotypes were too early in 

maturity in tropical conditions for maximum yield. In this study, 

most of the high yielding inbreds were late in flowering and maturity. 

The late maturing hybrids were 10-15 days longer in maturity than 

early maturing hybrids. In Hawaii, year-round planting of corn is 

possible. If duration of the growing period is considered, early 

maturing hybrids will have an advantage due to short growing periods. 

However, much yield reduction of early maturing hybrids was 

observed and most of the superior hybrids for silage were late in 

maturity. Therefore, late maturing hybrids had higher silage yields 

per year even if they had longer growing periods. 

Most of the high yielding hybrids showed superior plant 
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Table 45. Heritability estimates of female and male inbreds 
for yields, plant characters and yield components. 

(unit: %) 

Female MaleCharacters Meanparent parent 

Grain yield 45 52 49 

Stover yield 31 35 33 

Days to tasseling 47 82 65 

Plant height 69 28 65 

Ear height 57 40 49 

Filled ear length 54 23 39 

Number of kernel rows 55 53 54 

Number of kernels/row 29 61 45 

100 kernel weight 79 15 47 



173 

characters, such as tall plant height, large number of stem nodes, and 

larger stem diameter. They also were highly resistant to rust in all 

seasons studied. No lodging was observed in March and May plantings, 

but those high yielding tall hybrids showed a tendency for lodging. 

Therefore, lodging would be expected if high population density would 

be used for maximum silage yield. Severe barrenness was observed in 

winter planting resulted !rom nearly 100 % lodging in all hybrids. 

This winter lodging was du to unfavorable weather conditions such 

as strong wind and heavy rainfall. The severe lodging and barrenness 

problems were observed in a previous bimonthly population density 

experiment. From a practical standpoint, winter planting is very 

unstable for corn production , although inbreds which were tolerant to 

barrenness had higher grain yields in winter planting. CIMMYT-A21, 

ICA L210, and INVS34 which showed high yield in spring and summer were 

generally tolerant to barr nness. 

Among the 7 test r inhreds Hi34 which is late in maturity, was
' ' 

the best combiner, while HiJl and Hi33 which are early maturing 

inbred were poor combinerR for silage production. A lattice design 

was used in this exp rimont to increase statistical efficiency by 

blocking t he replication. The average efficiency was increased more 

for plant characters than for grain and stover yields. 
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4.5 Silage Yield Trial of 7-Entry Diallel 

4.5.1. Yields and Yield Components 

A 7-entry diallel, utilizing parent inbreds from the 31 x 7 

factorial, was evaluated for silage yields and their components over 

3 different seasons. Average TDM, grain and stover yields over 3 

plantings are presented in Table 46. The highest TDM yield was 

observed in Hi34 x Tx601 (12.78 T/ha). Hi26 x Hi34 and Hi29 x Hi 34 

also had high TDM yields, but Hi31 x Hi33 showed the lowest TDM 

yield (7.70 T/ha). The highest grain yield was observed in Hi26 x 

Hi34, while the highest stover yield was observed in Hi34 x Tx601 

which had the highest TDM yield. The grain/stover ratio ranged from 

0.78 (Hi29 x Tx601), indicating poor quality, to 1.23 (Hi26 x Hi28), 

indicating high quality f or silage. Hi34 x Tx601 had the highes t TDM 

yield but had a little lower than average ratio. 

Yield components, including filled ear length, number of kernel 

rows, number of kernels/row, and 100 kernel weight were measured with 

6- 7 ears after harvesting . I n general, hybrids whi ch were h i gh in 

grain yield had longer fil led ear length, more number of kernel r ows 
' 

and number of kernels/row (Tabl e 47). There were significant 

correl ations between grain yiel d and yield components (Table 48). 

Grain yield was also correlated with days to tasseling . Stover y ield 

was highly significantly correlated wi th all plant characters, such a s 

days to tasseling, plant and ear he ight. 

The theoret ical gr a in yield was calculat ed us ing average yi e l.u 

component s , such a s number of kernel rows, number of kernels/row, 
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Table 46. Average total dry matter, grain and stover yields, 
and grain/stover ratio-of a 7-entry diallel. 

Hybrids U.H. 
Number 

Total dry 
matter 

Grain 
yield 

Stover 
yield G/S ratio 

T a 
Hi26 x Hi28 R648 10.98 6.05 4.93 1.23 

Hi26 x Hi29 H634 9.41 4.90 4.51 1.09 

Hi26 x Hi31 H764 8.48 4.26 4.22 1.01 

Hi26 x Hi33 9.22 4.75 4.47 1.06 

Hi26 x Hi34 H620 12.49 6.70 5.79 1.16 

Hi26 X Tx601 H863 10.42 5.40 5 .02 1.08 

Hi28 x Hi29 H825 10.61 5.30 5.31 1.00 

Hi28 x Hi31 H766 10.52 5 .61 4.91 1.14 

Hi28 x Hi33 H650 8.43 4.44 3.99 1.11 

Hi28 x Hi34 H823 11.02 5.67 5.35 1.06 

Hi28 x Tx601 H861 10.48 4.94 5.54 0.86 

Hi29 x Hi31 H767 9.22 4.78 4.44 1.08 

Hi29 x Hi33 H636 8.96 4.76 4.20 1.13 

Hi29 x Hi34 H824 12.26 6.10 6.16 0.99 

Hi29 x Tx601 H862 10.40 4.57 5.83 0.78 

Hi31 X Hi33 H905 7.70 3.99 3. 71 1.08 

Hi31 X Hi34 H763 9.26 4. 71 4.55 1.04 

Hi31 X Tx601 H865 9.26 4.82 4.44 1.09 

Hi33 x Hi34 H622 9.60 5 .15 4.45 1.16 

Hi33 x Tx601 H896 9.66 4.65 5.01 0.93 

Hi34 x Tx601 H860 12. 78 5.97 6.81 0.88 

Mean 10.06 5 .12 4.94 1.04 
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Table 47. Average yield components over 3 seasons and barrenness 
in November planting of 7-entry diallel. 

Filled Number Number 100 Barren 
Hybrids ear of kernel of kernels kernel -ness

length rows per row weight 

(cm) (g) Ci.) 
Hi26 x Hi28 12.8 14.1 26.9 27.1 18 

Hi26 x Hi29 12.7 12.0 26.4 24.0 24 

Hi26 x Hi31 11.7 11.2 21.8 27.9 56 

Hi26 x Hi33 13.3 10.7 29.l 25.l 57 

Hi26 x Hi34 13.4 12. 7 30.4 25.9 15 

Hi26 x Tx601 12.9 13.0 27.4 24.S 38 

Hi28 X Hi29 13.0 13.9 27.0 25.3 31 

Hi28 x Hi31 12.9 13.0 26.2 28.6 45 

Hi28 x Hi33 13.3 11.9 27.0 25.3 46 

Hi28 x Hi34 13.2 12.7 29.7 25 .4 15 

Hi28 x Tx601 13.2 13.8 28.8 24.5 39 

Hi29 x Hi31 11.4 11.4 21.5 27.1 58 

Hi29 X Hi33 12.6 12.5 26.6 23.4 55 

Hi29 X Hi34 13.3 12. 7 28.3 26.5 15 

Hi29 x Tx601 13.0 12.5 26.7 23.7 31 

Hi31 X Hi33 11. 7 11.1 24.6 23.5 91 

Hi31 x Hi34 10.4 ll .S 23.0 26.7 31 

Hi31 x Tx601 12.1 11.2 23 .0 25.2 67 

Hi33 X Hi34 12 .5 11. 7 27.0 25 .6 38 

Hi33 x Tx601 13.4 12.0 29.0 22.5 42 

Hi34 x Tx601 1 4 .1 12.0 30.9 28.6 30 

Mean 1 2 . 7 12.3 26.7 25.5 40 
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Table 48. Correlation coeff icients among yields, yield components and plant 
characters of a 7-entry diallel over 3 different seasons. 

Stover Days toCharacters yield tassel 

Grain yield 

Stover yield 

Days to tasseling 

Plant height 

Ear height 

Filled ear length 

Number of kernel rows 

Number of kernels 
per row 

100 kernel weight 

··::;'; "'k 
0.69 0.45 

;':;':
0.78 

;': Significant at 5 i. 
;':--.': Significant at 1 i. 

FilledPlant Ear earheight height 
length 

--_'n': ;':
0.22 0.56 0.53 

;':;': ;';;': ";':;':
0.59 0.82 0.62 

;':-:: ;':;':
0.73 0.68 0.26 

.,...,. 
0.10"" 0.29 

0.44* 

probability level. 

probability level. 

No. of 
kernel 
rows 

;':·k 
0.57 

;':
0.49 

o.18 

0.34 

"J':·l,
0.67 

0.43 

No. of 100 
kernels kernel 
per row weight 

;':-k ;': 
0.59 0.44 

;':;': 
0.64 0.26 

0.31 0.1s 

0.20 -0.05 

0.41 0.19 

;':·k
0.89 -0.09 

0.41 0.05 

-0.16 

Rust 

;':-k 
-0.86 

;':;':
-0. 77 

"k
-0.55 

-0.36 

..,•:;':
-0.70 

·k;';
-0.69 

;';;';

-0.67 

"',',·;':
-0.74 

-0.19 

..... 
-...J 
-...J 

I .,' . 
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and 100 kernel weight. In this experiment, the population density 

used was 60,000 plants/ha, therefore, theoretical grain yield could be 

calculated as follows; 60 x 12.3 x 26.7 x 25.5 / 100,000 = 5.03 T/ha. 

This theoretical grain yield was 98 % of actual average grain yield of 

21 hybrids. This result suggested that yield components could be used 

as a criteria for grain yields prediction. 

Barrenness in winter plantings ranged from 15 to 91 %. Hi26 x 

Hi34, Hi28 x Hi34, and Hi29 x Hi34 showed relatively high grain 

yields and were tolerant to barrenness (15 %), while high barrenness 

(60-90 %) was generally observed in poor yielding hybrids. 

Days to tasseling ranged from 54 days (Hi28 x Hi33) to 60 days 

(Hi34 x 'Iic601), with average 57 days. Hi31 x Hi33, the poorest hybrid 

for TDM yield, was 55 days for days to tasseling. This indicated that 

the late maturing hybrids had high yields. Plant heights ranged from 

209 cm (Hi33 x Hi34) to 251 cm (Hi29 x Tx601). 

LAI was measured only in May planting. The range of LAI was 

from 3.54 (Hi29 x Hi33) to 4.48 (Hi34 x Tx601). Highly significant 

correlations were observed between LAI and grain and stover yields 

(Figure 38). Correlation coefficients for stover yield (r=0.72**) was 

higher than grain yield (r=0.56**). 

Rust ratings were recorded for 3 seasons on a 1-7 scale. The 

average rust rating in November, February, and May plantings were 

5.2, 2.7, and 2.9, respectively. This indicated that rust was more 

severe in winter season than spring and summer. The overall average 

rating s lmwed that Hi26 x Hi28, Hi26 x Hi34, and Hi34 x Tx601 were 

resistant, while Hi29 x Hi31 and Hi31 x Hi33 were susceptible to rust. 
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Significant negative correlations between rust and grain and stover 

yields were observed (Table 48). Also, rust rating was negatively 

correlated to all yield components except 100 kernel weight. These 

results suggested that rust might be one of the factors reducing corn 

yields in this trial and in the 225-entry silage trials. 

Maturity was recorded on a scale from 1 to 5 in May planting, 

with 1 being very early and 5 being very late in maturity. Highly 

significant correlations were observed between maturity and grain and 

stover yield (Figure 39, 40). These relationships suggested that late 

maturing hybrids had high grain and stover yields. 

Combined analysis of variance of yields, plant characters, and 

yield components were presented in Tables 49 and 50. Hybrids were 

significantly different for all characters studied. Also, hybrid x 

season interactions of all characters were highly significant. This 

indicated that hybrids were different in response of yields, plant 

characters, and yield components under different seasons. 

4.5.2. Diallel Analysis 

Estimates of SCA and GCA effects for grain and stover yields are 

presented in Table 51. GCA effects of 7 inbreds indicated that Hi34 

was the best combiner for both grain and stover yields, while Hi31 

and Hi33 were poor combiners for those yields. GCA effects for yield 

components indicated that Hi26 and Hi28 had positive effects for all 

of the yield components, and Hi34 which was the best combiner for 

yields had the largest effects for number of kernels/row and 100 
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Table 49. Combined analysis of variance of yields and plant characters for 
a 7-entry diallel evaluated in 3 different seasons. 

Mean squares 
Source df Grain Stover Plant Ear Days to 

yield yield height height tasseling 

Season (S) 2 1067.17 454.40 526356.50 173929.50 4086.06 

Reps in S 9 1.26 o.59 518.44 243.56 2.52 
,.,.._..;':;', ;':;'; ;':-..,': ;':·k

Hybrid (H) 20 5.52 7.20 1272.50 741.80 28.07 
;'n': ,.. .., t':;': -;':;':...,....,.. .......... 

H X S 40 o.68 1.10"" 271.93 148.03 1.42 

Error 180 0.28 0.32 90.iB 31.99 0.61 

Table SO. Combined analysis of variance for yield components of a 7-entry 
diallel evaluated in 3 different seasons. 

Mean squares 
Source df df Filled ear Number of Number of lOO kernel 

length kernel rows kernels per row weight 

Season (S) 2 702;34 246.30 5282.94 1939.47 

Reps in S 3 1.93 o.15 5.23 1.25 
..,.....,.. .../;;': ·::-': -.h': .... "' 

Hybrid (H) 20 4 .28 5.46 42.83 17.39 
..,_... ,.,...,.,.. , .... ;'.";': ,·~·:

H X S 40 1.59 4.46 9.34 4.22 

Error 60 0.66 0.48 4.18 1.87 

..... 
,': Significant at 5 % probability level. 00 

(.,.) 

,':,': Significant at 1 % probability level. 

http:173929.50
http:526356.50
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Table 51. Estimates of SCA and GCA effects for grain and 
stover yield of a 7-entry diallel evaluated during 
3 different seasons. 

SCA effects GCA
Inbreds effectsHi28 Hi29 Hi31 Hi33 Hi34 Tx601 

Hi26 0.38 -0.41 -0.60 -0.07 0.61 0.10 0.26 
0.04 -0.47 0.09 0.42 0.29 -0.37 -0.13 

Hi28 -0.04 0.72 -0.21 -0.45 -0.39 0.29 
o.13 0.56 -0.27 -0.37 -0.09 0.08 

Hi29 0.24 0.27 0.34 -0.40 -0.08 
0.01 -0.14 0.36 0.11 0.11 

Hi31 -0.05 -0.60 0.30 -0.52 
0.20 -0.42 -0.44 -0.67 

Hi33 -0.12 0.18 -0.57 
-0.43 0.22 -0.76 

Hi34 0.22 o. 71 
o.57 0.70 

Tx601 -0.09 
0.61 

Upper and lower values are grain yield and stover yield, 
respectively. 

I' 

'I 
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kernel weight. GCA effects for plant and ear height showed that 

Tx601 had positive effects, indicating taller plant, and Hi33 had 

negative effects. 

Combined analysis of combining ability showed that GCA and SCA 

effects were highly significant for grain and stover yields (Table 52). 

Also, GCA x season, and SCA x season interactions were significant. 

Ratio of GCA/SCA mean squares for grain and stover yield were 5 and 

10, respectively. This indicated GCA effects were more important for 

stover yield than grain yield. 

