

The Significance of Positive Verification in Unit Test Assessment

Kevin Buffardi
California State University, Chico

kbuffardi@csuchico.edu

Pedro Valdivia
California State University, Chico

pvaldivia1@mail.csuchico.edu

Abstract

This study investigates whether computer science
students' unit tests can positively verify acceptable
implementations. The first phase uses between-subject
comparisons to reveal students' tendencies to write
tests that yield inaccurate outcomes by either failing
acceptable solutions or by passing implementations
containing bugs. The second phase uses a novel all-
function-pairs technique to compare a student's test
performance, independently across multiple functions.
The study reveals that students struggle with positive
verification and doing so is associated with producing
implementations with more bugs. Additionally, students
with poor positive verification produce similar number
of bugs as those with poor bug identification.

1. Introduction

Although software engineering commonly expends
about half of a project's costs on testing [16], learning
how to test is neglected in most computer science
curricula. However, Association for Computing
Machinery's (ACM) most recent recommendation [1]
recognizes a need to incorporate testing within two
core knowledge areas: Software Development
Fundamentals and Software Engineering. The
recommendations specifically identify unit testing as a
topic that may be appropriate to explore as early as
introductory programming (CS1) courses. By
incorporating more testing in computing education,
students may learn to improve their debugging
strategies and further their metacognitive problem-
solving skills [9].

Accordingly, educators have been exploring how to
both effectively teach and evaluate testing in computer
science classes. Pedagogical tools [6,13,19] and
approaches [7,12] have been developed to help
introduce students to testing throughout the curricula.

However, there is not yet a de facto standard for
evaluating the quality of students' tests. Studies of
software testing quality predominantly concentrate on
three factors: cost, code coverage, and the ability to

find software faults [16]. Automated assessment of
students' tests (autograders) typically use coverage, a
measurement of how much code has been executed by
their tests. Otherwise, some tools and studies evaluate
students' tests with a concentration on their ability to
identify bugs, as accomplished by failing known faulty
implementations [11,13,19]. However, there has
neither been thorough discussion nor evaluation of how
well students' tests accurately confirm acceptable
solutions. To depend on tests as diagnostic tools for
software verification, they should effectively
differentiate between acceptable and faulty
implementations [5]. Most research has focused its
attention on the latter.

From an educational perspective, Edwards
recognized that "Software testing promotes the
hypothesis-forming and experimental validation that
are central to […] reflection in action" [9]. However,
experimental validation via software testing requires
not only failing faulty code, but also passing proper
implementations.

In the studies described in this paper, we
investigate the significance of students' ability to
positively verify acceptable solutions. In the first phase
of the study, we identify trends in students' test
outcomes by investigating the relationship between
mistakenly failing good implementations and passing
those with bugs. In a second phase of the study, we
examine each student’s testing outcomes as their unit
tests were measured against individual functions-
under-test.

Both phases of the study explore the role of
positively verifying software and its relationship with
the complementary goals of discovering bugs and of
producing solutions with fewer bugs. Specifically, we
address the following research questions: Do novice
testers struggle with positive verification? What are the
ramifications of deficiencies in positive verification?
Within a given student’s test suite, how does their test
performance compare across different functions? The
study reveals a need for more attention to be given to
students’ abilities to positively verify acceptable
solutions in addition to failing implementations with
bugs.

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60199
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 7614

2. Background

Goldwasser proposed a novel approach to
integrating software testing in programming courses by
running each student's assignment solution against
each other student's tests and evaluating the quality of
the tests accordingly. The initial experiment with all-
pairs analysis found that students who produced correct
solutions for a programming assignment also produced
tests that exposed 87% of flawed programs while the
tests of those students with incorrect solutions only
exposed 63% [14].

Edwards, et al. provided an update to the all-pairs
approach to support more flexibility in design as well
as integration with an online autograder [12]. In their
study of 101 students' solutions, they found that a
majority of students passed at least 90% of the test case
corpus but only 5 students managed to pass all test
cases. In a later study, Edwards and Shams found that
while students achieved high coverage scores, most
students produced "happy path" tests that the
researchers described as "writing basic test cases
covering mainstream expected behavior rather than
writing tests designed to detect hidden bugs" [10].
However, with the prevalence of coverage tools and
their ability to provide quick analysis of tests, many
instructors use coverage as a basis for assessing
students' unit tests.

Coverage is a metric commonly used in industry
that indicates what code has been executed after test
cases have been invoked. The most common form (i.e.
"line coverage") refers to the percentage of statements
or non-comment/non-blank lines of code executed.
There are also more comprehensive forms, such as
condition/decision coverage, which evaluates whether
control operations (decisions) have been evaluated for
both true and false outcomes as well as whether each
atomic conditional (within boolean expressions) has
been evaluated as both true and false. However, as the
aforementioned study demonstrated, high coverage
does not necessarily signify effective tests.

