Hawaii Natural Energy Institute

Holmes Hall 246 - 2540 Dole Street • Honolulu, Hawaii 96822
October 21, 1990

```
Mr. Duane Kanuha
Director
Planning Department
County of Hawaii
25 Aupuni Street
Hilo, Hawaii }9672
```

Dear Mr. Kanuha:
As required in the County of Hawaii Planning Commission's geothermal resources permit (GRP 89-1), we have enclosed five (5) copies each of the October, 1990 monthly report.

If you have any questions, please call me at 522-5620.

Enclosure: October monthly report

OCTOBER 1990 MONTHLY REPORT

Scientific Observation Hole (SOH) Program Geothermal Resource Permit: GRP 89-1

Lilewa, Kapoho, and Halekamahina, Hawaii
TMK: 1-2-10:01; 1-4-01:02; and 1-4-02:32

Hawaii Natural Energy Institute University of Hawaii

SUMMARY

Drilling continued at SOH 1 , throughout the month of October, 1990. At the beginning of the month the depth of the hole was at 3377 feet and the ending depth was 4181 feet, an interval of 804 feet. Drilling was impeded by poor drilling conditions, which included hard and highly fractured rock, short core runs and bit life, which resulted in extremely slow and expensive penetration rates. SOH 2 and SOH 3 remain in the permitting stage awaiting grading and grubbing permits to be issued by the County and State. During October, a six foot high fence was erected around the SOH 4 wellhead and is now in place.

This document presents a monthly report to the County of Hawaii Planning Department to support the Scientific Observation Hole (SOH) program in the Kilauea Middle and Lower East Rift zones. The SOHs are for scientific observation purposes only and will not be flow-tested or produced. The information to be gained from the SOHs will provide an assessment of subsurface geological conditions, groundwater level and composition, temperature, drilling conditions, an inventory of possible mineral and geothermal resources, and an eruptive history of the island to the the depth drilled.

This report addresses: occurrence and duration of any startup, shut-down, and operation mode of any SOH/facility; performance testing, evaluation, calibration checks, and adjustment and maintenance of the continuous emission monitor(s) that have been installed; and emission measurements.

II. BACKGROUND

The County of Hawaii Planning Commission approved, on August 8, 1989, a geothermal resource permit application (GRP 891) to drill scientific observation Holes (SOHs) in the Kilauea middle and lower east rift zone. This document meets the requirement of GRP 89-1, condition 6:
"The petitioner shall maintain a record in a permanent
form suitable for inspection and five (5) copies shall be filed with the Planning Department on a monthly basis during
drilling and for six (6) months after the completion of drilling to establish a hole specific baseline and such record shall be available to the community. The record shall include:
a. Occurrence and duration of any start-up, shut-down, and operation mode of any SOH/facility.
b. Performance testing, evaluation, calibration checks, and adjustment and maintenance of the continuous emission monitor(s) that have been installed.
c. Emission measurements reported in units compatible with applicable standards/guidelines."

As planned, four holes are scheduled to be drilled along the Kilauea East Rift Zone on the Big Island of Hawaii. Three of the Big Island holes (SOHs 1, 2, and 4) are on agriculture land and have been permitted by the County of Hawaii Planning Commission. The fourth hole, designated SOH 3, is on convervation land and has been permitted by the State and the County. SOH activities under Conservation District Use Permit (HA $12 / 20 / 85-1830$) issued to the Estate of James Campbell have been approved.
III. SOH 1 SITE

Drilling Activity

Tonto Drilling Services, Inc. continued drilling activities to a depth of 4181 feet for a penetration of 804 feet during this reporting period. The drilling penetration rate and bit life

> remain low due to difficult drilling conditions, including highly fractured rock, caving problems and core barrel blockage.

Monitoring Program - Air Quality

The air quality monitoring station provides a continuous record of atmospheric $\mathrm{H}_{2} \mathrm{~S}$ concentrations when interfaced with a data logger or chart recorder. The unit is located in a utility container on-site. Power for the monitoring equipment is provided by the drill rig system.

This station operated normally throughout the month with only minor data breaks due to shut down of the drill rig for maintenance. Calibrations were routine and there were no major data gaps. Total data capture was 100% (see Appendix for details).

Monitoring Program - Meteorological

Continuous wind speed and directional measurements are being made with a recording wind speed/direction sensor system. A data logger and back-up pressure-sensitive recorder is being used to record wind speed and direction data. The unit is located in a utility container on-site and power is provided by the drill rig system.

This station operated normally throughout the month. Calibrations were routine and there were no major data gaps. Total data capture was 100% (see Appendix for details).

Monitoring Program - Noise

One noise monitoring station is located at the SOH 1 site during drilling. This station operated normally for the majority of the month with only minor loss of data due to mechanical problems.

A second noise station is located at the Laughlin residence, about a quarter mile west of the SOH 1 drill site. Instrument malfunction and loss of calibration made the consistency of results questionable. The instrument has been recalibrated and is currently operational.

A third noise monitoring station is installed at the Pommerenk residence, about a mile east of the SOH 1 site. This unit was removed for complete servicing on September 10, 1990. A weather/security box was built and the unit reinstalled October 5, 1990. This monitor is powered by solar charged batteries, which required adjustments, but now seems to be functioning normally.

Emissions Reports

An $\mathrm{H}_{2} \mathrm{~S}$ monitor is located on-site. The average $\mathrm{H}_{2} \mathrm{~S}$ level measured is about 1 ppb . The Colortek sensors show no indication of any emissions from the well.
IV. SOH 2 SITE

No drilling activity has been initiated. Ambient noise monitoring is being prepared for the SOH 2 site. Findings of the
VI. SOH 4 SITE

Drilling Activity
Drilling is completed and the hole is shut in at a depth of 6,562 feet. County of Hawaii landfill officials found the mud pit material unsuitable (too wet) for their uses and Department of Health officials have given approval to bury the material onsite. Planting of ohia seedlings from the DLNR nursery at the site is scheduled for the near future. A six foot fence erected around the wellhead.

Monitoring Program -

Air Quality, Meteorological, Noise and Emissions have been terminated at the site, as drilling activities are completed.

APPENDIX

MAINTENANCE REPORTS

ALPHA MICROSYSTEMS

1550 Akolea Place
Hilo, Hawaii 96720
(808) 935-7985

HAWAII NATURAL ENERGY INSIITUTE 2540 Dale Street Honalulu, HI 96日22
Attn Arthur S. Seki

November 6, 1990

Dear Art,
This repart covers the period Dct. 1, to Dct. 31, 1990.
GILMAN HAI. There was a 15 hour data loss on Oct. 7-日 due to running out of Lead Acetate tape. There was also a loss of 57 hours on Oct. 22-24 due to chart recorder jam. Alsa 3 hours was lost to minar power autages. A major component (Timer/Memory circuit board) became unstable and was discovered during routine maintainence and before there was any data loss. Installed the last available replacement board For this instrument. Now operating normally. Total data capture for Octaber was 90\%.

SOH-1 HAI. This instrument operated normally during the entire month with only minor data breaks due to shut down of the drill rig for maintainence. Calibrations were stable and required only minor adjustments. Total data capture was 100%.
wans hal. Only 2 hours data was lost at this station during Dctober because of a minor power outage. The instrument continues to operate normally, although it requires more frequent calibration adjustments than usual. Tatal data capture was 99\%.