Plant height, ear height, and days to tasseling were highly 

significant for GCA and SCA effects, and GCA x season, SCA x season 

interactions were significant (Table 53). GCA/SCA ratios for plant 

height, ear height, days to tasseling were 13, 21, and 37, respectively, 

suggesting that GCA effects for plant characters were larger than for 

grain and stover yields.· 

Heritability estimates of yields and other characters over 3 

seasons were presented in Table 54. Heritability estimates of grain 

and stover yields were as large as those of other characters. Narrow 

and broad sense heritability estimates for days to tasseling were a 

little higher than other characters. High narrow sense heritability 

estimates for all characters studied indicated that additive gene 

effects were high and important for those characters. 

In summary, the highest silage yield of corn was observed in 

late maturing hybrid, while the early maturing hybrids were very low 

for silage y i eld. These results could be expla i ned by the 

significant correlation between yields and days to tasseling and 



Table 52. Combined analysis of combining ability for grain 
and stover yields evaluated in 3 different seasons 
for a 7-entry diallel. 

Mean squares 
Source df 

Grain yield Stover yield 

GCA 

SCA 

Season (S) 

GCA X S 

SCA X $ 

Error 

'i'rl: ,'rl:
6 3.14 4.86 .,_,_ 

14 0.63° 
0 0.49"" 

2 266.79 113.60 

..,...... 

...,...,..'i'n':
12 0.26 0.21"" 

,•: ;':-/:
28 o.13 0.30 

180 0.07 0.08 

* Significant at 5 % probability level. 
-.':-!: Significant at 1 % probability level. 

Table 53. Combined analysis of combining ability for plant 
height, ear height and days to tasseling evaluated 
in 3 different seasons for a 7-entry diallel. 

Mean squares 
Source df Plant Ear Days to 

height height tasseling 

GCA 6 
-/:-;':

900 .17 
-;':-..':

556 . 83 
'i'n': 

22.02 

SCA 14 
-;':-..': 

68.64 
;':;':

26.34 
,':-;':

0.59 

Season (S) 2 131589.50 43482 .28 1021.53 

GCA x S 12 
"k'i':

123 .08 
...,•:"';':

85.42 
;':-;':

0.47 

SCA x S 28 
... 

44.46" 
..,....,.. 

16.27" " ·'· 0.31" 

Error 180 22.72 8.00 0.15 

-.·: Significant at 5 % probability level. 

-,'.-!: Significant at 1 % probability level. 

186 
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Table 54. Heritability estimates of yields, plant 
characters and yield components of 7-entry 
diallel over 3 different seasons, . ~%)1..un1t: 

Characters Narrow Broad 

Grain yield 57 90 

Stover yield 66 86 

Plant height 66 86 

Ear height 80 92 

Days to tasseling 88 95 

Filled ear length 55 76 

Number of kernel rows 61 81 

Number of kernels per row 66 83 

100 kernels weight 42 81 

Rust 77 93 
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relative maturity. Most of the plant characters studied were 

significantly correlated to stover yield. 

Rust rating was negatively correlated to grain and stover yields. 

This indicates that rust disease is one of the factors reducing· silage 

yields. Diallel analysis revealed that Hi34 which is late in maturity 

and of high rust resistance was the best combiner for grain and 

silage yi.elds. Hi31 and Hi33, early maturing genotypes of high rust 

susceptibility, were poorer combiners for both grain and silage 

yields. These results were the same as the previous 3lx7 factorial 

hybrid selection experiment. 

Combining ability analysis indicated that GCA and SCA were both 

significant in contributing to the genetic variations of grain and 

stover yields of corn. The GCA/SCA ratio showed that additive genes 

were more important in the genetic variations. GCA x season and SCA 

x season interactions were significant for grain ' and stover yields. 



189 

CONCLUSION 

Year-round planting of population density experiments may be 

used to reconnnend the best population density for maximum silage yield 

of corn in different seasons. Extremely higher population densities 

in unfavorable seasons reduced both the silage and grain yield. 

As population density increased, days to tasseling was delayed 

and ear height increased, while plant height and stem diameter 

decreased significantly. The yield components, including filled ear 

length, number of kernel rows, number of kernels/row, and 100 kernel 

weight, were reduced significantly with increasing population. Leaf 

area per plant was reduced significantly, but LAI increased 

significantly as population increased. Kernel fusarium and barrenness 

in winter season increased significantly at higher populations. 

Temperature was significantly correlated to days to tasseling, 

indicating that temperature was the more important determinant factor 

than solar radiation for flowering in corn. Among the climatic 

factors, sola r radiat i on was the most important before tasseling, 

while minimum temperature was more important than solar radiation 

during the growing period. In either cases, maximum temperature was 

not an important factor for corn production in Hawaii. 

Quality of corn silage may be improved with genetic modification. 

The brown midrib-3 mutant corn has been proved to be inferior for 

grain and silage yields. However, a few genotypes showed small 

r eduction of yields indicating possible use of bm3 as a high quality 

corn silage. The advantage of bm3 will be more prominent as the cost 
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for transportation and storage of corn silage increase. 

Plant height (-15 %), ear height (-7 %), filled ear length 

(-10 %), and number of kernels/row (-12 %) decreased in bm3. Other 

characters, including LAI, number of stem nodes, and stem diameter, 

were reduced less than 5 % in bm3. No difference was observed for 

days to tasseling between bm3 and normal corn. 

Studies of photoperiod sensitivity for corn silage production 

could provide useful information for corn breeding programs in 

different latitudes. Reduction of grain yield under longer photo­

periods might not be true photoperiod effects since yield components 

were no t reduced under extended daylength. Photoperiod sensitive 

genotypes may be used in longer daylength temperate regions. 

GCA and SCA mean squares for grain and stover yields were 

significant under normal and extended light, indicating that both 

additive and non-additive genes contributed to the genetic variation 

of grain and stover yields. 

Selection of Superior hybrid for silage production showed that 

late-maturing tropical inbreds had high performance for silage and 

grain yields under both favorable and unfavorable conditions. 

Most of the high yielding hybrids for silage had superior plant 

characters, including taller plant height, larger number of stem nodes, 

LAI, stem diameter, high resistance to rust, and low barrenness in 

unfavorable seasons. In winter planting, nearly 100 % lodging was 

observed in all genotypes. The severe lodging was due to extremely 

unfavorable weather conditions, such as heavy rainfall and strong 

wind. Among the 7 Hawaiian tester inbreds, Hi34 -- a late-maturing 
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inbred -- was the best combiner, while early maturing Hi31 (B68) and 

Hi33 (Mo17) were poor combiners for grain and silage yields. 

The genotype x season interaction was primarily due to response 

of additive genes to the environment. Planting corn in unfavor able 

seasons should be carefully timed so as to avoid negative environ­

mental effects on critical stages such as flowering and fertilization. 
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Appendix 1. Grain yield of 2 hybrids under different population 
densities over 12 bimonthly plantings. 

(unit : T/ha) 

Population density (1,000 plants/ha) 
Hybrid Month 

so 75 100 125 150 200 Mean 

H763 Jan '80 9.12 9.17 9.24 9.72 10.52 10.38 9.69 
Mar '80 9.31 10.95 11.60 12.14 13.10 13.02 11.69 
May '80 8.65 9.92 10.09 11.78 10.26 9.32 10.00 
Jul '80 9.59 9.82 9.85 10.06 9.44 8 .07 9.47 
Sep '80 3.54 3.01 2.66 2.55 2.07 1.90 2.62 
Nov '80 1.37 1.26 1.20 1.22 0.83 0.78 1.11 
Jan '81 5.39 5.48 S.76 s. 77 6.16 s.so 5.68 
Mar '81 7.07 8.11 8 .52 7.58 7.11 7.23 7.60 
May '81 8.91 10.35 10.36 10.06 9.58 8.92 9.70 
Jul '81 7.69 8.08 8.23 8.36 8.15 7.35 7.98 
Sep '81 1.39 1.38 2.02 1.68 1.16 0.98 1.43 
Nov '81 0.81 0.94 0.80 0.97 0.79 0.76 0.84 

Mean 6.07 6.54 6.69 6.82 6.60 6.18 

X304C Jan '80 7.94 8.68 8.84 9.33 9.75 8.84 8.90 
Mar '80 10.01 11.15 12.96 14.11 15.09 14.20 12.92 
May '80 8.47 9.51 9.89 12.37 10.37 8.62 9.87 
Jul '80 9.26 10.07 10.10 11.22 11.06 9.39 10.18 
Sep '80 4.33 4.08 4.52 3.42 2.87 2.82 3.67 
Nov '80 2.31 2.62 2.37 2.43 2.34 2.09 2.36 
Jan '81 6.11 6 .15 6.41 6.30 6.59 5.59 6.19 
Mar '81 7.50 8.44 8 .27 10.91 12 . 49 11.82 9.91 
May '81 10.22 10.34 11.41 12.57 12.35 10.32 11.20 
Jul '81 8.61 9.85 11.34 11.68 11.26 10.20 10.48 
Sep ' 81 2.96 3.68 3.26 3.02 3.30 2.85 3.18 
Nov ' 81 1. 94 2 .41 2.78 2.82 3.00 2.78 2.62 

Mean 6.64 7 .25 7.68 8.35 8.37 7. 46 
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Appendix 2. Stover yield of 2 hybrid under different population 
densities over 12 bimonthly plantings. 

(unit .. T/ha) 

Population density (1,000 plants/ha) 
Hybrid Month 

50 75 100 125 150 200 Mean 

H763 Jan '80 6.30 6.93 7.02 7.76 8.44 9.01 7.58 
Mar '80 6.18 8 .19 8.61 9.10 11.23 11.74 9.17 
May '80 6.93 8.33 8.63 10.53 9.54 9.38 8.89 
Jul '80 7.67 9.78 9.96 10.49 11.54 11.60 10.17 
Sep '80 4.28 5.43 6.06 5.78 7.85 8 .19 6.26 
Nov '80 2.37 2.76 3.08 3.56 3.79 3.87 3.24 
Jan '81 5.70 5.47 6.57 7.07 8.03 a. 71 6.93 
Mar '81 6.97 7.99 9.57 9.82 9.94 10.76 9.17 
May '81 6.86 7.75 8.95 9.44 9.88 10.73 8.93 
Jul '81 7.28 7.29 8.82 8.94 8.66 9.46 8.41 
Sep '81 3.99 5.78 5.99 5.31 5 .41 5.38 5.31 
Nov '81 2 .56 3.08 3.43 3.54 3.73 4.04 3.40 

Mean 5.59 6.57 7.22 7.61 8.17 8.57 

X304C Jan '80 6.42 6.87 7.28 7 .91 8.32 9.37 7.70 
Mar '80 7.08 7.89 9.14 10.28 11. 91 10.92 9.54 
May '80 8.14 9.12 11.32 11.98 10.83 10.54 10.32 
Jul '80 9.29 9.96 11.45 12.36 12.92 13. 71 11.62 
Sep '80 4.95 5.04 5.34 5.49 7.84 7.45 6.02 
Nov '80 2.60 2.98 3.51 4 .00 3.88 4.40 3.56 
Jan '81 5.40 5.42 5.94 6.79 7.53 8.56 6.60 
Mar '81 7.84 9.29 10.22 8.59 8.76 8.15 8.81 
May '81 10.62 10.67 10.76 11. 71 12.58 13.91 11.71 
Jul '81 7.05 7.66 10.6b 10.71 9.92 11.24 9.53 
Sep '81 3.82 5.44 6 .47 5.60 7.03 7.82 6.03 
Nov '81 3 .83 4 .18 4.97 5.64 6.26 6.43 5.22 

Mean 6.42 7.04 8.08 8.42 8.98 9.38 
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Appendix 3. Regression equation of grain and stover yields 
with population densities. 

2Characters Hybrid Month Equation r 

Grain 1:--1:
yield H763 Jan Y= 6.96 + 0 .0062X 0.66 

Mar Y= 8.43 + O.Ol04X 0.57 

May Y= 9.82 + 0.00026X 0.01 

Jul Y= 9.42 - 0.0060X 0.37 ..,_,_ 
Sep Y= 2.85 - o .oonx 0.87"" 

.,. 
Nov Y= 1.26 -0.0024X 0.74" 

X304C Jan Y= 7.27 + 0 .0024X 
"'· Mar Y= 7.57 + 0.033X 0.80" 

May Y= 10.07 + 0.0040X 0.03 

Jul Y=9.58 + 0.0065X 0.14 
... 

Sep Y= 4.26 - o.oonx 0.75" 

Nov Y= 2.29 + 0.0017X 0.21 

Stover ...,....,.. 
yield H763 Jan Y= 4.83 + 0 .021X 0. 98"" 

..,...,. 
Mar Y= 5.64 + 0.030X 0.94"" 

... 
May Y= 6.48 + o .021x 0.80" 

.,.....,.. 
Jul Y= 7.01 + o .02ox 0.89"" 

.,.
Sep Y= 4.00 + o.01sx 0.74" 

...,....... 
Nov Y= 2.16 + 0 .0099X 0.92"" 

..,.J. 
X304C Jan Y= 4.65 + o.021x 0. 99"" 

Mar Y= 7.56 + 0 .Ol4X o.ss 
.,. 

May Y= 8.73 + o.02ox 0.86" 
.,. 

Jul Y= 7 .21 + 0 .029X o.8s" 
·'· Sep Y= 3.45 + 0 .022X 0.87" 
..,...,.. 

Nov Y= 2.58 + 0 .Ol6X 0. 94" .. 

~·: 
Significant at 5% level. 

~·:~': 
Significant at 1% level . 
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Appendix 4. Days to tasseling of two hybrids under different 
population densities over 12 bimonthly plantings. 

(unit day) 

Population density (1,000 plants/ha) 
Hybrid Month 

50 75 100 125 150 200 Mean 

H763 Jan '80 63.3 63 .S 64.3 64.0 64.5 64.8 64.0 
Mar '80 sa.a 59.S 59.3 60.0 59.5 60.3 59.S 
May 
Jul 

'80 
'80 

54.0 
43.8 

54 .3 
44 .3 

54.5 
44 .8 

54.3 
45 .0 

55.0 
46.0 

54.8 
45.8 

54.S 
44.9 

Sep 
Nov 

'80 
'80 

48.3 
60.0 

48.5 
60.3 

49.0 
61.o 

49.3 
60.8 

49.0 
61.3 

49.0 
62.0 

48.8 
60.9 

Jan '81 62.0 62.0 62.0 62.8 63.8 63.3 62.6 
Mar '81 56.8 57 .0 58.s 58.S 58.8 59.8 58.2 
May '81 
Jul '81 

51.0 
45.8 

51.8 
46.3 

51.3 
46.8 

51.5 
46.S 

52.3 
47.3 

52.8 
47.3 

51.8 
46.6 

Sep '81 
Nov '81 

so.a 
62.0 

so.o 
62.3 

51.8 
62.S 

51.5 
62.3 

51.3 
63.0 

52.0 
63.0 

51.1 
62.5 

Mean 54.6 ss.o ss.s 55.5 56.0 56.2 

X304C Jan '80 63.0 63.3 63.8 63.8 64.3 64.8 63.8 
Mar '80 60.3 60.5 60.S 60.S 61.3 61.5 60.8 
May 
Jul 

'80 
'80 

54.3 
48.0 

54.5 
48.0 

54.8 
48.3 

54.8 
48 .S 

54.8 
49.3 

55.3 
49.0 

54.7 
48.5 

Sep 
Nov 

'80 
'80 

so.a 
60.8 

so.a 
60.8 

so.a 
61.S 

51.0 
61.S 

51.0 
62.3 

51.0 
62.5 

50.9 
61.5 

Jan '81 61.0 61.3 61.0 61.5 61.S 62 .0 61.4 
Mar '81 60.3 60 .3 61.3 61.3 61.8 62.3 61.2 
May 
Jul 

'81 
'81 

55.5 
48 .8 

55.3 
48 .8 

56.0 
49.0 

55.5 
49.5 

56.3 
49.3 

56.5 
49.5 

55.8 
49.1 

Sep 
Nov 

'81 
'81 

52.5 
62.8 

52.8 
63.5 

52.8 
63.3 

53.5 
63.3 

53.S 
63.8 

53.S 
63.5 

53 .1 
63.3 

Mean 56.5 56.6 56.9 57.0 57.4 57.6 
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Appendix 5. Plant height of 2 hybrids under different population 
densities over 12 bimonthly plantings. 