To the contrary, mutation testing is an approach
employed in industry that bears similarity to all-pairs
analysis by examining test outcomes on buggy
solutions. Instead of depending on a corpus of student
solutions, mutation testing tools generate bugs by
altering the current implementation. For example, a
tool can automatically generate a 'mutant' by changing
a condition by replacing an equality comparison to a
less-than-or-equal-to operator. Each mutant is intended
to change the behavior of the program. Mutation
testing involves creating many of these synthetic
mutants and assessing the test suite by measuring the
percentage of mutants 'killed' by failing them.
Aaltonen, et al. recommend combining mutation

testing with coverage as complementary assessments
of test effectiveness [2]. However, in an experiment
comparing techniques for assessing test quality, neither
coverage nor mutation testing were as effective as all-
pairs testing at predicting how well tests find bugs
[11].

There are also eLearning tools specifically for
fostering testing skills. Smith, et al. created an
automated tool that evaluates students' tests against a
large dataset of known buggy solutions and provides
feedback based on how well a test fails those bugs
[19]. However, like both all-pairs analysis and
mutation testing, their tool concentrates on the ability
to fail bugs and does not measure rates of positive
verification.

On the other hand, Bradshaw recognized that, "a
perfect test will only accept implementations that are
correct and reject all other incorrect implementations."
Accordingly, Bradshaw's Ante Up tool first compares
students' tests to the instructor's (correct) solution to
make sure they pass, before allowing students to
progress onto developing their own solutions. While
the tool offers a unique reinforcement of test-first
workflows, it does not support other testing methods.
Bradshaw has yet to report on the tool's effectiveness
and consequently has not published analysis of positive
verification [6].

Meanwhile, Bowes, et al. collaborated with
industry partners to compile a list of best practices in
testing, along with corresponding metrics for
evaluating those practices. Their recommendations
include the principle of "Happy vs. Sad tests [which
are] associated with the goals of testing: to verify the
system (also known as happy tests) vs. to break the
system (also known as sad tests)" [5]. However, they
did not identify any associated metrics to measure
these goals.

Consequently, we studied students' abilities to
produce happy tests as well as sad tests. The previous
research indicates that effective sad tests are associated
with creating implementations with fewer bugs. To
supplement replication of those findings, we
investigated potential relationships between happy tests
(or a lack thereof) and the prevalence of bugs.

3. Method

We considered the possibility that students may not
exhibit the problem of failing acceptable solutions.
Consequently, the first research question we addressed
was: (RQ1) do novice testers struggle with positive
verification? Upon observing any struggles, we also
set out to investigate (RQ2) what are the
ramifications of deficiencies in positive verification;
and (RQ3) within a given student’s test suite, how

Page 7615

does their test performance compare across
different functions? We studied students' positive
and negative testing outcomes with an in-class learning
activity.

To emphasize the purpose of differentiating
between good and bad implementations, students were
randomly assigned to either implement a working
solution or to write an implementation that compiles
but does not behave correctly. However, all students
were instructed to the common task of writing unit
tests along with their implementations that should be
able to distinguish the good implementations from the
faulty ones.

To ensure that students' test cases would be
compatible with each other's implementations, they
were provided with a common build script and
interface for a class—which specifies the signatures of
all public functions—along with plain-word
descriptions of each function's expected behavior. For
our study, the programming assignment was a data
model for a Tic-Tac-Toe board with functions to: place
pieces onto the board, inspect a location for its piece
(or lack thereof), toggle turns between players, and
determine the game state (e.g. is game ongoing without
a winner, completed as a tie, or which player has won).

The function for placing and inspecting pieces on a
board were not just one-line accessors/mutators (i.e.
getters and setters with no logical branches). Their
expected behaviors included validation of the
coordinates provided with special return values to
indicate out-of-bound coordinates or when preventing
a piece from being placed where there is already
another.

Although students were assigned to different roles
for implementing incorrect and correct solutions,
students may not achieve those goals. Therefore, it is
necessary to characterize each solution based on its
performance against the instructor's reference tests.
Using an automated script, the reference tests were run
against each student's implementation and recorded the
solution as positive if it passed all tests or negative if it
failed any tests. To be consistent with unit testing
conventions, failures included tests that timed out
(usually indicating an infinite loop) or exited with an
unexpected fault or uncaught exception.

In addition, to promote confidence in accuracy of
the all-pairs analysis, we reviewed the results for
potential mistakes or gaps in their reference tests. It is
possible, for example, that a student writes a test case
that identifies a bug that the instructor's reference tests
did not consider. In that example, the reference tests
might pass a negative solution that contains that bug
while the student's tests (correctly) fail it.