> wouns MET. There was a loss of 4 hours data for all parameters on Dct. 20 due to a power interuption at the translator housing. I believe that this was caused inadvertantly by the residents. Both Temperature and Wind Direction are becomming increasingly unstable and it is doubtful that the sensars will cantinue to operate till the end of the year. Iotal data capture at this station was 99%.
> T.P. MET. A substantial data loss at this station of 97 hours occured on Oct. 15-19. The underlying reason For this much loss was a simple chart jam. When found, the chart recorder was repaired, but not sufficiently tested, so it promptly jammed again. Other than the chart recorder problem, all parameters at this station operated normally, and calibrations were routine. Total data capture was 87%.
> SOH-1 MET. This station aperated normally throughout the month. Calibrations were rautine and there were no major data gaps. Tatal data captura was 100\%.
> SOH-4 COLORIEK. These cards were routinely replaced and did not give any indications of color change.

Enclosed:
H2S Data Reduction For Gilman, SDH-4 and Woods Stations For Octaber 1990.
Average, Maximum and total H2S For the above statians.
Metearalagical Data Reduction far Waods, T.P., and SOH-1. Octaber 1990.

Synopsis of Waods and I.P. Met Data for October, 1990.
Copy of Station Logs, Dctober, 1990.
Qctaber Invaice
J-276Wednesday, 10-3-90$\therefore .00$ $\mathrm{SOH}-1$
Operating normally.
FOMEFINCK
Fartially installed shelter for sound station. Too
wet to install instruments, test and calibrate.
LOUGHLIN
Operating normally.
Friday: 10-5-90
Z. 00
$\mathrm{SOH}-1$
Operating normally. Full calibration.
FOMEFINCK
\therefore
Fielocated sound station shelter by request of the
Fomerincks. Finished instrument installation, tested
and calibrated. Station now on line.
LOUGHL IN
Dperating normally. Full calibration but no
adjustments were required.
COLORTEC
Feplaced colortec cards. No color change visible.
Monday, 10-08-90
$\mathrm{SOH}-1$
Two chart jams. Cleared itself.
POMERINCK
Operating normally. Inadvertantly left chart speed
at $30 \mathrm{~cm} / \mathrm{hr}$ instead of $2 \mathrm{~cm} / \mathrm{hr} . . . r e s e t$.
LOUGHLIN
Operating normally
J-23S Wednesday, $10-10-90$
SOH-1
Chart jammed twice, but cleared itself again.
FOMERINCK
Operating normally. Installed and tested a power strip
to control voltage from solar-panel to instruments and
batteries.
LOUGHLIN
Operating normally. Chart $\&$ pen $0 . K$.
Friday, $10-12-90$
3.00 $\mathrm{SOH}-1$
Fen ran dry. Some data lost. Fan full calibration.
Fieplaced chart recorder with unit borrowed from SAIC to attempt to find out cause of jamming. FOMEFINCK
Operating normally. Fian full calibration. Feplaced directional mike setup with omni-directional unit. LOUGHLIN
Operating normally. Fian full calibration. COLORTEC
Fieplaced Colortec cards. No visible color change.
FOMER INCK
Operating normally, renewed chart.
LOUGHLINFen ran dry. Lost some data. Renewed chart.
J-290 Wednesday, 10-17-90 2.00
SOH-1Some data lost because pen ran dry.
FOMERINCK
Operating normally
LOUGHL IN
Feadings seem abnormally high. Meter was set onFast, instead of slow response.
J-292 Friday: 10-19-90 00$\mathrm{SOH}-1$Operating normally. Full calibration.
FOMERINCKOperating normally. Full calibration.
LOUGHLINReadings abnormally high. Replaced microphone andpreamplifier. Full calibration. Normal at 110.0 db .but a zero at 60 db difficult because of high ambient.COLORTECFieplaced Colortec cards. No color change visible.
J-295 Monday, 10-22-90 4.00
SOH-1Operating normally. Feinstalled our recorder which hasbeen operating without a hitch for 10 day, and returnedborrowed recorder to Ormat.
FOMERINCKSome data loss here because one of the sound meterbatteries did not charge from the solar panel. Fieplacedbattery and checked circuits. Everything seems normal.LOUGHLIN
Very high readings but everything seems normal. Got some assistance from kim Born and his spare meter and calibrator. Eventually found that the connecting cable between the meter and the microphone had gone dingy. Fieplaced cable, tested and calibrated... $0 . K$. The readings with the defective cable were about 15 db above normal.

```
J-297 Wednesday, 10-24-90
                                    2.00
    SOH-1
    Operating normally
FOMERINCK
    Operating normally but blew sound meter while checking
    solar panel % batteries. Station now inoperative.
LOUGHL IN
    Operating normally but pen ran dry. Some data lost.
```

```
        SOH-1
            Operating normally. Fan full calibration.
FOMERINCK
            Installed sound meter that was borrowed from SAIC.
            Our meter had to be sent to Quest for repair.
LOUGHLIN
            Operating normally. Fan full calibration but no
            adjustments were required.
COLORTEC
                            Fieplaced colortec cards. No visible color change.
```

$\mathrm{J}-\mathrm{SO2}$

```Monday, 10-29-902.00
```

SOH-1

```Operating normally,FOMERINCK
    Operating normally*
LOUGHLIN
    Operating normally.
```

J-S04 Wednesday, 10-ड1-90 2.00
$\mathrm{SOH}-1$

```Chart iammed again. Exchanged recorders with Loughlin.FOMEFINCKOperating normally. Adiusted charge circuits.LOUGHLIN
            Operating normally. Exchanged recorders with SOH-1.
J-306 Friday, 11-2-90 E.00
SOH-1
                            Chart iammed, some data lost. Faper at fault, not
                            the recorder. Full calibration.
FOMERINCK
    Operating normally. Full calibration, no problems.
LOUGHLIN
    Operating normally. Full calibration, no problems.
COLOFTEC
    Feplaced colortec cards. No color change apparent.
```

NAME

Rannye o - 3 py
Words HAI
Flaw steady o 3.0, Renewad chant-1sad tc-tate OX
Tugen Dmy - pomplabublen Of

$$
\text { chedk stecels } 92.5 \% \text {, }
$$

Opter's 160-isgo, down vor, No Ady:
Range - High lí billix

$$
2 \operatorname{cob} \text { काib } 12 \text { z1 } 418
$$

Weods Met
Ap-ustion Noemally - Renreved Chout
TPDED

sox-1 llet
quenativig Norcmatly - Renewed chadt
Gulman MAT
Anng- $0-z p p!$
Flou sterdy e 3.0, perrwed chast'-hendifcelate 0.4
Thgon Vmy - Punge \sim Gub́blen ath
Chedkis.its down. 190
Oplais $19+0-1930$, down 10 m, tlo efj.
Remy- degn L: Now XII
Zun erkb $12 \leq 20$
$\operatorname{sen} A-1 \operatorname{cts} \pi$

$$
\text { Rang - } \phi-z \text { pp } 6
$$

Flow standy a 3.0, peneveal chant- dend to tiate of
Thgan Dry-Filad pubblen-Pump oth

$$
\text { check zo, cio, upl } 10
$$

Gomat - kig k kow Ni:
Zeno Calib $29 \rightarrow 10 \phi$
v－2フL Widnesady 10－3．90
Wood＇s HIII
Pange or－zph

