
IN-MEMORY DISTANCE THRESHOLD SEARCHES ON
MOVING OBJECT TRAJECTORIES

A DISSERTATION SUBMITTED TO THE OFFICE OF GRADUATE EDUCATION OF
THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

COMPUTER SCIENCE

MAY 2015

By
Michael Gowanlock

Dissertation Committee:

Henri Casanova, Chairperson
Kim Binsted
Rich Gazan

Lipyeow Lim
Joshua Barnes

We certify that we have read this dissertation and that, in our opinion, it is satisfac-

tory in scope and quality as a dissertation for the degree of Doctor of Philosophy in

Computer Science.

DISSERTATION COMMITTEE

Chairperson

ii

c©Copyright 2015

by

Michael Gowanlock

iii

Acknowledgments

This dissertation is the result of the encouragement of several individuals, and I cannot

adequately express my gratitude to them. I would like to begin by thanking Kim Binsted. I met Kim

at the Astrobiology Science Conference in 2010 in League City, Texas. I arranged to meet with

Kim, as I knew that she was also a computer scientist and had research interests in astrobiology.

She encouraged me to apply to the Computational Astrobiology Summer School in the summer of

2010, and the graduate program at the University of Hawai‘i (UH). Additionally, she suggested that

I meet with Henri Casanova to discuss research directions in high performance computing. I was

accepted to the summer school, and had the pleasure of meeting Henri. I applied to the graduate

program at UH, was accepted, and began to work with Henri as my advisor in January 2011. If I

had not met Kim at AbSciCon, I certainly would not have ended up in Hawaii, and my life would

have taken a significantly different path. I would like to thank Kim for her encouragement, and the

incredible opportunity that she made possible.

I would like to thank Rich Gazan for his support in multiple capacities. Rich advocated

that I receive a graduate assistantship from the University of Hawaii NASA Astrobiology Institute

(UHNAI). Without this financial support, I would have not been able to attend UH. As Rich’s

graduate assistant, he allowed me the freedom to pursue any research avenue that I thought was

interesting under the AIRFrame project. I very much enjoyed working on our projects relating to

interdisciplinary research. Beyond academic support, I would like to express my gratitude to Rich

for all of his kindness and support over the years. Thank you for all of the rides to the airport, the

rounds of beer, helping me move, and for also letting me borrow your spare mattress when I could

not afford one (and please express my gratitude to Leah as well!). Rich embodies human virtues

to a degree unparalleled by most, and I have benefited from his disposition countless times.

When looking for a university to attend for my doctoral studies, one challenge was find-

ing an advisor that would be open to the possibility of allowing me to pursue a project related to

iv

my masters work on the habitability of the Milky Way galaxy. Working with Henri has been a

testament to his open-minded approach to research. I would like to thank Henri for accepting me

as his student, despite the uncertain research path ahead. During the first year and a half of my

studies, I spent most of my time reading astronomy papers in search of a potential connection to

computer science. After having several meetings where I would discuss topics such as the distri-

bution of dark matter in our Galaxy, Henri made the suggestion that I make an astronomy cut-off

date of the middle of October 2012; otherwise, I would not make progress towards the completion

of my degree. This proved to be excellent advice, as I immersed myself in the computer science

literature, and defended my dissertation proposal only five months later in March 2013. Without

Henri’s guidance, I would probably still be showing up to our weekly meetings to discuss astron-

omy. Henri encouraged me to define my own research avenue, and provided me with much needed

support. As a result of Henri’s mentoring philosophy, I believe that, if possible, students should

choose their own projects. Henri has been a wonderful advisor and I really do not have the words to

express how much I have enjoyed working with him over the years. Henri has been very influential

in shaping me as an academic and I cannot thank him enough for his support. I consider myself

lucky to have been Henri’s student, and I will truly miss our meetings.

I would like to thank David Schanzenbach, who has assisted me over the years with re-

search projects and provided me with technical assistance on numerous occasions. David wrote

scripts for research projects that were beyond my capabilities, thus leading to better research out-

puts, and reduced the amount of monotonous labor I had to endure during data collection. David

was the progenitor of the GPU research thrust presented in this dissertation. Without his suggestion

and assistance, I may not have considered the GPU in this work. David has been accommodating

beyond articulation. He even provided technical assistance for the dissertation defense. I would

like to thank David for all of his generosity over the years. Everyone in the lab has benefited from

David’s helpful character. When he eventually leaves the lab, I am certain that everything will

break shortly thereafter.

I would like to thank Lipyeow Lim for providing feedback on manuscripts before we

sent them for review. I am indebted to Josh Barnes for his insightful comments on the astronomy

component of this work, and for the galaxy merger dataset. Additionally, I would like to acknowl-

edge my friends in Hawaii who made the last four years an enjoyable experience. Finally, I would

v

like to acknowledge the financial support of the NASA Astrobiology Institute, the Canadian Space

Agency, IEEE, and the University of Hawai‘i Department of Information and Computer Sciences.

vi

Abstract

Processing moving object trajectories arises in many applications. To gain insight into

target domains, historical continuous trajectory similarity searches find those trajectories that have

similar attributes in common. In this work, we focus on a trajectory similarity search, the distance

threshold search, which finds all trajectories within a given distance of a query trajectory over a

time interval. We investigate novel approaches for the efficient processing of these searches over

in-memory databases on the CPU and on the GPU.

On the CPU, we use an in-memory R-tree index to store trajectory data and evaluate its

performance on a range of trajectory datasets. The R-tree is a well-studied out-of-core indexing

scheme. However, in the context of in-memory searches, we find that the traditional notion of

considering good trajectory splits by minimizing the volume of MBBs so as to reduce index overlap

is not well-suited to improve the performance of in-memory distance threshold searches. Another

finding is that computing good trajectory splits to achieve a trade-off between the time to search the

index-tree and the time to process the candidate set of trajectory segments may not be beneficial

when considering large datasets.

The GPU is an attractive technology for distance threshold searches because of the in-

herent data parallelism involved in calculating moving distances between pairs of polylines; how-

ever, challenges arise from the SIMD programming model and limited GPU memory. We study

the processing of distance threshold searches using GPU implementations that avoid the use of

index-trees. We focus on two scenarios for which we propose GPU-friendly indexing schemes for

trajectory data. In the first scenario the database fits in GPU memory but the entire query set does

not, thereby requiring back-and-forth communication between the host and the GPU. We find that

our indexing scheme yields significant speedup over a multithreaded CPU implementation. We

gain insight into our GPU algorithms via a performance model that proves accurate across a range

of experimental scenarios. In the second scenario, we study the case where both the query set

vii

and the database fit in GPU memory. With this relaxed memory constraint, the design space for

trajectory indexing schemes is larger. We investigate indexing schemes with temporal, spatial, and

spatiotemporal selectivity. Through performance analyses, we determine the salient characteristics

of the trajectories that are conducive to the proposed indexes. In particular, we find that there are

two complementary niches for GPU and CPU distance threshold search algorithms. Namely, using

the GPU is preferable when the trajectory dataset is large and/or when the threshold distance is

large. The GPU is thus the better choice for large-scale scientific trajectory dataset processing, as

for instance in the motivating application for this work in the domain of Astrobiology.

viii

Table of Contents

Acknowledgments . iv
Abstract . vii
List of Tables . xii
List of Figures . xiii
List of Acronyms . xvi
1 Introduction . 1

1.1 Motivation . 2
1.2 Challenges . 5
1.3 Trajectory Processing Approaches . 6
1.4 Contributions . 8
1.5 Outline . 9

2 Background and Related Work . 11
2.1 Spatiotemporal Databases . 12

2.1.1 Nearest Neighbor Searches in Spatiotemporal Databases 14
2.2 Distance Threshold Similarity Search . 16
2.3 Parallelization of In-Memory Trajectory Searches 17

3 Trajectory Datasets . 19
3.1 Datasets in Previous Work . 19
3.2 Random Walk Datasets . 20
3.3 Galaxy Dataset . 20

3.3.1 Baryonic Mass Components . 21
3.3.2 Mass Component: Dark Matter Mass Density profile 23
3.3.3 Mass Model Visualization and Terminology 25
3.3.4 Dynamics and N-body Simulation Parameters 26
3.3.5 Calculation of the Softening Length . 27
3.3.6 Generation of the Galaxy Dataset . 27

3.4 Merger Dataset . 28
4 CPU Indexing Scheme and Algorithms for Distance Threshold Searches 30

4.1 Problem Definition . 30
4.2 Trajectory Indexing . 31
4.3 Search Algorithm . 33
4.4 Initial Experimental Evaluation . 34

4.4.1 Datasets . 34

ix

4.4.2 Experimental Methodology . 35
4.4.3 Static Point Search Performance . 37
4.4.4 Trajectory Search Performance . 37

4.5 Trajectory Segment Filtering . 40
4.5.1 Two Segment Filtering Methods . 42
4.5.2 Filtering Performance . 42

4.6 Index Resolution . 44
4.6.1 Static Temporal Splitting . 46
4.6.2 Static Spatial Splitting . 47
4.6.3 Splitting to Reduce Trajectory Volume . 47
4.6.4 Discussion . 49
4.6.5 Performance Considerations for In-memory vs. Out-of-Core Implementa-

tions . 51
4.6.6 Multi-core Execution with OpenMP . 52

4.7 Conclusions . 54
5 GPU Indexing Scheme and Algorithms for Memory-Constrained GPGPU Distance Thresh-

old Searches . 55
5.1 General Purpose Computing on the Graphics Processing Unit 56
5.2 Problem Definition . 57
5.3 Trajectory Indexing . 59
5.4 Search Algorithm . 63
5.5 Generation of Query Batches . 64

5.5.1 Periodic . 66
5.5.2 SetSplit . 66
5.5.3 GreedySplit . 67

5.6 Experimental Evaluation . 70
5.6.1 Datasets . 70
5.6.2 Experimental Methodology . 72
5.6.3 Sequential Implementation and Multi-core OpenMP 73
5.6.4 Performance Evaluation . 74

5.7 Performance Modeling . 79
5.7.1 GPU Component . 80
5.7.2 CPU Component . 86
5.7.3 Model Evaluation . 87

5.8 Conclusions . 88
6 GPU Indexing Schemes and Algorithms for Non-Memory-Constrained GPGPU Dis-

tance Threshold Searches . 91
6.1 Problem Statement . 92

6.1.1 Problem Definition . 92
6.1.2 Memory Management on the GPU . 92

6.2 Indexing Trajectory Data . 93
6.2.1 Spatial Indexing: Flatly Structured Grids 93

x

6.2.2 Temporal Indexing . 98
6.2.3 Spatiotemporal Indexing . 100

6.3 Experimental Evaluation . 106
6.3.1 Datasets . 106
6.3.2 Experimental Methodology . 108
6.3.3 Results for the Random-1M Dataset . 109
6.3.4 Results for the Merger Dataset . 113
6.3.5 Results for the Random-dense Dataset . 115

6.4 Conclusions . 118
7 Conclusions and Future Work . 122

7.1 Contributions . 123
7.1.1 Trajectory Searches using Sequential and Multithreaded Implementations . 124
7.1.2 Trajectory Searches using GPGPU with Memory Constraints 124
7.1.3 Efficient Indexing of Trajectories on the GPU 125

7.2 Future Work . 126
7.2.1 Trajectory Indexing for In-memory CPU-based Implementations 126
7.2.2 Modeling the Performance of Searches on Spatiotemporal Objects Using

GPGPU . 127
7.2.3 Extension to kNN Searches on Trajectories 127
7.2.4 Hybrid CPU-GPU Implementations . 128
7.2.5 Distributed Memory Implementations . 128

A Performance Evaluation of Query Segment Batches . 129
B Calculation of Moving Distance . 134
C Publications . 137
Bibliography . 139

xi

List of Tables

Table Page

4.1 Characteristics of Datasets . 35

5.1 Characteristics of Datasets . 72
5.2 Evaluation of Query Segment Batch Algorithms 76
5.3 Model Results. 87

6.1 Characteristics of Datasets . 107

xii

List of Figures

Figure Page

1.1 Results from previous work on the habitability of the Milky Way 4

2.1 An illustration of trajectories and associated searches 15

3.1 Dark matter density profile . 24
3.2 Visualization of the mass mass models in two dimensions 26
3.3 Visualization of the Galaxy dataset. 28
3.4 Sample particle positions in the Merger dataset 29

4.1 An example trajectory stored in different leaf nodes in a TB-tree 32
4.2 An example of indexing trajectories within an R-tree 32
4.3 Visualization of datasets used in the experimental evaluation 36
4.4 Query response time vs. query distance for P1 and P2 38
4.5 Query response time vs. various temporal extents for P3 and P4 38
4.6 Query response time vs. query distance for S1 and S2 39
4.7 Query response time vs. query distance for S3 and S4 39
4.8 Three example entry MBBs and their overlap with a query MBB 40
4.9 The number of moving distance calculations and the number that are within d = 15

vs. α in Random-1M datasets . 41
4.10 Performance improvement ratio of filtering methods for S5, S6 and S7 43
4.11 Illustration of the relationship between wasted space, volume occupied by indexed

trajectories, and the size of the candidate set . 45
4.12 Static Temporal Splitting: Response time vs. r for S6 and S7 46
4.13 Static Spatial Splitting: Response time vs. r for S7 48
4.14 Greedy Trajectory Splitting: Response time vs. m for S6 and S7 49
4.15 Total hypervolume vs. m for the static temporal splitting strategy and MergeSplit

for S6 and S7 . 50
4.16 Total number of overlapping segments vs. m for the static temporal splitting strat-

egy and MergeSplit for S6 and S7 . 51
4.17 L1 (a) and L2 (b) cache misses vs. m for S6 . 52
4.18 Node Accesses vs. m for the static temporal splitting strategy and MergeSplit for

S6 and S7 . 53

xiii

4.19 Response time vs. number of threads for S6 and S7 54

5.1 A representation of the architecture of the GPU in OpenCL nomenclature 57
5.2 Conceptual CUDA memory hierarchy . 58
5.3 Example indexing of line segments into bins . 60
5.4 Example matching between query batches and entry bins 61
5.5 The number of interactions per query vs. batch size, for the GALAXY dataset . . . 65
5.6 Temporal distributions of active entry trajectory line segments in the datasets . . . 71
5.7 Response time vs. segments per MBB (r) for the GALAXY dataset 74
5.8 Response time vs. number of threads for the GALAXY dataset 75
5.9 Response time vs. queries/batch (s) for the periodic query batch method for S1

and S2 . 78
5.10 Response time vs. queries/batch (s) for S1: CPU and GPU components 80
5.11 Interactions vs. response time for a selection of entries 83
5.12 Benchmark of interactions that are all within the query distance 84
5.13 GPU response time vs. test cases of mixed and separated kernel invocations 85
5.14 Modeled response times vs. queries per batch (s) for searches on each dataset . . . 89

6.1 Example rasterization of two line segment MBBs to a FSG 94
6.2 Example relationship between components of the GPUSPATIAL approach. 95
6.3 Example assignment of entry segments to temporal bins in the GPUTEMPORAL

approach . 99
6.4 Example spatiotemporal indexing of a dataset with 10 entry segments. Above the

dashed line is the logical assignment of the segments to the spatial subbin. Below
the dashed line is the physical realization of this assignment in GPU memory. . . . 103

6.5 Sample particle positions in the Merger dataset 108
6.6 Response time vs. number of entry segments per MBB (r) for the CPU implemen-

tation for S1 . 110
6.7 Response time vs. d for GPUSPATIAL in S1 . 111
6.8 Response time vs. d for GPUTEMPORAL in S1 112
6.9 Response time vs. the number of subbins (v) for GPUSPATIOTEMPORAL in S1 . . 113
6.10 Response time vs. d for our implementations for S1 114
6.11 Response time vs. number of entry segments per MBB (r) for the CPU implemen-

tation in S2 . 115
6.12 Response time vs. the number of subbins (v) for GPUSPATIOTEMPORAL in S2 . . 116
6.13 Response time vs. d for our implementations for S2 117
6.14 Response time vs. d for the CPU implementation in S3 118
6.15 Response time vs. number of subbins (v) and the fraction of queries that use the

entries provided by subbins vs. v for GPUSPATIOTEMPORAL for S3 119
6.16 Response time vs. d for GPUTEMPORAL and GPUSPATIOTEMPORAL for S3

with two buffer sizes . 120
6.17 Response time vs. d for the CPU implementation, GPUTEMPORAL, and GPUS-

PATIOTEMPORAL for S3 . 120

xiv

6.18 Ratio of GPU to CPU response times across all datasets for S1, S2 and S3 121

A.1 Response time vs. queries/batch (s) for the periodic query batch method for S3
and S4 . 130

A.2 Response time vs. queries/batch (s) for the periodic query batch method for S5
and S6 . 131

A.3 Response time vs. queries/batch (s) for the periodic query batch method for S7
and S8 . 132

A.4 Response time vs. queries/batch (s) for the periodic query batch method for S9
and S10 . 133

xv

List of Acronyms

CNN Continuous Nearest Neighbor

CUDA Compute Unified Device Architecture

CPU Central Processing Unit

FSG Flatly Structured Grids

GHZ Galactic Habitable Zone

GPGPU General Purpose Computing on Graphics Processing Units

GPS Global Positioning System

GPU Graphics Processing Unit

IMF Initial Mass Function

kNN k Nearest Neighbor

MBB Minimum Bounding Box

MOD Moving Object Database

NFW Navarro, Frenk, and White

NN Nearest Neighbor

OpenCL Open Computing Language

OpenMP Open Multi-Processing

PAPI Performance Application Programming Interface

RAM Random Access Memory

SIMD Single Instruction, Multiple Data

xvi

Chapter 1

Introduction

Applications in many domains require studying the movement of objects in space over

time. Examples of such applications include those that collect data from , traffic monitoring, wire-

less communication networks, migration patterns of a given species, and tracking the motions of

stars in astrophysical simulations. The generation of trajectories is application specific. For ex-

ample, the trajectories of vehicles are obtained through monitoring traffic, trajectories of users are

generated by tracking mobile devices in wireless communication networks, trajectories of animals

are generated by monitoring the movements of species through remote sensing, and trajectories of

stellar bodies arise from the laws of physics. Regardless of the manner in which trajectory data

is generated, these applications process spatiotemporal trajectory datasets to gain insight into their

target domains. In terms of processing trajectories, large-scale scientific simulations present great

computational challenges in terms of computation and memory requirements as a result of the

number of objects and trajectories that need to be processed.

Note that in the above applications, the focus is on historical continuous trajectories [15],

where trajectory data is recorded and stored for processing. This is in contrast to works that focus

on the near future motions of objects [4] (e.g., for the purposes of prediction), which do not record

a trace of the positions of objects over a long time duration.

A trajectory is defined by a set of positions that describe the motion of a moving ob-

ject over a time interval (i.e., x, y, z positions, and the corresponding time that the object was at

each position). The continuous nature of trajectories requires that each point traversed by the tra-

jectory be approximated by a polyline, where points are connected via line segments. In a given

application domain, the goal will be to find trajectories with certain attributes in common, such as

1

similar spatial properties (short, long, curvature, etc.), proximity, clustering over time, and other

spatiotemporal properties. Therefore, studying the motions of trajectories often necessitates the ef-

ficient implementation of similarity searches. For example, an often quoted example of trajectory

data mining in the literature [14] is tracking the movement of endangered animals to determine

when they are close to a static point, such as a food source, or nearby other animals over a time

interval. Queries of this type are formulated as k Nearest Neighbor (kNN) searches on moving

object trajectories over a particular time period. The continuous nature of the spatial and temporal

dimensions of the data present additional challenges that set it apart from other solutions to the

canonical kNN problem.

In this work, we focus on distance threshold searches, which find all trajectories, or

stationary points within a distance d of a query trajectory over a time interval. An example search

in the context of a zoology application is as follows: find all prey within a distance of 500 m of

all predators. The distance threshold search can be viewed as kNN searches with an unknown

value of k and thus unknown result set size. We presume that some of the lessons learned through

the development of solutions for distance threshold searches can be applied more broadly to other

spatiotemporal queries.

1.1 Motivation

We make contributions to a number of fields of computer science. However, one goal of

this work is to simultaneously advance an application area. Unfortunately, often the development

of computational solutions are not utilized within the application area that posed the problem.

This occurs when computer scientists do not work directly with practitioners in other fields, thus

resulting in a limited impact on the application area. In contrast, we aim to have a direct impact on

the field of astrobiology by developing efficient algorithms for processing stellar trajectories, by

eventually carrying out research in this domain.

A specific astrobiological application provides the initial motivation for this work. The

study of the habitability of the Earth suggests that life can exist in a multitude of environments.

Furthermore, the past decade of exoplanet searches implies that the Milky Way, and hence the

universe, may host very large numbers of rocky, low mass planets. Therefore, if environments on

rocky exoplanets are similar to those found on Earth, then we anticipate that the universe provides

many habitable environments for life to thrive. The Galactic Habitable Zone (GHZ) is described as

2

the region in the Galaxy that may favour the development of complex life. The stars in the Milky

Way have varying spatial and temporal distributions. These distributions have a major impact on

the properties and locations of stars that we expect to host habitable planets. Furthermore, with

regards to long-term habitability, some of these regions may be inhospitable to complex life due

to transient radiation events, such as supernovae or gamma ray bursts. Combining knowledge and

new data from the many constituent fields of astrobiology yield estimates, though in their infancy,

of habitability on large scales.

Our previous work [19] investigated modeling the GHZ using a Monte-Carlo approach,

by assigning stationary stars properties as derived from the major observational properties of the

Milky Way. Using this information, we calculated the fraction of stars that we expect to have

planets and study the frequency in which planets are sterilized by supernova events. Figure 1.1

shows one of the results in [19]. We trace the history of each habitable planet to determine the

periods that they remain habitable, and plot those that are habitable at the present day (a birth

date of 0 indicates that the star formed at the present day). For example, as shown on the figure,

the Sun is located at a galactocentric radius of 8 kpc, and was born 4.5 Gyr ago. The region

indicating “not enough time” suggests that young planets may not be conducive to the development

of complex life as there may not have been enough time for biological evolution. The region

indicating “insufficient metallicity” suggests that initial generations of stars will not have planets

because there are not enough materials for planet formation. Habitable planets are most prevalent

in the inner Galaxy, which is expanding outwards with time. We suggest that the inner disk of

the Galaxy is expected to favor the emergence of complex life at r > 2.5 kpc. The majority of

stars that host habitable planets in our model are expected to be older than the Sun, and the Sun is

located in an unexceptional region.

In comparison to other works, we did not use a probabilistic model, and attempted mod-

eling the morphology of the disk of the Galaxy more realistically by using 3-D instead of 2-D

models and improved modeling of supernova sterilization events by populating stars individually.

Therefore, moving forward with modeling the habitability of the Milky Way, we elect to continue

modeling stars on an individual basis. Furthermore, the previous works on the GHZ have ignored

the inner disk and bulge of the Galaxy. To model this region, it is crucial to model the orbits of

stars, as they are largely on elliptical orbits in the galactic bulge. When considering stellar kine-

matics, an interesting question that has not been addressed arises, which is that of close encounters

3

Not Enough Time

Insu
fficie
nt M
etall
icity

SunSun

Figure 1.1. The number of habitable planets per pc is plotted as a function of radial distance (r)
and birth date, from Figure 10, Model 4 of our previous work [19]. The Sun is located at 8 kpc
from the Galactic centre.

between potentially habitable planets and dangerous flyby stars that can gravitationally perturb

planetary systems. Studying habitability thus entails solving the following two types of historical

continuous searches on the trajectories of stars orbiting the Milky Way: (i) Find all stars within a

distance d of a supernova explosion, i.e., a non-moving point over a time interval; and (ii) Find the

stars, and corresponding time periods, that host a habitable planet and are within a distance d of

all other stellar trajectories. These are distance threshold searches, as defined earlier. This work

targets the efficient execution of distance threshold searches, and as such, will have a direct impact

on the target astrobiology application.

4

1.2 Challenges

There are a number of challenges to mining moving object trajectories for the distance

threshold search. Two key challenges are outlined as follows:

1. Data Dependence – Trajectories are defined by a series of points that trace an object’s his-

tory. Given that objects move over time, the performance of the algorithms and proposed

solutions are largely data dependent. For example, one trajectory may not be within a query

distance d of any other trajectories over a time interval [t0,t1], and another trajectory may

be within the query distance d of many trajectories over the same time interval. The per-

formance goal in this work, as in other works focusing on querying spatiotemporal objects,

is to minimize query response time. As the response time difference between queries may

vary considerably, it is challenging to develop solutions that are efficient across a range of

trajectory datasets and application scenarios.

2. Locality – Due to the above mentioned data dependence, trajectory processing algorithms

have irregular memory access patterns. Thus, there may be few (if any) options available to

achieve good spatial locality. Furthermore, there may not be a good method to process a set

of queries to achieve memory accesses that benefit from exploiting the memory hierarchy

through temporal locality of memory accesses. For example, over the course of processing a

trajectory, the data required may change considerably and may rarely be reachable in faster

components of the memory hierarchy, such as the CPU’s cache.

When considering multithreaded parallel implementations in shared memory environments,

competition can arise between threads for space in CPU cache. If the threads require sim-

ilar data elements from memory, then there will be low levels of unwanted cache eviction.

However, if threads require divergent data items from main memory, which is likely due to

the data dependence of the application, then higher levels of unwanted cache eviction will

occur, thus decreasing query throughput.

When considering implementations that utilize graphics processing units (GPUs), divergent

memory access patterns between GPU threads will decrease the propensity for optimizing

algorithms to benefit from coalesced memory accesses. In addition, the data dependence

issue diminishes the capacity to schedule threads together that are likely to access similar

5

data elements. These two challenges are unavoidable, and suggest that trajectory processing

algorithms may not be suitable for data-parallel architectures such as the GPU.

Given these challenges, a major target optimization of the distance threshold search is

the development of efficient indexing schemes. However, query throughput also depends on the

selectivity of the index in addition to considering data dependence and locality issues. Furthermore,

proven indexes for the CPU architecture may not translate well to emerging architectures such as

the GPU, thus necessitating alternate indexing schemes. We answer some of these underlying

questions as part of this work.

1.3 Trajectory Processing Approaches

Numerous methods to index and process moving object trajectories efficiently have been

developed by researchers in the field of spatial and spatiotemporal databases. Most works focus

on out-of-core implementations where only part of the database resides in memory while the ma-

jority resides on disk. As a result, indexing techniques map nodes in index-trees to pages on disk,

where the data layouts are optimized so as to reduce disk accesses. For processing trajectories,

such indexes include the R-tree [21] and other variants of it, such as TB-trees [47], STR-trees [47],

3DR-trees [61], and SETI [12]. Additionally, systems have been designed to process and analyze

trajectories, such as TrajStore [13] and SECONDO [20]. Index-trees have been used to index tra-

jectories by defining them by their spatial, temporal, or spatiotemporal properties. For a given

query trajectory, the index-tree is searched and those trajectory segments that overlap the query

trajectory in one or more of its dimensions are returned as candidates. Next, the candidates are

processed to find those that match the search criteria. In particular, the R-tree stores trajectories

within minimum bounding boxes (MBBs), which treat the spatial and temporal dimensions iden-

tically. Thus, this index has been very successful based on the ability to search across all of the

dimensions that describe an object. Since the motivation of the R-tree is to avoid disk accesses, the

data layout is optimized for the memory and disk elements of the memory hierarchy.

Most previous work in the spatiotemporal database community focuses on out-of-core,

sequential implementations. However, current architectures and memory capacities offer attrac-

tive alternatives, namely the ability to perform searches entirely in memory and in parallel. Many

6

modern machines have large memories, and data structures suited for indexing spatial and spa-

tiotemporal objects can benefit from storing the entire index in-memory. In instances where the

entire trajectory database cannot be stored in-memory, the current out-of-core solution is to swap

pages of data to and from disk to process a given set of queries. Alternatively, by streaming large

amounts of data between memory and disk, a better solution may be to partition the database and

set of queries into batches temporally, and incrementally process the query set, by loading subsets

of the database into memory at a time. This method of incrementally processing spatiotemporal

data is only advantageous because commodity machines have large memory capacities. In in-

stances where even larger memory capacities are required, then one can scale up to a distributed

implementation over multiple nodes in a cluster where each node has CPUs and local memory. The

database can be partitioned across a set of compute nodes. Then, it is often conceptually straight-

forward to parallelize (distance threshold) searches by replicating a query across all nodes, search

the index-tree independently at each node, and aggregate the obtained results.

The scalability afforded by in-memory databases can take advantage of the multi-core

CPU architectures available in off-the-shelf commodity machines. Threads running on their own

cores can be assigned and process their own set of queries. Each thread is assigned a set of queries

and searches the index-tree for possible candidate trajectories that may be within the query dis-

tance. The thread then processes the candidate set to find those trajectories within the query dis-

tance, d. Since each thread is processing its own set of queries, the query set is processed in

parallel.

Beyond the use of multi-core CPU architectures, many-core GPUs have become main-

stream, are programmable for general purpose computing, and should be well-suited to the large

number of moving distance calculations required for processing distance threshold searches on

trajectories in spatiotemporal databases. While there has been very little attention given to parallel

solutions by the spatiotemporal database community that make use of multi-core CPUs, there has

been even less attention given to exploiting the parallelism of GPUs, using the General Purpose

Computing on Graphics Processing Units (GPGPU) paradigm. This is likely because the GPU is

a new and quickly evolving architecture. Many open questions remain about future architectural

designs and best practices for developing efficient GPGPU algorithms and implementations. Fur-

thermore, the main algorithmic ideas and data layout designs that are well-suited to the CPU may

not translate well to the GPU. For trajectory similarity searches, this means that a break from tradi-

7

tional indexing methods may be required to achieve good parallel efficiency when using the GPU.

For example, memory management on the GPU is quite different than that of the CPU; therefore,

scans of elements may be preferable to the complicated tree traversals previously proposed for

out-of-core, sequential solutions. This work is a response to the emerging technologies available

for trajectory processing by advancing alternative techniques to out-of-core, sequential solutions.

1.4 Contributions

In what follows, we outline the contributions made in this work:

• We motivate the use of an in-memory R-tree to index trajectory data for a CPU implemen-

tation and investigate efficient trajectory indexing strategies by exploring the trade-offs be-

tween the volume trajectories occupy in the index, the degree of index overlap, the number

of entries in the index and the time to process the candidate set of trajectory segments.

• We demonstrate that high parallel efficiency can be obtained when using a multithreaded

shared-memory implementation that relies on the sequential implementation above.

• Due to the data parallelism afforded by the GPU, we utilize the technology and processes

queries in batches to address the memory limitations of GPUs. We advance a GPU-friendly

indexing scheme conducive to these batches. Using the index, we develop a GPU kernel

to perform the distance threshold search that minimizes branch instructions to achieve good

parallel efficiency on the GPU. We compare our GPU implementation to the CPU imple-

mentation, and show that using the GPU can afford a significant speedup when using the

GPU-friendly indexing technique that abandons index-trees.

• We gain insight into the above mentioned algorithms for the GPU by developing a perfor-

mance model that that accurately estimates response time across a range of experimental

scenarios. Thus, the model allows for selecting application parameters that lead to good

response time.

• We expand on the GPGPU research thrust to address the scenario wherein the memory con-

straint is removed and compare the performance of three different indexing techniques for

8

the GPU that have temporal, spatial, and spatiotemporal selectivity. We show that the GPU

yields a significant speed up over the CPU implementation in a range of experimental sce-

narios.

• Although not the focus of this work, we investigate the possibility of improving the efficiency

of trajectory generation in an n-body astrophysical simulation by reordering computation to

improve cache reuse.

Methods to process moving object trajectories have traditionally been advanced by the

spatiotemporal database community. This work shows that some of the proposed optimizations do

not scale to meet the demands of large-scale in-memory databases. To exploit emerging manycore

architectures, such as the GPU, we find that traditional approaches should be abandoned. Instead,

we advance novel methods to solve distance threshold trajectory similarity searches on these archi-

tectures, and are thus able to obtain significant performance gains in a wide range of experimental

and application scenarios. We also demonstrate the remaining utility of existing methods through

finding the two complementary niches for CPU and GPU distance threshold search algorithms.

The solutions developed in this work can be applied to applications outside of astrobiol-

ogy. Moreover, there is a degree of overlap between different spatiotemporal searches; as such, the

index-trees mentioned above have been applied to many different types of spatial and spatiotempo-

ral searches. Similarly, we expect that the solutions developed in this work or the lessons learned in

the process, will be applicable to other types of spatiotemporal queries, including other trajectory

similarity searches.

1.5 Outline

In Chapter 2, we provide background information and describe related work. Chapter 3

describes the properties of the trajectory datasets that are used in this work. In Chapter 4 we

demonstrate sequential and parallel CPU-based, in-memory solutions to the distance threshold

search. Chapter 5 considers a GPU-friendly indexing scheme, which processes a query set in

batches to decrease memory pressure on the GPU. Additionally, we advance a performance model

of this execution. Chapter 6 evaluates different trajectory indexing techniques for the GPU with

9

spatial, temporal, and spatiotemporal selectivity. Finally, in Chapter 7 we summarize our findings

and discuss future research directions.