During this process, special attention should be
given to test suites that demonstrate high, but not

perfect rates of failing negative solutions and passing
positive ones. If the instructor discovers any
shortcomings in their test suite, it will be necessary to
revise the reference tests accordingly and repeat both
phases of reference tests against each solution and all-
pairs analysis. This process can be repeated as
necessary as a feedback loop to ensure comprehensive
and accurate assessment.

In similar instrumentation to all-pairs analysis
[12,14], each student's test suite runs against each other
student's solution and records whether it passes or fails
each implementation. A perfect test suite should pass
all positive solutions and fail all negative solutions.
Table 1 illustrates how test suite outcomes are assessed
based on how well they pass positives (True Positive)
and fail negatives (True Negative) and conversely, how
they incorrectly fail positives (False Negative) and pass
negatives (False Positive).

Both False Positives and False Negatives indicate
inaccurate conclusions from the test suite, comparable
to Type I and Type II errors in hypothesis testing [18].
However, classification terminology used in this paper
should not be confused with their application in
medical diagnosis testing, where a positive diagnostic
test result usually indicates presence of a disease or
condition (i.e. confirming bad news). Instead, in the
context of software testing, we refer to positive
verification (true positive) as confirmation of an
acceptable solution.

False Negatives mislead software developers to
thinking an acceptable solution contains faults. This
inaccurately describes the expected behavior from the
software. Consequently, False Negatives may add cost
to development by dedicating time to trying to discover
a non-existent fault or by errantly changing the
software's behavior to satisfy the inaccurate test.

On the other hand, False Positives result from tests
passing a faulty implementation. Overlooked bugs
have negative repercussions since they result in poor
quality software. This can be particularly costly if
those bugs are not discovered before the software is
deployed and faulty software is delivered to the
customer. However, False Positives are costly even
when the fault is later discovered because localizing
and fixing a bug can be more difficult when inaccurate
unit tests give a false sense of confidence in a
function's acceptability.

Table 1. Classification of Verification

 Implementation Acceptability
 Positive Negative

Test
Outcome

Pass True Positive False Positive
Fail False Negative True Negative

Page 7616

3.1. Phase one: between-subject design

In two Software Engineering classes (one upper-
division undergraduate requirement, the other a
graduate level requirement in a Masters-only program),
students were introduced to the aforementioned
learning exercise during a course module on testing.
All students had previous object-oriented programming
courses but did not have formal instruction to testing in
the curriculum. Students were taught how to set up and
run GoogleTest (an open source xUnit framework for
C++ [15]) on a project and were introduced to the
syntax and semantics of unit tests. Students were
randomly assigned correct/incorrect implementation
roles by the course management system; random
assignment was independent for either course so that
undergraduate (n=40) and graduate (n=8) classes were
each split evenly between the roles. Both the graduate
and undergraduate courses had multiple object-oriented
programming course prerequisites, but no prior classes
explicitly taught unit testing.

Students worked independently and submitted their
solutions and test suites at the end of the lecture
regardless of whether they considered their work
complete. However, when analyzing the results of
reference tests ran against the students' solutions, we
found that none of the solutions passed all of the
reference tests. Consequently, we decided to extend the
assignment to a second lecture and we instructed all
students to attempt a correct solution (including those
previously assigned to the incorrect group) while
continuing to improve their tests as well, which yielded
five positive solutions.

At the end of the course module on testing, all
students took a practical quiz with a similar format to
the assignment. However, while students were still
instructed to write tests that distinguish between
positive and negative solutions, all students were asked
to try to implement a correct solution for the quiz. The
problem posed to the students for the quiz was of
similar nature to the Tic-Tac-Toe interface, but used a
different game of the instructor's creation. The students
worked on the quiz in lecture but were allowed until
the end of the day to complete it and submit their work
online.

To assess students' ability to positively verify
solutions and identify faults, we calculated their test
suites' true positive and true negative rates,
respectively. The True Positive Rate (TPR) is the
percentage of positive solutions passed. The True
Negative Rate (TNR) is the percentage of negative
implementations failed. From the initial learning
exercise, students produced TPR (M=0.61, sd=0.42)
and TNR (M=0.72, sd=0.36) with relatively large

variance. Similarly, condition/decision coverage
(M=0.57, sd=0.33) achieved varied considerably,
within the limited time allowed. We investigated the
relationships between TPR and TNR with Spearman's
rank correlation found a strong negative correlation
(ρ=-0.85, p<.0001) between rates of true positives and
true negatives.