(unit .. cm) 

Population density (1,000 plants/ha) 
Hybrid Month 

so 75 100 125 150 200 Mean 

H763 Jan '80 213 212 213 210 210 206 210 
Mar '80 255 246 248 251 256 249 251 
May '80 275 275 272 274 268 275 273 
Jul '80 279 275 280 250 . 273 276 272 
Sep '80 271 265 259 252 255 247 258 
Nov '80 184 175 170 168 157 151 167 
Jan 1 81 236 236 235 233 230 229 233 
Mar '81 276 280 273 275 267 272 274 
May '81 280 280 287 294 297 265 284 
Jul '81 287 292 291 284 284 279 286 
Sep '81 263 267 259 256 258 255 260 
Nov '81 155 145 140 141 138 132 142 

Mean 248 246 244 241 241 236 

X304C Jan '80 218 208 211 204 207 202 208 
Mar '80 271 257 255 259 258 245 258 
May '80 292 286 284 287 282 281 · 285 
Jul '80 302 301 301 299 293 287 297 
Sep '80 272 270 266 263 264 255 265 
Nov '80 177 172 168 169 157 150 165 
Jan '81 240 237 234 231 226 226 232 
Mar '81 288 281 286 290 282 279 286 
May '81 320 311 300 310 293 306 307 
Jul 1 81 308 309 305 309 303 313 308 
Sep '81 264 258 267 264 271 259 264 
Nov '81 144 137 137 138 127 123 134 

Mean 258 253 251 252 247 244 
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Appendix 6. Ear height of two hybrids under different population 
densities over 12 bimonthly plantings. 

(unit .. cm) 

Population density (1,000 plants/ha) 
Hybrid Month 

so 75 100 125 150 200 Mean 

H763 Jan '80 89 90 90 93 94 96 92 
Mar '80 111 109 109 112 126 122 115 
May '80 128 129 132 134 137 139 133 
Jul '80 129 132 133 130 133 140 133 

ISep 80 127 125 127 125 135 133 129 
Nov '80 69 68 70 73 68 67 69 

IJan 81 97 95 94 96 94 95 95 
Mar '81 138 148 146 148 146 148 146 
May '81 129 132 143 146 151 140 140 
Jul '81 136 142 140 140 143 145 141 
Sep '81 120 128 122 114 118 121 120 
Nov '81 60 54 57 58 54 52 56 

Mean 111 113 113 114 117 117 

X304C Jan '80 87 89 89 88 90 91 89 
Mar '80 119 113 116 118 129 125 120 

IMay 80 136 140 138 144 143 146 141 
Jul '80 147 150 155 153 154 157 153 
Sep '80 131 130 128 125 139 133 131 
Nov '80 67 67 69 71 69 75 70 
Jan '81 92 89 91 88 91 91 90 

IMar 81 147 147 141 151 148 151 146 
May '81 164 164 157 165 155 173 163 

IJul 81 144 148 154 154 150 150 150 
ISep 81 120 122 132 126 132 129 127 
INov 81 56 55 58 56 56 55 56 

Mean 117 118 119 120 121 123 
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Appendix 7. Leaf area per plant of two hybrids under different 
population densities over 12 bi.monthly plantings. 

(unit : cin2) 

Population density (1,000 plants/ha) 
Hybrid Month 

so 75 100 125 150 200 Mean 

H763 Jan '80 6126 5015 5313 5246 5314 4868 5464 
Mar '80 7002 6423 6244 5776 5320 5351 6023 
May '80 6708 6601 5982 5918 5348 4713 5878 
Jul '80 7400 6762 6318 5852 5320 4807 6076 
Sep '80 
Nov '80 3942 3560 3161 3061 2652 2392 3128 
Jan '81 5863 5391 5119 4801 4434 4395 5000 
Mar '81 7172 6816 6265 6160 5021 5201 6106 
May '81 6528 5885 5726 6563 4805 4274 5630 
Jul '81 6701 6130 5521 5291 4679 4250 5429 
Sep '81 
Nov '81 

Mean 6383 5942 5519 5408 4766 4472 

X304C Jan '80 5363 5200 5044 4858 4134 4466 4844 
Mar '80 6460 5623 5533 5240 4852 4577 5381 
May '80 7078 6034 5533 5567 5049 4560 5637 
Jul '80 7073 6279 5936 6219 5258 4587 5892 
Sep '80 
Nov '80 3790 3372 3281 3094 2783 2641 3160 
Jan '81 5288 4938 4206 4162 4066 3674 4389 
Mar '81 6990 6559 6334 6229 5371 5007 6082 
May I 81 7030 6276 5331 5577 5039 4637 5648 
Jul '81 6504 5971 5612 5650 4602 4407 5458 
Sep '81 
Nov '81 

Mean 6175 5583 5201 5177 4573 4284 
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Appendix 8. Leaf area index of two hybrids under different population 
densities over 12 bimonthly plantings. 

Population density (1,000 plants/ha) 
Hybrid Month 

50 75 100 125 150 200 Mean 

H763 Jan '80 3.11 4.32 5.38 6.28 7.77 9.86 6.12 
Mar '80 3.55 4.70 6.34 6.91 7.78 10.83 6.68 
May '80 3.40 4.83 6.06 7.08 7.82 9.54 6.45 
Jul '80 3.70 5.07 6.32 7.32 7.98 9.61 6.67 
Sep '80 
Nov '80 2.00 2.60 3.20 3.66 3.88 4.84 3.36 
Jan '81 2.97 3.94 5.18 5.74 6.48 8.90 5.54 
Mar '81 3.63 4.98 6.34 7.37 7.34 10.53 6.70 
May '81 3.33 4.30 S.80 6.64 7 .02 8.65 5.96 
Jul '81 3.36 4.60 5.52 6.62 1.02 a.so 5.93 
Sep '81 
Nov '81 

Mean 3.22 4.37 5.57 6.40 7.01 9.03 

X304C Jan '80 2.72 3.80 5.10 5.81 6.05 9.04 5.42 
Mar '80 3.27 4.11 5.60 6.27 7.10 9.27 5.93 
May '80 3.58 4.41 5.60 6.66 7.38 9.23 6.14 
Jul '80 3.54 4. 71 5.94 7 .77 7,89 9.17 6.50 
Sep '80 
Nov '80 1.92 2.47 3.32 3.70 4.07 5.35 3.47 
Jan '81 2.68 3.61 4.26 4.98 5. 95 7.44 4.82 
Mar '81 3.54 4.80 6.41 7.45 7.85 10.14 6.70 
May '81 3.56 4.59 5.39 6.67 7.37 9.39 6 .16 
Jul 1 81 3.26 4.48 5.62 7.06 6 .91 8.81 6.02 
Sep '81 
Nov '81 

Mean 3.12 4 .11 5.25 6.26 6.73 8.65 
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Appendix 9-

Hybrid Month 

Filled ear length of two hybrids under different popula 
population densities over 12 bimonthly plantings. 

(unit .. cm) 

Population density (1,000 plants/ha) 

50 75 100 125 150 200 Mean 

H763 Jan '80 12.3 12.9 11.0 10.7 10.9 9.5 11.2 
Mar '80 16.4 13.4 12,0 11.5 10.7 10.2 12.3 
May '80 17.3 12. 7 10.4 9.5 9.3 9.3 11,4 
Jul '80 18.2 13.2 12.3 11. 7 10.5 10.0 12.6 
Sep '80 12.3 10.4 9.8 9.2 9.0 8.0 9.8 
Nov '80 7.0 6.3 5.4 4.8 5,0 4,7 s.s 
Jan '81 13.5 11.7 9.8 9,1 9,3 7.9 10.2 
Mar '81 14,6 11.9 12,6 12.1 9,7 10.4 11.9 
May '81 17.4 14,6 12.3 11.1 10.8 10,7 12,8 
Jul '81 13.9 12. 7 11.0 10.3 9,8 9.3 11.2 
Sep '81 9.5 9.3 10.7 8.4 8.0 8.1 9.0 
Nov '81 5.7 5.6 4.8 5.4 4,9 4.0 5.0 

Mean 13.2 11.2 10.1 9.4 9.0 8.5 

X304C Jan '80 14.2 11.9 12.8 11.4 11.8 10.0 12.0 
Mar '80 16.7 15.6 13.9 13.1 12.4 11.3 13.8 
May '80 18.2 16.4 14.9 13,8 12. 7 11.0 11.5 
Jul '80 17.4 13.9 13. 7 13.6 . 13.5 11.2 13.9 
Sep '80 13.4 12,5 12.7 11.9 9.6 10.0 11. 7 
Nov '80 9.5 8.7 8.2 7.1 7.7 5.9 7.8 
Jan I 81 13.2 11.8 10.9 10.1 9.3 8.4 10.6 
Mar I 81 16.6 14.9 13.3 12.6 12.4 11.8 13.6 
May I 81 18.2 15.7 16.5 14. 7 12.6 12.0 14.9 
Jul I 81 16.9 14.9 14.5 12.9 10.6 11.8 13.6 
Sep '81 12.9 9.7 9.7 10.2 8.2 8.4 9 . 8 
Nov '81 8.7 9.0 8.2 8.4 7.0 6.9 8.0 

Mean 14.6 12 . 9 12.4 11.6 10.6 9.9 
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Appendix 10. Number of kernel rows of two hybrids under different 
population densities over 12 bimonthly plantings. 

Population density (1,000 plants/ha) 
Hybrid Month 

so 75 100 125 150 200 Mean 

H763 Jan '80 13.0 13.1 13.0 12.9 12.2 12.4 12.8 
Mar '80 13.2 13.S 13.S 13.0 13.0 12.s 13.l 
May '80 13.7 13.1 13.3 13.3 12.6 11.7 12.9 
Jul '80 14.3 12.8 13.l 13.4 12.8 11.0 12.9 
Sep '80 12.9 11.8 11.8 9.8 9.1 8.8 10.7 
Nov '80 11.8 10.4 8.7 9.3 9.2 8.0 9.5 
Jan '81 13.2 12.6 12.2 12.6 12.2 11.7 12.4 
Mar '81 14.2 13.9 12.4 12.7 13.3. 11.8 13.0 
May '81 14.4 13.7 12.7 12.3 12.0 12.s 12.9 
Jul '81 14.4 13.3 12.6 13.1 12.0 12.4 13.0 
Sep '81 11.1 10.9 9.8 9.6 9.0 10.2 10.1 
Nov '81 7.2 6.2 5.9 5.9 6.5 s.1 6.1 

Mean 12.8 12.1 11.6 11.5 11.1 10.7 

X304C Jan '80 13.3 12.s 13.0 12.8 12.9 12.3 12.8 
Mar '80 13.l 12.8 12.9 12. 7 12.s 12.9 12.8 
May '80 13.7 13.2 13.S 12.9 13.0 12.2 13.1 
Jul '80 13.4 13.3 13.7 13.9 13.S 12.8 13.4 
Sep '80 12.4 12. 7 13.2 12.4 11.8 io.6 12.2 
Nov '80 11.9 12.4 12.l 12.2 11.0 11.0 11.8 
Jan '81 12.0 11.1 11.4 11.2 11.6 10.7 11.3 
Mar '81 12.9 13.S 12.8 13.0 13.2 12.7 13.0 
May '81 13.0 13.9 11.8 12. 7 12.s 12.0 12.6 
Jul '81 13.0 13.4 13.3 12.8 12.0 12.s 12.8 
Sep '81 13.0 13.4 13.4 12.2 11.7 12.2 12.6 
Nov '81 12.3 12. 7 11.1 10.8 10.0 10 .3 11.2 

Mean 12.8 12.9 12.7 12.5 12.1 11.8 



203 

Appendix 11. Number of kernels/row of two hybrids under different 
population densities over 12 bimonthly plantings. 

Population density (1,000 plants/ha) 
Hybrid Month 

so 75 100 125 150 200 Mean 

H763 Jan '80 26.3 28.4 22.8 21.8 22.4 19.0 23.4 
Mar '80 36.0 26.6 24.7 24.3 23.l 21. 7 26.1 
May '80 36.8 28.6 23.2 20.4 19.8 18.S 24.S 
Jul '80 37.6 25.8 26.2 22.6 19.9 18.8 25.1 
Sep '80 27.0 22.9 15.2 13.7 12.2 9.8 16.8 
Nov '80 15.8 13.S 11.8 11.8 10.6 8.5 12 .0 
Jan '81 29.7 27.3 21.9 20.2 20.5 18.4 23.0 
Mar '81 30.3 24.8 26.5 24.6 18.6 17 .1 23.6 
May '81 35.8 30.5 23.8 21.2 19.2 18.2 24.8 
Jul '81 29.4 25.2 21.6 20.4 18.9 14.8 21.7 
Sep '81 17.5 17.1 16.5 15.7 15.9 14.7 16.2 
Nov '81 7.8 8.8 7.5 8.0 7.2 6.7 7.6 

Mean 27.5 23.3 20.1 18.7 17.3 15.5 

X304C Jan '80 31.7 24.9 26.8 25 .o 25.3 19.8 25.6 
Mar '80 38.1 35.9 29.7 28.9 26.S 23.7 30.4 
May '80 39.3 35.9 33 .2 30.6 27 .4 21. 7 31.3 
Jul '80 37.8 30.4 28.2 29.0 28 .6 24.3 29.7 
Sep '80 29.2 26.8 28.3 24.7 16.7 . 15.1 23.4 
Nov '80 22.2 20.0 16.8 14. 0 15.0 12.1 16.7 
Jan '81 33.3 28.0 26.7 23.2 20.0 18.7 25 .o 
Mar '81 36.6 29.S 27.7 26.4 25 .8 23.8 28.3 
May '81 40.3 33.9 33.8 31.8 26.l 22.1 31.3 
Jul '81 37.5 31.8 30.3 27 . 7 22.4 21.6 28 .5 
Sep '81 29.7 21.2 19.6 21.4 16.4 16.5 20.8 
Nov '81 15 .9 15.7 13.8 13.9 11.9 12.3 13.9 

Mean 32.6 27 . 8 26.2 24.7 21.8 19.3 
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Appendix 12· Kernel fusarium of two hybrids under different 
population densities over 12 bimonthly plantings. 

