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Abstract

The Internet of Things (loT) describes the fusion

of the physical and digital world which enables assets
on the edge to send data to a platform where it
gets analyzed. Defined actions are then triggered to
influence cross-functional edge activities. Furthermore,
on the platform tier functionalities and relations need
to be identified and implemented to realize assets
operating autonomously and ubiquitously.
The exploration of this paper results in the identification
of autonomous characteristics and shows functional
components to implement autonomous assets on the
edge. Distributed Ledger Technology (DLT) and its
fusion with Machine Learning (ML) as an area of
Artificial Intelligence (Al) provides an integral part to
realize the described outline. Thus, the recognition of
DLT’s and ML’s usage in the loT and the evaluation of
the relevance as well as the synergies build the main
focus of this paper.
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Artificial Intelligence, Machine Learning

1. Introduction

Heterogeneity is a characteristic of current system
landscapes with incompatible data silos between
enterprises evolved from a non-integrative development
of systems in the 3rd Industrial Revolution [1].
Automation is the main goal of this wave of
industrial advancement.  Data is transferred from
physical environments to centralized systems along the
automation pyramid up to business domains where the
created information supports business processes. The
imaginary evolved silos guarantee efficiency in the
respective business area but aggravate an inter-domain
integration due to incompatibilities [2, 3].

IoT systems envision the enablement of ubiquitously
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acting Autonomous Assets (AA) supporting other AAs
to realize an asset economy on the edge. Relevant
components need to be identified to realize this vision.
Through the merge of the Operational Technology
(OT) and Information Technology (IT) different
trustworthiness aspects converge [4]. On OT, systems
need to be safe, efficient, and consistent whereas
security, agility and flexibility are of importance for
IT [5]. In order to enable AAs, IT and OT
need to be combined guaranteeing trustworthiness
and providing (data) interoperability throughout the
end-to-end process over the edge, platform and
enterprise tiers of an IoT system [6]. Furthermore, in
order to enable an asset to act intelligently, a component
that foster decision making in a distributed data
landscape is required. Distributed Ledger Technology
(DLT) enables a trustful, governed value exchange
between trustless assets whereas Artificial Intelligence
(AD) provides the components to make decisions in
a self-sufficient, yet artificial manner. The relevant
research question that builds the center of this paper and
is of relevance for the described IoT vision is:

RQ: What functionalities are enabled by Distributed
Ledger and Machine Learning to realize
Autonomous Assets in the Internet of Things?

The named research question is approached according
to the following paper structure. Section 2 forms the
theoretical foundation. In the subsequent section related
work is briefly provided. Based on this foundation,
the paper proceeds with the presentation of the used
methodologies. Results are shown in section 5 providing
a functional model to enable AAs. Its implications are
discussed in section 6. The conclusion summarizes the
article and gives an overview of future work.

2. Theoretical Framework

2.1. Internet of Things

The IoT describes the convergence of OT and IT.
OT comprises the direct monitoring and controlling of
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devices, processes, and enterprise events to detect or
cause physical changes. IT, on the other hand, covers
the entire spectrum of data processing technologies
based on Internet protocols [7]. The Industrial Internet
Consortium (IIC) as the worldwide largest Industrial
IoT (IlIoT) consortium defines an IIoT system' as a
”system that connects and integrates industrial control
systems with enterprise systems, business processes and
analytics” [8]. Moreover, the IIC provides an Industrial
Internet Reference Architecture (IIRA) which includes
different viewpoints: business, usage, functional and
implementation, to support the requisite broad industry
applicability. The paper proceeds with a focus
on the functional components: Control, Operations,
Information, Application and Business [4] and their
interrelation.

The 3-Tier architecture pattern is used as a conceptual
architecture of an IoT system to locate functionalities
in the context of this paper. It divides an IoT system
into edge, platform and enterprise tiers. The edge
tier contains assets supporting the user in its physical
environment. For analysis, data generated on the edge
is sent to the platform tier. Additionally, control
commands from the enterprise tier will be received,
processed and forwarded from the platform to the edge
tier. The enterprise tier provides interfaces to end-users,
implements domain-specific applications and decision
support systems [4].

