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Abstract 
 

Social media platforms are characterized by an 
immense volume of content that exists concurrently. In 
this study, we analyze competition and coopetition 
among social media content. Under a competitive 
dynamic, the diffusion of one piece of content deters the 
diffusion of another. Alternatively, a coopetition 
dynamic means that the spread of a social media post 
augments the diffusion of another. The purpose of our 
study is to investigate whether competition or 
coopetition emerges among social media content and 
identify determinants of the direction of the interaction. 
To that end, we formulated a generalized self-exciting 
point process model and evaluated the model using 
Twitter data. We generally find that a competitive 
relationship exists among content, but, interestingly, 
some content experienced a cooperative interplay. In 
particular, we observe an asymmetry between large and 
small content producers in that coopetition favors 
content published by large producers. 
 
 
1. Introduction  
 

Social media platforms are an online space for users 
to consume and produce content. A unique 
characteristic of online social media platform is users’ 
ability to share content with others. When sharing a 
piece of content, users credit the original producer and 
forward the information to their own networks. Thus, 
content sharing increases the number of people exposed 
to a piece of content, which can subsequently make 
additional sharing of that content more likely [41].  

A social media post and its chain of shares constitute 
a “cascade” [17]. Tracing the path of a cascade reveals 
how information diffuses through social media 
platforms. Because of the minimal costs for producing 
and sharing content on these platforms, there is a 
tremendous volume of cascades that coexist at any given 
time. A cascade, thus, does not diffuse in isolation. 
Instead, a cascade’s diffusion may be influenced by 
coexisting cascades. We are particularly interested in 
the interplay among cascades belonging to the same 

topic. Given a topic, the cascades in this topic may 
compete for users’ attention and suppress the diffusion 
of one another. Alternatively, cascades pertaining to the 
same topic can signal to users the importance of the 
topic and thereby strengthen and augment each other’s 
dissemination. Cascades may therefore interact in a 
competitive or coopetitive manner. The purpose of our 
study is to examine what type of dynamic emerges 
among cascades in the same topic and what factors 
determine the direction of the interaction. 

To analyze the diffusion of social media content, we 
formulated a generalized version of the self-exciting 
point process by Hawkes [14]. Based on the amount and 
timing of shares, the Hawkes process calculates a 
cascade’s intensity, or diffusion rate. Each time a 
cascade is shared, the intensity increases to reflect how 
a share increases the probability of another share. We 
extended the original point process by Hawkes by 
including the shares of other cascades belonging to the 
same topic. These shares can impose a competitive or 
complementary effect on a cascade’s diffusion speed. 
Hence, we accounted for the spread of peripheral 
cascades when measuring a cascade’s rate of diffusion. 
To the best of our knowledge, ours is the first point 
process model to consider how quickly a cascade 
diffuses as a byproduct of the sharing history of 
cascades other than itself. 

We evaluated the model using Twitter data. The unit 
of analysis is the cascade, and the sample size consisted 
of 26,861 observations. We collected the data during 
four humanitarian disasters that materialized without 
warnings. These events offer a compelling setting for 
our study. First, information during this type of event is 
highly perishable [24], which makes it crucial to rapidly 
diffuse information. Second, due to the sudden nature of 
these events, the amount of relevant social media 
content surges, and competition and coopetition among 
content becomes particularly acute.  

Our findings indicate that the diffusion speed of a 
cascade on Twitter is a product of its own retweets as 
well as the retweets of cascades containing similar 
content. Therefore, a cascade’s diffusion speed is 
influenced by other cascades belonging to the same 
topic. We also observe that a cascade’s diffusion rate 
can be both impeded and enhanced by the spread of 
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other cascades within the same topic, which provides 
evidence of competition and coopetition among social 
media content. On average, however, a competitive 
dynamic existed among cascades clustered within the 
same topic. This supports the idea that content similarity 
tends to dampen diffusion [6, 37]. Furthermore, our 
results point to an asymmetry between large and small 
content producers’ ability to benefit from the presence 
of other cascades conveying similar content. We find 
that coopetition favors large producers, such that the 
diffusion of cascades within the same topic strengthens 
the dissemination of large producers’ content. 

The results of this study expand our knowledge of 
competition and coopetition among social media 
content. This is important as a majority of research on 
user-generated content analyzes cascades as single 
entities despite the proliferation of information on social 
media platforms. Some research has explored the 
competitive nature of social media content at the level 
of rival brands [e.g., 18, 19], but there is a limited 
understanding of the interplay of content distribution. 
Our research begins to unpack the impact of content 
competition on information diffusion at the more 
granular level of the cascade. Like [33], we provide 
evidence of variation across cascades as to whether they 
experience competitive or coopetitive relationships with 
other similar cascades. Further, we not only demonstrate 
this variation but seek to explain it by identifying what 
determines the direction of the interaction of cascades 
within the same topic. Another contribution is the 
unique setting of our data in which the need for urgent 
diffusion is high. By studying this context, our study 
adds to the nascent literature on the application of social 
media platforms during crisis events [16, 27, 29, 40]. 

We organize the rest of the paper as follows. In 
Section 2, we review the literature and develop 
hypotheses. We formulate the point process model in 
Section 3 and describe the data in Section 4. Next, we 
discuss how we estimated the model and present the 
results in Sections 5 and 6. We conclude in Section 7. 
 