(unit : %) 

Population density (1,000 plants/ha) 
Hybrid Month 

so 75 100 125 150 200 Mean 

H763 Jan '80 3.6 4.2 5.1 9.3 7.2 10.5 6.6 
Mar '80 o.3 1.1 0.6 1.4 4.2 s.2 2.1 
May '80 0.3 1.0 0.7 o.6 1.5 2.1 1.0 
Jul '80 o.4 0.9 1.6 0.8 0.9 2.8 1.2 
Sep '80 2.4 3.1 2.7 4.2 3.4 4.1 3.3 
Nov '80 5.6 6.5 12.9 14.7 10.4 15.0 10.8 
Jan '81 0.4 o.6 1.1 1.1 1.0 1.8 1.0 
Mar '81 0.3 o.3 0.3 0.5 1.7 3.0 1.0 
May '81 1.0 0.8 1.6 2.2 1.3 1.7 1.4 
Jul '81 0.3 0.8 o.s 1.1 1.1 0.8 0.8 
Sep '81 0.9 0.8 0.8 1.2 0.7 0.1 0.8 
Nov '81 1.4 2.5 4.1 2.7 2.8 3.0 2.8 

Mean 1.4 1.9 2.7 3.3 3.0 4.2 

X304C Jan '80 1.6 3.6 2.1 4.0 2.5 4.8 3.1 
Mar '80 0.2 o.o o.o 0.8 1.0 1.4 0.6 
May '80 o.o 0.3 0.1 0.9 1.1 1.6 0.6 
Jul '80 o.o 0.2 0 .2 0.1 0.3 0.5 0.2 
Sep '80 1.0 0.8 0.6 0.8 1.5 0 .8 o.9 
Nov I 80 1.4 1.9 2.5 2.3 2.1 2.8 2.1 
Jan '81 0.5 0.2 0.8 0.6 1.0 0.7 0.6 
Mar I 81 0.2 0.2 0.4 0.5 0.7 o.s 0.4 
May '81 
Jul 1 81 

o.o 
o.o 

0.4 
0.4 

o.o 
o.3 

0.4 
0 .2 

0.4 
0.7 

1.0 
o.s 

0. 4 
o.3 

Sep '81 0.7 0.9 1.2 o.7 1.3 1.3 1.0 
Nov '81 1.7 1.3 1.6 1.7 1.5 1.9 1.6 

Mean 0,6 0,8 0,8 1,1 1,1 1,5 
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Appendix 13 . Regression equation of yields, plant characters, and 
yield components with population densities. 

2Hybrid EquationCh, r acters r 

in yi eld H763 Y= 6. 46 + 0 .00023X. 0.01 
X304C Y= 6.84 + 0.0067X 0.29 

~·:-.·: 
yield H763 Y= 5.02 + O.Ol9X 0.93 

X304C Y= 5.70 + 0.0202.X 0. 93-lri: 
~':-;': 

to tas seling H763 Y= 54.21 + o.onx 0.95 
X304C Y= 56.08 + 0.0080X 0.78-l: 

..,--,. 
he ight H763 Y= 251.29 - 0.076X 0. 97:.~:n t 

X304C Y= 260.85 - 0.087X 0.92 .,....... 
E t' h i ght H763 Y= 109.46 + 0.039X 0. 9l~'ri: 

X304C Y= 114.48 + 0.043X 0.99 
-1:--k 

a:r:ea index H763 Y= 1.54 + 0.038X 0. 99~·~~ 
X304C Y= 1.44 + 0.036X 0.99 ..,....,.. 

stom diameter H763 Y= 2.24 - 0.0046X 0. 93:.::.: 
X304C Y= 2.53 - 0.0056X o.96 

..,...,.. 
Cob l ng th H763 Y= 18.55 - 0 .032.X 0. 91~~~ 

X304C Y= 18,85 - o.o37X 0.95 

Ftllcd ear l ength H763 Y= 13.65 - 0 .029X o.s5::~: 
X304C Y= 15.59 - 0.031X 0.94 

...,-,. 

Number of kerne l H763 Y= 13.14 - O.Ol3X 0. 94:.::.: 
X304C Y= 13.34 - 0.0076X 0.94rows ...,_,.. 

Number o f kernels H763 Y= 29.29 - 0.076X 0. 90:~~ 
po:r raw X304C Y= 35.24 - 0.084X 0.95 ..,....,.. 
100 ke'tnels weight H763 Y= 28.32 - O.OOllX 0. 95:.~.: 

X304C Y= 26.90 - O.Ol8X 0.90 
.......,.. 

Kcrnl?l fu sarium H763 Y= 0.63 + O.Ol8X 0. 93:.::.: 
X304C Y= 0.32 + 0.0057X 0.96 

...._,. 
Barrennes s H763 Y= -1.34 + 0.19X 0. 97 :.;.: 

X304C Y= -6.66 + 0 .13X. 0.97 

Significant at s % level* 
-!:* Si gnificant at l % l evel 



Appendix 14. Multiple regression of yields and their components with growing degree days. 

Characters Hybrids Equation r2 

Grain yield H763 y = -39.64 + O.Ol9X1 + o.02ox 2 0.39 

X304C y = -34.12 + O.Ol8X1 + O.Ol7X 2 0.37 

Stover yield H763 y = -1.68 - O.OllXl + o.011x2 0.46 

X304C y = -13.46 + o.ooo3x1 + o.o14x2 0.44 

Total dry matter 
yield 

H763 

X304C 

y 

y 
= -41.33 + o.ooosx1 + o.o31x 2 
= -47.71 +O.Ol9X1 +0.031X 2 

0.40 

0.41 

Plant height H763 

X304C 

y = 242.87 

Y = 193.84 

0.45X1 + 0.23X2 

- o.55x1 + o.32X
2 

-;':
0.63 

~·,
0.57 

.._,, 

Filled ear length H763 

X304C 

y 

y 

= -5.48 

= -6.49 

0.0078X1 + 0 .Ol4X2 
o.0025x1 + 0 .Ol3X

2 

0.52 
·k 

0.49 

Number of kernels/ 
row 

H763 

X304C 

y 

y 
= -21~ .39 + 0 .0024X1 + 0.027X 2 

-21.37 - 0 .0038X1 = + o.032X 2 

0.35 
··k 

0.50 

xl and x
2 

are growing degree days from planting to tasseling and from planting 

to harvesting, respectively. 

N 
0 
CJ\ 
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Appendix 15. Effects of growing degree days on yields and their 
components. 

Growing degree Growing degree 
Characters Hybrids days from planting days from planting 

to tasseling to harvesting 

Grain yield 

Stover yield 

Total dry matter 
yield 

Plant height 

Filled ear 
length 

Number of 
kernels/row 

H763 

X304C 

H763 

X304C 

H763 

X304C 

H763 

X304C 

H763 

X304C 

H763 

X304C 

0.18 

0.14 

-0.18 

0.01 

o.os 
0.09 

-0.38 

-0.28 

-0.12 

-0.03 

0.02 

0.02 

0.64 

0.58 

0.62 

0.67 

0.65 

0.64 

0.62 

0.73 

0.69 

0.70 

o.s9 

0.12 



Appendix 16. Average days to tasseling and plant characters of nonnal and 
bm3 mutant over 2 seasons . 

Hybrids 

Days to 
tasseling (day) 

Leaf area 
index 

Number of 
stem nodes 

Stem 
diameter (rrun) 

Normal bm3 Normal bm3 Normal bm3 Normal bm3 

Ant2 x B37 47.4 47.0 4.53 4.14 12. 7 12. 7 24.3 22.4 

Ant2 x Hi27 49.1 47 . 9 4.51 4.48 13.0 12.s 24.3 23.3 

Ant2 x Hi28 48.0 47.6 4.61 4.18 13.2 13.3 24.0 22.4 

Ant2 x Mol7 46.9 46.9 4.30 4.03 12.7 12.3 23.3 22.3 

Ant2 x Oh545 46.1 45.6 4.43 4.05 13.l 12.4 23.5 22.1 

B37 X Hi27 46.6 L16 0 8 4.06 4.31 12.1 12.1 23.l 24.1 

B37 x Hi28 46.1 46.4 3.94 4.06 12.6 12.8 23.9 23.1 

B37 X Mol7 45 . 6 45.9 3.93 3.89 12.0 11.1 24.8 22.0 

B37 X Oh545 45.5 45.0 3.90 3.80 11.9 11.3 24.1 22.8 

Hi27 x Hi28 48.5 47.9 4.09 4. 2l, 13.0 12.9 24.1 23.3 

Hi27 x Mol7 46.9 46 . 9 4.05 4.10 12.4 11.5 23.5 23.1 

Hi27 x Oh545 l16 .3 45.6 4 . 34 4.20 12.5 11.9 24.6 23.4 

Hi28 x Mol7 45.9 46 .3 3.92 4.00 13.1 12.2 23.6 22.8 

Hi28 x Oh545 45.5 45.0 4.00 3.99 12.6 12.1 24.6 22.6 

Mol 7 x Oh545 l15 .1 44 . 9 3.86 3.74 11.8 10.4 23.4 22.4 

Mean 4w.6 46.4 4.16 4.08 12.6 12.1 23.9 22.8 
N 
0 
00 



Appendix 17. Average yield components and ear height of nonnal and bm3 mutant corn 
over 2 seasons. 

Number of kernels Number of Ear height ( cm) per row kernel rowsHybrids 

Nonnal bm3 Nonnal bm3 Nonnal bm3 

Ant2 x B37 35.8 31.2 13.8 14.2 120 128 

Ant2 x Hi27 35.7 28.3 13.9 14.3 140 129 

Ant2 x Hi28 39 0 l1 34.0 13.7 13. 7 136 132 

Ant2 x Mol7 43.0 35 .Li 13.3 12.8 116 111 

Ant2 x Oh545 39.2 36.8 14.2 13.9 114 103 

B37 x Hi27 32.2 28.6 15.6 15,5 116 106 

B37 x Hi28 35.3 32,5 13,9 13.9 126 121 

B37 X Mol7 37.4 33.9 13.5 12.5 98 98 

B37 x Oh545 35.6 33.3 13.4 '13.6 83 79 

Hi27 x Hi28 31.9 26.4 15.9 15.S 142 125 

Hi27 X Mol7 36.6 29,5 14.3 13.4 120 109 

Hi27 x Oh545 34.4 32.4 14,8 14. 9 105 100 

Hi28 x Mol7 39.0 33.8 13.8 12.6 124 109 

Hi28 X Oh545 38.4 32.7 14.5 13.4 113 96 

Nol7 X Oh545 39.4 36.6 12.6 12.3 92 79 

Mean 36.9 32,3 14.1 13.8 116 108 
N 
0 
\0 



Appendix 18. Combined analysis of combining ~bility of nonnal and brn3 mutant corn 
for days to tasseling and yield components over 2 seasons. 

Days to tasseling Filled ear length Number of kernels/row 
Source df df 

Nonnal brn3 Nonnal brn3 Nonnal brn3 

GCA 5 
1':1': 

7.04 
1':·i': 

5 .61 5 
#'~': 

10.27 
1':·k 

18.29 
"i':-.':

45.76 
..~': 

46.03 

SCA 9 
;':;':

0.38 0.10 9 0.79 1.37 
#': 

1.95 3.69 

Season (S) 1 
;':,':

33.07 
~·:"i': 

19.20 1 
#':1': 

53. 77 
·-1:-;':

119.85 
..,........ 
"""""" 287.08 

..,......,.. 
465.74"" 

GCA x s 5 0.41 
...,., 1': 

0.29 5 1.11 0.06 5.04 4.70 

SCA x s 9 0.24 0.12 9 0.01 0.29 3.83 1.69 

Error 84 0 .10 0.13 28 o.62 o.58 2.78 2.76 

~·: Significant at 5 i. probability level. 
;':--.': Significant at 1 i. probability level. 

N.... 
0 
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Appendix 19. 

Estimates of SCA and GCA effects for days to tasseling
of normal and bm3 mutant corn over 2 seasons. 

SCA effects GCAInbreds 
effectsB37 Hi27 Hi28 Mol7 Oh545 

Ant2 o.14 0.36 0.08 -0.14 -0.43 1.08 
a.as -0.08 0.14 -0.01 -0.11 o.79 

B37 -0.58 -0.24 o.17 0.51 -0.48 
-0.20 -0.11 -0.01 0.27 -0.21 

Hi27 0.61 -0.11 -0.27 1.05 
0.39 -0.01 -0.11 0.79 

Hi28 -0.27 -0.18 0.21 
-0.17 -0.26 0.32 

Mol7 0.36 -0.70 
0. 21 -0.27 

Oh545 -l.17 
-1.43 

Upper and lower values are normal and bm3, respectively. 
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Appendix 20. Estimates of SCA and GCA effects for plant height 
of normal and bm3 mutant corn over 2 seasons. 

SCA effects 
GCAInbreds effectsB37 Hi27 Hi28 Mol7 Oh545 

Ant2 2.14 1.71 -7.04 -2.33 5.52 2.02 
6.86 -1.02 -8.55 1.64 1.08 3.74 

B37 -2.70 5.42 2.64 -7.51 -1.95 
0.20 1.92 -2.27 -6. 71 2.65 

Hi27 -0.64 -1.54 3.18 1.99 
-0.58 -1.02 2.42 0.52 

Hi28 2.33 -0.08 6.62 
2.83 4 .39 8.55 

Mol7 -1.11 -6.98 
-1.18 -9.26 

Oh545 -1. 70 
-6.20 

Upper and lower values are normal and bm3, respectively. 
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Appendix 21. 

Estimates of SCA and GCA effects for ear height of normal 
and bm3 mutant corn over 2 seasons. 

SCA effects GCA 
Inbreds effects 

B37 Hi27 Hi28 Mol7 Oh545 

Ant2 2.39 1.71 -6.20 -3.17 5.27 11.06 

6.58 -1.42 -2.29 -3.67 o.so 12.26 

B37 -0.70 4.02 -0.45 -5.26 -9.66 

-6.58 4.55 1.05 -5.61 -2.58 

Hi27 0.83 1.24 -3.08 10.41 

-0.33 2.80 5.52 6.92 

Hi28 0.33 1.02 14.81 

-0.70 -1.23 10.42 

Mol7 2.05 -7.84 

o.52 -8.83 

Oh545 -18. 78 

-21.18 

Upper and lower values are normal and bm3, respectively. 
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Appendix 22. Estimates of SCA and GCA effects for filled ear length 
of normal and bm3 mutant corn over 2 seasons. 

Inbreds 
B37 

SCA 

Hi27 

effects 

Hi28 Mol7 Oh545 

GCA 
effects 

Ant2 0.32 0.17 -0.28 0.44 -0.65 -0.17 
0.02 -0.24 o.58 -0.28 -0.07 0.03 

B37 -0.24 0.34 0.27 -0.69 -0.68 
0.28 0.40 0.27 -0.97 -1.15 

Hi27 -0.32 0.12 0.26 -1.48 
0 .12 -1.09 0.92 -1.49 

Hi28 -0.83 1.09 -0.33 
-0.07 -0.04 -0.83 

Mol7 -0.01 1.11 
1.16 o.n 

Oh545 1.55 
2.52 

Upper and lower values are normal and bm3, respectively. 
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Appendix 23. Estimates of SCA and GCA effects for number of kernels 
per row of normal and bm3 mutant corn over 2 seasons. 