The ubiquity and diversity of things in the IoT is steadily
increasing. This also means that more data is generated
on the edge. Additionally, the sensitivity and the variety
of measured phenomenas increase [9]. The possibilities
to store and process data span over the edge, platform?
and DLTs [10]. However, a number of technological
challenges need to be considered. On the edge tier,
there are some devices with constrained resources such
as energy, storage or computing power. Due to these
constraints the execution of specific machine learning
algorithms is difficult [9]. This also means that certain
real time autonomous decisions can not be made by the
device itself. In this case, the data must be transferred
to an optional data storage like a platform. Because
of the large amount of data and the small number
of computing centers, the scalability as well as the
costs for transferring the data, might be challenging
[11]. Certainly, design decisions that take the named
constraints into account in accordance to the aimed
implementation are relevant [12].

The definition of an IToT system is used interchangeably to the
definition of an IoT system in this paper
2The definition of "IoT platform” is given in [10]

2.2. Autonomous Assets

An autonomous learner determines its own specific
objectives, defines the content and process to achieve its
goals and evaluates the results of the learning progress
following its unique demands for accomplishment [13].
Prognostics is an important functionality of a mission
critical autonomous system in order to guarantee
stability and fault tolerance [14]. Therefore, Scally et al.
[14] add that the system’s technology needs to be data
agnostic in order to integrate data sources. Furthermore,
a learning functionality is required to enable continuous
improvement of the system [14].

In contrast, ubiquity defines the premise that all data
of a system needs to be accessible by any asset in an
adequate manner and time dependent on the asset’s
location. A centralized control is not sufficient to enable
ubiquity. Assets need to be autonomous guaranteeing
a distributed control functionality of the devices
themselves [15].

Assets are non-divisible and hide their constituent parts
from the external world. It is required that assets store
their internal state and communicate with each other.
Furthermore, assets consist of a structure, behavior and
are capable of sensing [15]. Examples of assets are
major applications, high impact programs, personnel,
equipment or a group of systems with value to the entity
that owns the asset [16].

Three architectural structures of AAs are defined. An
AA can act without requiring a network infrastructure
proceeding tasks independently [17]. The second
structure  describes the interaction of multiple
assets in order to achieve a common mission. It
requires a networking infrastructure, mostly based on
proprietary technologies and protocols for inter-device
communication. The cooperation of multiple AAs with
Internet platforms is defined as the third architectural
structure. Digital assets deployed on the platform act
as counterparts to the AAs on the edge and enhance
the functional capabilities of the respective device.
Different inter-asset communications are possible. The
devices can directly communicate with each other
by implementing a complete TCP/IP stack. A more
energy efficient variant is the communication through
a gateway that solely implements the TCP/IP stack
and functions as an Internet bridge for the devices.
Platforms built on top of the described architecture
gather device data and provide services. [17].
Coordination and multi-objective decision problem
mechanisms are required in a network of multiple
AAs with different capabilities and mission objectives.
According to Abel and Sukkarieh [18], a coordination
module that does not depend on a centralized decision
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maker to provide flexibility is necessary. Therefore,
a voting model is the chosen method to coordinate
multiple objectives [18].

Trust between assets plays an essential role in an
environment where unknown and potentially malicious
assets can act [19]. Trust is defined as the subjective,
probabilistic level with which an agent estimates a
particular action of another agent or a group of agents
[20].  Functionally, autonomous ubiquitous assets
require intelligent, mobile and connectivity capabilities.
Furthermore, in order to collaborate and use services
independently, a value transfer functionality, in e.g.
the form of digital currency, needs to be guaranteed to
function self-sufficiently. Data needs to be accessible at
a specific location and time as well as in a semantical
uniform format providing context-awareness to enable
these functionalities [21].

2.3. Distributed Ledger

A current development of platforms that enable
cross-functionality and broad data analytics combining
the evolved centralized, sealed systems can be observed.
However, platforms lead to lock-in effects and the loss
of data ownership. Solutions that prevent these aspects
need to be provided.