Tugon Diny－eillel bubblen－Pumys on
checr 22．0\％，up． 5%
optir＇s 1610－1600，down 10r，No ady：
Rengel tigh ni kow lil

Woods Net
oppenating，Neamelly－chant on
T．P．Net
Qpporatiui Nonmally－charet＋BatDOM
Pgoructuen Neremally－chanfob
Bitmeon NAI
Arnge o－－2pp
Fho Stexly＠3．0，chout＋headfcelite Qly
Tipoer bou，puing a Bubbleal O．M
check．18．4\％up． 300
Potiós in40－1dso，up ion，ats $\frac{1}{6}$ रiso－19．50
pange－Bisk LiN kow Liv

SON－世世I
sance or－zpó
Flowsteuly 3．0，chrat＋head falate 0t
Tygon Din－Pumip a Bokhlun OK
etwek 28.8% up． 29

pange 1 Nash 1% Low fús fow，adi Fon

J-2>8 Eriday 10-5-70
Woods MAI?
Ronge o-zpá
Flow vtady (13 3.0, chatet a head devtala OK
Turear Dray-Pumpo - Bubblen OK
Cínecy 21.5% fowen, sto
pofres laye-1alod down lan, Noded:
Pance- Kifh iv low XV

Weods Wet
Pperinativin Noamally - Peneuved chant
tomet

$$
\text { Spenamey noremally - chruif }+B_{a d t} \text { OK }
$$

Ppenating Nommally - quentor
Gulencen KILE
Panye ó-zppó
 Tygar Dra, Pump - Bubblen ak.
ched sitady a 1 e.vio
Datris studly σ 1400-1900
Reng- High $\frac{1 i L}{}$ low $\frac{1}{1}$
zeno calib $\angle 2$ \& $\varnothing 1 \varnothing$

ACt 31 栊 48 4a 50
son- HLAT
Ranye or-kppb

Tygea Dal, Puimp L Bubbten dip
cheir 28.8% up, 27
Optics $2170-2180$, up to - 1 ad, $151280-z 180$

R-nocults $2=120$
ColenTec
Pepluced Celcutec Gonds - Dó Celon Cinage insiante.

J-281 110uduy 10-8-90
Woods HisI
Pruage \varnothing-zpp'
Flaw Stecidy a 3.0 , chent on - Peplaced texd toelate
Tygan Dmy - Pump + Bubblen 0.
ClvéK $2,6 \%$ up 1%
Optics strady d 1610-1610
pinaz- High li Low kin
zenó culita $18 \geq 3 \angle Q$
weodshat
Opereating Vomindly - chuct OH
the Mret
Opriatting Sommally - ekmut $+B A D B$
som-1Met
Openating Vorimally - ehaut OK
Gimon GIATA
Rany- o-z pps
Flow steady e 3.0, chant OH:-Repleced KeaclAcdate
Fugou Lny- Pump + Bubblen ak
Gheuf 12.6\% deun 8%-Idi: elycke Jine $\frac{1}{2}$ peigha Optics $196.0-1950$, town $10-n$, lo ded:
Amege- kign lil Low Li
Zerocolín 165 z lo
son-1 H14 I
Range o-zppos
Ploulsteady e $3,0, c$ koret o x - Miploct heed fictate

$$
\begin{array}{r}
\text { Sparainlib- Exp 50 } 50 \text { s-0 } 50 \text { 50 } \\
\text { Act } 28 \text { 31 } 4754505
\end{array}
$$

$$
\begin{aligned}
& \text { check 2p,6\%, uy. 2. \% } \\
& \text { Optic's z180-z 200, up zo ni,ad,to zz00-zzoo }
\end{aligned}
$$

NAME
J-283 Wednes dry ce-ve-90
heeads HiAI
Pringe o-zppo
Fowstrady e 3.0, Renewedeched-hend teetate of
iygon Dimy - fulten Bubblen - Pamp oH
Chect $2 k, 4 \%$ Soum, 2%
Qutic Steady@1610-1610
Nemege Wioh i kow di
zeno cotió 20 st 2 b
Whoods hetet
operativin tercmadly - ckedat 0 N
T.D Net
openatiny Nonumilly - chent r Bat OH
sexi-1 Hez
Op-natian Nopindly - penewed cheut.
Elman MAI
Pange o-3ppb
procu SEudye 3.0, Remaved Chaut-herit tantate on
Thgea Din- Pumis o Bobsleal Dib
efreck Stexdy 126\%!
biticis 1960-1950, down ko-2, Dodat:
pange. Miek 1, 1, Low ik
Zenocelín $16 \geq 3$ y \geq
sod-1 int
Flecu Steaily o 3.0, rienewed Chunt-Lend Actate al
Tyigen Dim-Pump - cuóbtun do
Chert 2200-2210, up10-, edj 有 $21210-2210$
Pomie - Mirs liy isulit
Dpt Hes 28.4\% drwe. 1 \%o
Hino colib ze \quad I I

NAME
$\sqrt{-285}$ Feiday 10－12．90
Woods WHI
Pange o－z ppó
Flow steady e 3．0，chant a tend theitite OK
Tygon Diy－bump a Bubb́len aff
ef＝1\％ 21.3% ，down．$\%$
Optic＇s $1630-1040$ ，up10 2 ，adi $1640-1640$
konge－High Lit bow liv
zine Culib la 6 zo

span erdía－Exp
10
Act
At
21

Woods MEX
Opendtive，our，but WD＋Temp geting unsteble－ramered Chast
te MET
Openitizy Normsth－Rencued Chat－BattWeack．

$$
\sin x-x \pi-x
$$

Opeicutivin Remsed／s－elmout ons
Eilman HAZ Reage $\phi-3$ ppb
Flow sterdy e 3．0，chant a heed fcitule Qu？
Tygan Din－Bump \＆Bubbleal a．s
Ched a 1 usted t le．vivalts．
Optivi sitendy a 1960－1940
Bomre－Aligh lit Aow lit

$\operatorname{sex}-1 \operatorname{HEt}$
＊inge os－zpis
Flow stexdy a 3：0，chant + hewat tictate OK
Tygen Don－Poum a Buáden 0t
C口ーに 2 2－2\％，down $=2 \%$
OpItics STExty $z \frac{1}{10} 0-2210$
Paiege－Migh li Lowll
2－nocrllb 26 a 300

J-288 Menduy 10-15-90
Woeds NAI
Rmeye o-3ppos
Flow steady a 3.0, chant a Lead Acetete O.W
Tygan Dmy - Pump a Subblen ou
eneck $2 L \pi \%$ up. 4%
optes $1610-16=0$, up $10-1$ adj. it $1620-16=0$
Ranpe Nigh L.V Low Liv
2 eno conb $49 \leqslant 19$
HeodsME ${ }^{-}$
Openating aik but Rarn Gagewas Typoci oven- Rebalenced
and Repleced chant. wo. a vemy still unstable.
IRNT
Openatu- Nomendly - chatorn-Pplacelbatteny
som-1 thet
operiatim Donsadly - chach of
Glmean HaI Range o-zppb
 Ty pou Doy - Pump + Bubbten ok.