A negative correlation between the two
measurements of testing accuracy may come as a
surprise. However, Figure 1 reveals that the
relationship appears to be strongly influenced by test
suites at the extremes of either rate. The chart also
illustrates an interesting phenomenon that while some
students' test suites perform relatively well on both
TPR and TNR (data in upper-right corner of chart),
there are also several test suites that perform well on
one but poorly on the other. There were no students
who scored below 75% on both TPR and TNR.

This discovery answers our initial research
question, (RQ1) do novice testers struggle with
positive verification? Yes, students' tests sometimes
exhibit problems with positive verification by
producing many false negatives. Compounding the
problem further, those same tests with low TPR also
tend to have a high rate of TNR. In other words, some
test suites are effective at failing faulty
implementations but simultaneously fail good
solutions.

In addition, we investigated the relationship
between test outcomes and their associated
implementations. We calculated a Multiple Linear
Regression model for predicting students'
implementation correctness (as calculated by the
percentage of reference tests passed) based on TPR,

Figure 1: Test suites' rate of passing positive
(acceptable) solutions and failing negative

(faulty) solutions

Page 7617

TNR, and condition/decision coverage as potential
predictors. After setting a more rigorous standard by
adjusting the critical value for considering multiple
factors (α=0.0167), we found that condition/decision
coverage (Β=0.01, Std. Error=0.07) was not significant
(p=0.87) while both TPR (B=0.17, Std. Error=0.06,
p<.01) and TNR (B=0.24, Std. Error=0.07, p<.01) had
significant coefficients. We recalculated the model by
excluding the non-significant condition/decision
coverage factor and found a significant regression
equation (F(2,27)=10.92, p<.001, R2=0.45) where
students' predicted implementation correctness is equal
to 0.06 + 0.25*TNR + 0.18*TPR. Students' solution
correctness increased 25 percentage points for failing
all negative implementations and 18 points for passing
all positive implementations; TNR (p<.001) and TPR
(p<.001) were both significant predictors.

Next, we examined whether the students' test suites
for the quiz also demonstrated similar traits when
analyzed only with naturally occurring bugs. We
repeated the automated analysis of characterizing
implementations as positive or negative and then
calculated each test suite's TPR (M=0.62, sd=0.39) and
TNR (M=0.82, sd=0.17) after running all-pairs
analysis against each implementation. Intentionally
created bugs from the previous assignment posed a
potential threat to validity so we also investigated the
phenomena with the quiz, where all bugs were
naturally occurring. When plotting the outcomes from
the quiz, Figure 2 illustrates a similar relationship
between TPR and TNR as found during the learning
exercise.

Consequently, we combined test suite assessments
from the exercise and quiz together and performed k-
means clustering (using the R statistical package) to
identify three primary clusters: False Negatives that
failed most negative and positive solutions; False
Positives that passed most positive and negative
solutions; and True discriminators that had few
incidences of either type of error. Each cluster's TPR
and TNR scores are summarized in Table 2 and plotted
in Figure 2.

To test both hypotheses and compare how each
cluster of students performed on their respective
implementations, we performed three Wilcox-Mann-
Whitney tests for pairwise comparison between each
cluster's solution correctness. To account for increased
likelihood of significance when making multiple
comparisons, we used the Bonferroni method for a
more conservative critical value (α=0.0167). We found
that True Discriminators (M=0.94, sd=0.13) had
significantly better solution correctness (p<.0001) than
False Negatives (M=0.73, sd=0.31) as well as
significantly better correctness (p<.0001) than False
Positives (M=0.77, sd=0.27). However, there was no

significant difference (p=0.82) in correctness between
False Negatives (M=0.73, sd=0.31) and False Positives
(M=0.77, sd=0.27).

Both False Negatives and False Positives are
associated with worse solutions than True
Discriminators, as might be expected. Perhaps the
simplest explanation could be that students who make
mistakes in their implementations are also likely to
make mistakes in their tests. Consequently, we
investigated whether testing errors could be attributed
to individual differences between students.

Findings from our between-subject comparisons
provide initial insight into our research question (RQ2)
what are the ramifications of deficiencies in positive
verification? Test suites with high rates of any kind of
outcome inaccuracies are associated with more bugs
than those with few errors. However, the results from
this phase also suggest that either type of testing error
is associated with corresponding implementations with

Figure 2. False positive, True discriminator, and
False negative clusters

Table 2. Descriptive statistics for true positive
and true negative rates, grouped by three

clusters

 True Positive Rate True Negative Rate
 Mean std dev Mean std dev
False Negative 0.03 0.06 0.96 0.07
False Positive 0.99 0.02 0.24 0.19
True Discriminator 0.82 0.09 0.84 0.14

Page 7618

comparable number of bugs. Consequently,
deficiencies in positive verification were neither more
nor less harmful than deficiencies in fault
identification.

