
Three Essays on Price and Weather Responses of Commercial
and Industrial Customers in Hawaii

A DISSERTATION PRESENTED TO THE GRADUATE DIVISION FOR

THE DEGREE OF

Doctor of Philosophy

in

Economics

Author

Asahi OSHIRO

Dissertation Committee

Nori TARUI, Chairperson

Denise KONAN

Lee ENDRESS

Michael ROBERTS

Makena COFFMAN

University of Hawai‘i at Mānoa
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Abstract

The electricity market is now facing a crossroad, due to rises in new technologies such as energy

efficient appliances, renewable energy systems, and smart meters. The introduction of renewable

energy resources has put pressure on the traditional grid. The energy market must undergo drastic

changes in terms of demand and supply side management to meet the rise in new technologies.

This includes new pricing schemes to signal customers to avoid consuming energy during peak

times, demand response programs, and energy efficiency. However, increasing levels of behind

the meter technology has made customer demand less transparent, and harder to implement

demand side programs without fully understanding how consumers respond to prices or weather

changes. Hence, there is increased need to improve existing models of energy demand modeling.

Because we do not know how commercial and industrial (C&I) sector demand, this study tries

to characterize consumer energy demand for the C&I sectors. Through the analysis this paper

finds that certain customers are indeed more price responsive than others, certain sectors are

temperature sensitive, and there are winners when an alternative pricing structure is introduced.

This paper makes several contributions to the existing literature. First, consumption behavior

of sectors within the C&I sector is unclear as studies on the effects of price energy consumption

of C&I sectors are sparse when the share of end use electricity is significantly larger than the

residential sector. Hence, C&I customers are ideal targets for demand side management practices

because they have a larger contribution to the system compared to residential customers. Second,

this paper reveals which types of customers experience benefits in the form of decreased bills

under marginal cost pricing. Finally, this paper helps understand how C&I customers alter their

electricity consumption to a response in temperature and price.
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Chapter 1

Electricity Price Response by

Commercial and Industrial Customers

under Rate Schedule Change

1.1 Introduction

Hawaii has experienced significant growth of customer distributed energy resources (DER) due to

its high electricity prices and ambitious green energy policies such as Renewable Portfolio Stan-

dards (RPS) and income tax credits. As more DERs are integrated to the electric grid, system

operators find it challenging to match energy supply with demand. The intermittent nature of

DER such as photovoltaic (PV) systems has increased the uncertainty in predicting future cus-

tomer demand. Hence, the introduction of DER has prompted the need to better grasp current

and future energy demand. Customer price response to incentive based tariffs can serve as an

essential input to understanding consumer behavior. For example, characterizing energy con-

sumption can assist system operators in matching electricity supply with demand, identifying

potential customers for DR programs, and increasing grid reliability. The effectiveness of pricing

schemes lies in its ability to induce individuals to alter their behavior by reducing demand during

peak hours. Customer response to dynamic pricing has been a well researched topic by scholars,

and their findings has provided further insight on consumption behavior. Such dynamic pric-
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ing schemes include: critical peak pricing(CPP), real-time pricing (RTP), and time-of-use (TOU)

pricing. This paper attempts to model energy consumption behavior of commercial and indus-

trial (C&I) customers by examining their response to price without exploiting dynamic pricing

schemes. Like many other states, Hawaii does not have time varying pricing programs in effect

because of the lack advanced metering equipment in place that accommodate pricing schemes

such as real-time pricing. Moreover, these types of pricing schemes face implementation and

transaction costs, which include costly metering and accounting systems for billing and settlement

purposes (Woo, Horii, & Horowitz, 2002). Given the circumstances, understanding consumer re-

sponse to dynamic price changes becomes complicated due to lack in mixed response drivers such

as real-time-pricing tariffs. Nonetheless, the rate pricing structure in Hawaii can provide an un-

derstanding of how price elasticity of demand differs for distinct commercial and industrial (C&I)

groups. The model we estimate examines the influence of rate schedule "switching" on price elas-

ticity. Specifically, customers are placed under one of three rate schedules based on their monthly

peak (kW) and/or kWh usage. Switching between rates occurs when energy consumption sur-

passes a certain threshold. The change in energy prices when customers switch rate schedules

can provide an insight to customer price response. Our hypothesis is that customers who have

experienced a rate switch are more price elastic relative to customers who have never experienced

a switch. The estimated model can be used to evaluate consumption behavior under different rate

schedules. To prove this, we leverage the rules that determine rate schedule placement. The kilo-

watt cutoffs that determine rate schedule placement are 25 kilowatts and 300 kilowatts. The two

values serve as thresholds (25 kW and 300 kW) and play a role as identification in our analysis.

Specifically, C&I customers who have peak demand close to the 25 or 300 kilowatt thresholds may

have an incentive to consume electricity different than customers who are not. This is because

consuming right below either threshold generates the threat of being bumped up to a rate sched-

ule with a higher bill charge. Furthermore, to address several estimation issues, such as customer

self-selection, we use a group of customers who are exempt from the rules of rate schedule place-

ment as a control group. We use panel fixed effects regression to identify rate switching impacts

on price elasticity of electricity demand. Finally, this paper presents quantitative evidence to sup-

port our hypothesis that customers who switch rates are more responsive to price than those who

have not. Findings can be utilized by the utility and regulators to better understand customer

price response. In addition, forecasts of energy demand can be improved via understanding of

customer behavior. Hence, regulators can generate estimates of future capacity requirements in
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the C&I sector.

There is lack of studies in the literature that research customer price response to rate

schedule changes. Previous literature focuses on the effectiveness of dynamic electricity pricing

schemes in reducing peak demand, such as RTP and CPP. Among economists and policy mak-

ers there is a widespread agreement of the benefits of RTP relative to other schemes. Borenstein

shows the wealth transfers that occur when electricity systems change from the current simple-

retail structure to RTP structure. He finds that there are significant wealth transfers when changing

to a RTP structure, but there is likely to be a role for programs that mitigate the wealth trans-

fers from RTP while still achieving the efficiency gains (Borenstein, 2007). Moreover, advocates

for RTP argue that it is a crucial component of an efficient restructured electricity market. A

study by Borenstein (2005), which estimates the long-run societal gains from RTP, finds that RTP

would lower peak electricity production and reduce the use of low-capital-cost/high-variable-cost

peaker generation. Such programs can generate benefits for the utility and for some consumers.

For example, supplying energy at times when peak demand is high can be expensive for the util-

ity. Electricity is supplied by a mix of generating technologies such as wind, solar, coal, oil and

natural gas plants. Renewable energy is considered a low marginal cost technology with natural

gas and coal next in terms of low cost. On the other hand, oil burning power plants face higher

marginal costs and low fixed costs (Boomhower & Davis, 2017). Sufficient generation capacity

needs to exist for the utility to match the supply with demand at every moment in time. In the

long run, high levels of peak demand require the utility to create additional generation capacity.

Hence, shaving customer peak demand will not only allow the utility to avoid starting up higher

marginal cost plants, but also dodge the costs of additional generating capacity (Blonz, 2016). On

the other hand, research on customer response of CPP, which charges higher rates during peak

demand times, shows that residential high-use customers indeed respond significantly in kW re-

duction when faced with higher prices during specific time intervals of the day than low-use con-

sumers (Herter, 2007). While most studies focus on understanding price response for residential

customers, research on the behavior of C&I customers are lacking even though they have a higher

share of end use energy consumption than do residential customers(EIA, 2014). However, limited

studies on C&I customer response to price find that peak pricing indeed has an impact on electric-

ity consumption. A study by (Blonz, 2016) finds that peak pricing reduces electricity consumption

for non-coastal establishments by 13.4 percent on event days and predicts that peak demand pro-
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grams will reduce peak demand by 118 MW among small C&I customers if fully implemented by

2018. The study concludes that programs will reduce the need to create specialized power plants

that are constructed with the sole purpose of generating electricity during the highest demand

hours of the year (Blonz, 2016). As seen from the literature, most studies exploit dynamic pric-

ing schemes to examine decreases in peak demand when electricity prices increase. Our paper,

aims to tackle customer demand modeling from a different angle. Rather than investigating peak

reduction, we estimate the price elasticity of certain customer groups within the C&I sample.

This paper makes three important contributions to the existing economics literature.

First, there is limited academic research that studies how rate structures affect energy consump-

tion. Our paper investigates how the elasticity of C&I sectors differ under alternative rate sched-

ules. Since customers who experience rate switching face changes in bill rates, we predict that

switching induces customers to become more aware of their energy consumption; just as CPP or

RTP induce customers to use less energy at certain time slots. As stated previously, Hawaii does

not have dynamic pricing, and customer price response to changes in rate schedules will be ex-

ploited to explain customer behavior. In addition, existing literature focuses on price response

of residential consumers rather than commercial and industrial (C&I) customers when the por-

tion of end use electricity consumption is higher for C&I customers combined. Hawaiis electricity

consumption by sector shows that two-thirds of electricity is consumed by C&I consumers EIA

(2014). This makes the C&I sectors response to prices important for future energy policy. Second,

this paper contributes to the literature on price elasticity of demand for commercial and industrial

(C&I) customers. Research on elasticity of demand in the for C&I sector electricity consumption is

a mixed bag with elasticities ranging from -0.1 to -0.5 Bjørner, Togeby, & Jensen (2001), depending

which methods are used. Bjørner et al. (2001) finds that when comparing repeated cross-sections

estimates and fixed effect panel data estimates, price elasticities are considerably lower in the

latter case when utilizing the panel nature of the data. Furthermore, using a logit linear speci-

fication, Elkhafif (1992), finds that the short run elasticity for industrial consumers to be -0.147.

Bernstein & Griffin (2006) show elasticity estimates of commercial sector ranging from -0.5 to -0.1

using a state level analysis. In addition, using region level analysis, they find that the commer-

cial sector has a price elasticity of demand for electricity from -.3 to -.15 Bernstein & Griffin (2006).

Due to similarity in data with Bjorn, the panel fixed effects regression will be utilized in this paper.

However, Bjorn bases estimates on reported electricity consumption from an energy industrial sur-
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vey. The disadvantage of survey data as indicated in the paper by Bjorn is the problem of missing

data. However, our paper utilizes raw consumption data that was recorded by a meter installed at

a customer site. Finally, we address the problem of endogeneity in customer decision. This is done

by exploiting the nature of "grandfathering." Grandfathered customers are establishments which

are exempt from the rules that govern rate placement. Specifically speaking, these customers are

not penalized for having high peak demand. These customers serve as a control group when com-

paring price response with those who have switched rates.

The rest of the paper is organized as follows: Section 2 discusses Hawaiian Electric Companys

commercial and industrial rate structure in detail. Section 3 outlines the data used in the analy-

sis. Section 4 describes the baseline empirical strategy without addressing the endogeneity issue.

Section 5 presents the baseline results; section 6 presents describes the identification strategy for

grandfathered customers while addressing the endogeneity issue and section 7 concludes.

1.2 Background of Hawaiian Electric’s Customer Rate Structure

The Hawaiian Electric Company electricity rate tariffs for commercial and industrial (C&I) cus-

tomers consist of three distinguished schedules that have been in effect since March 1, 2011. The

pricing structure is constructed by three rate schedules that have different fixed, energy, and de-

mand charges. C&I customers are categorized under G (General Service Non-Demand), J (General

Service Demand) or P (Large Power Service) rate schedules. Figure 1.1 illustrates the spectrum of

rate groups that face varying fixed, energy, and demand charges. As illustrated in figure 1.1, the

determinants of schedule placement are dependent on monthly peak demand or kWh usage of

the customer. Twenty-five kilowatts and 300 kilowatts are the two cutoffs that determine rate

placement. Power loads less than or equal to 5000 kilowatt hours (kWh) per month, and less

than or equal to 25 kilowatts are categorized under rate schedule G. Power loads that exceed 5000

kilowatt hours per month or exceed 25 kilowatts three times within a twelve-month period but

are less than 300 kilowatts per month are categorized under rate schedule J. Finally, power loads

equal to or greater than 300 kilowatts are categorized under schedule P. Small C&I customers are

located on the left end of the spectrum and consists of customers who are categorized as always

rate G or J as seen from the figure. On the other hand, large commercial customers are located

on the right side of the spectrum with monthly kilowatt ranging anywhere from 300 kilowatts
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and above. In addition, there are customers who experience rate switching. The reason for rate

switching is not observed in the data. However, the date of rate switching is known. Switching

between rate schedules takes place when a customers peak demand (in kilowatts) exceeds either

thresholds. Switching to a rate schedule with a lower demand charge (moving from rate J to G,

for example) occurs when a customer reduces their monthly less than or equal to 5,000 kilowatt

hours per month and less than or equal to 25 kilowatts for 12 consecutive months. Similar rule

applies for customers to move from rate P to J except customers are only required to fulfill the kW

demand requirement for 12 consecutive months. On the other hand, placement to a rate with a

higher demand charge (rate J to P, or G to J) only occurs when a customer exceeds either thresh-

old three consecutive months within a 12 month period. Thus, switching to a rate schedule with

higher demand charge is easier than returning to a lower one since it only takes three months of

peak demand over the threshold to be bumped up to a new rate schedule.

Figure 1.1: Rate Placement by monthly peak usage

Note: The illustration above presents the spectrum of possible placement of customers based on the month peak usage
within a year. Hawaiian Electric Company has various rate schedules but only G, J, and P rates for commercial and in-
dustrial customers are taken into account in this analysis. Information are obtained from Hawaiian Electric’s public website.
https://www.hawaiianelectric.com/billing-and-payment/rates-and-regulations/hawaiian-electric-rates for more details.

In this paper, "rate groups" are groups that are segmented based on categories explained

in figure 1.1, and should be distinguished from "rate schedule." For example, as per figure 1.1,

customers who have never switched rates during the sample period are denoted with the name

"always _." On the other hand, "switch to _" customers are those who have switched to a schedule

with a higher demand charge. Hence, rate groups consist of a total of five groups: customers who

are always in G, always in J, always in P, switched to J and switched to P, while the term "rate

schedule" indicates the three rate schedules that determine the total amount of the bill a customer

faces. It is important to note the differences because the analysis will be conducted on each rate

group rather than each rate schedule.
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Table 1.1: Monthly Bill Composition by Rate Category

Rate Category Fixed Rate Energy Charge Demand charge
Single Phase Three Phase

G (General Service Non-Demand) $33 $61 21.3 cents/kWh N/A
J (General Service Demand) $60 $82 17cents/kWh $11.69/kW
P (Large Power Service) N/A $350 14.9cents/kWh $24.34/kW

Note: The table above presents the fixed rate (dollars per month), volumetric rate (cents/kWh), and demand charge (dollars per kW)
for each rate category at Hawaiian Electric Company. These rates have been in place since 2012. Data are obtained from Hawaiian
Electric’s public website. https://www.hawaiianelectric.com/billing-and-payment/rates-and-regulations/hawaiian-electric-rates for
more details.

Total bill consists of the fixed customer charge, volumetric energy charge, and demand

charge. The component of a customer bill varies based on the rate schedule a customer faces.

Customer charges differ between rate schedules, and table 1.1 presents the charges by rate. En-

ergy charge per kilowatt hour is the highest for schedule G while the lowest is schedule P. Fixed

charges are claimed monthly with schedule P having the highest fixed charge and G the lowest.

Unlike residential customer rates, which are based on volumetric energy charges (cents/kWh) and

a fixed customer charge, commercial rates include demand charges ($/kW) in addition to volu-

metric and fixed customer charges. Energy charges depend on total monthly power use while

demand charges depend on maximum power used in a month. Demand charges are based on the

customers peak demand (kW). The value of the demand charge is fixed every month as indicated

in table 1.1, and the total amount charged depends on your monthly peak demand. Schedule G,

for example, does not incur demand charge while schedules J and P are charged $11.69 and $24.34

per kilowatt respectively. Monthly effective rates (cents/kWh) are used as the price variable in

our analysis and is equal to the base rate and other surcharges. Although the base rate does not

change from month to month, the effective rates vary depending on the oil price. Figure 1.2 illus-

trates monthly effective rates from 2014 to 2017. General Service Non-Demand customers face the

highest effective rate and Large Power Service customers face the lowest price per kWh. This may

be counter intuitive but General Service Non-Demand customers face higher kWh charge because

they do not have a high usage (kWh), while customers in rate P have very high usage.
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Figure 1.2: Monthly Effective Rates (2012-2017)

Note: The figure above shows the changes in monthly effective rates (cents/kWh) from 2012 to 2017 for rate schedules
G, J, and P. For more information on the definition of effective rates refer to the text. Effective rate information are
obtained from Hawaiian Electric’s public website. https://www.hawaiianelectric.com/billing-and-payment/rates-and-
regulations/hawaiian-electric-rates for more details.
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1.3 Data

1.3.1 Commercial and Industrial billing data

We rely on billing data from Hawaiian Electric Company (HECO) to estimate the empirical model.

The data set consists of all C&I customers that have establishments on the island of Oahu, and are

serviced between January 2012 to December 2017 by HECO, the sole energy provider on the island.

Data was available from 2002. However, our analysis utilizes data from 2012 because of a rate case

prior to 2012, which makes it difficult to compare the same customer over these dates. Monthly

data obtained from the utility include: peak kilowatts, kilowatt hours consumed, the total electric

bill, rate class, rate switching dates if the customer experienced switching, and billing start to end

date.

This panel data set has an advantage that offers larger flexibility with respect to modeling the

heterogeneity between companies. In addition, it is not necessary to impose strict assumptions

on the uniformity of the estimated parameters as with cross-sectional data because companies

are followed over time Bjørner et al. (2001). Furthermore, to simplify the analysis, we segment

our sample further into two samples to distinguish between small business establishments from

larger ones and conduct separate analysis for each. The reason for this is because large customers

may have different consumption patterns than small businesses, and it may not make sense to

compare elasticity estimates between the two types of customers. This will allow us to focus on

the casual impacts of rate switching for customers who are close to the 25 kW and 300 kW peak

thresholds.

The description of the two samples are described as below:

(Sample 1) Customers who have always been in rate G, customers who were in rate G but have experienced

a rate switch to J, and customers who have always been in rate J. Customers who are categorized under

schedule P have been omitted.

(Sample 2) Customers who have always been in rate J, customers who were in rate J but have experienced

a rate switch to P, and customers who have always been in rate schedule P. Customers who are categorized

under schedule G have been omitted.
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It is important to note that customers who have always been in rate J are included in both samples.

Table 1.2 provides descriptive results by customer rate group. The table shows that cus-

tomers who have always been in rate schedule G have a relatively lower bill total than those

who have experienced a switch to J or have always been in J. This could be the case because cus-

tomers in rate G do not face a demand charge. The table shows that customers who have switched

to schedule J have an average monthly peak demand that is above but close to the 25 kilowatt

threshold, at a mean monthly kilowatt usage of 45 kilowatts. Moreover, customers who have al-

ways been in rate P are very large customers who have a monthly peak demand that is far from

the 300 kilowatt cutoff and consist of large hotels universities and hospitals. The last column in

table 1.2 indicates the number of firms in each rate category. Customers who has always been in

G do not face demand charge, hence, these customers do not have demand meters at their site.

Finally, table 1.3 shows summary statistics for a sample of customers who have PV systems. This

table is included to illustrate how electricity consumption changes when PV systems are installed.