10

Chapter 2

Background and Related Work

A key question in database research is the efficient retrieval of data. In the most general

context, database management systems support arbitrary queries. However, in specific domains

it is possible to achieve more efficient retrieval if there are structures and constraints on the data

stored in the database and/or if particular types of queries are expected. Such a domain is that of

spatial and spatiotemporal databases or moving object databases (MOD) that store the trajectories

of moving objects. As discussed in Chapter 1, trajectory data, which arises in many scientific

domains, presents both challenges and opportunities that are investigated in the spatiotemporal

database community.

A trajectory is a set of points traversed by an object over time, where the trajectory is ap-

proximated by connecting the points via polylines (line segments). Trajectory databases store these

points and/or polylines and aim to efficiently retrieve the data to answer queries on trajectories.

Many classes of searches on trajectories are possible; however, there are two overarching classes

that pertain to trajectories and other spatiotemporal objects: (i) historical trajectory searches which

are concerned with the entire history of a trajectory [15, 22, 60, 64, 30, 42, 47, 58, 50, 44]. These

searches are generally used to gain insight into an application area by studying a trace of the mo-

tions of objects, where large temporal intervals of the path followed by a moving object is of impor-

tance; and (ii) near real-time searches that are concerned with the near-future positions of moving

objects, where a long historical trace is unnecessary as it becomes outdated [29, 66, 4, 48, 3]. In

this work, we are concerned with the first type of search.

For searches on trajectories common searches are trajectory similarity searches, i.e.,

finding trajectories within a database that exhibit similarity in terms of spatial and/or temporal

11

proximity, or exhibit similarity in terms of spatial and/or temporal features so that trajectories can

be classified as belonging to a certain group. Many kinds of similarity searches have been studied

in various domains, such as convoy searches [24], flock searches [65], and swarm searches [35].

A predominant trajectory similarity search that is used in many application areas is the kNN (k

Nearest Neighbors) search on trajectories [16, 14, 17, 20]. These different searches necessitate dif-

ferent similarity metrics. Therefore, a focus of this research area is efficiently indexing trajectories

to suit the similarity metrics, as the indexing requirements for one search may not be applicable to

another search. For example, some searches may be able to compute similarity criteria using an

index with a coarse grained resolution [18], whereas other searches may require a high resolution

index (which leads to a greater computational cost).

2.1 Spatiotemporal Databases

The fields of spatial and spatiotemporal databases have advanced a number of methods

for solving queries regarding moving objects with varying spatial and temporal constraints. Per-

forming a join with a moving object of interest on another set of moving objects is a typical type

of query. The typical approach in spatiotemporal database works (and used for other types of in-

dexed data) proceeds in two phases: (i) search an index to obtain a preliminary candidate result

set; (ii) use refinement to produce the final result set. In general, an index is a data structure that

improves response time by organizing the data in a way that allows for faster searches for data

items. For example, consider a scenario where a database stores an unordered list of n events over

the period of a year, where each tuple (date, event) contains the date and the event that occurs on

that date. If a user wants to know what events occur on a particular day, then the database would

need to scan all n events to find those that fall on the date. However, a simple indexing scheme

could store the events in a data structure that partitions the tuples by month. Thus, the search only

needs to scan a single bin corresponding to the month of the searched event. Assuming that the

n events are uniformly distributed over the year, finding the items that fall on a particular day re-

quires scanning n/12 tuples. This simple indexing scheme would thus achieve a (theoretical, upper

limit) performance gain of a factor of 12.

Selectivity (also referred to as partition granularity) refers to the ability of an index to

efficiently search for a set of objects that may meet the query criteria, where search performance

is improved when relevant objects can easily be discerned from irrelevant ones. In our example

12

of an event database above, the index partitions the events by month. This may be reasonable for

a small database of events. However, when considering larger databases, partitioning by month

may not achieve enough selectivity. Therefore, in our example, it may be beneficial to re-index the

database by partitioning events by day, thus achieving better selectivity.

When considering the query criteria, a search can be pruned, where part of the index is

avoided as it is deemed to not contain any objects that should be part of the candidate set. For

example, in a kNN point search, where k = 2, if there are two objects in the candidate set with

a distance d < 3, it would be impossible for objects with d > 3 to be part of the candidate set;

therefore, portions of the index could be avoided that place objects at a distance d > 3 of the query

point object. Pruning a search depends upon the selectivity of the index and the characteristics of

the query.

Depending on the constraints of a problem, finding the relevant candidate set of objects

that may fit the query can be problematic. In general, the cost of an index-search is (at least

partially) proportional to the dimensionality of the objects. With pure spatial objects, the dimen-

sionality of an index search is the number of spatial dimensions (e.g., x, y and z dimensions in a

3-dimensional Cartesian coordinate space). However, when a temporal dimension is considered,

where the objects move positions over time, the temporal dimension can be treated as either one of

the other spatial dimensions, or as a different, non-spatial dimension. These cases are considered

when developing efficient indexes for spatiotemporal searches on moving objects. For example,

when considering episodic events, such as the near-future positions of an object, or a small time

interval of the positions of an object, the temporal extent is short, and the query performance is

mostly dependent on spatial selectivity. Conversely, if a long time duration is studied, such as in

historical continuous searches on moving objects, then temporal selectivity may be more important

than spatial selectivity.

As discussed above, the search phase focuses on pruning, i.e., avoiding parts of the index

based on the selecting criteria of the query. To this end, several index-trees have been proposed for

indexing trajectory data as inspired by the success of the popular R-tree [21], such as TB-trees [47],

STR-trees [47], 3DR-trees [61], SETI [12], and implemented in systems such as TrajStore [13] and

SECONDO [20]. More specifically, index-trees map nodes to pages stored on disk. Performance

is largely a function of the number of index-tree nodes that are accessed, aiming to keep this

number low so as to avoid avoiding costly data transfers between memory and disk. Thus, the

13

indexes have been developed within the milieu of traditional databases that assume a fraction of

the index and data elements can be stored in memory, and the rest is stored on disk. To an extent,

the optimizations proposed by the spatial and spatiotemporal database communities are tied to the

underlying characteristics of this architecture.

By way of example, index-trees have been used for kNN searches on trajectories. R-

trees, or other similar data structures, index spatial and spatiotemporal data using minimum bound-

ing boxes (MBBs). One configuration is where each trajectory segment is contained in one MBB

(where each segment is defined by two points that a trajectory has traversed). Leaf nodes in the

R-tree store pointers to MBBs and the trajectory line segments that they contain (identified by the

dimensions of the MBB and the trajectory ID). A non-leaf node stores the dimensions of the MBB

that contains all of the MBBs stored (at the leaf nodes) in the non-leaf node’s sub-tree. Searches

traverse the tree to find all (leaf) MBBs that overlap with a query MBB, thus producing a candi-

date set. Afterwards, the candidate set is filtered to produce a final result set. In what follows, we

first review work on k Nearest Neighbors (kNN) searches, as they are related to distance threshold

searches. We then review related work on distance threshold searches.

2.1.1 Nearest Neighbor Searches in Spatiotemporal Databases

Our work is related to, but as explained in later sections, also has major differences with

the spatiotemporal kNN literature. We illustrate the typical kNN searches for four examples (see

Figure 2.1):

Q1 Find the nearest hospital to hospital H1 during the time interval [t0,t4], which results in

hospital H3.

Q2 Find the nearest hospital to ambulance A1 during the time interval [t0,t1], which results in

hospital H1.

Q3 Find the nearest ambulance to ambulance A2 during the time interval [t1,t4], which results

in ambulance A4.

Q4 Find the nearest ambulance to ambulance A4 at any instant in the time interval [t0,t4]; this

results in multiple ambulances, since the query is continuous: ambulance A3 in the interval

[t0,t1), ambulance A2 in the interval [t1,t3), and ambulance A3 in the interval [t3,t4].

14

Figure 2.1. An illustration of trajectories and associated searches. Hospitals (H), ambulances (A),
and time intervals between t0 and t4 are shown. Note that the vertical dimension refers to time in
this example.

The example searches above are representative of the four main types of kNN searches

that have been studied in the literature. The first type of search finds the nearest stationary data

object to a static query object. An example is Q1 above. In [55], the authors propose a method that

relies on the R-tree to perform NN searches, and then generalize their approach to handle kNN

searches. The static objects are contained within a MBB. To process a search, MBBs are selected

and then accessed from the R-tree to determine if a candidate NN is contained therein. To find

the nearest neighbor, two possible distance metrics are proposed: MINDIST and MINMAXDIST.

These metrics are used for ordering and pruning the R-tree search.

The next type of search is moving query and static data, or the Continuous Nearest Neigh-

bor (CNN) query [57, 59]. An example is Q2 above. In this search, the ambulance (or moving

query) is continuously changing position relative to the hospitals; therefore, depending on the

route, traffic, and other factors, the shortest distance to a hospital may change. The method in [57]

employs a sampling technique on moving query objects, where query points are interpolated in

between two sampled positions. The accuracy of this method is dependent on the sampling rate,

which has the effect of making the method computationally expensive and can potentially return

15

the wrong result. The CNN method developed by [59] avoids the computationally expensive draw-

backs of [57]. Both works use an R-tree index.

The third type of search is moving query and moving data (Q3 above). There has been a

considerable amount of work on this type of search (see for instance [7, 40, 39, 67, 69] for works

published on this topic since 2005).

The last type of search is continuous moving query and continuous moving data (trajec-

tories), which is the most related to this work. In Q4 above, multiple data points are returned as

objects change over the time interval, in contrast to Q3 which is not continuous. These types of

historical continuous searches have been investigated in [16, 14, 17, 20]. In comparison to the other

NN variants, these searches propose new challenges: i) they are historical, meaning large segments

can be processed; ii) they are continuous so that the candidate set changes over the time interval

of the query. Opportunities arise for ordering and pruning the search efficiently, leading to several

proposed new indexing techniques such as the TB-tree [47], the STR-tree [47], the 3DR-tree [61]

and SETI [12].

Given the variety of query types shown above, many works have addressed the challenges

of each scenario. The continuous moving query and continuous moving data scenario (Q4) is of

relevance to our work.

2.2 Distance Threshold Similarity Search

There are some queries which cannot be pruned as a function of the elements in the

candidate set, such as queries with an unbounded number of elements in the result set. The distance

threshold search, which is the focus of this work, that finds all trajectories within a query distance,

d, of a query trajectory, is one such example of this type. For example, one search may return

a large number of elements in the result set, and another search may not return any elements in

the result set. In contrast, in a kNN search, assuming that there are more than k elements in the

database, there will be a constant result set size of k elements. Thus, distance threshold similarity

searches can be viewed as kNN searches with an unknown value of k and thus unknown result set

size. As a result, several of the aforementioned index-trees, while efficient for kNN searches, are

not efficient for distance threshold searches because, as k is unbounded, standard index pruning

methods based on the elements in the candidate set cannot be used. In an out-of-core setting, there

16

would be no criteria to limit the search, and hence disk accesses, as the number of segments in the

candidate set is unbounded.

While the kNN search on trajectories is used extensively in many applications, we de-

part from these searches and focus on distance threshold searches. Although distance threshold

searches are relevant to several application domains, they have not received a lot of attention in

the literature. The work in [5] solves a similar problem, i.e., finding trajectories in a database that

are within a query distance d of a search trajectory, and focus on an out-of-core implementation.

The authors propose four query processing strategies: one based on the R-tree, and three that use

a plane-sweep approach. To the best of our knowledge that aforementioned work is the only other

work that addresses distance threshold searches in the literature.

2.3 Parallelization of In-Memory Trajectory Searches

The majority of the work in the literature on spatiotemporal databases has been in the

context of out-of-core implementations where part of the database resides in memory and part of it

on disk. Not much attention has been given to the parallelization of in-memory spatiotemporal sim-

ilarity searches. To the best of our knowledge, the parallelization of distance threshold searches on

moving object trajectories has not been investigated. In what follows, we review relevant previous

work on the parallelization of other searches.

The work in [49] provides a parallelization approach for finding patterns in a set of

trajectories. The main contribution is an efficient way to decompose the computation and assign

the trajectories to processors, so as to minimize computation and decrease communication costs.

In [26], the authors propose a parallel solution for mining trajectories to find frequent movement

patterns, or T-patterns [18]. They utilize the MapReduce framework in combination with a multi-

resolution hierarchical grid to find patterns within the trajectory data. The importance of having

multiple resolutions is that the level of resolution determines the types of patterns that may be

found with the pattern identification algorithm. In [70], the authors propose two algorithms to

search for the k most similar trajectories to a query trajectory where the trajectory database is

distributed across a number of nodes. Their approach attempts to perform the similarity search,

such that all of the relevant trajectory segments most similar to the query trajectory do not need to

be sent across the network for evaluation, thereby reducing communication overhead. Finally, the

17

work in [72] examines various indexing techniques for spatial and spatiotemporal data for use in

the context of multi-core CPUs and many-core GPUs. Interestingly, the authors suggest that the

traditional indexing techniques used for sequential executions may not be well-suited to emerging

computer architectures.

Spatial and spatiotemporal data indexing methods have been advanced for use on the

GPU [72, 71, 68, 36]. Given the SIMD nature of the GPU, proposed indexes for this architecture

may be less sophisticated than index-trees used in the context of out-of-core databases. This is in

part because branches in the instruction flow cause thread serialization and thus loss of parallel

efficiency [23]. Several types of searches need to compute a large number of distance calculations,

many of which can be performed in parallel, which makes many core architectures attractive tar-

gets. The kNN search is one such type of search, and as such has been studied in the context of the

GPU [46, 28] and on hybrid CPU-GPU environments [33].

The trajectory similarity search studied in this work (Section 2.2) shares many of the

same attributes as the kNN searches: they can be performed in parallel, and require many distance

calculations, and thus the GPU is a good target architecture. However, in contrast, the distance

calculation is more complicated than the distance calculations between point objects, as our work

requires precise comparisons between individual polylines. Additionally, unlike the kNN search,

our search cannot be pruned as described in Section 2.2. Lastly, there are additional challenges

related to indexing trajectories in comparison to point objects.

18

Chapter 3

Trajectory Datasets

To elucidate the performance and behavior of the algorithms and implementations that

are the focus of this work, we evaluate them using trajectory datasets with a wide range of proper-

ties (i.e. small, large, sparse, dense, and various temporal properties).

In this work, we utilize the following classes of trajectory datasets: i) datasets found in

previous work; ii) synthetic random walk datasets; iii) a dataset motivated by stars moving in the

gravitational field of the Milky Way; and, iv) a dataset of a galaxy merger. With the exception of

(iii), in what follows, we describe high-level overviews of the datasets. More detailed descriptions

of these datasets appear when they are first mentioned in their respective chapters.

3.1 Datasets in Previous Work

There are few datasets publicly available for testing our methods for two reasons: 1)

they are often too small; and 2) many of the datasets available only consider 2 spatial dimensions.

In contrast, our work is concerned with potentially large datasets with 3 spatial dimensions and

1 temporal dimension. Despite the drawbacks of existing datasets, we utilize a dataset of trucks

moving in the Athens metropolitan area for 33 days [1], which has been used in other works [14,

17, 20]. This dataset contains 276 trajectories corresponding to 50 trucks.

19

3.2 Random Walk Datasets

We consider a series of 4-D (3 spatial dimensions + 1 temporal dimension) trajectory

datasets that are generated from random walks. To elucidate the performance and behavior of the

algorithms presented in this work, we vary the properties of these random walks. In one class

of random walk datasets, the trajectories vary in terms of the straightness of the random walks.

We consider a series of datasets that vary from the two possible extremes: on the one hand, a

random walk that is characterized by a straight line and on the other, a random walk similar to that

of Brownian motion. Furthermore, we also introduce random walk datasets with a range of start

times. For example, all of the trajectories in a dataset may start moving at roughly the same time,

or the entire dataset may exhibit periods of increased activity or inactivity. These temporal patterns

are chosen as they reflect a range of temporal behavior that is characteristic of real-world datasets.

We also consider random walk datasets that vary in terms of size, and density.

3.3 Galaxy Dataset

In this section, we outline the construction of a dataset used to create the trajectories of

particles orbiting under the influence of the gravity of the Milky Way. To generate the trajectories

of particles, we implement a gravitational field consistent with three major mass components of the

Milky Way. We inject massless test particles into the gravitational field with an initial velocity and

record the positions of the test particles throughout the simulation. The mass of the gravitational

field remains static over time, and is constructed using discrete stationary mass points, hereafter

referred to as pseudoparticles. These pseudoparticles are a representation of the mass of a given

region. The three mass components considered are the bulge, disk, and dark matter halo. The bulge

represents stars in the inner region of the Galaxy. The disk represents the majority of the stars in

the Milky Way, and contains the Sun. The bulge and disk mass components represent the baryonic

matter that we consider, where baryonic matter is composed of baryons (the matter we experience

daily). The other mass component we consider is the dark matter halo (non-baryonic matter) that

is expected to be the most abundant type of matter in the universe. The presence of dark matter

has been inferred through interactions with baryonic matter. For example, dark matter is required

20

to explain the velocities of the stars in the Milky Way, particularly those towards the outskirts. We

begin by outlining the construction of our mass models.

3.3.1 Baryonic Mass Components

We implement a bulge mass profile and a disk mass profile. The axisymmetric bulge

model is implemented using a mass density profile. The disk mass profile is implemented using a

stellar number density distribution and then the mass density distribution is derived by applying a

stellar mass to each individual star using an initial mass function.

Mass Component: Axisymmetric Galactic Bulge

We create an axisymmetric profile of the Galactic bulge. We elect to implement the

axisymmetric mass density profile of [37]. The axisymmetric mass model is an approximation of

the non-axisymmetric model of [10]. The mass density profile is as follows:

ρb =
ρb,0

(1 + r′/r0)α
exp[−(r′/rcut)

2], (3.3.1)

where,

r′ =
√
R2 + (z/q)2, (3.3.2)

where r′ is in cylindrical coordinates, α = 1.8, r0 = 0.075 kpc, rcut = 2.1 kpc, with axial

ratio q = 0.5, and a scale density of ρb,0 = 9.93 × 1010 M�kpc−3. With these parameters, the total

mass of the bulge in our model yields ∼8.9 × 109 M�.

Mass Component: Galactic Disk

In this section, we outline the construction of the mass model of the disk of the Milky

Way. The axisymmetric bulge above is described in terms of the mass density distribution. In

contrast, for the disk of the Galaxy, we develop the mass density distribution by applying a mass

from an initial mass function (IMF) to stars from a stellar number density distribution.

The IMF is thought to be nearly independent of environment [11]. Initial estimates of

the IMF, such as that of [56] advocate a distribution that follows a power-law with α = 2.35. [34]

notes that there are uncertainties in the IMF, thus other IMFs have been proposed. [38], [31], and

21

[11] suggest that at subsolar masses, α should be lower than 2.35, flattening the IMF. Additionally,

a study of the IMF of the bulge by [73] is consistent with an IMF that is nearly identical to that

of the solar neighborhood, particularly that of [32] and [53]. We select the IMF of [31], which

suggests a less steep IMF in the low mass star range than that of [56].

We assign stellar masses using the Monte Carlo technique such that the resulting dis-

tribution follows a power-law and matches an IMF which is described as a two part power-law

function given by [31]. The value α = 1.3 when 0.08 ≤ M < 0.5, and α = 2.3 when M ≥ 0.5,

where M is the stellar mass (as a fraction of the Solar mass). The maximum and minimum stellar

masses for main sequence stars are defined as 100 M� and 0.08 M� respectively [32], where M�
is the mass of the Sun.

We model the stellar number density distribution of the disk as consistent with our pre-

vious work in [19]. In particular, we implement a single stellar number density distribution of the

disk, that of [27] as follows:

ρD(R,Z) = ρD(R,Z;L1, H1) + fρD(R,Z;L2, H2), (3.3.3)

where,

ρD(R,Z;L,H) = ρD(R�, 0)eR�/L × e
(
−R

L
−Z+Z�

H

)
. (3.3.4)

The quantity ρD is the number of stars per unit volume in pc3. The coordinate Z is the vertical

height above or below the midplane of the Galaxy, and R is the radial distance from the Galactic

centre, and R� = 8 kpc is the galactocentric distance to the Sun. We utilize the values H1 =

300 pc, L1 = 2600 pc, H2 = 900 pc, L2 = 3600 pc, and f = 0.12, corresponding to the thin disk

scale height and length, the thick disk scale height and length and the thick-to-thin disk density

normalization.

Furthermore, given that the Kroupa IMF is found to be observationally consistent with

the IMF of the disk, as we find the local number density is ∼70% of that found by [52], we do not

vary the IMF. We normalize the distribution of stars based on an estimate of the total disk mass in

the Milky Way. The disk mass estimate of [9] yields 4.2× 1010M� in disk stars (0.3× 1010M� has

been subtracted, as it corresponds to gas mass). Using the Kroupa IMF, we are able to match our

disk mass (4.2× 1010M�) by normalizing ρD(R�, 0)=0.084 stars pc−3.

22

3.3.2 Mass Component: Dark Matter Mass Density profile

The baryonic matter in the Galaxy constitutes only part of the total matter in the Milky

Way, and a small fraction of the total matter in the universe. To properly model the orbits of stars

in the Galaxy, we implement a dark matter halo in cold dark matter cosmology.

While the mass accretion history of dark matter in the Galaxy will have an effect on the

dynamics of our test particles over time, we elect to use a fixed dark matter profile. We believe

that this method is reasonable, as the majority of the stars in the Galaxy are influenced to a greater

extent by baryonic matter rather than dark matter, where the baryonic matter has a decreasing

influence on the orbits of stars as a function of distance from the galactic center. Furthermore, the

disk stars in the outskirts of the Galaxy, which are those stars most affected by dark matter, are

relatively young, and form after the dark matter halo has accreted most of its present day mass.

Therefore, our fixed dark matter profile should permit a broadly consistent present day velocity

curve for our model of the Milky Way, despite the absence of evolution.

In [37], the author constrains the mass of the Milky Way using observational and kine-

matic data. We use the properties of one of their models to implement a dark matter mass distribu-

tion in our model. The dark matter halo is fit in [37] using the Navarro, Frenk, and White (NFW)

profile [43]. The dark matter halo density is modeled as a sphere whose origin is the Galactic

center.

The NFW dark matter density profile as a function of galactocentric radius is as follows:

ρ(r) =
ρs

(r/rs)(1 + (r/rs))2
, (3.3.5)

where rs and ρs are the characteristic radius and density on the sphere, respectively. From [43],

rs =
r200
c
, (3.3.6)

where c and r200 are the NFW concentration parameter and virial radius respectively. The virial

radius (r200) is the radius of a sphere where the average density of the sphere is greater than a

factor of 200 of a critical density (ρcrit). The virial mass (M200) describes the total mass within

the virial radius. The orbits of celestial objects are influenced by the mass contained within this

radius. The concentration parameter c describes the concentration of the inner region of the dark

23

matter sphere. Galaxies that form in the early universe have a high concentration c, as they form

in an environment with a higher mean background density, whereas later forming galaxies have a

lower concentration.

In [37], the dark matter halo has rs = 20.2 kpc, M200 = 1.40 × 1012 M�, and a present

day concentration, c ≈ 9.545. Additionally, [37] finds R� = 8.29 kpc. To utilize the halo density

profile in Equation 3.3.5, we calculate r200 from Equation 3.3.6, which yields r200 ≈ 193 kpc.

To match the M200 and r200 of the halo described above, we assign a value of ρs = 9.341 ×
106 M�kpc−3. Following [37], this results in a local dark matter density of ρh,� = 0.011 M�pc−3

in our model. The dark matter density distribution is shown in Figure 3.1.

0.01 0.1 1 10 100
103

104

105

106

107

108

109

1010

D
en

si
ty

Radius

Figure 3.1. The dark matter density profile as a function of radius (kpc) on a sphere in our model
in units of M� kpc−3.

We note, however, that the calculation of ρs is often utilized with the following equation

[43]:

δc =
ρs
ρcrit

, (3.3.7)

24

where δc is the characteristic NFW overdensity, and is converted into the NFW concentration c

with

δc =
200

3
× c3

[ln(1 + c)− c/(1 + c)]
. (3.3.8)

The critical density (ρcrit) depends on the the mean background density at a particular time with

the following equation [43]:

ρcrit =
3H2

8πG
, (3.3.9)

where H is the Hubble constant. We did not utilize these formulations for our calculation of ρs as

we are only interested in the present day dark matter profile which was normalized as described

above.

The baryonic matter also contributes to the mass of the halo of the Milky Way. For

example, [6] finds that the stellar halo is ∼ 3.7 × 108M�. This mass in negligible in comparison

to the mass of the dark matter halo. Therefore, we do not create a mass model of the stellar halo

as we expect it to have little impact on the dynamics of our model Milky Way galaxy.

3.3.3 Mass Model Visualization and Terminology

In this section, we illustrate the implementation of the mass models. Each mass com-

ponent (bulge, disk and dark matter halo) extends to different volumes; therefore, three different

arrays of structures are implemented to store the pseudoparticle data. For each mass component,

we partition the space to assign a mass to each pseudoparticle. For the bulge and disk mass com-

ponents, the stars are populated into their respective volumes, an initial mass function is applied,

and a total mass is created for that volume. The dark matter mass density profile is implemented

by segmenting the volume and applying the mass density distribution to assign a mass to each

pseudoparticle. Figure 3.2 shows an example segmentation of the space in two dimensions. The

red region indicates a cell. The red dots indicate the center of a cell by volume and are the location

of the respective pseudoparticles. Finally, the red arrow is the length of a single radial cell extent.

The vertical cell extent is not shown in Figure 3.2, but refers to the height of a vertical cell.

25

Figure 3.2. Visualization of the mass mass models in two dimensions. Red region demarcates a
cell, red dots are the locations of pseudoparticles, and arrow length is the radial cell extent. The
vertical cell extent, not shown here, is the vertical height of a cell.

3.3.4 Dynamics and N-body Simulation Parameters

In a direct force n-body simulation, the force on a particle i from a particle j is calculated

as follows:

Fij =
(Gmimj)(rj − ri)

(|rj − ri|2)(|rj − ri|)
, (3.3.10)

where G is the gravitational constant, mi and mj are the masses of the particles respectively, and

ri and rj are the positions of the particles. The left factor in the equation gives the magnitude of

the force and the right factor gives the direction.

To suppress strong gravitational interactions between test particles and close pseudopar-

ticles, the above equation is modified as follows:

Fij = Gmimj
rj − ri

(|rj − ri|2 + ε2)3/2
, (3.3.11)

where ε is called the softening length. Note that in our prototype application, the forces calculated

using the equation above are the total forces of each pseudoparticle on each individual test particle.

26

3.3.5 Calculation of the Softening Length

An adequate softening length (ε) depends upon the distribution of particles in the sim-

ulation. We outlined the construction of the mass distribution throughout the Milky Way, which

is comprised of disk, bulge and dark matter mass components. We calculate the softening length

using the method of [54], which calculates it in the densest region of Plummer and Hernquist

spheres. Furthermore, the softening length is calculated to be the average distance between the

nearest neighbor of each particle.

We calculate the nearest neighbor of each particle within a radius which is given by the

mass model with the largest radial cell extent in the innermost region of our model of the Milky

Way1. Furthermore, we limit the maximum height of this volume of pseudoparticles to be the

height of the bulge, which approximates the maximum vertical height that a particle is found to

orbit in our model. Limiting the height ensures that we are not calculating the nearest neighbors of

dark matter pseudoparticles distributed outside the disk and bulge mass components. Pseudoparti-

cles with a distance of 0 between them, or those pseudoparticles located at the same position are

excluded from the nearest neighbor search. Given the nearest neighbor of each pseudoparticle, we

calculate the average distance between these pseudoparticles, and assume that a test particle, on

average, orbits at the midpoint between two pseudoparticles, thus reducing the mean distance by a

factor of 2. Additionally, [54] find that the softening length should be between 1.5-2× smaller than

the average distance between nearest neighbor particles. Therefore, we choose a softening length

that is 1.75× smaller than this value. The softening length in our model is calculated as follows:

ε =
Average distance between pseudoparticles

2× 1.75
. (3.3.12)

3.3.6 Generation of the Galaxy Dataset

Trajectories are generated by injecting test particles into the gravitational field (a function

of the pseudoparticles) with an initial velocity. The motions of these test particles are tracked and

recorded. We create a series of trajectory datasets of different sizes from the motions of these test

1For example, if the radial extents of the dark matter halo, disk and bulge are 1 kpc, 0.5 kpc and 0.3 kpc respectively,
then the nearest neighbor of each pseudoparticle within a radius of 1 kpc is calculated.

27

particles, denoted Galaxy, which we use throughout this work. Figure 3.3 illustrates the motions

of 30 trajectories from one of the datasets.

Figure 3.3. A sample of 30 trajectories from the Galaxy dataset.

3.4 Merger Dataset

Our last dataset is from the output of a simulation of a galaxy merger that contains disk

and halo components2. We limit the dataset to contain the trajectories of the disk particles in the

simulation. This dataset has been scaled from simulation units to kpc so as to represent a radial disk

scale length consistent with a Milky Way-like galaxy. Figure 3.4 shows a sample of the particles

in the Merger dataset at three time periods: (a) at the beginning of the simulation at 0 Gyr, (b) at

1.5 Gyr, and (c) at the end of the simulation at 3 Gyr.

2Dataset obtained from Josh Barnes.

28

t=0 Gyr

(a)

t=1.5 Gyr

(b)

t=3 Gyr

(c)

Figure 3.4. Sample particle positions in the Merger dataset at times 0 Gyr (a), 1.5 Gyr (b) and 3
Gyr (c).

29

Chapter 4

CPU Indexing Scheme and Algorithms for

Distance Threshold Searches

We propose two distance threshold search algorithms for the CPU and motivate the use

of the R-tree [21] to index the database of trajectories instead of alternative index-trees. Further-

more, as motivated in Chapter 2, the index, and data elements that are pointed to by the index are

all stored in main memory. One drawback of circumscribing objects in MBBs is that the object

(trajectory) occupies an infinitesimal volume in comparison to the MBB. Therefore, we propose

methods to filter out line segments that are not part of the final result set. We propose decreasing

index resolution to exploit the trade-off between the volume occupied by the trajectories, the de-

gree of index overlap, the number of entries in the index, and the number of candidate trajectories

that need to be processed by exploring three trajectory splitting strategies. We find that, for our

in-memory searches, lower-bounding the index resolution is more important than minimizing the

volume of MBBs and thus index overlap. Finally, we investigate a multithreaded implementation

that uses OpenMP and demonstrate that high parallel efficiency can be achieved.

4.1 Problem Definition

Let D be a database of trajectories, where each trajectory Ti consists of ni 4D (3 spatial

+ 1 temporal) line segments. Each line segment is defined by the following attributes: xstart, ystart,

zstart, tstart, xend, yend, zend, tend, trajectory id, and segment id. These coordinates for each segment

define the segment’s MBB (note that the temporal dimension is treated in the same manner as the

30

spatial dimensions). Linear interpolation is used to answer searches that lie between tstart and tend
of a given line segment.

We consider historical continuous searches for trajectories within a distance d of a query

Q, where Q is a moving object’s trajectory, Qt, or a stationary point, Qp. More specifically:

• DistTrajSearch Qp(D,Qp,Qstart,Qend, d) searches D to find all trajectories that are within a

distance d of a given query static point Qp over the query time interval [Qstart,Qend]. The

query is continuous, such that the trajectories found may be within the distance threshold d

for a subinterval of the query time interval [Qstart,Qend]. For example, for a query Q1 with

a query time interval of [0,1], the search may return T1 between [0.1,0.3] and T2 between

[0.2,0.6].

• DistTrajSearch Qt(D,Qt,Qstart,Qend, d) is similar but searches for trajectories that are within

a distance d of a query trajectory Qt.

DistTrajSearch Qp is a simpler case of DistTrajSearch Qt. We focus on developing an efficient

approach for DistTrajSearch Qt, which can be reused as is for DistTrajSearch Qp. We present

experimental results for both types of searches.

4.2 Trajectory Indexing

One trajectory indexing approach utilizes index-trees. These indexes store trajectory

data in tree nodes. In this work, we define a trajectory as a set of connected trajectory segments

over some temporal extent. Trajectory data (a series of trajectory segments) can then be stored in

MBBs, where an MBB describes the spatial and/or temporal properties of the trajectory. After the

database of trajectories is generated, a trajectory search can proceed. Given a search for some query

trajectory over some temporal extent, one considers all relevant query MBBs. That is, a series of

query trajectory segments are circumscribed by MBBs and then the MBBs are augmented in all

spatial dimensions by the threshold distance d. One then searches for the set of trajectory segment

MBBs in the database that overlap with the augmented query MBBs, since the overlapping MBBs

may contain trajectories that are in the result set. Efficient indexing of the trajectory segment

MBBs can thus lower query response time. After the index is searched, the candidates are refined

to produce the final result set.

31

As discussed in above and in Section 2.1, index-trees [16, 14, 17, 20] have been utilized

for spatiotemporal queries. Several index-trees have been proposed (TB-tree [47], STR-tree [47],

3DR-tree [61]). Their main objective is to reduce the number of tree nodes visited during in-

dex traversals, using various pruning techniques (e.g., the MINDIST and MINMAXDIST metrics

in [55]). While this is sensible for kNN searches, instead for distance threshold searches there is

no criterion for reducing the number of tree nodes that must be traversed. This is because any

MBB in the index that overlaps the query MBB may contain a line segment within the distance

threshold, and thus must be returned as part of the candidate set.