According to Burkhardt et al. [22], the concepts of
DLT, like blockchain or tangle, are based on various
principles. With the use of cryptographic means, the
double spending problem can be prevented in a trustless
peer-to-peer (p2p) network. Asymmetric key pairs
applied for digital signatures guarantee an explicit
transfer of digital value items and asset authentication.
Hashing and (merkle) tree structures implement
user anonymity in the transparent DLT network but
also enable an efficient verification of transactions
as well as immutability of records. Transactions
are chronologically saved in blocks, validated and
redundantly attached to the linked block lists of
the network participants guaranteeing information
symmetry.

The Byzantine General’s Problem claims that more than
2/3 of a group of peers need to be collaborative in order
to reach consensus on a decision. Therefore, consensus
algorithms, like Proof of Work (PoW), Proof of Stake
(PoS), Hashgraph, etc., are implemented to establish
agreements on the global state of the ledger.

Smart contracts implement business logic that define
terms between parties and run autonomously on the
DLT to enhance the protocol’s functionality. To get
the peers participating in the network, economic
mechanisms are used to provide incentives and create
intrinsic value for the participants.

According to the implementation requirements, DLT
protocols are either public or private. Additionally,
different procedures of a protocol can be defined as
permissioned or permissionless depending on the
configuration. For example, Ethereum is a public,
permissionless blockchain protocol whereas Ripple is
a public, permissioned protocol allowing a selected
group of participants to define the state consensus. The
different network configurations of a DLT protocol
and the use of algorithms result in a diverse set of
characteristics. ~ For example, the immutability or
finality of the DLT is different depending on the
implemented consensus algorithm [22, 23].

The DLT stack consists of three layers built on top of
the Internet stack: protocol, application and integration
layer. On the first layer data is stored according to
the implemented data structure. On top, applications
enhance the protocol’s functionality. Examples are
Parity, RSK or wallet providers like Coinbase and
Kraken as well as development tools like Remix or
MetaMask using sidechains, bridges, etc. to create
a connection to the first layer but also bypassing the
first layer limitations. Thus, both layers are strongly
interrelated in their developments [10]. The integration
layer provides the user interface and enables the DLT
system integration into other IT systems.

Furthermore, DLT generic platforms (DLgp) enable the
entire DLT stack supporting a horizontal integration of
business domains. Ethereum is a DLgp example which
is a platform that forms a common data and functional
basis for the creation of business logic. Thus, it provides
interoperability between the developed applications.
On the other hand, the development of DLT platform
components (DLpc) that implement a specific property
or combination to fulfill a specified purpose can be
observed. BigChainDB is characterized as a DLpc
functioning as a decentralized database [10].

Burkhardt et al. [10], Seebacher and Schueritz [24]
identified a valuable appliance of DLT in the field of IoT
to improve security, reliability, privacy and integrity.
However, in order to enable a profound integration,
challenges of both areas need to be identified and
solved [10, 24]. In comparison to traditional transaction
systems, DLT systems are located between companies
avoiding redundant storage of transactions and
providing data interoperability [25]. Consequently,
DLT provides trustworthiness by dis-intermediation
and avoidance of a central controlling party [10, 26].
Based on these capabilities, a unique digital identity
representing its physical counterpart can be created
with implications to audit processes and compliance
procedures [27].
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2.4. Machine Learning

Al is used to enable intelligent behavior of assets
[28].  Various definitions of Al exist due to the
missing agreement on the definition of intelligence
among researchers. In the context of this paper, the
definition of Luger and Stubblefield [29] is used: Al
is the branch of computer science that is concerned
with the automation of intelligent behavior”’, whereby
intelligence is described by the ability to learn,
understand, and make judgments or have opinions that
are based on reasons [30].