Some might consider it more difficult to write sad
tests that effectively identify bugs (and produce a high
TNR) than it is to write happy tests that positively
verify solutions (with high TPR), deficiencies in either
appears to be similarly harmful in terms of fault
prevalence.

When students attempted the initial learning
exercise, it resulted in no implementations that passed
100% of the instructor's tests. Even after more time
was provided, relatively few students achieved their
goal of passing all reference tests. This low incidence
rate of "perfect" solutions uncovers an impediment to
evaluating test accuracy using all-pairs analysis: it
depends on some students producing full program
implementations without any known faults. Low rates
of students who can produce implementations with no
bugs was similarly observed in Edwards et al.'s all-
pairs analysis [12].

It is a hindrance to depend on students producing
implementations without any bugs when they do so at a
low rate. In addition, assessing unit tests by their
ability to find a fault in an entire program ignores the
primary objective of unit tests: to test individual
functions rather than a program or module as a whole
[5]. Given a cohort of students working on the same
programming assignment, it is more likely to yield
positive implementations of individual functions within
a class than it is to yield an entire class comprised of
entirely positive implementations.

Furthermore, we considered the possibility that the
association between implementation and test quality
might be explained by individual differences in student
aptitude: strong students may do well at both while
weaker students may perform poorly at both.
Consequently, we developed all-function-pairs analysis
as an approach to assessing whether unit tests
accurately pass or fail different implementations of
individual functions. With test outcomes measured at
the scope of individual functions rather than entire
programs, all-function-pairs analysis allowed us to
investigate within-subject performance across testing
multiple functions.

3.2. All-function-pairs analysis

The first task in all-function-pairs analysis is to
determine the acceptability of each function within
each student's program. Since the instructor reference
tests already followed suggested practices for proper
unit testing, each of the reference tests already targeted

individual functions. We identified subsets (Tfut) of the
reference test suite by their respective function-under-
test (FUT). Consequently, instead of running our
automated all-pairs analysis on the entire reference test
suite at once, we only ran one reference test at a time
and recorded its pass or failure. If a student's
implementation passes each of the reference tests in the
subset for a given function, that function
implementation is positive.

For example, the entire reference test suite targeted
the TicTacToeBoard class, but a subset of the suite
tests the getWinner function. Passing each unit test in
that subset indicates getWinner is positive. Otherwise,
any failures indicate a negative function
implementation for getWinner. Test runners for xUnit
frameworks usually include options for specifying
individual tests to run, including popular packages
such as GoogleTest (C++), JUnit (Java), and unittest
(Python). Therefore, this approach can be instrumented
for popular CS1 programming languages that support
xUnit testing.

 Next, all-function-pairs analysis needs to similarly
identify the function-under-test for each unit test in
students' test suites. It can be more difficult to identify
which function a student's unit test intends to verify if
the student did not adhere to best practices of unit
testing. There are different plausible solutions to this
challenge. An instructor may choose to manually
inspect student tests to identify their functions-under-
test. Alternatively, they may require students to follow
test naming conventions or annotations to self-identify
the function-under-test for each unit test they write.
Otherwise, using static analysis to identify which
function's return value (or its output or other side-
effect) is used in the test's assertions may serve as a
sufficient proxy. In an effort to localize bugs in
students' programs, Buffardi & Edwards [8] proposed
an automated approach that may also identify the
functional scope of tests by analyzing their coverage.
For this study, we manually identified functions-under-
test.

After identifying the function-under-test for every
unit test, the subset can be run against the corpus of all
student implementations, one at a time. If an
implementation fails on any of the unit tests within that
subset, the student has produced a true negative (if the
function implementation is negative) or a false
negative (if the function implementation is positive). If
the implementation passes each test in the subset—or
in the case of a null subset—the student has produced a
true positive (if the function implementation is
positive) or false positive (if the function
implementation is negative). Similarly to the feedback
loop we recommended for all-pairs analysis, it is
advisable to examine the test results to revise the

Page 7619

reference test suite if any missing test cases are
revealed by the corpus of student tests.

We distinguish this approach from Goldwasser's
and Edwards' previous experiments by referring to it as
all-function-pairs analysis since it evaluates individual
functions rather than whole programs. All-function-
pairs analysis benefit from higher probability of
yielding positive implementations since it only requires
individual functions—rather than the entire system—to
behave acceptably. Consequently, the approach allows
for more granular analysis of both students'
implementations and their tests. Figure 3 illustrates the
process involved in all-function-pairs analysis.

3.3. Phase two: within-subject design

In the first part of the study, we implemented a
between-subject design to evaluate test quality on a
learning exercise as well as a quiz. Evaluating true
positive and false positive rates of tests using
traditional all-pairs analysis depends on some students
producing complete solution without any bugs.
However, the all-function-pairs analysis approach
described in the previous section only depends on
some students producing implementations of individual
functions without bugs.