Customers who have never switched and have always been in rate schedule J have the most PV

systems installed. When comparing table 1.3 with 1.2, it can be seen that mean monthly peak load

decreases when PV systems are installed, which is no surprise since daytime load most likely de-

creases when a customer installs PV.

Table 1.2: Summary Statistics of Rate Groups (Monthly Usage, 2012-2017)

Consumption (000s kWh) Peak Load (kW) Bill($)
Mean St. Dev Mean St. Dev Mean St. Dev # firms

Always G 1.0 1.2 . . 333.9 364.2 38,597
Always J 23.6 39.8 72.1 227.5 6,741.3 11,733.4 8,097
Always P 418.8 424.7 845.9 774.6 107,884.1 108,503.5 385
Before switch to J 4.3 4.0 19.4 17.5 1,350.2 1,150.5 1209
Switch to J 12.3 25.2 43.5 175.2 3,594.8 7,595.8 1209
Before switch to P 104.7 82.0 282.9 144.8 29,110.7 22,914.4 156
Swtich to P 213.6 144.5 472.5 261.1 51,936.4 33,898.9 156

Note: The table above presents average monthly mean kWh, kW, and bill for each rate category. Standard deviation and number
of firms are also presented. The sample includes billing data for all customers in Oahu from 2012 to 2017. Peak demand data for
customers who have always been in rate G are not shown as they do not have demand meters installed at their site. Customers in rate
G do not face a demand charge.

10



Table 1.3: Summary Statistics of Rate Groups for PV customers (Monthly Usage, 2012-2017)

Consumption (000s kWh) Peak Load (kW) Bill($)
Mean St. Dev Mean St. Dev Mean St. Dev # firms

Always G 0.35 1.38 . . 0.22 0.25 110
Always J 19.0 27.0 61.6 60.9 5,708.2 7,274.8 553
Always P 258.3 627.2 638.8 76.7 67,577.6 12,279 55
Switch to J 7.0 12.5 32.8 56.7 2,783.9 3,789.1 13
Swtich to P 171.5 120.0 406.9 182.9 43,476.7 27,485 28

Note: The table above presents monthly mean kWh, kW, and bill for each rate category. Standard deviation and number of firms are
also presented. The sample is restricted to customers who have PV from 2012 to 2017.

1.3.2 Weather data

Monthly average temperature is obtained from the National Oceanic and Atmospheric Admin-

istration (NOAA), which contains mean monthly temperature. Following the method used by

Auffhammer & Aroonruengsawat (2011), temperature is included in a way that imposes a mini-

mal number of functional form restrictions to capture potentially important non-linearities of the

outcome of interest in weather. This is achieved by sorting each days mean temperature experi-

enced by household i into one of the 10 temperature bins. In order to define a set of temperature

bins, temperature distributions are sorted into percentiles and are used as the bins for sorting.

The temperature distribution is then split into 10 bins. For each establishment, bin definition and

billing period the number of days the mean daily temperature falls into each bin is counted.

1.3.3 Other data

To construct the final data set, we merge monthly effective rates and ownership of photovoltaic

systems, which are provided by HECO. Data on PV system ownership includes customer name

and information on the specific dates the system was installed. Effective rates are used as the price

variable in my estimation and is obtained from HECO. Effective rates are the base rates adjusted

for applicable surcharges and adjustments. Surcharges depend on oil price fluctuation. Hence,

effective rates vary each month and is used as the price variable in the elasticity regression.
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1.4 Identification and Empirical Approach

1.4.1 Baseline Approach

The nature of the pricing structure at HECO does not allow for the use of regression discontinuity

(RD) approach since there is no clear cutoff for rate switching and the control group will consist

of both establishments who have experienced a rate switch and those who have not. Fixed ef-

fects regression is ideal for panel data rather than micro cross section models of industrial energy

consumption may be upward biased upward due to unobserved heterogeneity (Bjorn 2001). Each

customer has a different date that they switched rate schedules and the analysis will be conducted

accordingly to incorporate the time differences between customers. This section describes the em-

pirical approach used to evaluate price elasticity and firm response to a change in rate schedules.

This is a baseline model that exploits variation in the rate structure over time and across firms.

Equation (1) is run separately for each rate category to estimate price elasticity of demand per

group. Moreover, samples (1) and (2) are used for this analysis (explained in the data section

above). However, estimation results will be presented separately for each sample. The baseline

specification is as follows:

yit = β1 ∗ ln(pt−1) + β2 ∗ ln(pt−1) ∗ PVit + β3 ∗ PVit + βp ∗ Ditp + αy + µm + ηi + ϵit (1.1)

where yit is the log of the dependent variable of interest: electricity consumption (kWh)

for establishment i in billing period t, and peak load (kW). The regression is run for each rate

group, and the result will provide us with an elasticity, β1, for each rate group (alwaysJ, alwaysP,

alwaysG, and rate switchers). The variable p represents the log of monthly effective rate in pe-

riod t. Consumers may react to lagged price rather than contemporaneous price because they

receive their electric bills at the end of the month Ito (2014). Hence, the analysis uses one-month

lagged prices. The volumetric rates vary by month and rate schedule. This price variation is

used to estimate price elasticities. price ∗ PV is an interaction between PV dumour and effective

rate, Dpit are binned weather observations, αy is the year dummy, µm is the month dummy and

ηi is the establishment specific fixed effect. Month and year dummies and firm fixed effects are
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included to control for contemporaneous shocks that affect electricity consumption common to

establishments. As per Jessoe & Rapson (2015), the standard errors are clustered at the firm level

to allow for correlation across all observations within a firm. Moreover, the PV dummy speci-

fies the month that the customer PV installation took place, making it a time variant term. The

identification variation comes from within-establishment variation in peak electricity demand by

different rate groups (alwaysJ, alwaysP, alwaysG, and rate switchers). Estimation results will rep-

resent the within group elasticity. I examine the elasticity between customer groups to identify

the customers who are most likely to respond to an increase in price. I hypothesize that the cus-

tomers who face a sudden higher demand charge due to higher peak demand incur an elasticity

that is higher than customers who have always been in the same rate schedule. Customers who

switch rate schedules could be more sensitive to price for two reasons. First, they tend to be close

to the rate switching threshold (see table 1.2 for details). Customers who have mean monthly

peak demands close to either threshold are subject to switching rates and facing a higher peak de-

mand. Hence, it is beneficial for these customers to manage their peak demand to be lower than

the threshold. Second, customers who switch rates face a higher demand charge. As indicated in

table 1.2, customers who switch rates to either J or P face a higher total bill compared to before the

rate switch.

The coefficient on Dpit (βp) are interpreted as the impact of one more day with a mean temper-

ature falling into bin p on yitk. Equation (1) is estimated separately for each rate group, k. Rate

group summary statistics are presented in table 1.2. The coefficient of interest is β1 and β2, which

estimate the price elasticity of demand for customers in rate group k and of those in category k

with PV.

To add variation to this analysis, I also employ a difference and differences (DID) method. Sam-

ples (1) and (2) are also utilized for this equation (see section 3 on sample explanation). This

analysis will allow us to look at the treatment effect of switching rates with customers who have

never experienced a switch as the control group. Unlike equation (1), this regression focuses on

the average treatment effect of switching rates. Hence, the elasticity obtained from the regression

will show the elasticity after switching compared to a control group.

The equation is as follows:
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yitk = β1 ∗ ln(pt−1,k) + β2Switchr + β3 ∗ ln(pt−1,k) ∗ Switchr + β4 ∗ ln(pt−1,k) ∗ PVitk + β5 ∗ PVitk

+βp ∗ Ditpk + αy + µm + ηi + ϵitk

(1.2)

where equation (2) is similar in set up as equation (1) except for the variables Switchr and

ln(pt−1) ∗ Switchr. The inclusion of these variables allows for equation (2) to follow a DID set up

that examines the average treatment effect of an event (switching rates). The variable Switchr is

the treatment and also the time dummy under the DID environment. This is because this vari-

able represents unity at the time the customer switch rates and also an indicator of whether the

customer is a rate switcher. The variable ln(pt−1) ∗ Switchr is the interaction of the rate switching

variable and the price variable, and the coefficient will provide the price elasticity of demand for

customers who switched rates relative to the control group, who are those that have always been

in the same rate schedule. The subscript k is a group indicator that represents the rate category.

Specifically, the rate category include four groups. These groups are customers who are "always

G", "always J", "alwaysP", and "rate switchers." Rate switchers are the treatment group. However,

equation (2) is run separately for large C&I and small C&I customers. The large C&I sample in-

cludes customers who are "always J", "always P", and customers who switched to rate P. The small

C&I sample includes customers who are "always G", "always J", and customers who switched to

J. The customers who are always in rate J are included in both samples, as indicated in the data

section.

It is important to note that these equations do not control for endogeneity, but this issue will be

addressed in the next section.

1.4.2 Grandfathering

Switching schedules is endogenous because the customer itself makes the decision to increase or

decrease their peak demand based on factors including electricity prices and business operations.

Business operations and equipment utilized at the customer site are not observed in the billing

data. To address this issue, I utilize a sample of customers that have been "grandfathered" as a

control group and calculate the price elasticity of demand.
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As stated in the introduction, there are customers in the sample that have been "grandfathered."

These customers are exempt from the rules that govern rate placement. In other words, grandfa-

thered customers do not switch to rate schedule P regardless of consuming passed the 300 kilowatt

threshold three times in a given year. Figure 1.4 shows the relationship between average monthly

kilowatt hour and kilowatt for J and P customers, with red indicators representing the observa-

tions for P customers and blue for J. It can be seen from the figure that blue and red observations

collide with each other, when this should not be the case if the rules governing the rate placement

are true. If the rate placement rules hold, the two colors should be separated around the cutoff at

300 kW because that is where rate switching occurs. Hence, figure 1.4 shows that there are cus-

tomers who should be placed in rate schedule P based on their monthly peak, but are categorized

as rate J customers and do not face a higher demand charge. This is due to a change in rate cat-

egory policy at HECO. Rate schedule J became closed to new customers with kW demand equal

to or greater then 300 kW after June 2008, and existing J customers who had maximum demand

measured kW demand equal to, or greater than 300 kW were allowed to continue receiving ser-

vice under rate J. Hence, new customers who tied a contract with HECO and had kW demand

equal to or greater than 300 kW were placed under rate schedule P, while existing J customers

with kW demand measurements over 300 kW were grandfathered from this rule. Moreover, it

could be argued that customers who have a large kWh usage to choose to be under rate P because

of the lower volumetric charge. However, the green line in figure 1.4 (a) shows that this is not the

case. Customers would need to have a mean monthly kWh and kW combination above the green

line given their volumetric and demand charge to have an incentive to switch to rate P. Thus, we

can say that there is no incentive for customers to want to be placed in a rate schedule with a

higher demand charge and lower volumetric charge, and these types of customers do not exist in

this sample. We use the DID method to estimate the effect of rate changes using grandfathered

customers as a control group. The equation is as follows:

yit = β1 ∗ ln(pt−1) + β2Switchp + β3 ∗ ln(pt−1) ∗ Switchp + β4 ∗ ln(pt−1) ∗ PVit + β5 ∗ PVit

+βp ∗ Ditp + αy + µm + ηi + ϵit

(1.3)

The above equation is the same as the DID set up in equation (1.2), but the regression is
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applied to a different sample. The sample consists of grandfathered establishments and customers

who have experienced a rate switch at least once. Moreover, to assure that the control group

and the treatment group have similar pre-consumption trends, the sample is further narrowed by

deleting establishments that are outside of the common support. A histogram of peak demand

is illustrated in figure 1.3. The common support is peak demand between 100 kilowatts and 600

kilowatts. Establishments who have mean peak demand outside of this range are deleted from the

sample. After restricting the sample there are 12,573 observations for this analysis. The standard

errors are clustered using two way clustering that incorporates the customer identification number

and time period (year-month).

Grandfathered customers serve as a control group in the analysis to address the endo-

geneity issue that arises because customer rate placement is not random. Ito (2014) addresses

this issue by segmenting the treatment and control group by the territory boarder between two

power providers. Territory boarders lie within city limits, and households in the same city can be

served by different utilities. Hence, rate placement is exogenous and price variation comes from

the relative price of the two power providers. However, customers in our sample are serviced by

a single utility and price is dependent on a customer’s peak demand. To address this issue, we

create a control group that consists of customers who are exempt from the rules of rate placement

(grandfathered customers). The treatment group in our analysis consists of customers who have

switched rates to rate schedule P and are not grandfathered. Table 1.4 presents the mean monthly

kilowatt and kilowatt hour usage for the treatment and control groups. It is important to note

that the grandfathered variable is a time variant variable that is equal to unity when the customer

exceeded the 300 kW threshold three times within a 12 month period (as per the rate switching

rules), but did not switch rates to a schedule with a higher demand charge. In addition, the "switch

to P" variable in table 1.4 is also a time variant variable and is equal to unity when the customer

switched rates to a rate schedule with a higher demand charge after exceeding the 300 kW thresh-

old three times with 12 consecutive months. As seen from the table, grandfathered customers

and rate switchers have almost similar monthly kWh but different monthly bills. Grandfathered

customers have monthly bills that are about $5,100 less than customers who have switched rates

even though grandfathered customers have greater peak demand. This is because grandfathered

customers face the same fixed rates and demand charges of those in rate schedule J regardless of

having mean peak demands that are high enough to be in schedule P. To put the grandfathering
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concept into perspective, table 1.4 also includes what the bill for grandfathered customers would

be if they faced rate schedule P rates. In other words, we utilize their monthly kWh and peak

demand data to calculate an alternative bill. The last row in table 1.4 shows the results. Grandfa-

thered customers face a mean monthly bill of around $52,600 when faced with schedule P rates.

This value is higher than the mean bill that the treatment group (Switch to P in table) faces, which

is $51,900. Thus, grandfathered customers indeed have either higher monthly kWh or peak de-

mand than rate switchers but do not face the consequence if a higher peak demand. The elasticity

estimates are compared between rate switchers (treatment) and grandfathered (control group)

customers. Ideally, grandfathered customers should have low elasticity due to the fact that they

are not exposed to the risk of being bumped up to a rate schedule with higher demand charge

regardless of their monthly peak demand.

Figure 1.3: Before and After Common Support Restriction on Sample

(a) Histogram without common support restriction (b) Histogram with common support restriction

Note: Figure (a) The above histogram shows the frequency of average monthly peak demand per customer. The sample is restricted
to those who have experienced a switch to rate schedule P and grandfathered customers. Figure (b) This histogram illustrates the
distribution of monthly mean kW changes when restricting the sample further based on the common support of figure (a).
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Figure 1.4: Entire Sample versus Grandfathered and Switchers Sample

(a) Scatter with all J and P rate customers in sample

(b) Scatter with common support restriction on grandfa-
thered and rate switchers with fitted line

Note: Figure (a) The above scatter plot shows the relationship between monthly mean kW and kWh for a restricted sample of rate J
and P customers only. The green line indicates the threshold that the kW and kWh combination where being in a lower rate schedule
benefits the customer in terms of billing. Red lines indicate the "switching" thresholds, 25 kW and 300 kW, respectively. Figure (b)
This scatter plot restricts the sample to rate switchers to P and grandfathered customers only. The red and blue dots apply to the rate
switchers and grandfathered customers, respectively. The red horizontal line indicates the switching threshold.

Table 1.4: Monthly Usage for Grandfathered and Rate Switchers (2012-2017)

Consumption (000s kWh) Peak Load (kW) Bill($)
Mean St. Dev Mean St. Dev Mean St. Dev # firms

Before Grandfathered 111.1 82.7 358.8 747.4 32,205.9 28,438.5 240
Grandfathered 164.5.2 172.3 589.1 1193.02 45,458 51,970.0 240
Before switch to P 104.7 82.0 282.9 144.8 29,110.7 22,914.4 156
Swtich to P 213.6 144.5 472.5 261.1 51,936 33,898.9 156
Grandfathered bills using schedule P rates . . . . 52,658.83 63,520.7 240

Note: The table above presents monthly mean kWh, kW, and bill for grandfathered (control group) and customers who switched to
rate P (treatment group). Standard deviation and number of firms are also presented. Grandfathered customers are defined as those
who pass the 300 kW threshold more than three time within a given month but are categorized as rate J. "Before grandfathered"
represents the pre- period in which grandfathering occurred. "Switch to P" is a dummy variable that equals to 1 for all the months
after the customer experiences a rate switch to P.

1.5 Estimation Results

In this section the results of equation (1.1) and (1.2) with usage and peak load as dependent vari-

ables are reported. The subsection starts with the baseline estimation results from equations (1.1).

Subsection 2 reports the DID estimation results from equation (1.2). Subsection 3 introduces the

effect of PV installation on peak demand. The Results presented in this section do not address the

endogeneity issue but will be addressed in later sections.
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1.5.1 Baseline Results

We use the fixed effects regression to identify the impact of customer rate switching on electric-

ity usage and peak load. Table 1.5 illustrates the results of the baseline regression for each rate

category for small C&I sectors (customers in rates G and J). Each column shows the elasticity esti-

mation results for alwaysJ, alwaysG, and switchers with the log of kilowatt-hour as the dependent

variable. It is important to note that this is a baseline regression and does not control for endo-

geneity using grandfathered customers. The estimates show that customers who have switched

to rate schedule J, have a price elasticity of demand of about -0.349 and is significant. This aligns

with previous literature that shows elasticity estimates between -0.1 and -0.35 (column 3). The

coefficient on lag price for customers who have never switched rates from rate G are insignifi-

cant, which can be the case because these customers have never faced a demand charge and face

relatively low variation in volumetric rates compared to customers who have experienced rate

changes. The price elasticity for customers who have never switched rates and have always been

in rate J is -0.133 and significant. This indicates that when comparing within group elasticities

between alwaysJ, alwaysG, and switchers, customers who face a jump in rate schedules (and face

a higher demand charge) indeed react more to price relative to those who have never experienced

such switching behavior.

Moreover, the coefficient on the interaction between price and the PV dummy variable represents

the price elasticity of demand for a customer who has a PV system installed. Column (2) in Table

1.5 shows that customers who have always been in rate schedule J and have a PV system installed

has a price elasticity of demand of about -0.434 and is significant. The results provide evidence

that customers who have installed PV are more responsive to price than before they installed PV.

This is because PV customers have less monthly peak demand and energy usage (kWh) after the

installation. The reason for this behavior is due to increased awareness and sensitivity to the cus-

tomer bill as bills drop down to almost zero after PV installation.

Table 1.6 presents the baseline elasticity estimation for customers categorized as alwaysJ, alwaysP,

and customers who switched to P. Customers who switched to rate schedule P has a price elasticity

of demand of -0.397 and is significant. This value is higher than that of customers who have never

switched rates and have always been in rate J, who have an elasticity of -0.158. This indicates that

customers who experience a switch to a rate schedule are more price responsive than those who

have never switched rates. Comparing "switch" coefficients between tables 5 and 6, it is observed
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that elasticity estimates for large customers is larger than that of small customers indicating that

large customers are more responsive to price. This could be the case because large customers who

have experienced a switch to rate P have significantly large peak demand and usage than those

who have switched to J (see table 1.2 for details). Hence, it could be that large C&I customers

can have a larger share of electricity prices of their total business expenditures compared to small

businesses. This is consistent with the paper by Jang, Eom, Kim, & Rho (2015) who shows that

C&I customers who have a large share of electricity expenditure are more responsive to dynamic

pricing schemes such as critical peak pricing.

