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Abstract

Procedural knowledge is generally dispersed
across many experts within or across organizations
which might lead to inefficiencies and redundancy.
Historically, computers have been well suited to
store procedural knowledge but they have lacked
the capability to produce natural language text.
Nonetheless, recent advances in machine learning
permit a higher linguistic coherence which benefits
applications with longer text outputs such as
procedures. This work closes the gap between human
experts and computers by proposing a framework for
automatic, computer generation of procedures based
on neural machine translation and the BART model.
Furthermore, we define two benchmark problems for
procedure generation and establish a set of evaluation
metrics that can be used as a reference in further work.
We demonstrate the potential of this solution on the
task of generating cooking recipes based on available
ingredients. The evaluation results on the Recipe1M
dataset showcase the method’s superiority over other,
fairly novel, neural architectures.

1. Introduction

New advances in Natural Language Generation
(NLG) have led to improvements for applications such
as machine translation [1], text simplification [2] or
summarization [3], and data-to-text generation [4].
While a growing number of works have proposed
models for NLG, we observe very few works focusing
on procedure generation [5, 6, 7]: a procedure can be
represented as a long sequence of text in which a set of
tasks is described in an orderly fashion.

Procedure generation could benefit a diverse range of
domains that require precise set of instructions in order

Table 1: Example of a generated procedure after
applying the proposed method on cooking recipes.

(a) Input requirements
(ingredients)

Requirements
• 2 tablespoons ground

coffee (optional)
• 5-6 yellow onion skins,

only
• 8 eggs
• water
• 1 tablespoon oil

(b) Generated procedure
(title and instructions)

Target product
Eggs in Onion Skin

Tasks
1. Beat the eggs in a bowl.
2. Add the onion skins and

coffee (if using).
3. Add enough water to

cover the onion skins.
4. Heat the oil in a frying

pan.
5. Fry the eggs in the oil

until they are cooked
through.

6. Serve with the onion
skins.

to produce a certain target or achieve certain state, e.g.
molecule synthesis for drug discovery, meal preparation
using specific ingredients [7], furniture/appliances
assembling, enforcing take-off/landing checklists in
aviation, generation of test use cases for software
development [8]. These typically encompass a number
of requirements to be satisfied, a particular order of
tasks to be respected and, in some cases, depending on
circumstances, the adaptation of the granularity level
of the conveyed tasks. In the case of aviation, a
proper checklist must be complete and specific while
preserving the order of tasks [9]. Manual task-lists
in aviation are prone to omission since they are not
standardized; the order is most relevant for starting
engines and its related systems. Many unstandardized
checklists suffer from ambiguity by using terms such as
”check and set” instead of ”altimeter at 30.10”.
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Relying on generated procedures can lower the
cost of acquiring procedural knowledge and allow
more time for creative tasks [4]. Another benefit
is the centralization of otherwise dispersed procedural
knowledge among the task-specific experts: the
knowledge of synthesizing a molecule can be shared to
others even if the human expert is not available.

One of the most prominent examples of procedure
generation comes from the field of computational
cooking [10] and recipe generation [7]. An example
of a procedure generated by an NLG model trained
on cooking recipes is shown in Table 1. A recipe
contains at least a set of ingredients and instructions
in which the order of tasks is essential. Furthermore,
a recipe can be arbitrarily long so preserving global
relational coherence (i.e. task-based meaningfulness)
becomes a challenge [4, 11]. For example, a correctly
generated procedure for preparing bread should first
suggest making the dough before putting it into the oven.