SCA effects GCAInbreds effectsB37 Hi27 Hi28 Mo17 Oh545 

Ant2 -1.20 0.04 0.47 1.21 -0.51 2.15 
-1.56 -0.93 1.30 0.25 0.95 0.97 

B37 0.74 o.56 -0.18 0.08 -2.04 
0.99 1.29 0.24 -0.96 -o.ss 

Hi27 -1.50 0.39 0.32 -3.41 
-1.21 -0.53 l.69 -4.18 

Hi28 -0.53 1.00 -0.11 
0.17 -1.55 -0.61 

Mol7 -0.89 2.78 
-0.13 1.87 

Oh545 0.64 
2.49 

Upper and lower values are normal and bm3, respectively. 
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Appendix 24. Average grain and stover yields, and grain/stover ratio over 
2 seasons under normal and extended light conditions. 

Grain yield (T/ha) Stover yield (T/ha) Grain/Stover ratio 
Hybrids 

Nonnal Light Nonnal Light Nonnal Light 

Ant2 x Hi28 7 .71 5.57 7. 72 11.45 1.00 0.49 

Ant2 x Hi29 7.89 6.84 9.14 11.34 0.86 0.60 

Ant2 x Hi31 8.07 5.83 8.30 8.25 0.97 o. 71 

Ant2 x Mol7 7 .97 5.92 7.16 10.53 1.11 o.56 

Hi28 X Hi29 7 .61 5.48 8.34 9.66 0.91 0.57 

Hi28 x Hi31 6.46 5.83 7.34 7 .41 0.88 o.79 

Hi28 X Mol7 7.70 5.16 7.67 8.99 1.00 0.57 

Hi29 x Hi31 7.02 7 .20 7.87 8.38 0.89 0.86 

Hi29 x Mol 7 6. 95 5.13 6.65 6.74 1.05 0.76 

Hi31 X Mol7 6.41 5 .41 5.78 6.54 1.11 0.83 

B37 X Hi25 5.36 4.66 4.94 5.79 1.09 o.a1 

B37 X Mol7 6. 25 5.2~ 5.19 6.01 1.20 0.87 

Pi3369A 6.17 l,.57 6.41 6.52 0.96 0.10 

X304C 7.88 4.57 9.37 13.85 0.84 0.33 

Mean 7.10 5.53 7 .28 8.67 0 . 99 0.68 

N ..... 
°' 

j 

I 



Appendix 25. IAI, number of stem node and stem diameter under normal and 
extended light conditions. 

Hybrids 

Leaf area 
index 

Number of 
stem nodes 

Stem 
diameter (mm) 

Normal Light Normal Light Normal Light 

Ant2 x Hi28 4. 90 6.68 13.7 17 .o 24.1 27.5 

Ant2 x Hi29 5.00 6.94 14.5 18.0 24.4 28.1 

Ant2 x Hi31 4.83 6.40 13.5 15.2 24.4 25.0 

Ant2 x Mol7 4.65 6.72 13.2 15.8 23.5 26.4 

Hi28 x Hi29 4.65 6.21 14.4 17 .1 25.3 27.8 

Hi28 x Hi31 4.14 5.86 13.2 15.0 2~.o 26.8 

Hi28 x Mol7 4.08 5.83 12. 7 15.0 23.8 26.5 

Hi29 x Hi31 4.33 5.80 13.5 15.4 24.9 26.5 

Hi29 x Mol7 4.09 5.51 13.4 15.4 23.3 25.8 

Hi31 X Mol7 3. 91 5.15 12.6 14.2 23.5 24.1 

B37 X Hi25 3. 77 5.04 12.8 14.2 23.5 24.8 

B37 X Mol7 3.95 5.54 12.0 13.5 24.1 25.3 

Pi3369A 3.86 5.39 12.2 13.6 23.8 25.1 

X304C 4.74 6.92 14.0 17.7 27.5 29.8 

Mean 4.35 6.00 13.3 15.5 24.3 26.4 

N.... ....., 



Appendix 26. Combined analysis of variance for plant characters evaluated under 
normal and extended light conditions in different seasons. 

Mean squares 
Source df 

Plant height 

Daylength (D) 1 

Reps in D 6 

Seasons (S) 1 

S X D 1 

Error (b) 6 

Genotype (G) 13 

G X D 13 

G XS 13 

G X D X S 13 

Error (c) 156 

61645. 79 

693.96 

459L13 0 14 

1909 .45 

848.33 
........,... 

3912.23"" 
.,. 

397.28° 
... 

321.33° 

72.90 

179.94 

Number ofEar height stem nodes 

56261.16 279.69 

769.49 2.57 

26404.57 106.29 

1216.45 11.93 

578. 71 3.17 
..._... ...,.....,.. 

9520.51"" 18. 94"" 
..,.....,.. -•-•..

366. 99' ... 2.47"" 
...,...,..··-·· 557.57'"' 2.27"" 
.,. 

110.22 0.89° 

139.41 o.42 

Stern diameter 

250.76 

4.96 

1326.0l 
... 

63.22'' 

5.23 
...,_,... 

302.33"" 
.,. 

3.42'' 
.,.....,. 

4. 75"'' 

1.94 

1.74 

·:. Significant at 5 % probability level.
~b·. Significant at 1 % probability level. 

N .... 
CX> 

http:26404.57
http:56261.16


Appendix 27, Estimates of SCA effects of grain and stover yields, plant height and 
ear height under normal and extended light. 

Grain yield Stover yield Plant height Ear height 
Hybrids 

Normal Light Normal Light Nonna! Light Normal Light 

Ant2 x Hi28 

Ant2 x Hi29 

Ant2 x Hi31 

Ant2 x Mol 7 

Hi28 X Hi29 

Hi28 x Hi31 

Hi28 x Mol7 

Hi29 x Hi31 

Hi29 x Mol7 

Hi31 x Mol 7 

-0.37 

-0.18 

0.50 

0.05 

0.26 

-0.39 

0.49 

0.11 

-0.26 

-0.29 

-0.10 

0.30 

-0.59 

0.39 

-0.35 

0.12 

0.34 

0.62 

-0.57 

-0.16 

-o. 75 

0.36 

0.42 

-0.04 

-0.02 

-0.11 

0.89 

0.10 

-0.44 

· -o .41 

-0.03 

0.33 

-0.92 

0.62 

-0.01 

-0.41 

0.44 

1.03 

-1.35 

0.29 

-3.06 

2.73 

6.73 

-6.40 

0.69 

-6.06 

8.44 

-1.02 

-2.40 

0.35 

-5.54 

11.04 

2.50 

-8.00 

-1. 71 

-1.50 

8.75 

-4.79 

-4.54 

3.79 

-2.88 

4.21 

3.08 

-4.12 

0.63 

-2. 75 

5.00 

-2.29 

-2.54 

1.96 

-1.85 

12.65 

2.02 

-12.81 

-2.27 

-3.15 

7.27 

-7.40 

-2.97 

8.52 

N ..... 
"° 



Appendix 28. Estilnates of SCA effects of days to tasseling 1 number of stem node 
and stem diameter under nonnal and extended light conditions. 

Days to tasseling Number of stem node Stem diameter 
Hybrids 

Nonnal Light Nonnal Light Nonnal Light 

Ant2 x Hi28 

Ant2 x H i29 

Ant2 x H i31 

Ant2 x Mol 7 

Hi28 x Hi29 

Hi28 x Hi31 

Hi28 x Mol7 

Hi29 x Hi31 

Hi29 x Mol7 

Hi31 x Mol 7 

-0.02 

0.19 

-0.60 

0.44 

0.27 

0.23 

-0.48 

-0.06 

-0.40 

0.44 

-0.44 

l.35 

-2.27 

1.35 

O.l,O 

1.77 

-1.73 

-0.81 

-o. 9li 

1.31 

-0.15 

o.oa 

0.02 

o.os 

0.24 

0.06 

-0.15 

-0.25 

-0.07 

0.16 

-o.os 

0.38 

-0.36 

0.03 

o.13 

o.os 

-0.13 

-0.14 

-0.36 

o.46 

-0.21 

-0.17 

0.11 

0.21 

0.46 

-0.46 

0.21 

0.21 

-a.so 

0.08 

-0.31 

0.60 

-0.77 

O.L,B 

-0.27 

o.48 

0.10 

0.27 

-0.61 

0.02 

N 
N 
0 



Appendix 29· Estimates of SCA effects of yield components under normal 
and extended light conditions. 

Hybrids 
Filled ear length 

Number 
rows 

of kernel Number of l~ernels 
per row 

Normal Light Normal Light Nonnal Light 

Ant2 x Hi28 -1.07 -0.12 -0.38 0.23 -0.86 1.69 

Ant2 x Hi29 0.94 0.55 -0.18 -0.13 0.85 0.70 

Ant2 x Hi31 -0.73 -0.15 0.03 0.09 -0.90 0.66 

Ant2 x Mol7 0.85 -0.29 0.17 -0.19 o.91 -3.05 

Hi28 x Hi29 0.27 -0.58 -0.08 0.24 0.10 -3.07 

Hi28 x Hi31 o.43 -0.20 0.65 -0.28 0.28 -0.84 

Hi28 x Mol7 0.38 0.90 -0.19 -0.19 -0.12 2.22 

Hi29 x Hi31 0.16 o.50 -0.41 -0.15 -0.07 0.85 

Hi29 x Mol7 -1.37 -0.47 0.30 o.o4 -1.48 1.51 

Hi31 x Mol7 o.14 -0.15 -0.28 0.34 o.69 -0.68 

N 
N ..... 
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Appendix 30. Stover yield of 225 hybrids evaluated during 
3 different seasons. 

(unit T/ha) 

Hi26 Hi28 Hi29 Hi31 Hi33 Hi34 Tx601 Mean
F~ 
CIMMYT-A21 6.48 6.62 7. 91 6.51 5.32 5.66 6.27 6.40 
CIMMYT-TllES 7.91 8.24 6. 77 7.00 5.88 8.21 6.80 7.26 
Fla. 2AT-112 5.96 5.49 6.12 5.14 5.98 7.03 7.17 6.13 
Fla. 2AT-114 5.91 6.80 6.48 5.91 5.67 6.67 6.43 6.27 
Fla.2BT-54 5.74 5.79 6.49 4.62 5.06 6096 7.22 5.98 
H632A 7.07 7 . 41 9.04 6.34 6.22 7.81 7.86 7.39 
H632F 7.22 6.82 7.80 5.78 6.80 7.55 7.34 7.04 
H632G 6.18 6.52 7.32 6.01 6.10 6.34 6.81 6.47 
ICA 125 7.37 6.31 7.58 5.89 5 .95 6.73 6.07 6.56 
ICA 127 6.51 6.54 6.46 5.86 6.15 7.28 6.40 6.46 
·1cA 1210 7.66 6.43 5.48 6.66 6.24 7.26 5.94 6.52 
ICA 1221 7.63 8.02 6 .1 :! 5.8o 6.21 7.11 6.71 6.80 
ICA 1223 6.16 6.61 5. 71 5 .76 5.95 7.05 7.87 6.44 
INV138 5.94 5.90 6. 71 5.34 5 .61 6.46 6.31 6.04 
INV302 6.75 6.40 7 .23 5.07 5.04 7 .18 5.28 6.14 
INV443 5.92 6.29 5.52 5.69 5.60 7.32 6.13 6.07 
INV534 5.77 5.94 6.44 5.97 5. 91 7.55 6.33 6.27 
Minl DMR 5.62 6.83 5.75 6.11 5.59 7.10 6.97 6.28 
Pi4243 6.47 5 .61 5.55 4.36 5.43 6.79 6.46 5.81 
Pi4257 5.98 6.19 6.96 5.44 5.07 5.31 5.2s 6.03 
Pi4283 5.17 5.42 5.72 5.22 5.28 6.12 6.44 5.62 
Pi4287 5.66 5.33 6.12 4.16 4.46 5.65 6.86 5.46 
SR52-F 7.00 6.42 6.40 6.20 5.72 7.23 6.45 6.49 
SR52-M 6.37 6.02 6.38 5.79 5.73 7 .59 6.69 6.37 
Tuxpeno 7.27 5.37 6.58 5.01 5.05 7.05 6.44 6.11 
Tx602 6.53 6.94 5.96 6.17 5.16 7.46 5.58 6 .26 
77-4407 5.77 6.37 5.82 4.02 5.18 5.74 6.15 s.sa 
77-4412 4.82 5.52 6.05 4.55 6 . 06 6.02 6.04 5.58 
77-4441 5.27 6.00 5.80 3.43 6.29 7.22 6.41 5. 77 
77-4449 7.02 6.28 6.18 4.24 5.44 7 .20 6.06 6.06 
77-4544 5.36 6.23 6 . 66 6.46 5.15 7.23 5.92 6.22 

Mean 6.34 6.34 6.49 5.50 5.65 6.95 6.50 6.25 

H636 :5.53 H650 5.73 H763 : 6.23 H767: 6.15 
H823 :7.55 H824 6.95 Xl05A: 7 .1 4 X304C: 6.64 
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Appendix 31. Days to tasseling of 225 hybrids over 3 seasons. 

(unit day) 

Hi26 Hi28 Hi29 Hi31 Hi33 Hi34 Tx601 Mean 

CIMMYT-A21 56.8 56.3 57.3 56.3 55.2 61.3 61.2 57.8 
CIMMYT-TllES 59.3 59.2 58.5 57.5 55.7 62.2 62.0 59.2 
Fla. 2AT-112 55.8 54.0 56.3 55.0 53.3 59.3 56.8 55.8 
Fla.2AT-114 56.0 54.0 53.8 54.3 53.8 57.8 57.5 55.3 
Fla.2BT-54 57.7 55.7 54.8 56.2 51~.o 58.5 58.7 56.5 
H632A 59.8 59.2 58.3 58.2 54.8 61.7 60.5 58.9 
H632F 57.0 57.5 60.0 57.2 57.0 60.7 58.3 58.2 
H632G 57.7 58.5 57.2 55.3 56.0 56.2 58.0 57.0 
ICA L25 56.5 57.8 57.0 56.5 54.8 60.7 59.3 57.5 
ICA L27 56.7 56.8 58.5 56.3 56.5 60.7 59.8 57.9 
ICA L210 56.3 56.0 55.8 56.2 54.5 59.3 60.7 57.0 
ICA L221 58.2 56.5 57.8 57.8 55.3 59.7 60.5 57.0 
ICA L223 57.3 57.7 58.0 58.3 55.7 60.2 60.3 58.2 
INV138 56.5 55.3 55.3 55.0 54.0 58.8 56.5 55.9 
INV302 56.8 56.5 54.7 54.5 54.5 59.2 58.8 56.4 
INV443 53.8 55.2 54.7 55.3 52.5 56.7 57.8 55.1 
INV534 53.7 53.3 53.5 53.0 53.0 56.5 57.2 54.3 
MITll DMR 56.2 57.0 55.2 55.7 54.8 58.8 59.2 56.7 
Pi4243 55.5 53.7 55.0 55.5 52.7 57.5 58.3 55.4 
Pi4257 57.2 53.7 55.5 55.3 53.7 57.7 56.8 55.7 
Pi4283 56.3 56.7 54.7 56.8 53.5 57 ;5 56.5 56.0 
Pi4287 55.3 54.5 55.7 55.8 53.8 57.0 57.8 55.7 
SR52-F 56.3 56.0 57.0 55.7 54.5 58.0 58.0 56.5 
SR52-M 56.5 56.0 56.3 55.3 54.8 56.3 59. 7 56.4 
Tuxpeno 56.0 55.7 57.0 55.3 53.5 57.2 59.2 56.3 
Tx602 57.8 55.0 58.3 57.5 54.5 58.5 61.8 57.7 
77-4407 57.0 56.3 58.0 58.0 54.7 58.8 58.2 57.3 
77-4412 56.8 56.5 56.3 58.7 56.3 60.0 57.7 57.5 
77-4441 54.7 55.3 55.2 56.8 53.8 58.5 57.8 56 .0 
77-4449 56.0 55.5 56.0 55.8 54.8 58.7 57.5 56.3 
77-4544 55.3 55.5 55 .6 55.3 54.5 57.5 58.8 56.l 