Customers who have PV systems and have always been in rate category J (column 1) have an elas-

ticity of about -0.165 and is significant. This evidence shows that customers who have PV systems

are more responsive to price changes, which is consistent with the elasticity estimates for small

C&I customers who have PV as mentioned above.

Table 1.5: Baseline Regression for Small C&I Customers in Rates G or J

(1) (2) (3)
Log kWh AlwaysG AlwaysJ Switchers

Lagprice -0.064∗∗∗ -0.141∗∗∗ -0.32∗∗∗
(-4.91) (-11.55) (-3.39)

Price*PV -0.401∗∗∗ -0.293∗∗∗ -0.31
(-3.99) (-4.80) (-0.89)

Constant 5.97∗∗∗ 9.18∗∗∗ 7.74∗∗∗
(367.22) (479.76) (61.44)

Observations 1135474 395964 22116
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: The table above presents the elasticity regression for small
C&I customers. This analysis does not control for endogeneity. The
sample used in this table consists of customers categorized under
rates G and J. The sample period is 2012 to 2017. Billing data are
obtained from HECO.
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Table 1.6: Baseline Regression for Large C&I Customers in Rates J or P

(1) (2)
Log kWh AlwaysP Switchers

Lagprice -0.014 -0.397∗∗
(-0.42) (-2.24)

Price*PV -0.292∗∗∗ -0.242
(-3.15) (-0.80)

Constant 12.53∗∗∗ 7.649∗∗∗
(255.36) (27.56)

Observations 19219 4737
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: The table above presents the elasticity regression for large
C&I customers. This analysis does not control for endogeneity. The
sample used in this table consists of customers categorized under
rates J and P. The sample period is 2012 to 2017. Billing data are
obtained from HECO

1.5.2 Baseline Results (DID Estimation)

This section reports the estimation results from equation (1.2). This analysis shows the average

treatment effect if a customer has experienced a rate change. Tables 1.7 and 1.8 illustrate the

estimation results for small C&I customers and large C&I customers, respectively. Table 1.7 shows

that the average treatment effect on log kWh of customers who switch to rate J is about -0.161

and is significant. Moreover, the coefficient on price and the rate switching dummy show that the

elasticity of customers who switch rates is about -0.3 and is significant. This result is very similar

in value with column (3) in table 1.5, which is reassuring. Table 1.8 presents the DID estimation

for large C&I customers. The elasticity of customers who have experienced a rate switch is about

-0.332, and is close to the coefficient presented in table 1.6, which shows an elasticity of about -0.39.

Customers who experience a switch from rate J to P seem to be more responsive than customers

who have switched from G to J. This could be explained by the fact that customers who switch

to P incur a significant increase in demand charge relative to customers who switch rates from a

non-demand charge rate schedule to rate J.
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Table 1.7: DID Regression for G and J Customers

Log kWh

LagPrice -0.141∗∗∗
(-10.40)

Price*PV -0.104∗
(-1.17)

PV -0.789∗∗∗
(-6.05)

SwitchtoJ -0.161∗
(-1.74)

Price*Switch to J -0.302∗∗∗
(-4.86)

Observations 1507686
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: The table above presents the elasticity regression for large
C&I customers using a DID approach. This analysis does not con-
trol for endogeneity. The sample used in this table consists of cus-
tomers categorized under rates J and P. The sample period is 2012
to 2017. Billing data are obtained from HECO.

Table 1.8: DID Regression for J and P Customers

Log kWh

LagPrice -0.140∗∗∗
(-10.51)

Price*PV -0.316∗
(-5.36)

PV -0.6723∗∗∗
(-8.12)

SwitchtoP -0.094
(-0.86)

Price*Switch to P -0.192 ∗∗∗

(-2.51)

Observations 456375
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: The table above presents the elasticity regression for large
C&I customers using a DID approach. This analysis does not con-
trol for endogeneity. The sample used in this table consists of cus-
tomers categorized under rates J and P. The sample period is 2012
to 2017. Billing data are obtained from HECO.

1.5.3 PV and Energy Consumption

This subsection investigates the effect of PV capacity on reducing customer monthly peak de-

mand, and the effect of rate switching on peak demand changes. We hypothesize that a rate switch

will most likely increase peak demand because rate schedule placement rules require that a cus-

tomer have a spike in peak demand within a 12 month period to switch rates. However, the effect
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of rate switching on monthly kWh is unknown because the rate schedule with highest demand

charge face a lower price per kWh consumed. This is because customers in higher rate schedules

purchase in "bulk", hence the lower volumetric charge. Therefore, customers who switch rates

could consumer more per kWh because they now face a lower volumetric charge. Moreover, the

effect of PV capacity on reducing peak demand is examined to investigate the effectiveness of PV

in reducing peak demand. As the equation below indicates, we interact kilowatt capacity with the

dummy variable for installation of PV.

To investigate how switching rates affects peak demand, we estimate a modified version of equa-

tion 1.1:

yit = β1 ∗ switchb + β2 ∗ capacityit ∗ PVit + β3 ∗ ln(pt−1) + βp ∗ Ditp + αy + µm + ηi + ϵit (1.4)

where yit is equal to the dependent variables in question: log kW, log kWh and kW for customer i

in time t. The switchb variable is a rate switching dummy where the subscript b is equal to rates J

or P, and indicates which schedule the establishment switched to. This equation adds a new vari-

able, capacity ∗ PVit, which is an interaction between the PV dummy and the solar system capacity

(kW) for customer i. The PV dummy is a time variant variable that is equal to unity after the date

that the customer installs a PV system. The coefficient on this variable will indicate how a one

kW increase in PV system capacity will affect peak demand. Finally, the fixed effects and weather

variables are the same as equation 1.1.

Table 1.9 shows the results for the estimation of switching rates on peak demand (kilo-

watt) and log usage (kWh). In regards to table 1.9 column 1 and 3, it is important to note that

the coefficient on switching to J is positive because rate switching only occurs when a customer

increases their monthly peak demand. The interaction between PV installation and PV capacity is

negative and significant for culumns 1 and 3, with a one kilowatt capacity increase leads to about

a 0.1 percent decrease in log kilowatt hour. This indicates that peak consumption tends to de-

crease after PV installation. These results are not conclusive on what time of the day the consumer

reduces their peak demand. Instead the results show that monthly peak demand decreases with

PV installation. Column (2) in table 1.9 shows the effect of switching rates to J on monthly kWh

but is insignificant. Hence, we can’t determine whether a rate switch changes kWh consumption.
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Table 1.10 illustrates how peak demand changes as a customer changes rate schedules when cus-

tomers switch from rate schedule J to P. As per table 1.9, the effect of switching on kilowatt hour is

unknown since the coefficient is insignificant. However, align with the results from table 1.9, the

coefficient on the interaction variable is significant. A one kilowatt increase in PV capacity leads

to about a 1 percent and 0.1 percent decrease in log kilowatt hour and log kilowatts, respectively.

Table 1.9: Peak Demand & Usage Regressions for Rate G & J Sample

(1) (2) (3)
kW log kWh log kW

Switch to J 9.50 0.056 0.415∗∗
(1.05) (0.25) (2.36)

PV*capacity -0.107∗∗ -0.0099 -0.00137∗∗
(-2.80) (-0.75) (-2.67)

logprice -6.282 -0.251 -0.0797
(-1.60) (-1.93) (-0.95)

Observations 13376 18368 13367
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: The table above presents the effect of switching rates on
monthly peak demand (kW) and monthly consumption (kWh).
The sample used in this regression consists of customers who are
categorized as rates G and J. This analysis does not control for en-
dogeneity. "Switch to J" is a dummy variable that is equal to 1 for all
the months after the customer faces a new rate schedule. The sam-
ple period is 2012 to 2017. Billing data are obtained from HECO.

Table 1.10: Peak Demand & Usage Regressions for Rate J & P Sample

(1) (2) (3)
kW log kWh log kW

Switch to P 111.5 0.173 0.219
(1.35) (0.67) (1.54)

PV*capacity -0.136∗∗∗ -0.0107∗∗∗ -0.00193∗∗∗
(-3.64) (-8.29) (-3.95)

logprice -1.93 -0.331∗∗∗ 0.0034
(-0.73) (-3.23) (0.09)

Observations 16179 14553 16179
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: The table above presents the effect of switching rates on
monthly peak demand (kW) and monthly consumption (kWh).
The sample used in this regression consists of customers who are
categorized as rates J and P.This analysis does not control for endo-
geneity. "Switch to P" is a dummy variable that is equal to 1 for all
the months after the customer faces a new rate schedule. The sam-
ple period is 2012 to 2017. Billing data are obtained from HECO.
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1.5.4 Results for Grandfather Estimation

Table 1.11 presents elasticity estimates for grandfathered customers when using the DID method.

Elasticity is larger for rate switchers then grandfathered customers with a price elasticity of de-

mand of about -0.40. This provides evidence that grandfathered customers indeed are less price

responsive when compared to the treatment group. This is the case because grandfathered cus-

tomers always face the demand charge that is specific to customers in rate schedule J. Specifically,

they are not susceptible to rate switching, hence, will never be penalized for having peak demand

above the 300 kilowatt threshold. The elasticity estimate of -0.40 for rate switchers align with

results presented inn table 1.6 column 2 (which shows an elasticity estimate of customers who

switched to P of about -0.39). This section on grandfathering further implies that rate switchers

are more price response even after controlling for endogeneity.

Table 1.11: Elasticity Regression: Grandfathered and Switchers Sample

Log kWh

LagPrice -0.063
(-0.68)

Price*PV -0.08
(-1.23)

PV 0.024
(-0.44)

SwitchtoP -0.352∗∗∗
(-2.87)

Price*Switch to P -0.341∗∗∗
(-4.53)

Constant 11.25∗∗∗
(67.25)

Observations 19714
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: The table above presents the elasticity regression for the sam-
ple of grandfathers and customers who have experienced a rate
switch to rate P. This analysis controls for endogeneity. "Switch to
P" is a dummy variable that is equal to 1 for all the months after the
customer faces a new rate schedule. The sample period is 2012 to
2017. Billing data are obtained from HECO
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1.6 Conclusion

Energy demand has been more difficult to model due to increased deployment of DER. Under-

standing the nature of consumer demand has become more important for policy makers and

the utility to plan future capacity requirements, deploy demand response programs, and match

energy demand with supply. This paper studies the response to effective rates of a sample of

C&I customers on Oahu. our hypothesis is that rate switchers have a higher elasticity than non-

switchers. Price variation that arises when customers switch rates to a schedule with higher de-

mand charge is exploited. Using fixed effects regression to estimate the price elasticity of demand

of customers who have switched rates, we find that customers in the setting who switch rates ex-

hibit a price elasticity of about -0.35, while customers who have never experienced a rate schedule

change have an elasticity of about -0.133. The empirical results support our hypothesis that cus-

tomers who face higher fixed and demand charges are more responsive to price changes. This is

because customers who have experienced a rate switch face the difficulty of being bumped down

to a rate with lower demand charge and become more responsive to prices. Another significant

finding is that large C&I customers are more responsive to price than small C&I customers. This

implies that customers who have a large share of electricity expenditures are more price sensitive,

which is consistent with previous papers.

Another caveat of this paper is addressing the endogeneity issue of rate placement using a ran-

dom sample of "grandfathered" customers who are exempt from the rules that govern rate sched-

ule placement as a control group. Estimation results find evidence that customers who have peak

demands over the 300 kilowatt threshold but do not face the risk of facing higher demand and

fixed charges are less responsive to price than customers who follow the rate placement rules. In

addition, this paper finds that customers who have switched rates have a load factor that is lower

than that of customers who have not, indicating that customers who switched rates have more

volatile peak demands. Further research needs to be done to improve the grandfather estima-

tions. For example, a propensity score matching method can be utilized to correct for selection on

observables between switchers and the grandfathered customers.

This paper fills the gap in the literature by addressing price response to rate schedule

changes of C&I customers. Price elasticity of demand for residential customers have been re-

searched extensively when the share of end use electricity is higher for C&I customers than res-
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idential. This is important as demand response programs start to grow in popularity, fueled by

installation of advanced metering technology.The evidence provided here can serve as a supple-

ment for decision makers who need to identify potential customers for demand response pro-

grams. Moreover, this research contributes to the literature by addressing rate change response of

not only small C&I customers, but also investigates price elasticity of large customers who have

average monthly peak demand of 863 kilowatts. Results will give insight to the price responsive-

ness of customers who could possibly have the most effect on the system load.
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Chapter 2

Weather Fluctuations and Peaks: An

Empirical Analysis of the Electricity

Demand in Commercial and Industrial

Sectors

2.1 Introduction

Forecasts of electricity demand is important for utilities to plan for future capacity generation

and investments. The effectiveness of dynamic pricing schemes on reducing peak demand has

been extensively researched by scholars, as it is a factor influencing electricity supply planning.

Although understanding customer price response during peak hours of the day can provide fur-

ther insight to consumer demand, prices, population growth, and economic growth are not the

only drivers of electricity consumption. Climate change is one important dimension that must be

considered when planning for future generation and demand side management. In addition, elec-

tricity demand response to climate is essential for sound policy making. As researchers predict

an increase in global average temperatures by the end of the current century (Nakicenovic et al.,

2000), it is expected that energy demand will increase as people cope to high temperatures, via in-

creased air cooling demand. The concept of climate change has been studied as greenhouse gases
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are causing temperature and precipitation levels to increase over time (Deschênes & Greenstone,

2011). Taking temperature into consideration when estimating consumer electricity demand be-

comes crucial, as individual’s energy consumption patterns change with the climate. Past studies

agree that temperature is a key variable that affects energy demand. For example, papers by Wat-

son and Mjirhia (2005) and Parkpoom and Harrison (2008) agree that weather variables such as

wind speed and precipitation are relatively less important than temperature when predicting en-

ergy demand.

This paper presents empirical estimates for the effect of climate induced changes such as temper-

ature on electricity demand for the commercial and industrial (C&I) sector in the island of Oahu

in Hawaii. In Hawaii, climate change is likely to affect the power system through rises in cooling

demand, rather than heating demand. It is important to note that Hawaii has a low deviation in

yearly temperatures. The hottest month in Hawaii is August with an average temperature of 80

degrees Fahrenheit. On the other hand, the coldest month is in January at 71 degrees Fahrenheit.

There is no variation in temperature throughout the year compared to states like Massachusetts

where the average temperature is 36 degrees Fahrenheit in January and 80 degrees Fahrenheit

in August. Climate models forecast that there will be higher temperatures and more frequent

heat waves in summer and less frequent cold episodes in the winter (Beniston & Stephenson,

2004). Furthermore, forecasts predict that night-time temperatures in Massachusetts will warm

relative to day-time temperatures (Hartmann 2013). A case study done in Massachusetts by

(Véliz, Kaufmann, Cleveland, & Stoner, 2017) states that this effect is more noticeable in the winter

when the night-time minimum temperature in the Northern Hemisphere increases 0.099 degrees

Celsius per decade faster than the day-time maximum temperature. What implications does this

have on Hawaii where the mean temperature variance is relatively low and no cold winters? If

expected climate change increases average temperatures during the summer, energy consump-

tion in Hawaii will rise due to more demand for cooling. Furthermore, if Veliz (2017) is correct,

reduction in the diurnal temperature range will change the daily consumption pattern in Hawaii

such that summer night-time consumption rises faster than the day-time. Hence, Hawaii’s en-

ergy usage will increase overall in the summer with night-time consumption rising faster than the

day-time. As peak consumption rises in the night time, additional generation capacity is needed

to meet supply with demand at all moments in time. Moreover, the effects of climate change can

affect customers in the C&I sectors differently as their load profiles differ. This study examines

the relationship between energy consumption and temperatures, and can serve as a supplement
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for regulators when planning long run capacity requirements for the future.

While existing literature reviews the effect of energy production and use on climate, only

recently the reverse has been examined (Véliz et al., 2017) and relies on panel estimation of heavily

aggregated data. However, coefficient estimates from papers like (Deschênes & Greenstone, 2011)

and (Auffhammer & Aroonruengsawat, 2011) offer some of the best evidence we have on the in-

tensive margin due to the incorporation of panel data in their studies. (Deschênes & Greenstone,

2011)examine variation in U.S. state-level annual panel data of residential electricity consumption

using flexible functional forms of daily mean temperatures. They find that there is a proportion-

ally larger increase in energy usage on days where the temperature exceeds 90 degrees Fahren-

heit. Specifically, the authors find a U-shaped response function where electricity consumption

is higher at extreme temperatures. A similar method will be adopted in my paper. The panel

data approach will allow me to control for differences in unobservable characteristics across cus-

tomers in the sample. Moreover, a paper by (Auffhammer & Aroonruengsawat, 2011) simulates

how the residential sector’s electricity consumption will be affected by different scenarios of cli-

mate change using monthly billing data. The author uses flexible temperature response functions

by climate zone, and this will also be incorporated in my paper. Auffhammer finds that tem-

perature response depends on the climate zone. His study also stimulates the effect of increased

population and prices on energy consumption. While studies on the residential sector have been

conducted, commercial and industrial studies seem to lack. In addition, current studies rely on

monthly billing or annual data. My study explains time series variation in 15-minute electricity

load over a three year period. This will allow for a more in depth examination of how consumers in

the C&I sectors respond to intra-day variation in temperatures. (Franco & Sanstad, 2008) explain

temperature response by utilizing grid level data in California. His estimates show a non-linear

relationship between electricity load and temperature, while my analysis shows that there is a

linear relationship between electricity demand and temperatures. This is because Hawaii has low

variation in temperatures throughout the year, making it a state where heating degree days are

almost non-existent.

The contribution of the paper to the existing literature is two-fold: (1) While previous stud-

ies forecast energy consumption of the residential sector, literature on C&I customers is sparse

(Auffhammer & Mansur, 2014). Focusing on large C&I customers can contribute greatly to exist-
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ing literature because the C&I sector contributes to about 70 percent of end-use energy usage in

Oahu (EIA 2012). (2) Micro-level analysis is critical, but for most studies customer-level data is

not available(Franco & Sanstad, 2008). Moreover, aggregated panel data and time series variation

cannot control for unobserved factors also changing over time, and literature using these types of

data are least likely to be informative on climate damages (Auffhammer & Mansur, 2014). How-

ever, this paper utilizes micro level panel data of energy demand for large C&I customers collected

at the 15-minutes interval level obtained through a confidential agreement with Hawaiian Electric

Company. The detailed level data used in the paper can address changes in composition of indus-

try that aggregate level data mask. In addition, the panel data will allow for better understanding

of how firms from different sectors respond to temperature while utilizing time fixed effects at the

consumer level to address omitted variable biases.

In this paper, I conduct a weekend versus weekend analysis along with a within day temperature

response by sector. The identification strategy relies on random hourly local variation in temper-

ature, so concerns about omitted variables bias are unlikely to be a limiting factor for the analysis.

The short-run temperature effects on energy demand are measured using a climate model that

considers not only hourly temperature but also weather variables such as precipitation and hu-

midity.

2.2 Data Sources

As seen from the previous literature, temperature is not the only factor that affects energy demand.

Meteorological stations typically record data for numerous meteorological variables. In my analy-

sis, I obtain a set of variables that could be obtained for the entire period of the analysis. To control

for all possible factors, I include a set of not only temperature variables but also non-temperature

weather variables including: humidity, precipitation, and wind speed.