* Sampt a diold circuitky desective-witlheve to kplace Andyzeal ok a TBes'f, vumentivemany boaded
 Anivg- Megh til dow $2 i$

sOH-LNAI

Tygon Duy - =lled Boéten- Pump or

optis straiche $z z z 0-===0$

NAME
EXPERIMENTNO.
J-290 Wedneschy 10-17-90
Moeds MAI
Rimeye ϕ - zppb
Flaw Steadyo 3.0, Rencrod Cirut, heral detefte OK
Tygen Pry - Puncy - Bublolen O.K
check $21,2 \%$, down 550
Optics $1630-1610$, down 20-2ad; T0 $1610-1610$
Aung- Kegh Li. low Li.
Zeno clíb 20 纤
Moods MeOt
Qpariting Nomendlly - efinut O.f
TP flet
Ppenativin Nonnerlly- Chent abat OH
som-her
Popradiking Rommily - Roniwed chacd

$$
\frac{50 n-14+\pi}{1}
$$

Ranje ó-3plá
Flow speally of 3io, Perrewed chat, kexd Acelat- 0.1.
Fhger Dmal- Pump - BoAblen O.
Cheir 23.5 \%\%, up. 1%
Optics 2230-22l40, up 10 2 , ad, Z zryolz 240

$$
\begin{aligned}
& \text { Arug- - High Kì Ka Vil } \\
& \text { Zutiocub } 27824 \%
\end{aligned}
$$

Bíman ÉAI

Thpar Dim - Pumpe + Bubblen au

fince- fícón dy lou

$$
\text { 20no }<161550
$$

$$
\begin{aligned}
& \text { J-292 friday } 10-19-90 \\
& \text { Hocds. HAI }
\end{aligned}
$$

$$
\text { Pronge } p-2 p p b
$$

chech sz.0\% up. 8%
opfrices stexdy ed 1630-1650
Annat Migh Liv Low vil
zato Calib 18 7 3110
phanc. Mrd

T.e. We.t.

* Chant vainned - Lost us rouns-Reneneed chast-bout a4 sem-1MEO
eperoting Noumally - Mereved chicut
Enemar wit
Elow adi to 3.0 frem 3-2, pogleted cheup -lecd fadete oll
Derinted Tygan-pumpto Bubblen aH
chech zo.0V, up z.0. D
optics $1760-2000$, up $40-$ edi π 2000-2000
pange Negh lí kow lie
Irno edrb 42 \& 6
Sodtl det I
Range o-3ppb
Flaw steady E 3.0, charect + hex Acelat or
Tagan Ding-Pimps a Rabblen QH
Check 23, 4.8, doen. 1 p

Aonge- trín l:i' Low li
Zeno calib $=\alpha$ स \& - ϕ
spom erlis $-=\times x_{0}$ 50 50 so 5
द由 35 ये 4850
J.295 Mindul 10-22-90

Weods HiA I
Pange $\phi-3 p$ po

Tyeen Diy Pump o Bubb/n 0%
Check iz.1\% up. 1%
Optics $1610-1620$, up $10-2$, adj. 大 1610
Range kígh ki: Low li:
Lerochlla 19 z o

Wreds Het
openating Neimally - chrut o. 4
IP Mrer
Operantiv, Wanmally - ehant obaft o\%.
Soly-1 ite t
Operditing Nownelly - charof O.K
GilmmentI
Panye o-sppp

ched 4 stindy el 20.0%
optris sternlula roo0-soco
Pange- Mign $1 \cdot 1$ Low iV
Renocalib 22 J D 10
som+1met
Acrus o-spó

Tgaoribm1-Pumé $=$ Buéter ob
check 23.63 , uf. zio
poticis striti, $\frac{1}{2} z=50-2 z=0$
pinige- Migun 1001%
2 2no culih 26 - 10

J-297 Wedres day $10-24 \cdot T 0$
Woods HAI
Ronae o-z 2 pp
Flaw edj. To 3.0, Replaced chait Leed keefot O.K.
Tygen DME Rump + Qubblen ok
Ched 218% doun 3%

Anger Hén $1: 1$ Low vil
2eno cont 18
7
Nooks Met
Opeactivin, Nommally - chouftok
If. Met
operating Noamdify - chard - Bat O.4
$50 x-1$ Het
Pp-icotinin Noernafly - enaut ori
Extinai uAt
Chant-Gramoned-horf patoo
Pantye \varnothing - zpos

Ppaned $\frac{y}{4}$ gor - filked Bubblau - Puriph all
Check LIN 3% down 2.7%
Ofici, $2010-2020$, up vo 2 , adj To $2320-2020$
Dange-kioh x: Low in
zonacalib 12 3 o
SeVithaI
Patan or-zpib
Fliverfexdy a 3.0, Renculd cireft lead Acdate QK Tiparibin I Pumpo - Biblan Q!
Chety $=$ x. 4% dolun 2%

Pemore- Mian lis Lou lN1
2rióclib 259 ¢́

J-299 fridouy $18-26-90$
Weod= NAT
Renge op-zpía

Tugon Dmy Pump a Bubbital O.K
Cheok 21. \% \%, down. 2%

kenge- mos lix kowliv
Zeno clib z2 $51-\infty$
Weat flet.
Openertin, Nommelly - RemenedCbarat
TA Deat
Opexativy, lemadh - Renewed Chara-Batt/zur z
sonthtut

GNman HIII
Arnore 0 -zpps
Flow adj A 3.0 from 2.6, chadt + headAcelate 04
Typen Prey P Pinep + Bobbblen or
Bheck 1 ț: or up: 290

Panar- digh li low gobhaw, atij fon lil

Son $\alpha-14 \pi$
Pange o-zppn
Plow stardy a 3.0 , chart + Lned Acelate ok
Faren Duy - Poimp a Bubbin ow
CREV 2o, \% foun 3\%

Pange- M年hw Ln W1:
Bentalib 6421∞
calontec
Prepiarai Colcutec Canis - Ho visile Coion Change.

NAME
J-362 Mouday le-29-70
Weads HAT
Range of-3pob
Ffow stardy 3 .e, chant a hebed bletult of
Tugan Ong - Filled Bubblee-Pumpon
chedh $21,5 \%$, doun. 1%
epler's steady o 1610-1610
Ronge- Hun il kow li.