Mean 56.6 56.0 56.4 56.2 54.5 58.8 58.8 56.7 

H636 :54.3 H650 :52.5 H763 :56 .O H767 :55.7 
H823 :57.0 H824 :59.3 Xl05A :57.8 X304C :59. 2 
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Appendix 32. Maturity of 225 hybrids in March planting 

Hi26 Hi28 Hi29 Hi31 Hi33 Hi34 Tx601 Mean
F~ 
ClMMYT-A21 2.5 2.5 4.0 2.5 1.5 4.0 3.0 2.9 
CIMMYT-TllES s.o 4.5 3.0 4.0 3.5 5.0 3.5 4.1 
Fla.2AT-112 2.5 2.5 3.0 2.5 2.0 3.0 3.0 2.6 
Fla. 2AT-114 3.0 4.0 3.0 2.0 1.5 4.0 4.5 3.1 
Fla.2BT-54 3.5 4.0 3.0 3.5 3.0 4.0 s.o 3.7 
H632A 5.0 5.0 5.0 5.0 3.0 5.0 s.o 4.7 
H632F 5.0 3.5 4.5 2.5 2.s s.o 3.0 3.7 
H632G 3.5 3.5 3.5 3.5 3.0 3.5 3.0 3.4 
ICA 125 3.5 3.5 2.0 2.0 1.5 4.5 3.5 2.9 
ICA 127 5.0 4.5 4.0 3.5 4.0 4.5 3.5 4.1 
I CA 1210 5.0 3.0 3.5 2.5 2.0 4,5 3.0 3.4 
ICA 1221 5.0 5.0 s.o 3.5 4.0 4.5 5,0 4.6 
ICA 1223 4.5 5.0 3.5 3.5 2.5 5.0 2.5 3.8 
INV138 3.0 3.0 3.5 1.0 2.5 3.0 3.5 2.8 
INV302 4,0 1.5 4.0 2.0 1.5 3.5 1.0 2.5 
INV443 2,5 3,5 2,5 4.0 2.5 3,5 3.0 3.1 
INV534 3.0 3,5 2.5 2.5 2.5 3.5 3.5 3.0 
MITll DMR 1.5 1.5 1.5 2,5 2.5 2.5 2,5 2.1 
Pi4243 3,0 2.5 2.5 1.0 3.0 3,0 3,0 2.6 
Pi4257 1.5 1.0 2.0 3.0 2.0 2.5 4.5 2.4 
Pi4283 2.5 3.0 3,0 3.5 2.0 3.0 3.0 2.9 
Pi4287 3,0 1.5 2.0 1.5 2.5 3.5 4 .0 2.6 
SR52-F 4.5 4 .5 4.5 5,0 3.0 5.0 3.5 4.3 
SR52-M 5.0 4.0 3.0 3.5 3.0 5.0 5.0 4.1 
Tuxpeno 4.5 4.0 2.0 2,5 3.5 4.5 4.5 3.6 
Tx602 4.5 3.5 4.0 3.5 1,5 4.5 3.5 3.6 
77-4407 3.5 4.5 2.5 2.5 2.5 3.5 4 .0 3.3 
77-4412 3.0 4. 5 3.5 3.0 1.5 4.5 2, 5 3.2 
77-4441 3.0 3.5 4.5 2.0 3.5 3.0 4 .5 3.4 
77-4449 5.0 4 .0 3.0 2.5 2.5 5.0 3.5 3.6 
77-4544 2.0 1.5 3.5 3.5 3.0 4.5 3.0 3.0 

Mean 3.6 3,4 3.3 2.9 2.6 4.0 3.5 3.3 

H636 2.0 H650 2.0 H763 .. 3.5 H767 .. 2.0 
H823 4.5 H824 s.o XlOSA: 4.5 X304C: 3.0 

~·: 1 Very ear ly . 
2 Early. 
3 Med i um. 
4 Late . 
5 Ver y l a t e . 
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Appendix 33, Average plant height of 225 hybrid evaluated 
during 3 seasons. 

(unit cm) 

Hi26 Hi28 Hi29 Hi31 Hi33 Hi34 Tx601 Mean
F~ 
CIMMYT-A21 254 249 267 260 251'.1 247 260 256 
CIMMYT-TllES 256 250 267 255 231 245 256 251 
Fla,2AT-112 241 225 241 231 221 245 239 235 
Fla .2AT-114 229 241 232 234 223 239 250 235 
Fla.2BT-54 260 244 268 246 246 258 267 255 
H632A 259 261 269 257 252 256 268 260 
H632F 256 260 282 259 255 264 265 263 
H632G 257 259 262 263 256 265 270 262 
ICA L25 269 265 270 260 247 269 256 262 
ICA L27 246 248 265 253 238 258 258 252 
ICA L210 258 244 254 253 247 257 259 253 
ICA L22l 251 261 261 260 241 261 269 258 
ICA L223 261 264 234 262 250 251 278 257 
INV138 255 267 266 254 251 267 267 261 
INV302 253 255 257 240 233 258 253 250 
INV443 235 238 240 236 220 245 241 236 
INV534 238 231 239 227 223 235 239 233 
MITll DMR 251 252 255 255 247 251 262 253 
Pi4243 251 242 255 235 240 258 253 248 
Pi4257 259 233 250 235 237 240 269 246 
Pi4283 235 241 255 244 240 ·241 258 245 
Pi4287 228 224 241 223 226 231 240 231 
SR52-F 254 263 250 250 239 251 268 254 
SR52-M 258 256 254 251 245 257 261 255 
Tuxpeno 254 240 250 244 239 250 257 248 
Tx602 262 250 260 256 235 254 241 251 
77-4407 234 233 244 218 228 234 244 233 
77-4412 228 232 243 210 230 225 249 231 
77-4441 228 236 240 213 230 243 245 234 
77-4449 228 246 242 224 230 250 250 239 
77-4544 254 252 270 249 254 277 259 259 

Mean 248 247 254 244 239 251 256 248 

H636 .. 238 H650 239 H763 : 239 H767 : 242 
H823 251 H824 257 X105A : 249 X304C: 243 
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Appendix 34. Average ear height of 225 
during 3 seasons. 

hybrids evaluated 

(unit : cm) 

Hi26 Hi28 Hi29 Hi31 Hi33 Hi34 Tx601 MeanF~ 
CIMMYT-A21 120 127 138 116 120 122 124 124 
CIMMYT-TllES 129 124 134 114 106 129 121 122 
Fla.2AT-112 106 103 106 98 87 114 106 103 
Fla.2AT-114 101 111 103 99 93 108 112 104 
Fla.2BT-54 119 119 127 111 109 129 128 120 
H632A 128 129 132 117 115 127 126 125 
H632F 114 131 144 120 115 126 132 126 
H632G 126 126 120 121 117 132 128 124 
ICA L25 126 133 138 117 112 137 116 125 
ICA L27 108 121 122 110 102 126 115 115 

· ICA L210 126 120 113 114 113 119 119 117 
ICA L221 113 126 121 110 108 123 121 117 
ICA L223 120 134 115 112 111 116 131 120 
INV138 125 127 123 115 115 131 123 123 
INV302 120 128 120 110 106 127 126 120 
INV443 103 115 110 102 91 114 102 105 
INV534 113 102 118 100 99 111 102 106 
MITll DMR 121 127 129 117 111 120 125 121 
Pi4243 115 115 114 98 97 122 112 110 
Pi4257 114 104 110 98 102 110 117 107 
Pi4283 103 119 116 100 104 .115 114 110 
Pi4287 103 110 109 96 98 107 111 105 
SR52-F 114 124 110 109 103 120 120 114 
SR52-M 116 117 114 109 109 120 116 115 
Tuxpeno 123 117 122 112 110 132 121 119 
Tx602 123 114 121 116 105 126 109 116 
77-4407 108 113 112 94 106 118 113 109 
77-4412 105 111 112 89 104 106 118 106 
77-4441 107 116 108 91 107 119 106 108 
77-4449 105 117 111 99 106 117 110 109 
77-4544 108 117 126 103 105 131 112 114 

Mean 115 119 119 107 106 121 117 115 

H636 .. 99 H650 : 110 H763 :107 H767 :103 
H823 : 118 H824 : 124 XlOSA: 108 X304C: 106 
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Appendix 35. LAI of 225 hybrids in March planting. 

Hi26 Hi28 Hi29 Hi31 Hi33 Hi34 Tx601 MeanF~ 
CIMMYT-A21 4.32 3.76 3.86 4.34 4.19 4.50 3.87 4.12 
CIMMYT-nlES 4.81 4.38 4.30 4.37 4.38 5.10 4.00 4.48 
Fla.2AT-112 4.38 3.76 4.01 4.15 4.16 4.96 3.62 4.15 
Fla. 2AT-114 4.17 4.16 3.94 3.96 4.07 5.48 3.97 4.25 
Fla.2BT-54 4.24 3.73 3.48 3.85 3.49 4.65 3.99 3.92 
H632A 4.90 4.37 4.64 4.47 4.33 5.28 4.53 4.65 
H632F 4.71 3.99 4.54 4.36 4.25 5.53 4.10 4.49 
H632G 4.48 4.64 4.41 4.54 4.15 4.60 4.24 4.43 
ICA 125 4.53 4.65 4.28 4.34 4.53 5.40 4.20 4.56 
ICA 127 4.30 4.14 4.07 4.09 4.41 5.43 3.91 4.33 
ICA 1210 4.47 4.24 4.09 4.01 4.31 4.89 4.34 4.33 
ICA L221 4.82 4.30 4.24 4.31 4.29 5.37 4.49 4.54 
ICA L223 4.91 4.54 4.03 4.50 4.19 5.01 4.26 4.50 
INV138 4.56 4.16 5 .96 3.99 3.78 4.36 3.81 4.09 
INV302 4.38 4.40 3.74 4.14 3.66 5.34 3.92 4.22 
INV443 4.33 4.30 4.11 4.15 3.99 4.74 3.88 4.21 
INV534 4.40 3.56 3.43 3.55 3.89 4.81 3.85 3.93 
MITll DMR 3.93 3.98 3.84 3.56 3.89 4. 71 3.78 3.95 
Pi4243 3.96 3. 90 3.56 3.64 4.00 4.38 3.55 3.85 
Pi4257 3.91 3.67 4.06 3.95 3.65 4.13 3.95 3. 90 
Pi4283 4.54 4. 30 4.22 4.06 4.51 4.49 3.79 4.27 
Pi4287 4.44 3.80 3.92 3.74 3.76 4.29 4.29 4.03 
SR52-F 4.58 4.56 4.45 4.53 4.25 5.03 4.19 4.51 
SR52-M 5.22 4.67 4.29 4.46 4.38 5.47 4.20 4.67 
Tuxpeno 4.02 3.46 3.55 3.43 3.22 3.83 3.44 3.56 
Tx602 4.32 4.21 4.00 3.83 3.78 4.56 3.35 4.00 
77-4407 4.50 4.30 3.87 3.47 4.33 4.78 4.17 4.20 
77-4412 3.98 4.30 4.37 3.49 4.13 5.03 4.00 4.18 
77-4441 3.94 4.11 4.04 3.46 3.87 4.98 3.75 4.02 
77-4449 3.82 3.99 4.07 3.78 3.88 4.82 3.64 4.00 
77-4544 4.65 3.75 3.87 3.69 3.76 4.61 3.60 3.99 

Mean 4.40 4.13 4.04 4.01 4.05 4.86 3.96 4. 21 

H636 3.57 H650 3.74 H763 : 4.18 H767 .. 3.83 
H823 4.26 H824 5.03 XlOSA: 4.52 X304C: 3.80 
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Appendix 36. Number of stem node of 225 hybrids in March planting. 

Hi26 Hi28 Hi29 Hi31 Hi33 Hi34 Tx601 Mean 

CIMMYT-A21 14.1 14.5 15.3 13.4 14.0 13.9 16.6 14.5 
ClMMYT-TllES 15.4 14.5 15.1 14.8 13.5 14.1 16.6 14.9 
Fla2AT-112 13.5 13.4 14.3 13.5 12.2 13.8 15.5 13.7 
Fla.2AT-114 13.9 13.3 13.7 13.9 13.3 13.9 15.3 13.9 
Fla.2BT-54 14.0 12.9 13.7 13.5 13.l 13.7 15.6 13.8 
H632A 13.9 14.8 14.2 1"4.3 · 13.0 14·.4 16.0 14.3 
H632F 14.2 14.2 15.8 14.3 13.3 13.8 14.9 14.3 
H632G 13.5 13.7 13.7 13.5 13.6 13.4 15.6 13.8 
ICA 125 13.9 15.1 14.0 14.9 13.4 13.7 15.5 14.3 
ICA 127 13.7 14.0 14.6 14.4 13.3 13.5 16.1 14.2 
ICA 1210 13.9 13.9 14.1 13.9 12.9 13.5 15.6 14.0 
ICA L221 13.9 13.8 14.4 13.9 12.9 13.6 15.2 13.9 
ICA 1223 13.9 14.1 14.3 14.5 13.1 14.2 16.1 14.3 
INV138 13.9 13.1 14.1 13.6 12.6 13.2 15.o 13.6 
INV302 13.9 13.5 14.3 13.5 13.1 14.6 15.3 14.0 
INV443 13.0 12.4 13.6 13.5 11.4 13.0 14.4 13.0 
INV534 13.1 13.5 13.8 13.4 12.6 13.1 14.7 13.4 
MIT11 DMR 13.9 12.9 14.0 13.4 13.4 13.8 14.4 13.7 
Pi4243 13.8 12.8 13.8 13.4 12.7 13.6 15.0 13.6 
Pi4257 13.3 13.7 13.4 13.8 13.2 13.4 14.5 13.6 
Pi4283 13.5 13.7 14.4 13.5 12.4 13.0 15.l 13.6 
Pi4287 13.2 13.3 14.2 13.8 13.4 14.1 15.S 13.9 
SR52-F 13.5 13.0 13.6 13.4 12.4 13.5 15.3 13.5 
SR52-M 12.7 13.1 13.6 13.0 12. 9 13.2 15.2 13.4 
Tuxpeno 14.0 13.9 14.7 14.5 13.4 14.0 15.8 14.3 
Tx602 14.5 13.9 15.8 14.8 13.7 15.0 15.5 14 . 7 
77-4407 13.0 13.2 14.4 13.9 13.2 13.7 14.8 13.7 
77-4412 13.1 13.5 13.8 13.2 13.S 13.6 15.0 13. 7 
77-4441 14.0 14.1 14.5 13.3 13.0 14.2 15.2 14.0 
77-4449 14.0 13.7 14.5 13.3 13.3 13.4 14.6 13.8 
77-4544 13.S 14.2 14. 6 14.0 13.0 13 .8 15.5 14.1 

Mean 13.7 13.6 14.3 13.8 13.0 13.7 15.3 13.9 

H636 13.4 H650 13.1 H763: 13.4 H767 : 13.7 
H823 13.3 H824 13.8 XlOSA: 13.7 X304C : 13.4 
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Appendix 37. Stem diameter of 225 hybrids in March planting 