2.2.1 Commercial and Industrial 15-Minute Interval Consumption Data

Data are obtained from Hawaiian Electric Company under a confidential agreement. This is a

fine data set that includes a 15-minute frequency usage in both kilowatt hours (kWh) and kilo-
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watts (kW). The data consists of C&I establishments for 2014 to summer 2017. There are a total

of 500 customers included in this data set, and are not representative of all the establishments on

the island of Oahu. Industries for these large C&I customers include: hotels, schools, hospitals,

department stores, and grocery stores. Small C&I customers that are in the general non-demand

(Rate G) rate schedule is not included in this data set. The sample of this data set consists of large

customers that have a meter and a dedicated telephone line that collects and stores data on their

electrical usage at 15-minute intervals (Wordpress 2010). Customers included in this sample con-

sists of general demand (rate J) and large power service (rate P) rate schedules. It is important to

note that customers included in this data have access to their electrical usage through an internet

portal. Participation in this service is voluntary, and access to data is possible through contacting

a representative. Specifically, customers have data on the peak demand and energy usage trends

throughout the year. Access to the data is possible through the portal at any time and this makes

it easier for customers to manage demand and energy usage, documenting the impact of energy-

efficient investments, and determining the impact of any new equipment or changes in operations.

This information is an important aspect for the analysis because customers understand their usage

behavior more than other customers who do not have access to this portal.

I classify customers in this data by industrial codes, which is aligned with the North

American Industrial Classification System (NAICS). The major sectors in my sample are: hotels,

schools, hospitals, department stores, manufacturing and grocery stores. I observe industrial

codes for 90 percent of my sample. Table 2.1 presents summary statistics of each customer sec-

tor. As seen from the table 2.1, the health sector has the highest average 15 minute peak (1585

kilowatts). General merchandise and grocery stores have average 15 minute peaks of 308.3 and

260 kW, respectively. Table 2.1 only shows the averages of peak demand consumption rather than

the specific time the highest peak occurs by customer.

In addition, I overlay average temperature over average demand (kW) and is presented

in figures 2.3 through 2.7 in the appendix. The figures are by industrial sector classified by the

NAICS codes to show the differences in the relationship between temperature and energy demand

by month. Energy demand is averaged by day to construct this 12-panel figure. The figures show

that this relationship differs between industrial sector. For example, the educational sector shows

that energy consumption during summer months and the holidays are relatively low due to sum-

mer vacation and Christmas holiday. The four "humps" in each panel represents the weekly load
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for the educational sector, with demand being the highest during the weekdays. Hence, per the

figure, the educational sector seems as though they are not sensitive to temperature changes. This

is because the educational sector could have a operations that do not correlate with the weather.

On the other hand, there seems to be the most correlation between temperature and energy de-

mand for hotels. This could be the case because hotel guests use the most air conditioning on days

where they experience the highest temperatures. Moreover, hotel guests have no incentive to use

energy efficiently as they are not directly paying for the electricity costs.

Table 2.1: Average 15 minute Demand by Sector (2014-2016)

kW Average Standard Deviation Obs (million)

Education 758.5 2225.3 5.7
Hospitals 1585.5 1669.6 1.7

General Merchandise 308.3 323.7 2.1
Hotels 712.1 631.0 3.9

Grocery Stores 260.0 122.3 3.6
Notes: The table displays summary statistics for five C&I sectors that are observed within the
MV90 dataset. The number of observations are in millions.

2.2.2 Hourly Weather Variables

Hourly temperature, precipitation humidity and wind speed data from 2014 to 2016 are collected

from Iowa State University, Iowa Environment Mesonet (IEM). Temperature data are in Fahren-

heit and wind speed measures are in knots. These data sets are included in the data because they

are most likely to affect cooling demand. Previous research has found a correlation between these

variables and energy demand. For example, (Hernández et al., 2012) finds that a positive correla-

tion between humidity and energy consumption. Likewise, wind speed may decrease the demand

for cooling in hot days. Table 2.2 provides a description of the weather variables. I present the

mean, standard deviation, minimum and maximum for each weather variable that is used in my

analysis. Weather data are in hour units; hence, the linear interpolation method is incorporated to

match this data with the 15 minute interval data set. Figures 2.3 through 2.7 in the appendix illus-

trate temperature trends from 2014 to 2016. Figures 2.8 illustrates the daily temperature average

of every 15 minute interval by year. Daily peak tends occur around 15:45 pm with 2015 having the

highest peak out of the three years. Figure 2.9 and 10 show the average temperature by season. As

illustrated by the figure, Hawaii has the highest temperatures during July, August and September.

In addition, the coldest months in Hawaii in December, January and February.
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Customers are scattered across various areas in Oahu, where climate variables can vary depend-

ing on the region. Customers located near the mountains can experience different weather than

customers who are located near the ocean. To address this, I utilize customer addresses to locate

them on the map and use the closest weather station. I cross reference the customer address with

the customer name to ensure that electric service is indeed provided to the particular business

listed in the dataset. Due to confidentiality of the data, I do not reveal the location of the cus-

tomers in my sample. Ninety percent of the customers in the sample are in the city of Honolulu,

and I use the correlating Honolulu Airport station for my analysis. The remaining 10 percent were

not included in the sample because of missing address information.

Table 2.2: Climate in Hawaii (2014-2016 sample)

Mean Standard Deviation Min Max

Air Temperature 77.6 5.1 59 93
Precipitation (mm) 0.053 0.6 0 42.4

Humidity (%) 67.7 12.43 0 100
Wind (knots) 9.39 5.17 0 34.5

Notes: The table displays summary statistics for weather variables that are obtained from the
Iowa State University, Iowa Environment Mesonet (IEM). Units are indicated in the parenthesis.

2.3 Identification and Empirical Approach

This section describes three econometric models used to examine the relationship between tem-

perature and energy demand.

2.3.1 Reaction Curves

Several studies show that the relationship between temperature and energy demand is non-linear

(Auffhammer & Aroonruengsawat, 2011). Auffhammer uses temperature bins to accurately cap-

ture potential important non-linearities of temperature. On the other hand, studies show a V-

shaped relationship between temperature and energy use (Amato, Ruth, Kirshen, & Horwitz, 2005).

Hence, the use of temperature bins to correctly to capture non-linear relationship between tem-

perature and energy use becomes an important aspect of the analysis. Since this paper uses 15

minute interval energy consumption data, I use linear interpolation between hourly mean tem-
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peratures to construct a weather dataset to match the energy consumption data. Per Auffham-

mer’s approach (2011), 10 temperature bins are constructed by using two separate approaches.

The first method is sorting temperature distributions into percentiles and splitting them into a

total of ten bins for each C&I sector. The second method uses a specific equidistant for sorting.

For the equidistant bins approach, we split the mean daily temperature for each household into a

set of 3 degree Fahrenheit bins. Bins 1 and 10 are included to estimate the effect of extreme tem-

peratures on electricity consumption. Note here that the definition of "extreme" differs than that

of Greenstone and Deschenses (2011) because Hawaii has a mean minimum temperature of 72

degrees Fahrenheit and mean maximum temperature of 84 degrees Fahrenheit while Greenstone

and Deschenses incorporates temperatures that vary from below 10 degrees Fahrenheit to above

90 degrees Fahrenheit. Unlike the approach by Auffhammer (2011) who uses monthly billing data,

I do not count the number of days that a daily mean temperature falls into a certain bin because I

use interpolated climate variables to match the 15-minute interval energy demand. The coefficient

on the binned weather variables indicate the affect of belonging to one of the temperature bins on

peak demand relative to the midpoint of all bins.

The empirical equation is constructed using the method by Greenstone and Deschenses

(2011), which explains variation in state-level annual panel data of residential energy consumption

using flexible forms of daily mean temperatures. This equation is a simple log-linear specification

commonly employed in aggregate electricity demand and climate change impacts estimation and

is also adopted by Auffhammer (2011). However, in this paper, I use commercial and industrial

panel data rather than residential panel data, and I don’t count the number of days the mean tem-

perature falls into a bin because both the weather and energy consumption data are matched at the

15 minute interval level. The identification strategy comes from random fluctuation in weather to

identify climate effects on commercial and industrial energy consumption. An underlying linear

relationship was assumed between the dependent variable (log kilowatt) and the climatic inde-

pendent variables. The model is as follows:

logkwit = βp ∗ Mitp + β1 ∗ PRECt + β2 ∗ HUMIDt + β3 ∗ WINDt + β4 ∗ Wd

+β5 ∗ Mitp ∗ WINDt + β6 ∗ Mitp ∗ γh + αy + δm + ηd + γh + µi + ϵit

(2.1)
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where logkwit is the log kilowatt hour for customer i, in time t where t represents the year,

month, day, hour, and 15 minute interval. Note that the dataset used in this analysis is a 15 minute

interval electricity consumption profile. Mitp are the binned weather variables with p indicating

the bin number. HUMIDt is humidity at time t, PRECt is precipitation at time t, and WINDt is

wind speed at time t. Wd is the weekend dummy, which is equal to one if day d is a weekday

and zero otherwise . Mitp ∗ WINDt is the interaction between wind and temperature bins. αy, δm,

ηd, γh represent the year, month-of-year, day-of-month and hour-of-day ( a dummy for each hour

of each day) fixed effects, respectively. ϵit denotes the error term. Moreover, to control for con-

temporaneous shocks that affect electricity consumption common to establishments, I include µi,

which indicates establishment level fixed effects. Finally, Mitp ∗ γh is an interaction term between

the temperature bins and the hour-of-day dummy. This is added because how each customer re-

sponds to temperature change could be different depending on the hour of the day. The main

coefficient of interest is βp where it is interpreted as the impact of one temperature increase in bin

p on logkwi,t. This equation is estimated separately for the five industries as categorized by the

NAICS codes, and can vary in parameter across industries. Standard errors are clustered at the

individual firm level. The variables of interest are the measures of temperature.

Instead of solely relying on a simple relationship between energy use and temperature I

include other weather variables in the analysis such as humidity, wind speed, and precipitation.

As per (Hor, Watson, & Majithia, 2005), I use several weather variables because Hor shows that

models used to predict energy demand improve with the addition of more weather variables such

as wind speed, and precipitation. Past studies have shown that temperature is the most important

variable that affects energy demand while the effect of other variables such as humidity, wind

speed and precipitation are not as important (Mansur, Mendelsohn, & Morrison, 2005). However,

other variables are still included in the estimation because these factors can still affect customer

cooling loads (Parkpoom & Harrison, 2008).

2.3.2 Energy Consumption using Cooling Degree Days

Greenstone (2011) not only examines temperature exposure using temperature bins but also runs a

separate regression where temperature is modeled using heating degree days (HDD) and cooling
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degree days (CDD). Following Greenstone, I incorporate cooling degree days by using a modified

version of equation (2.1). Greenstone uses both heating and cooling degree days. However, due

to Hawaii’s low variation in temperatures, heating degree days are not used for this analysis. The

cooling degree threshold (65 F) is obtained from the National Oceanic and Atmospheric Associ-

ation (NOAA). In addition, a method by (Fikru & Gautier, 2017) is utilized in this paper, where

cooling degree minutes are calculated using 5 minute interval data. The same calculation is used

in this paper but I calculate cooling degree hours rather than minutes because temperature is only

available at the hourly level . The "cooling degree hour" is calculated by using the temperature

for the specific hour minus 65 degrees Fahrenheit. Several studies have also found that cooling

degree days can capture non-linearities between temperature and energy use better than using ac-

tual temperature values (Hor et al., 2005). Although past studies have found that this is the case,

it is still useful to include actual temperature measures in the estimation.

I fit the following equation for commercial energy consumption using a version of equation (2.1)

and incorporating cooling degree days and is presented below:

logkwit = β1 ∗ CDDt + β2 ∗ PRECt + β3 ∗ HUMIDt + β4 ∗ WINDt + β5 ∗ Wd

+β6 ∗ Mitp ∗ WINDt + β7 ∗ Mitp ∗ γh + αy + δm + ηd + γh + µi + ϵit

(2.2)

The only difference between equations 2.1 and 2.2 are the replacement of temperature

bins, Mitp, with calculated CDD measures, CDDt.

A marginal temperature analysis is also considered in this paper to examine how cus-

tomers respond to marginal temperatures. The equation is a variation of equation (2.2), but I

replace CDDt with the actual temperatures.

2.4 Empirical Results

This section is divided into three subsections, the first section presents the empirical results of

equation 1. Instead of including a regression table, I illustrate the results of temperature changes

on energy demand using reaction functions, and are shown in figure 2.1. The second section
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explores how extreme temperatures affects energy consumption. Finally, I present the effect of

temperature reaction to energy demand on weekends versus weekends.

Reaction Functions

This section explores the effect of temperatures on log kilowatt commercial consumption using

the 10 temperature bins defined above. Figure 2.1 plots the estimated reaction function linking log

consumption and the ten temperature bins by sector. This figure is created using the method by

Auffhammer (2011), who uses temperature bins to exploit the effect of temperature on residential

energy consumption. This paper uses a similar method but utilizes commercial data rather than

residential data. Each line in figure 2.1 represents a C&I sector. The horizontal axis represents the

bins from 1 to 10 and their respective temperature ranges. The vertical axis shows the coefficient

on Mitp. The base case is bin 5, which has a temperature range of 71-73 F. The coefficients report the

impact of being in a specific temperature bin on log peak consumption. Estimates from previous

studies show a U-shaped reaction function such as results found from Deschenes and Greenstone

(2011). A common assumption inherent in all the linear symmetric models is that there is a shift

from heating devices to cooling equipment for infinitesimal deviations from the balance point

temperature of 65 Fahrenheit (Fazeli, Ruth, & Davidsdottir, 2016). However, reaction curves in

this paper are expected to be upward sloping as Hawaii does not experience a temperature range

where consumers require increased heating demand. Figure 2.1 illustrates an increasing function

and the shape is similar to that of the right hand side (hottest temperature bins) of the U-shaped

reaction functions that Deschenes and Greenstone estimate. Moreover, Auffhammer (2011) has

reaction curves for regions in California that indicate an upward sloping or flat reaction curves

than a U-shaped one. His curves show regions that are responsive to higher temperatures have a

relatively flat curve at lower temperatures but linear and upward sloping from about 70 degrees

Fahrenheit and above. This is consistent with the curves in my paper, as sectors are responding

more to temperatures that are higher than 70 degrees. However, the magnitude of the response

to higher temperature bins are slightly higher than that of Auffhammer. His curves show that the

regions who respond the most to temperatures increase their consumption up to about 4 percent

at the most. My curves show that sectors who are most responsive increase their consumption

about 8 percent at the highest temperature bins. This discrepancy can be explained by the fact that

Auffammer utilizes data for residential customers rather than C&I customers and it is simply the

case that commercial customers respond differently
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.

Figure 2.1 shows that energy demand indeed increases with higher temperatures espe-

cially for the education, accommodation, grocery and merchandising sectors. General merchan-

dise and the educational sectors are most responsive to temperature changes. This could be be-

cause department stores provide face-to-face services with the customers that are constantly com-

ing in and out, and increased temperatures translates to more cooling demand to accommodate

these customers. Moreover, when considering the share of air conditioning as a total of energy

consumption, these two sectors most likely have the highest share of air conditioning. For ex-

ample, grocery have other equipment that use energy such as refrigeration, which decreases the

share of air conditioning of the total. However, the medical sector shows an non-linear reaction

function, where customers are more responsive to mid-temperatures between bins 6 and 7 rather

than extreme temperatures. The medical sector tends to be more responsive at lower temperatures.

Following the literature, I report response functions by using two methods for bin sort-

ing that are introduced by Auffhammer & Aroonruengsawat (2011). The first option is sorting

daily mean temperature experienced by firm i into one of the ten temperature bins using a specific

equidistant (3 degree Fahrenheit). The second approach is to split daily mean temperatures into

a set of percentiles and using them for sorting. There is no clear guidance on which approach

is better. Hence, this paper incorporates both methods. Figure 2.2 plots the estimated tempera-

ture response coefficients for each sector against the midpoints of the bins for the percentile and

equidistant bin approaches. The red line indicates the percentile approach while the blue line in-

dicates the equidistant approach. These curves are not normalized. Using the percentile approach

for bin sorting tends to generate an upward sloping curve for the accommodation sector but over-

all it is reassuring that the coefficients estimates are similar.
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Figure 2.1: Reaction Curves for all C&I sectors

Notes: The figure displays the estimated temperature slope coefficients for each of the ten percentile bins
against bin five. This is obtained by fitting equation (1) for log kW in each C&I sector. The lines indicate the
reaction curve for a C&I sector. Bins for these reaction curves are sorted using the equidistant approach.
See text for more details.
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Figure 2.2: Reaction Curve: Equidistant and Percentile Approach Comparison

(a) Education (b) Hospitals

(c) Hotels (d) General Merchandise

(e) Grocery

Note: Figure (a) through (e) above illustrates the two reaction curve that are made using 2 different approaches for bin
sorting: equidistant and percentile. The red line indicates the reaction function under the percentile approach while the
blue indicates the curve created under the equidistant method.

Impact of Extreme Temperature on Electricity consumption and Degree Day Approach

This section looks at the relationship between extreme temperature and peak demand. Table 2.3

documents the lowest two (coldest) and highest two (hottest) temperature bins and their esti-

mates. As seen from the table, there is heterogeneity in the estimated effects of temperature on

peak demand across sectors. The base bin is set to five, which includes temperatures ranging from

71 to 73 Fahrenheit. Peak demand tends to increase as temperatures become higher, which is con-

sistent with other studies. However, estimates in this paper are higher than that of Greenstone
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(2011) and Auffhammer (2011) by 30 percent or more. Both studies find estimates that lie between

negative three and positive three percent for all temperature bins. This paper possibly exhibits

higher estimates because of a difference in temperature bin construction. Greenstone (2011) and

Auffhammer (2011) construct bins by count the number of days the daily mean temperatures lie

in a certain bin in each billing cycle. My study does not utilize monthly data and does not require

counting days when sorting the bins. The estimates in table 2.3 shows the percentage increase of

being in a temperature bin relative to the base bin (bin 5). Estimates that lie within the range of

previous studies are the Grocery and medical sectors., but these sectors are among the sectors than

are not quite responsive relative to to other sectors. Moreover, the medical sector has coefficients

that are positive and insignificant. Consistent with table 2.1, the most responsive sectors are the

general merchandise and education and is significant. These sectors seem to be the most respon-

sive to both low and extreme high temperatures, but more responsive to lower temperatures than

higher temperatures, with education and medical sectors decreasing their peak consumption by 8

and 9 percent respectively. On the other hand, these two sectors respond to higher temperatures

less with an increase in peak consumption of 7 percent when located in bin 10. As mentioned

in the previous subsection, the merchandising and educational sector may also be responsive to

outside temperature because it has a higher share of air conditioning as a share of total electric-

ity usage relative to other C&I sectors. Thus, energy demand can increase as the temperature

rises via increased air conditioning demand. and vise versa. In addition, the merchandise sector

can have higher response functions because businesses have to accommodate customers using

air conditioning when the temperature increases relative to the other sectors where the inside air

conditioning is most likely fixed and is not changed frequently. Finally, the least responsive to

temperatures are the hospitals and grocery with insignificant results at higher temperature bins.