Figure 4.1. An example trajectory stored in different leaf nodes in a TB-tree.

Figure 4.2. Four line segments belonging to three different trajectories within one leaf node of an
R-tree.

32

Let us consider for instance the TB-tree, in which a leaf node stores only contiguous

line segments that belong to the same trajectory and leaf nodes that store segments from the same

trajectory are chained in a linked list. As a result, the TB-tree has high temporal selectivity, which

means that the index aims to efficiently retrieve line segments based on the temporal properties

of the query. Figure 4.1 shows a trajectory stored inside four leaf nodes within a TB-tree (each

leaf node is shown as a bounding box). The curved and continuous appearance of the trajectory is

because multiple line segments are stored together in each leaf node. By contrast, the R-tree simply

stores in each leaf node trajectory segments that are spatially and temporally near each other,

regardless of the individual trajectories. Figure 4.2 depicts an example with 4 segments belonging

to 3 different trajectories that could be stored in a leaf node of an R-tree. For a distance threshold

search, the number of TB-tree leaf nodes processed to perform the search could be arbitrarily high

(since segment MBBs from many different trajectories can overlap the query MBB). Therefore,

the TB-tree reduces the important R-tree property of overlap reduction; with an R-tree it may be

sufficient to process only a few leaf nodes since each leaf node stores spatially close segments

from multiple trajectories. For distance threshold searches, high spatial discrimination is likely to

be more efficient than high temporal discrimination. Also, results in [47] show that the TB-tree

performs better than the R-tree (for kNN searches) especially when the number of indexed entries

is low. In this work, we are interested in large MODs (see Section 1.1). We conclude that an R-tree

index should be used for efficient distance threshold search processing.

4.3 Search Algorithm

We propose an algorithm, TRAJDISTSEARCH (Algorithm 1), to search for trajectories

that are within a threshold distance of a query trajectory. All entry MBBs that overlap the query

MBB are returned by the R-tree index and are then processed to determine the result set. More

specifically, the algorithm takes as input an R-tree index, T , a query trajectory, Q, and a threshold

distance, d. It returns a set of time intervals annotated by trajectory ids, corresponding to the

interval of time during which a particular trajectory is within distance d of the query trajectory.

After initializing the result set to the empty set (line 2), the algorithm loops over all (augmented)

MBBs that correspond to the segments of the query trajectory (line 3). For each such query MBB,

the R-tree index is searched to obtain a set of candidate entry MBBs that overlap the query MBB

33

(line 4). The algorithm then loops over all the candidates (line 5) and does the following. First,

given the candidate entry MBB and the query MBB, it computes an entry trajectory segment and

a query trajectory segment that span the same time interval (line 6). The algorithm then computes

the interval of time during which these two trajectory segments are within a distance d of each

other (line 7). This calculation involves computing the coefficients of and solving a degree two

polynomial [20]. The moving distance between two line segments is derived in Appendix B. If

this interval is non-empty, then it is annotated with the trajectory id and added to the result set

(line 9). The overall result set is returned once all query MBBs have been processed (line 13).

Note that for a static point search Q.MBBSet (line 3) would consist of a single (degenerate) MBB

with a d extent in all spatial dimensions and some temporal extent, thus obviating the need for the

outer loop. We call this simpler algorithm POINTDISTSEARCH.

Algorithm 1 Pseudo-code for the TRAJDISTSEARCH algorithm (Section 4.3).
1: procedure TRAJDISTSEARCH (R-tree T, Query Q, double d)
2: resultSet← ∅
3: for all querySegmentMBB in Q.MBBSet do
4: candidateSet← T.Search(querySegmentMBB, d)
5: for all candidateMBB in candidateSet do
6: (entrySegment, querySegment)← interpolate(

candidateMBB, querySegmentMBB)
7: timeInterval← calcTimeInterval(

entrySegment, querySegment,d)
8: if timeInterval 6= ∅ then
9: resultSet← resultsSet ∪ {timeInterval}

10: end if
11: end for
12: end for
13: return resultSet
14: end procedure

4.4 Initial Experimental Evaluation

4.4.1 Datasets

As described in Chapter 3, our first dataset, Trucks [1], is used in other MOD works [14,

17, 20]. It contains 276 trajectories corresponding to 50 trucks. This is a 3-dimensional dataset

34

Table 4.1. Characteristics of Datasets
Dataset Trajectories Entries
Trucks 276 112152

Galaxy-200k 500 200000
Galaxy-400k 1000 400000
Galaxy-600k 1500 600000
Galaxy-800k 2000 800000
Galaxy-1M 2500 1000000

Random-1M (α ∈ {0, 0.1, . . . , 1}) 2500 997500
Random-2M (α = 1) 5000 1995000
Random-3M (α = 1) 7500 2992500
Random-4M (α = 1) 10000 3990000
Random-5M (α = 1) 12500 4987500

(2 spatial + 1 temporal). Our second dataset is a class of 4-dimensional datasets (3 spatial + 1

temporal), Galaxy. These datasets contain the trajectories of stars moving in the Milky Way’s

gravitational field (see Chapter 3). The largest Galaxy dataset consists of 1,000,000 trajectory

segments corresponding to 2,500 trajectories of 400 timesteps each. Distances are expressed in

kiloparsecs (kpc). As discussed in Chapter 3, our third dataset is a class of 4-dimensional synthetic

datasets, Random, with trajectories generated via random walks. An adjustable parameter, α, is

used to control whether the trajectory is a straight line (α = 0) or a Brownian motion trajectory

(α = 1). We vary α in 0.1 increments to produce 11 datasets for datasets containing between

∼1,000,000 and ∼5,000,000 segments. Trajectories with α = 0 spans the largest spatial extent

and trajectories with α = 1 are the most localized. All trajectories have the same temporal extent

but different start times. Other synthetic datasets exist, such as GSTD [62]. We do not use GSTD

because it does not allow for 3-dimensional spatial trajectories.

Figure 4.3 shows a 2-D illustration of the Galaxy and Random datasets. An illustration

of Trucks can be found in previous works [14, 17]. Table 4.1 summarizes the main characteristics

of each dataset.

4.4.2 Experimental Methodology

We have implemented algorithm TRAJDISTSEARCH in C++, reusing an existing R-tree

implementation based on that initially developed by A. Guttman [21], and the code is publicly

available [2]. We execute the sequential implementation on one core of a dedicated Intel Xeon

35

(a)

(b)

(c)

(d)

Figure 4.3. (a) Galaxy dataset: a sample of 30 trajectories, (b) 4 trajectories in the Random dataset
with α = 0, (c) 200 trajectories in the Random dataset with α = 0.8, (d) a sample trajectory in the
Random dataset with α = 1.

X5660 processor, at 2.8 GHz, with 12 MB L3 cache and sufficient memory to store the entire

index. We measure query response time averaged over 3 trials. The variation among the trials

is negligible so that error bars in our results are not visible. We ignore the overhead of loading

the R-tree from disk into memory, which can be done once before all query processing. The

implementations have been validated to ensure correctness. To guarantee that we do not obtain

false positive or negative results, we compare the results of our implementation to an alternate

implementation that utilizes a brute force approach.

36

4.4.3 Static Point Search Performance

In this section we assess the performance of POINTDISTSEARCH with the following

searches:

• P1: From the Random-1M α = 1 dataset, 500 random points are selected with 10%, 20%,

50% and 100% of the temporal extent of the trajectories in the dataset, for various query

distances.

• P2: Same as P1 but for the Galaxy-1M dataset.

• P3: From the Random-1M, 2M, 3M, 4M, 5M α = 1 datasets, 500 random points are selected

with 1%, 5%, and 10% of the temporal extent of the trajectories in the dataset, with query

distance d = 5.

• P4: Same as S3 but for the Galaxy-200k, 400k, 600k, 800k, 1M datasets, where query

distance d = 1.

Figures 4.4 (a) and 4.4 (b) plot response time vs. query distance for P1 and P2 above.

The response time increases superlinearly with the query distance and with the temporal extent.

Figures 4.5 (a) and 4.5 (b) plot response time vs. temporal extent for P3 and P4 above, showing

linear or superlinear growth in response time as the temporal extent increases. More specifically,

Figure 4.5 (b) shows superlinear growth. This is because the trajectories in Galaxy are less con-

strained than in Random. We suspect that spatial under and overdensities of the trajectories in

Galaxy may lead to searches that have qualitatively different behavior for different temporal ex-

tents.

4.4.4 Trajectory Search Performance

We measure the query response time of TRAJDISTSEARCH for the following sets of

trajectory searches:

• S1: Random-1M dataset, α = 1, 100 randomly selected query trajectories, processed for

10%, 20%, 50% and 100% of their temporal extents, with various query distances.

• S2: Same as S1 but for the Galaxy-1M dataset.

• S3: Random-1M, 2M, 3M, 4M and 5M datasets, α = 1, 100 randomly selected query

trajectories, processed for 100% of their temporal extent, with various query distances.

37

 0

 0.025

 0.05

 0.075

 0.1

 0.125

 5 15 25

T
im

e
 (

s
)

Distance

10 extent

20 extent

50 extent

100 extent

(a) Random α = 1

 0

 0.1

 0.2

 0.3

 1 3 5

T
im

e
 (

s
)

Distance

10 extent

20 extent

50 extent

100 extent

(b) Galaxy-1M

Figure 4.4. Query response time vs. threshold distance for 10%, 20%, 50% and 100% of the
temporal extents of the trajectories in the datasets. (a) P1 using the Random-1M α = 1 dataset;
(b) the Galaxy-1M dataset with P2 (b).

 0

 0.006

 0.012

 0.018

 0.024

 0.01 0.1

T
im

e
 (

s
)

Temporal Extent

1M
2M
3M
4M
5M

(a) Random α = 1

 0

 0.002

 0.004

 0.006

 0.008

 0.01 0.1

T
im

e
 (

s
)

Temporal Extent

200k
400k
600k
800k

1M

(b) Galaxy datasets

Figure 4.5. Query response time vs. various temporal extents of the trajectories in the datasets.
(a) P3 using the Random-1M α = 1 datasets; (b) P4 using the Galaxy datasets.

• S4: Galaxy-200k, 400k, 600k, 800k, 1M datasets, 100 randomly selected trajectories, pro-

cessed for 1%, 5% and 10% of their temporal extents, with a fixed query distance d = 1.

Figures 4.6 (a) and 4.6 (b) plot response time vs. query distance for S1 and S2 above.

The response time increases slightly superlinearly with the query distance and with the temporal

extents. In other words, the R-tree search performance degrades gracefully as the search is more

extensive. Figures 4.7 (a) and (b) show response time vs. query distance and temporal extent

38

 0

 0.1

 0.2

 0.3

 0.4

 5 15 25

T
im

e
 (

s
)

Distance

10 extent

20 extent

50 extent

100 extent

(a) Random α = 1

 0

 50

 100

 150

 200

 250

 1 3 5

T
im

e
 (

s
)

Distance

10 extent

20 extent

50 extent

100 extent

(b) Galaxy-1M

Figure 4.6. Query response time vs. threshold distance for 10%, 20%, 50% and 100% of the
temporal extents of trajectories. (a) S1 using the Random-1M α = 1 dataset; (b) S2 using the
Galaxy-1M dataset.

 0

 1

 2

 5 15 25

T
im

e
 (

s
)

Distance

1M
2M
3M
4M
5M

(a) Random α = 1

 0

 0.5

 1

 1.5

 0.01 0.1

T
im

e
 (

s
)

Temporal Extent

200k
400k
600k
800k

1M

(b) Galaxy datasets

Figure 4.7. (a) Response time vs. threshold distances for various numbers of segments in the index
using search S3. (b) Response time vs. temporal extent for various numbers of segments in the
index using search S4.

respectively, for S3 and S4 above. The response time increases slightly superlinearly as the query

distance increases for S3, and roughly linearly as the temporal extent increases for S4. Both of

these figures show results for various dataset sizes. An important observation is that the response

time degrades gracefully as the datasets increase in size. More interestingly, note that for a fixed

temporal extent and a fixed query distance, a larger dataset means a higher trajectory density, and

thus a higher degree of overlap in the R-tree index. In spite of this increasing overlap, the R-

tree still delivers good performance. These trends are expected, as we see the performance of the

39

B

d

Q A

C

Figure 4.8. Three example entry MBBs and their overlap with a query MBB.

algorithm degrade with increasing query distance, temporal extent, or dataset size. In the next

sections we address optimizations to reduce response time further.

4.5 Trajectory Segment Filtering

The results in the previous section show that POINTDISTSEARCH and TRAJDISTSEARCH

maintain roughly consistent performance behavior over a range of search configurations (temporal

extents, threshold distances, index sizes). We explore approaches to reduce response time, using

TRAJDISTSEARCH as our target.

At each iteration our algorithm computes the moving distance between two line segments

(line 7 in Algorithm 1). One can bypass this computation by “filtering out” those line segments

for which it is straightforward (i.e., computationally cheap) to determine that they cannot possibly

lie within distance d of the query. This filtering is applied to the segments once they have been

returned by the index, and is thus independent of the indexing method.

Figure 4.8 shows an example with a query MBB, Q, and three overlapping MBBs, A,

B, and C, that have been returned from the index search. The query distance d is indicated in

the (augmented) query box so that the query trajectory segment is shorter than the box’s diagonal.

MBB A contains a segment that is outside Q and should thus be filtered out. The line segment in

B crosses the query box boundary but is never within distance d of the query segment and should

be filtered out. C contains a line segment that is within a distance d of the query segment, and

40

should thus not be filtered out. For this segment a moving distance computation must be performed

(Figure 1, line 7) to determine whether there is an interval of time in which the two trajectories are

indeed within a distance d of each other. The fact that candidate segments are returned that should

in fact be ignored is inherent to the use of MBBs: a segment occupies an infinitesimal portion of

its MBB’s space. This issue is germane to MODs that store trajectories using MBBs.

In practice, depending on the dataset and the search, the number of line segments that

should be filtered out can be large. Figure 4.9 shows the number of candidate segments returned

by the index search and the number of segments that are within the query distance vs. α, for the

Random-1M dataset, with 100 randomly selected query trajectories processed for 100% of their

temporal extent. The fraction of candidate segments that are within the query distance is below

16.5% at α = 1. In this particular example, an ideal filtering method would filter out more than

80% of the line segments. Note that we observe an increase in the number of segments within

the threshold distance as α increases because there is a greater chance of Brownian motion-like

trajectories being within the query distance of each other in comparison to trajectories that are on

the straighter end of the trajectory spectrum (approaching α = 0).

 0

 50000

 100000

 150000

 200000

 0 0.2 0.4 0.6 0.8 1

N
u
m

b
e
r

α

Number of candidates
Number within distance

Figure 4.9. The number of moving distance calculations and the number that are actually within a
distance of 15 vs. α in the Random-1M datasets.

41

4.5.1 Two Segment Filtering Methods

After the query and entry line segments are interpolated so that they have the same tem-

poral extent (Algorithm 1, line 6), various criteria may remove the candidate segment from con-

sideration. We consider two filtering methods beyond the simple no filtering approach:

• Method 1 – No filtering.

• Method 2 – After the interpolation, check whether the candidate segment still lies within the

query MBB. This check only requires floating point comparisons between spatial coordinates

of the segment endpoints and the query MBB corners, and would occur between lines 6 and 7

in Algorithm 1. Method 2 would filter out A in Figure 4.8.

• Method 3 – Considering only 2 spatial dimensions, say x and y, for a given query segment

MBB compute the slope and the y-intercept of the line that contains the query segment. This

computation requires only a few floating point operations and would occur in between lines 3

and 4 in Algorithm 1, i.e., in the outer loop. Then, before line 7, check if the endpoints of

the candidate segment both lie more than a distance d above or below the query trajectory

line. In this case, the candidate segment can be filtered out. This check requires only a few

floating point operations involving segment endpoint coordinates and the computed slope

and y-intercept of the query line. Method 3 would filter out both A and B in Figure 4.8.

Other computational geometry methods could be used for filtering, but these methods

must be sufficiently fast (i.e., low floating point operation counts) if any benefit over Method 1 is to

be achieved. For instance, one may consider a method that computes the shortest distance between

an entry line segment and the query line segment regardless of time, and discard the candidate

segment if this shortest distance is larger than threshold distance d. However, the number of

(floating point) operations to perform such filtering is on the same order as that needed to perform

the full-fledge moving distance calculation.

4.5.2 Filtering Performance

We have implemented the filtering methods in the previous section in TRAJDISTSEARCH

and in this section we measure response times ignoring the R-tree search, i.e., focusing only on the

filtering and the moving distance computation. We use the following distance threshold searches:

42

• S5: From the Trucks dataset, 10 trajectories are processed for 100% of their temporal extent.

• S6: From the Galaxy-1M dataset, 100 trajectories are processed for 100% of their temporal

extent.

• S7: From the Random-1M datasets, 100 trajectories are processed for 100% of their temporal

extent, with a fixed query distance d = 15.

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 5000 10000 15000 20000 25000

 1 2 3 4 5

T
im

e
/T

im
e

M
e

th
o

d
 1

Distance (Trucks)

Distance (Galaxy)

Trucks-Method 2
Trucks-Method 3
Galaxy-Method 2
Galaxy-Method 3

(a) Trucks and Galaxy-1M

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 0 0.2 0.4 0.6 0.8 1
T

im
e
/T

im
e

M
e

th
o

d
 1

α

Method 2

Method 3

(b) Random-1M

Figure 4.10. Performance improvement ratio of filtering methods (a) for real datasets with S5 and
S6, vs. query distance, (b) for Random-1M datasets with S7.

Figure 4.10 (a) plots the relative improvement (i.e., ratio of response times) of using

Method 2 and Method 3 over using Method 1 vs. the threshold distance for S5 and S6 above for

the Galaxy and Trucks datasets. Data points below the y = 1 line indicate that filtering is beneficial.

We see that filtering is almost never beneficial and can in fact marginally increase response time.

Similar results are shown for the Random-1M datasets in Figure 4.10 (b).

It turns out that our methods filter only a small fraction of the line segments. For instance,

for search S7 Method 2, resp. Method 3, filters out between 2.5% and 12%, resp. between 3.2%

and 15.9%, of the line segments. Therefore, for most candidate segments the time spent doing

filtering is pure overhead. Furthermore, filtering requires only a few floating point operations but

also several if-then-else statements. The resulting branch instructions slow down executions (due

to pipeline stalls) when compared to straight line code. We conclude that, at least for the datasets

and searches we have used, our filtering methods are not effective.

43

One may envision developing better filtering methods to achieve (part of the) filtering

potential seen in Figure 4.9. We profiled the execution of TRAJDISTSEARCH for searches S5, S6,

and S7, with no filtering, and accounting both for the R-tree search and the distance computation.

We found that the time spent searching the R-tree accounts for at least 97% of the overall response

time. As a result, filtering can only lead to marginal performance improvements for the datasets

and searches in our experiments. For other datasets and searches, however, the fraction of time

spent computing distances could be larger. Nevertheless, given the results in this section, in all that

follows we do not perform any filtering.

4.6 Index Resolution

In this section, we propose methods to represent the trajectory segments in a different

configuration within the index. According to the cost model in [45], index performance depends

on the number of nodes in the index, but also on the volume and surface area of the MBBs. Query

performance can be improved by finding a suitable number of nodes in the index combined with a

good partitioning strategy of trajectory segments within MBBs. One extreme is to store an entire

trajectory in a single MBB as defined by the spatial and temporal properties of the trajectory;

however, this leads to a lot of “wasted MBB space.” The other extreme is to store each line

segment of a trajectory in its own MBB, as done so far in this paper and in previous work on kNN

searches [16, 14, 17, 20]. In this scenario, the volume occupied by the trajectory in the index is

minimized, with the trade-off that the number of entries in the index will be maximized.

In Figure 4.11 (a) we depict an entry trajectory that is stored with each segment in its

own MBB, in Figure 4.11 (b), a trajectory that is stored in a single MBB, and in Figure 4.11 (c)

a trajectory that is stored in two MBBs. A 3-segment query trajectory that is not within the query

distance of the entry trajectory is shown, where the query distance is indicated by the red outline.

Assigning a single line segment to a single MBB (Figure 4.11 (a)) minimizes wasted space but

maximizes the number of nodes in the index that need to be searched. Storing an entire trajectory

in its own MBB minimizes the number of index entries to be searched but leads to more index

overlap and more candidate segments. For example, consider the query in Figure 4.11 (b). From

the figure, it can be seen that each of the three query segments overlap the MBB, resulting in

3×8=24 candidate trajectory segments that need to be processed. However, in Figure 4.11 (a), the

44

(a) (b) (c)

Figure 4.11. Illustration of the relationship between wasted space, volume occupied by indexed
trajectories, and the number of returned candidate segments to process. An 8-segment trajectory is
indexed in three different ways, and searched against a 3-segment query trajectory (denoted Q in
the figure), where the query distance is shown in red. (a) Each trajectory segment is stored in its
own MBB. (b) The trajectory is stored in a single MBB. (c) The trajectory is stored in two MBBs.

query trajectory does not overlap any of the entry MBBs, and therefore no candidate trajectory

segments are returned; however, the index contains 8 elements instead of 1, as in Figure 4.11 (b).

Figure 4.11 (c) shows the case in which the entry trajectory is stored in only 2 MBBs. In this case

only 1 query segment overlaps an entry MBB, resulting in 1×5=5 candidate segments to process.

As shown above, assigning a fraction of a trajectory to a single MBB, as a series of line

segments, increases the volume a trajectory occupies in the index, and the degree of index overlap.

This is because the resulting MBB is larger in comparison to minimizing the volume of the MBBs

by encompassing each individual trajectory line segment by its own MBB. As a result, an index

search can return a portion of a trajectory that does not overlap the query, leading to increased

overhead when processing the candidate set of line segments returned by the index. However, the

number of entries in the index is reduced, thereby reducing tree traversal time. To explore the

trade-off between the number of nodes in the index, the amount of wasted volume required by

a trajectory, the index overlap, and the overhead of processing candidate trajectory segments, in

this section, we evaluate three strategies for splitting each trajectory into a series of consecutive

MBBs. Such splitting can be easily implemented as an array of references to trajectory segments

(leading to one extra indirection when compared to assigning a single segment per MBB). We

evaluate performance experimentally by splitting the trajectories, and then creating their associated

45

 0

 50

 100

 150

 200

 2 10 18 26

 0

 50

 100

 150

 200

 250

 300

 350

 400

Ti
m

e
(s

)

M
BB

s
pe

r T
ra

je
ct

or
y

(m
)

Segments/MBB

Distance: 1
Distance: 2
Distance: 3
Distance: 4
Distance: 5

Number of MBBs per Trajectory

(a) Galaxy-1M

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 10 18 26 34 42 50 58

 0

 50

 100

 150

 200

 250

 300

 350

 400

Ti
m

e
(s

)

M
BB

s
pe

r T
ra

je
ct

or
y

(m
)

Segments/MBB

1M-_=1
3M-_=1
5M-_=1

Number of MBBs per Trajectory

(b) Random datasets

Figure 4.12. Static Temporal Splitting: Response time vs. r for (a) S6 for the Galaxy-1M dataset
for various query distances; and (b) S7 for the Random-1M, 3M, and 5M α = 1 datasets and a
query distance of 15. The number of MBBs per trajectory, m, is shown on the right vertical axis.

indexes, where the configuration with the lowest query response time is highlighted. Analytical

performance models of trajectory splitting methods are outside the scope of this work.

4.6.1 Static Temporal Splitting

Assuming it is desirable to ensure that trajectory segments are stored contiguously, we

propose a simple trajectory splitting method. Given a trajectory of n line segments, we split the

trajectory by assigning r contiguous line segments per MBB, where r is a constant. Therefore, the

number of MBBs, m, to represent the trajectory is m = dn
r
e. By storing segments contiguously

this strategy leads to high temporal locality of reference, which may be important for cache reuse

in our in-memory database, in addition to the benefits of the high spatial discrimination of the

R-tree (see Section 4.2).

Figure 4.12 plots response time vs. r for the S6 (Galaxy dataset) and S7 (Random dataset)

searches defined in Section 4.5.2. For S6, 5 different query distances are used, while for S7 the

query distance is fixed as 15 but results are shown for various dataset sizes for α = 1. The right

y-axis shows the number of MBBs used per trajectory. The data points at r = 1 correspond to

the original implementation (rather than the implementation with r = 1, which would include one

unnecessary indirection).

46

The best value for r depends on the dataset and the search. For instance, in the Galaxy-

1M dataset (S6) using 12 segments per MBB (or m = 34) leads to the best performance. We note

that picking a r value in a large neighborhood around this best value would lead to only marginally

higher query response times. In general, using a small value of r can lead to high response times,

especially for r = 1 (or m = 400). For instance, for S6 with a query distance of 5, the response

time with r = 1 is above 208 s while it is just above 37 s with r = 12. With r = 1 the index is

large and thus time-consuming to search. A very large r value does not lead to the lowest response

time since in this case many of the segments returned from the R-tree search are not query matches.

Finally, results in Figure 4.12 (a) show that the advantage of assigning multiple trajectory segments

per MBB increases as the query distance increases. For instance, for a distance of 2 using r = 12

decreases the response time by a factor 2.76 when compared to using r = 1, while this factor is

5.6 for a distance of 5. Note that the difference in response times between Figure 4.12 (a) and (b)

are largely due to significantly more query hits in Galaxy in comparison to Random for the query

distances selected.

4.6.2 Static Spatial Splitting

Another strategy consists in ordering the line segments belonging to a trajectory spatially,

i.e., by sorting the line segments of a trajectory by the x, y, and z values of the segment’s origin

lexicographically. We then assign r segments per trajectory into each MBB, as in the previous

method. With such spatial grouping, the line segments are no longer guaranteed to be temporally

contiguous in their MBBs, but reduced index overlap may be achieved. Figure 4.13 plots response

time vs. r for the S7 (Random dataset) searches. We see that there is no advantage to assigning

multiple trajectory segments to an MBB over assigning a single line segment to a MBB (r = 1

in the plot). When comparing with results in Figure 4.12 (b) we find that spatial splitting leads to

query response times higher by several factors than that of temporal splitting.

4.6.3 Splitting to Reduce Trajectory Volume

The encouraging results in Section 4.6.1 suggest that using an appropriate trajectory

splitting strategy can lead to performance gains primarily by exploiting the trade-off between the

number of entries in the index and the amount of wasted space that leads to higher index overlap.

47

 0

 1

 2

 3

 4

 5

 6

 2 10 18 26 34 42 50 58

 0

 50

 100

 150

 200

 250

 300

 350

 400
Ti

m
e

(s
)

M
BB

s
pe

r T
ra

je
ct

or
y

(m
)

Segments/MBB

1M-_=1
3M-_=1
5M-_=1

Number of MBBs per Trajectory

Figure 4.13. Static Spatial Splitting: Response time vs. r using S7 for the Random-1M, 3M, and
5M α = 1 datasets and a query distance of 15. The number of MBBs per trajectory, m, for each
data point is shown on the rightmost vertical axis.

More sophisticated methods can be used. In particular, we implement the heuristic algorithm

MergeSplit in [22], which is shown to produce a splitting close to optimal in terms of wasted

space. MergeSplit takes as input a trajectory, T , as a series of l line segments, and a constant

number of MBBs, m. As output, the algorithm creates a set of m MBBs that encapsulate the l

segments of T . The pseudocode of MergeSplit is as follows:

1. For 0 ≤ i < l calculate the volume of the merger of the MBBs that define li and li+1 and

store the resulting series of MBBs and their volumes.

2. To obtain m MBBs, merge consecutive MBBs that produce the smallest volume increase at

each iteration and repeat (l− 1)− (m− 1) times. After the first iteration, there will be l− 2

initial MBBs describing line segments, and one MBB that is the merger of two line segment

MBBs.

Figure 4.14 shows response time vs. m for S6 (Galaxy dataset) and S7 (Random datasets).

Compared to static temporal splitting, which has a constant number of segments, r per MBB,

MergeSplit has a variable number of segments per MBB. From the figure, we observe that for the

Galaxy-1M dataset (S6), m = 30 leads to the best performance. Comparing MergeSplit to the

static temporal splitting (Figures 4.12 and 4.14 (a)), the best performance for S6 (Galaxy dataset)

is achieved by the static temporal splitting. For S7, the Random-1M, 3M, and 5M α = 1 datasets,

MergeSplit is only marginally better than the static temporal splitting (Figures 4.12 and 4.14 (b)).

48

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Ti
m

e
(s

)

MBBs per Trajectory (m)

Distance: 1
Distance: 2
Distance: 3
Distance: 4
Distance: 5

(a) Galaxy-1M

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 10 18 26 34 42 50 58

Ti
m

e
(s

)

MBBs per Trajectory (m)

1M-_=1
3M-_=1
5M-_=1

(b) Random datasets

Figure 4.14. Greedy Trajectory Splitting: Response time vs. m for (a) S6 for the Galaxy-1M
dataset for various query distances; and (b) S7 for the Random-1M, 3M, and 5M α = 1 datasets
and a query distance of 15.

This is surprising, given that the total hypervolume of the entries in the index for a given m across

both splitting strategies is higher for the simple static temporal splitting, as it makes no attempt to

minimize volume. Therefore, the trade-off between the number of entries and overlap in the index

cannot fully explain the performance of these trajectory splitting strategies for distance threshold

searches. We discuss these trade-offs in the following section.

4.6.4 Discussion

A good trade-off between the number of entries in the index and the amount of index

overlap can be achieved by selecting an appropriate trajectory splitting strategy. However, com-

paring the results of the simple temporal splitting strategy (Section 4.6.1) and MergeSplit (Sec-

tion 4.6.3), we find that volume minimization did not significantly improve performance for S7,

and led to worse performance for S6. In Figure 4.15, we plot the total hypervolume vs. m for the

Galaxy-1M (S6) and the Random-1M, 3M, and 5M α = 1 (S7) datasets. m = 1 refers to placing

an entire trajectory in a single MBB, and the maximum value of m refers to placing each individ-

ual line segment of a trajectory in its own MBB. For the static temporal splitting strategy, m = 34

leads to the best performance for the Galaxy-1M dataset (S6), whereas this value is m = 30 for

MergeSplit. The total hypervolume of the MBBs in units of kpc3Gyr for the static temporal group-

ing strategy at m = 34 is 3.6× 107, whereas for MergeSplit at m = 30, it is 1.62× 107, i.e., 55%

49

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 50 100 150 200 250 300 350 400

To
ta

l H
yp

er
vo

lu
m

e

MBBs per Trajectory (m)

Temporal Splitting
MergeSplit

(a) Galaxy-1M

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 50 100 150 200 250 300 350

To
ta

l H
yp

er
vo

lu
m

e

MBBs per Trajectory (m)

Temporal Splitting: 1M-_=1
Temporal Splitting: 3M-_=1
Temporal Splitting: 5M-_=1

MergeSplit: 1M-_=1
MergeSplit: 3M-_=1
MergeSplit: 5M-_=1

(b) Random-1M

Figure 4.15. Total hypervolume vs. m for the static temporal splitting strategy and MergeSplit.
(a)for the Galaxy-1M dataset (S6); and (b) for the Random-1M, 3M, and 5M α = 1 datasets (S7).

less volume. Due to the greater volume occupied by the MBBs, index overlap is much higher for

the static temporal splitting strategy. Figure 4.16 (a) plots the number of overlapping line segments

vs. m for S6 with d = 5. From the figure, we observe that independently of m, MergeSplit returns

a greater number of candidate line segments to process than the simple temporal splitting strategy.

MergeSplit attempts to minimize volume; however, if an MBB contains a significant fraction of

the line segments of a given trajectory, then all of these segments are returned as candidates. The

simple temporal grouping strategy has an upper bound (r) on the number of segments returned per

overlapping MBB and thus can return fewer candidate segments for a query, despite occupying

more volume in the index. For in-memory distance threshold searches, there is a trade-off between

a trajectory splitting strategy that has an upper bound on the number of line segments per MBB,

and index overlap, characterized by the volume occupied by the MBBs in the index. This is in

sharp contrast to other works that focus on efficient indexing of spatiotemporal objects in tradi-

tional out-of-core implementations where the index resides partially in-memory and on disk, and

therefore volume reduction to minimize index overlap is necessary to minimize disk accesses (e.g.,

[22]).

A single metric cannot capture the trade-offs between the number of entries in the index,

volume reduction, index overlap, and the number of candidate line segments returned (germane

to distance threshold searches). However, for Galaxy-1M (S6), a value of m = 34 and m = 30

lead to the best query response time for the temporal splitting strategy and MergeSplit, respectively

50

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 15 20 25 30 35 40 45 50 55 60 65

N
um

be
r

MBBs per Trajectory (m)

Temporal
MergeSplit

(a) Galaxy-1M

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 10 15 20 25 30 35 40 45 50

N
um

be
r

MBBs per Trajectory (m)

Temporal
MergeSplit

(b) Random-1M

Figure 4.16. Total number of overlapping segments vs. m for the static temporal splitting strategy
and MergeSplit. (a) S6 for the Galaxy-1M dataset with d = 5; and (b) S7 for the Random α = 1
dataset with d = 15.