Previous works on recipe generation have mostly
relied on well-established methods such as directed
acyclic graph (DAG) [6] or recurrent neural network
(RNN) [5]. Despite the state-of-the-art performance
for prediction tasks for long text sequences (e.g.
translation) [12], with the exception of [7], no
work has addressed procedure generation using the
Transformer [13] as the model architecture. In [7],
a renowned Generative Pretrained Transformer (GPT)
architecture is used to develop RecipeGPT. In this
work, we propose to go a step further by adding a
bidirectional encoding of the input, motivated by the
fact that requirements (ingredients) for a procedure
correspond to an unordered list so the embeddings
of requirements should not be order-dependent. We
investigate BART [14], a state-of-the-art model that is
based on bidirectional auto-regressive Transformers and
combines the benefits of both the bidirectional encoder
model and GPT. Specifically, we consider the study of
recipe generation under the neural machine translation
framework: ingredients, as predefined requirements, are
translated into a sequence of specific tasks describing
how to make the target product. We demonstrate the
benefits of exploiting BART, not only as compared to
other machine translation methods based on LSTM,
CNNs or the Transformer model, but based on the
GPT-based RecipeGPT [7] as well. The overview of the
proposed method is given in Figure 1. Despite the focus
on the recipe generation, our work can be extended to
other procedure-based applications.

Our contribution to the current literature is four-fold:

• Formalising the problem of the procedure
generation,

Requirements

- pizza dough 

- 1 pint of blueberries 

- sugar

Williams  Sonoma  

Blueberry Flat Bread

Target Product (P1 only) 

Input BARTTokenization

Preheat oven to 400 degrees

12x

Transformer 

Decoder 

Block

12x

Transformer 

Decoder 

Block

12x

Transformer 

Decoder 

Block
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Encoder  

Block

12x
Encoded 

input

Williams  

Sonoma 
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Bread <tps> 
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<eor> 1 pint of 

blueberries 

<eor> sugar

Figure 1: Overview of the system. The input
requirements and target product (if P1) are first
tokenized; the target product is followed by a separator
token (<tps>), the end of a requirement (EOR) is
indicated using the <eor> token. Consequently, the
input tokens are embedded by the encoder. The encoded
input is fed to the decoder at each step, and generates
output tokens autoregressively.

• Addressing procedure generation task by means
of the state-of-the-art NLG / neural machine
translation method BART, while ensuring
requirement coverage, as well as the proper task
order and granularity in the generated procedures,

• Defining and implementing metrics to evaluate
model performance on the problem of procedure
generation,

• Implementing and benchmarking four machine
translation methods for generating procedures
within the proposed methodology.

In the remainder of the paper, Section 2 briefly
discusses related work, Section 3 provides the
formalisation of the problem at hand, Section 4 explains
the details of our methodology, Section 5 details
the experimental setup while Section 6 presents the
experimental results and finally, Section 7 concludes the
paper providing directions for future research.

2. Related Work

Literature on NLG focuses on either data-to-text (i.e.
multi-modal), or text-to-text (i.e. uni-modal) generation
[4]. Within the computational cooking field, the task of
recipe generation is fairly commonly studied; we can
find both of these in recipe generation. On the one
hand, studies on data-to-text generation [15, 16] attempt
to produce recipes from images and ingredients, but
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do not generalize beyond the recipe application. On
the other hand, early studies on text-to-text generation
[17, 18, 6] have proposed techniques that generate
a natural language text given a representation of the
recipe. More recent studies [5, 19, 7] have used neural
network architectures. For example, in [5] RNNs have
been exploited for recipe generation, while in [19] the
proposed solution exploits the attention mechanism.

Probably the closest work to ours is the very recent
work reported in [7], which is based on the GPT
model. However, that study is more oriented toward
providing a particular tool for generating recipes from
ingredients and reversely, generating ingredients from
recipes (while in both cases providing the target).

It is important to emphasise that unlike our work,
none of the mentioned studies address the aspects of
task order, granularity and requirement coverage. Thus
in this study, we are paying special attention to closing
these gaps. By utilising the mechanism behind the
BART model, we aim at (and demonstrate the feasibility
of) addressing this aspect in a very effective way.

3. Problem statement

First, we define the concepts required to discuss
about the context of procedure generation. A vocabulary
for representing linked data related to procedures and
their execution has been introduced in [20, 21]. Inspired
by this vocabulary, we expand and formalise the concept
of procedures and generation thereof.