With insight into test outcomes for individual
functions, we concentrated on the research question:
(RQ3) within a given student’s test suite, how does
their test performance compare across different

functions? In particular, we needed to test the
hypothesis that the association between test and
solution quality could just be attributed to general
differences in aptitude between individual students. To
do so, within-subject comparisons were necessary to
identify whether students tended to produce the same
kind of testing error (or lack thereof) across multiple
functions.

For the subsequent semester, we designed a
variation of the learning activity where each student is
assigned one specific function in which to purposely
hide a bug, while attempting to correctly implement all
other functions in the assignment. Instead of just
differentiating between completely flawless and buggy
programs, the students were challenged to distinguish
between acceptable and unacceptable implementations
of each function. We assigned each student (n=39)
randomly to one (of four) functions for the
aforementioned Tic-Tac-Toe data model. As a result,
for each function, one-quarter of the students
deliberately hid bugs while the remaining three-
quarters attempted a correct solution. Additionally,
function implementations are each evaluated
independently so all-function-pairs analysis yields a k-
fold increase of test outcomes for each student over
simple all-pairs analysis (where k is the number of
functions, in this case k=4).

First, we investigated the relationships between
tests that produce false positives and false negatives
with their corresponding implementations to validate

Figure 3. All-function-pairs analysis

Page 7620

our analysis from the between-subject study. As we
gain more granular insight into implementations and
tests, we expected to find similar phenomena at the
function-level as we did at the program-level.

After performing all-function-pairs analysis, we
found the True Positive Rate (TPR, M=0.75, sd=0.39)
and True Negative Rate (TNR, M=0.56, sd=0.39) of
students' tests at testing individual functions. We
plotted the testing outcomes for each student on each
function and found a similar pattern to the first part of
the study: many students had both TPR and TNR
above chance (True Discriminator), but some students
had high TPR with low TNR (False Negative) while
others had high TNR with low TPR (False Positive).
This result replicates the phenomenon observed in
phase one and is illustrated in Figure 4 with k-means
cluster analysis that identifies False Negatives, False
Positives, and True Discriminator clusters.

We performed three Wilcox-Mann-Whitney tests
for pairwise comparison between each cluster and the
corresponding function correctness (calculated by the
percentage of reference tests passed from the function-
under-test subset, excluding the function in which each
student purposely hid a bug) with adjusted critical
value (α=0.0167). We found that True Discriminators
(M=0.87, sd=0.18) had significantly better correctness
(p<.0167) than False Negatives (M=0.7, sd=0.27) and
approaching significantly better correctness (p=0.029)
than False Positives (M=0.72, sd=0.3). There was no
significant difference (p=0.65) in correctness between
False Negatives and False Positives.

The insignificant difference between False
Positives and False Negatives replicates phase one's
finding that both types of errors are associated with
implementations containing comparable numbers of
bugs. Phase two's finding confirms this association
with implementations of individual functions.

Nevertheless, we considered the possibility that a
relationship between test accuracy and implementation
correctness might result from differences between
students. For example, highly skilled students may
produce fewer bugs in their implementations and write
more accurate tests than students who are less diligent
or less skilled. Accordingly, weak students potentially
could be to blame for all of the False Positives and
False Negatives while only strong students could have
produced all the True Discriminator function tests.

We examined each student's three (excluding their
purposely buggy) functions and identified the cluster to
which their corresponding tests belonged. We then
examined how often a student's test belonged to the
same cluster for multiple functions. Overall, 63% of
students produced True Discriminator test outcomes
for at least one function; 56% of students produced
False Positives for at least one function; and 47% of
students produced False Negatives for at least one
function.

By examining how many different clusters were
represented among each student's three functions, we
found that 63% of students had more than one cluster
type. Since most students produced a mix of different
test outcomes, we expected that the association
between test accuracy and function implementation
was not a simple result of divergent strong and weak
students.

For due diligence, we accounted for differences
between students that could affect the overall
relationship between test accuracy and implementation
correctness. Therefore, we performed a repeated
measures analysis of variance (rANOVA) to compare
the effect of a student's test clusters on the correctness
on their (three) corresponding function
implementations.

We found a significant effect of test clusters on
function correctness (F(2,95)=4.34, p<.05) in within-
subject comparisons. The rANOVAs significant effect
suggests that unit test accuracy is still associated with
fewer bugs in corresponding functions when compared
within subjects.