(Figures 4.12 (a) and 4.14 (a)). Figure 4.17 (a) shows the number of L1 cache misses vs. m for S6

with d = 5. The number of cache misses was measured using PAPI [41]. The best values of m in

terms of query response time for both of the trajectory splitting strategies (m = 34 and m = 30)

roughly correspond to a value of m that minimizes L1 cache misses. Thus, L1 cache misses

appear to be a good indicator of relative query performance under different indexing methods.

Figure 4.17 (b) shows the number L2 cache misses vs. m for S6 with d = 5. We note that when

comparing Figure 4.17 (a) and (b), there are more L1 cache misses for a given value of m because

the L1 cache is smaller than L2 cache. We see that unlike L1 cache misses, m values that minimize

L2 cache misses do not lead to the best response times for either splitting strategy. Therefore

L1 cache misses are a better predictor of query performance when comparing indexing methods.

Future work for in-memory distance threshold searches should focus on improved cache reuse

through temporal locality of reference (which is in part obtained by storing segments contiguously

within a single MBB).

4.6.5 Performance Considerations for In-memory vs. Out-of-Core Imple-

mentations

The focus of this work is on in-memory distance threshold searches; however, most of

the literature on MODs assume out-of-core implementations, where the number of node accesses

51

 2.8e+09

 3e+09

 3.2e+09

 3.4e+09

 3.6e+09

 3.8e+09

 4e+09

 15 20 25 30 35 40 45 50 55 60 65

L1
 C

ac
he

 M
is

se
s

MBBs per Trajectory (m)

Temporal
MergeSplit

(a) Galaxy-1M

 2e+09

 2.2e+09

 2.4e+09

 2.6e+09

 2.8e+09

 3e+09

 3.2e+09

 3.4e+09

 3.6e+09

 3.8e+09

 5 10 15 20 25 30 35 40 45 50 55 60 65

L2
 C

ac
he

 M
is

se
s

MBBs per Trajectory (m)

Temporal
MergeSplit

(b) Random-1M

Figure 4.17. L1 (a) and L2 (b) cache misses vs. m for the static temporal splitting strategy and
MergeSplit for the Galaxy-1M dataset (S6) with d = 5.

are used as a metric to estimate I/O activity. Figure 4.18 shows the number of node accesses vs. m

for both of the static temporal splitting strategy and MergeSplit. We find that for the Galaxy-1M

dataset (S6) with d = 5, there is a comparable number of node accesses for both trajectory splitting

methods. However, for S7 (Random-1M), on average, trajectory splitting with MergeSplit requires

fewer node accesses and may perform significantly better than the simple temporal splitting strat-

egy in an out-of-core implementation. For example, in Figure 4.18 (b) some values of m have a

significantly higher number of node accesses, such as values around 14, 30, 38, due to the idiosyn-

crasies of the data, and resulting index overlap. However, as we demonstrated in Section 4.6.4,

distance threshold searches in the context of in-memory databases also benefit from reducing the

number of candidate line segments returned, and this is not entirely volume contingent. Therefore,

methods that consider volume reduction, such as the MergeSplit algorithm of [22], or other works

that consider volume reduction in the context of query sizes, such as [51], may not be entirely

applicable to distance threshold searches.

4.6.6 Multi-core Execution with OpenMP

In Section 4.6.4, we noted that indexing multiple line segments in a single MBB leads

to performance improvements and that the temporal splitting strategy performed better than the

spatial splitting strategy and MergeSplit. Regardless of the trajectory splitting strategy utilized,

TRAJDISTSEARCH can be parallelized, e.g., using OpenMP, in a shared-memory environment.

52

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 15 20 25 30 35 40 45 50 55 60 65

N
od

e
Ac

ce
ss

es

MBBs per Trajectory (m)

Temporal
MergeSplit

(a) Galaxy-1M

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 10 15 20 25 30 35 40 45 50

N
od

e
Ac

ce
ss

es

MBBs per Trajectory (m)

Temporal
MergeSplit

(b) Random-1M

Figure 4.18. Node Accesses vs. m for the static temporal splitting strategy and MergeSplit. (a) S6
for the Galaxy-1M dataset with d = 5; and (b) S7 for the Random α = 1 dataset with d = 15.

The iterations of the loop on line 3 of TRAJDISTSEARCH in Algorithm 1 are independent, each

iteration can be assigned to a different thread. In what follows, we show results up to 6 threads,

which corresponds to the 6 cores on the CPU on the platform. Figure 4.19 shows the response time

vs. the number of threads for S6 and S7 with r = 12 and r = 10, respectively. These values of

r yield the best performance gain in the sequential implementation for S6 and S7 (Figure 4.12).

Parallelizing the outer loop leads to high parallel efficiency between 72.2%-85.7%, with parallel

speedup between 4.33 and 5.14 with 6 threads for query distances ranging from d = 1 to d = 5

for the Galaxy dataset with S6. For the Random-1M, 3M and 5M α = 1 datasets, with 6 threads,

we observe a speedup between 4.49 to 4.88, for a parallel efficiency between 74.8% and 81.3%.

We note from Figure 4.19 (a) that the speedup decreases as d increases. This suggests that as the

number of candidate segments increases (with increasing d), there is likely to be increased memory

contention, as more candidate segments between the threads are competing for space in the CPU

cache. Additionally, with an increased d, there will be more nodes to visit in the R-tree; however,

the threads can traverse the tree in parallel. It is not clear which mechanism predominantly causes

the slowdown with increasing query distance. However, from previous sections we saw that the

number of candidate trajectory segments can be large, and it is likely that processing candidate

trajectory segments is the main bottleneck in parallelizing distance threshold searches.

Distance threshold searches, and perhaps other spatiotemporal searches on trajectories

can be parallelized in a straightforward manner in a shared-memory environment because the

53

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6
 1

 2

 3

 4

 5

 6

 7

 8

T
im

e
 (

s
)

S
p

e
e

d
u

p

Threads

Distance: 1
Speedup Distance: 1

Distance: 3
Speedup Distance: 3

Distance: 5
Speedup Distance: 5

(a) Galaxy

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 2 3 4 5 6
 1

 2

 3

 4

 5

 6

 7

 8

T
im

e
 (

s
)

S
p

e
e

d
u

p

Threads

1M
Speedup 1M

3M
Speedup 3M

5M
Speedup 5M

(b) Random datasets

Figure 4.19. Response time vs. number of threads (a) S6 for the Galaxy dataset for various query
distances and r = 12; and (b) S7 for the Random-1M, 3M, and 5M datasets, with a query distance
of 15 and r = 10.

searches can be performed independently of each other. The focus in the spatiotemporal database

community has been on out-of-core, sequential implementations; however, with new architectures,

and large main memories, there are a number of attractive alternatives to the current solutions.

4.7 Conclusions

In this chapter, we proposed an implementation motivated by the milieu of spatiotempo-

ral databases that performs query processing using the CPU. In contrast to most works in the spa-

tiotemporal database community, we considered a database that is entirely in memory. Therefore,

the target of optimization is at faster levels of the memory hierarchy. We find that trajectory split-

ting strategies should not necessarily focus on volume reduction for in-memory databases. This is

because volume reduction does not limit the number of trajectories that may be stored in a single

MBB; therefore, a bounded grouping of trajectories may be preferable for in-memory databases.

We demonstrate that a potentially good metric for assessing trajectory splitting strategies is L1

cache misses. Finally, we illustrate that high parallel efficiency is obtained using a multithreaded

OpenMP implementation.

54

Chapter 5

GPU Indexing Scheme and Algorithms for

Memory-Constrained GPGPU Distance

Threshold Searches

Given the arbitrarily large number of moving distance calculations required for distance

threshold searches, the GPU is an attractive alternative to the CPU. However, memory on the GPU

is limited in comparison to the amount of main memory that may be available on the host. In this

chapter, we advance algorithms and an index for a GPGPU execution of the distance threshold

search. To fit within memory constraints, we incrementally process a query set in batches by in-

voking a series of kernels. To perform this batched execution, our proposed methods consider the

non-negligible overhead of kernel invocations. Additionally, our GPU-friendly indexing scheme

and associated GPU kernel are tailored to this batched execution. The performance of the batching

strategy is dependent upon creating efficient query batches; therefore, we develop several algo-

rithms to create such batches. Finally, we develop an empirical response time model for a periodic

batched execution that can predict query response time by a reasonable margin, which makes it

possible to estimate a good batch size. The performance of this implementation is compared to the

performance of the CPU implementation described in Chapter 4. We find that the GPU yields a

significant speedup over the CPU implementation.

55

5.1 General Purpose Computing on the Graphics Processing

Unit

Unlike the CPU, which has few cores and threads that are executed in a multithreaded

implementation (i.e., one thread per physical core), the GPU has many cores and can run hundreds

of threads concurrently. The CPU focuses on executing individual threads very quickly; whereas,

the GPU attempts running many threads, each with a slower execution speed. The GPU is attached

to the PCI express bus, which is a present-day bottleneck in GPGPU computing. To execute a

program to be run on the GPU, the host program, which runs on the CPU, sends instructions and

data to the GPU over the PCI express bus. The program is executed by the GPU and it is called

a kernel. When the GPU is finished, the host retrieves the results from the GPU over the bus.

The host has a much higher bandwidth between CPU and main memory. Therefore, there is an

overhead to using the GPU, which makes the architecture not efficient for all applications.

There are two frameworks used to program the GPU. There is the Compute Unified

Device Architecture (CUDA) framework, developed by NVIDIA, that can be used to program

NVIDIA GPUs. The other framework is the Open Computing Language (OpenCL) framework,

that is developed by the broader community and can be used to program heterogeneous archi-

tectures in general. In this work, we develop our implementations in OpenCL. However, when

referring to the architecture of the GPU and the logical representation of the framework, we use

the more common CUDA terminology (GPU as opposed to device, kernel as opposed to program,

thread as opposed to work-item, etc.).

Figure 5.1 illustrates the architecture of the GPU. Each GPU contains a memory space.

Also, each GPU contains multiple multiprocessors, each of which have multiple scalar cores that

perform the computations. The scalar cores execute the threads within the single instruction,

multiple data (SIMD) environment.

Figure 5.2 illustrates the conceptual memory hierarchy in CUDA. Global memory is the

largest of the memory spaces and is the only memory space that can be accessed by the host to

retrieve the results of a job that has finished running on the GPU. In most programs, the majority

of the data is stored in global memory. Threads are executed in batches of blocks. For each block,

there is a shared memory space that can be utilized by the threads. Therefore, thread synchro-

56

Memory

Multiprocessor

Scalar Core

GPU

Host

Figure 5.1. A semi-physical representation of the architecture of the GPU in the CUDA
nomenclature.

nization is only possible within a block, and not between blocks. There is no guaranteed order of

execution amongst threads because the scheduling of blocks onto cores is not transparent to the

developer. Each thread has its own local memory space.

Threads in a conventional CPU may execute different sections of code concurrently. In

contrast, in the SIMD architecture, threads belonging to the same warp (each warp has 32 threads)

execute together in lock-step at each instruction. Branch instructions, such as an if-statement, can

cause divergence in the instruction flow within warps. If this occurs, the threads executing together

serialize, which causes a loss of parallel efficiency. Therefore, branch conditions that are expected

to have lots of divergence (as a function of the data elements) should be avoided if possible. This

architectural feature is an additional reason why the GPU may not be suited to all applications.

5.2 Problem Definition

Let D be a spatiotemporal database that contains n 4-dimensional (3 spatial dimensions

+ 1 temporal dimension) line segments. A line segment li, i = 1, . . . , n, is defined by a spatiotem-

poral starting point (xstarti , ystarti , zstarti , tstarti), a spatiotemporal ending point (xendi , yendi , zendi ,

tendi), a segment id and a trajectory id. Segments belonging to the same trajectory have the same

trajectory id and are ordered temporally by their segment ids. We call tendi − tstarti the temporal

extent of li and the line segments in D, entry segments.

We consider historical continuous searches that search for entry segments within a dis-

tance d of a query Q, where Q is a set of line segments that belong to a moving object’s trajectory.

We call the line segments in Q query segments. The search is continuous, such that an entry seg-

57

Registers

Thread 0

Local
Memory

Shared Memory

Registers

Thread 1

Local
Memory

Block 0

Registers

Thread 0

Local
Memory

Shared Memory

Registers

Thread 1

Local
Memory

Block 1

Global Memory

Figure 5.2. Conceptual CUDA memory hierarchy.

ment may be within the distance threshold d of particular query segment for only a subinterval of

that segment’s temporal extent. The result set thus contains a set of entry segments, and for each

segment, a time interval. For example, for a query segment with temporal extent [0,1], the search

may return (l1,[0.1,0.3]) and (l2,[0.6,0.9]).

We consider a platform that consists of a host, with RAM and CPUs, and a GPU device

with its own RAM (global, shared, and local) and compute units. We consider an in-memory

database, meaning that D is stored once and for all in global memory on the GPU. We focus on an

online scenario where the objective is to minimize the response time for an arbitrary set of queries.

This is the typical objective considered in other spatiotemporal database works such as the ones

reviewed in Chapter 2. We consider the case in which D and Q cannot fit together on the GPU,

with a twofold rationale. First, the memory on the GPU is limited and in practice a single database

is subjected to a large number of queries. Second, memory for the result set must be allocated

statically since dynamic memory allocation is not permitted on the GPU. However, the result set

size is non-deterministic and depends on the spatiotemporal nature of the data. As a result, memory

58

allocation for the result set must be conservative and overestimate the amount of memory required.

This overestimated size grows linearly with |Q|, thereby creating even more memory pressure on

the GPU. For these two reasons we partition Q in batches that are processed in sequence. Such

incremental query processing is also useful when multiple users query the database simultaneously,

and would thus compete for memory space on the GPU. Note that by using relatively small batch

sizes, the yielded result set fits within the memory of the GPU.

5.3 Trajectory Indexing

Many efficient indexing methods have been proposed in the spatiotemporal database

literature assuming that processing takes place on a CPU. The GPU architecture is markedly dif-

ferent from that of the CPU, in particular due to its SIMD execution model. Therefore, limiting

the amount of conditional branching in GPU implementations is important to achieve good per-

formance. As a result, efficient CPU implementation approaches (which can benefit from branch

prediction techniques) are likely to be vastly inefficient when applied directly to the GPU.

Chapter 4 uses an in-memory R-tree index for processing distance threshold searches on

the CPU. For a given query, the search phase of the computation finds candidate segments as stored

in MBBs in the leaf nodes of the R-tree, and the refine phase reduces these candidates to find those

that should be part of the result set. The majority of the computation is spent in the search phase,

which has many branch instructions to follow R-tree node pointers from the root to the leaves,

which should be avoided on the GPU. Similar observations have been made in the literature when

indexing spatial and spatiotemporal databases on the GPU [72, 71]. The authors in [72] note that

it is not clear whether index-trees should be used at all. The work in [72, 71] utilizes grid files, or

“flatly structured grids,” data structures in which polylines are converted to MBBs and are assigned

to cells on a grid to spatially partition and index the data as an alternative to using index trees. In

this work, we design a GPU-friendly indexing method for scenarios in which large query sets must

be partitioned into batches that are processed iteratively.

In light of the above, we propose the following approach to index the database. We first

sort the entry segments by non-decreasing tstart values. Without loss of generality we assume

that the entry segments are numbered in that order (i.e., tstarti ≤ tstarti+1). The full temporal extent

of database D is [tmin, tmax] where tmin = minli∈D t
min
i and tmax = maxli∈D t

max
i . We divide

59

time0 1 2 3 4 5 6 7 8 9 10 11 12

bin B0

(Bstart
0 , Bend

0) = (0, 7.5)

(Bfirst
0 , Blast

0) = (0, 5)

bin B1

(Bstart
1 , Bend

1) = (3, 6.2)

(Bfirst
1 , Blast

1) = (6, 8)

bin B2

(Bstart
2 , Bend

2) = (6, 11)

(Bfirst
2 , Blast

2) = (9, 11)

bin B3

(Bstart
3 , Bend

3) = (9, 12)

(Bfirst
3 , Blast

3) = (12, 14)

l0 l1

l2
l3

l4

l5

l6

l7

l8

l9
l10 l11

l12

l13
l14

Figure 5.3. Example indexing of line segments into bins.

this temporal extent logically into m bins of fixed length b = (tmax − t0)/m. We say that an

entry segment li, i = 1, . . . , n, belongs to bin Bj , j = 1, . . . ,m, if btstarti /bc = j. For bin

Bj we can then define Bstart
j = j × b and Bend

j = max((j + 1) × b,maxli∈Bj
tendi). We call

[Bstart
j , Bend

j] the temporal extent of bin Bj . We then define Bfirst
j = arg mini|li∈Bj

tstarti and

Blast
j = arg maxi|li∈Bj

tstarti . [Bfirst
j , Blast

j] is thus the index range of the entry segments in Bj .

Bin Bj is thus fully described as (Bstart
j ,Bend

j , Bfirst
j , Blast

j). The set of bins is the “index” of the

database.

Figure 5.3 shows an example for a database with 14 entry segments along the time axis

with a total temporal extent of 12 (segments are simply shown as non-overlapping horizontal lines

as we do not depict their spatial dimensions or orientations). The temporal extent of the database is

logically divided into 4 bins, and for each bin we indicate the Bstart,Bend, Bfirst and Blast values.

For instance, bin B1 contains the three entry segments with tstart in the [3, 6) interval, i.e., l6,l7
and l8. Therefore, Bfirst

1 = 6 and Blast
1 = 8. Among the three entry segments in bin B1, l8 has the

highest tend value at 6.2. Therefore, Bstart
1 = 3 and Bend

1 = 6.2.

Given the database and set of bins, we consider a query set Q. We first sort the query

segments by non-decreasing tstart values in O(|Q| log |Q|) time, which gives the temporal extent

of the query (the combined temporal extent of the query segments). We then determine the set of

(contiguous) bins that temporally overlap the temporal extent of the query. We do this determina-

tion in O(logm) time by using an index-tree in which we store the bins’ temporal extents. Given

this set of bins, B, we compute first = minB∈B B
first
j and last = maxB∈BB

last
j in O(1) time.

We thus obtain EQ = {li ∈ D|first ≤ i ≤ last}, the set of the candidate entry segments that may

60

B0

(0,7.5)
6

B1

(3,6.2)
3

B2

(6,11)
3

B3

(9,12)
3

temp. extent:
entry segs:

(0.1,5.2)
10

(4.8,6.1)
10

(5.7,8.9)
10

(8.0,9.2)
10

(8.5,10.5)
10

(11.5,12)
10

temp. extent:
query segs:

interactions:
450 =

600 =

630 =

900 =

10×(6+3) + 10×(6+3) +10×(6+3+3)+ 10×(3+3) + 10×(3+3) + 10×3

20×(6+3) + 20×(6+3+3+3) + 20×(3+3)

30×(6+3+6) + 30×(3+3)

60×(6+3+3+3)

Figure 5.4. Example matching between query batches and entry bins.

be part of the result set. Each query segment must then be compared to each candidate segment in

EQ. We term each such a comparison an interaction, and we have a total of |Q|×|EQ| interactions.

Some of the computed interactions are certain to not add the candidate to the result set.

For instance, in the context of the example in Figure 5.3, consider a query with a single query

segment with temporal extent [8,10]. The query segment overlaps the temporal extents of bin B2

and bin B3, meaning that it will be compared to l9, . . . , l14. And yet, l10, l13, and l14 cannot overlap

the query segment’s temporal extent. More generally, the larger |Q|, the larger the number of

interactions, and thus the larger the number of “wasteful” interactions. This observation provides

a motivation for processing query segments in relatively small batches (in addition to the fact

that using batches is necessary because memory for the result set must be allocated statically–see

Section 5.2).

Figure 5.4 shows an example of how using batches decreases the number of interactions.

The top of the figure shows the same set of bins as in Figure 5.3, without showing the entry

segments but indicating temporal extents and numbers of entry segments. The bottom of the figure

shows a set of 60 query segments partitioned into 6 batches. For each query batch we indicate its

temporal extent and its number of segments. An arrow is drawn between a query batch and an entry

bin if the query segments in the batch must be compared to the entry segments in the bin. Below

the batches we show the number of interactions necessary to process the query. For instance, batch

2 has a temporal extent (5.7,9,1), which overlaps with the temporal extents of bins B0, B1, and

B2, which contain 6, 3, and 3 entry segments, respectively. Therefore, the processing of batch 2

61

entails 10×(6+3+3)=120 interactions. Using 10-segment query batches results in a total of 450

interactions. The figure also shows the number of interactions using larger batches. For instance,

while processing 10-segment batch 2 requires 120 interactions and processing 10-segment batch 3

requires 60 interactions, processing the aggregate 20-segment batch leads to 20×(6+3+3+3) = 300

> 180 interactions. In this example, processing all query segments as a single 60-segment batch

would lead to 900 interactions, twice the number of interactions when using 10-segment batches.

Processing each query segment individually (batch size of 1) minimizes the number of segment

interactions. However, processing each batch incurs the non-negligible overhead of sending data

from the host to the GPU and of invoking a GPU kernel. Consequently, one of the questions we

investigate in this work is that of choosing batch sizes that minimize query response time.

Note that more advanced indexing methods could be envisioned that inform each indi-

vidual entry what queries temporally overlap to avoid computing wasteful interactions. However,

these methods lead to more data transfer overhead between the host and the GPU. Preliminary

results show that in practice this overhead leads to significant increases in total response time in

spite of reducing the number of wasteful interactions.

Given the above, we propose the following general approach for implementing distance

threshold searches on the GPU. The entry segments inD, sorted by non-decreasing tstart values are

stored contiguously in the global memory of the GPU. The database index, i.e., the description of

the bins, and the query segments in Q (sorted by non-decreasing tstart values) are stored in RAM

on the host. The query segments are partitioned in batches (not necessarily of identical sizes). For

each batch, the index range of the candidate entry segments is calculated using the bins. The query

segments in a batch and the index range, which is encoded as two integers, are sent from the host

to the GPU. The candidate entry segments are then compared to the query segments, generating a

result set that is returned to the CPU. Our indexing method guarantees that these candidate entry

segments are stored contiguously in memory, which allows for efficient memory transfers between

global, local and private memory spaces on the GPU, and which reduces the use of branches. The

search is complete when all batches have been processed in this manner. In Section 5.4 we describe

our GPU kernel for performing the search, while in Section 5.5 we describe approaches for picking

good batch sizes.

62

5.4 Search Algorithm

In this section we describe an algorithm, GPUTRAJDISTSEARCH, that performs dis-

tance threshold searches using the indexing and search techniques outlined in Section 5.3. This

algorithm is implemented as a GPU kernel using OpenCL, and optimized to use as few branch

instructions as possible. To take advantage of the high number of hardware threads on the GPU

and of its fast context-switching we simply use one GPU thread for each candidate entry segment.

Each thread then compares its candidate entry segment to all query segments in the batch. Using

Qbatch to denote a query batch, which is a subset of Q, each thread then computes |Qbatch| inter-

actions. Another option would be to use one thread per query segment, but it runs the risk of not

fully utilizing all available hardware threads since |Qbatch|, unlike |D|, is not large. More specif-

ically, the kernel takes as input: (i) Qbatch, an array of query trajectory segments sorted by tstart

values; (ii) firstCandidate, the index in D of the first candidate entry segment (recall that the entire

database D is stored on the GPU once and for all); (iii) numCandidates, the number of candidate

entry segments; (iv) d, the threshold distance; and (v) setID, a global index that keeps track of

the location in memory where the next result set item should be written. Qbatch, firstCandidate,

numCandidates are computed on the host before executing the kernel and transferred to the GPU

along with d and setID. The kernel returns a set of time intervals annotated by trajectory ids.

The pseudo-code of the kernel is shown in Algorithm 2. The threads in OpenCL are

numbered using a global id (gid≥ 0). As we use only numCandidates threads, all threads with gid

larger than numCandidates do not participate in the computation (lines 2-5). Once the result set

is initialized to the empty set (line 6), the relevant candidate segment is copied into the thread’s

private memory (variable entrySegment) line 7. The algorithm then loops over all query segments

to compute interactions between the candidate segment and the query segments (line 8). Given

the candidate segment and the current query segment, function temporalIntersection() generates

new candidate and query segments that span the same time interval (line 9). The algorithm then

computes the interval of time during which these two segments are within a distance d of each other

(line 10), which involves computing the coefficients of and solving a degree two polynomial [20]

(see Appendix B). If this interval is non-empty, then setID is incremented atomically (line 12).

The interval is annotated with the trajectory id and added to the result set (line 13). The full result

set is returned once all interactions have been computed.

63

Algorithm 2 Pseudo-code for the GPUTRAJDISTSEARCH kernel algorithm.
1: procedure GPUTRAJDISTSEARCH (Qbatch, firstCandidate, numCandidates, d, setID)
2: gid← getGlobalId()
3: if gid≥numCandidates then
4: return
5: end if
6: resultSet← ∅
7: entrySegment← D[firstCandidate + gid]
8: for all querySegment ∈ Qbatch do
9: (entrySegment, querySegment)← temporalIntersection(

entrySegment,querySegment)
10: timeInterval← calcTimeInterval(

entrySegment,querySegment,d)
11: if timeInterval 6= ∅ then
12: resultID← atomic inc(setID)
13: resultSet[resultID]← resultsSet[resultID] ∪ timeInterval
14: end if
15: end for
16: return resultSet[0:setID]
17: end procedure

The size of the result set for a kernel invocation could be as high as the number of inter-

actions, |Qbatch|×numCandidates. However, in practice, only a small fraction of the interactions

are added to the result set. Since memory for the result set must be allocated statically, in our ex-

periments we conservatively allocate enough memory for a result set with as many items as there

are entries in the dataset. In practice, one could allocate much less memory, and in the rare cases

in which more memory is needed one would simply re-attempt the kernel execution with more

allocated memory.

5.5 Generation of Query Batches

As explained in Section 5.3, an important question is that of choosing appropriate, per-

haps optimal, query batch sizes. Using small batches increases the total number of kernel invo-

cations, and each such invocation has a non-negligible overhead. Conversely, using large batches

increases the number of wasteful interactions. This increase was demonstrated in Figure 5.4 as

an example. Figure 5.5 shows the actual number of interactions per query segment vs. the num-

ber of queries per batch for a total of 40,000 query segments over the GALAXY dataset with 106

64

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 14000

 15000

 0 50 100 150 200 250 300 350 400

In
te

ra
c
tio

n
s
/Q

u
e

ry

Queries/Batch

Interactions/Query

Figure 5.5. The number of interactions per query vs. batch size, for the GALAXY dataset (106

entry trajectory segments), with 40,000 query trajectory segments.

entry segments (see Section 5.6.1 for details on the datasets and queries used for experimental

evaluations). As expected, the number of computed interactions, and thus the number of wasteful

interaction computations, grows almost perfectly linearly with the batch size.

Beyond the above trade-off between between high overhead and high numbers of waste-

ful interactions, the temporal properties of the dataset should guide how one groups the query

segments into batches. For instance, consider the example shown in Figure 5.4. The first and sec-

ond sets of 10 query segments both overlap with the same set of entry segments (entry bins B0 and

B1). Therefore, it is likely a good idea to group the first 20 query segments in a batch, since no

extra wasteful interactions will be generated by this grouping (a total of 180 interactions). Con-

sider now grouping together the third set of 10 query segments (which requires 10×(6+3+3)=120

interactions) and the fourth set of 10 query segments (which requires 10×(3+3)=60 interactions).

This grouping leads to 20×(6+3+3+2)=280 interactions, for 280-120-60=100 extra wasteful inter-

actions. As seen in this example, while picking a good batch size is important, it is also important

to group together query segments that together do not overlap too many entry bins. In light of

these considerations, in what follows we propose several algorithms to group query segments into

batches.

65

5.5.1 Periodic

A simple approach to define query batches is to pick a single batch size, s, as in Fig-

ure 5.4. Each consecutive subsets of s queries in Q are then grouped together in a batch, for a total

of b = |Q|/s batches and thus b kernel invocations. We call this approach PERIODIC.

5.5.2 SetSplit

We propose a class of O(|Q|2) algorithms, called SETSPLIT, that attempt to group query

segments together in a way that reduces wasteful interactions while yielding batches that are not

too small.

The first algorithm, SETSPLIT-FIXED (Algorithm 3), produces a specified number of

batches. More specifically, SETSPLIT-FIXED takes as input a set of query segments, Q, and the

number of batches to generate, numBatches, and outputs a set of batches. The first step is to create

a list of batches, B, in which each element is a single query segment (line 2). While the number

of batches is larger than numBatches, the algorithm iteratively merges two adjacent batches into

a single batch (loop at line 3). For each possible such merge (loop at line 5), we compute the sum

of the numbers of interactions of two adjacent batches (line 6) and the number of interactions of

the merge of these two batches (line 7). We determine the potential merge operation that would

lead to the smallest increase in number of interactions (line 8), keeping track of the index of the

first batch in that merge, bestMerge. We then replace batch bestMerge by a batch obtained by

merging batch bestMerge and batch bestMerge+ 1, and remove batch bestMerge+ 1 (lines 13

and 14). The algorithm returns an array built from list B.

A drawback of SETSPLIT-FIXED is that it can produce many small batches, and poten-

tially many batches that contain a single query segment, and thus lead to high overhead. Using a

lower numBatches value leads to more merge operations and thus lower overhead. However, it is

unclear how to pick the best value for this parameter since it depends on the temporal properties of

the datasets. To address these shortcomings, we propose another algorithm, SETSPLIT-MINMAX,

that generates batches while imposing constraints on minimum and maximum batch sizes.

The pseudo-code of SETSPLIT-MINMAX is shown in Algorithm 4. SETSPLIT-MINMAX

takes as input a set of query segments,Q, a lower bound on the batch size,min, and an upper bound

on the batch size, max. It outputs a set of batches. The first phase of the algorithm (lines 2-21) is

66

Algorithm 3 Pseudo-code for the SETSPLIT-FIXED algorithm.
1: procedure SETSPLIT-FIXED (Q, numBatches)
2: B ← list(Q)
3: while |B| > numBatches do
4: minDiff← +∞
5: for i = 0, . . . , |B| − 2 do
6: numIntsUnmerged← numInts(B[i]) + numInts(B[i+ 1])
7: numIntsMerged← numInts(merge(B[i],B[i+ 1]))
8: if numIntsMerged - numIntsUnmerged < minDiff then
9: minDiff← numIntsMerged - numIntsUnmerged

10: bestMerge← i
11: end if
12: end for
13: B[bestMerge]← merge(B[bestMerge],B[bestMerge+1])
14: B.removeElementAt(bestMerge+1)
15: end while
16: return array(B)
17: end procedure

similar to Algorithm 3 but for the fact that merges that would lead to a batch with more than max

query segments are ignored (line 6). The second phase of the algorithm (lines 22-40) loops until

no batch remains that contains fewer than min query segments. For each such batch, the algorithm

considers the merge with the predecessor batch if any (lines 23-27), and with the successor batch

if any (lines 28-32). The algorithm then performs the merge that leads to the smallest increase in

number of interactions (lines 33-39). The algorithm returns an array built from list B.

We also consider an algorithm, SETSPLIT-MAX, that is a special case of SETSPLIT-

MINMAX with min = 1, i.e., with no constraint imposed on the minimum batch size.

5.5.3 GreedySplit

In this section, we present a class of O(|Q|) algorithms, called GREEDYSETSPLIT. Like

SETSPLIT, GREEDYSETSPLIT also attempts to avoid small batches and to reduce wasteful inter-

actions, but with lower complexity. The main idea behind GREEDYSETSPLIT is to first do all the

“free” merges, i.e., those merges that do not increase the number of interactions, and then to merge

contiguous batches using a single pass through the set of batches. The GREEDYSETSPLIT-MIN

algorithm imposes a lower bound on the minimum batch size, while the GREEDYSETSPLIT-MAX

algorithm imposes an upper bound on the maximum batch size. We consider a single constraint (ei-

67

Algorithm 4 Pseudo-code for the SETSPLIT-MINMAX algorithm.
1: procedure SETSPLIT-MINMAX (Q, min, max)
2: B ← list(Q)
3: while true do
4: minDiff← +∞
5: for i = 0, . . . , |B| − 2 do
6: if numSegments(merge(B[i],B[i+ 1])) > max then
7: continue
8: end if
9: numIntsUnmerged← numInts(B[i]) + numInts(B[i+ 1])

10: numIntsMerged← numInts(merge(B[i],B[i+ 1]))
11: if numIntsMerged - numIntsUnmerged < minDiff then
12: minDiff← numIntsMerged - numIntsUnmerged
13: bestMerge← i
14: end if
15: end for
16: if minDiff = +∞ then
17: break
18: end if
19: B[bestMerge]← merge(B[bestMerge],B[bestMerge+1])
20: B.removeElementAt(bestMerge+1)
21: end while
22: while there exists B[i] such that numSegments(b) < min do
23: if i > 0 then
24: numIntsLeft = numInts(merge(B[i− 1],B[i]))
25: else
26: numIntsLeft =∞
27: end if
28: if i < |B| − 1 then
29: numIntsRight = numInts(merge(B[i],B[i+ 1]))
30: else
31: numIntsRight =∞
32: end if
33: if numIntsLeft < numIntsRight then
34: B[i]← merge(B[i− 1],B[i])
35: B.removeElementAt(i− 1)
36: else
37: B[i]← merge(B[i],B[i+ 1])
38: B.removeElementAt(i+ 1)
39: end if
40: end while
41: return array(B)
42: end procedure

68

ther minimum or maximum batch sizes), as designing a GREEDYSETSPLIT algorithm that would

impose both constraints and terminates is difficult (a batch that is too large may need to be broken

into batches that may then be too small).