(unit : mm) 

Hi26 Hi28 Hi29 Hi31 Hi33 Hi34 Tx601 MeanF~ 
CIMMYT-A21 24.5 22.5 22.5 22.5 23.0 23.0 25 .5 23.4 
CIMMYT-TllES 24.0 23.5 25.0 24.5 22.0 23.0 24.0 23.7 
Fla.2AT-112 22.5 22.0 22.5 22.5 24.0 23.0 22.0 22.6 
Fla. 2AT-114 24.0 23.0 23.0 23.0 23.0 24.5 24.0 23.S 
Fla. 2BT-54 23.5 22.5 23.5 21.5 22.0 23.S 23.0 22.8 
H632A 26.0 23.5 25.0 25.0 23.0 24.0 27.0 24.8 
H632F 27.0 21.5 27.0 25 .o 23.0 25.5 23.S 24.6 
H632G 25.0 27.0 22.5 24.5 22.0 24.5 24.0 24.2 
ICA L25 26.0 26.0 23.5 24.5 23.5 23.0 23.5 24.3 
ICA L27 23.5 22.5 23.0 22.5 22.5 23.0 22.0 22.7 
ICA L210 23.5 21.5 22.0 23.0 22.0 21.5 24.0 22.5 
ICA L221 24.5 24.0 22.0 23.5 23.5 24.0 24.5 23.7 
ICA L223 25.5 24.5 23.0 24.5 22.5 24.0 25.0 24.1 
INV138 23.5 23.0 23.0 23.0 22.5 24.0 22.5 23.1 
INV302 22.5 23.5 23.S 23 .s 21.5 24.0 24.5 23.1 
INV443 23.S 22.5 22.0 24.S 20.5 22.0 23.5 22.6 
INV534 24.5 21.0 21.0 21.5 20.0 22.0 23.0 21.9 
MITll DMR 22.5 22.0 22.0 20.s 21.5 21.0 21.5 21.6 
Pi4243 24.5 22.5 23.0 21.5 22.0 24.0 23.0 22.9 
Pi4257 22.0 22.0 26.5 23.5 22.0 22.5 23.5 23.1 
Pi4283 25.0 24.S 23.5 24.0 25 ;o 23.0 24.5 24.2 
Pi4287 25 .o 23.0 23.5 23.0 23.0 24.5 23.5 23.6 
SR52-F 23.5 23.5 24.5 25 .5 22.0 24.5 23.S 23.9 
SR52-M 24.0 24.0 23.0 24.0 23.0 23.5 23.0 23.5 
Tuxpeno 26.0 24.0 23.5 23.0 22.5 24.0 25.5 24.1 
Tx602 23.5 23.S 24.0 23.5 21.0 23 .0 21.5 22.9 
7704407 23.0 22.0 22.s 22.0 22.s 22.5 23.5 22.6 
77-4412 21.0 23 .s 23.5 21.5 22.0 23.5 22.0 22.4 
77-4441 23.5 24.0 24.5 21.5 23.0 23.S 23.0 23.3 
77-4449 23.0 23.0 24.5 23.S 22.s 25.0 23.0 23.5 
77-4544 26.0 23.5 24.0 24.5 21.0 23.0 22.0 23 .4 

Mean 24.1 23.2 23.4 23.2 22.4 23.4 23.5 23.3 

H636 : 22.0 H650 : 24.U H763 : 23 .O H767 : 24.0 
H823 : 21.5 H824 : 24 .s Xl05A: 24.0 X304C: 24.0 
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Appendix 38. Average rust ratings of 225 hybrids evaluated during 
3 different seasons. 

(Scale:1-7) 

Hi26 Hi28 Hi29 Hi31 Hi33 Hi34 Tx601 Mean
F~ 
CIMMYT-A21 2.3 2.3 2.7 3.7 3.0 2.5 1.8 2.6 
CIMMYT-TllES 2.5 2.0 2.5 3.0 2.5 2.0 1.8 2.3 
Fla.2AT-112 4.3 4.0 3.7 6.0 4.3 2.8 3.2 4.1 
Fla.2AT-114 2.8 3.8 3.3 5.0 4.3 2.2 2.2 3.4 
Fla. 2BT-54 3.3 2.8 3.2 4.8 3.8 3.0 3.3 3.5 
H632A 3.2 2.7 3.0 4.0 3.5 2.2 2.8 3.1 
H632F 2.7 2.3 3.8 5.2 2.5 2.2 3.3 3.1 
H632G 3.2 4.3 4.5 4.8 4.2 2.8 3.7 3.9 
ICA L25 3.7 3.7 3.7 4.5 3.8 3.5 2.6 3.6 
ICA L27 3.2 3.5 2.5 4.7 4.3 2.3 2.7 3.3 
,ICA L210 2.8 2.5 3.5 4.3 4.0 2.3 2.2 3.1 
ICA 1221 3.2 2.7 2.8 4.0 3.0 2.8 2.3 3.0 
ICA 1223 3.3 2.3 3.0 4.8 4.2 2.2 2.5 3.2 
INV138 3.7 3.2 3.7 5.2 4.0 2.5 2.7 3.6 
INV302 2.8 2.2 3.2 4.3 5.0 2.5 2.5 3.2 
INV443 3.3 2.2 3.5 3.2 3.7 2.2 2.2 2.9 
INV534 4 .2 2.8 3.3 4.8 2.7 2.3 2.2 3.2 
MIT11 DMR 3.0 2.3 2.8 4.3 3.5 3.0 2.5 3.1 
Pi4243 3.5 4.2 4.0 6.0 4.5 3.2 4 .0 4.2 
Pi4257 4.0 4.8 3.8 4.8 4.5 3.3 3.5 4.1 
Pi4283 3.7 3.5 4.3 4 . 5 4.~ 3 . 3 3.8 4.0 
Pi4287 4 .3 4.5 4.3 5.3 5.2 4.0 3.5 4.5 
SR52-F 2.8 2.7 3.5 4.2 3.8 2.5 3.3 3.3 
SR52-M 2.7 3.0 3.0 4.8 3.8 2.5 3.2 3.3 
Tuxpeno 4 .0 4.2 4.2 5.0 4 .7 3.3 3.3 4.1 
Tx602 3.2 3.2 3.0 4. 3 4 . 3 3.2 3.0 3.5 
77-4407 4.3 3.3 4 .0 5.3 4.7 3.3 3.5 4.1 
77-4412 4.3 3.5 4.0 5.5 4.2 3.7 3.5 4 .1 
77-4441 3 . 8 4 .2 4.5 5.7 3.8 3.5 3.2 4.1 
77-4449 3.3 3.3 4.0 s.2 4.7 3.7 3.0 3.9 
77-4544 3.5 3.3 3.5 4.8 4.2 2.8 2 .7 3.6 

Mean 3.4 3.2 3.5 4.7 4.0 2.8 2.9 3.5 

H6% 4.2 H650 3.8 H763 .. 3.7 H767 .. 4.7 
H823 2.7 H824 2.5 Xl05A : 2.3 X304C: 2.7 
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Appendix 39. Average filled ear length of 225 hybrids 
over 2 seasons. 

(unit .. cm) 

Hi26 Hi28 Hi29 Hi31 Hi33 Hi34 Tx601 Mean
F~ 
CIMMYT-A21 15.6 15.0 17.4 15.4 16.3 16.6 15.9 16.0 
CIMMYT-TllES 17.8 16.8 16.4 14.9 17.0 16.4 15.7 16.4 
Fla.ZAT-112 16.1 15.5 17.5 13.5 16.l 15.8 14.5 15.5 
Fla.ZAT-114 16.4 16.6 16.5 16.2 17.1 16.6 16.7 16.6 
Fla. 2BT-54 17.5 14.4 15.9 15 •.5 1 . 7 .3 18.0 16.7 16.5 
H632A 18.3 16.2 17.6 16.2 15.8 18.0 15.7 16.8 
H632F 18.0 16.0 17.7 16.6 17.8 18.6 17.2 17.4 
H632G 15.8 16.6 17.1 17.4 17.6 16.2 17.1 16.8 
!CA L25 16.5 15.1 15.6 15.8 17.7 16.4 16.1 16.1 
ICA L27 15.9 15.7 16.2 14.3 15.6 17.7 15.3 15.8 
ICA L210 16.7 16.2 14.9 15.6 17.5 17.4 14.7 16.l 
ICA L221 16.4 16.7 15.4 17.0 18.4 19.4 17.7 17.3 
ICA L223 16.7 16.5 16.9 15.3 17.3 17.4 16.6 16.7 
INV138 16.6 16.3 16.2 14.5 15.5 15.1 15.7 15.7 
INV302 15.2 14.6 15.l 14.5 16.4 15.9 14.5 15 .2 
INV443 14.6 13 . 8 13.3 13.0 14.0 13.3 14.1 13.7 
I NV 534 17.2 16.2 15.3 15.0 18.1 16.7 15.2 16.2 
MITll DMR 15.5 16.2 17.2 14.5 17.0 14.9 17.l 16.0 
Pi4243 15.7 16.2 15.9 12.3 17.4 16.3 15.3 15.6 
Pi4257 14.4 13 . 2 13.8 13.3 14.9 13.9 14.8 14 . 0 
Pi4283 13.8 16.5 15.4 14.1 16. 7 15.4 14.3 15.2 
Pi4287 14.9 13.0 12.7 12.6 15.l 14.6 14.4 13.9 
SR52-F 18.2 15.4 16.7 16.1 15.3 16.4 17.7 16 .5 
SR52- M 17.6 16.9 16.2 16.1 17.1 16. 7 15.7 16. 6 
Tuxpeno 15.5 14.7 15.l 14.6 16.0 15.2 15.3 15.2 
Tx602 16.6 15.3 15.8 15.5 16.6 19.3 13.8 16.l 
77-4407 15.8 16.8 15.5 13.0 16.6 13.2 15.7 15.2 
77-4412 15.0 13.8 15.6 12. 4 15.4 15.0 14.6 14 . 5 
77-4441 14. 2 15.0 13.5 11.6 16.3 15.2 14.6 14.4 
77-4449 14.6 14.1 14.0 13.1 15.4 16.3 14.9 14.6 
77-4544 17. 4 14.7 16.3 15. 4 17.4 17.9 15.0 16.3 

Mean 16.1 15.5 15.8 14. 7 16.5 16.3 15.6 15 . 8 

H636 : 15. 9 H650 : 16 .4 H763 : 15.7 H767 : 13.2 
H823 : 17. 2 H824 : 17 .1 Xl05A: 13.5 X304C: 17 .1 
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Appendix 40. Average number of kernel rows of 225 hybrid 
over 2 seasons. 

Hi26 Hi28 Hi29 Hi31 Hi33 Hi34 Tx601 MeanF~ 
CIMMYT-A21 15.3 17.7 14.9 16.3 14.5 13.4 15.5 15.4 
Cil1MYT-TllES 15.8 14.9 14.8 15.7 14.l 13.l 14.l 14.6 
Fla.ZAT-112 14.7 15.0 14.2 14.6 13.2 12.4 13.9 14.0 
Fla.ZAT-114 13.7 13.6 12.9 14.2 13.2 11.8 12.4 13.1 
FlaZBT-54 13.5 14.1 13.5 15.l 12.4 10.7 14.1 13.3 
H632A 13.2 13.1 12.7 13.4 12.5 11.5 13.7 12.9 
H632F 13.9 13.5 14.6 13.7 12.8 12.5 14.0 13.5 
H632G 13.6 14.5 13.0 13.6 12.9 12.9 13.4 13.4 
ICA L25 13.8 15.3 14.9 15.l 13.3 12.8 14.3 14.2 
ICA L27 14.4 15.6 14.3 15.0 14.7 13.0 15.2 14.6 

,ICA L210 13.9 14.6 14.8 14.1 13.8 11.9 13.7 13.8 
ICA L221 13.5 14.8 14.1 15.l 12.5 12.7 14.0 13.8 
ICA L223 14.8 15 .1 14.2 14.7 13.6 14.0 15.2 14.S 
INV138 14.3 14.8 16.3 14.7 14.0 13.8 15.6 14.8 
INV302 15.6 15.5 16.1 14.5 14.5 13.l 14.8 14.9 
INV443 14.7 14.3 14.3 14.8 14.7 13.8 15.3 14.6 
INV534 13.9 14.7 14.7 14.0 13.1 12.4 13.6 13.8 
MITll DMR 15.3 14.0 14.1 15.0 13.7 12.5 14.4 14.l 
Pi4243 15.0 14.8 13.9 14.9 14.2 13.2 15.4 14.5 
Pi4257 16.1 15.3 14.7 15.5 14.6 15.0 16.8 15.4 
Pi4283 15.6 16.7 15.6 14.3 13.8 13.0 15.7 14.9 
Pi4287 13.3 14.6 13.7 13.3 13.2 14.1 15.1 13.9 
SR51-F 13.3 14.9 13.0 13.1 12.3 12.4 13.1 13.2 
SR52-M 12.1 13.8 12.7 12. 9 11.9 11.7 12.6 12.s 
Tuxpeno 13.0 12.7 13.6 14.0 11.9 12.8 13.9 13.l 
Tx602 15.2 14.3 14.8 14.6 14.2 11.9 15.l 14.3 
77-4407 14.0 14.7 14.6 13.7 13.4 11.9 14.7 13.8 
77-4412 15.6 14.2 14.5 13.5 13.8 12.8 15.1 14.2 
77-4441 14.6 16.5 14.8 13.4 14.3 13.4 16.0 14.7 
77-4449 15.0 16.2 15.9 14.2 15.1 13.3 15.5 15.0 
77-4544 13.7 13.9 14.9 14.2 13.4 12.2 14.2 13.8 

Mean 14.3 14.8 14.3 14.4 13.S 12.8 14.5 14.1 

H636 : 12. 9 H650 : 14 .3 H763 : 14 .O H767 : 14 .3 
H823 : 12.s H824 : 13.S XlOSA: 15.6 X304C: 12.8 
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Appendix 41. Average nwnber of kernels/row of 225 hybrids 
over 2 seasons. 