Let us denote by R a set of input requirements and
by T a set of tasks (instructions). A procedure Pr
is a tuple 〈tp,MPr〉, containing a textual description
of the target product tp and a set of methods MPr ⊂
M : R × T for obtaining the product tp. A method
m ∈ MPr is a tuple 〈Rm, Tm〉 containing a set of
requirements Rm ⊂ R and a set of tasks Tm =
{t : t is a sentence describing a task} ⊂ T that need
to be performed in order to obtain the product tp. One
procedure Pr can have several alternative methods m ∈
M to obtain the same product tp. A requirement
r ∈ R is a tuple 〈o, q, {true, null}〉 containing the
textual representation of an object o (what is required),
a numerical or textual quantity q (how much of the
object o is required) and a boolean set to true when this
requirement is non-essential (optional) to complete the
method, otherwise it is null. Requirements for a method
m are necessary conditions for being able to execute the
tasks for m.

Following [21], we define an ordering of the tasks, to
describe a dependency relation where one task tA ∈ T
relies on the completion of one or more prior tasks

ti ∈ T, i 6= A. Formally, we use the dependency relation
≺m: Tm × Tm where ≺m defines a strict partial order
over the set of tasks Tm for a method m [21]. The
requirements are treated as not having any internal order,
i.e. they could be used in any order in the sequence of
tasks, independent of the order in which they are listed.

Using the terminology above, we formulate the two
problems that we consider in the scope of this work.
Both problems are related to the general situation where
a system or agent is operating in an environment for
which the conditions are known, and it is of interest to
know what the possible procedures are for operating in
this environment. In such a scenario, the requirements
Rm are the conditions of the operating environment and
constant for all methods m ∈ MPr. When also the
product tp is known, all parts of a procedure Pr are
defined, except the set of tasks Tm,∀m ∈MPr.

Problem 1: Generation of tasks given requirements
and target product P1 :R × TP −→ T . Problem
1 is concerned with generating a set of tasks Tm for a
method m ∈MPr, when requirements Rm and product
tp are known. The problem is defined as sampling the
conditional probability of a set of tasks Tm. Each task
tim ∈ Tm is conditioned on the requirements Rm, the
product tp and all previously sampled tasks t1m, ..., t

i−1
m :

tim ∼ P (T i
m | R = Rm, TP = tp,

T 1
m = t1m, ..., T

i−1
m = ti−1m )

for i =1, ..., |Tm|, m ∈MPr.

(1)

Problem 2: Generation of target product and
corresponding tasks given requirements P2:R −→
TP×T . Problem 2 makes no assumption of the product
tp. Instead, product tp is sampled from the probability
distribution of target products TP conditioned on the
requirements Rm. The tasks are then sampled from the
same distribution as in Problem 1, conditioned on the
sampled product tp instead of a given tp:

tp ∼ P (TP | R = Rm),

tim ∼ P (T i
m | R = Rm, TP = tp,

T 1
m = t1m, ..., T

i−1
m = ti−1m )

for i =1, ..., |Tm|, m ∈MPr.

(2)

4. Methodology

Once we have defined the problem scope, we first
elaborate on the model architecture used for procedure
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generation. Then, we describe the metrics we propose
for evaluating procedures generated by the model.

4.1. Model architecture

Although other techniques might be feasible for
procedure generation, we opt for the use of neural
machine translation models because of their general
applicability to natural language of any kind. For the
purpose of this research, we assess the capability of
BART [14], a state-of-the-art neural machine translation
modeling technique, for solving problems P1 and P2.

All models considered in this work use the
encoder-decoder architecture for sequence-to-sequence
learning with neural networks, as first described in [22].
The general idea of the encoder-decoder neural network
architecture is to embed (encode) the whole input
sequence to a hidden state of predefined dimensions and
consequently construct (decode) the output sequence
from that same hidden state [22]. In the case of machine
translation, both input and output sequences consist of
tokenized sentences. Every token is one entry in the
sequence. For consistency with [22], we note the input
sequence of tokens as (x1, ..., xT ), with T the length of
the input sequence. Similarly, the output sequence of
tokens is noted as (y1, ..., y′T ), with T ′ the length of the
output sequence. For the translation task, every output
token is conditioned on all previous input tokens. This
corresponds to sampling the conditional distributions as
described in Section 3.