Finally, we calculated a Multiple Linear Regression
model for predicting students' function correctness
based on TPR and TNR as potential predictors (with
adjusted critical value α=0.025). We found that both
TPR (B=0.28, Std. Error=0.08, p<.001) and TNR
(B=0.26, Std. Error=0.08, p<.001) for a function had
significant coefficients and found a significant

Figure 4. False positive, true discriminator,
and false negative clusters for testing

functions

Page 7621

regression equation (F(2,93)=8.064, p<.0001,
R2=0.13). Students' predicted implementation
correctness for a given function was equal to 0.43 +
0.28*TPR + 0.26*TNR for the TPR and TNR of the
tests for that same function.

The within-subjects comparison addresses the
question (RQ3) within a given student’s test suite,
how does their test performance compare across
different functions? Most students tested well (with
high rates of true negatives and true positives) for at
least one function but also struggled with testing errors
(either false positives or false negatives) on other
functions. Individuals did not consistently produce the
same type of testing deficiencies (or lack thereof)
across all functions. However, struggling with either
type of error when testing a function corresponds to a
comparable number of bugs in the function's
implementation. This finding even applies to an
individual student's testing and implementation of
difference functions, regardless of their overall
aptitude.

4. Conclusions

In our two-phase study, we explored whether
novice student testers struggled to positively verify
software by writing tests that accurately confirm when
implementations are acceptable. We found that
students commonly struggled with either positive
verification or fault identification, but never both
simultaneously on the same function code to a
substantial degree. Problems with positive verification
are demonstrated when tests produce many false
negatives: failing implementations from a corpus of
acceptable solutions. Meanwhile, problems with fault
identification are characterized by producing many
false positives: passing implementations that contain
faults.

Previous studies concentrated on evaluating student
tests by their performance at fault identification. Our
results confirmed previous findings that tests' ability to
identify faults is associated with writing an
implementation with fewer bugs. However, our study
also revealed that the rate at which tests positively
verify a corpus of known good solutions is also
associated with a corresponding implementation with
fewer bugs.

Congruently, we found the rate of positive
verification (true positive rate, TPR) and the rate of
fault identification (true negative rate, TNR) are both
significant predictors of implementation correctness.
Tests with high rates of both TPR and TNR correspond
with implementations with fewer bugs than those with
a low rate of just one or the other. More notably, our
study suggests that writing tests that produce high rates

of false negatives or false positives are associated with
implementations with a comparable number of bugs.

These relationships between errors in positive
verification and in fault identification were found both
when evaluating the quality of an entire programming
assignment or an individual function. Likewise, a
within-subject comparison revealed that most students
wrote tests that performed differently—with a mix of
test outcomes that discriminated well, produced false
positives, or produced false negatives—across different
functions. Accordingly, our results suggest that the
association between positive verification and
implementations with fewer bugs cannot just be
attributed to differences between individual students.

Consequently, our study concludes that positive
verification should be considered as a factor when
assessing the quality of students' unit tests. Although
there is not yet a consensus on an effective metric for
evaluating students' tests, we are confident that such a
metric should consider positive verification in addition
to (the more widely adopted) fault identification.
Furthermore, our findings suggest that both factors are
better predictors of implementation correctness than
code coverage, despite its popularity.

While our study revealed an association between
positive verification and implementation quality, it did
not explore cost of testing. Our results suggest that
poor positive verification or poor fault identification
may have similar impacts on the number of bugs in the
implementation. However, it is possible that testing
errors that result in false negatives may be quicker to
recognize and correct than when false positives fail to
identify existing bugs. Therefore, further study on the
cost of either type of error is warranted.

The conclusions of this study should be considered
within the confines of its design. When assessing
students’ tests on the initial assignment, the corpus of
unacceptable implementations included artificial bugs.
While similar phenomena were observed between
those tests and others that only included naturally
occurring bugs, the artificial bugs may be a threat to
validity. Similarly, the study only investigated testing
behaviors of novice testers on two relatively small
programs and different outcomes may be expected with
more experienced testers and/or with larger projects.

Finally, to evaluate test results for individual
functions, this paper introduces the all-function-pairs
approach that evaluates students' tests against other
students' implementations of individual functions,
rather than only considering programs as a whole. The
technique may also help improve assessment and
automated feedback for students as they learn to use
unit tests to verify their own function implementations.

Page 7622

12. References

[1] ACM. “Computer Science 2013: Curriculum Guidelines
for Undergraduate Programs in Computer Science.”
Retrieved September 2018, from
http://www.acm.org/education/curricula-recommendations.

[2] Kalle Aaltonen, Petri Ihantola, and Otto Seppälä. 2010.
Mutation analysis vs. code coverage in automated assessment
of students' testing skills. In Proceedings of the ACM
international conference companion on Object oriented
programming systems languages and applications
companion. ACM, New York, NY, USA, 153-160. DOI:
https://doi.org/10.1145/1869542.1869567

[3] Kent Beck. 1999. “Embracing change with extreme
programming.” Computer 32(10): 70-77.