2. Literature review and hypotheses 
 

The diffusion of cascades on social media platforms 
has been studied extensively in the literature. 
Researchers have found that attributes of the user 
network underlying these platforms affect the spread of 
content. For example, the diffusion of content is 
impacted by degree centrality [12, 36] and by the 
strength of user relationships [34]. Beyond network 
characteristics, a cascade’s diffusion is dependent on 
content-related features, such as the type of sentiment 
[35], and the effect of users learning about the quality of 
content from other users [30]. 

While these studies have helped build our 
understanding of the diffusion of social media content, 
they only account for characteristics of the cascade and 
the users involved with producing and distributing the 
cascade when assessing its diffusion. Given that social 
media platforms host a massive volume of content, we 
argue that cascades do not disseminate in isolation and 
that evaluations of cascades’ diffusion should be 
broadened to incorporate the potential influence of 
coexisting cascades.  

The IS literature has started to investigate the 
interaction of social media content, particularly related 
to how this interaction reinforces brand competition. As 
one brand’s content gains traction among users, this can 
hinder the spread of a rival brand’s content. This is 
because users have limited attention resources, so 
paying attention to one brand takes away their attention 
capacity for the competing brand [18, 19]. Our study 
builds on this work by exploring the same issue at the 
cascade-level to generate insights about the interaction 
of individual pieces of content rather than content 
aggregated at the brand-level. Since it offers comparable 
informational value, we contend that a cascade is in 
direct competition for users’ attention with coexisting 
cascades pertaining to the same topic. For a specific 
cascade, we label this set of other concurrent cascades 
carrying similar content as its “parallel” cascades. Just 
as prior research has observed a competitive dynamic 
between brands’ content, we also anticipate that the 
dissemination of a cascade’s collection of parallel 
cascades will serve to detract attention away from itself. 
As a result, the cascade’s diffusion will suffer [38]. We 
formally state our hypothesis below: 

H1a: A competitive dynamic exists between a cascade 
and its parallel cascades such that the diffusion of the 
former is inhibited by the diffusion of the latter. 

Alternatively, social media content that appears to 
compete for attention can complement and help attract 
attention towards one other [22, 33]. Such a coopetitive 
dynamic may emerge out of a legitimacy effect. That is, 
a topic’s information may appear more important and 
valid when other cascades contain the same information. 
Consequently, users will be motivated to share and 
diffuse a cascade in this topic [8, 26]. We, thus, propose 
an alternate hypothesis regarding the dynamic among 
cascades pertaining to the same topic. The diffusion of 
a cascade’s set of parallel cascades will legitimize the 
topic’s information, which will result in the 
acceleration, instead of the suppression, of the cascade’s 
diffusion. H1b summarizes this argument. 

H1b: A coopetitive dynamic exists between a cascade 
and its parallel cascades such that the diffusion of the 
former is augmented by the diffusion of the latter. 
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According to Hypotheses 1a and 1b, cascades in the 
same topic can exert a competitive or coopetitive force 
on each other’s diffusion. We argue that the size of 
cascades’ producers influences the direction of this 
interaction. Larger producers can generate stronger and 
more extensive information signals. Thus, they are 
capable of tapping into a greater pool of attention 
resources for their content [10]. Smaller producers, in 
contrast, have a limited audience. This may make it 
more difficult for them to offset any detractions in their 
audience’s attention caused by parallel cascades. As a 
result, the diffusion of cascades generated by large 
producers will be less susceptible to competitive effects 
by parallel cascades. Moreover, larger producers are 
generally perceived to be more trustworthy and capable 
of publishing more credible information [32]. This will 
make it easier for topics containing cascades published 
by large producers to appear legitimate and spur 
coopetition. For these reasons, we anticipate that larger 
producers are better able to secure a coopetitive 
dynamic with parallel cascades. 

H2: Cascades by larger producers are more likely to 
experience a coopetitive relationship with their 
parallel cascades. 
 
3. Point process model for the diffusion of 
cascades on Twitter  
 

In this section, we develop a model that captures the 
diffusion of a cascade while considering the diffusion of 
its parallel cascades. We consider Twitter cascades 
indexed by 𝑖 = 1, … , 𝐼 during the observation interval 
[𝟎, 𝑻]. Upon publishing a tweet, cascade i is launched 
by producer 𝑝௜ , and we label the time that the cascade 
was initiated as 𝑡଴

௜ , where 𝑡଴
௜ ≥ 𝟎. Cascades on Twitter 

grow as they are shared (i.e., retweeted) by other users 
(i.e., retweeters). Cascade i comprises 𝑘 = 1, … , 𝐾 
retweets, and the times that these retweets arrived are 
denoted as 𝑡ଵ

௜ , … , 𝑡௄
௜ , where 𝑡௄

௜ ≤ 𝑇. Therefore, the time 
that retweet k of cascade i occurred is equal to 𝑡௞

௜ . 
In our study, we follow [41] and model a cascade’s 

diffusion based on the occurrence of retweets as a point 
process. A point process is a series of points that denote 
the occurrence of an event along a finite and 
nonnegative line representing time. A point process can 
also be characterized through a counting measure, 
𝑅௜(𝑡), which gives the number of retweets that cascade 
i has accumulated by t. This means that 𝑅௜൫𝑡௞

௜ ൯ −

𝑅௜(𝑡௞ିଵ
௜ ) corresponds to the number of retweets that 

materialized for i between (𝑡௞ିଵ
௜ , 𝑡௞

௜ ]. We note that 
𝑅(0) = 0. The counting measure is increasing and 
integer-valued, making it a step function that increases 
by a value of 1 at every 𝑡௞

௜  [7].  