Bidirectional and auto-regressive attention-based
encoder-decoder. The bidirectional and
auto-regressive Transformer model (BART) builds
on the standard Transformer architecture, but uses other
advances in the literature that refer to optimizing the
pretraining of Transformers [14]. BART combines
a 12-layer bidirectional encoder (as in [12]) with a
12-layer auto-regressive decoder. BART uses a number
of self-supervised pretraining tasks where the goal is to
reconstruct the original input. The best performance is
achieved using the following input transformations:

• Random shuffling of sentence order.

• In-filling of pieces of arbitrary length which are
masked.

The idea is that the BART model is pretrained with these
tasks and finetuned on the downstream task afterwards.
In the context of procedure generation, we use a BART
model trained to perform the above pretraining tasks on
the CNN-DailyMail summarization dataset. We then
switch to the translation task to finetune the model

on our training data to predict procedures. We notice
that finetuned BART performs better on all evaluation
metrics and converges faster compared to training BART
from scratch on the procedure generation data.

The intuition for using BART in the context
of procedure generation is that the order of the
requirements is not relevant for predicting tasks (and
target product). It is up to the model to, at generation
time, come up with a correct order in which to use the
requirements. The auto-regressive decoder can exploit
the bidirectional encoding of the entire set of input
requirements (and target product) to predict the next
task. Furthermore, a coherent task order is encouraged
through the auto-regressive decoder, since the prediction
of a task is conditioned on all previously predicted tasks.

4.2. Evaluation

To the best of our knowledge, no standard set of
evaluation metrics exists for the problems described in
Section 3. Care should be taken in selecting the metrics
suitable for evaluating the results. In this section,
all metrics that we deem appropriate for P1 and P2
are formulated at three levels: word-level (comparing
words), task-level or product-level (comparing single
tasks or a single product) and task set-level (comparing
whole set of tasks).

Word-level
Perplexity. The perplexity value PP = 2NLL, with
NLL being the negative log-likelihood loss, is an
indication of the number of possible tokens that the
model deems probable for predicting the next token. A
lower value corresponds to the model assigning the full
probability mass to only a couple of possible tokens,
making it more sure about its prediction [23].

Task- or product-level
BLEU score. The BLEU score attributes a higher value
to translations that have more words in common with
reference translations [24]; it measures precision, that
is, the relevance of the generated text regarding the
reference or instructions. We use the ground truth as
reference to compute the BLEU score.

ROUGE score. In contrast to BLUE, ROUGE
measures recall since it compares the predicted text and
the recipe reference [25].

Embedding distance. A semantically more meaningful
way to automatically score translations against the
ground truth, is by comparing the distance between
them in the embedding space of a semantically aware
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language model. We choose the recently proposed
BERTScore [26] for this purpose, which compares
each token in the ground truth sentence x with the
corresponding token in the generated sentence x̂.
First, a contextual embedding vector is extracted
from a trained BERT model [12] for all ground truth
tokens and generated tokens. Then, the pairwise
cosine similarity between two embedding vectors
x and x̂ is used to compute recall and precision
as follows: RBERT = 1

|x|
∑

xi∈x maxx̂j∈x̂ xi
>x̂j,

PBERT = 1
|x̂|

∑
x̂j∈x̂ maxxi∈x xi

>x̂j. The final

BERTScore we report, corresponds to the F1-measure:
FBERT = 2 PBERT ·RBERT

PBERT+RBERT
.

Task set-level
Task order. We aim to evaluate how well the order
between tasks is preserved in generated procedures
(e.g.: peel avocado ≺m mash avocado, mash avocado
⊀m peel avocado.) To this end, we opt for computing
the Kendall τ correlation metric to rank the predicted
task order against the ground truth task order [27]. It
can be computed as follows: nc−nd

n(n−1)/2 , where nc and

nd represent the concordant and discordant pairs while
n is the number of observations.
Requirement coverage. The requirement
coverage is described as a percentage of input
requirements that are present in the predicted tasks:
| requirements used in generated tasks|

| requirements in the input| ∗ 100. This metric is

called requirement coverage, in accordance with the
terminology used in [28].