Hospitals can have a lower share of air conditioning as a total of energy demand because of other

high powered machines that are utilized within the facility.

The last column in table 2.3 illustrates estimates from the regression where temperature is mod-

eled using cooling degree days (degree-day approach). This is an approach that is dominant in

the literature and incorporated in this paper (Greenstone & Deschenes 2011). The justification of

incorporating degree days is based on the idea that hot days should cause greater increases in

energy consumption in Hawaii where high temperatures are relatively frequent. Moreover, this

approach fills the gap that the "bins" regression fails to fill: evidence that the frequency of hot days

is related to the energy consumption responsiveness of hot days. Greenstone reveals tremendous
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Table 2.3: Estimates of the Impact of Weather Conditions on Commercial Energy Use

Bin1 Bin2 Bin9 Bin10 CDD
Log kW <61F 62-64F 83-85F >86F

Education -0.078∗∗ -0.061∗∗∗ 0.069∗∗∗ 0.071∗∗∗ 0.022 ∗∗∗

(-2.35) (-4.86) (3.00) (2.82) (5.98)

Hotels -0.049∗∗∗ -0.038∗∗∗ 0.027∗∗∗ 0.046∗∗∗ 0.009∗∗∗
(-6.83) (-7.47) (14.34) (14.31) (7.27)

Merchandise -0.090∗∗ -0.803 ∗∗∗ 0.082∗∗∗ 0.079∗∗∗ 0.011∗∗∗
(-2.65) (-2.96) (7.60) (7.36) (3.83)

Hospitals -0.083∗ -0.081∗ -0.001∗ 0.007 0.004∗∗
(-2.00) (-1.96) (-0.49) (-0.40) (2.25)

Grocery -0.032∗∗∗ -0.030∗∗∗ 0.019∗∗∗ 0.023∗∗∗ 0.006∗∗∗
(-7.01) (-8.79) (10.94) (15.7) (24.7)

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The estimates are from fixed-effects regressions based on a sample of about 6 million observa-
tions. The dependent variable is the log of 15-minute kW demand. Control variables include
humidity, wind speed, and precipitation. In columns (1)-(4), temperature is modeled with
ten temperature bins using the percentile approach (Auffhammer & Aroonruengsawat, 2011).
The highest and lowest bins are reported in this table. The final column (5) are from a separate
regression that incorporates cooling degree days rather than the temperature bins. CDD are
calculated with a base of 65 degree Fahrenheit. Standard errors are clustered at the customer
level.

heterogeneity in response functions for residential energy consumption when using a specification

that includes degree-days. Greenstone’s estimates lie within negative one percent to two percent

is consistent with my findings. Based on table 2.3, the range of coefficients in column 5 (CDD es-

timates) lie within 0.6 to 2.2 percent. The results found in table 2.3 are consistent with the reaction

functions in figure 2.1, where merchandising and education sectors are the most responsive while

the medical sector is not.

Marginal Temperature Increases and Energy Consumption

In this section, we explore how a marginal temperature increase affects peak demand. Per the

primitive variable approach by (Sailor & Muñoz, 1997), temperature was found to be the domi-

nant independent variable, explaining more than 80 percent of the energy consumption. More-

over, plots of monthly electricity consumption versus state-wide temperatures indicate a clear

division between summer and winter. Thus, I conduct a fixed effect regression analysis using tem-

perature as the only independent variable. A similar approach is conducted by (Crowley, Joutz, et al.,

2003). They relate peak hourly electricity demand directly to hourly weather readings by consid-

ering load shape forecasting and creation of detailed one-hour short term forecasts.

My estimates align with Crowley and Joutz (2003), where they run a simulation over a particularly

hot month in July using residential data. They find an average demand increase of 3.8 percent over
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forecasts using actual temperature data. My estimates are overall lower, but close in value to their

study. My approach incorporates equation 2.1 but replaces the bins with 15 minute temperature

estimates. Table 2.4 shows again that the education and merchandising sector responds the most

to a one increase in temperature at about 1.6 and 1.4 percent, respectively. The hotel sector is the

second most responsive to price at a one Fahrenheit increase leading to a 2.5 percent increase in

peak demand. This could be the case because guest rooms make up for most of the conditioned

area within a hotel and guests have no incentive to conserve energy at high temperatures. Thus,

customers can respond to higher temperatures via an increased demand for air conditioning.

Estimates from other sectors align with coefficients estimated previous studies such as Crowley

and Joutz (2003), which considers the impact of a 2 degree Fahrenheit increase in the daily tem-

perature on hourly peak loads. Their results show that an average demand increase of 3.8 percent.

Since my paper considers a one degree Fahrenheit increase, the approximate increase of a 1 percent

increase is about 1.9 percent according to the estimates from Crowley and Joutz. This is consistent

with the results in table 4 that indicates a one degree Fahrenheit increase translates to an increase

in 0.5 to 2.5 percent increase in demand (excluding the coefficient on merchandise).

Table 2.4: Estimates of Marginal Temperature Increase on Peak Demand

LogkW

Education 0.016∗∗∗
(4.02)

Hotels 0.012∗∗
(7.27)

Hospitals 0.002
(0.21)

Grocery 0.001∗∗∗
(10.66)

Merchandise 0.014∗∗∗
(2.83)

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: The estimates are from fixed-effects regressions based on a
sample of about 6 million observations and 5 industrial sectors. The
dependent variable is the log of 15-minute kW demand. Control
variables include humidity, wind speed, and precipitation. Tem-
perature exposure is modeled without using temperature bins, but
uses temperature and temperature squared to account for non-
linearity of the affect of temperature on log kW. The estimates in-
dicate a one degree Fahrenheit increase on log kW, and is reported
for each sector separately. Standard errors are clustered at the cus-
tomer level. See text for details.

Hence, as noted in other studies, there is a strong correlation between energy demand

and temperatures. These results signal that responsiveness to temperature depends on two as-
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pects: (1) air conditioning as a total share of energy demand and (2) the volume of customers

that an establishment faces. Face-to-face services such as the merchandising sector can be more

responsive to temperatures as they have to accommodate customers in a timely manner relative

to other sectors. The merchandising sector is the most responsive due to not only the contribution

of air conditioning of the total, but also consumer behavior within the business. (Cawthorn, 1998)

states that weather has a profound influence on consumer behavior, affecting consumer choice,

store traffic volume and demand for certain products such as beverages, beach wear, sporting

goods, and lawn and gardening items during hot months. On the other hand, hospitals and gro-

cery sectors can be less responsive to temperatures as total energy demand consists of not only

air conditioning but medical machinery, labs, and freezers/refrigerators. An interesting case is

the contribution of air conditioning to the total energy demand for the hotel sector. This can be

ambiguous due to technology that adjusts room temperatures depending on the presence of a

guest and pool heating. This makes it difficult to distinguish whether air conditioning demand

is derived from the number of guests or the outside temperature. Thus, the next sector further

examines the possible explanations of energy demand response to higher temperatures.

Temperature versus Occupancy on Energy Demand

Hotels can have a large share of air conditioning as a total of energy demand, and demand for

air conditioning can change depending on the outside temperature and/or the number of hotel

guests. In this section I examine the effect of passenger arrivals to Hawaii on log kWh for the hotels

sector along with temperature effects on consumption. It is not clear whether the demand for air

conditioning is derived from the occupancy rate or the outside temperature. Hence, the inclusion

of daily domestic arrival count is to investigate the magnitude of influence on log kW relative to

temperature. I use daily passenger count as a proxy to the hotel occupancy rate since it is only

available at a monthly level, when the consumption data is in 15 minute units. The occupancy

rate data is obtained from the Hawaiian Tourism Authority (HTA) and includes monthly hotel

occupancy rates. Table 2.5 shows the effect of log passenger count on log occupancy rate. The

table illustrates that a one percent increase in the log passenger count leads to a 8 percent increase

in monthly hotel occupancy rates and is significant. This shows that daily passenger arrivals can

be a sufficient proxy for the hotel occupancy rate.

Hence, to better understand the effect of energy demand changes, I include domestic passenger

arrival data for the island of Oahu from the Hawaiian Tourism Authority (HTA) as a proxy for

45



hotel occupancy rate in the analysis. The regression equation is as follows:

logkwit = β1 ∗ TEMPt + β2 ∗
t−6

∑
t=1

LogPassenger + β3 ∗ Xt + αyh + µhm + ηi + ϵit (2.3)

where TEMPt indicates the 15 minute temperature, αym is the year-by-month dummy, ηi is the es-

tablishment fixed effect, Xt is a covariate of non-temperature variables, and ∑t−5
t=1 LogPassenger is

the sum of the log of daily airport arrivals from period t trhough t− 6. The sum of daily passenger

is included as a right hand variable because the number of passengers that arrive to Hawaii stay

for a number of nights. According to the Honolulu Travel Authority (HTA) the average number

of nights stayed in Hawaii is about 6. Hence, I use a 5-period lag in the regression. The dataset

includes daily number of passengers from 2014 to 2016. The caveat of this data is that it includes

arrivals to Honolulu International Airport for both residents and tourists. I estimate the impact of

log passenger count on the log occupancy rate. Table 2.5 illustrates the effect of both log passenger

count and temperatures on log kW, as well as the effect of the log passenger count on the occu-

pancy rate. The coefficient on temperature represents a one degree increase in temperature on log

kW, while the coefficient on log passenger count indicates a one percent increase on log kW.

Table 2.5: Hotel Occupancy Rate and Temperature Sensitivity

Log Occupancy Rate LogkW

Log Passenger Count 0.081∗∗∗ 0.030∗∗∗
(10.38) (0.015)

Temperature . 0.0266∗∗∗
. (0.001)

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: The estimates are from fixed-effects regressions based on a sample of about 6 million observations
and 5 industrial sectors. The dependent variable is the log of 15-minute kW demand. Control variables
include the hotel occupancy rate, humidity, wind speed, and precipitation. This table shows the effect of
hotel guest occupancy rate on peak demand. Monthly occupancy rates are obtained from Hawaii Tourism
Authority. The estimates indicate a one percent increase in guest occupancy on log kW. Bin estimates are
pulled from table 2. Standard errors are clustered at the customer level. See text for details.

2.5 Conclusion

This paper models that impact of climate change on peak demand for the C&I sectors on the is-

land of Oahu. Although previous studies have shown this relationship for the residential sector,

research on the effects of temperature for the C&I sectors have been sparse. Demand data were

drawn from a detailed 15-minute panel micro-data under a confidential agreement with Hawai-
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ian Electric Company. A standard set of 15 minute models were estimated accounting for cooling

degree temperature effects, climate variables such as humidity, and ownership of solar panels to

better understand temperature (including extreme temperature) on peak demand. Hawaii has a

unique case because there is little variation in temperatures throughout the year. Hawaii, however,

has extremely high temperatures during July, August, and September and this is controlled for in

the analysis. Response functions that are generated in this analysis are different from previous

studies by Greenstone (2011) and are not "U-shaped" due to the low variance in temperatures in

Hawaii. However, the shape of response functions created in this paper are upward sloping and

align with the response functions generated by (Auffhammer & Aroonruengsawat, 2011), who

shows that residential customers respond most at higher temperature bins. Estimates using cool-

ing degree days align with previous studies who estimate the relationship between extreme tem-

perature and energy consumption, which is reassuring. This study finds that the merchandising

sector responds the most to high temperature levels. This is the case when using both the "bins"

and cooling degree approach in the regressions. Unlike other sectors, which do not incur complete

face to face customer service, the merchandising sector may be responsive to rising temperatures

because businesses must accommodate the increase in temperatures via air conditioning. C&I

sector that is least responsive to temperatures are the hospitals. Both reaction functions and CDD

estimates show insignificant results to higher temperatures. This can be because hospitals do not

have a constant flow of customers walking in and out of the establishment relative to the mer-

chandising or grocery sectors.

For future research, as per (Auffhammer & Aroonruengsawat, 2011), variation in temperatures

across geographical regions can be incorporated in the analysis. Auffhammer estimates response

functions by climate zones in California, which allow for differential effects of days in different

temperature bins on a customer’s electricity consumption. Temperature variation across regions

and over time can provide insight to the impacts of climate change. However, my study has no

heterogeneity in geographical placement and most establishments in my sample are in similar re-

gions on the island. The limitation of this study is that the analysis is restricted to one geographical

area when there could be more variation in temperatures in Oahu that can be exploited.
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Appendix A

Figure 2.3: Relationship between energy consumption and Temperatures (Education)

Notes: This figure displays the relationship between temperature and peak demand by month for the education sector 2014-2016 data.
The blue line indicates average energy demand per day. In addition, the four "humps" that can be observed in each monthly panel
represents the weekly load shape for the particular month. The red line represents the mean daily temperature. See text for more
details.
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Figure 2.4: Relationship between energy consumption and Temperatures (Hospitals)

Notes: This figure displays the relationship between temperature and peak demand by month for the medical sector 2014-2016 data.
The blue line indicates average energy demand per day. The red line represents the mean daily temperature. See text for more details.

Figure 2.5: Relationship between energy consumption and Temperatures (General Merchandise)

Notes: This figure displays the relationship between temperature and peak demand by month for the merchandising sector 2014-2016
data. The blue line indicates average energy demand per day. In addition, the sudden drop in energy demand in December is the
business operation closing due to the holiday. The red line represents the mean daily temperature. See text for more details.
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Figure 2.6: Relationship between energy consumption and Temperatures (Hotels)

Notes: This figure displays the relationship between temperature and peak demand by month for the education sector using 2014-2016
data. The blue line indicates average energy demand per day. The red line represents the mean daily temperature. See text for more
details.

Figure 2.7: Relationship between energy consumption and Temperatures (Grocery)

Notes: This figure displays the relationship between temperature and peak demand by month for the education sector 2014-2016 data.
The blue line indicates average energy demand per day. In addition, the sudden drop in energy demand (blue line) in December
indicates that the business was closed for the holidays. The red line represents the mean daily temperature. See text for more details.
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Figure 2.8: Average Temperature by Year

Notes: The figure displays the average daily temperature by year using data from 2014-2016. See text for more details.

Figure 2.9: Average Temperature by Season (Summer, 2014-2016)

Notes: The figure displays the average daily temperature by season using data from 2014-2016. Summer months include
March, April, May, June, July, August, September, See text for more details.
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Figure 2.10: Average Temperature by Season (Winter, 2014-2016)

Notes: The figure displays the average daily temperature by season using data from 2014-2016. Summer months include
January, February, October, November, December. See text for more details.
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Chapter 3

Examination of Individual and System

Load to Understand Pricing Structure

Effects on Commercial and Industrial

Billing

3.1 Introduction

The aim of this paper is to investigate how load profiles of customers with different business

operations align the system, and identify which industrial sectors have the most gains under an

alternative pricing structure. Integration of distributed energy resources (DER) and increased elec-

tricity demand via increasing population and living standards has put pressure on the electricity

grid. Maintaining the balance between energy supply with demand is critical to preserve reliabil-

ity and quality of power supply.There have been efforts to maintain grid reliability through both

supply and demand side management, for example, power reserve and electricity generation ex-

pansions on the power supply side, and demand response and financial incentives for the demand

side, Gao Sun, 2016). Demand side management allows customers to play a role in the operation

of the electricity grid by either reducing or shifting their peak demand. Studies that have investi-

gated individual peak minimization with pricing schemes such as critical peak pricing (CPP), time
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of use pricing (TOU), and real time pricing (RTP) attempt to quantify the efficiency gains as elec-

tricity moves from average pricing to marginal cost pricing. Hawaiian Electric Company (HECO)

has a flat rate system along with a demand and fixed charge. Hawaii currently does not have RTP.

However, in 2016, HECO launched a pilot time-of-use program for residential customers who

want to be charged less during the day and more for their energy use at night. HECO allowed up

to 5,000 customers to be a part of this program. The goal of this initiative was to provide incen-

tives to residential customers to shift their consumption to the daytime when renewable energy is

produced.

Whether a customer can shift loads may depend on numerous factors including: their industrial

classification, its operation patterns, and its price elasticity of demand. Regardless, research has

shown that dynamic pricing schemes can help provide a better match between demand and sup-

ply as more renewable energy is integrated to the grid. This paper characterizes customer bill

changes that occur if Hawaii shifts from a flat fate pricing to a dynamic one where retail prices

reflect wholesale prices. We observe electricity consumption for large commercial and industrial

sectors who are categorized under rate schedule P. This dataset will be used as an input to the sim-

ulation model of consumer electricity demand that is proposed in this paper. The welfare gains

that occur under an alternative rate structure can differ between sectors and across classes of

customers for various reasons. First, varying load profiles can arise due to business operation dif-

ferences between each sector. Second, C&I customers also tend to have fixed business operations

that are not easily altered by a change in electricity price. Finally, peak demands of consumers

between sectors do not occur simultaneously and may not align with the system load, causing

some sectors to gain from a dynamic pricing scheme than others. In this paper we investigate

the magnitude of wealth gains under an alternative rate structure for commercial and industrial

customers.

This study can serve as a learning opportunity in understanding adoption of dynamic pricing in

Hawaii. The welfare gains under RTP has been a widely researched topic, and it is RTP for all

customer classes that provides part of the solution to system stability with high penetration of in-

termittent renewable energy (Coffman, Bernstein, Wee, & Arik, 2016). Moreover, Coffman states

that, "the price feedback between the utility and the customer provided by RTP helps send signals

to the utility to bring additional generation online during periods of rapid rises in consumption

or take them offline during periods of potential curtailment. It helps send signals to customers to

encourage electricity usage when costs to generate are low and dissuade electricity usage when
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costs to generate are high."

On the other hand, the relationship between Individual load and the system can also serve as an

input to future energy planning. Energy planning, such as future capacity requirements, is an im-

portant factor that is considered when facilitating higher peak consumption (Blonz, 2016). Recent

literature that studies the coincidence between individual peaks and the system are sparse, but it is

found that under a non-coincident Hopkinson rate structure, the time at which the customer pays

a peak-demand charge does not necessarily coincide with the system peak (Mountain & Hsiao,

1986). However, the optimal level of system capacity is a function of average system demand

and system variance, and the Hopkinson rate can be efficient if the individual maximum demand

charge can reduce each user’s variation in peak demand periods as well as the average demand.

In addition, (Dreze, 1964) and (Veall, 1981), proved a formal analysis on how the utility can set the

maximum demand charge to reduce a firms’ demand variances. According to the current litera-

ture on demand charge and individual peaks, there is a need to identify when individual peaks

align with the system in order to increase the effectiveness of pricing systems like demand charge

and Hopkinson rate. In addition, reduction in individual peak may not only happen during peak

hours but also outside peak hours. Ida et. al. (2013) finds that consumption shifts from on-peak

to off-peak hours can occur when consumers face high prices during on-peak hours.

The contribution of this paper is two fold. Although there have been discussions about individual

peak alignment with the system, there is little economic research that shows the economic impact

of alternative pricing schemes such as RTP in the C&I sector. Among the studies that investigates

the effect of an alternative pricing regime in the C&I sector (Borenstein, 2007), none have charac-

terized the type of customers within the C&I sectors that are likely to be winners or losers from

dynamic pricing. This paper investigates the impact of dynamic pricing on wealth gains, in the

form of decreased customer bills, as this could also be a potential political barrier. Second, this

paper fills a gap in the literature by investigating how individual load profiles align with the sys-

tem load. Both contributions may serve as a method for utilities to plan for future generation and

consider alternative pricing structures.