Al can be divided into the branches of machine learning
(ML), natural language processing, expert systems,
vision, speech, planning and robotics [31]. The usage
of ML in the IoT is of focus and therefore further
described. Mohri et al. [32] define ML broadly as
a computational method using experience to improve
performance or to make accurate predictions. Whereby,
the term experience refers to past information, mostly in
form of data collected and made available for analysis.
The process of deploying a ML-model is demonstrated
in Figure 1. The first step, Data Collection, includes

Data Model Model

Collection Creation Validation

~

Figure 1. Machine Learning Process [28]

data acquisition and data preparation. As part of
this process step, feature extraction converts raw data
into information that relates to the physical state of
data. After that, feature reduction reduces the number
of features. This is done by selecting only a few
helpful features or transforming the features to lower
dimensional space [28]. The Model Creation process
step can be grouped into the algorithm categories of
supervised learning and unsupervised learning. In
supervised learning, data instances are given with
known labels and therefore we can apply algorithms
like decision trees and neural networks. As opposed
to this, in unsupervised learning, only unlabeled data
instances are available. If this is the case, algorithms like
K-means clustering and principle component analysis
can be conducted [33, 34]. In the Model Validation
step, techniques like re-substitution, hold-out or K-fold
cross-validation determine the quality of the model.
The evaluation results are used to optimize the model
parameters [35].

A further branch of ML is reinforcement learning in
which a learning system, without any initial information
about its environment or the effects of its actions, should
be trained to receive the maximum reward. To do that,

the learning system has to find the best action by trying
each action in turn [33, 36].

ML is used to provide new insights to optimize decision
making and enable intelligent operations leading to
transformational business outcomes [28]. According
to Anderson et al. [28], analytical functionalities can
be integrated on the information or control domain of
an IoT architecture®. The analytics results can then
be either applied on the control, application, operation
or business domain with different time horizons. On
the implementation viewpoint, design considerations
need to be made in order to place the defined analytic
functionalities on the 3-tier architecture.  Design
considerations are e.g. the analysis system’s response
time and reliability or the volume, velocity and variety
of the data and the scope of analytics which are
deployed* [28]. The described Analytical Framework
is used to derive functionalities of ML in the IoT.

3. Related Work

In the following, research approaches are shown to
present examples of the integration between DLT and
Al From a use case perspective, Swan [37] analyses the
potential of deep learning algorithms based on enterprise
blockchains. The work identifies its usage across supply
chains, higher education and healthcare [37].

Smetana et al. [38] evaluate the fusion of neural
networks and blockchain in the field of cyber physical
systems and its application for material flow analysis
and life cycle assessment. The work concludes that
a network of both systems would result in a more
efficient system for the named purposes. Therefore,
the neural network takes over the task of information
processing and modeling whereas blockchain functions
as the verification unit [38]. In addition, Harlev et
al. [39] use supervised ML to reduce anonymity of
the Bitcoin blockchain [39]. Another convergence of
Al and DLT is the application of autonomous bots
on DLT networks. It speaks about the benefits of
costs, peer-to-peer (p2p) data sharing by running the
Al algorithms on hybrid data systems combining central
servers and decentralized networks controlled by DLT.
Furthermore, the article outlines the challenges due
to the required decentralized processing of data while
scalability problems and real-time requirements exist
[40]. Generally, cryptocurrencies and smart contracts
could form the basis for Al techniques and guarantee a
legal and safe execution [41]. Van Loon [42] states that
due to the decentralized data control, data sharing and

3 A deeper explanation of the functional domains can be found in
section 2.1 and [4]

“Further design considerations with a deep explanation can be
found in [28]
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additional security of DLT, Al can be further developed
[42].

A far-reaching vision of the AI-DLT connection
is developed by Swan [37]. Personal thinking
chains, digital mindfiles and digital advocates could
be implemented through an input-processing-output
architecture.  IPFS (InterPlanetary File System) is
suggested as a continuously running memory enhanced
by Al functionalities to mimic a thinker’s memory. As
the processing tier, blockchain could be an addition
to deep learning algorithms in order to provide brain
functionalities. This could result in e.g. a proof
of intelligence consensus algorithm in which a new
idea could form a stake to participate in the consensus
mechanism. In summary, a friendly Al would be
realized using blockchain as a governance layer for the
implementation of Al techniques [37].

Marr [43] summarizes three benefits of the Al and DLT
fusion. First, Al could unlock the value of the encrypted
DLT data, using techniques that process encrypted data
in a safe manner. Additionally, DLT could record the
decision-making process of Al. Third, Al can be used to
manage DLT protocols more efficiently [43].