Essential requirement coverage. This metric is a
specific case of the Requirement coverage metric,
but the percentage is computed only taking essential
requirements into account.

5. Experimental Setup

For validating our hypothesis stating that the
Transformer architecture can be used to generate task
descriptions containing a sequence of actions, we use the
domain of cooking recipes. This section describes the
experimental setup, including implementation details,
for the specific recipe generation case study. The
complete source code will be released upon acceptance.

5.1. Data

We perform our experiments on the Recipe1M
dataset [29], which compiled a multi-modal collection
of over one million free-text recipes and corresponding

Table 2: Basic statistics of the Recipe1M dataset.

Train Validation Test

Number of recipes 720639 155036 154045

Mean instruction length
(tokens)

126.52 126.80 125.92

Mean number of ingredients 9.33 9.33 9.33

images scraped from the web. For our use case, we
only use the free-text recipes. Each recipe (procedure)
consists of ingredients (requirements), instructions
(tasks) and a title (target product). For the purpose of
consistency and reproducibility, we use the same train,
validation and test splits as provided by [29]. Table 2
describes the various statistics across the different splits.

Table 3b shows the ground truth example from
the Recipe1M dataset for the example shown in the
beginning of this paper (see Table 1).

5.2. Data preparation

A Python framework, proc-gen, tailored to
procedure generation was implemented to support
any kind of procedure through the Procedure class.
The types used to represent the training data are general
enough to use for tasks other than cooking recipe
generation. Furthermore, although here we handle only
the Recipe1M dataset, the proc-gen framework allows
for loading multiple datasets into Procedures.

The text encoding is performed as follows. First,
both source and target sentences are transformed
by splitting words on punctuation using the Moses
tokenizer [30]. This tokenizer is used, so that in the
next step we can make use of open-source vocabularies
learned from English text [31]. Byte-pair encoding
(BPE), as first described in the context of machine
translation by [32], is then used to encode all word
units to an integer index. This mapping is stored in a
dictionary for easy encoding and decoding.

5.3. Model training

All baselines and model implementations are
implemented in PyTorch [33] using the fairseq [31]
framework by Facebook AI Research. Fairseq provides
reference implementations for the models of interest.

All models are trained with distributed training,
using data parallelism. Training a single model (BART)
on 20 GPUs takes about 1h15m per epoch.
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5.4. Baselines

For each of the two problems defined in Section 3,
we train three baseline models as follows.

1. Long short-term memory (LSTM). The LSTM
[34] is a modified version of a recurrent neural network
(RNN) [35], that is better suited for learning long-range
dependencies by keeping an extra internal state. This
state stores important information to be used later in the
sequence. In the context of procedure generation, the
model could learn to store information about the input
requirements and/or target product in the internal state.

2. Convolutional encoder-decoder. Another
approach to modeling the encoder-decoder architecture
replaces RNNs with convolutional neural networks
(CNN) for both the encoder and decoder. In [36],
attention is also applied to allow each decoder layer to
focus on specific input tokens when generating the next
output token. The decoder computes an attention score
per input token based on the current hidden state and
the ground truth output token from the previous time
step. In the case of procedure generation, this allows
the decoder to focus on a specific requirement and/or
the target product while generating a certain output task.

3. Attention-based encoder-decoder. Instead of
RNNs and CNNs, Vaswani et al. [13] rely only on
(self-)attention layers to construct an encoder-decoder
architecture, which they call Transformer. The
Transformer uses three types of attention [13]: the
encoder-decoder attention, self-attention in the encoder
and self-attention in the decoder. In the Transformer
model, one Transformer encoder block consists of
an attention layer, followed by a feedforward neural
network layer. For the Transformer decoder block,
the first layer is the masked attention layer, followed
by the encoder-decoder attention layer and finally a
feedforward neural network layer. For both encoder and
decoder blocks, a residual connection is added to each
layer output. The original Transformer architecture by
[13] uses 6 encoder blocks and 6 decoder blocks. To
incorporate positional awareness, positional encoding is
added to the input sequence.