We organize the paper as follows. In section two we discuss the goals of RTP and its potential

effects on individual loads. In section three, we present the theoretical framework for C&I elec-

tricity demand under price elastic and inelastic demand. In section four, we introduce the data

that is utilized in the analysis. In section five we present findings from our analysis. We conclude

this paper with final remarks and future research.
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3.2 Alternative Billing: Dynamic Pricing Schemes

As more distributed energy resources connect to the grid, researchers have been interested in effi-

cient pricing of electricity. The customers we study in this paper are served by Hawaiian Electric-

ity Company, Oahu’s sole energy provider. Hawaiian Electric Company’s existing pricing scheme

charge customers a flat volumetric rate, demand charge and fixed charge. Flat electricity rates

impose standard a per kilowatt hour rate that is charged by month. On the other hand, demand

charge is a dollar per kilowatt-hour rate charged based on the customer’s maximum monthly

kilowatt-hour demand as indicated by a demand meter. Other economists have also examined

the welfare effects of time-of-use (TOU) rates, which are rates that vary depending on the time of

the day. Although Hawaii had a pilot TOU program available to consumers in Oahu in 2016, the

program was only available for residential customers. The customers we observe in this study are

not part of a TOU program.

Current research shows that dynamic pricing schemes such as real time pricing (RTP) have po-

tential benefits compared to TOU or flat rate pricing schemes, but the full economic impact is

uncertain (Borenstein, 2005). RTP is known to be a dynamic pricing scheme because retail prices

vary from hour to hour, reflecting the wholesale cost of energy generation. Significant decreases or

increases in bills can occur if C&I customers were to be billed under a dynamic pricing structure.

Moreover, customers under Hawaiian Electric’s current billing system who have high energy con-

sumption when wholesale prices are high are subsidized by those who consume low quantities at

those times (Borenstein, 2007). RTP provides part of the solution to system reliability as more dis-

tributed energy resources are connected to the grid (Coffman et al., 2016), but winners and losers

need to be taken into account when considering alternative pricing structures. In this paper, we

investigate how payments change under an alternative billing regimes.

3.3 Data Sources

3.3.1 Commercial and Industrial 15-Minute Interval Consumption Data

Data are obtained from Hawaiian Electric Company (HECO) under a confidential agreement. This

is a fine data set that includes a 15-minute frequency usage in both kilowatt hours (kWh) and
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kilowatts (kW). The data consists of C&I establishments for 2014 to 2015. The sample are large

customers that have a meter and a dedicated telephone line that collects and stores data on their

electrical usage at 15-minute intervals (Wordpress 2010). There are a total of 500 customers in-

cluded in this data set, and is not representative of all the establishments on the island of Oahu.

Rather, the data set includes a sample of large C&I customers which include: hotels, schools,

hospitals, department stores, and grocery stores. Small C&I customers that are in the general non-

demand rate schedule (rate G) are not included in this data set. I classify customers in this data

by industrial codes, which is aligned with the North American Industrial Classification System

(NAICS). The major sectors in my sample are: hotels, schools, hospitals, department stores, man-

ufacturing and grocery stores. I observe industrial codes for all customers in the this sample.

Although there are 500 meters available for analysis, I further restrict the sample to about 121

customers. I restrict the sample to those customers who belong to rate schedule "P". According

to Hawaiian Electric Company’s electric rate structure, rate schedule P consists of customers who

have monthly peak demand of 300 kW more three times within a given year. These customers face

a higher demand charge and tend to demand a high volume of energy from the utility. The sample

is restricted in this way because the simulation requires the estimation of a fixed charge under the

alternative pricing structure, and customers in different rates do not face the same fixed charges.

According to HECO’s pricing documents, all rate schedule P customers face a fixed charge of 350

dollars, while rate J customers face varying fixed rates depending on whether they are single or

three phase service customers. Customers who have PV systems are excluded from this sample as

these customers have different individual loads within sectors, making those customers difficult

to compare with other establishments in my sample. After deleting these customers I am left with

a total of 121 C&I establishments. Table 3.1 shows the summary statistics for the restricted sample.

These are the five major industries that are incorporated in the restricted sample. As present in the

table, customers with the highest load share are the education and medical sectors. This can be

because of heavy duty machinery located at hospitals, or the amount of air conditioning required

at university campuses. Billing data are not available for this dataset, hence not presented in table

3.1.

Figure 3.1 illustrates the load share by utilizing a subsample of the MV90 dataset. This subsam-

ple consists of customers who are categorized as rate schedule P and do not have a PV system

installed. Customers under rate schedule J are also omitted from this subsample. The accommo-

dation, medical, and education sectors hold a large share of the total load. From observing the
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data, these sectors also have high peak demands (kW) and most likely face a higher monthly de-

mand charge than the grocery or merchandising sectors.

To better illustrate the relationship between the individual and system loads, figure 3.2 presents

the overlay of the individual and system loads. We observe that the accommodation sector has the

most coincidence with the system. Specifically, the peak occurs around 8am and at night around

8pm. Other sectors do not have load profiles that coincide with the system. For example, the

medical, education, merchandise, and grocery sectors experience peak demand in the daytime

when solar is most available (11am to 2pm). These sectors may possibly benefit the most when

introducing a marginal cost pricing as their peaks occur when the cost of generation to the utility

is relatively low. Moreover, the educational sector may also benefit because the base load is low

when the cost of generation for the utility is high.

It is important to note that customers included in this data have access to their electrical usage

through an internet portal. Participation in this service is voluntary, and access to data is possible

through contacting a representative. Specifically, customers have data on the peak demand and

energy usage trends throughout the year. Access to the data is possible through the portal at any

time and this makes it easier for customers to manage demand and energy usage, documenting

the impact of energy-efficient investments, and determining the impact of any new equipment or

changes in operations. This information is an important aspect for the analysis because customers

understand their usage behavior more than other customers who do not have access to this portal.

3.3.2 System Lambda

In addition to consumer demand data, I utilize data on the hourly generation costs that HECO

faces. This is know as system lambda and obtained from the Federal Energy Regulatory Commis-

sion (FERC). System lambda includes the generation, distribution and transmission costs to the

utility, and is closely related to the marginal cost of producing electricity incurred by the utility.

We use this measure as a proxy to reflect the "real time" retail rate that customers in our sample

face. Figure 3.3 presents the overlay of monthly effective rates with system lambda. As seen from

the figure, system lambda tends to be lower than the effective rates at all year-month combina-

tion. This is most likely because the effective rates include fixed cost recovery for the utility such

as servicing debt borrowed to build the plant, while the system lambda only reflects the marginal

change in variable costs. Thus, for simulation purposes we incorporate a fixed charge that is

58



charged to each customer. We explain this further in the next sections. System lambda data are

available at the hourly level, but for the purpose of this figure we aggregate it to monthly mea-

sures.

Figure 3.3 incorporates monthly system lambda, but for simulation purposes hourly measures are

utilized. Hence, we also present how system lambda changes within a day. Figure 3.4 illustrates

the daily average of system lambda. The figures are created using 2014 data. We utilize data from

March and September to observe the seasonal differences in the system lambda. The red line rep-

resents the effective rate and is horizontal because the current customers face a flat retail rate that

changes monthly not daily. The blue curve represents system lambda. When observing system

lambda in March, one may notice that the peak occurs between 7am and 11 and also between

6pm and 10pm. This is not surprising as the system load profile (kWh) has peaks during these

hours. The system lambda and effective rates presented here will be used as inputs to the simula-

tion model. In addition, the system lambda plotted in figure 3.4 will serve as a comparison with

the simulated electricity consumption values to better illustrate how customers respond to system

lambda when they are price elastic.

Figure 3.1: Load Share by C&I Sectors for a Subsample of MV90 Csutomers (2014)

Notes: The pie chart above shows the load share (kWh) by C&I sector for 2014. The sample used to create this chart
a subset of MV90 and is restricted to customers who are in rate category P and do not have PV. Rate schedule J
customers are omitted from this sample. Data utilized are obtained from HECO. Load share is calculated by
adding the total kWh of 2014 for all sectors.
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Figure 3.2: System and Individual Load Overlay

(a) Education (b) Hospitals

(c) Hotels (d) General Merchandise

(e) Grocery

Note: Figure (a) through (e) above illustrates the overlay of system daily load and individual average daily load for all sectors. When
creating these figures, customers with PV are omitted, and created based on 2014 data. Data are retrieved from FERC and HECO.
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Figure 3.3: Monthly Effective Rates with System Lambda

Note: The figure above shows the changes in monthly effective rates (cents/kWh) from 2014 to 2015
for rate schedules J and P, with the monthly system lambda. System lambda is available at the hourly
level but is aggregated to monthly measures to accommodate the monthly effective rates. For more
information on the definition of effective rates refer to the text. Effective rate information are obtained from
Hawaiian Electric’s public website. https://www.hawaiianelectric.com/billing-and-payment/rates-and-
regulations/hawaiian-electric-rates for more details. System lambda data are retrieved from the Federal
Energy Regulatory Commission (FERC).

Figure 3.4: Daily Average: System Lambda and Effective Rates

(a) System Lambda and Flat Rate (March) (b) System Lambda and Flat Rate (September)

Note: Figure (a) above plots system lambda and effective rates for March 2014. (b) above illustrates the overlay of system lambda and
effective rates. The blue curve represents the system lambda profile, and the red horizontal line represents the effective rate for the
months of March and September.
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Table 3.1: Summary Statistics by Sector (15-minute Usage, 2014)

Consumption (000s kWh) Peak Load (kW)
Mean St. Dev Mean St. Dev

Education 321.79 706.11 1287.16 2824.44
Hospitals 385.39 382.57 1541.58 1530.29
Hotels 185.74 160.03 742.98 640.14
Merchandise 94.83 85.41 379.35 341.64
Grocery 84.22 34.63 336.9 138.54

Note: The table above presents monthly mean kWh, kW, and bill for each rate category. Stan-
dard deviation and number of firms are also presented. Data used for this table come from
the MV90 portal, and the sample year is 2014. Th

3.4 Theoretical Background and Simulation Procedure

3.4.1 Constructing the Sample

When considering a dynamic rate structure, not only is the system lambda an important input

to the simulation, but also customer price response to these new prices. Hence, we run the sim-

ulation by assuming two scenarios: 1) Customers have elastic price elasticity of demand, and 2)

Customers have inelastic price elasticity of demand. Within these two scenarios we have sub-cases

where customers are price elastic and face positive and zero demand charge, and when customers

are price elastic and face positive and zero demand charge. We explain this in later sections. To

construct the final sample for the simulation, we further restrict the sample to customers who

don’t have PV installed and are categorized as rate schedule P (customers have average monthly

peak demand above 300 kilowatts). We do this for a better comparison of calculated customer

bills. Using this restricted sample, CI monthly load profiles are constructed from meters that are

installed in the city of Honolulu. This monthly load profile will be our starting point of the sim-

ulation process for scenario 2. Per Coffman (2016), to remove the possibility of an "income effect"

we assume that if electricity consumption remained the same under the alternative structure then

there will be no change in the bill that the consumer faces. The MV90 dataset is available for 2014

to 2016, but for simulation purposes we use kWh consumption data for the month where system

lambda is the highest and lowest of 2014, and compare the changes in bills by sector under the

following scenarios. The simulation process for both scenario is presented below.
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3.4.2 Theoretical Description for Elastic Demand

This section illustrates the theory behind customer billing, and sets the stage for the simulation

model of consumer electricity demand when customers are price elastic and face positive or zero

demand charge. Below we explain the theory behind how the utility’s bill is determined given the

customer’s monthly kilowatt and kilowatt-hour consumption.

Consider an optimization problem on the allocation of electricity use within a day and across

days within a given billing cycle. Let h represent hour h where h = 1, . . . , H (H would be 24) and

d represent day, d = 1, . . . , D (D refers to the number of days in the billing period). Let xt
dh be the

firm’s load on day d at hour h in period t. For billing period (or “month” t) the firm’s bills is given

by

pt

D

∑
d=1

H

∑
h=1

xt
dh + pDC x̄t

where pt is the effective (volumetric) rate for period t and x̄t (the “billing demand”) is given by

x̄t = max
{

max
d,h

{xt
dh},

1
2

max
d,h

{xt
dh}+

1
2

max
s=1,...,11

{max
d,h

{xt−s
dh }}

}

The definition of the billing demand reflects the official rule on the demand charge:

The maximum demand for each month shall be the maximum average load in kW

during any fifteen-minute period as indicated by a demand meter. The billing demand

for each month shall be the highest of the maximum demand for such month, or the

mean of maximum demand for the current month and the greatest maximum demand

for the preceding eleven (11) months, whichever is the higher, but not less than 300

kW.

If we think about cost minimization (given an output target), should there be daily output

targets (separately for each day) or should we assume that there is an output target over the month

that the firm would meet through daily outputs? The answer may depend on the sector. For

simplicity, suppose there is a monthly output target yt ≥ 0. Then the firms’ constraint when

minimizing the cost of electricity use is given by

D

∑
d=1

θt f (xd1, xd2, . . . , xdH)) ≥ yt,
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where θt represents daily fluctuations (say due to weather, weekend vs. weekdays etc.). Suppose

the peak occurs on day d̄ at hour h̄. Then

xt
dh ≤ xd̄h̄ for all d, h.

These constraints must hold for xd̄h̄ to be the peak load. The Lagrangian function is then given by

L = −
(

pt

D

∑
d=1

H

∑
h=1

xt
dh + pDC x̄t

)
+ λ

(
D

∑
d=1

θd f (xd1, xd2, . . . , xdH))− yt

)
+ ∑

h,d

{
µt(xd̄h̄ − xt

dh)
}

.

We assume that the load profile is similar across days in that the peak hour is the same on each

day and the constraint xt
dh ≤ xd̄h̄ is not binding at all off-peak hours h ̸= h̄.

Case 1: the current month’s peak exceeds the peak demand over the last 11 months

The first order condition implies

∂L
∂xt

dh
= −pt + λθd fdh = 0

for all (d, h) ̸= (d̄, h̄) where fdh ≡ ∂ f /∂xt
dh. For peak hour h̄ on the days other than d̄ we have

∂L
∂xt

dh̄

= −pt + λθd fdh − µdh̄ = 0, (3.1)

and at (d̄, h̄) we have
∂L

∂xt
d̄h̄

= −pt − pDC + λθd̄ fd̄h̄ + ∑
d ̸=d̄

µdh̄ = 0; (3.2)

It follows from (3.1) and (3.2) that

PDC = ∑
d

µdh̄

for all d. This implies that PDC == Deµdh̄ for all d and hence

µdh̄ =
PDC

De
.

Technically speaking De represents the number of days over which the peak load would coincide.

(This may be the number of weekdays in the billing cycle if the customer has lower peak con-
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sumption on weekends.) (Now, suppose that θd’s are the same for all d.) For h, h′ ̸= h̄ and all d,

we have

1 =
fdh

hd′h′
.

Similarly, for any h ̸= h̄ and all d,
pt

pt +
pDC
De

=
fdh

hd̄h̄

An important observation is that, given how the demand charge works (i.e., it is charged on the

maximum load over time intervals in a day AND over days), the effective (relative) shadow price

on the peak load is pt

pt+
pDC
De

, not pt
pt+pDC

. Given the way the model is specified, note that

pt

pt +
pDC
De

=
effective rate

effective rate + demand charge
the number of days where the peak load would coincide

.

What is the relationship between the peak load and the monthly load? With the CES

functional form, we have
pt

pt +
pDC
De

=
θdβhxρ−1

dh

θd̄βh̄xρ−1
d̄h̄

for all d, h. Solve this for the ratio of electricity load:

xdh

xd̄h̄
=

(
βh

βh̄

)σ
(

pt

pt +
pDC
De

)−σ

,

where σ ≡ 1/(1 − ρ).

Add both sides over all hours on day d̄ to obtain

∑h xd̄h
xd̄h̄

= 1 +
∑h ̸=h̄ βσ

h

βσ
h̄

(
pt

pt +
pDC
De

)−σ

,

Then sum this expression over all days over the billing cycle:

∑d ∑h xdh

xd̄h̄
= D

{
1 +

∑h ̸=h̄ βσ
h

βσ
h̄

(
pt

pt +
pDC
De

)−σ}
.
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This implies that, with a load factor regression, we have

ln
(

∑d ∑h xdh

xd̄h̄

)
= C − σ ln

(
pt

pt +
pDC
De

)

or

ln
(

xd̄h̄

∑d ∑h xdh

)
= C′ − σ ln

(
pt +

pDC
De

pt

)
.

Hence, if we regress the load factor on the ratio of the effective rate plus (demand charge

- effective rate, divided by the number of billing days to the effective rate, then the coefficient

would indicate the elasticity of substitution.

Case 2: the current month’s peak is lower than the peak demand over the last 11 months

In this case, the Lagrangian function is given by

L = −
(

pt

D

∑
d=1

H

∑
h=1

xt
dh + pDC

{
1
2

max
d,h

{xt
dh}+

1
2

max
s=1,...,11

{max
d,h

{xt−s
dh }}

})

+λ

(
D

∑
d=1

θd f (xd1, xd2, . . . , xdH))− yt

)
+ ∑

h,d

{
µt(xd̄h̄ − xt

dh)
}

.

As the expression indicates, the marginal price of the maximum load in this case is PDC
2 instead of

PDC. Therefore, the effective shaedow price of the peak load consumption is lower: for any h ̸= h̄

and all d,
pt

pt +
pDC
2De

=
fdh

hd̄h̄
.

3.4.3 Load factor regression

It is important to note that in this scenario we assume that changes in demand by the customers

in our sample does not affect generation. We calculate the share of monthly total load and take

the ratio between this and the system load. We find that the share is less than 0.05% in any given

month. This justifies the simplifying assumption that the changes in the load for the sample cus-

tomers will not change the system lambda or marginal costs. The load factor regression model is
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presented by the following:

ln(Sit) = β1 ∗ X ∗ G + β2 ∗ X + β3 ∗ G + β4 ∗ PVit + βp ∗ Ditp + αy + µm + ηi + ϵit, (3.3)

where ln(Sit) is representative of the load factor and is calculated as the ratio of total kWh con-

sumed in a designated period by the product of the maximum demand in kW and the number of

days in the billing period:

Sit =
Xt

maxdh xt
dh

.

The variable X represents the ratio of the off-peak and peak prices, but this should be adjusted

based on the discussion above.

To clarify on the correct price ratio, we list the rule on the demand charge again:

The maximum demand for each month shall be the maximum average load in kW

during any fifteen-minute period as indicated by a demand meter. The billing demand

for each month shall be the highest of the maximum demand for such month, or the

mean of maximum demand for the current month and the greatest maximum demand

for the preceding eleven (11) months, whichever is the higher, but not less than 300

kW.

Hence,

Xt =
pt−1

pt−1 +
pDC
De

if the maximum demand for the current month exceeds or is equal to the greatest maximum de-

mand for the preceding 11 months and

Xt =
pt−1

pt−1 +
pDC
2De

otherwise (that is, if the maximum demand for the current month is lower than the greatest maxi-

mum demand for the preceding 11 months. For the purpose of the regression with monthly billing

data, De could be equal to 20 for all observations for simplicity.
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Suppose the firm’s production function is given by:

y = A
{

αzθ + (1 − α)qθ
}1/θ

,

q = ϕ

{
H

∑
h=1

βhxρ
h

}1/ρ

,

where q is the input of electricity services and z is the quantity of the composite of other factors

of production. The parameter θ determines the elasticity of substitution between the composite

factor and electricity, σ ≡ 1/(1 − θ). Note that σ also influences the own price elasticity of the

electricity demand. On the other hand, ρ determines the size of the elasticity of substitution (e.g.,

inter-hour substitution of electricity) σe ≡ 1/(1 − ρ).