Xain’s Practical Proof of Kernel Work (PoKW)
combines Proof of Work (PoW) with ML coordinated
by models of optimization. In the IoT there is a high
dynamic of network nodes. Therefore, the POKW
integrates ML to adapt to this dynamics in a secure,
scalable and stable way [44]. Another direction of
the convergence is implemented by Morpheo. The
blockchain is used to record ML computations and
coordinates ML prediction requests to build a ML
platform on sensitive data sets [45].

How DLT and AI can be used in the IoT is another
relevant question. Kouicem et al. [46] evaluate
Al neural networks, on the one side, to be applied
to detect Denial of Service attacks. DLT, on the
other hand, provides the benefits of decentralization,
pseudononymity and security of transactions in the
IoT [46]. Khan and Salah [47] describe additional
address space, identity, governance, authentication and
authorization as further functionalities of DLT [47].
The aforementioned research shows that there is a
potential in combining DLT and AI. All the shown
work is in an early conceptual or implementation state.
Furthermore, the usage of Al and DLT are separately
analyzed in the IoT. In contrast to the provided research,
this paper conceptualizes the combined application of
specifically ML and DLT in the IoT. To the best of
knowledge, currently, there is no research work focusing
on this topic and a first step into this direction would be
done by the result of this article.

4. Methodology

A Design Science Research (DSR) approach using
qualitative methods in Information Systems (IS), as
the problem area, was selected to apply knowledge
in order to solve the practical problem defined in the
research question of this paper [48, 49, 50]. DSR
adheres to the engineering model of research aiming at
an artifact development. Qualitative research methods
can be used for the design and evaluation of the scientific
innovative output [49, 51]. Developed artifacts comprise
constructs, methods, models and instantiations® [48,
49]. The artifact construction and evaluation form
two intertwined and iterative steps to gain relevant
knowledge in IS [49, 50, 52]. Therefore, the design is
a sequence of expert activities, whereas the evaluation
provides new information to the improvement of the
product and process [50]. As the result of this paper,

Table 1. DSR research process.

Process step Result

1.Problem - Autonomous JoT asset definition & functionalities
identification - Functionalities of DLT & ML to enable AAs

- Interface identification of DLT & ML

- Additional problems identified in interviews (see section 5.1)
2.Solution  suggestion - ML and DLT as relevant components to implement AAs in
and objective the IoT

- Identification of relevant functionalities of ML and DLT in
the IoT

- Definition of interfaces and identification of synergies
between ML and DLT

DLT-ML model to visualize relevant interfaces and
functionalities in the IoT (see section 5)

Acknowledgment of model by relevant stakeholders
Definition of arguments and scenarios to show utility, quality
and efficacy in relation to the defined problems of step 1 (see
section 6)

Summary and publication of results (see section 7)

3.Design development

4.Demonstration
5.Evaluation

6.Conclusion and
Communication

a model describing the relation between DLT and ML
enabling AAs in the IoT was created. A model, used
as a representation of things, describes the relation
between concepts to provide a useful practical outcome
and relevance for the IS design [49]. Qualitative
interviews and literature inquiry were used as research
methodologies to provide input for the model creation
[53]. Due to the complexity of the topic and the dynamic
IS environment of DLT and ML, a descriptive evaluation
is used to present the model’s utility, quality, efficacy
and its suitability to the problem solution [50].

According to Pfeffers et al. [54], the process of DSR
in this paper follows the steps in Table 1. Furthermore,
the table provides the results created in each step. Step 1
and 2 are elaborated in the previous sections in which the
framework for the following steps is created. The main
focus lies in providing transparency of the intersection
between DLT and ML in the field of the IoT. This area

5Constructs - vocabulary and symbols, models - abstractions and
representations, methods - algorithms and practices, instantiations -
implementations and protoypes [50]
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was further examined in six semi-structured electronic
interviews with experts from the field of DLT or ML
in an explanatory manner [55]. The interview type
was selected because flexibility in the exploration of
specific topics wanted to be guaranteed. In one of the
interviews two experts were questioned together. Expert
3 was experienced in the Al field whereas expert 4
had knowledge in DLT. Following, the list of experts
including their characteristics is shown.