4. Generative Pretrained Transformer2 (GPT2).
The GPT2, is a direct scale-up of GPT with more
than 10x the parameters, and as such, yet another
Transformer-based model. GPT2 is using only
Transformer decoder blocks and unlike BART it is
not bidirectional. GPT2 is an “auto-regressive” model
meaning that the output (token) of the previous step is
added to the sequence of inputs in the next step.

Table 3: An example of recipe with optional input
requirements. Figure (a) displays a set of input
requirements (with coffee as optional requirement), (b)
ground truth recipe, (c) recipe generated for P2 by
the by the BART model. The BART model accurately
interpreted the coffee requirement as optional and
incorporated that information in the generated tasks
(notice the underlined part “if using”).

(a) Input requirements (ingredients)

Requirements

• 2 tablespoons ground
coffee (optional)

• 5-6 yellow onion skins,
only

• 8 eggs

• water

• 1 tablespoon oil

(b) Ground truth procedure
(verbatim from the dataset)

Target product
Egyptian Slow Cooked
Eggs (Beid Hamine)

Tasks
1. Add all ingredients to

a pot and add water to
cover (about two inches
above products in pot)
and bring to simmer
over the lowest heat
possible.

2. Simmer for 6-8 hours or
overnight.

3. Peel and slice.
4. Serve with ful

maddamas or as a
garnish for stews.

(c) Generated procedure
(produced by BART model)

Target product
Eggs in Onion Skin

Tasks
1. Beat the eggs in a bowl.
2. Add the onion skins and

coffee (if using).
3. Add enough water to

cover the onion skins.
4. Heat the oil in a frying

pan.
5. Fry the eggs in the oil

until they are cooked
through.

6. Serve with the onion
skins.

5.5. Evaluation metrics

For standard evaluation metrics like BLEU, ROUGE
and embedding distance (BERTScore [26]), an existing
reference implementation is used [37]. Custom
evaluation metrics are implemented as follows:

Task-order We implement the Kendall correlation τ
by using a 1-based index of the task in the recipe. The
rank of each predicted task is equal to the rank of the
corresponding task in the ground truth. We assume that
each predicted task has such a corresponding task in
the ground truth, and we match predicted tasks with
ground truth tasks based on their distance in sentence
embedding space, using the BERTScore [26]. If the
BERTScore of a (ground truth task, predicted task) pair
is above 0.5, they are considered a match.
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Table 4: Results on 4000 test examples for Problem P1 (to the left; tackling generation of tasks given both
requirements and target product) and Problem P2 (to the right; addressing generation of both target product and
tasks given requirements only). Best results per measure and problem are shown in boldface.

P1 P2
LSTM CNN Transf. GPT2 BART LSTM CNN Transf. GPT2 BART

Word-level
Perplexity 83.82 11.79 7.59 4.39 5.02 22.25 18.77 8.76 4.79 4.54

Task-level
BLEU 2.96 7.07 3.95 11.02 9.24 2.01 2.93 6.00 12.55 6.16
ROUGE-1 0.22 0.31 0.25 0.45 0.41 0.19 0.22 0.30 0.46 0.40
METEOR 0.21 0.24 0.27 0.33 0.34 0.19 0.23 0.27 0.35 0.30
BERTScore 0.36 0.53 0.37 0.54 0.49 0.42 0.44 0.46 0.55 0.51

Task set-level
Req. Cov. (%) 23.64 53.60 60.53 79.03 67.35 22.70 50.02 53.81 82.77 91.03
Essential Req. Cov. (%) 24.11 55.21 62.37 81.39 69.68 24.46 52.37 56.49 84.91 93.54
Kendall τ 0.13 0.21 0.13 0.34 0.39 0.23 0.13 0.20 0.33 0.31

Requirement coverage For each requirement in the
source, we verify that the words of object in the
requirement are present in the generated set of tasks.