[4] Kent Beck. 2003. "Test-driven development by
Example," Addison Wesley.

[5] David Bowes, Tracy Hall, Jean Petrić, Thomas Shippey,
and Burak Turhan. 2017. How good are my tests?. In
Proceedings of the 8th Workshop on Emerging Trends in
Software Metrics. IEEE Press, Piscataway, NJ, USA, 9-14.
DOI: https://doi.org/10.1109/WETSoM.2017..2

[6] Michael K. Bradshaw. 2015. Ante Up: A Framework to
Strengthen Student-Based Testing of Assignments. In
Proceedings of the 46th ACM Technical Symposium on
Computer Science Education. ACM, New York, NY, USA,
488-493. DOI: http://dx.doi.org/10.1145/2676723.2677247

[7] Kevin Buffardi and Stephen H. Edwards. 2014.
Responses to adaptive feedback for software testing. In
Proceedings of the 2014 conference on Innovation &
technology in computer science education. ACM, New York,
NY, USA, 165-170. DOI:
http://dx.doi.org/10.1145/2591708.2591756

[8] Kevin Buffardi and Stephen H. Edwards. 2015.
Reconsidering Automated Feedback: A Test-Driven
Approach. In Proceedings of the 46th ACM Technical
Symposium on Computer Science Education. ACM, New
York, NY, USA, 416-420. DOI:
http://dx.doi.org/10.1145/2676723.2677313

[9] Stephen H. Edwards. 2004. Using software testing to
move students from trial-and-error to reflection-in-action.
SIGCSE Bull. 36, 1. March 2004, 26-30. DOI:
http://dx.doi.org/10.1145/1028174.971312

[10] Stephen H. Edwards and Zalia Shams. 2014. Do student
programmers all tend to write the same software tests? In
Proceedings of the 2014 conference on Innovation &
technology in computer science education. ACM, New York,
NY, USA, 171-176. DOI:
http://dx.doi.org/10.1145/2591708.2591757

[11] Stephen H. Edwards and Zalia Shams. 2014. Comparing
test quality measures for assessing student-written tests. In
Companion Proceedings of the 36th International Conference
on Software Engineering. ACM, New York, NY, USA, 354-
363. DOI: http://dx.doi.org/10.1145/2591062.2591164

[12] Stephen H. Edwards, Zalia Shams, Michael Cogswell,
and Robert C. Senkbeil. 2012. Running students' software
tests against each others' code: new life for an old
"gimmick". In Proceedings of the 43rd ACM technical
symposium on Computer Science Education. ACM, New
York, NY, USA, 221-226. DOI:
http://dx.doi.org/10.1145/2157136.2157202

[13] Sebastian Elbaum, Suzette Person, Jon Dokulil, and
Matt Jorde. 2007. Bug Hunt: Making Early Software Testing
Lessons Engaging and Affordable. In Proceedings of the 29th
international conference on Software Engineering. IEEE
Computer Society, Washington, DC, USA, 688-697. DOI:
http://dx.doi.org/10.1109/ICSE.2007.23

[14] M. H. Goldwasser, 2002. A gimmick to integrate
software testing throughout the curriculum. In Proceedings of
the 33rd ACM Technical Symposium on Computer Science
Education

[15] Google. "GoogleTest" https://github.com/google/
Retrieved September, 2018.

[16] Rafaqut Kazmi, Dayang N. A. Jawawi, Radziah
Mohamad, and Imran Ghani. 2017. Effective Regression Test
Case Selection: A Systematic Literature Review. ACM
Comput. Surv. 50, 2, Article 29. May 2017, 32 pages. DOI:
https://doi.org/10.1145/3057269

[17] Gerard G. Meszaros. 2010. XUnit test patterns and
smells: improving the ROI of test code. In Proceedings of the
ACM international conference companion on Object oriented
programming systems languages and applications
companion. ACM, New York, NY, USA, 299-300. DOI:
https://doi.org/10.1145/1869542.1869622

[18] Jerzy Neyman and Egon S. Pearson. 1967. "On the Use
and Interpretation of Certain Test Criteria for Purposes of
Statistical Inference, Part I". Joint Statistical Papers.
Cambridge University Press.

[19] Rebecca Smith, Terry Tang, Joe Warren, and Scott
Rixner. 2017. An Automated System for Interactively
Learning Software Testing. In Proceedings of the 2017 ACM
Conference on Innovation and Technology in Computer
Science Education (ITiCSE '17). ACM, New York, NY,
USA, 98-103. DOI:
https://doi.org/10.1145/3059009.3059022

Page 7623