Table 2. Interview expert list.

# Expertise Expert’s Organization| Organization type
area role size®
1 DLT Researcher Medium Research institute

security
2 DLT & Al Head of Large

IT service provider and

use cases department computer manufacturer

3 DLT  use Project Large Information and
cases manager communication provider

4 Al Head  of Large Information and
research & department communication provider
development

5 DLT & Al Head of Large Car manufacturer
innovation business

area
6 DLT & IoT Chief Small DLT-IoT integration

development | Technology
Officer

7 DLT & Al Project Small
development | Manager

DLT/AI-IoT integration

The interviews’ were conducted from May till

June 2018 via the Microsoft Skype conference tool
in German. Each interview took between 45 and 60
minutes. The questionnaire was structured in 4 parts
leading from the overall topic to the specific problem
solution: 1) Questions about the person and knowledge
level 2) Usage and potential of DLT/ML 3) Challenges
in the IoT 4) Application of DLT/ML and interfaces
between DLT and ML to solve IoT challenges. The
interviews were recorded, transcribed and analyzed
according to the content analysis method by two
researchers to identify concepts and their relations [56].

5. Results

After the description of functional challenges of the
IoT in this section, the model structure is displayed and
filled with content from the interviews and literature.

5.1. Problem Identification

According to Burkhardt et al. [10], IoT platforms
face multiple challenges along the layers of an IIoT
system [10]. The identified challenges of the functional
layer were expanded by items named by the experts,
condensed and visualized in table® 3.

6Small<50, Medium<250, Large>250

TTranscripts of all interviews are available at the
Ferdinand-Steinbeis-Institute

8No claim to the completeness of the listed IoT challenges is made

A functional Vertical & horizontal integration is

Table 3. 1oT functional challenges [10].

1 Vertical & horizontal integration 6 Handling of millions of sensor data
2 Access to relevant data 7 Sensitive data storage
3 Define global truth 8 Context awareness
4 Asset identity, authentication and 9 Complex data structures
validation
5 Asset data protection 10 Data quality

relevant to semantically analyze data from various
contexts and environments. This provides Access to
relevant data in order to enable AAs, like a Smart Home
assistant. Currently, circumstances that hinders such an
integration are the heterogeneity of technologies and
protocols as well as the lack of standardization.
Furthermore, a challenge that was identified by the
experts is the definition of a global truth between the
AAs acting commonly to achieve a pre-defined goal.
This requires a mechanism that synchronizes each local
state.

Every asset needs to have its unique Identity in order
to verify data generated by the respective device and
it needs to provide secure authentication. Without a
unique identity other assets are not able to validate if the
data is actually from the sender asset. Additionally, the
data has to be protected in the asset itself to guarantee a
temper-proved data storage on the asset.

Due to the increasing ubiquity and diversity of edge
devices, an increasing amount of Sensitive data is
generated and needs to be stored according to specific
regulations. In a system with different stakeholders
providing their services, this is seen as a challenge
by the experts. Furthermore, due to the functional
heterogeneity of data semantics, Context awareness
seems to be another demand to realize the IoT. With a
variety of data types created, Complex data structures
evolve that need to be understood in order to execute
supportive analysis. This requires data to be received
in the required quality to guarantee valuable analysis
results for the respective business.

5.2. Model Design

The model of Figure 2 visualizes two areas. On the
left side, features of AAs are shown. The solution of
the described IoT challenges of the previous section is
subject to the enablement of these functionalities. The
second area is composite of DLT and ML features. Both
columns provide a list of features that can be selected
to realize AA features. In the following, the functional
mapping between the two described areas as well as
between DLT and ML is displayed using input from the
conducted interviews.