6. Results

In this section we provide the quantitative results
with respect to the evaluation measures proposed in
Section 3, as well as qualitative results related to specific
aspects of generated procedures.

Quantitative results We report the average results for
considered evaluation measures on a corpus of 4000
randomly selected test examples using different models
(LSTM, CNN, Transformer, GPT-2 and BART), for
problems P1 and P2 in Table 4. The results show that
Transformer-based architectures (Transformer, GPT-2
and BART) outperform the other baselines on all
the metrics for both P1 and P2. Specifically, for
P1, GPT-2 outperforms the other methods except
BART in METEOR and Kendall τ , which demonstrates
BART efficiency regarding task order. On P2, BART
outperforms its competitors in coverage metrics and
perplexity, while GPT-2 is the best on the task-level
metrics.

Requirement coverage Judging by its high
requirement coverage metrics performance (Table 4),
the BART model generally succeeds at using input
requirements in the generated tasks. Furthermore, as
illustrated in Table 3, the method manages to recognize
non-essential requirements and deals with them
accordingly in the generated tasks (see underlined part

“if using” in the generated recipe for P2). Additionally,
the method does not violate the specification of input
requirements, unlike its RecipeGPT [7] competitor (see
struck out parts in Table 6).

Granularity When the level of detail for a certain
input requirement is sufficient as-is for use in the tasks,
the model should not further reduce it. However,
the notion of granularity [38] of input requirements is
important in cases where this aspect is crucial and has to
be adjusted for a successful completion of tasks. Table 5
provides an example of a generated procedure showing
that BART model is successfully acquiring the notion
of requirement granularity, by predicting an extra task
for reducing the requirement to a more fine-grained one.
Notice that granularity reduction has been successfully
performed despite the fact that the target product was
not pre-specified (the focus was on P2).

Task order Performing the tasks in the correct order is
also of paramount importance for successful completion
of a whole procedure. Table 6 demonstrates the BART
model ability to produce a proper task sequence, unlike
RecipeGPT [7] which suggests making blueberry bread
by adding blueberries after the bread is actually made
(see underlined parts in Table 6).

Procedure conciseness An ideal procedure apart from
being correct, should also be succinct. Figure 2 shows
that the BART generated procedures for test set recipes
contain less words in general than their ground truth
counterparts (in the interest of space, we omit analogous
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Table 5: An example of recipe with granularity reduction. Figure (a) displays a set of input requirements (with potato,
a requirement whose granularity is of interest, underlined), (b) ground truth recipe, (c) recipe generated for P2 by the
Transformer and (d) recipe generated for P2 by the BART model. Both ground truth and the BART model successfully
reduce the granularity of the potato ingredient (see underlined instructions in (b) and (d)), whereas the Transformer
fails to process the potato ingredient any further.

(a) Input requirements
(ingredients)

Requirements
• 1 lb new potato
• 13 cup sour cream or 13

cup creme fraiche
• 6 cornichons, chopped

(about 1/4 cup)
• 2 tablespoons fresh dill,

chopped
• 2 teaspoons capers, rinsed,

drained and chopped
• 1 seedless cucumber,

thinly sliced (about 2
cups)

(b) Ground truth procedure
(verbatim from the dataset)

Target product
Dilled Potato-Cucumber
Salad

Tasks
1. Cover potatoes with cold

water in pot, and bring to
a boil.

2. Add a pinch of salt,
reduce heat to medium,
and cook 20 minutes or
until tender.

3. Meanwhile, combine sour
cream, cornichons, dill
and capers in a bowl.

4. Drain potatoes, slice in
half and return to pot.

5. Warm over medium heat
1 to 2 minutes, to dry out
slightly.

6. Toss potatoes and
cucumber with sour
cream mixture.

7. Season with salt and
pepper and serve.

(c) Procedure generated by
the Transformer model

Target product
Creamy Potato Salad

Tasks
1. Preheat oven to 350

degrees F (175 degrees
C).

2. In a large bowl, combine
sour cream, sour cream,
sour cream, sour cream,
sour cream, and sour
cream.

3. Season with salt and
pepper.

4. Pour over potato mixture.
5. Cover and refrigerate for

at least 1 hour.
6. Serve with sour cream.