The simplest type of point process is the Poisson 
process under which events transpire independently at a 
mean rate, or intensity, equal to 𝜆. It may be the case, 
however, that the realization of an event is dependent on 
previous realizations. This property of dependence 
among event observations has been observed within the 
context of social media platforms, including Twitter 
[41]. Accordingly, we utilize a point process model that 
allows the arrival of a cascade’s retweets to be 
influenced by the prior arrival of earlier retweets. 

The self-exciting point process, also known as the 
Hawkes process, is able to handle dependence among 
event occurrences by specifying the intensity as a 
conditional function of time and the history of the point 
process [14]. The history of the point process until t 
encompasses information about all realizations prior to 
t and is expressed as ℋ௧

௜ [7]. The conditional intensity 
function for cascade i is formally defined as: 

  𝜆௜൫𝑡หℋ௧
௜൯ = lim

௧→଴

୔୰ ቄ𝑅௜(𝑡 +△ 𝑡) − 𝑅௜(𝑡) > 0ቚℋ௧
௜

ቅ

△௧
,  (1) 

where 𝜆௜൫𝑡หℋ௧
௜൯ > 0. Within our context, the 

intensity represents the rate at any moment that a 
cascade is retweeted, conditional on the history of past 
retweets. The intensity can alternatively be interpreted 
as the diffusion rate for a cascade. 

In the self-exciting point process by [14], every 
event realization increases the conditional intensity 
function in an additive (or “exciting”) fashion. This 
means that the arrival of a retweet heightens the 
cascade’s diffusion speed and accelerates the arrival of 
the next retweet. The self-exciting point process for i is: 

     𝜆௜൫𝑡หℋ௧
௜൯ =

ఓ೔∗క೔

ఠ೔ 𝑒ିఊ೔௧ + ∫ 𝑔௜(𝑡 − 𝑠)𝑑𝑅௜(𝑠)
௧

ିஶ
,  (2) 

where 𝜇௜ > 0, 𝛾௜ > 0, and 𝑠 < 𝑡. Here, 𝜇௜ represents 
the baseline intensity, or the general arrival rate of 
retweets for the cascade [15]. We anticipate that the 
baseline intensity will be higher for cascade producers 
with larger counts of followers since such producers can 
reach more potential retweeters instantly. To control for 
this effect and the heterogeneity of cascade producers, 
we include 𝜉௜, which measures the logged follower 
count of the producer for cascade i. The parameter 𝜔௜ 
represents the total amount of activity on Twitter when 
i was published and accounts for the level of chatter 
related to other topics. We allow the baseline intensity 
to decay exponentially over time to reflect the temporal 
decay patterns of cascades on Twitter [1], and the decay 
rate is parametrized by 𝛾௜.  

The other component of the self-exciting point 
process describes the impact of a retweet at time s on 
cascade i’s diffusion speed at time t. This exciting effect 
is not permanent but wears off over time. As is common 
in extant research [e.g., 9, 39], we specify the effect of 
previous realizations to decay exponentially: 
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                    𝑔௜(𝑡 − 𝑠) = 𝛼௜𝑒ିఉ೔(௧ି௦),  (3) 

where 𝛼௜ > 0 and 𝛽௜ > 0. We also enforce the 
restriction 𝛼௜ < 𝛽௜  [14, 21]. The parameter 𝛼௜ 
represents the exciting effect, or the increase in 
intensity, attributed to retweet of i at s, and 𝛽௜ reveals 
how quickly such an effect dissipates. Note that 𝛼௜ and 
𝛽௜ are cascade-specific to model the heterogeneity of 
exciting effects across cascades. Given this information, 
Equation 2 can be rewritten as: 

 𝜆௜൫𝑡หℋ௧
௜൯ =

ఓ೔∗క೔

ఠ೔ 𝑒ିఊ೔௧ + ∫ 𝛼௜𝑒ିఉ೔(௧ି௦)𝑑𝑅(𝑠)
௧

ିஶ
  

                 =
ఓ೔∗క೔

ఠ೔ 𝑒ିఊ೔௧ + ∑ 𝛼௜𝑒ିఉ೔ቀ௧ି௧ೖ
೔ ቁ

௧ೖ
೔ ழ௧

   (4) 

Recall that a cascade does not diffuse in isolation, 
but its dissemination may be susceptible to influence 
from its set of parallel cascades. Thus, we modify the 
self-exciting point process to include another point 
process that represents the arrival of retweets belonging 
to parallel cascades. Consequently, our model contains 
two point processes that model the arrival of (1) retweets 
for a cascade and (2) retweets for the same cascade’s 
group of parallel cascades. This is similar to a mutually 
exciting point process, which contains multiple point 
processes and models the intensity of each point process 
as a function of the arrivals for all the point processes 
under consideration [14]. We note that our model, 
however, is not a mutually exciting point process since 
we only evaluate the intensity of a cascade and exclude 
evaluating the intensity of parallel cascades. 