GREEDYSETSPLIT-MIN takes as input a set of query segments, Q, and a lower bound

on the batch size, bound, and it outputs a set of batches. Its pseudo-code is shown in Algorithm 5.

In the first phase of the algorithm (lines 3-11), the algorithm traverses the set of batches, B, and

merges two adjacent batches if this merge does lead to an increase in number of interactions. In

a second phase (lines 12-20), the algorithm iteratively merges a batch with its successor if the

batch contains fewer than min query segments (line 14). In the GREEDYSETSPLIT-MAX, line 14

is replaced by a “numSegments(B[i])>bound” test and the if and else clauses are swapped. The

algorithm returns an array built from list B.

Algorithm 5 Pseudo-code for the GREEDYSETSPLIT-MIN algorithm.
1: procedure GREEDYSETSPLIT (Q, bound)
2: B ← list(Q)
3: i← 0
4: while i < |B| − 1 do
5: if numInts(merge(B[i],B[i+ 1])) = numInts(B[i]) + numInts(B[i+ 1]) then
6: B[i]← merge(B[i],B[i+ 1])
7: B.removeElementAt(i+ 1)
8: else
9: i← i+ 1

10: end if
11: end while
12: i← 0
13: while i < |B| − 1 do
14: if numSegments(B[i]) < bound then
15: B[i]← merge(B[i],B[i+ 1])
16: B.removeElementAt(i+ 1)
17: else
18: i← i+ 1
19: end if
20: end while
21: return array(B)
22: end procedure

69

5.6 Experimental Evaluation

5.6.1 Datasets

We evaluate our query processing scheme using several datasets, all of which are 4-

dimensional (3 spatial dimensions, 1 temporal dimension). Our first dataset, called GALAXY,

contains trajectories of stars moving in the Milky Way’s gravitational field (as generated by the

astronomy application described in Chapter 3). More specifically, this dataset contains 106 trajec-

tory segments, corresponding to 2,500 trajectories of 400 timesteps each. Since each trajectory has

the same number of timesteps and about the same temporal extent, the temporal profile of active

trajectories is roughly uniform. However, since our approach relies on temporal data partitioning,

we also generate synthetic datasets with various temporal profiles of the number of active trajec-

tories. Such profiles occur, for instance, in datasets of vehicular traffic trajectories with nighttime,

daytime, and rush hour patterns.

Our random datasets contain trajectories with random movements, similar to Brow-

nian motion. The RANDWALK-UNIFORM dataset consists of 400-timestep trajectories whose

start times are sampled from a uniform distribution over the [0,100] interval. The RANDWALK-

NORMAL dataset is similar but uses a normal distribution to generate start times, with a mean of

200 and standard deviation of 200, truncated to the [0,400] interval. The RANDWALK-EXP dataset

consists of trajectories with numbers of timesteps that are sampled from an exponential distribu-

tion with lambda=1/70, truncated to the [2,1000] interval, with start times sampled from a uniform

distribution over a the [0,20] timestep interval. The RANDWALK-NORMAL5 dataset is generated

but one of 5 different normal distributions is randomly selected when generating trajectories. This

dataset thus exhibits distinct active and inactive phases, as occurs in datasets such as the vehicular

traffic example above. The various parameter values for generating these datasets were picked so

as to produce distinct patterns of numbers of entry segments assigned to entry bins. These patterns

are shown in Figure 5.6 (a)-(e) for each dataset. In addition, Figure 5.6 (f) shows a sample of tra-

jectories for the GALAXY dataset. Table 5.1 lists the number of trajectories and of entry segments

in the datasets.

70

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500 600

N
u

m
b

e
r

Bin(t)

(a) RANDWALK-UNIFORM

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600 700 800 900

N
u

m
b

e
r

Bin(t)

(b) RANDWALK-NORMAL

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 500 1000 1500 2000 2500

N
u

m
b

e
r

Bin(t)

(c) RANDWALK-NORMAL5

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600 700

N
u

m
b

e
r

Bin(t)

(d) RANDWALK-EXP

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.2 0.4 0.6 0.8 1 1.2

N
u

m
b

e
r

Bin(t)

(e) GALAXY

(f) Sample trajectories from GALAXY.

Figure 5.6. Temporal distributions of active entry trajectory line segments in the datasets are shown
in panels (a) through (e). The time corresponding to the midpoint of the bin is plotted on the
horizontal axis, and the number of segments in the bin is shown on the vertical axis. A sample of
the trajectories in the GALAXY dataset is shown (f).

71

Table 5.1. Characteristics of Datasets
Dataset Trajectories Entries

RANDWALK-UNIFORM 2,500 997,500
RANDWALK-NORMAL 2,500 1,000,000

RANDWALK-NORMAL5 2,500 1,000,000
RANDWALK-EXP 10,000 684,329

GALAXY 2,500 1,000,000

5.6.2 Experimental Methodology

The GPU-side implementation is developed in OpenCL, and the host-side implementa-

tion is developed in C++. The host-side implementation is executed on one of the 6 cores of a

dedicated 3.46 Ghz Intel Xeon W3690 processor with 12 MB L3 cache, while the GPU side runs

on an Nvidia Tesla C2075 card. We measure query response times averaged over 3 trials (standard

deviation over the trials is negligible). In all experiments the number of entry bins in our index is

set to 10,000. The implementations have been validated to ensure correctness. To guarantee that

we do not obtain false positive or negative results, we compare the results of our implementation

to an alternate implementation that utilizes a brute force approach.

In our experiments, we utilize the following trajectory searches:

• S1: From the GALAXY dataset, 100 trajectories are processed with d = 1, and with a total

of 40,000 query line segments.

• S2: From the GALAXY dataset, 100 trajectories are processed with d = 5, and with a total

of 40,000 query line segments.

• S3: From the RANDWALK-UNIFORM dataset, 100 trajectories are processed with d = 5,

and with a total of 39,900 query line segments.

• S4: From the RANDWALK-UNIFORM dataset, 100 trajectories are processed with d = 25,

and with a total of 39,900 query line segments.

• S5: From the RANDWALK-NORMAL dataset, 100 trajectories are processed with d = 50,

and with a total of 40,000 query line segments.

• S6: From the RANDWALK-NORMAL dataset, 100 trajectories are processed with d = 150,

and with a total of 40,000 query line segments.

72

• S7: From the RANDWALK-NORMAL5 dataset, 100 trajectories are processed with d = 50,

and with a total of 40,000 query line segments.

• S8: From the RANDWALK-NORMAL5 dataset, 100 trajectories are processed with d = 150,

and with a total of 40,000 query line segments.

• S9: From the RANDWALK-EXP dataset, 1000 trajectories are processed with d = 50, and

with a total of 52,044 query line segments.

• S10: From the RANDWALK-EXP dataset, 1000 trajectories are processed with d = 100, and

with a total of 69,881 query line segments.

For a given entry set the response time depends on the query set. This is because the

spatiotemporal features of the queries determine the number of interactions to compute. However,

we find that in all of our results, regardless of the query set, all of our candidate algorithms lead

to response times with a relatively narrow range. For instance, for the GALAXY dataset and 10

different sample query sets, and for a query distance d = 5, the relative response time difference

between the fastest and the slowest algorithm is only 1.99% on average and at most 3.08%. While

the ranking of the particular algorithms may differ from one query set to another, these variations

do not translate to large response time differences. Consequently, we only present results for a

single query set.

5.6.3 Sequential Implementation and Multi-core OpenMP

While this work focuses on distance threshold searches on the GPU, Section 4.6 shows

the results for our CPU implementation. To reiterate, the CPU implementation uses an R-tree index

to store trajectory segments inside MBBs. One interesting question is how to “split” a trajectory,

i.e., deciding on which (contiguous) segments should be stored in the same MBBs. In Section 4.6

we propose a trajectory splitting strategy that achieves a trade-off between the number of entries in

the index, the volume of the space occupied by the MBBs, and the computational cost of candidate

trajectory segment processing. Figure 5.7 shows average query response time vs. the number

of segments indexed per MBB, for the GALAXY dataset for query distances d = 1, . . . , 5, when

executed on the host described in Section 5.6.2. In this case, indexing 12 segments per MBB yields

the lowest average response time. The sequential CPU implementation can be easily parallelized

73

 0

 50

 100

 150

 200

 2 10 18 26

T
im

e
 (

s
)

Segments/MBB

Distance: 1
Distance: 2
Distance: 3
Distance: 4
Distance: 5

Figure 5.7. Response time vs. segments per MBB (r) for the GALAXY dataset with the same query
set outlined in S1, but with d = 1, 2, 3, 4, 5.

using OpenMP. Figure 5.8 shows the response time vs. the number of threads for the GALAXY

dataset, with 12 trajectory segments per MBB. On our 6-core host parallel efficiency is high (78%-

90%), with parallel speedup between 4.69 and 5.44 with 6 threads. In what follows, we draw some

comparisons between the performance of this CPU-only implementation and the performance of

our GPU implementation. Note that these results are slightly different than those in Section 4.6

because we ran the experiments on a different platform.

5.6.4 Performance Evaluation

Let us first compare the performance of GPUTRAJDISTSEARCH to that of the sequential

and parallel CPU implementations described in the previous section. We find that the relative

performance of the GPU and CPU implementation is consistent across experimental scenarios. Let

us consider experimental scenario S2 and only the PERIODIC algorithm for creating batches (using

a batch size of 120). Our GPU implementation achieves average response time as low as 2.08

s, while for the same experimental scenario our sequential CPU implementation (using the best

number of query segments per MBB for that scenario) leads to an average response time of 31.62

s. Our GPU implementation thus gives a speedup of 15.2 over the sequential CPU implementation.

When compared to the OpenMP parallel CPU implementation, the average response time is 6.88

s, so that our GPU implementation achieves a speedup of 3.3. While these results are tied to the

hardware characteristics of our experimental platform, we conclude that a GPU implementation of

74

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6
 1

 2

 3

 4

 5

 6

 7

 8

T
im

e
 (

s
)

S
p

e
e

d
u

p

Threads

Distance: 1
Speedup Distance: 1

Distance: 3
Speedup Distance: 3

Distance: 5
Speedup Distance: 5

Figure 5.8. Response time vs. number of threads for the GALAXY dataset with the same query set
outlined in S1 with d = 1, 3, 5 and r = 12. Results obtained using six cores on the platform.

distance threshold query processing is worthwhile and can yield substantial improvement over a

CPU-only version.

We now evaluate the relative merit of the algorithms for creating query segment batches

(PERIODIC, SETSPLIT, GREEDYSETSPLIT). The results are similar across experimental scenar-

ios; therefore, note that most of the following figures appear in the appendix. Response time results

for experimental scenarios S1 to S10 are shown as follows: Figure 5.9 (for S1 and S2), Figure A.1

(for S3 and S4), Figure A.2 (for S5 and S6), Figure A.3 (for S7 and S8), and Figure A.4 (for S9

and S10). For each experimental scenario, the response time of the PERIODIC algorithm is plot-

ted versus the batch size on the left-hand side of the figure. A zoomed-in version of each plot

is shown on the right-hand side, which shows the neighborhood of the best batch size for PERI-

ODIC, as well as the response times of the SETSPLIT and GREEDYSETSPLIT algorithms (which

are shown as horizontal lines). These results correspond to a “best case” for the SETSPLIT and

GREEDYSETSPLIT algorithms, for two reasons. First, the response time results do not include the

time necessary to compute the query batches. This time is negligible for PERIODIC, but can be

significant for SETSPLIT and even for GREEDYSETSPLIT, as discussed at the end of this section.

Second, using an exhaustive search, for each experimental scenario we have determined the best

parameter configuration for the SETSPLIT and GREEDYSETSPLIT algorithms (i.e., the best num-

ber of batches for SETSPLIT-FIXED, the best maximum batch size for SETSPLIT-MAX, the best

minimum and maximum batch size for SETSPLIT-MINMAX, the best minimum batch size for

75

Table 5.2. Percentage response time difference relative to the lowest response time for all algo-
rithms and experimental scenarios. Results for the algorithm with the lowest response time shown
in boldface.
Algorithm S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
GREEDYSETSPLIT-MAX 0.15 0.15 0.15 0.00 0.00 0.60 1.44 0.34 1.29 0.16
GREEDYSETSPLIT-MIN 0.00 0.24 0.00 0.15 0.52 0.11 0.00 0.00 0.93 0.10
SETSPLIT-FIXED 1.11 1.69 1.03 1.02 0.92 1.03 2.34 1.52 562.90 0.62
SETSPLIT-MAX 1.50 1.97 1.02 0.35 1.51 1.54 3.37 2.78 0.90 0.69
SETSPLIT-MINMAX 0.24 0.33 0.10 0.17 0.69 0.00 0.77 0.93 0.00 0.00
PERIODICBEST 0.37 0.00 0.23 0.50 0.83 1.03 1.11 0.09 1.50 1.69
PERIODICGOOD 3.21 2.47 1.64 3.56 2.15 1.43 2.21 1.05 2.52 2.69

GREEDYSETSPLIT-MIN, and the best maximum batch size for GREEDYSETSPLIT-MAX). The

results in Figures 5.9-A.4 are summarized in Table 5.2, which shows for each algorithm, and each

experimental scenario, the percentage response time difference relative to the response time of the

best algorithm for that experimental scenario. We show two versions of the PERIODIC algorithm.

PERIODICBEST corresponds to PERIODIC when using the batch size that leads to the lowest re-

sponse time for the experimental scenario at hand. PERIODICGOOD corresponds to PERIODIC but

using the worst batch size in a -20/+20 neighborhood of the best batch size (i.e., the batch size in

that interval that leads to the highest response time).

Some trends are clearly seen in the results. Over the 10 experimental scenarios, the

SETSPLIT and GREEDYSETSPLIT algorithms all lead to response times that are close to each

other (within 3.4%). One exception is for SETSPLIT-FIXED, which leads to a significantly larger

response time for S9 (about a factor 10 larger than the other algorithms). Recall that SETSPLIT-

FIXED creates a fixed number of batches without any constraint on the maximum batch size. S9

contains entries with exponentially distributed temporal extents, which causes SETSPLIT-FIXED

to create a few very large batches at the tail of the distribution (which leads to the smallest minDiff

value - line 8 in Algorithm 3). These large batches are the reason for the high response time of

SETSPLIT-FIXED. This problem does not occur for experimental scenario S10 due to the larger

total number of query segments. An interesting finding is that the GREEDYSETSPLIT algorithms,

even though they use a single pass through the query segments, do well. GREEDYSETSPLIT-MAX,

resp. GREEDYSETSPLIT-MIN, leads to the lowest response time in 2, resp. 4, of the 10 experimen-

tal scenarios. Overall, the GREEDYSETSPLIT algorithms are among the 3 best algorithms for each

76

experimental scenario. This suggests that the quadratic complexity of the SETSPLIT algorithm to

attempt a less local optimization is in fact unnecessary.

The key observation from our results is that PERIODIC leads to good performance. As

seen in Figure 5.9, the response time of PERIODIC can be high for some batch sizes. However,

when using the best batch size, PERIODIC can produce response time on par or even better than that

of the GREEDYSETSPLIT and SETSPLIT algorithms. Overall, for each experimental scenario PE-

RIODICBEST leads to response times at most 1.69% larger than that of the best GREEDYSETSPLIT

or SETSPLIT algorithm for that scenario. It even leads to the lowest response time for experimental

scenario S2. Even when PERIODIC does not use the best batch size it leads to good results. PERI-

ODICGOOD still leads to response times at most 3.56% larger than the best GREEDYSETSPLIT or

SETSPLIT algorithm over the 10 experimental scenarios.

As explained above, our results do not include the time to compute the batches. Due

to quadratic complexity, for the SETSPLIT algorithms this time is large, factors larger than the

query response time for our experimental scenarios. Overall, when adding the time to com-

pute the batches (on the CPU), we find that the SETSPLIT algorithms lead to average response

time more than 4.69 times larger than PERIODICBEST and up to 8.84 times larger (discounting

SETSPLIT-FIXED for experimental scenario S9, which leads to response time 12.76 times larger).

The GREEDYSETSPLIT algorithms fare better when compared to PERIODICBEST, with response

times only up to 2.9% larger over all experimental scenarios. This is because these algorithms have

linear complexity.

We conclude that although computing batches that reduce wasteful interactions, as in

the SETSPLIT and GREEDYSETSPLIT algorithms, is an appealing idea, in practice it does not

outperform a simple periodic approach. This is because the small response time benefit due to the

use of better batches is offset by the CPU time overhead of computing these batches. One drawback

of PERIODIC is that one must specify a good batch size, i.e., a batch size in a neighborhood of the

best batch size. In the next section, we propose performance modeling techniques that can be used

to determine such a good batch size.

77

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Queries/Batch

Galaxy:d=1

(a)

 1.9

 1.95

 2

 2.05

 2.1

 0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Queries/Batch

Galaxy:d=1

(b)

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Queries/Batch

Galaxy:d=5

(c)

 2.05

 2.1

 2.15

 2.2

 2.25

 2.3

 2.35

 2.4

 0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Queries/Batch

Galaxy:d=5

(d)

Figure 5.9. Response time vs. queries/batch (s) for the periodic query batch method for S1
(a) and S2 (c) (GALAXY dataset). Panels (b) and (d) correspond to zoomed in versions of (a)
and (c) respectively, to highlight the minimum response times. The colored lines correspond
to the best response time from the query splitting algorithms, where SETSPLIT-FIXED is pur-
ple, SETSPLIT-MAX is green, SETSPLIT-MINMAX is red, GREEDYSETSPLIT-MIN is blue, and
GREEDYSETSPLIT-MAX is black.

78

5.7 Performance Modeling

Previous work on spatiotemporal database querying, and in particular works that consider

distance threshold searches [5], and the work in Chapter 4 rely on index-trees, such as R-trees.

These index-trees have complex performance behavior as the traversal time depends on the set

of pointers followed on a path toward a leaf node, which is highly data dependent. As a result,

predicting query response time is challenging. An added difficulty in the case of distance threshold

searches is that one query may lead to a large result set while another may lead to an empty result

set.

Because designed for GPU execution, the indexing scheme proposed in this work (Sec-

tion 5.3 and 5.4) does not rely on index-trees. While not completely free of data-dependent be-

havior, the more deterministic behavior of this scheme makes it possible to predict query response

time. And in particular, such prediction is sufficiently accurate to determine a good batch size for

the PERIODIC algorithm.

The model consists of a GPU component and CPU component. The GPU component

accounts for the invocation overhead and execution time of each individual kernel invocation,

so that summing over all invocations gives the estimated GPU time for processing the entire set

of query segments. The CPU component accounts for the time to perform memory allocations,

set kernel parameters, send query data to the GPU, receive result sets from the GPU, marshal

data, and perform other CPU-side computations (e.g., counter and pointer updates). Figure 5.10

shows response time results for the S1 experimental scenario, showing both the CPU and GPU

components. The GPU curve shows an initial decrease as the batch size, s, increases in the interval

10 ≤ s ≤ 40. This decrease is because for low s values the GPU device is underutilized and

the kernel invocation overhead is large due to many such invocations. For s ≥ 50, the GPU time

increases due to the increasing number of interactions that must be computed (as explained in

Section 5.5). The CPU time curve shows a steady decrease as s increases. This is because the

smaller the value of s the more kernel invocations and thus the more work done on the CPU. We

show two portions of the CPU time. The time necessary to perform kernel invocations, including

the transfer of query segments from the CPU to the GPU, is shown as a shaded cyan portion below

the CPU curve. The shaded blue portion corresponds to the time necessary for transferring result

sets from the GPU back to the CPU.

79

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Queries/Batch

CPU: Kernel invocation overhead

CPU: Result Set Transfer

Galaxy:d=1 Total
Galaxy:d=1 CPU
Galaxy:d=1 GPU

Figure 5.10. Response time vs. queries/batch (s) for S1 (GALAXY dataset with d = 1). The
individual CPU and GPU components are shown.

5.7.1 GPU Component

Model

In this section, we derive an empirical model for the GPU component of our performance

model. Let us use TGPU(i, c) to denote the GPU time for a kernel invocation that computes the i

interactions necessary for comparing a batch of i/c query segments against c candidate segments

(using c GPU threads). Let us use ΘGPU(i, c) to denote the overhead of launching a no-op kernel

for q query segments and i interactions (the overhead depends both on the number of queries and

on the number of GPU threads). Given the i interactions to be computed, we denote by α the

fraction of these interactions that lead to an item being added to the result set (i.e., both a tempo-

ral hit and a spatial hit), by β the fraction of these interactions for which the entry segment does

not overlap the query segment temporally (i.e., a temporal miss), and by γ the fraction of these

interactions for which the entry segment overlaps the query segment temporally but not spatially

(i.e., a temporal hit but a spatial miss). We have α + β + γ = 1. We distinguish these three cases

because the computational cost is different in each. Candidate segments that are temporal misses

can be determined with only a few instructions (i.e., comparing temporal extremities of query and

candidate segments). Candidate segments that are temporal hits but spatial misses require more

instructions (i.e., spatial extremities comparisons). Candidate segments that should be added to the

result set require even more instructions to be performed (i.e., determining the actual overlapping

80

temporal interval). One can view the computation of an interaction as a set of comparisons and

moving distance calculations, but these comparisons and computations are short-circuited when-

ever a segment is found to be a temporal or spatial miss.

We denote by T1(i, c), T2(i, c), and T3(i, c) the time for a kernel invocation with i interac-

tions so that all c candidate segments are temporal and spatial hits, temporal misses, and temporal

hits and spatial misses, respectively. This leads us to the following model:

TGPU(i, c) = TGPU1 (αi, c) + TGPU2 (βi, c) + TGPU3 (γi, c)− 2ΘGPU(i, c).

The first three terms above each include a ΘGPU(i, c) component, hence the subtracted fourth term.

TGPU(i, c) is computed for each batch, and the sum gives the total GPU time assuming the batch

size is s:

TGPU(s) =

|Q|/s∑
j=0

TGPU(ij, ij/s).

Q is the total set of query segments (for simplicity this equation assumes that s divides |Q|). ij is

the number of interactions that must be computed for the j-th query batch, which is determined

based on the entry segment bins (see Section 5.3). Therefore ij/s is the number of candidate entry

segments for the s query segments in the batch.

In this model, parameters α, β and γ depend on the dataset and the query. They must thus

be determined empirically for typical scenarios. By contrast, the functions ΘGPU , TGPU1 , TGPU2 ,

TGPU3 depend only the hardware characteristics of the platform. In what follows we describe how

we estimate these parameters. Note that this estimation is done for each batch of s queries.

Estimating α, β and γ

Recall that α is, for a kernel invocation on a query batch, the fraction of interactions

that lead to a new item being added to the result set. Given that it is dataset dependent, we use a

pragmatic approach to estimate α for a particular dataset once and for all, i.e., before the dataset is

being queried in “production” use. Depending on the temporal distribution of the entry segments,

there may be time periods with few active trajectories and some with many, resulting in a non-

uniform distribution of query hits throughout time. To estimate α, we divide the dataset into

numEpochs temporal epochs. For each epoch we select a batch of s sample queries that fall within

81

the epoch. We do this by randomly selecting s consecutive query segments from a representative

query dataset. We then execute our kernel and calculate the fraction of interactions that produced

result items. We perform this over enough trials such that the predicted total number of result set

items is within 5% of the total true number of result set items. This procedure yields an α estimate

for each epoch. This estimate may be inaccurate if the sample queries are not representative of

queries that will be processed in production. Also, if too low a value of numEpochs is used,

then the α estimates are more likely to be inaccurate since transient temporal patterns are then

averaged over larger epochs. Using numEpochs = 1 is a degenerate case in which our model

would assume that for any kernel invocation the query hit probability is the same. This may be

accurate for a temporally uniform dataset, but vastly inaccurate for datasets that exhibit temporal

transience. In all the experiments presented hereafter we use numEpochs = 50.

Unlike α, β can be computed precisely. For a given set of s query segments, one can de-

termine which entry segments they may temporally overlap using the bins in our indexing scheme

(see Section 5.3). Then, with two nested loops one can simply compare the temporal extremities

of each query segment to that of each entry segment, yielding an exact value for β. Parameter γ is

computed as 1− α− β.

To summarize, for a given dataset we compute once and for all a set of α estimates for

each epoch and for the full range of (reasonable) s values. Then, for each batch of s queries we

compute an α estimate, β and γ. Therefore, for each candidate s value we can plug appropriate

values of these three parameters into the TGPU performance model.

Estimating TGPU1 , TGPU2 , TGPU3 and ΘGPU

The TGPU1 , TGPU2 , TGPU3 and ΘGPU functions depend only on the implementation of the

kernel and the hardware characteristics of the platform. As a result, we can empirically estimate

these time components based on benchmark results. Let us consider TGPU1 , i.e., the kernel response

time when all interactions are both temporal hits and spatial hits. The same approach is used to

estimate TGPU2 (i, c), TGPU3 (i, c) and ΘGPU(i, c).

We generate a synthetic dataset and query set in which all interactions are guaranteed to

be both temporal and spatial hits. Figure 5.11 shows a subset of our benchmark results as response

time vs. number of interactions for various numbers of candidate entry segments, as measured

on our target platform. Given a number of interactions, i, and a number of candidate entries, c,

82

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

R
e

s
p

o
n

s
e

 T
im

e

Interactions

500 Entries
1000 Entries
5000 Entries

10000 Entries
15000 Entries
20000 Entries

Figure 5.11. Interactions vs. response time for a selection of entries. The data shown corresponds
to a range of 1-300 benchmarked queries.

we simply use linear interpolation to determine a response time prediction TGPU1 (i, c) from the

benchmark results.

Figure 5.12 (a) shows a broader range of benchmark results, shown as heat maps of

the response time vs. the number of candidate entries, c and the number of queries q = i/c.

In Figure 5.12 (a) we observe that there are discontinuities in response time. We attribute these

discontinuities mainly to thread scheduling factors on the GPU. Regardless, they will be a source

of modeling error due to our use of linear interpolation. Figure 5.12 (b), (c), and (d) show plots

with queries in the range of 1 to 60. We see somewhat smoother response time trends, particularly

in Figure 5.12 (c) and (d) suggesting that in that range the use of linear interpolation should lead to

less error. Since we know that the batch size, and thus the number of candidate segments, should

be relatively small, then one may expect that modeling error due to linear interpolation could also

be small.

The above modeling approach assumes that the kernel response time can be estimated

from the benchmark-based models of TGPU1 , TGPU2 , TGPU3 , executed separately. However, an ac-

tual kernel execution consists of a mix of temporal and spatial hits, temporal misses, and temporal

hits but spatial misses. One may thus wonder whether the notion of separating the model into

three components can lead to reasonable response time predictions. To answer this question we

compared executions of the three benchmark kernels to a mixed execution, using various synthetic

datasets and query sets with α = β = γ = 1/3.

83

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 50 100 150 200 250 300

E
n

tr
ie

s

Queries

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

(a) 1-300 queries

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 2 4 6 8 10 12 14 16 18 20

E
n

tr
ie

s

Queries

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

(b) 1-20 queries

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 22 24 26 28 30 32 34 36 38 40

E
n

tr
ie

s

Queries

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

(c) 21-40 queries

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 42 44 46 48 50 52 54 56 58 60
E

n
tr

ie
s

Queries

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

(d) 41-60 queries

Figure 5.12. Benchmark of interactions that are all within the query distance. Panel (a) shows a
large selection of the data, across a range of 300 queries, and (b), (c) and (d) show detailed versions
of the data between 1-60 queries.

Figure 5.13 shows the response time vs. test case, where the first two histograms corre-

spond to the separate and mixed tests, respectively, and the rightmost histogram shows the ratio

of mixed to separate response times. The test cases are identified as “Separate” or “Mixed”, fol-

lowed by the number of entry segments and the batch size. Since α = β = γ = 1/3, then the

number of queries of each type (α, β, γ) is equal to the total number of queries in an experimen-

tal scenario divided by 3. For example, consider the scenario where there are 9 queries in total,

Separate-100E/3Q (3 queries of each type) is compared to Mixed-100E/9Q, where we compare

three kernel executions with queries of type α, β, and γ each with a query batch size of 3, to one

kernel execution with 9 queries, which are a mixture of query types α, β, and γ. To allow for

fair comparisons we have discounted the kernel invocation overhead from all results (this overhead

occurs three times in the Separate results but only once in the Mixed results).

The first observation is that the Mixed executions have lower response times than the

Separate counterparts. This may seem counter-intuitive because the Mixed executions, unlike

84

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

Separate-100E/3Q

Separate-1000E/3Q

Separate-5000E/3Q

Separate-100E/12Q

Separate-1000E/12Q

Separate-5000E/12Q

Separate-100E/32Q

Separate-1000E/32Q

Separate-5000E/32Q

Separate-100E/48Q

Separate-1000E/48Q

Separate-5000E/48Q

M
ixed-100E/9Q

M
ixed-1000E/9Q

M
ixed-5000E/9Q

M
ixed-100E/36Q

M
ixed-1000E/36Q

M
ixed-5000E/36Q

M
ixed-100E/96Q

M
ixed-1000E/96Q

M
ixed-5000E/96Q

M
ixed-100E/144Q

M
ixed-1000E/144Q

M
ixed-5000E/144Q

M
-100E/9Q/S-100E/3Q

M
-1000E/9Q/S-1000E/3Q

M
-5000E/9Q/S-5000E/3Q

M
-100E/36Q/S-100E/12Q

M
-1000E/36Q/S-1000E/12Q

M
-5000E/36Q/S-5000E/12Q

M
-100E/96Q/S-100E/32Q

M
-1000E/96Q/S-1000E/32Q

M
-5000E/96Q/S-5000E/32Q

M
-100E/144Q/S-100E/48Q

M
-1000E/144Q/S-1000E/48Q

M
-5000E/144Q/S-5000E/48Q

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1
T
im

e
 (

s)

M
ix

e
d
/S

e
p
a
ra

te

Hits
Temporal Misses

Spatial Misses

Mixed

Ratio

Figure 5.13. GPU response time vs. test cases of mixed and separated kernel invocations.

the Separate executions, should have a high degree of branch divergence, thus causing partially

serialized thread executions on the GPU [23]. However, in Mixed executions the entry segments

are retrieved from the GPU’s global memory and stored into private memory once, and are then

reused. This does not occur in the Separate executions as entry segments have to be reloaded from

global memory into private memory at each kernel invocation. Regardless, the rightmost histogram

in Figure 5.13 shows that the error due to using Separate executions is relatively consistent and in

the 1%-20% range. As a result, we expect that our modeling approach should lead to reasonable

response time predictions. Furthermore, since the error is consistent, the same bias should apply

when comparing the estimated response time for various candidate batch sizes.

85

5.7.2 CPU Component

To model the CPU time, we propose an empirical model for each of the two portions of

the CPU time shown in Figure 5.10 as shaded cyan and blue areas. These models consist of simple

curve fitting based on benchmark results (R2 values for the fits are above 0.9999).

To estimate TCPU1 (s), the portion of the CPU time that corresponds to the kernel invo-

cation overhead for a batch size s (the cyan area in Figure 5.10), we generate a synthetic dataset

with α ≈ 0. With a very low value of α, the result set has negligible size. As a result, kernel

response time is approximately equal to the aggregate kernel invocation overhead. We thus obtain

a kernel invocation overhead curve for the full range of possible batch sizes. This benchmark must

be executed for various total numbers of query segments so that for a query set Q, our model uses

benchmark results obtained for approximately |Q| query segments. In practice, one would thus run

the benchmark for various numbers of query segments, obtaining a family of CPU response time

curves. In all experiments hereafter, |Q|=40,000, and we thus use 40,000 queries as well in our

benchmark. We obtain the following response time fitted curve:

TCPU1 (s) = −0.0017 + 32.2946× s−0.9528. (5.7.1)

To estimate TCPU2 , the portion of the CPU time that corresponds to the transfer of the

result set from the GPU to the CPU (the blue area in Figure 5.10), we rely on the α parameter

defined in the GPU component of our performance model and estimated as described in Sec-

tion 5.7.1. Using α, we can determine the number of result set items generated by each kernel

invocation. Summing over all kernel invocations and multiplying by the size in bytes of a result

set item yields the total size of the result set, which we denote by σ. Assuming that TCPU2 does not

depend on s, we can then estimate it by dividing σ by the GPU-CPU bandwidth measured on the

platform. On our target platform the model is as follows:

TCPU2 (σ) = 1.54× 10−8 × σ. (5.7.2)

In the end, the total CPU time is modeled as: TCPU(s, σ) = TCPU1 (s) + TCPU2 (σ), and

the total response time is modeled as TCPU(s) + TGPU(s, σ).

86

Table 5.3. Model Results.
Search Model Actual Slowdown

S1 80 110 4.8%
S2 80 120 6.3%
S3 80 120 4.5%
S4 80 110 4.5%
S5 100 140 2.8%
S6 100 140 2.3%
S7 140 160 0.8%
S8 150 160 0.58%
S9 170 220 0.1%

S10 200 210 0.97%

5.7.3 Model Evaluation

Figure 5.14 shows actual and modeled response times vs. the batch size for a selection of

our experimental scenarios. The CPU and GPU model components are shown with separate curves.