Weads Net.
Openative Noxmedly - chanctow.
IR MA AT
Soprantiving Nanorally - chant - Bat OH
epperentin Nomencally-chrout asts
Gdmen M\&
Romage $0=2$ zp.
Flow afji F 3.0 chunt a Aediffelate of.
rugen bayl Pomp weik- Bubben of
check 17.4% dawn 1%
Pptes 2040-zolodeun $30-2$, dof to $2020-22=0$
Ranye- Mich lì kowlil

SOH-1HAI
Arugre o-zant

Tupron Din - Pomp a Bubblen ok
Chedk 28.3% in 28
ppteis sfendy do 2550-2250

zen Qulf $2=3 \leq 3$
Spari Colis - Exp so sc vo so (sparifot) 50

J-304 Wedresotha 10-31:40
Hocds HAI
Renye o-zppb
flaw stenkly 3.0-Pemewed chent-had taretat 0.f
Tygen Dny - Sump a Rubéten our
ehedr 260% up 280
opter's $1610-1600$ down $10-2$, Noady:
Range- Mich $\frac{1: y}{4}$ fow M
2troculíb 20 y $=a$
Woofs met
Qpeunting Nommatly - eharet ont
TPDet
Opedrting Normally - chacet + Bation
sebthent
Pperartivi Konwadly -Rencuedichaud
Gulman KLIT
Ranyy 0 -zppo
Flow sterlue 3.0-Romeved chart-hadfcetata 0. K
Tuceri Dry - primp - Bubbten of

Opticis sterdy ed zoxo-zo, o
Ronge- High 1.V Low 1.V
Zino culab 16 It $_{1} 2-\phi$ (Veppiti) D
SOH-1
Rancye $\phi-$ kup
Elcu: FTeady a $3: 0$ chaut a herd $4 \mathrm{~d} \sqrt{\text { wit }}$ OK
Tyigen Dmi =ifled bobebn -pimp on
Chect stedy Q 22.3%
Goltes $=-40-2230$, down 10 La, N/oati:
Fonver. llean lif Lou


```
    J-275
                Tuescay, 10-2-70
                    Furchased Solar Fanel, Misc. clampg, fittings and hardware.
Frepared cables and tested.
    J-276 Wednesday, 10-z-90
GOH-1 0830 Clouds 100%, rain WE%DIR 290 E-3
    Operating normally. No problems
LDUGHLIN 0940 Clouds 100%, rain WS%DIR 300 E 2-3
        Operating normally. No problems.
FOMEFINCK 0900 Clouds 100% rain WS&DIR SOO @ 2-S
        Installed instrument shelter, shelter stand and batteries.
        Too wet to attempt to install and calibrate instruments.
    J-278 Friday, 10-5-90
        EOH-1 0820
        Operating normally. Replaced pen. Calibrated sound meter
        to 110.0 from 109.7. No adjustments required for recorder.
FOMERINCK O900 Clouds 60% WS&DIR S40 自 5-7
    Felocated shelter to top of hill as requested by Mrs.
    Fomerinck. Installed instruments, Solar-panel and
        batterieg. Tested and calibrated.
LOUGHLIN 1010 Clouds 40% WS&DIF S50 E 8-10
    Operating normally. Ran full calibration. No adjustments
    required for either meter or recorder.
WS&DIF 315 E \Xi-4
    J-231 Monday, 10-8-90
        SOH-1 0825 Clouds 50% WS%DIR 300 [a 2-3
        Two jams during the weekend. Some data lost. Jams cleared
        themselves.
FOMERINCK Clouds 60% WS%DIF 315 G \Xi-4
    Operating normally except that I left the recorder
        running at 30 cm/hr inadvertantly. Replaced chart.
LOUGHLIN O925 Clouds 70% WS%DIR उ25 日 3-4
        Operating normlly.Chart & pen O.K.
    J-28S Wednesday, 10-10-90
        SOH-1 0830 Clouds 75% WS%DIR 340 [a 2-3
        Two jams, but recorder cleared itself again.
        FOMERINCK O852 Clouds 40% WS&DIR S50 a 8-10
        Operating normally. Installed power-strip to control
        power from solar-panel to batteries & instruments.
        LOUGHLIN O945 Clouds 50% WS%DIR 10 la 8-10
        Operating normally. Chart & Fen O.K.
J-285 Friday, 10-12-90
        SOH-1 . 0847 Clouds 80%
                            WS%DIR 20 ! 5-6
        Pen ran dry but no jams. Installed chart recorder
        borrowed from SAIC. Full Calibration. Adjusted meter
        to 110.0 from 100.2. Adjusted recorder zero & \equivpan.
        Replaced pen.
        FOMERINCK 0936 Clouds 50% WS&DIR 40 @ 8-10
        Operating normally. Replaced directional Mike with
        Omni-directional cage. Full calibration. Meter to
        110.0 from 110.S. Adjusted recorder down 1 db.
        Checked solar panel and adjusted charge to batteries.
LOUGHLIN 1045 Clouds 60% WS&DIR SO g 8-10
    Operating normally. Full calibration. No adjustments
    required for meter or recorder.
J-238 Monday, 10-15-90
SOH-1 0820 Clouds 60% WS%DIR 300 E 2-3
    Dperating normally. Fenewed chart.
FOMERINCK 0850 CloudS 60%
WG&DIF: 320 [ J-5
    Operating normally. Renewed chart. Eatteries O.K.
LOUEHLIN 09E0 Glouds 60% WE%DIR STO G 3-5
        Doerating normally, but pen ran dry. Feplaced pen
        and renewed chart.
```



```
    J-297 Wednesdays 10-24-90
        EOH-1 0810 Cloude 50%
        Operating normally. Chart & Fen O.K
FOMERINCK OSS5 ClOUdS 70% WS&DIF J6O 10 4-5
    Operating normally. While checking solar panel and
    batteries, I accidently shorted out the leads going
    to the sound meter. Apparently, this blew the meter.
    Femoved meter for check and repair. Station now
        inoperative.
LOUGHLIN 1010 Clouds 80% WS%DIF 20 E S-4
    Operating normally but pen ran dry. Replaced pen.
J-299 Friday, 10-26-90
SOH-1 O805 Clouds 80% WS&DIF S50 ■ 5-6
    Operating normally. Feplaced chart & Fen. Fian full
    calibration. Meter adjusted to 110.0 from 109.3. Also
    made a slight increase adjustment on recorder.
FOMEFINCK OB45 Clouds 50% WS&DIF 360 IG 5-6
    Installed sound meter borrowed from SAIC. Dur meter
    was sent to Quest for repair. Ran full calibration of
    meter and recorder. Checked solar panel and batteries.
LOUGHLIN 0940 Clouds 40% WS&DIR 300 E उ-5
    Operating normally. Full calibration. Sound meter 0.K.
    at 110.0, and no adjustment required for chart recorder.
J-302 Monday, 10-17-90
SOH-1 0820 Clouds 100% rain WS&DIF: 275 E- 2-4
    Operating normally. No problems
FOMEFINCK 0850 Clouds 100% WS&DIF 280 E-4
    Operating normally. Checked batteries & Solar panel.
LOUGHLIN O92E Clouds 90% WS&DIF 280G 2-4
    Operating normally. No problems.
J－304 Wednesday，10－31－90
SOH－1 O815 Clouds 50\％WS\＆DIF 270 日 2－3 Chart jammed．Decided to exchange recorder with the one at Loughlins．Fieplaced pen．
FOMERINCK 0840 Clouds \(30 \%\) WS\＆DIF 280 曰 4－5 Operating normally．Adjusted charge circuite．
LDUGHLIN 0915 Clouds \(30 \%\) WS\＆DIF： 290 回 4－5 Operating normally．Exchanged recorders with SOH－1．
J－30t Friday，11－2－90
SOH－1 0820 Clouds 100\％，rain WS\％DIR 70 日 2－3
Chart jammed．Some data lost．Chart paper at fault
not chart recorder．Full calibration．Adjusted the
sound meter to 110.0 from 110.3 ．Fecorder was 0．K．
FOMEFINCK \(\quad 0915 \quad\) Clouds \(100 \%\) WS\＆DIF 80 曰 2 － 3
Operating normally．Fenewed chart，pen O．K． Full calibration．Sound recorder 0．k．a 110.0 Fecorder was sdb high．Checked solar panel and batteries．
LOUGHLIN 1000 Clouds \(90 \%\) WS\＆DF Calm
Operating normally．Renewed chart，pen \(0 . \mathrm{K}\). Full calibration．Adiusted meter to 110.0 from 110．2．No adjustments to recorder．
```