Under the modified model, 𝑅௜(𝑡) = ൣ𝑅ଵ
௜ (𝑡), 𝑅ଶ

௜ (𝑡)൧, 
where 𝑅ଵ

௜ (𝑡) is the counting measure for retweets 
belonging to cascade i and 𝑅ଶ

௜ (𝑡) is the counting 
measure for retweets belonging to parallel cascades of i. 
The retweets of parallel cascades are indexed by 𝑙 =
1, … , 𝐿, and the time that retweet 𝑙 occurred is marked 
as 𝑡௟

௜. The time that L was issued is 𝑡௅
௜ , and  𝑡௅

௜ ≤ 𝑇. In 
addition, we introduce two new terms, 𝜙

௧ೖ
೔  and 𝜙

௧೗
೔, 

which respectively measure the natural logarithm of the 
number of followers that the retweeter of 𝑘 had at 𝑡௞

௜  and 
that the retweeter of 𝑙 had at 𝑡௟

௜. The follower counts are 
logged to address skewness. Like [25] and [41], we 
include retweeters’ follower counts to account for the 
change in intensity from retweeters with higher follower 
counts exposing a larger audience to the original piece 
of content. Equation 5 presents the model that includes 
both point processes: 

𝜆௜൫𝑡หℋ௧
௜൯ =

ఓ೔∗క೔

ఠ೔ 𝑒ିఊ೔௧ + ∑ ቀ𝛼ଵଵ
௜ ∗ 𝜙

௧ೖ
೔ ∗

௧ೖ
೔ ழ௧

        𝑒ିఉభభ
೔ (௧ି௧ೖ

೔ )ቁ + ∑ ቀ𝛼ଶଵ
௜ ∗ 𝜙

௧೗
೔ ∗ 𝑒ିఉమభ

೔ (௧ି௧೗
೔)ቁ

௧೗
೔ழ௧

   (5) 

                                                 
1 D. Guha-Sapir, R. Below, Ph. Hoyois-EM-DAT: International 
Disaster Database–www.emdat.be–Université Catholique de Louvain  

We differentiate the effects of i’s own retweets and 
the retweets of parallel cascades by having 𝛼ଵଵ

௜  and 𝛽ଵଵ
௜  

characterize the former and 𝛼ଶଵ
௜  and 𝛽ଶଵ

௜  characterize the 
latter. Since we incorporate 𝜙

௧ೖ
೔  and 𝜙

௧೗
೔, the parameters 

𝛼ଵଵ
௜  and 𝛼ଶଵ

௜  represent the magnitude of the effect of 
retweets of the corresponding point processes while 
controlling for retweeters’ follower counts. As before, 
𝛼ଵଵ

௜ , 𝛽ଵଵ
௜ > 0, and 𝛼ଵଵ

௜ < 𝛽ଵଵ
௜ .  

Moreover, we add the constraints  𝛽ଶଵ
௜ > 0 and 

𝛼ଶଵ
௜ < 𝛽ଶଵ

௜ , but, unlike 𝛼ଵଵ
௜ , 𝛼ଶଵ

௜  is not restricted to be 
positive-valued. A negative value for 𝛼ଶଵ

௜  reduces the 
intensity, implying that the arrival of retweets for 
parallel cascades inhibits a cascade’s diffusion rate. On 
the other hand, a positive value for 𝛼ଶଵ

௜  improves the 
intensity and suggests that a cascade’s intensity benefits 
from retweets of its parallel cascades. Hence, in our 
model, the effects of parallel cascades’ retweets on a 
cascade’s intensity can be inhibitory as well as exciting 
as hypothesized in H1a and H1b [2, 23]. By enabling 
𝛼ଶଵ

௜  to take on negative values, we expand the Hawkes 
model, which only models exciting effects, and allow 
for content pertaining to the same topic to interact in a 
competitive as well as coopetitive manner.  
 
4. Data  
 
4.1. Sample 
 

We obtained Twitter data from four disasters that 
occurred without warning from WeLink, a social media 
data services firm. The humanitarian setting is unique in 
that the rapid and effective distribution of information is 
critical to save lives and alleviate the suffering of the 
affected population. This context is also understudied 
despite its social significance. For these reasons, we 
chose to collect data from humanitarian events. We 
sampled the disasters from EM-DAT1, which is a 
database of disaster events. Humanitarian events were 
only eligible to be sampled if they occurred between 
2009 and 2015 because 2009 is approximately when 
Twitter started experiencing rapid user growth. Table 1 
provides information about the disasters in our sample. 

To collect the data, we submitted to WeLink a set of 
queries specific to each disaster event. These queries 
contained keywords and phrases that were commonly 
present in hashtags and content associated with the 
emergencies. We also specified the date ranges that we 
were interested in, starting from the time the disaster 
materialized to approximately the end of the response 
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period. The precise bounds on the data collection period 
are shown in Table 1.  

Table 1. Sampled disasters 

Disaster 
Event 

Location 
Event Time 

(UTC) 
End of Data 

(UTC) 

Joplin tornado 
Joplin, MO, 

USA 
5/22/2011 

22:34 
6/2/2011 

23:59 
Black Forest 

fire 
Black Forest, 

CO, USA 
6/11/2013 

19:00 
6/21/2013 

23:59 
Lac-Megantic 
rail disaster 

Quebec, 
Canada 

7/6/2013 
05:15 

7/10/2013 
23:59 

2014 Iquique 
earthquake 

Iquique, 
Chile 

4/1/2014 
23:46 

4/6/2014 
23:59 

 

We followed [28]’s approach to selecting the 
keywords and phrases. That is, we detected keywords in 
hashtags by searching on Google for “hashtag” in 
conjunction with the name of the event. We also 
included in our queries combinations of the location of 
the disaster and the event name. The queries are 
available from the authors upon request. Our data 
comprise all tweets and retweets that were issued within 
the stipulated timeline and contained the keywords and 
phrases in their text. The data set also provides detailed 
information about the tweets and retweets that matched 
our queries, such as timestamps and profile statistics for 
the users that issued the tweets and retweets. 
 