The general trends of the actual response time are respected by the model. In some instances, the

model tracks the actual response time well, while on other it exhibits some deviations. However,

the main purpose of our model is not to predict response time perfectly, but to produce a sufficiently

coherent prediction so that a good batch size can be selected. Figure 5.14 (b) presents the model

for the GALAXY dataset with d = 5. The model suggests that s = 80 yields the best response time;

however, the actual best response time occurs when s = 120. Had s = 80 been chosen, s = 120

would be 6.3% faster. Such results are summarized in Table 5.3 for our 10 experimental scenarios,

where the Model column gives the batch size based on the model, the Actual column gives the

empirically best batch size, and the Slowdown column gives the response time slowdown due to

using the model-driven batch size, as a percentage. Note that S3 has few elements in its result set,

and thus has a low value of α across all epochs. For this scenario, it was not possible to assure that

the total estimated number of result set items is within 5% of the actual number across all values

of s.

In these results we find that the worst slowdown is less than 7% and that in many cases

the slowdown is negligible. We conclude that, in spite of data dependency challenges, our model

is useful for determining a good batch size to use with the PERIODIC algorithm and for predicting

87

the total query response time. An interesting question is whether our modeling approach can be

used for response time prediction purposes for other spatiotemporal queries.

5.8 Conclusions

In this chapter, we have advanced and index and algorithms for GPU executions of the

distance threshold search. We have considered the case where there are memory constraints on

the GPU. We proposed a GPU-friendly indexing scheme used in the context of incrementally

processing the query set by executing a series of kernel invocations. Although we developed

algorithms to make good query batches under a range of experimental scenarios, in practice we

find that a fixed batch size is sufficient. We developed an empirical query response time model

that can predict response time to a reasonable degree, such that it can be used to predict the best

batch size to be used on a given dataset. We find that the GPU affords a significant speedup over

the multithreaded CPU implementation. It is expected that the bandwidth bottleneck between the

host and GPU will decrease in upcoming years, which will further boost the advantage of our GPU

implementations.

88

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Queries/Batch

Galaxy:d=1 Total
M-Galaxy:d=1 Total
M-Galaxy:d=1 CPU
M-Galaxy:d=1 GPU

(a) S1: GALAXY.

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Queries/Batch

Galaxy:d=5 Total
M-Galaxy:d=5 Total
M-Galaxy:d=5 CPU
M-Galaxy:d=5 GPU

(b) S2: GALAXY.

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Queries/Batch

Uniform: d=5 Total
M-Uniform: d=5 Total
M-Uniform: d=5 CPU
M-Uniform: d=5 GPU

(c) S3: RANDWALK-UNIFORM.

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Queries/Batch

Uniform: d=25 Total
M-Uniform: d=25 Total
M-Uniform: d=25 CPU
M-Uniform: d=25 GPU

(d) S4: RANDWALK-UNIFORM.

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Queries/Batch

Normal: d=50 Total
M-Normal: d=50 Total
M-Normal: d=50 CPU
M-Normal: d=50 GPU

(e) S5: RANDWALK-NORMAL.

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Queries/Batch

Normal: d=150 Total
M-Normal: d=150 Total
M-Normal: d=150 CPU
M-Normal: d=150 GPU

(f) S6: RANDWALK-NORMAL.

Figure 5.14. Modeled response times vs. queries per batch (s) for searches on each dataset. The
red curve shows the actual response time, the blue curve shows the modeled total response time,
where the CPU (magenta) and GPU (black) model components added together equal the modeled
total (blue) curve.

89

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Queries/Batch

Normal5: d=50 Total
M-Normal5: d=50 Total
M-Normal5: d=50 CPU
M-Normal5: d=50 GPU

(g) S7: RANDWALK-NORMAL5.

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Queries/Batch

Normal5: d=150 Total
M-Normal5: d=150 Total
M-Normal5: d=150 CPU
M-Normal5: d=150 GPU

(h) S8: RANDWALK-NORMAL5.

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Queries/Batch

Exp: d=50 Total
M-Exp: d=50 Total
M-Exp: d=50 CPU
M-Exp: d=50 GPU

(i) S9: RANDWALK-EXP.

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Queries/Batch

Exp: d=100 Total
M-Exp: d=100 Total
M-Exp: d=100 CPU
M-Exp: d=100 GPU

(j) S10: RANDWALK-EXP.

Figure 5.14. continued.

90

Chapter 6

GPU Indexing Schemes and Algorithms for

Non-Memory-Constrained GPGPU

Distance Threshold Searches

The previous chapter focuses on GPU executions of the distance threshold search with

memory constraints. In contrast, in this chapter, we assume a scenario where those memory con-

straints are removed, and the query set can fit on the GPU with the database. Our intended scenario

is that of a distributed memory environment in which a number of GPU-equipped compute nodes

are reserved by a user, thus there is sufficient memory for the entire query set. With memory

constraints removed, the opportunity arises to investigate different trajectory indexing schemes.

We propose three trajectory indexing schemes for the distance threshold search on the GPU that

have spatial, temporal, and spatiotemporal selectivity. For each of these indexes, we develop GPU

kernels that minimize branch instructions to achieve good parallel efficiency. We compare our im-

plementations to the R-tree CPU implementation in Chapter 4 and we find that the GPU yields a

significant speedup.

91

6.1 Problem Statement

6.1.1 Problem Definition

The problem definition in this chapter is the same as that in Section 5.2. However, we

consider the case in which both D and Q can fit in GPU memory. This may be the case in a

distributed memory environment where there is sufficient memory across a series of GPU-equipped

compute nodes and the GPUs are reserved by a single user.

6.1.2 Memory Management on the GPU

Chapters 4 and 5 focus on indexing trajectories in two environments. CPU implemen-

tations (as that in Chapter 4) rely on in-memory index trees that have been used traditionally for

out-of-core implementations, such as the R-tree [21]. Each thread traverses the tree and creates

a candidate segment set to be further processed to create the final result set. Although many

candidate segments are not within distance d of the query segments due to the “wasted space”

in the index (an unavoidable consequence of using MBBs shown in Chapter 4), memory must

still be allocated to store these candidate segments. Furthermore, the size of the final result set

is non-deterministic as it depends on the spatiotemporal nature of the data. Consequently, mem-

ory allocation for the result set must be conservative and overestimate the memory required (this

overestimation grows linearly with |Q|). On the CPU these memory management issues are typi-

cally not problematic in practice since the number of threads is limited (e.g., set to the number of

physical cores) and the memory is large.

As discussed in Chapter 5, there are memory limitations when using the GPU (which are

not germane to the CPU). In contrast to the scenario in Chapter 5, where both D and Q cannot

simultaneously fit in memory, in this chapter, we assume that both D and Q fit in memory. How-

ever, to address the issue of non-deterministic storage requirements for the result set, on the GPU

one must define a fixed size for a statically allocated memory buffer. If the memory requirements

exceed this buffer then it is necessary to perform a series of kernel invocations so as to incremen-

tally “batch” the generation of the final result set. Note that in most instances, only a single kernel

invocation is required. Thus, in practice, only a small number of batches are required to generate

92

the final result set. In contrast, in Chapter 5, there are a significantly greater number of batches

that are required to process an entire result set.

6.2 Indexing Trajectory Data

In this section we outline three trajectory indexing techniques for the GPU. For each we

discuss shortcomings and possible solutions regarding the memory management issues discussed

in Section 6.1.2.

6.2.1 Spatial Indexing: Flatly Structured Grids

Previous work has proposed the use of grid files, or “flatly structured grids” (FSG), to

index trajectory data on the GPU spatially [71]. In that work the authors focus on 2-D spatial data

(and Hausdorff distance) while our context is 3-D spatiotemporal data (and Euclidean distance).

An interesting question is whether spatial indexing with FSGs is effective even when the data has

a temporal dimension. In what follows we describe an FSG indexing scheme and accompanying

search algorithm for the GPU. We call this approach GPUSPATIAL.

Trajectory Indexing

We define a FSG as a 3-D rectangular box partitioned into cells with gridx, gridy, gridz
cells in the x, y, and z spatial dimensions, respectively, for a total of gridx × gridy × gridz cells.

Each line segment li in D is contained in a spatial MBB defined by two points MBBmin
i and

MBBmax
i where,

MBBmin
i = (min(xstarti , xendi),min(ystarti , yendi) min(zstarti , zendi)),

and

MBBmax
i = (max(xstarti , xendi),max(ystarti , yendi),max(zstarti , zendi)).

Each line segment is assigned to the FSG by rasterizing its MBB to grid cells. Figure 6.1 shows

a 2-D example for two line segments and a 5 × 4 FSG. Each line segment may occupy more than

one grid cell, and some grid cells can remain empty. We store the FSG as an array of non-empty

93

l1 l2

Figure 6.1. 2-D example rasterization of two line segment MBBs (green) to grid cells (blue) in
a 4 × 5 FSG. l1: a long line segment whose MBB spans six grid cells; l2: a short line segments
whose MBB spans one grid cell.

cells, G. Each cell is denoted as Ch, h = 1, . . . , |G|, where h is a linearized coordinate computed

from the cell’s x, y, and z coordinates using row-major order.

Each cell Ch is defined by h, and by an index range [Aminh , Amaxh] in an additional integer

“lookup” array, A. A[Aminh : Amaxh] contains the indices of the line segments whose MBBs overlap

cell Ch (the notation X[a : b] is used to denote the “slice” of array X from index a to index b,

inclusive). In other terms, if li’s MBB overlaps Ch, then i ∈ A[Aminh : Amaxh]. Since the MBB of

line segment li can overlap multiple grid cells, i can occur multiple times in array A. Figure 6.2

shows an example to highlight the relationship between G, A, and D. This example is discussed

later on.

One of the objectives of the above design is to reduce the memory footprint of the index.

This is why we only index non-empty grid cells, and why for each cell Ch we do not store its

spatial coordinates but instead compute h whenever needed (thereby trading off memory space for

computation time). Furthermore, the use of lookup array A makes it possible for array G to consist

of same-size elements (even though some cells contain more line segments than others). Without

this extra indirection through lookup array A, it would have been necessary to store entry segment

ids directly into the elements of G. However, it would have been necessary to pick an element size

large enough to accommodate the cell with the largest number of entry segments, thereby wasting

memory space. D, A, and G are stored in GPU memory before query processing begins.

94

D : l0 l1 l2 . . . l22 . . . l76 . . . l100 . . . l|D|−1

A :
2
0

100
1

22
2

. . .

. . .
100
25

867
26

. . .

. . .
400
90

. . .

. . .
1

124
100
125

. . .

. . .
5242
| A | −1

G :
h = 0

Aminh = 0
Amaxh = 2

h = 2
Aminh = . . .
Amaxh = . . .

h = 7
Aminh = 25
Amaxh = 90

h =| G | −1
Aminh = 124
Amaxh = 125

.

Figure 6.2. Example relationship between the grid (G), the lookup array (A) and the database of
entry line segments (D) in the GPUSPATIAL approach.

Search Algorithm

The trajectory segments inQ are not sorted by any spatial or temporal dimension. This is

because sorting segments temporally would not be effective when using a spatial index. Regarding

spatial sorting, it is not clear by which dimension the segments should be sorted. However, seg-

ments that are part of the same query trajectory are stored contiguously, thus providing a natural

advantageous ordering of data elements. Each query segment qk is assigned to a GPU thread. The

kernel first calculates the MBB for qk and the FSG cells that overlap this MBB. Given the x, y, z

coordinates of each such cell in the FSG, the kernel computes its linearized coordinate (h) using a

row-major order. A binary search is used to find whether cell Ch occurs in array G, in O(log |Q|)
time. In this manner the kernel creates a list of non-empty cells that overlap qk’s MBB. For each

cell Ch in this list, the indices of the entry segments it contains are computed as A[Aminh : Amaxh].

These indices are appended to a buffer Uk. A key point here is that with a spatial indexing scheme

there is no good approach for storing index entry segments in a contiguous manner (since one

would have to arbitrarily pick one of the spatial dimensions). This is why we must resort to us-

ing buffer Uk as opposed to, for instance, a 2-integer index range in a contiguous array of entry

segments. Each entry in Uk is then compared to the query segment qk to see if it is within the

threshold distance; however, note that while the segments are expected to be relatively nearby each

other spatially (given their FSG overlap), they may not overlap temporally.

Consider the example in Figure 6.2, which shows partial contents of arrays G, A, and D.

Consider a query q1 (not shown in the figure), which overlaps grid cells C0, C1, and C7. Cell C1 is

not in G, meaning that it contains no entry segments. Therefore, the only two cells to consider are

C0 and C7, which have [Ahmin,Ahmax] values of [0,2] and [25,90], respectively. In lookup array A,

95

we find that [0,2] corresponds to entries 2, 100, and 22, while [25,90] corresponds to entry indices

100, 867, . . ., 400. These indices are copied from A into buffer Uk. Note that in this step the search

algorithm does not remove duplicate indices (such as entry index 100 in this example) and thus

may perform some redundant entry segment processing. Removing duplicates would amount to

sorting buffer Uk, as done for instance in [71], which thus comes at an additional computational

cost that may offset the benefits of removing redundant segment processing.

Since the number of entry segments that overlap qk’s MBB can be arbitrary large (it

depends on the spatial features of D and Q, and on the query distance d), the use of buffer Uk
creates memory pressure, especially since both D (along with G and A) and Q are stored on

the GPU. This same issue has been encountered in previous work, e.g., when using a parallel R-

tree index on the GPU [36]. We define an overall buffer size, s, that is split equally among all

queries (|Uk| = s/|Q|). If the processing of query qk exceeds the capacity of Uk, then the thread

terminates, and stores the query id into an array that is sent back to the host. Once the kernel

execution finishes, the host re-attempts the execution of those queries that could not complete

due to memory pressure. In this re-attempt, memory pressure is lower because fewer queries are

executed (i.e., |Uk| is larger). This method implicitly has the effect that threads with similar (large)

amounts of work to execute together, resulting in improved load-balancing.

The pseudo-code of the search algorithm is shown in Algorithm 6. It takes the following

arguments: (i) the FSG array (G); (ii) the lookup array (A); (iii) the database (D); (iv) the set of

queries (Q); (v) an array that contains the ids of the queries to be reprocessed (queryIDs), which

is empty for the first kernel invocation; (vi) buffer space (U); (vii) the query distance (d); (viii) an

output array in which the kernel stores the ids of the queries that must be reprocessed (redo); and

(ix) the memory space to store the result set (resultSet). Arguments that lead to array transfers

between the host and the GPU, either as input or output, are shown in boldface. Other arguments

are either pointers to pre-allocated zones of (global) GPU memory or integers. The algorithm

begins by checking the global thread id and aborts if it is greater than Q or |queryIDs|, depending

on whether this is a first invocation or a re-invocation (lines 3-4). The id of the query assigned to

the GPU thread is then acquired from Q or using an indirection via queryIDs (lines 6-8). Function

getCandidates searches the FSG and returns a boolean that indicates whether buffer space was

exceeded and the (possibly empty) set of candidate entry segment ids (line 10). If buffer space

was exceeded, then the query id is atomically added to the redo array and the thread terminates

96

Algorithm 6 GPUSPATIAL kernel.
1: procedure SEARCHSPATIAL (G, A, D, Q, queryIDs, U , d, redo, resultSet)
2: gid← getGlobalId()
3: if queryIDs = ∅ and gid≥|Q| return
4: if queryIDs 6= ∅ and gid≥|queryIDs| return
5: if queryIDs = ∅ then
6: queryID← gid
7: else
8: queryID← queryIDs[gid]
9: end if

10: (overflow , candidateSet)← getCandidates(G, A, D, Q[queryID], U , d)
11: if overflow then
12: atomic: redo← redo ∪ { queryID }
13: return
14: end if
15: for all entryID ∈ candidateSet do
16: result← compare(D[entryID],Q[queryID])
17: if result 6= ∅ then
18: atomic: resultSet← resultSet ∪ result
19: end if
20: end for
21: return
22: end procedure

97

(line 11-13). The algorithm then loops over all candidate entry segment ids (line 15), compares

each entry segment spatially and temporally to the query (line 16) and atomically adds a query

result, if any, to the result set (line 18). Once all GPU threads have completed, resultSet and redo

are transferred back to the host. If |redo| is non-zero, then the kernel is re-invoked, passing redo as

queryIDs. Duplicates in the result set are filtered out on the host.

6.2.2 Temporal Indexing

In this section we propose a purely temporal partitioning strategy, which we call GPUTEM-

PORAL.

Trajectory Indexing

We begin by sorting the entries in D by ascending tstart values, re-numbering the entry

segments in this order, i.e., tstarti ≤ tstarti+1 . The full temporal extent of D is [tmin, tmax] where

tmin = minli∈D t
start
i and tmax = maxli∈D t

end
i . We divide this full temporal extent so as to

create m logical bins of fixed length b = (tmax − tmin)/m. We assign each entry segment, li,

i = 1, . . . , |D|, to a bin, where li belongs to bin Bj , j = 1, . . . ,m, if btstarti /bc = j. There can be

temporal overlap between the line segments in adjacent bins. For each bin Bj we defined its start

times as Bstart
j = j × b and its end time as Bend

j = max((j + 1) × b,maxli∈Bj
tendi). Bstart

j does

not depend on the line segments in bin Bj , but Bend
j does. The temporal extent of bin Bj is defined

as [Bstart
j , Bend

j]. Given the definitions of Bstart
j and Bend

j , the union of the temporal extents of

the bins is equal to the full temporal extent of D. We define Bfirst
j = arg mini|li∈Bj

tstarti and

Blast
j = arg maxi|li∈Bj

tstarti , i.e., the ids of the first and last entry segments in bin Bj , respectively.

[Bfirst
j , Blast

j] forms the index range of the entry segments in Bj . Bin Bj is thus fully described as

(Bstart
j ,Bend

j , Bfirst
j , Blast

j). The set of bins forms the temporal database index.

Figure 6.3 shows an example of how line segments may be assigned to a set of temporal

bins. In this example, 15 entry segments are assigned to 4 temporal bins over a database tem-

poral extent of 12 time units (spatial dimensions are ignored, and thus line segments are simply

represented as horizontal lines in the figures). The Bstart,Bend, Bfirst and Blast values are shown

for each bin. For instance, three entry segments are assigned to bin B2: l9, l10, and l11. Thus,

Bfirst
2 = 9 and Blast

2 = 11. Bstart
2 = 2× (12/4) = 6 and Bend

2 = tend11 .

98

time0 1 2 3 4 5 6 7 8 9 10 11 12

bin B0

(Bstart
0 , Bend

0) = (0, 7.5)

(Bfirst
0 , Blast

0) = (0, 5)

bin B1

(Bstart
1 , Bend

1) = (3, 6.2)

(Bfirst
1 , Blast

1) = (6, 8)

bin B2

(Bstart
2 , Bend

2) = (6, 11)

(Bfirst
2 , Blast

2) = (9, 11)

bin B3

(Bstart
3 , Bend

3) = (9, 12)

(Bfirst
3 , Blast

3) = (12, 14)

l0 l1

l2
l3

l4

l5
l6

l7

l8
l9

l10 l11

l12

l13
l14

Figure 6.3. An example assignment of entry line segments to temporal bins in the GPUTEMPORAL

approach.

Search Algorithm

Before performing the actual search, the following pre-processing steps must be per-

formed. First, query segments in Q are sorted by non-decreasing tstart values, in O(|Q| log |Q|)
time. For each query segment qk, we calculate the index range of the contiguous bins that it over-

laps temporally. A naı̈ve algorithm for computing this overlap would be to scan all bins in O(m)

time. A binary search could be used to obtain a logarithmic time complexity. In practice, however,

there are many temporally contiguous query segments and each overlaps only a few bins. Since

segments in Q are sorted by non-decreasing tstart, the search can be done efficiently by using the

first temporal bin that overlaps the previous query segment as the starting point for the scan for the

temporal bins that overlap the next query segment. The search thus typically takes near-constant

time. Let Bk denote the set of contiguous bins that temporally overlap query segment qk, as iden-

tified by the above search. In constant time we can now compute the index range of the entry line

segments that may overlap and must be compared with qk: Ek = [minB∈Bk B
first
j ,maxB∈Bk B

last
j].

We term the mapping between qk and Ek the schedule, S. Each GPU thread compares a single

query to the line segments in D whose indices are in the Ek range. Assuming that |Q| is moder-

ately large, one is then insured that all GPU cores can be utilized.

In our implementation, all preprocessing described in the previous paragraph is per-

formed on the CPU. Some of this preprocessing could be performed on the GPU (e.g., sorting

the query segments). In an initial implementation, we performed the calculation of Ek on the

GPU; however, this did not result in any performance improvement. As explained earlier, on the

host the search for temporally overlapping bins can be drastically improved by relying on the

99

same search for the previous query segment. However, this cannot be implemented on the GPU

as it would require thread synchronization and communication, which cannot be performed across

thread blocks. In all of our experiments, the time to compute S on the CPU is a negligible portion

of the overall query response time.

Algorithm 7 GPUTEMPORAL kernel.
1: procedure SEARCHTEMPORAL (D, Q, S, d, resultSet)
2: gid← getGlobalId()
3: if gid≥|Q| return
4: queryID← gid
5: entryMin← S[gid].EntryMin
6: entryMax← S[gid].EntryMax
7: for all entryID ∈ {entryMin,...,entryMax} do
8: result← compare(D[entryID],Q[queryID])
9: if result 6= ∅ then

10: atomic: resultSet← resultSet ∪ result
11: end if
12: end for
13: return
14: end procedure

The pseudo-code of the search algorithm is shown in Algorithm 7. It takes the following

arguments: (i) the database (D); (ii) the query set (Q); (iii) the schedule (S); (iv) the query distance

(d); and (v) the memory space to store the result set (resultSet). As in Algorithm 6, arguments that

lead to array transfers between the host and the GPU are shown in boldface. The algorithm first

checks the global thread id and aborts if it is greater than |Q| (line 3). The query assigned to the

thread is then acquired from Q (line 4). Next, the algorithm retrieves the minimum and maximum

entry segment indices from the schedule (lines 5-6). From line 7 to 13 the algorithm then operates

as Algorithm 6.

6.2.3 Spatiotemporal Indexing

In the two previous sections we have proposed a purely spatial and a purely temporal

indexing scheme. The spatial scheme leads to segments in Q and D being compared that are spa-

tially relevant but may be temporal misses (no temporal overlap). Likewise, the temporal indexing

scheme compares temporally relevant segments in Q and D, but these segments may be spatial

misses (no spatial overlap). Therefore, either approach can outperform the other depending on the

100

spatiotemporal characteristics of Q and D. Assuming for the sake of discussion that these charac-

teristics do not give any such particular advantage to either one of the two indexing approaches,

we can reason about their relative performance. First, the spatial indexing approach requires buffer

space to store the spatially overlapping trajectory segments. In contrast, because the temporal in-

dexing scheme is indexed in a single dimension, the temporally overlapping entry segments can

be defined by an index range in D, which represents significant memory space savings. The same

method could possibly be used with a spatial indexing scheme if considering only one of the spatial

dimensions, making the index no longer a multi-dimensional grid, but instead a linear array. This

approach would however drastically decrease the spatial selectivity of the search, leading to large

increases in wasted computational effort (i.e., comparisons of segments that have no overlap in

one or two of the spatial dimensions). Second, to minimize the memory footprint on the GPU, the

spatial scheme requires two additional arrays (G and A), thus leading to two indirections in global

GPU memory. In contrast, the temporal scheme requires a single indirection. Moreover, the entry

segments are stored contiguously in the temporal scheme, while this is not the case in the spatial

scheme.

Given the features of both the spatial and the temporal indexing scheme, we attempt to

find an alternate spatiotemporal index that retains the benefit of both schemes without some of the

drawbacks mentioned above. We term this approach GPUSPATIOTEMPORAL.

Trajectory Indexing

GPUSPATIOTEMPORAL adopts a temporal index so as to avoid the buffering and mul-

tiple indirection issues of spatial indexing, but subdivides each temporal bin into spatial subbins

to achieve spatial selectivity. Entry segments in D are assigned to m temporal bins exactly as for

GPUTEMPORAL. We then compute the spatial extent of D in each dimension. For instance, in the

x dimension the extent of D is:

[xmin, xmax] = [min
li∈D

(min(xistart, x
i
end)),max

li∈D
(max(xistart, x

i
end))] .

Spatial extents in the y and z dimensions are computed similarly. We then compute the max-

imum spatial extent in each dimension of the entry segments, which for the x dimensions is

maxli∈D |xistart − xiend|. Maximum spatial extents are computed similarly for the y and z dimen-

101

sion. For each of the temporal bins, we create v spatial subbins along each dimension, with the

constraints that these subbins are larger than the maximum spatial extent of the entry segments. For

instance, in the x dimension, this constraint is expressed as v ≤ (xmax − xmin)/maxli∈D |xistart −
xiend|. We place this constraint for two reasons, which will be clarified when we describe the search

algorithm: (i) to eliminate duplicates in the result set, and (ii) to reduce the amount of redundant

information in the index. In total we have m× v subbins and we denote each subbin as B̂i,j , with

i = 1, . . . ,m and j = 1, . . . , v.

The part of Figure 6.4 above the dashed line shows an example of how entry line seg-

ments are logically assigned to bins and subbins. The very top of the figure shows m = 3 temporal

bins, B0 to B2. Each temporal bin contains the segments with ids in the range [Bfirst
j , Blast

j]. For

instance, Bfirst
1 = 4 and Blast

1 = 7. Each entry segment is described by an id and 2 spatial (x, y, z)

extremities. For instance, segment l6 is in temporal bin B1 and its spatial extremities are (8, 9, 10)

and (10, 9, 8). Temporal dimensions are omitted in the figure. Below the temporal bins, we depict

9 temporal spatial subbins, B̂0,0 to B̂2,2 (v = 3 subbins per temporal bin). For each subbin, we

indicate its spatial range in the x, y, and z dimension. Each subbin spans 4 spatial units in the x

and y dimensions, and 5 spatial units in the z dimension. Given segment lengths in the database

these subbin dimensions meet the constraints described in the previous paragraph. For each subbin

and each dimension, we show the overlapping entry segment ids. For instance, consider subbin

B̂0,1. It is overlapped in the x dimension by l0, l2 and l3, in the y dimension by l3, and in the z

dimension by l1 and l3.

The part of Figure 6.4 below the dashed line shows how the logical assignment of seg-

ments to spatial subbins is implemented physically in memory. We create three integer arrays, X ,

Y , and Z, depicted at the bottom of the figure. Each array stores the ids of the line segments that

overlap the subbins in one spatial dimension. The ids for a subbin are stored contiguously, for the

subbins B̂i,j’s sorted by (j, i) lexicographical order. This is illustrated using colors in the figure

and amounts to storing contiguously all ids in the first subbins of the temporal bins, then all ids in

the second subbins of the temporal bins, etc. For instance, for the y dimension, the Y array in our

example consists of v = 3 chunks. The first chunk corresponds to the ids in subbins B̂0,0 (l0,l1,l3),

B̂1,0 (l4, l5, l8), and B̂2,0 (l9), the second chunk corresponds to the ids in subbins B̂0,1 (l2,l3), B̂1,1

(l5, l7), and B̂2,1 (l8), and the third chunk corresponds to the ids in subbins B̂0,2 (none), B̂1,2 (l6),

and B̂2,2 (l8). The reason for storing the ids in this manner is as follows. Consider a query segment

102

X: 1
0

3
1

4
2

5
3

9
4

0
5

2
6

3
7

4
8

7
9

8
10

6
11

8
12
Y : 0

0
1
1

3
2

4
3

5
4

8
5

9
6

2
7

3
8

5
9

7
10

8
11

6
12

8
13
Z: 0

0
1
1

4
2

5
3

1
4

2
5

3
6

4
7

6
8

7
9

9
10

6
11

8
12

Lookup
Ids:

X:0-1
Y :0-2
Z:0-1

X:5-7
Y :7-8
Z:4-6

X:∅
Y :∅
Z:∅

X:2-3
Y :3-5
Z:2-3

X:8-9
Y :9-10
Z:7-9

X:11-11
Y :12-12
Z:11-11

X:4-4
Y :6-6
Z:∅

X:10-10
Y :11-11
Z:10-10

X:12-12
Y :13-13
Z:12-12

Entry
Ids:

x: 1,3
y: 0,1,3
z: 0,1

x: 0,2,3
y: 2,3
z: 1,2,3

x:
y:
z:

x: 4,5
y: 4,5,8
z: 4,5

x: 4,7
y: 5,7
z: 4,6,7

x: 6
y: 6
z: 6

x: 9
y: 9
z:

x: 8
y: 8
z: 9

x: 8
y: 8
z: 8

Spatial
ranges:

Subbins:

x:[0,4)
y:[0,4)
z:[0,5)

B̂0,0

x:[4,8)
y:[4,8)
z:[5,10)

B̂0,1

x:[8,12)
y:[8,12)
z:[10,15)

B̂0,2

x:[0,4)
y:[0,4)
z:[0,5)

B̂1,0

x:[4,8)
y:[4,8)
z:[5,10)

B̂1,1

x:[8,12)
y:[8,12)
z:[10,15)

B̂1,2

x:[0,4)
y:[0,4)
z:[0,5)

B̂2,0

x:[4,8)
y:[4,8)
z:[5,10)

B̂2,1

x:[8,12)
y:[8,12)
z:[10,15)

B̂2,2

l0: (4,2,3) (5,3,1)
l1: (2,3,7) (1,2,2)
l2: (6,7,9) (4,6,8)
l3: (3,5,6) (4,3,5)

l4: (3,3,1) (5,3,7)
l5: (3,6,2) (2,3,2)
l6: (8,9,10) (10,9,8)
l7: (5,5,6) (6,4,5)

l8: (8,8,13) (7,7,10)
l9: (0,3,5) (2,2,7)Entries:

Bins: B0 B1 B2

Figure 6.4. Example spatiotemporal indexing of a dataset with 10 entry segments. Above the
dashed line is the logical assignment of the segments to the spatial subbin. Below the dashed line
is the physical realization of this assignment in GPU memory.

with some spatial and temporal extent. This query may overlap several contiguous temporal bins

(as shown in Section 6.2.2). However, because of the way in which we choose the sizes of the

spatial subbins, most queries will not overlap multiple subbins in all three dimensions. Identify-

ing potential overlapping entry segments then amounts to examining the i-th subbin of contiguous

temporal bins, for some 0 ≤ i ≤ v. In other words, based on the example in Figure 6.4, this

amounts to examining sequences of same-color subbins.

Given the X , Y , and Z array, each spatial subbin is then described with the index range

of the entries in those arrays, i.e., 6 integers. For instance, consider subbin B̂0,1 in our example.

Its description is index range 5− 7 in the x dimension (i.e., it overlaps with segments lX[5] to lX[7]

in the x dimension), index range 7− 8 in the y dimension (i.e., it overlaps with segments lY [7] and

lY [8] in the Y dimension), and index range 4− 6 in the z dimension (i.e., it overlaps with segment

lZ[4], lZ[5] and lZ[6] in the z dimension). Using this indirection, each spatial subbin is of fixed

size. When compared to the purely temporal index, this spatiotemporal indexing scheme requires

only additional space in GPU memory for the X , Y , and Z integer arrays, which corresponds to

& 3|D| × 4 bytes.

103

Search Algorithm

On the host, as in the GPUTEMPORAL approach, we first sort Q and for each query

segment calculate the temporally overlapping entries from the temporal bins. We also compute

the set of spatially overlapping subbins in each dimension. This computation also takes place on

the host, where the description of the bins and subbins are stored. Arrays X , Y , and Z are stored

on the GPU. One option would be to compute the intersection of entry segments that belong to

these subbins so as to select only spatially relevant entry segments. This turns out to be inefficient

because we would then have to send a list of entry segment indices to the GPU, which has high

overhead. Instead, we seek a solution in which we send a fixed and small number of indices to

the GPU. As a result, we opt for a poorer but easier to encode selection of the candidate entry

segments. Among the three spatial dimensions we pick the one in which the number of entry

segments that overlap the query segment is the smallest. We then simply send an index range, 2

integers, in the X , Y , or Z array, depending on the dimension that was picked. This approach may

lead to wasteful computation on the GPU (i.e., evaluation of entry segments that do not overlap

with the query segment in one of the other two spatial dimensions), but the overhead of these

wasteful computations is offset by the gain from the reduced amount of data that is sent to the

GPU. Let us demonstrate how this approach exploits the way in which the X , Y , and Z arrays

are constructed in the previous section. For the example in Figure 6.4, consider a query segment

that overlaps temporal bins 0 and 1, and overlaps spatially with subbins B̂0,1 and B̂1,1 in the x

dimension (entries 0,2,3,4,7), with subbins B̂0,1 and B̂1,1 in the y dimension (entries 2,3,5,7), and

with subbins B̂0,1 and B̂1,1 in the z dimension (entries 1,2,3,4,6,7). Because only 4 entries are

overlapped in the y dimension we compare the queries with those entries. The entry indices are

stored contiguously in array Y , at indices 7 to 10. So we simply compare the query to the entry

segments stored in array Y from index 7 to index 10, which is encoded in constant space. We

perform a wasteful comparison with entry segment 5 due to our non-perfect spatial selectivity of

entry segments.