DAILY AVEFAGE, MAXIMUM AND TOTAL H2S READINGS
October 1 To Qctober 31, 1990

	Gilman			$\mathrm{SOH}-1$			Woods		
Date	Avg	Max	Total	Avg	Max	Total	Avg	max	Total
1001	1	S	31	1	2	22	2	-	56
1002	1	3	28	1	2	17	2	\leq	59
100 S	1	2	± 4	2	-	37	1	2	34
1004	1	2	30	1	2	25	2	2	39
1005	1	2	24	1	2	16	1	\square	29
1006	1	2	26	1	2	20	1	2	22
1007	1	2	21	1	2	2 S	1	2	23
1008	1	B	17	1	2	25	1	2	26
1009	2	\pm	57	1	2	20	1	2	29
1010	2	S	39	1	-	± 2	1	2	28
1011	2	3	37	1	2	≤ 0	1	2	23
1012	1	S	29	1	2	26	2	צ	≤ 6
1013	1	2	26	1	2	23	1	2	31
1014	1	2	26	1	\pm	± 5	1	\pm	30
1015	1	2	24	2	\square	40	1	2	27
1016	1	2	22	2	2	± 6	1	2	24
1017	1	2	26	2	B	41	1	2	\bigcirc
1018	1	\pm	26	2	2	42	1	S	28
1019	1	-	$\Xi 1$	2	3	41	1	3	≤ 2
1020	1	\pm	24	1	צ	S	2	S	-8
1021	1	ت	27	1	2	30	1	2	29
1022	-	-	-	1	S	23	2	-	≤ 7
1023	-	-	-	1	2	30	1	2	24
1024	1	2	12	1	.	≤ 5	1	2	22
1025	1	2	19	1	S	-1	1	2	15
1026	1	2	23	1	2	29	1	2	22
1027	1	2	23	1	2	35	1	2	20
1028	1	\pm	26	1	2	30	1	2	22
1029	2	Ξ	59	1	2	± 1	1	S	30
1030	1	2	$\underline{3}$	1	2	29	1	2	54
1031	2	2	36	1	2	21	1	2	19
	1	S	797	1	3	908	1	Ξ	875

All readings are in parts per billion (ppb)

Froa 10-1-90 to $10-31-90$

HOUR:	0	1	2	3	4	5	3	7	3	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23			
1001	1	1	1	1	1	1	1	2	1	1	1	.	1	0	1	2	1	1	0	0	0	1	1	1	1	2	22
1002	0	0	0	0	1	1	0	0	1	1	2	2	1	1	1	1	1	$!$	1	0	0	0	1	1	1	2	17
1003	1	1	1	1	1	0	1	1	1	2	2	2	2	3	3	3	3	2	2	1	1	1	1	1	2	3	37
1004	1	1	1	2	1	1	1	0	1	1	2	2	2	2	2	1	1	1	1	0	0	1	0	0	1	2	25
1005	0	0	1	1	1	1	0	0	0	1	0	0	1	2	2	2	2	1	1	0	0	0	0	0	1	2	16
1006	1	1	0	0	0	0	1	0	1	1	2	1	2	2	2	1	1	0	1	1	0	1	1	0	1	2	20
1007	0	0	1	1	1	0	1	1	1	1	1	1	1	2	2	2	2	2	1	0	$!$	0	1	0	1	2	23
1008	0	1	0	0	0	0	0	0	1	2	1	2	2	2	2	2	2	2	1	1	1	1	1	1	1	2	25
1009	0	0	0	1	0		$\cdots 1$	0	2	2	$!$	1	1	2	2	2	2	1	1	0	0	0	1	0	1	2	20
1010	0	0	1	0	0	1	1	1	1	2	2	2	2	3	3	2	2	2	1	1	1	2	1	1	1	3	32
1011	2	1	1	1	1	1	1	2	1	2	1	1	2	2	1	1	2	1	1	1	1	1	1	1	1	2	30
1012	2	1	1	1	2	2	2	1	2	2	1	2	1	1	0	1	0	1	1	1	1	0	0	0	1	2	26
1013	0	1	1	1	1	0	1	1	1	2	1	1	2	2	1	1	!	1	0	0	1	1	1	1	1	2	23
1014	1	1	1	1	1	0	1	1	1	1	1	2	2	2	1	2	2	2	2	2	2	3	2	2	1	J	35
1015	2	2	1	1	0	1	1	2	1	2	2	2	2	3	2	2	3	2	2	2	1	1	2	1	2	3	40
1016	1	2	2	2	2	1	2	1	2	0	0	1	2	1	2	2	2	2	2	2	2	2	1	0	2	2	36
1017	0	1	1	1	1	1	2	2	1	2	2	2	2	3	2	2	2	2	2	2	2	2	2	2	2	\checkmark	41
1018	2	2	2	2	2	1	2	1	1	1	2	2	2	2	2	2	2	2	2	2	1	2	2	1	2	2	42
1019	2	2	1	2	1	2	2	2	2	2	2	3	2	3	3	2	1	1	1	1	1	!	1	1	2	3	41
1020	0	1	2	1	1	1	0	1	1	1	1	2	2	2	3	2	2	2	2	2	1	1	1	1	1	3	33
1021	1	1	2	1	1	2	2	1	2	2	2	2	1	1	2	1	1	1	1	1	0	0	.	1	1	2	30
1022	$!$	0		0	0	1	0	1	1	1	1	1	1	2	3	2	2	1	1	1	1	1	0	0	1	3	23
1023	1	1	0	1	1	1	2	2	2	1	1	2	1	2	2	2	2	2	1	1	1	0	1	0	1	2	30
1024	1	1	0	0	1	1	1	0	1	2	1	3	2	2	2	2	2	2	2	2	2	2	2	1	1	3	35
1025	2	1	1	0	0	0	0	1	1	1	2	2	2	2	2	1	3	2	2	2	$!$	1	!	1	1	3	31
1026	0	0	0	0	0	0	1	2	1	1	1		2	2	2	2	2	2	2	2	1	1	1	2	1	2	29
1027	2	2	1	1	1	1	1	2	2	1	1	2	2	1	2	2	2	2	1	1	1	1	2	1	1	2	35
1028	1	1	2	2	2	1	0	1	1	1	1	2	2	2	2	1	1	1	1	1	1	1	$!$	1	1	2	30
1029	1	1	1	1	1	1	1	0	2	1	1	2	2	2	2	2	2	2	2	1	1	1	1	0	1	2	31
1030	1	1	1	0	0	1	2	1	1	1	2	2	2	2	1	1	2	2	1	1		1	1	1	1	2	29
$103!$	1	1	1	1	1	0	0	1	1	2	1	1	$!$	2	1	2	1	1	1	0	1	0	0	0	$!$	2	21