4.2. Identifying parallel cascades  
 

A cascade is composed of a tweet and its chain of 
retweets [17]. According to this definition, we organized 
the tweets and retweets in our data into cascades. We 
identified a tweet’s set of retweets as those messages 
that were created through Twitter’s official retweet 
function. We did not include retweets that were 
manually created by copying a tweet and adding “RT” 
at the beginning to signal a retweet. To qualify for our 
study, a cascade was required to have gained at least one 
retweet. Based on these considerations, we obtained a 
total of 110,628 cascades across all of the events in our 
sample. In each of the panels in Figure 1, we illustrate 
the number of cascades initiated over time for a specific 
disaster event.  

For each of the 110,628 cascades, we detected its 
parallel cascades from among all the other cascades in 
our data. This means that a cascade was not qualified to 
be a part of its own collection of parallel cascades. To 
reiterate, a cascade’s set of parallel cascades constitute 
other cascades conveying similar content, or coexisting 
within the same topic. In Figure 2, we illustrate cascades 
related to two topics from the data on the Lac-Megantic 
rail disaster and demonstrate the relationship between 
cascades and their parallel cascades. 

                                                 
2 https://github.com/seomoz/simhash-py 

 
Figure 1. Count of cascades over time 

(i) Joplin tornado: 45,735 total cascades. (ii) Black Forest 
fire: 15,770 total cascades. (iii) Lac-Megantic rail 
disaster: 10,575 total cascades. (iv) Iquique earthquake: 
38,548 total cascades. 

 

 
Figure 2. Cascades and parallel cascades 

 

The content presented in a cascade and its parallel 
cascades should not vary greatly since they belong to the 
same topic. Accordingly, we applied near-duplicate 
detection techniques that efficiently locate similar 
content based on a measure of the textual distance 
between cascades. More specifically, we utilized the 
simhash algorithm, which was developed by [4] and has 
been implemented by Google [20]. Essentially, simhash 
is a dimensionality reducing algorithm that creates one 
B-bit fingerprint to represent a document (i.e., in our 
study, a cascade’s text). Textual similarity can be 
assessed by comparing a cascade’s fingerprint with that 
of another cascade. The simhash algorithm’s 
performance is fast and scales linearly with the number 
of cascades. 

Before applying the algorithm, we preprocessed the 
cascade’s text using standard natural language 
processing techniques. We then ran a Python 
implementation of simhash2 for each disaster’s 
collection of cascades. This implementation generated 
64-bit fingerprints for cascades. For each cascade, its set 
of parallel cascades were those with fingerprints that 
differed from its own fingerprint by 8 bits or less. Please 
refer to Table 2 for examples of parallel cascades 
identified by the simhash algorithm.  

Within a cascade’s group of parallel cascades, we 
also included any cascades communicating the exact 
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same text. While not common, it is possible that users 
sometimes publish tweets that are exact duplicates. 
Detecting exact duplicates among cascades involves 
searching for perfect textual matches, which does not 
require the application of an algorithm. Therefore, a 
cascade’s collection of parallel cascades constituted 
other cascades with near-duplicate content (if any) and 
exact duplicate content (if any). On average, a cascade 
was associated with 6.891 parallel cascades. Since our 
study is concerned with interactions between a cascade 
and its parallel cascades, we only retained cascades that 
matched with at least one parallel cascade. Our final 
sample consisted of 26,896 cascades. 

Table 2. Examples of parallel cascades 
identified by simhash 

Disaster Cascade Text Parallel Cascade Text 

Joplin 
tornado 

You can help us 
respond in #Joplin! 

Text REDCROSS to 
90999 to make a $10 

donation, or give 
online: 

To help those in 
#joplin text 

REDCROSS to 90999 
to make a $10 

donation. 

Black 
Forest fire 

REMINDER: 
MANDATORY 

EVACUATION means 
you are in immediate 

danger. Load your 
family and pets , and 

GO NOW.  

“@EPCSheriff 
CLARIFICATION: 

MANDATORY 
EVACUATION means 
you are in immediate 

danger. Load your 
family and pets and 

GO NOW.  
Lac-

Megantic 
rail 

disaster 

Train Carrying Crude 
Oil Derails in Quebec  

Crude Oil-Carrying 
Train Derails And 

Explodes in Quebec 
Town  

2014 
Iquique 

earthquake 

Major Earthquake 
Strikes Off Chile Coast, 

USGS Reports  

Strong earthquake 
strikes off coast of 

Chile  
 

We organized the data for each cascade into two sets 
of arrivals: (1) retweets of itself and (2) retweets of its 
parallel cascades. The average retweet count that a 
cascade accrued during the data collection period was 
9.779, and the mean number of retweets belonging to its 
parallel cascades over the same time horizon was 
99.799. The second statistic is higher as we aggregated 
the retweets across the set of parallel cascades.  