Based on the definition of AAs in section 2.2
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Autonomous Assets
Features

DL Features

ML Features

Figure 2. Functional Model

and inputs from the interview experts, eight features
that are mapped to DLT and ML features were
identified. Decision making requires various features
to be realized. For example, an autonomous car
decides on which direction to go by predicting the
possible alternatives of directions. The derived
prediction models are then compared based on the
detected outcomes. The resulting direction alternative is
then chosen in consideration of different requirements.
Furthermore, the experts name the prediction of
attacks and predictive maintenance as implementations
of the feature Prediction to be useful for AAs.
Pattern recognition, anomaly detection or correlation
identification are in comparison realizations of the
feature Detection. In a scenario in which multiple
assets act with each other to make a decision, a Unique
Identity of each asset is needed to guarantee trust
between assets. The experts name this feature as
a possibility for the asset’s life-cycle documentation.
Furthermore, in a trustful asset interaction Unified
Control and Data Validation are other essential
functionalities. Additionally, the experts name
Openness & Pseudonimity as a prerequisite of the three
previous DLT features to enable mutual control and data
verification. In order to realize Unified Control, DLT
provides a common decentralized open database that
can be accessed by the assets to control each other,
govern, provide data access and homogenize data flows.
The experts define Data Validation in form of audits,
contract verifications, contract conform data storage and
prove for non-manipulated data as a further DLT feature.
The second feature of AAs is Learning enabled by the

Learning feature of ML and Data Protection feature
of DLT. Based on various ML methods, Learning,
described in section 2.4, is realized for model creation
and it is used as a basis for the following listed ML
features. In an environment in which different unknown
assets interact, data on the asset itself needs to be
protected in order to guarantee learning statements to be
valuable for business. A decentralized temper resistant
database using encryption technology like DLT is a
requirement to secure data on the device.

Coordination functionality is required in a multi-asset
scenario. Autonomous Automation implemented
through smart contracts, autonomously running on the
DLT, guarantee coordination and by the participants
agreed upon execution of processes. In order to reach
agreements in such an environment, Byzantine Fault
Tolerance needs to be achieved by mechanisms of DLT.
A mutual provisioning of services in the asset network
requires Rewarding as an incentive for assets to perform
actions in favor for each other. Inference is another
necessary feature of ML to reach agreement on the
coordination steps. Furthermore, the experts explain the
feature of Inference to be used in chatbots or artificial
assistants. Optimization of the coordination process and
arrangement of assets is provided by ML to improve
efficiency. An example named by the experts is the
improvement of machine utilization.

Identification & Authentication is necessary to facilitate
mutual trust between the assets. Unique Identity, Data
Validation and Unified control are essential features of
DLT for realization.

For the implementation of Machine-to-Machine (M2M)
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payments, devices or resource sharing and on-demand
insurances, a replacement of intermediaries by DLT is
supportive. The DLT feature Direct Value Transfer
indicates the transfer of value items between assets, like
an autonomous car and a charging station.

The assets should not be locked into one environment or
dependent on one centralized platform. Therefore, Data
Agnostic is another feature of AAs enabled through the
Unified Control of DLT. DLT generic platforms (DLgp),
like Ethereum, provide a horizontal integration and data
ownership which enables unknown assets to build trust
and exchange value [10].

It is concluded that the implementation of Sensing &
Acting and Communication requires other technologies.
In summary, DLT enables through its features
Trust & Interoperability realizing use cases across
companies and M2M economy, named by the experts.
Nevertheless, other technologies that, for example,
guarantee a save data transfer to the DLT are of
relevance for implementation. On the other hand, in
order to create assets acting autonomously, Intelligence
provided by the features of ML is required.

5.3. Model: Mapping DLT and ML

The last part of the questionnaire consisted
of questions to the identification of DLT and ML
interfaces. The experts described various use cases
that require an interrelation of DLT and ML. In an
ecosystem with various actors, ML can be seen as
an independent component running algorithms based
on gathered data. For another actor it is obvious
which data is gathered and what is the result of the
analytics but the improvement of the algorithm or
functions is not transparent. Thus, DLT can be used
as an integrated component of ML to make such
developments comprehensible, e.g.  verifiable and
traceable algorithms are realized or created models, like
neuronal networks, can be saved for comprehensibility
on the DLT as a snapshot. With this integration even
algorithms can then be rewarded.

Oppositely, ML can be integrated to adapt the consensus
algorithm of a DLT protocol to its environment, e.g
analytics on the algorithm can be used to improve
efficiency or reinforcement algorithms might be
integrated for adaption.