$t=$ Power or Equip. failure: $\quad \$=$ Calibration

Synopsis of Average Daily Meterological Station Readings

10/1989
T. F. MET

DAY	TEMP	WD	WS	RAIN	RH
01	22.9	318	4.8	0.35	-
02	23.9	337	4.7	0.04	-
03	24.0	353	5.2	0.74	-
04	23.9	323	5.0	0.65	-
05	23.7	323	6.3	0.93	-
06	24.0	345	5.8	0.09	-
07	23.7	339	5.1	0.02	-
08	23.5	349	6.0	0.06	-
09	22.7	330	4.9	0.05	-
10	22.8	320	6.5	0.37	-
11	23.1	360	6.2	0.47	-
12	23.6	330	5.4	0.10	-
13	23.2	313	6.8	0.36	-
14	23.4	324	7.5	0.05	-
15	21.7	301	4.7	0.09	-
16	-	-	-	-	-
17	-	-	-	-	-
18	-	-	-	-	-
17	25.6	101	8.7	0.04	-
20	24.6	51	5.3	0.02	-
21	24.0	19	5.3	0.01	-
22	23.8	325	5.2	0.14	-
23	23.5	327	5.4	0.44	-
24	22.9	321	6.4	0.18	-
25	22.9	328	5.8	0.13	-
26	22.9	327	4.9	0.09	-
27	22.8	327	5.6	0.09	-
28	22.5	324	5.4	0.14	-
29	21.9	316	6.4	0.32	-
30	22.7	352	6.8	2.19	-
31	22.8	337	4.5	0.21	-

WOODS MET

TEMF	WD	WS	RAD	RAIN	RH	SIGMA
22.8	333	3.5	148	0.49	-	22.1
23.6	354	3.1	132	0.05	-	28.9
24.1	1	3.5	72	0.92	-	25.8
23.8	339	4.6	134	0.54	-	31.6
23.9	344	4.3	158	1.23	-	42.5
24.2	351	3.5	116	0.08	-	18.4
23.6	355	3.4	76	0.01	-	34.0
23.7	351	3.5	180	0.11	-	43.2
23.8	351	3.9	158	0.05	-	27.0
22.9	345	4.6	156	0.26	-	31.2
22.6	352	4.2	98	0.68	-	43.3
23.1	339	4.4	138	0.06	-	23.5
23.3	339	5.0	140	0.33	-	21.6
23.3	334	4.9	144	0.23	-	38.0
24.2	348	4.0	140	0.07	-	43.0
23.8	351	3.2	110	0.31	-	29.3
23.9	38	4.0	118	0.57	-	37.8
23.0	27	3.8	94	0.40	-	36.2
24.4	85	5.3	128	0.47	-	40.0
25.0	124	5.1	142	0.00	-	27.5
24.1	43	3.5	132	0.00	-	16.0
24.2	332	3.6	142	0.11	-	35.4
23.4	7	4.0	132	0.29	-	29.3
23.1	333	4.5	148	0.28	-	26.4
22.7	356	3.8	156	0.23	-	32.2
23.2	334	3.4	150	0.06	-	27.9
23.0	359	3.6	140	0.17	-	25.2
22.8	338	4.2	144	0.05	-	25.7
22.0	322	5.6	118	0.54	-	27.5
23.0	27	4.6	98	2.88	-	27.2
22.9	350	3.1	130	0.16	-	19.7

23.5	359	4.1	131	0.37	0	30.4
25.0	-	5.6	180	2.88	43.3	
22.0	-	3.1	72	0.00	1000	16.0

```
Meteorology Station Log
10-1-70 to 10-31-90
```

Time	W/D	W / S	W/D	W/S	W/D	ω / S	W/D	W / S
	1001		1002		100S		1004	
0000	295	-	275	2	50	2	40	2
0100	295	\pm	260	2	270	-	275	2
0200	285	\pm	275	\pm	270	4	280	2
0300	290	\pm	275	2	270	\pm	295	3
0400	275	3	270	S	265	2	290	2
0500	280	S	275	\pm	275	S	280	S
0600	275	4	270	2	275	E	$\bigcirc 10$	$\underset{\sim}{3}$
0700	270	4	280	I	280	2	285	$\underline{3}$
0800	275	$\because 4$	± 40	\pm	520	2	295	3
0900	300	\pm	30	$\underline{\square}$	40	\%	-35	4
1000	305	\pm	45	5	50	$\underset{\sim}{\square}$	S5	5
1100	325	4	5	6	65	-	40	6
1200	10	4	50	5	60	\pm	45	7
1300	15	\pm	65	5	60	4	45	8
1400	45	4	60	4	65	5	40	7
1500	45	4	60	5	70	4	40	7
1600	25	2	45	4	70	5	35	6
1700	60	2	40	\pm	60	4	30	6
1800	160	2	20	2	55	Ξ	20	4
1900	250	2	35	2	40	2	360	\pm
2000	260	2	S5	2	70	2	510	5
2100	270	2	30	2	70	\pm	300	-
2200	270	2	350	2	55	4	290	S
2300	270	2	355	3	300	\pm	260	3
Time	W / D	W / S	W / D	$w / 5$	W / D	W/S	W / D	W / E
	1005		1006		1007		1008	
0000	275	Ξ	275	2	285	2	275	2
0100	275	4	300	2	310	2	270	2
0200	275	4	270	2	280	2	270	2
0300	275	Ξ	310	2	280	Ξ	270	2
0400	± 20	2	± 10	2	275	2	270	2
0500	275	\because	295	2	275	\cdots	275	2
0600	285	Ξ	280	2	295	2	270	2
0700	295	4	295	\pm	$\bigcirc 00$	2	270	2
0800	320	4	340	5	285	2	295	Σ
0900	± 40	5	20	5	325	4	350	4
1000	15	7	40	6	55	7	55	6
1100	20	8	45	7	60	7	80	4
1200	30	8	55	8	45	7	85	5
1300	40	8	60	7	40	6	70	6
1400	40	8	60	6	50	5	80	5
1500	S5	7	55	6	55	\pm	70	4
1600	25	4	70	5	40	2	65	4
1700	45	4	45	5	345	2	50	T
1800	40	\pm	45	2	285	E	40	2
1900	25	-	45	\square	275	\pm	40	2
2000	10	2	309	2	275	-	40	2
2100	220	2	275	2	270	2	-3	2
2200	505	2	270	2	290	E	270	2
2300	290	2	285	2	295	2	280	2