 
5. Model estimation and results 
 

We estimated the parameters for the model 
presented in Equation 5 using a maximum likelihood 
estimation procedure. The model parameters were 
estimated individually for every cascade in our sample 
(i.e., I = 26,896). Therefore, for cascade i, we estimated 
the vector of parameters 𝜃௜ = (𝜇௜ , 𝛾௜ , 𝛼ଵଵ

௜ , 𝛽ଵଵ
௜ , 𝛼ଶଵ

௜ , 
𝛽ଶଵ

௜ ). We created the counting measures 𝑅ଵ
௜ (𝑡) and 

𝑅ଶ
௜ (𝑡) based on the arrivals of retweets for i and i’s 

parallel cascades respectively. The data for 𝑡௞
௜  and 𝑡௟

௜ 

were obtained from the timestamp information of the 
same set of arrivals. We measured 𝑡௞

௜  and 𝑡௟
௜ as the 

number of hours elapsed between when k and l occurred 
and 𝑡଴

௜ , where 𝑡଴
௜  was equal to the difference in hours 

from the time of i’s launch to the start of the disaster.  
From the data on tweets, we identified the number of 

followers that cascade producers possessed at the time 
of their tweets. We used these counts to estimate 𝜔௜.  
The profile statistics of the retweeters record the number 
of followers that retweeters possessed at the moment 
that they issued any retweets in our data set. We relied 
on this data to evaluate 𝜙

௧ೖ
೔  and 𝜙

௧೗
೔. Lastly, we followed 

[33] and utilized daily Google Trends data for the term 
“breaking news” to assess the amount of activity on 
Twitter. The newsworthiness of a day should be 
correlated with content production. Thus, we evaluated 
𝜔௜ as the score for “breaking news” from Google Trends 
on the day that i was launched. 

The observation interval [𝟎, 𝑻] was the data 
collection period for the disaster that i belonged to. The 
time when the disaster transpired corresponded to 0, and 
T was calculated as the number of hours between 0 and 
the end of data collection (see Table 1 for details). 
Because the observation interval covered the entire data 
collection timeline, 𝑅ଶ

௜ (𝑡) may have included points that 
arrived between 0 and 𝑡଴

௜  or points that arrived after 𝑡௄
௜ . 

We maintained such realizations of 𝑅ଶ
௜ (𝑡) to account for 

the influence of parallel cascades’ retweets not only 
during but also before and after i’s lifetime. The 
conditional intensity function for i, however, is 
technically null prior to 𝑡଴

௜ . Consequently, we evaluated 
the conditional intensity function from [𝑡଴

௜ , 𝑻]. Time was 
treated as a continuous variable in this study, and this 
continuous-time framework enabled us to capture any 
time effects [39]. Given the realizations of 𝑅ଵ

௜ (𝑡) and 
𝑅ଶ

௜ (𝑡) during [𝑡଴
௜ , 𝑻], the likelihood function for cascade 

i is as follows: 

ℒ௜ = ቂ∑ 𝜆௜ ቀ𝑡௞
௜ ቚℋ

௧ೖ
೔

௜ ቁ௄
௞ୀଵ ቃ ∗ exp ቀ− ∫ 𝜆௜൫𝑡หℋ௧

௜൯
𝑻

௧బ
೔ 𝑑𝑡ቁ  (6) 

Recall that we formulated a generalized point 
process model by permitting 𝛼ଶଵ

௜  to have an inhibitory 
effect on the intensity. After summing over the history 
of the cascade, it is possible that the intensity at t 
becomes negative if  𝛼ଶଵ

௜  takes on a negative value. 
However, by definition,  𝜆௜൫𝑡หℋ௧

௜൯ must be positive [7]. 
We guaranteed that the intensity is always non-negative 
by executing the following nonlinear specification of 
our model that was also applied in [3] and [31]: 

                𝜆ሚ௜൫𝑡หℋ௧
௜൯ = max൫𝜆௜൫𝑡หℋ௧

௜൯, 0൯ (7) 

The log-likelihood to estimate 𝜃௜ given the observed 
data for cascade i is presented in Equation 8. 
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 ℒℒ௜ = − ∫ 𝜆ሚ௜൫𝑡௜หℋ௧
௜൯𝑑𝑡

𝑻

௧బ
೔ + ∫ log 𝜆ሚ௜൫𝑡௞

௜ หℋ௧ೖ

௜ ൯𝑑𝑅ଵ(𝑡)
𝑻

௧బ
೔        

   = − ∫ 𝜆ሚ௜൫𝑡௜หℋ௧
௜൯𝑑𝑡

𝑻

௧బ
೔ + ∑ log 𝜆ሚ௜൫𝑡௞

௜ หℋ௧ೖ

௜ ൯௄
௞ୀଵ    (8) 

To reduce the dimensions of the functional space 
that the parameters can be estimated from, we used a 
penalized maximum likelihood function [31, 42]. We 
imposed the L2 regularization technique, which is also 
known as a ridge regression. The L2 regularization 
technique shrinks estimations of parameters as it 
penalizes the parameters based on their size. We 
maximized the penalized log-likelihood function for 
each of the cascades in R. In order to make sure that we 
reached the global maximum, we provided three 
different vectors of starting values and estimated the 
parameters using the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm. This optimization algorithm 
is an efficient quasi-Newton method that has been 
proven to reach global convergence [11].  

Under this estimation approach, we obtained 
estimates for the parameters of interest for every 
cascade. Table 3 gives the descriptive statistics for the 
parameter estimates in 𝜃௜ across all cascades. Due to 
space constraints, we do not present the parameter 
estimates for every cascade, but these are available from 
the authors upon request. The optimization algorithm 
was unable to converge for 35 cascades, reducing our 
sample size to 26,861 cascades. As this was a low 
percentage of the count of cascades that we attempted to 
optimize (35/26896 = 0.13%), the estimation procedure 
and results are still valid.  