Furthermore, ’punctual’ insurances can be realized
by the combination of DLT and ML. For example,
a driver in a car gets insured only when the car is
moving. Features to foster Intelligence and Trust &
Interoperability are therefore required. Moreover, smart
contracts can be implemented that run on prediction
data to execute insurance terms.

Another use case is firmware updates over the air
which can be secured and distributed through DLT
and ML. For example, the origin of the update can be
authenticated by using DLT.

In the described ecosystem of multiple AAs, distributed
ML algorithms require data to be authenticated and
results to be securely verified for further usage by actors.
Therefore, DLT can be used to enable a decentralized
network of assets in which data can be saved in a secure
and decentralized manner. Use cases, like the Airbnb
scenario for cars’ will be realizable in this way and
support the vision of a shared economy.

6. Discussion

In this section, the utility of the previously designed
model in accordance to a descriptive evaluation is
explained. The evaluation method is used due to the
novelty of the research areas of DLT, ML and IoT with
the knowledge about its limitations'®. A descriptive
evaluation constructs scenarios and arguments around
the artifact to show its utility, quality and efficacy [50].
On the basis of a defined use case that describes the
usage of AAs, the model can be used for the subsequent
design step. The model supports the identification of
features relevant for the implementation of the defined
AAs. Following, design scenarios can be created
by selecting features of DLT and ML. The created
template is seen as a preliminary step to a service
or implementation design aiming at connecting the
enterprise and edge layer of an IoT system. Based
on this template, missing technologies can be added,
interfaces can be examined or the replacement of
specific features by other technologies can be discussed
based on defined implementation or user requirements.
Consequently, the model provides transparency of
the transition between the use case design and the
implementation in the IoT area. Furthermore, it can be
seen as a preparation for the technology selection and
adjustment with defined requirements.

The model provides the potential to be integrated on the
functional level in existing reference architectures, like
the IIRA. Thus, the integration expands the reference
model with additional functionalities and enhances the
technology selection on the implementation viewpoint.
Moreover, the described re-usability can lead to a time
saving and a cost reduction for the creation of new
models or enhancement of existing ones.

Lastly, the development process to build the model
provides knowledge that can be reused to create

9See turo.com as an implementation example
10 imitations are defined in section 7
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further models of integration or to include further
technologies necessary to realize AAs. For example,
in order to implement the feature of Sensing & Acting,
communication technologies are relevant that can be
functionally integrated by following the process of
defining features.

7. Conclusion and Outlook

In this paper a DLT-ML model was developed based
on a theoretical framework and qualitative interviews in
the area of the IoT. The model shows two areas - *AA
features’ and 'DLT & ML features’. The AA features
depict functionalities relevant for the implementation of
AAs. In the second area, DLT and ML features are listed
to provide Trust, Interoperability and Intelligence. The
paper describes the connections between both model
areas aiming at conceptualizing the enablement of
autonomous IoT assets. Furthermore, the examination
of interfaces between DLT and ML is of additional
focus.

A limitation of this research work is the early stage of
DLT and ML in practice. Especially, DLT was named by
the experts to lack in a certain level of standardization.
For a productive implementation this is seen as a
requirement. Moreover, the early research stage of both
technologies prevents an integrated implementation in
practice. A statement to the model’s generalization
can not be made due to the limited amount of
conducted interviews. Thus, the model needs to be
discussed by additional research and practical experts
or implementations based on the model need to be
developed in order to evaluate its usability. As done in
Burkhardt et al. [10] the challenges for ML in the IoT
need to be identified in order to guarantee a profound
integration. However, the model is seen as a first step of
the combined DLT-ML integration in the IoT.

As part of future work, the model requires detailing, for
example in form of feature and interface specifications.
Implementations can be used to create knowledge
relevant for this specification. The transfer of the
model to the 3-tier architecture of the IIRA can be
seen as a preparational step for the implementation of
AAs. The impact of regulations on the technologies
and architecture is also relevant to be observed. Finally,
other technologies need to be examined functionally
and integrated in the model for a profound realization
of AAs in the IoT. This leads to an integrated
implementation, identification of enterprise impacts and
discovery of missing components.
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