Time	W/D	$W / 5$	W/D	W / S	W/D	W/S	W/D	W / S
	1007		1010		1011		1012	
0000	275	2	280	2	300	\pm	15	\sim
0100	275	2	290	E	300	\pm	-60	2
0200	290	2	275	\pm	225	2	T60	2
0300	270	\pm	-10	S	\%	S	290	\pm
0400	275	\pm	225	Ξ	40	4	310	S
0500	275	\pm	S00	-	45	5	285	Ξ
0600	280	\pm	285	\pm	45	5	285	E
0700	275	4	300	\pm	40	4	280	T
0800	295	4	± 10	4	45	4	± 40	4
0700	50	4	15	7	40	7	40	6
1000	40	6	20	7	45	8	45	8
1100	45	7	15	7	45	8	40	7
1200	45	8	20	8	25	5	40	7
1300	45	. 7	20	8	35	6	-5	7
1400	40	8	20	8	45	E	35	7
1500	40	7	15	8	50	. 5	40	7
1600	35	6	15	7	5	4	40	6
1700	-5	5	20	6	40	5	S0	5
1800	30	4	10	4	5	4	25	4
1900	15	2	350	5	30	4	± 40	\pm
2000	15	2	30	\pm	25	Ξ	± 10	\pm
2100	उ-5	2	300	\pm	20	-	270	S
2200	285	Ξ	300	\pm	25	3	275	4
2300	275	S	295	Ξ	25	S	270	4
Time	W/D	W / S	W/D	W/S	W / D	W / S	W/D	W / S
	1013		1014		1015		1016	
0000	275	B	310	4	310	\pm	295	\pm
0100	280	S	295	\pm	290	\pm	295	2
0200	275	5	285	4	300	Ξ	285	2
0.300	275	Ξ	300	5	290	-	280	2
0400	280	F	290	4	285	E	290	2
0500	275	S	295	4	310	S	295	2
0600	280	4	310	4	≤ 10	5	290	2
0700	280	3	-20	5	290	4	295	2
0800	225	4	-55	7	310	4	$\underline{05}$	-
0900	3.5	4	-50	8	-60	5	40	4
1000	350	6	360	7	10	6	55	5
1100	15	7	20	8	± 5	8	60	5
1200	30	8	45	8	40	8	45	7
1300	40	7	45	8	50	8	50	6
1400	40	6	35	7	30	8	60	5
1500	30	6	35	6	30	7	60	6
1600	25	4	25	5	55	7	70	6
1700	545	\pm	15	\pm	25	5	60	5
1800	290	4	15	$\underset{\sim}{3}$	15	4	45	2
1900	295	E	35	4	10	E	40	2
2000	285	4	25	E	20	E	540	2
2100	505	4	15	\pm	40	-	F10	B
2200	310	5	-50	\pm	± 15	2	270	4
2300	305	4	325	\pm	285	-	285	Ξ

Time
W / D
W / S
W／D
W / S
W / D
W / S
W / D
W / S

	1017	
0000	300	S
0100	280	－
0200	290	$\underline{3}$
0.300	295	\％
0400	290	区
0500	285	S
0600	295	B
0700	60	4
0800	325	－
0900	－25	4
1000	355	5
1100	45	7
1200	50	8
1300	45	$\bigcirc 7$
1400	50	7
1500	50	7
1600	45	6
1700	40	5
1800	45	4
1900	50	4
2000	55	5
2100	60	4
2200	55	4
2300	55	4

Time
0000

0100 0200 0300 0400 0500 0600 0700 0800 0900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2500

W／D W／S
1021

W／D
W／S

1022	
60	3
65	2
65	2
65	2
65	2
50	2
285	Ξ
275	Ξ
310	4
35	6
25	7
35	7
40	7
40	7
36	8
25	7
30	6
20	4
340	3
315	Ξ
40	3
300	4
50	2

1018

55	3
50	3
40	2
35	2
340	3
290	3
285	-
275	4
285	4
360	4
300	4
35	4
360	4
45	5
60	5
65	5
60	4
60	3
45	3
65	4
55	3
65	3
55	3
55	3

 4

1019
1020

1017	
60	－
70	－
70	I
100	T
85	2
255	Σ
75	2
345	E
90	4
80	5
80	4
100	4
85	4
95	4
105	5
105	4
105	－
110	\pm
120	3
90	\pm
125	S
135	2
125	2
55	2

50	2
45	2
60	2
65	2
65	2
65	2
65	2
60	\vdots
115	4
110	4
120	4
110	4
120	4
150	4
150	4
125	4
120	5
110	3
110	3
75	3
75	3
45	2
70	2

W / D
W／S

102S		1024	
265	6	290	S
270	4	800	S
270	4	280	$\underset{3}{ }$
260	T	285	S
270	2	295	4
270	\pm	290	5
275	2	510	4
275	\pm	S10	4
こ05	Ξ	525	S
Sこ5	4	30	5
S60	4	550	5
25	4	35	6
45	5	40	6
50	5	45	7
65	4	55	6
65	4	55	6
60	4	25	5
45	4	50	7
50	4	S35	4
55	\pm	305	$\underline{\square}$
15	B	± 45	5
25	5	295	2
10	3	275	$\underline{\square}$
280	4	285	$\underset{\sim}{3}$

Time	W/D	W / S	W/D	W / S	W / D	W / S	W/D	W / S
	1025		1026		1027		1023	
0000	370	צ	-50	2	270	2	275	B
0100	290	\pm	275	2	290	2	270	צ
0200	275	\pm	270	2	285	E	275	E
$0 \leq 00$	280	\pm	270	2	275	$\underline{3}$	275	Ξ
0400	270	-	270	2	275	Ξ	280	3
0500	280	Ξ	270	2	275	4	$\bigcirc 15$	4
0600	285	\pm	270	2	285	4	15	5
0700	285	\pm	275	2	300	S	40	5
0800	310	4	289	4	3 SO	4	50	7
0900	305	\pm	± 25	5	35	5	50	7
1000	45	7	345	5	50	7	45	8
1100	55	8	30	5	40	8	55	7
1200	45	7	45	6	45	7	45	8
1300	50	- 7	40	6	45	7	55	5
1400	40	7	30	5	55	7	15	4
1500	40	6	45	6	20	-	10	3
1600	40	4	40	5	3 SO	2	360	4
1700	\bigcirc	S	40	S	520	2	305	\pm
1800	25	\pm	25	2	285	2	280	4
1900	20	2	\bigcirc	2	275	2	280	\pm
2000	10	2	40	2	270	\square	280	3
2100	40	2	40	2	275	S	275	4
2200	40	2	275	S	270	4	275	\pm
2300	40	2	270	2	275	3	270	\pm
Time	W/D	W / S	W/D	W / S	W / D	W / S	W/D	$4 / 5$
	1029		1030		10.1			
0000	275	S	285	4	270	2		
0100	280	-	285	4	235	2		
0200	280	S	290	3	285	2		
0.500	295	-	285	-	280	2		
0400	280	S	280	4	285	2		
0500	270	3	≤ 0	S	290	E		
0600	280	4	95	4	285	צ		
0700	280	4	65	S	265	2		
0800	285	5	75	4	275	S		
0700	290	4	90	4	225	-		
1000	290	4	120	3	45	3		
1100	$\underline{20}$	4	85	4	55	4		
1200	10	6	90	4	60	5		
1300	20	6	95	S	45	5		
1400	25	7	70	5	60	4		
1500	40	6	60	5	65	E		
1600	40	5	55	4	60	E		
1700	40	5	35	3	45	2		
1800	45	5	50	2	45	2		
1900	45	4	50	2	45	2		
2000	45	6	540	3	45	2		
2100	45	4	270	2	60	2		
2200	310	Ξ	275	2	40	2		
2300	300	Ξ	275	2	75	2		