Table 3. Descriptive statistics for parameter 
estimates 

  Mean Median 
Std. 
Dev. Min. Max. 

𝛼ଵଵ
௜   0.090 0.001 0.219 2.18E-13 4.514 

𝛽ଵଵ
௜   0.894 0.753 0.989 3.89E-08 18.609 

𝛼ଶଵ
௜   -0.079 -0.001 0.303 -4.32 3.021 

𝛽ଶଵ
௜   0.557 0.268 0.670 2.62E-07 10.919 

𝜇௜  0.482 0.553 0.410 1.22E-07 5.195 

𝛾௜   0.209 0.152 0.209 5.73E-07 2.554 
26,861 observations       

 

According to Table 3, the mean value of 𝛼ଵଵ
௜  is 

0.090, and the mean value of 𝛼ଶଵ
௜  is -0.079. These 

parameters respectively represent the effects of retweets 
of a cascade and of its parallel cascades on its intensity, 
controlling for the logged count of retweeters’ 
followers. Retweeters possessed 1,951 followers on 
average at the time of their retweets, and the retweeter 
with the highest count of followers in our sample was 
followed by 12,381,846 users. 

The mean values of 𝛼ଵଵ
௜  and 𝛼ଶଵ

௜  demonstrate that the 
effect of parallel cascades’ retweets on the intensity of a 
cascade tends to be negative. That is, on average, a 

cascade’s diffusion rate is inhibited by the arrival of 
retweets for other cascades belonging to the same topic. 
Therefore, we find support for H1a and confirm the 
existence of a competitive interaction among cascades 
carrying similar content. At the same time, however, the 
range between the minimum and maximum values for 
𝛼ଶଵ

௜  in Table 3 indicates that the parameter is positive 
for some cascades. This provides evidence of the 
existence of a coopetitive interaction among cascades 
and their parallel cascades, supporting H1b. We also 
observed that, in absolute terms, the average value of 
𝛼ଶଵ

௜  is smaller than that of 𝛼ଵଵ
௜ . Hence, the inhibitive 

effect of parallel cascades’ retweets on the intensity of a 
cascade tends to be weaker than the exciting effect of 
the cascade’s own retweets. 

Table 3 also gives information on the decay rates for 
𝛼ଵଵ

௜  and 𝛼ଶଵ
௜ . The average value of 𝛽ଵଵ

௜  is 0.894 and of 
𝛽ଶଵ

௜  is 0.557, which suggests that the exciting effects of 
a cascade’s retweets wear off faster than the effects of 
the parallel cascades’ retweets. Given this outcome in 
conjunction with the magnitude of 𝛼ଶଵ

௜  being generally 
smaller than that of 𝛼ଵଵ

௜ , we can infer that parallel 
cascades have a less significant but longer-lasting effect 
on a cascade’s intensity. These findings underscore the 
need to integrate the diffusion of other cascades when 
measuring a cascade’s diffusion speed.  

The mean estimate of 𝜇௜ after controlling for cascade 
producers’ follower counts and total amount of activity 
on Twitter is 0.482. The cascade producers in our 
sample possessed 89,440 followers on average, but this 
count ranged up to 16,172,106 followers. Our results 
also indicate that the baseline intensity for a cascade is 
not constant over time since the mean parameter 
estimate for 𝛾௜ is equal to 0.209. By allowing the 
baseline intensity to be time-varying, we were able to 
model the natural decay of interest in a cascade’s 
content as time progresses. 
 
6. Analysis of the size of cascade producers 

 
In Section 2, we hypothesized that content by larger 

producers is more apt to share a coopetition dynamic 
with parallel cascades. We tested this hypothesis by 
specifying a linear regression model with the estimated 
values of 𝛼ଶଵ

௜  as the dependent variable and cascade 
producer’s size (sizei) as an independent variable. We 
operationalized the size of a cascade producer as its 
follower count [40]. 

Additionally, we included the following control 
variables that could also influence the direction of the 
interplay among cascades. The first control variable 
corresponds to the magnitude of a topic as indicated by 
the number of parallel cascades (paralleli). The count of 
a cascade’s set of parallel cascades is important since 
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topics with more parallel cascades may signal 
legitimacy of the content and induce coopetition [26]. 
At the same time, an increased number of parallel 
cascades can lead to a topic becoming too crowded and 
slow down a cascade’s diffusion, implying a 
competitive interaction [13]. As [13] observed a 
curvilinear relationship between a cascade’s diffusion 
and count of its parallel cascades, we include the linear 
and the quadratic term for paralleli in the regression. 

The next control variable accounts for the timing of 
timing of when a cascade was released compared to its 
parallel cascades. Cascades are more successful at 
attracting attention when they are issued during, rather 
than before, the period of peak interest in their topic [5]. 
A first-mover advantage, therefore, may not exist for 
cascades vying for users’ attention within the same 
topic. We controlled for this effect with a binary 
variable (firstmoveri) that is set to 1 if the cascade is the 
first to appear in its topic and 0 otherwise. Finally, we 
controlled for when in relation to the disaster the 
cascade was launched [40]. We measured this variable 
(timei) as the number of hours between the time that the 
cascade was initiated and the time that the disaster 
materialized. Table 4 provides the descriptive statistics 
for the predictors in our regression. 