From the first-order conditions of cost minimization subject to minimum output q, we

have:
xh′

xh
=

(
ph′

ph

βh′

1 − βh

)σe

.

This equation indicates the following specification to estimate the relative demand:

ln
(

x1

x2

)
= C + σe ln

(
p2

p1

)
+ ε,

where C ≡ σe ln
(

β
1−β

)
(that is a regression of the log of the ratio of the off-peak load to the peak

load on the log of the ratio of the peak price to the off-peak price).

Let w > 0 be the unit price of the composite input and pe the price index of electricity.

With manipulation, we obtain the marginal cost of production c(w, p)/A where

c(w, pe) =
{

ασw1−σ + (1 − α)σ p1−σ
e

} 1
1−σ

.

The above cost-minimization solution implies that the payment for electricity service q is

given by:

peq = (ϕ) = hc(w, pe)y/A,
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where where h is the factor payment share defined by:

h ≡ (1 − α)σ p1−σ
e

ασw1−σ + (1 − α)σ p1−σ
e

.

With the assumption of constant returns to scale, the profit-maximizing output level y is indeter-

minate. If the industry is subject to monopolistic competition, then the firm’s equilibrium output

price Po is a markup over its marginal cost where the markup rate depends on the elasticity of

(consumption) substitution across the goods produced in the industry:

Po =
c(w, pe)

ρc A
,

where ρc captures representative consumers’ preference such that 1/(1 − ρc) is the elasticity of

consumption substitution. The corresponding profit-maximizing output choice satisfies

y = Y
{

Poρϕ

c(w, pe)

}σ

,

where Y is the industry-level output index. Substitute this expression into ??, and recall that

p1 = p (the volumetric rate) and p2 = p + pD (the volumetric rate plus the demand charge) and

we obtain an expression for the elasticity of demand with respect to the volumetric rate:

∂X
∂p

p
X

= −σ.

That is, Under the assumption, the demand charge does not influence the elasticity. This forms

one of the null hypotheses of the analysis below.

Turning to the allocation of electricity, the CES property of the technology implies

p1x1(ϕ) = h1ce(p1, p2)q/ϕ,

where h1 is the factor payment share on electricity in period 1, defined by:

h ≡
βσe p1−σe

1

βσe p1−σe
1 + (1 − β)σe p1−σe

2

,

and ce(p1, p2) = {βσe p1−σe
1 +(1− β)σe p1−σe

2 }
1

1−σe . Taken together, the demand for electricity is given
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by

x1 = βσe p−σe
1 {βσe p1−σe

1 + (1 − β)σe p1−σe
2 }

σe−σ
1−σe C,

x2 = (1 − β)σe p−σe
2 {βσe p1−σe

1 + (1 − β)σe p1−σe
2 }

σe−σ
1−σe C,

where C is a constant term.

3.5 Scenario 1: Simulation Procedure Under Elastic Demand

Now that we are familiar with the theory behind the determinants of customer bill and pricing

structure, we move to the simulation procedure when customers are price elastic. Below illus-

trates how to construct a demand function that allows consumers to be price elastic under RTP.

Suppose we pick a month where the peak consumption (the maximum demand) exceeds the max-

imum demand over the last 11 months. Then the ratio of the off-peak and the peak consumption

(for a particular day) is given by

∑h ̸=h̄ xd̄h

xd̄h̄
=

∑h ̸=h̄ βσe
h

βσe
h̄

p−σe
t(

pt +
pDC
De

)−σe
. (3.4)

Normalize βh’s so that
H

∑
h=1

βσe
h =

∑
h ̸=h̄

βσe
h

+ βσe
h̄ = 1.

Then it follows from (3.4) that

∑h ̸=h̄ xd̄h

xd̄h̄
=

1 − βσe
h̄

βσe
h̄

p−σe
t(

pt +
pDC
De

)−σe
.

What should De be? It represents the number of days in a billing cycle when the load is close to

the maximum demand. If a customer operates in a similar manner from Monday to Friday (with

lower electricity consumption in the weekend), then De would represent the number of weekdays

in the billing period. We could approximate it by 5 ∗ 4 = 20. (NOTE: For an industry where

the weekday and weekend consumption patterns are similar, with similar peak consumption, De

should be the number of all days in the billing period.)
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The above equality indicates

xd̄h̄ p−σe
t − xd̄h̄ p−σe

t βσe
h̄ = ∑

h ̸=h̄

xd̄h

(
pt +

pDC

De

)−σe

βσe
h̄

and hence

βσe
h̄ =

xd̄h̄ p−σe
t

∑h ̸=h̄ xd̄h

(
pt +

pDC
De

)−σe
+ p−σe

t xd̄h̄

.

This is how we can pin down the value of βσe
h̄ . We also note that

xd̄h
xd̄h̄

=
βσe

h
βσe

h̄

p−σe
t(

pt +
pDC
De

)−σe

for all h ̸= h̄. Solve for βσe
h to obtain

βσe
h =

xd̄h
xd̄h̄

(
pt +

pDC
De

)−σe

p−σe
t

βσe
h̄

for all h ̸= h̄.

Once βh’s are identified, we can compute the electricity consumption for all hours.

For off-peak h, we have

xdh = βσe
h p−σe

t


∑

h ̸=h̄

βσe
h

 p1−σe
t + βσe

h̄

(
pt +

pDC

De

)1−σe


σe−σ
1−σe

C,

where C is a constant. At the peak hour, the consumption satisfies

xd̄h̄ = βσe
h̄

(
pt +

pDC

De

)−σe


∑

h ̸=h̄

βσe
h

 p1−σe
t + βσe

h̄

(
pt +

pDC

De

)1−σe


σe−σ
1−σe

C.

According to the theory above, the demand for electricity is modeled with own-price

elasticity with both -0.10 and -0.20, and we assume a substitution elasticity parameter of 0.15 from

Coffman (2016). The simulation results will present tables that incorporate these two own price

elasticities.

71



3.5.1 Customers are price elastic and face positive demand charge

Section five explains the simulation under elastic demand, but does not mention how demand

charge can play a role when constructing bills under RTP. In this subsection we consider the case

where customers face a demand charge under RTP and are price elastic. When calculating the

bill under RTP, we use a simple equation that adds the volumentric payment bill under RTP with

the calculated fixed charge and add the demand charge portion of the bill. The demand charge

is equal to the demand charge under the current bill. There are two differences between the case

when customers are price elastic and face a demand charge and when they don’t: 1) The calcula-

tion of the fixed cost portion of the RTP bill; 2) The demand charge payment is added to the bill

under RTP. Below the fixed charge calculation and alternative bill construction is explained.

When calculating the fixed charge portion of the bill under elastic demand and positive

demand charge, we consider the following equation:

BR f c =
∑j ∑i BCvolij − ∑j ∑i BRvolij + ∑j ∑i BCdcij

number of all customers in the sample

where ∑j ∑i BRvolij is equal to the summation of the volumetric portion of the bill under RTP

summed by individual i and sector j. BCdcij is the demand charge payment by customer i in

sector j, where BRdcij is equal to BCdcij. Finally, ∑j ∑i BCvolij indicates that the volumetric pay-

ment under the current bill is summed by customer and sector. Thus, we construct the bill when

customers are price elastic and face positive demand charge as the following:

BRij = BRvolt
ij + BRdcij + BR f c.

Where BRdcij is equal to BCdcij.

Next we navigate the "pure RTP" case where customers are price elastic and do not face a demand

charge.

72



3.5.2 Customers are price elastic and face zero demand charge

In this section we look at consumption under the case under pure RTP where customers are elastic

but do not face a demand charge. This is simply an alternative version of the content presented

in subsection 5.1. The fixed cost under this case is calculated without adding the demand charge

portion of the bill and is presented below:

BR f c =
∑j ∑i BCvolij − ∑j ∑i BRvolij

number of all customers in the sample

Thus, pure RTP is the case where the fixed cost is by taking the difference between the volumetric

portion of the bill under RTP and current and dividing by the total number of customers in the

sample. BR f c is then added with the volumetric portion of the bill under RTP to generate the total

bill when customers face a dynamic rate structure:

BRij = BRvolt
ij + BRdcij + BR f c.

where BRdcij is equal to zero. It is important to note that the fixed charge under the case where

demand charge is positive is going to be smaller than the case when demand charge is zero. The

equalities presented in subsections 5.1 and 5.2 will be utilized when examining the percent change

in customer billing when switched from the current rate to the dynamic rates.

The next section illustrates the simulation process when: 1) customers are price inelastic and face

a demand charge; and 2) are price inelastic and do not face a demand charge. The next section

also considers the cases where customers face zero and positive demand charge.

3.6 Scenario 2: Simulation Procedure Under Inelastic Demand

In this section we present the simulation procedure under inelastic demand. Bills under RTP are

calculated using two methods under this scenario. In the first case, we calculate RTP bills assum-

ing that customers do not face a demand charge. Thus, bills are calculated by simply adding the

product of the system lambda and monthly electricity consumption with the calculated fixed cost.

In the second case, RTP bills are calculated under the assumption that customers face a demand
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charge. Hence, this procedure will give an idea as to how customers bill change under the RTP

when they are facing an extra cost (demand charge).

Using the restricted dataset as explained above in the "constructing the sample" subsection, we

run the simulation by assuming customers are price inelastic. We adopt the simulation procedure

by Borenstein (2007) for this scenario. We calculate electricity bills for each sector in the sample

using wholesale prices (system lambda) obtained by FERC and look at their payments under an

alternative regime. Because dynamic pricing charge customers based on marginal cost rather than

average, the system lambda will provide a reasonable estimate of what value the customer will be

charged under an alternative rate structure (see section on data sources). Throughout the simula-

tion we assume that electricity consumption stays the same under the current billing structure and

the alternative one. As per Borenstein (2007), the simulation model accounts for variable and fixed

cost recovery for the utility. However, unlike Borenstein, we do not simulate wholesale costs, but

rather utilize actual system lambda data from 2014 to calculate customer bills. Each sectors’ bill

under the alternative billing structure will be compared with their payments under the current

flat rate system. It is expected that under this scenario some sectors will experience an increase in

their bills, while others decrease.

Below we present the theoretical basis of how bills will be calculated under RTP and the current

pricing scheme.

For each customer i in industry j, the bill under the current rate will be calculated as the

following: Let h represent hour h where h = 1, . . . , H (H would be 24) and d represent day,

d = 1, . . . , D (D refers to the number of days in the billing period). Let xt
dh be the firm’s

load on day d at hour h in period t. Consider the electricity payment by customer i in sector

(industry) j. Let

BCvolij = pt

D

∑
d=1

H

∑
h=1

xt
dh,ij

be the energy charge (or the volumetric rate payment) under the current bill, where pt is the

flat volumetric rate. Let

BCdcij = pDC x̄t
ij

represent the demand charge payment under the current bill. (Customers pay for fixed

charge under the current bill, but we omit that from our analysis.) Hence, the current bill is
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the sum of the volumetric and demand charge payment.

BCij = BCvolij + BCdcij.

Next, given the observed load profile {xt
dhij}, compute the bill under RTP {pt

dh}. Let

BRvolt
ij =

D

∑
d=1

H

∑
h=1

pt
dhxt

dh

be the variable portion of the RTP payment. Let BR f c be the fixed charge under RTP. Let

BRdc be the demand charge. Then the total payment under RTP for customer i in sector j is

BRij = BRvolt
ij + BRdcij + BR f c.

The value of BRdcijwill vary depending on the case: 1) customers are price elastic and face

zero demand charge; and 2) customers are price elastic and face positive demand charge.

We present how to calculate the fixed charge under this case below.

3.6.1 Customers are price inelastic and face zero demand charge

This is the base case where customers do not face a demand charge under RTP. Specifically, the

simulation is conducted by utilizing the method presented in section 5 but BRdcij = 0. Hence, bills

under RTP are simply calculated as the sum of calculated fixed charge and the variable portion of

the RTP bill:

BRij = BRvolt
ij + BR f c.

Current bills are calculated using the method presented in section 5. Next we move to the scenario

when customers are price inelastic and face a positive demand charge.
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3.6.2 Customers are price inelastic and face positive demand charge

In order to construct the bill under RTP, we need to calculate the fixed cost so it reflects the demand

charge. In this case, we assume BRdcij is the same as in BCdcij. That is, we consider RTP where the

demand charge is also specified in the same way as under the current bill. It is important to note

that the fixed charge under RTP should be set so that the aggregate payments by all customers are

the same under the current rate and RTP:

∑
j

∑
i

BCt
ij = ∑

j
∑

i
BRt

ij.

In this case the fixed charge under RTP is computed as such:

∑
j

∑
i

BR f c = sumj ∑
i

BCvolij − ∑
j

∑
i

BRvolij + ∑
j

∑
i

BCdcij.

where BRdcij is equal to BCdcij. Hence the fixed charge for each customer is computed by

utilizing the equation below.

BR f c =
∑j ∑i BCvolij − ∑j ∑i BRvolij + ∑j ∑i BCdcij

number of all customers in the sample

Thus, the bill under RTP is equal to:

BRij = BRvolt
ij + BRdcij + BR f c.

where BRdcij is equal to BCdcij. 3.6.3 Decomposition of bill changes when cus-

tomers face an alternative pricing structure.

However, we need to address the question of whether customers are increasing or decreasing

consumption because of a price level change or fixed cost change, We include an equation

that illustrates the breakdown of the change in bills into: fixed charge portion, the price level

portion and price variation portion. This method is also applied to the case when customers

are price elastic and face zero or positive demand charge.
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The calculation is as follows: For each month t, compute αt such that

∑
j

∑
i

BCvolt
ij = αt ∑

j
∑

i
BRvolt

ij.

That is, αt times the total RTP bill (for all customers in all sectors) in month t is equal to the

actual current total bill in the same month:

αt =
∑j ∑i BCvolt

ij

∑j ∑i BRvolt
ij

.

Note that the change in the bill by going from the current bill to RTP for customer i in sector

j is given by

BRt
ij − BCt

ij = BRvolij + BRdcij + BR f c − (BCvolij + BCdcij)

= BRvolij − BCvolij + BR f c = BRvolij − αBRvolij + αBRvolij − BCvolij + BR f c

= ∑
d

∑
h

pdhxdh − ∑
d

∑
h

αpdhxdh + ∑
d

∑
h

αpdhxdh − ∑
d

∑
h

pxdh + BR f c

In the expression on the last line, the first two term is (a) the effect due to a change in the

level of the prices, (b) the third and the fourth terms represent the effect due to variations in

prices, and (c) the last term due to change in the fixed pay.

3.7 Simulation Results

This section presents the calculated electricity bills for C&I customers under alternative rates from

two scenarios: when customers are price elastic and inelastic. The simulated bills include the

charge for transmission and distribution (see data section above) as well as the fixed costs to the

utility. For each scenario we compare each sector’s bill under dynamic pricing to their payments

under the current billing schedule.
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3.7.1 Scenario 1: Price Elastic Case

Here we present the simulation results when customers are price elastic. First, we present tables

3.2, 3.3, 3.4 and 3.5 that show the percentage of surplus or loss that each sector faces in terms of the

changes in electricity bills when introduced to an alternative pricing structure. We run separate

simulations for March and September of 2014, two months when system lambda is the highest

and lowest, respectively. There are four tables–two for each month because we consider the case

when customers face zero and positive demand charge.The tables present simulations from two

different values of the own price elasticity to allow for flexibility in customer price response. The

two values considered are an elasticity of -0.10 and -0.20.

Table 3.2 and 3.3 represents the case where customers are price elastic and face positive demand

charge. The fixed charge is calculated as illustrated section 5. Table 3.2 and 3.4 utilizes data from

march, while 3.3 and 3.5 use data from September.

When comparing tables 3.2 and 3.3 we notice several key points. One, all sectors except for the

educational sector have high bill totals under the current rate in September than in March. This

could be because customers use more energy during hot months via increased air conditioning

demand. The educational sector possibly face lower current bills in September because students

are not in school during the summer break. Most sector face higher bills not only because they

consume more during hot months but also because system lambda is higher during the day com-

pared to March levels (see figure 3.4). Two, when examining the differences between months

(figures 3.2 and 3.3) we find that sectors who are considered "winners" of RTP benefit from RTP

more in March than in September. Moreover, sectors who are considered "losers" under RTP, such

as grocery hotels and department stores, tend to experience higher bills under RTP in September

than in March. This is because losers from RTPnot only have higher current bills in September,

but also an increase in alternative bills causing the gap between current and alternative to expand

further.The increase in alternative bills in September can be due to either an increase in the de-

mand charge or the volumetric payment of the bill. Especially when electricity demand tends to

rise during the hottest months. Last, regardless of the month, alternative bills tend to decrease

when customers have an own price elasticity of -0.2 relative to -0.1.

Next, we compare tables 3.4 and 3.5 that presents the percent change in bills when cus-
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tomers switch to an alternative bill. Key points from the paragraph above also tend to hold here

with September bills under current rates being higher for all sectors except for education. One key

difference between the case where customers face positive and zero demand charge under RTP is

that the alternative bills are significantly lower under the case where demand charge is zero. This

is not surprising as the demand charge payment is not included when calculating the bills under

RTP when demand charge is zero. Another key aspect of tables 3.4 and 5 are that the hotel sec-

tor shifts from loser to winner when they are faced with zero demand charge. In tables 3.2 and

3.3, the accommodation faced a slight increase in alternative bills under positive demand charge.

However, this sector benefits from the ease in bills when the demand charge is not added to their

RTP bills. Hence, based on these four tables, incorporation of demand charge in the alternative

rates can certainly hurt sectors compared to the case when demand charge is zero.

The four tables mentioned above only illustrate tee percent change in bills under the two rate

structures, and do not consider the decomposition of the change. The decrease or increase in al-

ternative bills can stem from a price effect (since system lambda is lower than effective rates) or it

could be due to the magnitude of the fixed payment. Tables 3.6 and 3.7 address these questions by

presenting the breakdown of the change in bills into three components: the price level effect, price

variation effect, and the fixed charge effect. The price level effect is the effect that arises from low-

ered volumetric rates. The price variation effect is the effect of changes in electricity consumption

that arises fro the variation in system lambda between hours.

Table 3.6 shows this breakdown for September when customers face zero demand charge. Con-

sistent with the previous tables, the sectors who experience the most benefits from RTP are the

education and medical sectors with an average change in bills of -27,000 and -20,000 dollars, re-

spectively. When comparing the effect of the own price elasticity, the average change in bills seem

to be less when customers are more price responsive. Meaning that sectors have less benefits or

more costs when they are more price elastic. Table 3.7 presents the decomposition for September

bill when customers face positive demand charge. Based on the results in tables 3.2-3.5, it is no

surprise that the average change in bills, price level effect and price variation effects are larger

under positive demand charge. This is because the gap between current and alternative bills in-

creases as demand charge is added to the alternative bills while the current bill stays the same.