On the host, we generate a schedule S, which contains for each query segment qk a

specification of which lookup array to use (0 for X , 1 for Y , or 2 for Z) and an index range into

that array, which we encode using 4 integers (which preserves alignment). GPUSPATIOTEMPO-

RAL requires only 1 extra indirection in comparison to GPUTEMPORAL, and avoids storing the

104

overlapping entry indices in a buffer like in GPUSPATIAL. We then sort S based on the lookup

array specification so as to avoid thread serialization due to branching as much as possible. As for

GPUTEMPORAL (Section 6.2.2), calculating S on the host takes negligible time.

As explained in the previous section, we enforce a minimum size for the spatial subbins.

Ensuring that subbins are not too small is necessary for two reasons. First, with small subbins

each entry segment could overlap many subbins with high probability. As a result, the query id

would occur many times in arrays X ,Y , and/or Z, thereby wasting memory space on the GPU

and causing redundant calculations. Second, given our indexing scheme and search algorithm

described hereafter, a query that overlaps multiple subbins along all three spatial dimensions may

lead to duplicates in the result set. These duplicates would then need to be filtered out (either

on the GPU or the CPU). To avoid duplicates, we simply default to the purely temporal scheme

whenever duplicates would occur. While this behavior wastes computation (i.e., we lose spatial

filtering capabilities), the constraint on subbin size described in the previous section ensure that it

occurs with low probability.

The pseudo-code of the search algorithm is shown in in Algorithm 8. It takes the follow-

ing arguments: (i) the X , Y , and Z arrays; (ii) the database (D); (iii) the query set (Q); (iv) the

schedule (S); (v) the query distance (d); and (vi) the memory space to store the result set (result-

Set). As in Algorithm 7, arguments that lead to array transfers between the host and the GPU are

shown in boldface. The algorithm begins by checking the global thread id and aborts if it is greater

than |Q| (line 3). The query assigned to the thread is acquired from Q (line 4). A helper array is

constructed that holds pointers to the X , Y , and Z arrays (line 5). If schedule S does not give a

specification for one of the X , Y , or Z arrays (S[gid].arrayXYZ = -1) then the algorithm defaults

to the temporal scheme (line 17). Otherwise, the algorithm retrieves the pointer to the correct X ,

Y , or Z array (line 7) and determines the index range for the entry segments (lines 8-9). It then

processes the entry segments (line 10) as Algorithm 7.

105

Algorithm 8 GPUSPATIOTEMPORAL kernel.
1: procedure SEARCHSPATIOTEMPORAL (X ,Y ,Z,D,Q,S,d, resultSet)
2: gid← getGlobalId()
3: if gid≥|Q| return
4: queryID← gid
5: arraySelector← {X,Y, Z}
6: if S[gid].arrayXYZ 6= -1 then
7: arrayXYZ← arraySelector[S[gid].arrayXYZ]
8: entryMin← S[gid].entryMin
9: entryMax← S[gid].entryMax

10: for all i ∈ {entryMin, . . ., entryMax} do
11: entryID = arrayXYZ[i]
12: result← compare(D[entryID],Q[queryID])
13: if result 6= ∅ then
14: atomic: resultSet← resultSet ∪ result
15: end if
16: end for
17: else
18: Lines 5-12 in Algorithm 7.
19: end if
20: return
21: end procedure

6.3 Experimental Evaluation

6.3.1 Datasets

To evaluate the performance of our various indexing methods we use 3 datasets (1 real

world and 2 synthetic) of 4-dimensional trajectories (3 spatial + 1 temporal). In Chapter 5 we

have evaluated a purely temporal indexing scheme that shares the general principles of the scheme

described in Section 6.2.2 (but assuming that Q cannot fit in GPU memory). In that chapter,

we evaluated the performance of distance threshold search for datasets with varying statistical

temporal properties, and found the index to perform equally well across these datasets. In this

chapter, based on our previous experience and because we consider spatial and spatiotemporal

indexing schemes, we use trajectory datasets that vary in terms of their sizes and spatial properties

(e.g., spatial trajectory density):

• Random-1M: a small, sparse synthetic dataset;

106

Table 6.1. Characteristics of Datasets
Dataset Trajectories Entries

Random-1M 2,500 997,500
Merger 131,072 25,165,824

Random-dense 65,536 12,582,912

• Merger: a large, real-world astronomical dataset;

• Random-dense: a high density synthetic dataset that is motivated by astronomy applications.

The Random-1M dataset consists of 2,500 trajectories generated via random walks over

400 timesteps, for a total of 997,500 entry segments. Trajectory start times are sampled from a

uniform distribution over the [0,100] interval.

The Merger dataset, as described in Chapter 3, consists of particle trajectories that simu-

late the merger of the disks of two galaxies. It contains the positions of 131,072 particles over 193

timesteps for a total of 25,165,824 entry segments. Figure 6.5 depicts particles positions projected

onto the x− y plane at different times, showing the merger evolution.

The Random-dense dataset is generated as follows. Consider the stellar number density

of the solar neighborhood, i.e., at galactocentric radius R� = 8 kpc (kiloparsecs), of Reid et al.

[52], n� = 0.112 stars/pc3. We develop a dataset with the same number of particles of one disk in

the Merger dataset (65,536), and 193 timesteps. To match the density of [52], we require a volume

of 65536/0.112 = 585142 pc3. This yields a cube with length, width and height dimensions of

83.64 pc. Note that we could have made the dataset more spatially dense by picking a region close

to the galactic center, since the stellar density decreases as a function of R. We generate actual

trajectories as random walks as in the Random-1M dataset, where all of the particles are initially

populated within the aforementioned cube. We allow the trajectories to move a variable distance

in each of the x,y,z dimensions at each timestep (between 0.001 and 0.005 kpc), and if a particle

moves outside of the cube by 20% of the length of the cube in any dimension, the particle is forced

back towards the cube. The particles, on average, cannot travel too far from the cube such that we

maintain a fairly consistent trajectory density at each timestep. This dataset aims to represent a

density consistent within the range of possible densities within the Milky Way that a single node

might process. The characteristics of each dataset are summarized in Table 6.1.

107

t=0 Gyr

(a)

t=1.5 Gyr

(b)

t=3 Gyr

(c)

Figure 6.5. Sample particle positions in the Merger dataset at times 0 Gyr (a), 1.5 Gyr (b) and 3
Gyr (c).

6.3.2 Experimental Methodology

For all our distance threshold search implementations the GPU-side is developed in

OpenCL and the host-side is developed in C++. The host-side implementation is executed on

one of the 6 cores of a dedicated 3.46 GHz Intel Xeon W3690 processor with 12 MiB L3 cache.

The GPU-side implementation runs on an Nvidia Tesla C2075 card with 6GiB of RAM and 448

cores. In all experiments we measure query response time as an average over 3 trials (standard

deviation over the trials is negligible). We allocate a buffer to hold the result set of the search on

the GPU that can hold 5.0 × 107 items. In the description of the results we indicate when this

buffer is overcome, thus requiring incremental processing of the query. The response time does

not include the time to build the index or the time to store D and the index in GPU memory. These

operations can be performed off-line before query processing begins. The implementations have

been validated to ensure correctness. To guarantee that we do not obtain false positive or negative

results, we compare the results of our implementation to an alternate implementation that utilizes

a brute force approach.

We consider three experimental scenarios, each for one of our datasets:

• S1: The Random-1M dataset and a query with 100 trajectories each with 400 timesteps for a

total of 39,900 query segments.

• S2: The Merger dataset and a query set with 265 trajectories each with 193 timesteps for a

total of 50,880 query segments.

108

• S3: The Random-dense dataset and a query set with 265 trajectories each with 193 timesteps

for a total of 50,880 query segments.

For each scenario we use ranges of query distances (in units of kpc for S2 and S3).

In addition to our GPU implementations, we also evaluate a CPU-only implementation.

This implementation relies on an in-memory R-tree index, and is multithreaded using OpenMP.

Threads traverse the R-tree in parallel, each for a different query segment, and return candidate

entry segments. This implementation was developed in Chapter 4. In that work we investigated

“trajectory splitting,” i.e., the impact of the number of segments stored in each MBB in the R-tree

index, r. There is a trade-off between the time to search the index (which decreases as r increases

due to lower tree depth) and the time to process the candidate (which increases as r increases due

to higher index overlap). All executions of the CPU implementation use 6 threads on our 6-core

CPU. Results in Chapter 4 show that this implementation achieves high parallel efficiency. Like

for the GPU implementation, our response time measurements do not include the time to build the

index tree.

Although the experimental results in the following sections are constrained by the specifics

of our platform, the results of the CPU implementation are used to demonstrate that the GPU can

be used efficiently for distance threshold searches. A fundamental difference between the CPU im-

plementation and the GPU implementation is that the former relies on index-tree traversal while the

latter relies on flat indexing schemes. This is because tree traversals on the GPU are problematic,

e.g., due to thread divergence slowdowns.

6.3.3 Results for the Random-1M Dataset

In this section, we present results for the Random-1M dataset, first giving results for

individual implementations and then combining results that make it possible to compare the im-

plementations. The Random-1M dataset is representative of small and sparse datasets in which

few or no entry segments are expected to lie within distance d of a query segment, i.e., with a low

number of interactions.

Figure 6.6 shows response time vs. the number of entry segments per MBB (r) for the

CPU implementation for a range of query distances. Using a single entry segment per MBB (r = 1)

109

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 5 10 15 20 25 30 35 40 45 50

T
im

e
 (

s
)

Segments/MBB

d=5
d=10
d=15
d=20
d=25

d=30
d=35
d=40
d=45
d=50

Figure 6.6. Response time vs. number of entry segments per MBB (r) for the CPU implementation
in scenario S1 with d = 5, 10, . . . , 50.

does not lead to the best response time. For this experimental scenario using, e.g., r = 10 leads to

good response times across all query distances.

Figure 6.7 plots response time vs. d for GPUSPATIAL. Results are shown for a range of

grid sizes. We use a total buffer size, |U |, of 2GiB to store overlapping entry segments. This is

larger than the space necessary to store D. This is thus an optimistic configuration for the FSG in-

dex. Using too few grid cells leads, e.g., 10 per dimension, to poor performance due to poor spatial

selectivity. With poor spatial selectivity (i) a large candidate set must be processed and (ii) many

GPU threads overflow their entry buffers (Uk) thus requiring multiple query processing attempts.

Likewise, using too many grid cells also leads to poor performance because entry segments overlap

multiple cells. As a result there is duplication of index entries, and thus in the result set. Although

filtering out these duplicates takes negligible time, transferring them from the GPU back to the

host incurs non-negligible overhead. In these experiments, and among the FSG configurations we

have attempted, using 50 cells per dimension leads to the best result.

Regardless of FSG configuration, we see rapid growth in response time as d increases.

The disposition of the FSG index to prefer small d values has also been alluded to in [71]. This

suggests that FSGs may not be particularly useful for spatiotemporal trajectory searches due to the

large spatial extent of the data and absence of temporal discernment, unless query distances are

small. However, a FSG index is likely to perform well with fewer requirements, such as indexing

110

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5 10 15 20 25 30 35 40 45

T
im

e
 (

s
)

Distance

Cells=10
Cells=50
Cells=90

Cells=130
Cells=170
Cells=210

Figure 6.7. Response time vs. d for GPUSPATIAL in scenario S1. Different curves are shown for
different numbers of spatial cells in the x, y, and z dimensions (i.e., “Cells=10” means a 10×10×10
grid).

data with no temporal dimension, and/or focusing on point searches (instead of line segments),

which will not cause data duplication when a large number of grid cells is used.

Figure 6.8 is shows response times vs. d for GPUTEMPORAL. Results are shown for

a range of number of temporal bins. Unlike for GPUSPATIAL, this method is insensitive to the

query distance. With too few temporal bins there is not enough temporal discrimination leading

to large numbers of interactions. But as the number of bins increases the response time reaches a

minimum (increasing beyond 10,000 bins does not differentiate entries as a function of temporal

extent in the Random-1M dataset).

Figure 6.9 shows response time vs. the number of subbins for GPUSPATIOTEMPORAL,

where 10,000 temporal bins are used. Curves are shown for a range of d values. For low d values a

greater number of spatial subbins is desirable. This is because it is unlikely that a query will overlap

multiple subbins, which would cause our algorithm to revert to the purely temporal method, which

has no spatial selectivity. As d increases, queries overlap multiple spatial subbins with higher

probability. As a result, better performance is achieved with fewer subbins. Recall that we require

that a query fall within a single subbin so as to avoid duplication in the result set. Without this

requirement, an increasing number of subbins would suggest an increase in the duplication of

entries in the index, thereby increasing the number of candidates that need to be processed (the

same trade-off discussed for GPUSPATIAL). There is thus a trade-off between having too few or

too many subbins, even when duplicates in the result set are permitted.

111

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 5 10 15 20 25 30 35 40 45 50

T
im

e
 (

s
)

Distance

100 bins
1000 bins
5000 bins

10000 bins

Figure 6.8. Response time vs. d for GPUTEMPORAL in scenario S1. Different curves are shown
for different numbers of temporal bins (100, 1000, 5000, 10000).

We note that using 1 subbin in the spatiotemporal index is equivalent to using a purely

temporal index with no spatial selectivity. Comparing results between GPUSPATIOTEMPORAL

with 1 subbin and GPUTEMPORAL shows the effect of the additional indirection in the spatiotem-

poral index. At d = 50 (yielding the greatest number of indirections in S1), with 1 subbin in the

spatiotemporal index, the response time is 1.36 s, whereas the response time is 1.21 s when using

the temporal index without any indirection. This is a 12.4% increase in response time due to the

indirection.

Figure 6.10 shows response time vs. d for our four implementations. Each implemen-

tation is configured with best or good parameter values based on previous results in this sections

(see the caption of Figure 6.10 for details). The CPU implementation is best across all query

distances. Comparing the GPU implementations, we see that GPUSPATIAL performs better than

GPUTEMPORAL and GPUSPATIOTEMPORAL when d < 20, but that it does not scale well for

larger d values. One may wonder whether this lack of scalability comes from the overhead of re-

launching the kernel due to buffer overflows. Figure 6.10 plots an “optimistic” curve that discounts

this overhead. We see that the same trend, if not as extreme, remains. The temporal and spatiotem-

poral indexing methods have consistent response times across query distances. Note that we could

have selected the best number of subbins for each value of d from Figure 6.9, which would have

improved results. Comparing GPUTEMPORAL and GPUSPATIOTEMPORAL, we see that having

spatial selectivity in addition to temporal indexing provides performance gains, even on this small

112

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 2 4 8 16 32 64 128 256 512 1024

T
im

e
 (

s
)

Number of Subbins

d=5
d=10

d=15
d=20

d=25
d=30

d=35
d=40

d=45
d=50

Figure 6.9. Response time vs. the number of subbins (v) for GPUSPATIOTEMPORAL in scenario
S1. The number of temporal bins is set to 10,000. Different curves are shown for different query
distances (d = 5, 10, ..., 50).

and sparse dataset. The CPU R-tree approach outperforms the GPU approaches on this small and

sparse trajectory dataset.

6.3.4 Results for the Merger Dataset

In this section, we present results for our largest dataset, Merger, which contains over 25

million entry segments. From Section 6.3.3, we find that the purely spatial FSG method leads to

extremely high response times for this larger dataset and as a result, we do not consider it. In GPU

executions, for some values of d, we have to process Q incrementally due to to insufficient space

for storing the full result set on the GPU. This is reflected in the measured response times.

Figure 6.11 shows response time vs. r for the CPU implementation for 3 query distances.

With this large dataset, unlike with Random-1M, storing more than r = 1 segments per MBB leads

to higher response time. A higher r value decreases the time to search the R-tree index, but this

benefit is offset by the increase in candidate set size. This is an important result. There is a

literature devoted to assigning trajectory segments to MBBs for improving response time [22, 51],

including the work in Chapter 4. These works, however, do not consider large datasets. For these

datasets, an intriguing future research direction is to take the opposite approach as that advocated

in the literature: splice individual polylines to increase the size of the dataset (which can be thought

of as setting r < 1). Thus, instead of assigning a single trajectory segment to an MBB, a trajectory

113

 0

 1

 2

 3

 4

 5

 6

 7

 5 10 15 20 25 30 35 40 45 50

T
im

e
 (

s
)

Distance

CPU-RTree(6, 10 segments/MBB)
GPU: FSG(Cells: 50)

GPU: FSG(Cells: 50, optimistic)
GPU: Temporal(10000 bins)

GPU: Spatiotemporal(10000 bins, 4 subbins)

Figure 6.10. Response time vs. d for our implementations for scenario S1. For the CPU implemen-
tation we use r = 10 segments/MBB; for GPUSPATIAL we use 50 cells per spatial dimension; for
GPUTEMPORAL we use 10,000 bins; and for GPUSPATIOTEMPORAL we use 10,000 temporal
bins and v = 4 spatial subbins: For GPUSPATIAL we also plot an optimistic curve that ignores
kernel re-launch overheads.

segment is split into multiple pieces, requiring multiple MBBs. This scheme would increase the

number of entries in the index; however, the total volume occupied by the MBBs would decrease.

We do not show results for GPUTEMPORAL as they are similar to those for the Random-

1M dataset. Using 1,000 temporal bins leads to the lowest response time, which is consistent across

all query distances.

Figure 6.12 shows response time vs. number of subbins for GPUSPATIOTEMPORAL,

where 1,000 temporal bins are used. Curves are shown for a range of d values. A good number of

subbins is v = 16 across all query distances, and this value is in fact best for most query distances.

This implies that picking a good v value can likely be done for a dataset regardless of the queries.

Figure 6.9 shows a dependency between v and d for the Random-1M dataset. This dependency

vanishes for a large dataset with many interactions.

Figure 6.13 compares the performance of the CPU implementation and GPUTEMPORAL

and GPUSPATIOTEMPORAL (GPUSPATIAL is omitted). Each method is configured with best

or good parameter values based on results in Figures 6.11 and 6.12. GPUSPATIOTEMPORAL

outperforms GPUTEMPORAL across the board, with response times at least 23.6% faster. At

low query distances the CPU implementation yields the lowest response times. It is overtaken by

GPUSPATIOTEMPORAL at d ∼ 1.5. At d = 0.001 the response time for the CPU implementation

114

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 2 4 6 8 10

T
im

e
 (

s
)

Segments/MBB

d=0.01
d=0.1
d=0.5

Figure 6.11. Response time vs. number of entry segments per MBB (r) for the CPU implementa-
tion in scenario S2 with d = 0.01, 0.1, 0.05.

is 9.70 s vs. 41.75 s for GPUSPATIOTEMPORAL (the GPU implementation is 330.4% slower). At

d = 5 these response times become 184.4 s, and 116.09 s, respectively (the GPU implementation

is 58.8% faster). We conclude that the GPU implementation outperforms the CPU implementation

when using large datasets or when large query distances are considered.

6.3.5 Results for the Random-dense Dataset

We now present results for the Random-dense dataset, which is smaller than Merger

and representative of scenarios in which many trajectories are located in a small spatial region, as

motivated by the stellar number density at the solar neighborhood. Note that increasing the density

by even > 4× would still be consistent with that resembling the disk in the inner Galaxy.

Figure 6.14 shows response time vs. query distance for the CPU implementation for

r = 1, 2, 4, 8. Unlike for Merger, which has 2× the number of entries as Random-dense, storing

multiple segments/MBB improves response time. We find that r = 4 yields low response time

values across all query distances.

As in the previous section, we do not show results for GPUTEMPORAL as they are

similar to those for the Random-1M dataset. Using 1,000 temporal bins leads to the lowest response

time, which is consistent across all query distances.

Figure 6.15 (a) shows response time vs. the number of subbins (v) for S3 for GPUSPA-

TIOTEMPORAL. With this dataset, the use of subbins for reducing response time is only possible

115

 20

 40

 60

 80

 100

 120

 140

 160

 2 4 8 16 32 64 128 256

T
im

e
 (

s
)

Number of Subbins

d=0.001

d=0.005

d=0.01

d=0.05

d=0.1

d=0.5

d=1

d=2

d=3

d=4

d=5

Figure 6.12. Response time vs. the number of subbins (v) for GPUSPATIOTEMPORAL in scenario
S2. The number of temporal bins is set to 1,000. Different curves are shown for different query
distances between d = 0.001 and d = 5.

for small query distances (d = 0.001, 0.01, 0.03). This is because the dataset is smaller than Merger

and because with larger values of d, the queries are more likely to fall within multiple subbins (in

which case the search algorithm degenerates into a purely temporal scheme). Figure 6.15 (b) shows

the fraction of queries that utilized the entries provided by the subbins for d = 0.001, 0.01, 0.03.

Only the smallest query distance, d = 0.001, permits usage of the spatiotemporal index across a

sizable fraction of the number of subbins. For instance for d = 0.03 and v = 2, just over 60% of

the queries use the spatiotemporal index over the pure temporal index, and when v = 4, the entries

provided by the spatiotemporal index are not used. This explains why in Figure 6.15 (a), there is

no performance improvement for d > 0.03 when v increases.

Given the density of the dataset, for larger values of d, only a fraction of the queries

can be solved per kernel invocation as there is insufficient memory space for the result set. Since

Random-dense has half as many entries as Merger, we can increase the size of the buffer on the

GPU for the result set (from 5×107 elements for Merger to 9.2×107 elements for Random-dense).

Figure 6.16 shows the response time vs. d for GPUTEMPORAL and GPUSPATIOTEMPORAL with

two buffer sizes. Increasing the buffer size by 84% (thus requiring fewer kernel invocations) leads

to decreases in response time due to fewer host-GPU communications. For instance, at d = 0.09

(which requires the greatest number of kernel invocations), the spatiotemporal index, with v = 2,

using an increased buffer size for the result set has a response time that is 65.76% lower than with

the initial buffer size. Although we could not run experiments with a larger buffer size for scenario

116

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

T
im

e
 (

s
)

Distance

CPU-RTree(6, 1 segment/MBB)
GPU: Temporal(1000 bins)

GPU: Spatiotemporal(1000 bins, 16 subbins)

Figure 6.13. Response time vs. d for our implementations for scenario S2. For the CPU imple-
mentation we use r = 1 segments/MBB; for GPUTEMPORAL, we use 1,000 bins; for GPUSPA-
TIOTEMPORAL, we use 1,000 temporal bins and v = 16 spatial subbins. We indicate three distance
thresholds that would be interesting for the study of the habitability of the Milky Way based on
such datasets. Red: close encounters between stars and planetary systems [25]; Blue: supernova
events on habitable planetary systems [19], and Magenta: studying the effects of gamma ray bursts
on habitable planets [63]. Both the Red and Blue lines are close to the vertical axis.

S2 (due to the large size of the Merger dataset), we expect similar performance gains. Since cur-

rent trends point to improvements in host-to-GPU bandwidth, in the future, our indexing methods

should provide even better performance improvements compared to CPU implementations.

Figure 6.17 shows response time vs. d for the CPU implementation and GPUTEMPO-

RAL and GPUSPATIOTEMPORAL with the larger buffer sizes. The query distance range spans a

wide range of result set sizes. When d = 0.001 ≈ 0% of the entries are within the query dis-

tance, and when d = 0.09, 73.9% of the entries are within the query distance. For very small

query distances d . 0.02, the CPU implementation yields the lowest response time, and is out-

performed by the GPU implementations for larger d. For d > 0.03, GPUSPATIOTEMPORAL

performs slightly worse than GPUTEMPORAL. This suggests that for dense datasets, when mod-

erate to large query distances are required, the pure temporal indexing method performs the best.

At d = 0.05, GPUTEMPORAL is 223% faster than the CPU implementation (with r = 4).

Comparing Figures 6.13 (Merger dataset) and 6.17 (Random-dense dataset), we see that

the range of query distances for which the GPU method is preferable to the CPU method is much

larger for the Random-dense dataset (considering the query distances that correspond to relevant

application scenarios – the red, blue, and magenta vertical lines). In the astronomy application

117

 0

 100

 200

 300

 400

 500

 600

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

T
im

e
 (

s
)

Distance

OMPCPU: R-tree(6, 1 segment/MBB)
OMPCPU: R-tree(6, 2 segments/MBB)
OMPCPU: R-tree(6, 4 segments/MBB)
OMPCPU: R-tree(6, 8 segments/MBB)

Figure 6.14. Response time vs. d for the CPU implementation in scenario S3. Different curves are
shown for different values of r (1,2,4, and 8).

domain, datasets denser than the Random-dense dataset are relevant (i.e., to study the galactic

regions at R < 8 kpc). For these datasets a GPU approach will provide even more performance

improvement over a CPU implementation.

To summarize our results, Figure 6.18 shows the ratio of the response times of the GPU

to CPU implementations for the 3 datasets for a few representative query distances. Data points

below the y = 1 line correspond to instances in which the GPU implementation outperforms the

CPU implementation. The main findings are that although the CPU is preferable for small and

sparse datasets (Figure 6.18 (a)), the GPU leads to significant improvements for large and/or dense

datasets (Figure 6.18 (b)) unless query distances are very small.

6.4 Conclusions

In this chapter, we have developed algorithms and indexes designed for GPU executions

of the distance threshold search. We have considered a scenario where there are no memory con-

straints when storing the queries on the GPU with the database. We proposed three GPU indexing

schemes and corresponding GPU kernels. We find that GPUSPATIAL which relies on a FSG does

not achieve good performance for our trajectory searches. We find that our other two indexing

methods for the GPU, GPUTEMPORAL and GPUSPATIOTEMPORAL, outperform multicore CPU

implementations in a range of experimental scenarios. The main findings are that although the

118

 0

 50

 100

 150

 200

 250

 2 4 8 16 32 64 128

T
im

e
 (

s
)

Number of Subbins

d=0.001
d=0.01
d=0.03

d=0.05
d=0.07
d=0.09

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 8 16 32 64 128

F
ra

c
tio

n

Number of Subbins

d=0.001
d=0.01
d=0.03

(b)

Figure 6.15. (a) Response time vs. number of subbins (v) for GPUSPATIOTEMPORAL for scenario
S3 for a range of query distances. The number of temporal bins is set to 1,000. (b) The fraction of
queries that use the entries provided by subbins vs. the number of subbins (v).

CPU is preferable for small and sparse datasets, the GPU leads to significant improvements for

large and/or dense datasets unless query distances are small. When there are large query distances,

or a dense dataset is considered, the parallelism afforded by the GPU is beneficial and the over-

head of using the GPU is a small fraction of the total response time. However, when the dataset is

sparse and/or the query distance is small, this overhead precludes performance gains when using

the GPU. These results are encouraging, as large and dense datasets are both characteristics of our

target astrobiological application. We also find that the notion of splitting trajectories and storing

them inside of MBBs is not necessarily applicable for large datasets. This result should apply to

other trajectory similarity searches, such as kNN searches.

119

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

T
im

e
 (

s
)

Distance

GPU: Temporal(1000 bins)
GPU: ST(1000 bins, 2 subbins)

GPU: Temporal(1000 bins, larger buffer)
GPU: ST(1000 bins, 2 subbins, larger buffer)

Figure 6.16. Response time vs. d for GPUTEMPORAL and GPUSPATIOTEMPORAL for scenario
S3. Results are shown for the original buffer size (5× 107) and for a larger buffer size (9.2× 107).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
 0

 0.2

 0.4

 0.6

 0.8

 1

T
im

e
 (

s
)

F
ra

c
tio

n

Distance

Fraction of Total Possible Hits
CPU-RTree(6, 4 segments/MBB)

GPU: Temporal(1000 bins)
GPU: Spatiotemporal(1000 bins, 2 subbins)

Figure 6.17. Response time (left vertical axis) and fraction of entries with distance d of the query
(right vertical axis) vs. d for the CPU implementation, GPUTEMPORAL, and GPUSPATIOTEM-
PORAL for scenario S3. For the CPU we show results for r = 4. 1,000 temporal bins are used for
both the temporal and spatiotemporal indexing methods. v = 2 spatial subbins are used for the
spatiotemporal indexing method.

120

 0

 10

 20

 30

 40

 50

 60

 70

Random-1M(d=5) Random-1M(d=25) Random-1M(d=50)

R
a

tio

FSG
Temporal

Spatiotemporal

(a)

 0

 1

 2

 3

 4

 5

 6

 7

M
erger(d=

0.001)

M
erger(d=

2)

M
erger(d=

5)

Dense(d=
0.01)

Dense(d=
0.05)

Dense(d=
0.09)

R
a

tio

Temporal
Spatiotemporal

(b)

Figure 6.18. Ratio of GPU to CPU response times across all datasets for (a) S1 and (b) S2 and S3.
Values below the y = 1 line indicate improvements over the CPU implementation.

121

Chapter 7

Conclusions and Future Work

Distance threshold similarity searches on moving object trajectories are relevant in many

application areas, including the application in astrobiology on the habitability of the Milky Way

outlined in Chapter 1. In this dissertation, we have developed efficient algorithms for processing

distance threshold trajectory similarity searches. The distance threshold search performs a join on

a database of trajectories that are within a given query distance of a query trajectory.

The performance of the distance threshold search on trajectories is data dependent and

leads to many challenges. In particular, the number of trajectories in a database, the search dis-

tance, d, and the spatiotemporal nature of the data all affect the effectiveness of a trajectory search

to generate a candidate set of trajectory segments and the subsequent refinement process. Further-

more, achieving good performance in sequential and parallel implementations is also a function of

the selected platform. We reiterate the following challenges in this work:

• Developing efficient trajectory indexes is difficult, as it needs to have a good degree of spatial

and/or temporal selectivity for an arbitrary set of queries. Consequently, this means that

there is no optimal way to index the data to achieve the best performance, as differing sets

of query trajectories will have varying properties and thus, response times. Additionally, the

underlying architecture, such as the CPU or the GPU and associated memory hierarchies

need to be carefully considered to obtain a good data layout primarily for search algorithms,

but also for refining the candidate set to obtain the final result set.

122

• The properties of the trajectories in a given dataset lead to non-deterministic execution and

storage behavior. As a result, estimating the query response time across a range of trajectory

configurations is difficult.

• GPU implementations may be unable to use indexes suitable for the CPU. Unlike paralleliz-

ing trajectory similarity searches on the CPU that may have access to a considerable amount

of main memory, searches on the GPU have greater memory constraints that need to be con-

sidered. Indexes that achieve good performance for implementations using the CPU, such

as index-trees, often have non-linear space-complexities and may require too much mem-

ory on the GPU. Furthermore, differences in architectures, in particular SIMD, necessitate

algorithms that minimize branch instructions which reduce parallel efficiency.

Given these overarching challenges, we now turn to the contributions made in this work,

and possible future research directions.

7.1 Contributions

Towards a resolution to the challenges in the previous section, we make the following

contributions:

• In Chapter 4 we present in-memory sequential and parallel query processing algorithms for

the CPU.

• In Chapter 5 we propose GPGPU algorithms that avoid index-trees altogether that are used in

CPU implementations and instead features a GPU-friendly indexing scheme. Additionally,

we advance a response time performance model of this execution.

• In Chapter 6 we develop three indexing strategies with spatial, temporal and spatiotemporal

selectivity for the GPU that differ significantly from indexes suitable for the CPU, and show

the conditions under which each index achieves good performance.

We detail these contributions in the following three sections.

123

7.1.1 Trajectory Searches using Sequential and Multithreaded Implemen-

tations

In-memory distance threshold searches for trajectory and point searches on moving ob-

ject trajectories are significantly different from the well-studied kNN searches [16, 14, 17, 20].

We made a case for using an R-tree index to store trajectory segments, and found it to perform

robustly for two real world datasets and a synthetic dataset. We focused on 4-D datasets (3 spatial

+ 1 temporal) while other works only consider 3-D datasets [16, 14, 17, 20].

We demonstrated that for distance threshold searches, many segments returned by the

index search must be excluded from the result set, because there is no limit to the number of

candidate trajectory segments that can be returned. We have proposed computationally inexpen-

sive solutions to filter out candidate segments, but found that they have poor selectivity. A more

promising direction for reducing query response time is to reduce the time spent traversing the tree

index.

We demonstrated that efficiently splitting trajectories is beneficial because the penalty

for the increased index overlap is offset by the reduction in number of index entries. We find that

for in-memory distance threshold searches, the number of line segments returned per overlapping

MBB has an impact on performance, where attempts to reduce the volume of the MBBs that store

a trajectory may be at cross-purposes with returning a limited number of candidate segments per

overlapping MBB. Therefore, at least for in-memory implementations, trajectory splitting methods

that focus on volume reduction are not necessarily preferable to a simple and bounded grouping of

line segments in MBBs for distance threshold searches.

We showed that the distance threshold search can be performed in parallel using threads

in a shared-memory environment using OpenMP. The results show that the tree traversals and

processing of candidate segments can be performed in parallel with high parallel efficiency (72.2%-

85.7% in our experiments).