Table 4 – Descriptive statistics for predictors 
  Mean Std. Dev. Min. Max. 

sizei 89,440 504,474.4 0 16,172,106 

paralleli 6.882 11.708 1 125 

firstmoveri 0.351 - 0 1 

timei 34.351 45.133 0.056 264.582 
26,861 observations 

We estimated the coefficients of the determinants of 
𝛼ଶଵ

௜  using the Ordinary Least Squares (OLS) method. To 
address nonlinearity, we logged the producer’s follower 
counts. We also mean-centered paralleli prior to 
creating the quadratic term to reduce multicollinearity. 
Lastly, we included fixed effects (𝜓ଵ, 𝜓ଶ, 𝜓ଷ) to capture 
the time-invariant unobserved heterogeneity of each 
disaster. The results of the OLS regression are listed in 
Table 5. 

Table 5 – OLS regression results 
  Coeff. (Std. Error) 

Intercept  -4.84E-02 (9.67E-03)*** 

log 𝑠𝑖𝑧𝑒௜  5.17E-03 (7.79E-04)*** 

𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙௜  -3.14E-03 (3.11E-04)*** 

𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙௜
ଶ  4.96E-05 (5.41E-06)*** 

𝑓𝑖𝑟𝑠𝑡𝑚𝑜𝑣𝑒𝑟௜  -1.30E-01 (4.07E-03)*** 

𝑡𝑖𝑚𝑒௜  -5.59E-04 (4.38E-05)*** 

Observations 26,861 

Adj. R-squared 0.043 
*** p<0.01. Fixed effects for each disaster are included but not 
reported. 

The coefficient for sizei is positive and significant, 
which confirms that the effect of parallel cascades’ 
retweets on a cascade’s intensity is positively related to 
the size of the cascade’s producer. Hence, the diffusion 
of content contributed by larger producers is more likely 
to be complemented by the spread of parallel cascades. 
This finding confirms H2. As a robustness check, we 
created an alternative measure of sizei. Specifically, we 
assessed the size of a cascade’s producer relative to the 
size of producers for the same cascade’s set of parallel 
cascades. We operationalized this with a binary variable 
equal to 1 if the cascade’s producer was the largest of 
the producers in its topic and 0 otherwise. We re-
estimated the regression, and the results were consistent 
with those in Table 5. The results are available from the 
authors upon request. 

The results in Table 5 also lend support to a 
curvilinear relationship between 𝛼ଶଵ

௜  and the count of 
parallel cascades. Specifically, the linear term for 
paralleli is negative and significant while the quadratic 
term is positive and significant. As such, our results 
suggest that as a topic expands and contains more 
parallel cascades, the diffusion rate for a cascade will 
initially suffer competitive effects. After a certain point, 
a larger count of parallel cascades will instead yield a 
coopetitive interaction. The inflection point is within the 
observed range of paralleli.  

Moreover, the coefficient for firstmoveri is negative 
and significant, which indicates that a cascade’s 
diffusion speed is diminished when the cascade is the 
first to publish the information for a topic. We, 
therefore, do not find evidence of a first-mover 
advantage for content release on social media platforms. 
Lastly, we find that the coefficient for timei is negative 
and significant. This implies that cascades launched 
closer to the start of the disaster response period, which 
is when the rapid circulation of information is most 
critical, are less likely to face competitive effects from 
parallel cascades.  
 
7. Conclusion 
 

In this study, we assessed the diffusion for content 
posted on social media platforms using Twitter data. 
Instead of calculating a cascade’s diffusion solely as a 
function of attributes of its retweets, we expanded our 
analysis to include the spread of other cascades carrying 
similar content (i.e., parallel cascades). This enabled us 
to evaluate how cascades competing for attention within 
the same topic affect each other’s diffusion. To test this, 
we formulated a point process model that extended the 
traditional self-exciting point process [14] by 
incorporating another point process that represents the 
arrival of retweets for parallel cascades. Additionally, 
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we allowed the effect of parallel cascades’ retweets on 
a cascade’s diffusion to hold positive and negative 
values to reflect a coopetitive and competitive 
relationship respectively. This modification required us 
to implement a nonlinear version of the Hawkes process, 
which is not commonly performed due to difficulties in 
estimating such models. 

The parameter estimates from our point process 
model reveal that a cascade’s diffusion is affected by the 
spread of similar content. Specifically, the interaction 
between a cascade and its parallel cascades is negative 
on average and impedes the cascade’s diffusion. This 
demonstrates that cascades belonging to the same topic 
tend to share a competitive dynamic. One implication 
from this finding is that cascade producers may want to 
spend time developing novel content to avoid 
suppressive effects from parallel cascades. 
Nevertheless, we also find evidence for a coopetitive 
interaction since some cascades’ diffusion benefits from 
the concurrent spread of parallel cascades. 

Consequently, we observe variation in whether a 
cascade’s diffusion was overshadowed or bolstered by 
parallel cascades. According to this study’s findings, the 
relationship between similar content is more likely to be 
coopetitive for cascades published by larger producers. 
This highlights an asymmetry between small and large 
producers regarding how their content distribution is 
influenced by other content pertaining to the same topic. 
As such, content producers should consider investing in 
strategies to grow and increase their audience. The 
advantage of being a large producer for content 
diffusion has been well-documented in the literature 
[e.g., 36, 40]. We offer a more nuanced insight by 
showing that content diffusion for larger producers may 
be superior in part due to these producers’ ability to 
profit from the propagation of parallel cascades. 
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