One important note is that the fixed charge is lower in the case where demand charge is equal to

zero because the demand charge is added to the volumetric rate when calculating the fixed charge,

causing the gap between BCvol and BRvol to widen. Hence, although customers face a lower fixed
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charge when demand charge is positive, the average increase in or decrease in bills under RTP the

demand charge effect is too large to cancel the benefit of a lower fixed charge.

To provide a comparison of load profiles under the alternative (both positive and zero

demand charge cases) and current rate structures, we use the simulated consumption values and

plot them with the actual consumption (kWh). Figure 3.5 illustrates the two load profiles using

electricity consumption from March. A note is that the figures are not normalized. The green line

illustrates the simulated load without the demand charge, the red line the simulated load profile

with demand charge, and the blue line representing the load utilizing the actual consumption. As

illustrated in the figure, the load profiles under the alternative rates with and without demand

charge differ from that of the actual load profile for all sectors. By theory, customers increase

demand under RTP because the system lambda is lower than the effective rates at all hours. In

addition, the load profile under positive demand charge is lower than the case where customers

face zero demand charge. This could be because customers have an incentive to demand less be-

cause they will be penalized via higher demand charge payment. Another aspect to notice is the

shift in peak. Customers tend to be shifting their consumption to hours when the system lambda

is lowest. For example, the accommodation sector has peak load at about 3:30 PM when the sys-

tem lambda for March is the lowest. The same phenomenon exists with the grocery, medical and

educational sectors where the peak load occurs at around 3PM. All load profiles are averaged at

each hour. I include individual load profiles that are not aggregated in appendix B (figure 3.7). A

customer from each sector is pick randomly to create these figures.
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Table 3.2: Change in Bills when Customers are Price Elastic and face positive demand charge
(March Bills)

Current (mil) Alternative (mil) Change in bills(%) # of firms
sigma=0.10
Education $11.5 $9.7 -17.9% 35
Hospitals $ 4.9 $4.3 -13.9% 15
Hotels $5.7 $6.1 6.5% 38
Merchandise $1.5 $2.0 25.0% 17
Grocery $1.2 $1.8 35.1% 17
sigma=0.20
Education $11.5 $9.6 -16.5% 35
Hospitals $4.9 $4.2 -16.6% 15
Hotels $5.7 $6.0 5.0% 38
Merchandise $1.5 $1.9 23.3% 17
Grocery $1.2 $1.8 33.3% 17

Note: The table above presents the bill change when customers are price elastic. Simulated values (demand) come from the model
presented in section 4. The sample used for this table are customers who are categorized as rate P. Moreover, the sample period is
March of 2014, when system lambda is at its lowest of 2014. System lambda are obtained from FERC.

Table 3.3: Change in Bills when Customers are Price Elastic and face a positive demand charge
(September Bills)

Current (mil) Alternative (mil) Change in bills(%) # of firms
sigma=0.10
Education $10.1 $9.9 -2.0% 35
Hospitals $5.3 $5.0 -6.0% 15
Hotels $6.5 $7.2 9.7% 38
Merchandise $1.5 $2.1 28.5% 17
Grocery $1.3 $2.0 35% 17
sigma=0.20
Education $10.1 $9.7 -4.1% 35
Hospitals $ 5.3 $4.9 -8.1% 15
Hotels $6.5 $7.2 9.7% 38
Merchandise $1.5 $2.1 28.5% 17
Grocery $1.3 $2.0 35% 17

Note: The table above presents the bill change when customers are price elastic. Simulated values (demand) come from the model
presented in section 4. The sample used for this table are customers who are categorized as rate P. Moreover, the sample period is
September of 2014, when system lambda is at its lowest of 2014. System lambda are obtained from FERC.
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Table 3.4: Change in Bills when Customers are Price Elastic and ZERO demand charge (March
Bills)

Current (mil) Alternative (mil) Change in bills(%) # of firms
sigma=0.10
Education $11.5 $8.6 -33.7% 35
Hospitals $ 4.9 $3.9 -25.6% 15
Hotels $5.7 $5.4 -5.5% 38
Merchandise $1.5 $1.7 11.7% 17
Grocery $1.2 $1.6 25% 17
sigma=0.20
Education $11.5 $7.4 -55.4% 35
Hospitals $4.9 $3.2 -53.1% 15
Hotels $5.7 $4.9 -16.3% 38
Merchandise $1.5 $1.6 6.2% 17
Grocery $1.2 $1.5 20% 17

Note: The table above presents the bill change when customers are price elastic. Simulated values (demand) come from the model
presented in section 4. The sample used for this table are customers who are categorized as rate P. Moreover, the sample period is
March of 2014, when system lambda is at its lowest of 2014. System lambda are obtained from FERC.

Table 3.5: Change in Bills when Customers are Price Elastic and face ZERO demand charge
(September Bills)

Current (mil) Alternative (mil) Change in bills(%) # of firms
sigma=0.10
Education $10.1 $9.0 -12.2% 35
Hospitals $5.3 $4.7 -12.7% 15
Hotels $6.5 $6.8 5.8% 38
Merchandise $1.5 $1.9 21.0% 17
Grocery $1.3 $1.8 27.7% 17
sigma=0.20
Education $10.1 $7.9 -27.8% 35
Hospitals $ 5.3 $4.0 -32.5% 15
Hotels $6.5 $5.9 -10.1% 38
Merchandise $1.5 $1.7 11.7% 17
Grocery $1.3 $1.7 23.5% 17

Note: The table above presents the bill change when customers are price elastic. Simulated values (demand) come from the model
presented in section 4. The sample used for this table are customers who are categorized as rate P. Moreover, the sample period is
September of 2014, when system lambda is at its lowest of 2014. System lambda are obtained from FERC.
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Table 3.6: Decomposition of the Changes in Bills when Customers are Price Elastic and face zero
demand charge (September Bills)

Average Change in Bills after RTP Price Level Effect Price Variation Effect Fixed Charge
sigma=0.10
Education $-27,513.9 $-10,251.8 $-2,062.2 $39,827.01
Hospitals $ -20,946.2 $ -15,632.5 $-3,248.4 $39,827.01
Hotels $20,910.3 $-11,589.5 $-7,328.4 $39,827.01
Merchandise $26,847.0 $-10,420.8 $2,560.53 $39,827.01
Grocery $28,628.0 $-9,624.7 $-1773.0 $39,827.01
sigma=0.20
Education $-25,467.1 $-9,256.6 $-3,435 $38,158.24
Hospitals $-19,036.7 $-11,486.1 $-7,636.6 $38,158.24
Hotels $22,924.3 $-12,584.0 $-2,650.2 $38,158.24
Merchandise $28,658.8 $-7,160.7 $-2,340.34 $38,158.24
Grocery $30,039.6 $-6,510.8 $-1,609.6 $38,158.24

Note: The table above compares bills under RTP and current by sector when customers face a positive demand charge. The first
column shows the differences in bills under RTP and current (bills RTP-current). Specifically, negative values indicate that the sector
benefits from the new pricing scheme in the form of lowered bills. The second, third and fourth column indicate the price level effect,
price variation effect, and fixed effect, respectively.

Table 3.7: Decomposition of the Changes in Bills when Customers are Price Elastic and face
positive Demand Charge (September Bills)

Average Change in Bills after RTP Price Level Effect Price Variation Effect Fixed Charge
sigma=0.10
Education $ -35,490.5 $ -52,178.1 $-5,334.0 $22,021.86
Hospitals $ -26,906.0 $-42,082.0 $-6,344.3 $22,021.86
Hotels $ 9,854.1 $-10,005.3 $-2,162.6 $ 22,021.86
Merchandise $10,948.7 $-9,474.0 $-1,605.8 $22,021.86
Grocery $11,149.17 $-9,491.2 $-1,381.5 $22,021.86
sigma=0.20
Education $-31,053.4 $-45,108.3 $-5,978.8 $20,033.70
Hospitals $-26,067.0 $-39,193.1 $-7,008.5 $20,033.70
Hotels $12,516 $-4,300.4 $-3,217.0 $20,033.70
Merchandise $13,001.4 $-5,002.8 $-2,031.3 $ 20,033.70
Grocery $14,169 $-4,094.7 $-1,770.2 $20,033.70

Note: The table above compares bills under RTP and current by sector when customers face zero demand charge. The first column
shows the differences in bills under RTP and current (bills RTP-current). Specifically, negative values indicate that the sector benefits
from the new pricing scheme in the form of lowered bills. The second, third and fourth column indicate the price level effect, price
variation effect, and fixed effect, respectively.
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Figure 3.5: Load Profiles under RTP when customers are price elastic with and without Demand
Charge (March Bills)

(a) Education (b) Hospitals

(c) Hotels (d) General Merchandise

(e) Grocery

Note: Figure (a) through (e) above illustrates the overlay of actual load (blue), simulated load without demand charge (green), and
simulated load with demand charge (red) for each sector. When creating these figures, customers with PV are omitted, and created
based on September 2014 data. Each load profile is created by simulating the load for each customer and simply taking the average
per sector. Data are retrieved from FERC and HECO.
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3.7.2 Results for Scenario 2: Price Inelastic Case

Here we present the results for both cases: 1) when customers are price inelastic and face pos-

itive demand charge; and 2) when customers are price inelastic and face zero demand charge.

Results are presented in table 3.8. Table 3.8 utilizes actual data from September 2014 to calculate

the average change in prices under RTP. The fixed charge portion of the bill differ between the two

cases because the fixed charge is calculated as BCvol-BRvol+BCdc for the case with positive demand

charge and BCvol-BRvol for the case under zero demand charge. We break down the change in bills

under RTP into three portions, the price level effect, price variation effect, and the fixed charge.

The price level effect measures the change in bills due to a decrease in system lambda. Based on

the information in table 3.8, we can see that the price level effect is negative for all sectors, mean-

ing that bills decreased under RTP because system lambda is lower than the effective rates (see

figure 3.3).

Because tables 3.2 to 5 do not show whether the decrease or increase in bills after RTP is due to

a decrease in price (because system lambda is lower than effective rates) or to the magnitude of

the fixed charge, table 3,8 also provides the decomposition of the change in bills. The results in

this table show that customers who benefit from RTP are again the education and medical sectors.

However, the average change decrease in bills tends to diminish in the case where demand charge

is equal positive because the demand charge is added on to the volumetric portion of the RTP

payment. For all sectors regardless of demand charge, the price level effect is negative because

customers face a lower rate per kilowatt hour under RTP. Furthermore, consistent with table 3.5

that illustrates the percent change in bills for the price elastic case and zero demand charge, the

accommodation sector benefits from RTP when demand charge is zero, but the benefits disappear

when the demand charge is positive. Hence, the accommodation can benefit from RTP that con-

sists of no demand charge. Moreover, hotels only face a slightly higher RTP bill when demand

charge is positive, indicating that depending on the value of the fixed charge, the accommoda-

tion sector may benefit from RTP under the inelastic case. Consistent with the previous tables, the

losers from RTP are the department and grocery sectors, with bills under RTP being higher in both

zero and positive demand charge cases.

The third column shows the price variation effect which represents the change in bill that
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arises from the changes in hourly system lambda. Again the price variation effect is negative for

all sectors. Finally, the last column in table 5 indicates the fixed charge portion of the bill un-

der RTP. This value is calculated using the method presented above under "case 2 when demand

charge is positive." The fixed charge is lower when demand charge is positive due to the way fixed

cost calculation is set. We can conclude from table 3.8 that customers in all sectors indeed benefit

from a lower volumetric rate under RTP but winners and losers arise when the price level effect

is not large enough to cancel the fixed costs. Moreover, the addition of a demand charge to the

RTP structure plays a role in whether a customer benefits from RTP or not. Sectors such as accom-

modation tend to benefit under the case where demand charge is equal to zero, but not when a

demand charge is incorporated in the RTP structure.

Table 3.8 only presents simulations for September so we present how RTP and current

bills change over time. The results are presented in figure 3.6 and includes the case where de-

mand charge is zero. Figure 3.6 shows the changes in bills under an alternative pricing structure

relative to existing flat rate structures for every year month combination. The monthly current

bills presented in this table are calculated by multiplying the sum of the 15-minute interval data

by month and multiplying it by the effective rate, then adding the demand charge. The monthly

current bill is calculated using actual values from the data. On the other hand, the monthly al-

ternative bill is calculated as system lambda multipled by the 15-minute kWh. Hourly system

lambda is interpolated linearly to match the consumption data. This table shows how customer

bills change when customers face positive demand charge. As seen from the figure, some cus-

tomer bills increase compared to the flat rates. Grocery stores are the losers from a dynamic rate

structure than a flat rate one in this scenario. The figure indicates that, on average, grocery stores

face a 35,000 dollar increase in bills over the years 2014 to 2015, with the difference between current

and alternative bills being larger in 2014 than in 2015. This could be the case because both effec-

tive rates and system lambda significantly decrease from October 2014 to Mid 2015 (see figure 3.1),

but system lambda decreases more on the margin compared to the effective rates. This can also

explain why bills under dynamic pricing is less than that of the current bill using the same kWh

consumption level for the merchandising sector. Specifically, bills under current pricing is lower

than that of alternative rates in 2015, but vice versa in 2015 for the merchandising sector. Finally,

the accommodation sector has minor benefits from the alternative pricing structure relative to flat
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rate pricing, although they have load profiles that are align with that of the systems (figure 3.2 (c)).

Based on our findings winners from alternative rate structures are the educational and

medical sectors. These findings are align with simulation results presented in Borenstein’s paper

on wealth transfers under RTP (2005). Borenstein finds that winners of RTP on average are sig-

nificantly larger customers. Moreover, his study finds that the average electricity consumption

by firms that would see their bills decrease from time-of-use to RTP is about twice as great as

the average electricity consumption by firms that would see their bills increase under alternative

rates. Figure 3.1 shows the load share by C&I sector, and you can observe that the winners under

the alternative pricing structure are the sectors that have a high load share such as the education,

hotels, and medical sectors. Table 3.1 provides summary statistics for each sector. Energy con-

sumption and demand from 2014 are reported in this table. As seen from the table, sectors who

have a large share load have the highest peak demand. Its important to note that the magnitude

of bill decreases under the alternative rates depend not only on load share but also the sector load

profile. For example, winners of alternative rate structures have mid-day peaks and does not align

with the system peak. This could explain why the accommodation sector has less benefits in terms

of bill decreases than the education or medical sector. The accommodation sector has a large load

share but has peak loads that are in line with that of the system. Moreover, the merchandising

sector has a load profile that has a high peak in the daytime when the system profile is relatively.

Intuitively, it can be the case that the merchandising sector could be the winners of an alternative

pricing structure. However, their load share is a small portion of the total sector shares.
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Figure 3.6: monthly bill changes over time (2014-2015): Current versus alternative rates when
customers are price Inelastic and face zero demand charge

(a) Education (b) Hospitals

(c) Hotels (d) General Merchandise

(e) Grocery

Note: Figure (a) through (e) above illustrates the changes in bill under current and alternative rates for all sectors given that customers
are price inelastic. The red line indicates the value of bills for the year month combination, while the blue line indicates the bills
under the alternative rates. The fixed charge portion of the alternative bill is calculated as the demand charge portion of the bill
plus the volumetric rate subtracted by the volumetric portion under alternative rates. We then divide this number by the number of
customers in out sample, which is about 119. The own price elasticity used in this simulation is 0.1
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Table 3.8: Change in Bills when Customers are Price Inelastic: Two Cases when Demand Charge
is zero and positive (September Bills)

Average Change in Bills after RTP Price Level Effect Price Variation Effect Fixed Charge
DC = 0
Education $-66,463.2 $-109,020.9 $-3,928.3 $46,486.0
Hospitals $-72,418.3 $-114,590.2 $-4,314.1 $ 46,486.0
Hotels $-16,051.7 $-60,242.1 $-2,295.6 $ 46,486.0
Merchandise $11,861.0 $-33,512.4 $1,112.6 $ 46,486.0
Grocery $18,446.4 $-27,029.9 $-1,009.7 $ 46,486.09
DC > 0
Education $-8,041.8 $-23,882.9 $-2,901.7 $ 18,742.8
Hospitals $ -14,134.3 $-29,612.2 $-3,246.8 $ 18,742.8
Hotels $113.05 $-16,859.1 $-1,750.6 $ 18,742.8
Merchandise $15,354.8 $-2,573.2 $-814.7 $ 18,742.8
Grocery $11,824.6 $-6,186.2 $-731.9 $ 18,742.8

Note: The table above compares bills under RTP and current by sector when customers face a positive demand charge. The first
column shows the differences in bills under RTP and current (bills RTP-current). Specifically, negative values indicate that the sector
benefits from the new pricing scheme in the form of lowered bills. The second, third and fourth column indicate the price level effect,
price variation effect, and fixed effect, respectively. The own price elasticity used in this case is 0.1.

3.8 Conclusion and Discussion

Researchers have theoretically and empirically showed the benefits of dynamic pricing schemes

such as RTP in the residential sector. However, studies on the impact of dynamic pricing schemes

on sectors within the C&I sector has been sparse, when C&I customers account for two-thirds of

electricity loads (Hawaiian Electric Company 2015). Utilizing electricity consumption data for C&I

sectors from Hawaiian Electric Company, we estimate the potential bill losses and gains under cur-

rent and alternative rate structures given two scenarios with varying elasticities. We introduce a

novel simulation model of customer electricity consumption to generate demand when customers

are price responsive. The simulation model tries to generate energy consumption values that align

with our theory. Findings from the simulations correlate with that of Borenstein (2005) and show

that introducing a dynamic pricing structure can harm some customers depending on the load

shape of the sector and their load share. Sectors that have peaks that do not align with the sys-

tem and have a large load share, such as hospitals and education, benefit the most from dynamic

pricing schemes in both elastic and inelastic scenarios. This study can inform policy makers of

the winners and losers if RTP were to be adopted and serve as a guide towards efficient pricing in

Hawaii.

Future research includes calculation of consumer surplus when customers face a billing regime
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that resembles a dynamic one. Although we find that there are no losers under dynamic pricing

when consumers are price responsive, the simulation can generate bias results. A paper by Boren-

stein not only calculates the total payments for customers, but also consumer surplus because

"total payments fail to capture the benefits to consumers when they increase consumption dur-

ing low-price hours and would misstate the losses when a customer reduces its bill by lowering

consumption during high price periods, but also loses the value of that consumption (Borenstein,

2007)."

Another possibility for future research is allowing the fixed charge to vary by firm or sector. When

considering an alternative pricing structure such as RTP, it is more realistic to allocate varying fixed

costs by customer. As a second analysis, we can calculate the total bill under RTP by allocating

fixed costs using a method similar to (Galetovic, Muñoz, & Wolak, 2015), who allocates fixed costs

based on a fixed capacity payment and capacity of each firm. The capacity payment equals the

cost of investing in a generator that runs during the system peak periods.
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Appendix B

Figure 3.7: Load under Alternative Rates: Two cases when customers are price elastic and face
positive or zero demand charge

(a) Education (b) Hospitals

(c) Hotels (d) General Merchandise

(e) Grocery

Note: The red line in the figure represents the load profile for each sector under alternative rates and no demand charge. The blue line
illustrates the load for the case when customers are price elastic and face a positive demand charge. It is important to note that these
are load profiles for one customer taken from each sector and is not an average. Load profiles are created using the simulated values.
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