Hi26 Hi28 Hi29 Hi31 Hi33 Hi34 Tx601 Mean
F~ 
Cll1MYT-A21 34.9 32.4 33.1 29.0 35.5 32.9 33.8 33.1 
CIMMYT-TllES 38.3 36.5 35.9 30.9 37.5 38.0 38.2 36.4 
Fla.2AT-112 36.1 32.8 37.6 27.8 37.6 33.4 32.6 34.0 
Fla.2AT-114 36.6 36.7 36.0 32.1 34.8 37.7 36.6 35.8 
Fla.2BT-54 38.9 32.4 34.8 30.7 40.2 39.7 37.1 36.2 
H632A 35.2 32.4 35.7 29.9 32.8 35.6 33.4 33.6 
H632F 32.8 32.5 33.1 30.8 39.1 37.9 36.2 34.6 
H632G 33.9 35.3 32.6 35.0 37.5 34.1 36.S 35.0 
ICA L25 34.9 32.2 31.8 31.5 36.7 35.7 34.8 33.9 
ICA L27 31.6 32.9 32.0 27 .6 33.3 34.8 30.6 31.8 
ICA L210 36.5 34.2 31.1 29.6 40.6 37.9 34.9 35.0 
ICA L221 34.8 34.0 29.7 33.0 37.9 38.5 38.0 35.l 
ICA L223 36.1 32.l 31.9 26.6 33.8 35.1 33.0 32.7 
INV138 36.4 32.4 33.0 29.5 32.9 31.9 33.4 32.8 
INV302 32.0 34.5 31.8 32.1 38.3 37.7 35.8 34.6 
INV443 32.0 31.5 30.9 26.3 31.0 30.8 32.4 30.7 
INV534 38.1 34.6 35.8 31.1 39.7 39.9 34.0 36.2 
MITll DMR 35.7 34.4 34.8 28.3 36.3 33.2 37.1 34.2 
Pi4243 35.7 38.l 35.6 27.1 40.0 39.8 36.3 36.1 
Pi4257 33.4 32.5 30.8 26.6 34.8 35. 4 34.7 32.6 
Pi4283 28.8 34.6 32.2 28.7 34:8 34.5 30.4 32.0 
Pi4287 31.6 24.4 25.8 26.3 33.9 30.6 29.2 28.8 
SR52-F 37.1 34.3 34,8 30.7 34.9 36.6 37.5 35.l 
SR52-M 38.3 34.9 34.3 31.8 35.9 39.8 33.1 35.4 
Tuxpeno 35.8 35.0 34.l 29.7 35.9 36.0 35.3 34.5 
Tx602 37.2 32.9 35.7 30.4 37.2 39.5 31.8 34.9 
77-4407 38.l 39.9 35.4 25.1 39.8 31.1 36.7 35.2 
77-4412 32.3 31.9 33.5 18.9 38.3 34.5 33.8 31.9 
77-4441 33.8 34.5 31.2 25 .8 38.3 35.0 33.2 33.l 
77-4449 30.9 32.8 31.4 26.4 36.9 36.3 36.4 33.0 

Mean 35.l 33.6 33.3 29.0 36.5 35.9 34.5 34.0 

H636 33.8 H650 38.4 H763 : 32.5 H767 : 26 .8 
H823 39.7 H824 37.l XlOSA: 32.8 X304C: 37. 7 
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Appendix 42. Average 100 kernel weight of 22.3 hybrids evaluated 
during 2 seasons. 

(uni t: g) 

Hi26 Hi28 Hi29 Hi31 Hi33 Hi34 Tx601 Mean
F~ 
CIMMYT-A21 29.2 25. 7 29.4 27.4 31 . 0 31.1 28.4 28.9 
CIMMYT-UlES 29.8 27.7 29.0 26.7 31.o 28.4 25.1 28.2 
Fla. 2AT-112 29.2 27.3 28.1 25.4 27 . 4 30.6 25.2 27.6 
Fla. 2ft T -114 28.5 32.6 32.0 26.3 28 . 4 30.4 30.1 29.8 
Fla.2BT-54 28.7 27.0 29.2 28.6 28 .6 30.9 28.7 28.8 
H632A 31.6 33.4 33.1 35.S 32.1 38.4 33.8 34.0 
H632F 31.9 30.8 33.7 28.6 29 . 4 33.7 30.3 31-.2 
H632G . 29.8 30.9 30.7 31.6 29.8 29.3 29.6 30.2 
ICA L25 34.0 31.3 28.5 30.7 30 . 4 29.7 28.2 30.4 
ICA L27 32.0 30.3 29.8 31.6 31 . 6 34.4 31.0 31.5 
ICA L210 30.1 28.4 31.4 29.4 27 . 4 30.8 27.6 29.3 
ICA L221 
ICA L223 

32.7 
34.1 

31.2, 
33.3 

32.4 
32.2 

27.6 
34.2 

31.0 
33 . l 

34.5 
35.9 

29.7 
28.7 

31.3 
33 .1 

INV138 28.3 31.0 29.8 25.5 28 .2 30.3 28.7 28.8 
INV302 28.2 25 .9 26 .2 25 .2 24 . 6 :a.9 23.2 26.0 
INV443 30.1 31.0 29.8 32.9 30 . 0 31.5 28.4 30.5 
INV534 28.0 28.6 27.2 29.6 2 .3 27.6 28.3 28.l 
MITll DMR 27.2 26.9 26.5 29 .6 27 .8 29.8 25.7 27.6 
Pi4243 20.1 26.2 27.0 18.7 25 .3 26.6 24.l 24.0 
Pi4257 25.7 23.6 29.4 27.3 25.6 25.1 26.6 26.2 
Pi4283 27.6 28.1 30.0 28.8 30·. 8 29.2 26.5 28.7 
Pi4287 30.1 29.4 31.3 24 .5 2~ . 4 29 .5 26.l 27.9 
SR52 F 34.2 30.4 32.6 33.2 31 . 1 33.2 29.3 32.0 
SR52 M 34.1 33.5 30.8 31.1 3.4 . 8 32.2 30.9 32.5 
Tuxpeno 29.9 28.3 27.1 26.8 28 . 9 29 . 0 27.3 28 .2 
Tx602 28.1 28.5 26.6 29. 7 25 .5 29 .8 22.9 27.3 
77-4407 27.8 25 . 4 27 .3 24.8 26 . S 28 .8 28.0 27.0 
77-4412 26.5 30.8 27.6 26.2 26 . 0 28 .0 25.5 27.2 
77-4441 27.0 28.3 29.5 23.9 25 . 6 27 .3 25 .4 26.7 
77-4449 27.3 25.5 27.9 24.3 ~!; . 6 30 .3 25.3 26.5 
77-4544 29.6 28.9 29.9 27.1 :2.2 37.5 25.0 30.0 

Mean 29.4 29.0 29.6 28 . 2 _8 . 7 30 .7 27.5 29.0 

H636 27.8 H650 28.7 H763: 29.2 H767 : 29 .3 
H823 29.5 H824 27.5 XlOSA: 29.0 X304C : 2 .2 
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Appendix 43. Barrenness of 225 hybrids in November planting. 

(unit : % ) 

~ Hi26 Hi28 Hi29 Hi31 Hi33 Hi34 Tx601 Mean 

CIMMYT-A21 46 21 32 38 57 34 36 38 
CIMMY'f-'T'llES 65 30 46 50 40 34 50 45 
Fla.2AT-112 65 44 63 100 82 25 63 63 
Fla.2AT-114 17 38 32 75 67 19 46 42 
Fla.2BT-54 67 62 73 96 69 59 77 72 
H632A 76 63 75 90 79 38 83 71 
H632F 44 63 79 96 38 48 65 62 
H632G 65 77 88 96 84 61 92 80 
ICA L25 82 65 65 73 46 51 67 64 
ICA L27 53 44 31 90 79 52 75 61 
ICA L210 25 17 42 61 50 27 27 36 
ICA L221 44 19 36 65 42 42 40 41 
ICA 1223 59 27 56 94 73 36 61 58 
INV138 36 44 36 77 78 38 54 52 
INV302 40 32 38 53 71 30 56 46 
INV443 33 44 44 52 58 19 52 43 
INVS34 38 23 36 57 36 15 44 36 
MITll DMR 48 33 38 79 44 29 58 47 
Pi4243 52 63 96 100 86 48 92 77 
Pi4257 61 59 61 96 69 40 76 66 
Pi4283 75 67 84 100 79 61 75 77 
Pi4287 65 75 92 94 100 67 92 84 
SR52-F 77 71 90 96 63 54 80 76 
SR52-M 65 82 93 94 73 59 83 78 
Tuxpeno 42 63 90 96 88 17 79 68 
Tx602 44 63 52 84 77 61 92 68 
77-4407 89 46 67 96 80 46 55 68 
77-4412 73 52 67 98 65 42 48 64 
77-4441 23 63 73 100 71 42 79 64 
77-4449 32 53 57 100 73 25 53 56 
77-4544 65 52 63 96 76 48 71 67 

Mean 54 50 61 78 68 41 65 60 

H636 61 H650 52 H763 : 61 H767 90 
H823 28 H824 34 Xl05A : 32 X304C: 40 
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Append ix 44. Analysis of variance for filled ear length and 
number of kernel rows of 225 hybrids in different seasons. 

Mean squares 

Filled ear Number ofSource df length kernel rows 

March May March May 

Replication 1 13.54 0.11 2.56 1.32 

Hybrid (Unadj.) 224 4.99 5.49 2.68 3.02 

Block within rep. (Adj.) 28 
-;': 

2.67 1.72 0.74 0.62 

Intra-block error 196 1.47 1.66 0.58 0.63 

Randomized complete 224 1.62 1.67 0.60 0.63 
block error 

~·: Significant at 5 i. probability level. 

Appendix 45. Analysis of variance for number of kernels/row and 
100 kernel - weight of 225 hybrids in different seasons. 

Mean squares 

Source d.f Number of kernels 
per row 

.1oo kernel 
weight 

March May March May 

Replication 1 94.85 9.97 4.25 25 .43 

Hybrid (Unadj .) 224 28.10 33.66 20.13 20.03 

Block within rep. (Adj.) 28 11.55
';': 

11.29 13.85
';':'"i': 

3.83 

Intra-block error 196 6.69 8 .75 4.11 3.78 

Randomized complete 224 7.30 9.06 5.33 3.78 
block error 

~·: Significant at 5 % level. ",'~': Significant at 1 % level. 
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Appendix 46. Average days to tasseling, plant and ear height, LAI, 
and rust rating of a 7-entry diallel. 

Days to Plant Ear RustHybrids tasseling Height height LAI (1-7)(day) (cm) (cm) 

Hi26 x Hi28 56.4 233 97 3.97 2.6 

Hi26 x Hi29 57.2 228 91 4.00 3.1 

Hi26 x Hi31 56.8 219 84 3.98 4.5 

Hi26 x Hi33 55.8 225 83 4.10 4.0 

Hi26 x Hi34 59.3 232 94 4.40 2.3 

Hi26 x Tx601 58.3 241 94 4.01 3.3 

Hi28 x Hi29 56.4 227 97 4.07 3.3 

Hi28 x Hi31 55.8 230 98 3.95 3.6 

Hi28 x Hi33 54.3 213 83 3.59 3.8 

Hi28 x Hi34 57.7 222 103 4.38 2.7 

Hi28 x Tx601 58.3 239 105 3.97 3.3 

Hi29 x Hi31 56.3 230 91 3.92 4.8 

Hi29 x Hi33 55.3 217 82 3.54 4.0 

Hi29 x Hi34 57.9 224 101 4.52 2.8 

Hi29 x Tx601 58.9 251 104 3.80 3.4 

Hi31 X Hi33 55.2 216 78 3.48 5.3 

Hi31 X Hi34 57.8 222 90 4.16 4 .1 

Hi31 X Tx601 58.7 238 93 3.82 4.1 

Hi33 x Hi34 55.5 209 84 4.01 3.8 

Hi33 x Tx601 57.2 234 92 3.94 3.8 

Hi34 x Tx601 60.2 238 100 4.48 2.6 

Mean 57.1 228 93 4.00 3.6 
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Appendix 47. Estimates of SCA and GCA effects for plant he ig.~t an 
ear height of 7-entry diallel over 3 differ ent seas ns. 

SCA effects . :\ 
Inbreds e_:::fects

Hi28 Hi29 Hi31 Hi33 Hi34 Tx601 

Hi26 3.62 -4.14 -8.48 
1.17 -1.12 -2.07 

Hi28 -1.53 5.06 
-2.90 4.40 

Hi29 2.96 
0.37 

Hi31 

Hi33 

Hi34 

Tx601 

6.36 
3.65 

-3.44 
-4.30 

-1.96 
-1.92 

0 .96 
0.55 

6.11 
0.62 

-1.19 
1.58 

-1. 79 
3.22 

1.29 
-1.40 

-3.79 
-1.85 

-3. 6 
-2.25 

-2.51 
o.os 
6. 7 
2.35 

-1. 8 
-1. 5 

1. 9 
3.8 

-0.61 
-2.17 

l 95 
-... 

• 

--· -· 
~ .15 
-.19 

Upper and lower values are plant height and ear height , ~es: - : i,~y. 
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Appendix 48. Estimates of SCA and GCA effects for filled ear length and 
number of kernel rows of a 7-entry diallel evaluated during 

3 different seasons. 

SCA effects GCAInbreds 
effectsHi28 Hi29 Hi31 Hi33 Hi34 Tx601 

Hi26 -0.43 -0.03 0.09 0.35 0.44 -0. 42 0.13 
0.61 -0.51 -0.22 -0.89 0.48 0.52 0.03 

Hi28 -0.04 0.95 0.03 -0.08 -0.42 0.44 
0.18 0.45 -0.73 -0.68 0.16 1.16 

Hi29 -0.07 -0.17 a.so -0.18 0.07 
-0.33 o.66 0.20 -0.20 0.30 

Hi31 0.09 -1.21 0.14 -1.23 
o.43 0.09 -0.43 -0.84 

Hi33 -0.41 0.12 0.10 
0.24 0.28 -0.76 

Hi34 0.76 0.14 
-0.34 -0.06 

Tx601 0.49 
0.11 

Upper and lower values are filled ear length and number of kernel 
rows, respectively. 
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Appendix 49. Estimates of SCA and GCA effects for number of kernels 
per row and 100 kernel weight of a 7-entry diallel 
evaluated during 3 different seasons. 

SCA effects GCAInbreds 
effects 

0.31 
0.26 

1.04 
0.59 

-0.77 
-0.65 

-4.05 
1.14 

o.57 
-1.58 

1.79 
1.09 

1.11 
-0.84 

Hi28 Hi29 Hi31 

Hi26 

Hi28 

Hi29 

Hi31 

-1.20 
o.74 

0.11 
-1.15 

0.03 
-0.18 

-1.23 
0.97 

2.53 
1.28 

-0.43 
1.02 

Hi33 

Hi34 

Tx601 

Hi33 

1.52 
0.86 

-1.38 
0.74 

0.03 
0.11 

1.31 
-1.56 

Hi34 

1.54 
-0.97 

0.11 
-1.82 

0.58 
0.54 

-1.42 
-1.12 

-2.12 
o.s1 

Tx601 

-0.74 
-0.46 

0.10 
-0.77 

-0.33 
o.36 

-0.78 
-0.60 

0.63 
-0.66 

1.30 
2.85 

Upper and lower values are number of kernels per row and 100 kernel 
weight, respectively. 
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Appendix 50. Combined analysis of combining ability for filled ear 
length and number of kernel rows of 7-entry diallel 
evaluated in 3 different seasons. 

Mean squares 
Source df 

Filled ear Number of 
length kernel rows 

""ln': -;':-;': 
GCA 6 4.98 6.89 

"';~': i :-1: 
SCA 14 0.92 0.95 

Season (S) 

GCA x S 

2 

12 

351.19 
-;':~·: 

1.30 

123 .17 
'*/:-:,': 

6.05 

SCA x S 28 
-k 

0.58 
"/~': 

0.59 

Error 60 0.33 0.24 

Appendix 51. Combined analysis of combining ability for number of 
kernels per row and 100 kernel weight of a 7-entry 
diallel evaluated in 3 different seasons. 

Mean squares 

Source df Number of kernels 100 kernel 
per row weight 

GCA 6 
"';':-;':

57.35 
.,...,. 

16.39.. .. 

SCA 14 6. 01 ~·.,·. J ....,. 

5.39"" 

Season (S) 2 2641.43 969.73 

GCA x S 12 7.33
-!:-;': 

3.63
-;'~': 

SCA x S 28 3.54 1.47 

Error 60 2.09 0 .94 

* Significant at 5 % probability level. 

i~~ Significant at 1 % probability level. 
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