7.1.2 Trajectory Searches using GPGPU with Memory Constraints

We have studied the efficient execution of in-memory distance threshold searches on the

GPU. The objective is to minimize response time in an online setting in which a series of kernel

invocations are performed to process a potentially large query set. We have shown that the par-

124

allelism afforded by the GPU, provided a GPU-friendly indexing method is used, can outperform

multithreaded CPU implementations that use an in-memory R-tree index. We have proposed such

a GPU-friendly indexing method. While conceptually simple, this method may be suitable for

indexing spatial and spatiotemporal objects for parallel architectures in general, as described in

[72]. We have proposed several algorithms for partitioning a query set into individual batches,

so as to reduce memory pressure and computational cost on the GPU. We have found that, when

considering the cost to compute the batches, a simple algorithm that partitions the query set into

fixed-size batches leads to competitive response times.

Modeling the performance of algorithms that process moving objects is a challenge due

to the spatiotemporal nature of data. Furthermore, in the context of spatiotemporal databases,

where index-trees are paramount, the non-deterministic nature of tree traversals adds an additional

source of performance uncertainty. The indexing method proposed in this work obviates some of

this data-dependent uncertainty. As a result, we are able to derive a reasonably accurate response

time model. This model, which considers both CPU and GPU time, is sufficient for predicting

a good batch size for a given dataset. Furthermore, in some instances, the model is adequate

to estimate the actual query response time across a range of query batch sizes. This result is

encouraging, as it suggests that predicting query response time on the GPU, at least with some

indexing techniques, is feasible, making it possible to assess the tractability of spatiotemporal

queries across a range of application domains. In particular, such query response time prediction

will be crucial for estimating the compute time for the astrophysical application that is the initial

motivation for this work.

7.1.3 Efficient Indexing of Trajectories on the GPU

We have examined the performance of indexes used for efficient indexing of spatiotem-

poral trajectories for distance threshold similarity searches. We describe several algorithms to solve

the distance threshold search on the GPU, as suited to each index. We show that GPU-friendly in-

dexing methods can outperform a multicore CPU implementation that uses an in-memory R-tree

index. Furthermore, the indexes proposed here can be applied to other types of searches on spatial

and spatiotemporal data. We also find that when considering the R-tree implementation on the

CPU, the problem of splitting a trajectory and storing it in multiple MBBs to achieve a trade-off

125

between the time to search the index and the time to process the set of candidate segments is an-

nulled when a large dataset is utilized, as a small number of segments per MBB can lead to the

best response time.

7.2 Future Work

The contributions made in this work can lead to numerous other interesting offshoots,

whether to extend distance threshold search efficiency/throughput, or to test the utility of certain

facets of distance threshold searches on other types of spatial or spatiotemporal searches on moving

objects in general. In what follows, we elaborate on several future research directions.

7.2.1 Trajectory Indexing for In-memory CPU-based Implementations

In the in-memory implementations that rely on the R-tree index, we investigated effi-

cient trajectory splitting strategies. A future direction is to explore trajectory splitting methods that

achieve volume reduction while bounding the number of MBBs used per trajectory. Another di-

rection is to investigate non-MBB-based data structures to index line segments, such as that in [8].

When we ran experiments with the largest of our datasets, we found that the utility of

splitting trajectories and assigning them to MBBs was diminished because a more accurate search

which minimized the size of the candidate set was preferable to faster searches at the expense

of refining a larger candidate set. Since trajectory splitting strategies have been studied in the

literature, it would be interesting to determine what set of generalizable conditions leads to this

performance loss. Furthermore, if these conditions can be understood, then a resolution to this

problem would be a significant achievement for the study of large-scale spatial and spatiotemporal

applications.

Exploring analytical performance models is an interesting future research direction be-

cause query and entry segment data characteristics lead to non-deterministic trajectory searches

and candidate set refinements. Models of query performance in these settings may be heavily

dependent on modeling cache reuse.

126

7.2.2 Modeling the Performance of Searches on Spatiotemporal Objects Us-

ing GPGPU

One interesting result we obtained was obviating some of the data-dependent uncertainty

associated with using index-trees in CPU implementations of distance threshold searches by us-

ing our GPGPU implementation and associated GPU-friendly index. Because we have advanced

this index, we have developed performance models of the distance threshold search. Therefore,

it would be interesting to extend our performance modeling technique to other spatiotemporal

queries, such as the kNN query on trajectories, and other searches on spatiotemporal objects. If

the model of response time is accurate in other settings, then performance bottlenecks will be easier

to identify in other searches on moving objects.

7.2.3 Extension to kNN Searches on Trajectories

Regarding the in-memory R-tree index for the CPU, and trajectory splitting strategies,

one may wonder whether the idea of assigning multiple segments to an MBB is applicable for kNN

searches on trajectories [16, 14, 17, 20]. The kNN literature focuses on pruning strategies and

associated metrics that require a high resolution index, thus implying storing a single trajectory

segment in an MBB. Furthermore, kNN algorithms maintain a list of nearest neighbors over a

time interval, which would lead to greater overhead if multiple segments were stored per MBB.

Therefore, the approach of grouping line segments together in a single MBB may be ineffective for

kNN searches. An interesting problem is to reconcile the differences between kNN and distance

threshold searches in terms of index resolution.

From our experiments, we found that CPU-based implementations perform poorly in

comparison to the GPU implementations when there are many comparisons between queries and

entries in the database, which occurs with large datasets and query distances. While the kNN

search on trajectories is not expected to perform well for small values of k on the GPU, in large-

scale applications that require a sufficiently large value of k, it might be worthwhile to perform

the search on the GPU. Furthermore, since index-trees may not be a good indexing technique for

the GPU, one option would be to perform a distance threshold search using one of the indexes

proposed for the GPU in this work to obtain a candidate set of neighbors, order them by moving

distance (shortest to farthest), and then select the k nearest ones to the search trajectory.

127

7.2.4 Hybrid CPU-GPU Implementations

Throughout this work, we have shown that the GPU and CPU implementations perform

well under particular conditions, and that it is likely that the CPU will not be able to contend for

the niche occupied by the GPU, and vice-versa. Therefore, one may wonder if a hybrid approach

that considers a multithreaded CPU implementation that uses an index-tree combined with a GPU

implementation would be able to achieve performance gains not realized in this work. Interestingly,

this problem will likely focus on query scheduling, where those query segments deemed to have

a higher probability of having a large result set are sent to the GPU, and those query segments

that have few interactions are scheduled on the CPU. For such a hybrid approach to achieve good

performance, load balancing will be of paramount importance. Given a set of |Q| query segments,

there will be 2|Q| possible schedules, or ways to partition the queries to be run on either the CPU or

GPU. Efficient scheduling heuristics, that rely on response time performance modeling, will need

to be developed.

7.2.5 Distributed Memory Implementations

We did not consider distributed memory executions, and only considered shared-memory

executions at a single compute node. Performing distance threshold similarity searches on hun-

dreds of millions to billions of trajectories requires distributed memory implementations. Whether

executed on a cluster consisting of multi-core CPUs, many-core GPUs, or both if using a hybrid

approach, there will be additional obstacles related to distributed memory computing that will need

to be addressed, such as: (i) partitioning the dataset over the nodes to achieve good load balancing,

and (ii) reducing communication overheads between nodes. Such issues have been investigated

for countless parallel applications and applying some underlying principles to distributed memory

distance threshold searches will be necessary to scale up to large-scale datasets.

128

Appendix A

Performance Evaluation of Query Segment

Batches

129

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Queries/Batch

Uniform: d=5

(a)

 1.79

 1.8

 1.81

 1.82

 1.83

 1.84

 1.85

 1.86

 1.87

 0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Queries/Batch

Uniform: d=5

(b)

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Queries/Batch

Uniform: d=25

(c)

 1.79

 1.8

 1.81

 1.82

 1.83

 1.84

 1.85

 1.86

 1.87

 0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Queries/Batch

Uniform: d=25

(d)

Figure A.1. Response time vs. queries/batch (s) for the periodic query batch method for S3 (a) and
S4 (c) (RANDWALK-UNIFORM dataset). Panels (b) and (d) correspond to zoomed in versions of
(a) and (c) respectively, to highlight the minimum response times. The colored lines correspond to
the same algorithms as shown in Figure 5.9.

130

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Queries/Batch

Normal: d=50

(a)

 1.57

 1.58

 1.59

 1.6

 1.61

 1.62

 1.63

 1.64

 1.65

 0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Queries/Batch

Normal: d=50

(b)

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Queries/Batch

Normal: d=150

(c)

 1.73

 1.74

 1.75

 1.76

 1.77

 1.78

 0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Queries/Batch

Normal: d=150

(d)

Figure A.2. Response time vs. queries/batch (s) for the periodic query batch method for S5 (a)
and S6 (c) (RANDWALK-NORMAL dataset). Panels (b) and (d) correspond to zoomed in versions
of (a) and (c) respectively, to highlight the minimum response times. The colored lines correspond
to the same algorithms as shown in Figure 5.9.

131

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Queries/Batch

Normal5: d=50

(a)

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Queries/Batch

Normal5: d=50

(b)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Queries/Batch

Normal5: d=150

(c)

 0.98

 0.99

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Queries/Batch

Normal5: d=150

(d)

Figure A.3. Response time vs. queries/batch (s) for the periodic query batch method for S7 (a) and
S8 (c) (RANDWALK-NORMAL5 dataset). Panels (b) and (d) correspond to zoomed in versions of
(a) and (c) respectively, to highlight the minimum response times. The colored lines correspond to
the same algorithms as shown in Figure 5.9.

132

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Queries/Batch

Exp: d=50

(a)

 1.6

 1.62

 1.64

 1.66

 1.68

 1.7

 1.72

 1.74

 1.76

 1.78

 1.8

 0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Queries/Batch

Exp: d=50

(b)

 4

 5

 6

 7

 8

 9

 10

 11

 0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Queries/Batch

Exp: d=100

(c)

 4.5

 4.55

 4.6

 4.65

 4.7

 4.75

 4.8

 0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Queries/Batch

Exp: d=100

(d)

Figure A.4. Response time vs. queries/batch (s) for the periodic query batch method for S9 (a)
and S10 (c) (RANDWALK-EXP dataset). Panels (b) and (d) correspond to zoomed in versions of
(a) and (c) respectively, to highlight the minimum response times. The colored lines correspond to
the same algorithms as shown in Figure 5.9.

133

Appendix B

Calculation of Moving Distance

In what follows, we illustrate the moving distance calculation. We assume that the speed

is constant between the two points that define the spatiotemporal line segment. Let xti, y
t
i , and zti

denote the coordinates of a point on spatiotemporal line segment li at time t, where t is normalized

in the range [0,1]. Consider two line segments l1 and l2, with l1 = {(x01, y01, z01), (x11, y
1
1, z

1
1)}, and

l2 = {(x02, y02, z02), (x12, y
1
2, z

1
2)}. The squared Euclidean distance between l1 and l2 at time t is

computed as:

D2
t = (x1t − x2t)2 + (y1t − y2t)2 + (z1t − z2t)2, (B.0.1)

where,

xt1 = x01 + t(x11 − x01)

yt1 = y01 + t(y11 − y01)

zt1 = z01 + t(z11 − z01)

xt2 = x02 + t(x12 − x02)

yt2 = y02 + t(y12 − y02)

zt2 = z02 + t(z12 − z02).

134

Dt
2 = ((x01 + t(x11 − x01))− (x02 + t(x12 − x02)))2 + ((y01 + t(y11 − y01))− (y02 + t(y12 − y02)))2

+ ((z01 + t(z11 − z01))− (z02 + t(z12 − z02)))2

= ((x01 − x02) + t(x11 − x01 − x12 + x02))
2 + ((y01 − y02) + t(y11 − y01 − y12 + y02))2

+ ((z01 − z02) + t(z11 − z01 − z12 + z02))2

= (x01 − x02)2 + t2(x11 − x01 − x12 + x02)
2 + 2t(x01 − x02)(x11 − x01 − x12 + x02)

+ (y01 − y02)2 + t2(y11 − y01 − y12 + y02)2 + 2t(y01 − y02)(y11 − y01 − y12 + y02)

+ (z01 − z02)2 + t2(z11 − z01 − z12 + z02)2 + 2t(z01 − z02)(z11 − z01 − z12 + z02)

Let,

Ax = (x11 − x01 − x12 + x02)
2

Ay = (y11 − y01 − y12 + y02)2

Az = (z11 − z01 − z12 + z02)2

Bx = 2(x01 − x02)(x11 − x01 − x12 + x02)

By = 2(y01 − y02)(y11 − y01 − y12 + y02)

Bz = 2(z01 − z02)(z11 − z01 − z12 + z02)

Cx = (x01 − x02)2

Cy = (y01 − y02)2

Cz = (z01 − z02)2

A = Ax + Ay + Az

B = Bx +By +Bz

C = Cx + Cy + Cz

Thus,

135

D2
t = Axt

2 +Bxt+ Cx + Ayt
2 +Byt+ Cy + Azt

2 +Bzt+ Cz

= At2 +Bt+ C. (B.0.2)

Modifying Equation B.0.2, calculating the distance within the threshold distance d amounts

to solving the following quadratic equation for t:

D2
t − d2 = At2 +Bt+ E, (B.0.3)

where E = C − d2.
Let ∆ be the discriminant of the quadratic equation:

∆ = B2 − 4AE. (B.0.4)

if ∆ < 0, then the line segments are not within the threshold distance d

if ∆ = 0, then the line segments are within the threshold distance d at time t = −B
2A

if ∆ > 0, then the line segments are within the threshold distance d within the time interval:[
−B −

√
∆

2A
,
−B +

√
∆

2A

]
∩ [0, 1]

136

Appendix C

Publications

• Gowanlock, M. & Casanova, H. Indexing of Spatiotemporal Trajectories for Efficient Dis-

tance Threshold Similarity Searches on the GPU. To appear in the proceedings of the 29th

IEEE International Parallel & Distributed Processing Symposium (IPDPS 2015). (Accep-

tance rate: 21.8%)

• Gowanlock, M. & Casanova, H. Efficient Indexing and Processing of Trajectory Similarity

Searches for Two Memory Constraint Scenarios on the GPU. Proceedings of the Student Re-

search Symposium of the 21st annual IEEE International Conference on High Performance

Computing (HiPC 2014), Goa, India, December, 2014. (Acceptance rate: 24%)

• Gowanlock, M. & Casanova, H. Distance Threshold Similarity Searches on Spatiotemporal

Trajectories using GPGPU. Proceedings of the 21st annual IEEE International Conference

on High Performance Computing (HiPC 2014), Goa, India, December, 2014. (Acceptance

rate: 23%)

• Gowanlock, M. & Casanova, H. (2014) In-Memory Distance Threshold Queries on Mov-

ing Object Trajectories. Proceedings of the Sixth International Conference on Advances in

Databases, Knowledge, and Data Applications (DBKDA), Chamonix, France, April, 2014,

pp. 41-50. (Acceptance rate: 30%)

• Gowanlock, M., Casanova, H. & Schanzenbach, D. (2014) Parallel In-Memory Distance

Threshold Queries on Trajectory Databases. Proceedings of the Sixth International Confer-

137

ence on Advances in Databases, Knowledge, and Data Applications (DBKDA), Chamonix,

France, April, 2014, pp. 80-83. (Acceptance rate: 30%)

• Gowanlock, M. & Gazan, R. (2013) Assessing Researcher Interdisciplinarity: A Case Study

of the University of Hawaii NASA Astrobiology Institute. Scientometrics 94:133-161.

• Gowanlock, M. G., Patton, D. R., & McConnell, S. M. (2011) A Model of Habitability

Within the Milky Way Galaxy. Astrobiology 11(9):855-873.

138

Bibliography

[1] http://www.chorochronos.org/. Accessed 5-February-2014.

[2] http://www.superliminal.com/sources/sources.htm. Accessed 5-

February-2014.

[3] Indexing of moving objects for location-based services. In Proceedings of the 18th Inter-

national Conference on Data Engineering, ICDE ’02, pages 463–, Washington, DC, USA,

2002. IEEE Computer Society.

[4] Pankaj K. Agarwal, Lars Arge, and Jeff Erickson. Indexing moving points. J. Comput. Syst.

Sci., 66(1):207–243, February 2003.

[5] S. Arumugam and C. Jermaine. Closest-Point-of-Approach Join for Moving Object Histories.

In Proc. of the 22nd Intl. Conf. on Data Engineering, pages 86–95, 2006.

[6] E. F. Bell, D. B. Zucker, V. Belokurov, S. Sharma, K. V. Johnston, J. S. Bullock, D. W. Hogg,

K. Jahnke, J. T. A. de Jong, T. C. Beers, N. W. Evans, E. K. Grebel, Ž. Ivezić, S. E. Koposov,

H.-W. Rix, D. P. Schneider, M. Steinmetz, and A. Zolotov. The Accretion Origin of the Milky

Way’s Stellar Halo. Astrophysical Journal, 680:295–311, June 2008.

[7] Rimantas Benetis, S. Jensen, Gytis Karciauskas, and Simonas Saltenis. Nearest and reverse

nearest neighbor queries for moving objects. The VLDB Journal, 15(3):229–249, 2006.

[8] Elisa Bertino, Barbara Catania, and Boris Shidlovsky. Towards Optimal Indexing for Seg-

ment Databases. In Proc. of the 6th Intl. Conf. on Advances in Database Technology, pages

39–53, 1998.

[9] J. Binney and S. Tremaine. Galactic Dynamics: Second Edition. Princeton University Press,

2008.

139

[10] N. Bissantz and O. Gerhard. Spiral arms, bar shape and bulge microlensing in the Milky

Way. Monthly Notices of the Royal Astronomical Society, 330:591–608, March 2002.

[11] G. Chabrier. Galactic Stellar and Substellar Initial Mass Function. Publications of the Astro-

nomical Society of the Pacific, 115:763–795, July 2003.

[12] V. P. Chakka, A. Everspaugh, and J. M. Patel. Indexing large trajectory data sets with seti. In

Proc. of the Conf. on Innovative Data Sys. Research, pages 164–175, 2003.

[13] P. Cudre-Mauroux, E. Wu, and S. Madden. TrajStore: An Adaptive Storage System for Very

Large Trajectory Data Sets. In Proc. of the 26th Intl. Conf. on Data Engineering, pages

109–120, 2010.

[14] E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis. Algorithms for Nearest Neighbor

Search on Moving Object Trajectories. Geoinformatica, 11(2):159–193, 2007.

[15] Luca Forlizzi, Ralf Hartmut Güting, Enrico Nardelli, and Markus Schneider. A data model

and data structures for moving objects databases. In Proc. of ACM SIGMOD Intl. Conf. on

Management of Data, pages 319–330, 2000.

[16] Elias Frentzos, Kostas Gratsias, Nikos Pelekis, and Yannis Theodoridis. Nearest neighbor

search on moving object trajectories. In Proc. of the 9th Intl. Conf. on Advances in Spatial

and Temporal Databases, pages 328–345, 2005.

[17] Yun-Jun Gao, Chun Li, Gen-Cai Chen, Ling Chen, Xian-Ta Jiang, and Chun Chen. Effi-

cient k-Nearest-Neighbor Search Algorithms for Historical Moving Object Trajectories. J.

Comput. Sci. Technol., 22(2):232–244, 2007.

[18] Fosca Giannotti, Mirco Nanni, Fabio Pinelli, and Dino Pedreschi. Trajectory pattern mining.

In Proc. of the 13th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining,

pages 330–339, 2007.

[19] M. G. Gowanlock, D. R. Patton, and S. M. McConnell. A Model of Habitability Within the

Milky Way Galaxy. Astrobiology, 11:855–873, 2011.

[20] Ralf Hartmut Güting, Thomas Behr, and Jianqiu Xu. Efficient k-nearest neighbor search on

moving object trajectories. The VLDB Journal, 19(5):687–714, 2010.

140

[21] Antonin Guttman. R-trees: a dynamic index structure for spatial searching. In Proc. of ACM

SIGMOD Intl. Conf. on Management of Data, pages 47–57, 1984.

[22] Marios Hadjieleftheriou, George Kollios, Vassilis J. Tsotras, and Dimitrios Gunopulos. Effi-

cient indexing of spatiotemporal objects. In Proceedings of the 8th International Conference

on Extending Database Technology: Advances in Database Technology, EDBT ’02, pages

251–268, London, UK, UK, 2002. Springer-Verlag.

[23] Tianyi David Han and Tarek S. Abdelrahman. Reducing branch divergence in GPU programs.

In Proc. of the 4th Workshop on General Purpose Processing on Graphics Processing Units,

pages 3:1–3:8, 2011.

[24] Hoyoung Jeung, Man Lung Yiu, Xiaofang Zhou, Christian S. Jensen, and Heng Tao Shen.

Discovery of convoys in trajectory databases. Proc. VLDB Endow., 1(1):1068–1080, August

2008.

[25] J. J. Jiménez-Torres, B. Pichardo, G. Lake, and A. Segura. Habitability in Different

Milky Way Stellar Environments: A Stellar Interaction Dynamical Approach. Astrobiology,

13:491–509, 2013.

[26] R. Jinno, K. Seki, and K. Uehara. Parallel distributed trajectory pattern mining using mapre-

duce. In 2012 IEEE 4th Intl. Conf. on Cloud Computing Technology and Science (CloudCom),

pages 269–273, Dec 2012.

[27] M. Jurić, Ž. Ivezić, A. Brooks, R. H. Lupton, D. Schlegel, D. Finkbeiner, N. Padmanabhan,

N. Bond, B. Sesar, C. M. Rockosi, G. R. Knapp, J. E. Gunn, T. Sumi, D. P. Schneider,

J. C. Barentine, H. J. Brewington, J. Brinkmann, M. Fukugita, M. Harvanek, S. J. Kleinman,

J. Krzesinski, D. Long, E. H. Neilsen, Jr., A. Nitta, S. A. Snedden, and D. G. York. The

Milky Way Tomography with SDSS. I. Stellar Number Density Distribution. Astrophysical

Journal, 673:864–914, February 2008.

[28] Kimikazu Kato and Tikara Hosino. Multi-gpu algorithm for k-nearest neighbor problem.

Concurrency and Computation: Practice and Experience, 24(1):45–53, 2012.

141

[29] George Kollios, Dimitrios Gunopulos, and Vassilis J. Tsotras. On indexing mobile objects.

In Proceedings of the Eighteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles

of Database Systems, PODS ’99, pages 261–272, New York, NY, USA, 1999. ACM.

[30] George Kollios, Vassilis J. Tsotras, Dimitrios Gunopulos, Alex Delis, and Marios Hadjieleft-

heriou. Indexing animated objects using spatiotemporal access methods. IEEE Trans. on

Knowl. and Data Eng., 13(5):758–777, September 2001.

[31] P. Kroupa. On the variation of the initial mass function. Monthly Notices of the Royal

Astronomical Society, 322:231–246, April 2001.

[32] P. Kroupa, C. A. Tout, and G. Gilmore. The distribution of low-mass stars in the Galactic

disc. Monthly Notices of the Royal Astronomical Society, 262:545–587, June 1993.

[33] Martin Kruliš, Tomáš Skopal, Jakub Lokoč, and Christian Beecks. Combining CPU and GPU

architectures for fast similarity search. Distributed and Parallel Databases, 30(3–4):179–

207, 2012.

[34] C. Leitherer, D. Schaerer, J. D. Goldader, R. M. G. Delgado, C. Robert, D. F. Kune, D. F.

de Mello, D. Devost, and T. M. Heckman. Starburst99: Synthesis Models for Galaxies with

Active Star Formation. Astrophysical Journal, 123:3–40, July 1999.

[35] Zhenhui Li, Ming Ji, Jae-Gil Lee, Lu-An Tang, Yintao Yu, Jiawei Han, and Roland Kays.

Movemine: Mining moving object databases. In Proc. of the 2010 ACM SIGMOD Intl. Conf.

on Management of Data, pages 1203–1206, 2010.

[36] Lijuan Luo, M. D F Wong, and L. Leong. Parallel implementation of r-trees on the gpu. In

Design Automation Conf. (ASP-DAC), 2012 17th Asia and South Pacific, pages 353–358, Jan

2012.

[37] P. J. McMillan. Mass models of the Milky Way. Monthly Notices of the Royal Astronomical

Society, 414:2446–2457, July 2011.

[38] G. E. Miller and J. M. Scalo. The initial mass function and stellar birthrate in the solar

neighborhood. Astrophysical Journal, 41:513–547, November 1979.

142

[39] Kyriakos Mouratidis, Dimitris Papadias, Spiridon Bakiras, and Yufei Tao. A Threshold-

Based Algorithm for Continuous Monitoring of k Nearest Neighbors. IEEE Trans. on Knowl.

and Data Eng., 17(11):1451–1464, 2005.

[40] Kyriakos Mouratidis, Dimitris Papadias, and Marios Hadjieleftheriou. Conceptual partition-

ing: an efficient method for continuous nearest neighbor monitoring. In Proc. of ACM SIG-

MOD Intl. Conf. on Danagement of data, pages 634–645, 2005.

[41] Philip J. Mucci, Shirley Browne, Christine Deane, and George Ho. PAPI: A Portable Interface

to Hardware Performance Counters. In Proc. of the Department of Defense HPCMP Users

Group Conf., pages 7–10, 1999.

[42] Mario A. Nascimento and Jefferson R. O. Silva. Towards historical r-trees. In Proceedings

of the 1998 ACM Symposium on Applied Computing, SAC ’98, pages 235–240, New York,

NY, USA, 1998. ACM.

[43] J. F. Navarro, C. S. Frenk, and S. D. M. White. The Structure of Cold Dark Matter Halos.

Astrophysical Journal, 462:563, May 1996.

[44] Jinfeng Ni and Chinya V. Ravishankar. Indexing spatio-temporal trajectories with efficient

polynomial approximations. IEEE Trans. on Knowl. and Data Eng., 19(5):663–678, May

2007.

[45] Bernd-Uwe Pagel, Hans-Werner Six, Heinrich Toben, and Peter Widmayer. Towards an

analysis of range query performance in spatial data structures. In Proc. of the 12th Symp. on

Principles of Database Sys., pages 214–221, 1993.

[46] Jia Pan and Dinesh Manocha. Fast GPU-based Locality Sensitive Hashing for K-nearest

Neighbor Computation. In Proc. of the 19th ACM SIGSPATIAL Intl. Conf. on Advances in

Geographic Information Systems, pages 211–220, 2011.

[47] Dieter Pfoser, Christian S. Jensen, and Yannis Theodoridis. Novel Approaches in Query Proc.

for Moving Object Trajectories. In Proc. of the 26th Intl. Conf. on Very Large Data Bases,

pages 395–406, 2000.

143

[48] Kriengkrai Porkaew, Iosif Lazaridis, and Sharad Mehrotra. Querying mobile objects in

spatio-temporal databases. In Proceedings of the 7th International Symposium on Advances

in Spatial and Temporal Databases, SSTD ’01, pages 59–78, London, UK, UK, 2001.

Springer-Verlag.

[49] Shaojie Qiao, Changjie Tang, Shucheng Dai, Mingfang Zhu, Jing Peng, Hongjun Li, and

Yungchang Ku. Partspan: Parallel sequence mining of trajectory patterns. In Fifth Intl. Conf.

on Fuzzy Systems and Knowledge Discovery, volume 5, pages 363–367, Oct 2008.

[50] Katerina Raptopoulou, Michael Vassilakopoulos, and Yannis Manolopoulos. On past-time

indexing of moving objects. J. Syst. Softw., 79(8):1079–1091, August 2006.

[51] Slobodan Rasetic, Jörg Sander, James Elding, and Mario A. Nascimento. A trajectory split-

ting model for efficient spatio-temporal indexing. In Proc. of the 31st Intl. Conf. on Very

Large Data Bases, pages 934–945, 2005.

[52] I. N. Reid, J. E. Gizis, and S. L. Hawley. The Palomar/MSU Nearby Star Spectroscopic

Survey. IV. The Luminosity Function in the Solar Neighborhood and M Dwarf Kinematics.

Astronomical Journal, 124:2721–2738, November 2002.

[53] I. N. Reid, J. D. Kirkpatrick, J. Liebert, A. Burrows, J. E. Gizis, A. Burgasser, C. C. Dahn,

D. Monet, R. Cutri, C. A. Beichman, and M. Skrutskie. L Dwarfs and the Substellar Mass

Function. Astrophysical Journal, 521:613–629, August 1999.

[54] S. A. Rodionov and N. Y. Sotnikova. Optimal Choice of the Softening Length and Time Step

in N-body Simulations. Astronomy Reports, 49:470–476, June 2005.

[55] Nick Roussopoulos, Stephen Kelley, and Frédéric Vincent. Nearest neighbor queries. In

Proc. of ACM SIGMOD Intl. Conf. on Management of Data, pages 71–79, 1995.

[56] E. E. Salpeter. The Luminosity Function and Stellar Evolution. Astrophysical Journal,

121:161, January 1955.

[57] Zhexuan Song and Nick Roussopoulos. K-Nearest Neighbor Search for Moving Query Point.

In Proc. of the 7th Intl. Symp. on Advances in Spatial and Temporal Databases, pages 79–96,

2001.

144

[58] Yufei Tao and Dimitris Papadias. Mv3r-tree: A spatio-temporal access method for timestamp

and interval queries. In Proceedings of the 27th International Conference on Very Large

Data Bases, VLDB ’01, pages 431–440, San Francisco, CA, USA, 2001. Morgan Kaufmann

Publishers Inc.

[59] Yufei Tao, Dimitris Papadias, and Qiongmao Shen. Continuous nearest neighbor search. In

Proc. of the 28th Intl. Conf. on Very Large Data Bases, pages 287–298, 2002.

[60] Y. Theodoridis, T. Sellis, AN. Papadopoulos, and Y. Manolopoulos. Specifications for effi-

cient indexing in spatiotemporal databases. In Scientific and Statistical Database Manage-

ment, 1998. Proceedings. Tenth International Conference on, pages 123–132, Jul 1998.

[61] Y. Theodoridis, M. Vazirgiannis, and T. Sellis. Spatio-Temporal Indexing for Large Multi-

media Applications. In Proc. of the Intl. Conf. on Multimedia Computing and Systems, pages

441–448, 1996.

[62] Yannis Theodoridis, Jefferson R. O. Silva, and Mario A. Nascimento. On the Generation of

Spatiotemporal Datasets. In Proc. of the 6th Intl. Symp. on Advances in Spatial Databases,

pages 147–164, 1999.

[63] B. C. Thomas, A. L. Melott, C. H. Jackman, C. M. Laird, M. V. Medvedev, R. S. Stolarski,

N. Gehrels, J. K. Cannizzo, D. P. Hogan, and L. M. Ejzak. Gamma-Ray Bursts and the Earth:

Exploration of Atmospheric, Biological, Climatic, and Biogeochemical Effects. Astrophysi-

cal Journal, 634:509–533, 2005.

[64] Theodoros Tzouramanis, Michael Vassilakopoulos, and Yannis Manolopoulos. Overlapping

linear quadtrees and spatio-temporal query processing. Comput. J., 43(4):325–343, Decem-

ber 2000.

[65] Marcos R. Vieira, Petko Bakalov, and Vassilis J. Tsotras. On-line discovery of flock patterns

in spatio-temporal data. In Proc. of the 17th ACM SIGSPATIAL Intl. Conf. on Advances in

Geographic Information Systems, pages 286–295, 2009.

[66] Simonas Šaltenis, Christian S. Jensen, Scott T. Leutenegger, and Mario A. Lopez. Indexing

the positions of continuously moving objects. SIGMOD Rec., 29(2):331–342, May 2000.

145

[67] Xiaopeng Xiong, Mohamed F. Mokbel, and Walid G. Aref. SEA-CNN: Scalable Proc. of

Continuous K-Nearest Neighbor Queries in Spatio-temporal Databases. In Proc. of the 21st

Intl. Conf. on Data Engineering, pages 643–654, 2005.

[68] Simin You, Jianting Zhang, and Le Gruenwald. Parallel spatial query processing on gpus

using r-trees. In Proc. of the 2nd ACM SIGSPATIAL Intl. Workshop on Analytics for Big

Geospatial Data, BigSpatial ’13, pages 23–31, New York, NY, USA, 2013. ACM.

[69] Xiaohui Yu, Ken Q. Pu, and Nick Koudas. Monitoring k-Nearest Neighbor Queries over

Moving Objects. In Proc. of the 21st Intl. Conf. on Data Engineering, pages 631–642, 2005.

[70] Demetrios Zeinalipour-Yazti, Song Lin, and Dimitrios Gunopulos. Distributed spatio-

temporal similarity search. In Proc. of the 15th ACM Intl. Conf. on Information and Knowl-

edge Management, pages 14–23. ACM, 2006.

[71] Jianting Zhang, Simin You, and Le Gruenwald. U2STRA: High-performance Data Man-

agement of Ubiquitous Urban Sensing Trajectories on GPGPUs. In Proc. of the 2012 ACM

Workshop on City Data Management Workshop, CDMW ’12, pages 5–12, 2012.

[72] Jianting Zhang, Simin You, and Le Gruenwald. Parallel online spatial and temporal aggrega-

tions on multi-core CPUs and many-core GPUs. Information Systems, 44(0):134–154, 2014.

[73] M. Zoccali, S. Cassisi, J. A. Frogel, A. Gould, S. Ortolani, A. Renzini, R. M. Rich, and

A. W. Stephens. The Initial Mass Function of the Galactic Bulge down to ∼0.15 Msolar.

Astrophysical Journal, 530:418–428, February 2000.

146