(d) Procedure generated by
the BART model

Target product
Creamy Potato Salad

Tasks
1. Peel and core potatoes;

cut into 1/2-inch cubes.
2. Place in large bowl.
3. Add sour cream,

cornichons, dill, capers
and cucumber; toss to
coat.

4. Cover and refrigerate at
least 1 hour or overnight.

5. Serve at room
temperature.

Figure 2: Comparison of recipe length distributions on
test set recipes (ground truth versus BART generated).

comparison of the number of instructions distributions
as they exhibit similar behavior).

7. Conclusion

In this work, we contribute to the field of
procedure generation, by formalising the problem
of procedure generation, positioning it from the

perspective of machine translation and compiling a set
of evaluation metrics which can be used to evaluate
generated procedures. Most remarkably, considering the
procedure generation problem as a machine translation
task, allows for leveraging the novel contributions in
the field of natural language generation such as BART.
Using the case study from computational cooking, we
showcase that these advancements enhance procedure
generation in both quantitative and qualitative ways,
providing correct task order, requirement coverage and
granularity level, thus bringing clear advantage with
respect to competing methods, including those on which
RecipeGPT is based. These results can be used as a
reference in future work.

To further prove the value of our approach for
procedure generation, for future work we suggest
additional evaluation on different datasets like wikiHow
[39] (general procedural knowledge) and Pistachio [40]
(chemical synthesis procedures). Other applications
could include construction (combining raw materials to
achieve the desired structure given upfront) or appliance
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Table 6: An example of instructions generated by recipeGPT [7] and BART for P1. Figure (a) displays a recipe
title and a set of input requirements, (b) ground truth tasks, (c) tasks generated for P1 by the recipeGPT and (d)
tasks generated for P1 by BART. RecipeGPT errs twice. First (marked by striking out), it uses cinnamon, olive oil
and splenda that are not planned as the input requirements. Second (wavy underline), recipeGPT fails to add the
blueberries to the dough before baking, thus mistaking the task order. In contrast, BART generates a proper, ground
truth-like recipe.

(a) Input: target product
(recipe title) and
requirements (ingredients)

Target product
Williams Sonoma Blueberry
Flat Bread

Requirements
• Pizza dough (premade,

your favorite kind)
• 1 pint fresh blueberries
• Sugar (I use splenda)

(b) Ground truth tasks
(verbatim from the dataset)

Tasks
1. Roll out dough to fit in

regular pizza pan.
2. Sprinkle with sugar.
3. Cover with blueberries.
4. Sprinkle with sugar again.
5. cook at 375 for about

30 minutes (until crust
browns and blueberries
bubble).

6. Let cool; cut into pieces.

(c) Tasks generated by the
recipeGPT model

Tasks
1. Preheat oven to 400

degrees
2. In a small bowl, mix

the sugar and cinnamon
together

3. Roll the pizza dough into
a flat circle and brush with
a little olive oil

4. Sprinkle with
cinnamon/sugar mixture

5. Cut the dough into 12
wedges

6. Roll each wedge up from
the wide end and place
on a baking sheet, pointy
side down

7. Bake for about 10
minutes, or until lightly
browned

8. While the dough bakes,
:::
mix

:::::::
together

::::
1/2

:::::
cup

::::
fresh

::::::::::
blueberries, 1/4

teaspoon cinnamon, and
2 teaspoons splenda (or to
taste)

9.
:::
Top

:::
the

:::::
warm

::::::::
flatbread

:::
with

::::::::
blueberry

:::::::
mixture,

and serve immediately

(d) Tasks generated by the
BART model

Tasks
1. Preheat oven to 400

degrees.
2. Roll out pizza dough on

a floured surface to a 12
inch circle.

3. Spread blueberries on
dough.

4. Sprinkle sugar over
blueberries.

5. Fold dough over and seal
edges.

6. Bake for 15 minutes or
until golden brown.

manuals (combining parts to build appliances).
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