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Abstract

The users’ privacy concerns mandate data
publishers to protect privacy by anonymizing the
data before sharing it with data consumers. Thus,
the ultimate goal of privacy-preserving representation
learning is to protect user privacy while ensuring
the utility, e.g., the accuracy of the published data,
for future tasks and usages. Privacy-preserving
embeddings are usually functions that are encoded
to low-dimensional vectors to protect privacy while
preserving important semantic information about an
input text. We demonstrate that these embeddings
still leak private information, even though the low
dimensional embeddings encode generic semantics.
We develop two classes of attacks, i.e., adversarial
classification attack and adversarial generation attack,
to study the threats for these embeddings. In particular,
the threats are (1) these embeddings may reveal
sensitive attributes letting alone if they explicitly exist
in the input text, and (2) the embedding vectors can
be partially recovered via generation models. Besides,
our experimental results show that our approach can
produce higher-performing adversary models than
other adversary baselines.

1. Introduction

Textual information is one of the most significant
data. Online users generate a great amount of textual
information by participating in different online activities
such as online reviews and posting tweets. On one
hand, textual data consists of abundant information
about users’ behavior preferences for data consumers to
study. On the other hand, publishing complete and intact
users’ textual data risks exposing privacy information
to adversaries. This scenario usually arises when
the computation of a neural network is shared across
multiple devices, e.g., some hidden representations are
computed locally and send to a cloud-based model.
In this case, the hidden representations are easy to

be obtained by the adversary during uploading the
data [Coavoux et al., 2018].

Private information can take the form of key phrases
explicitly contained in the text. However, it can also be
implicit. For example, demographic information about
the author of a text can be predicted with above-chance
accuracy from linguistic cues in the text itself [Rosenthal
and McKeown, 2011, Preoţiuc-Pietro et al., 2015].
However, letting alone its explicitness, some of the
private information correlates with the output labels and
therefore can be learned by a neural network as the
saying “you are what you write” goes.

Recently, a line of privacy-preserving text
representation works encode the text inputs by Φ(x) in
order to preserve the rich semantic meaning while not
compromising too much utility for various downstream
tasks. However, this setting is not applicable for the
cloud servers in real-world because (1) it’s not possible
to ongoingly share the model with the users’ devices,
(2) it can be computationally intensive for computing all
the embedding via Φ(x) for the local users’ device, and
(3) manipulating the full dataset increases the chance for
being detected by the adversary. Thus, we investigate
the threats for the embedding in a more realistic setting,
where the server only manipulate a proportion of the
training data D via Φ(x) and manipulating this set
of data is sufficient for preventing the adversary from
privacy recovering, while the data are not manipulated
(the true embeddings) remain the typical sentence
embeddings.

In this setting, even though these embeddings are
in a low dimension, do they, perhaps, inadvertently
capture the demographic information about the authors
in addition to the meaning of words? Would that
have consequences if these embeddings are used in
adversarial ways? These questions motivate our study
on threats for these embeddings. Song and Raghunathan
[2020] introduced embedding inversion attacks and
attribute inference attacks. These methods assume
the adversary has access to Φ by querying a small
set of auxiliary data Da. However, in most cases,
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the auxiliary data is not ideally drawn from the same
underlying process from the training data. Thus, the
performance for learning the model is consequently
inferior. In order to address this issue, we instead
study the case when the adversary can not access
this neural network. In particular, we develop two
classes of attacks to study information that might be
leaked by embeddings. The first is called adversarial
classification (AC), where the embeddings might reveal
sensitive attributes letting alone if they explicitly exist
in the input text. The second is adversarial generation
(AG), where the embedding vectors can be partially
recovered from the input data via the generation
models. We propose the adversary methods based
on a semi-supervised generative adversarial network
(SGAN). In our proposed SGAN, the adversarial
network distinguishes the true embeddings from the
manipulated embeddings, and the adversary is trained
by a combinatorial loss that leverages both the
supervised auxiliary data and the unsupervised training
data. The model is then fine-tuned on a testing data
(include both r(x; Φ) and r(x; θr) as well) via transfer
learning. Our experimental results show that SGAN
can produce higher-performing adversary models when
comparing with the baseline: inverting the given
embeddings back to the sensitive raw text inputs via
querying the model.

Our contributions are summarized as follows:

• We investigate the threats for the embedding
under a more realistic setting, where the server
only manipulates a proportion of the training
data via Φ(x) and manipulating this set of data
is sufficient for perturbing the training of the
adversary.

• When Φ is not accessible, we propose an
SGAN approach, where the adversarial network
distinguishes the true embeddings from the
manipulated embeddings, and the adversary is
only trained based on the true embeddings. Thus,
the training of the adversary is not perturbed by
the manipulated privacy-preserving embeddings.

• Experimental results show that SGAN produces
higher-performing adversary models than other
adversary baselines.

2. Related works

We formulate the related works in two parts, the
privacy-preserving representation learning, and study
the information leakage for the embeddings under the
privacy-preserving representation learning scenario.

2.1. Privacy-preserving representation
learning

In a line of privacy-preserving representation
learning studies, Li et al. [2018] proposed ADV that
based on GAN [Goodfellow et al., 2014] to improve
the robustness and privacy of neural representations.
This method is applied to part-of-speech tagging and
sentiment analysis. Similar to [Ganin et al., 2016],
ADV learns a discriminator model jointly with learning
the standard supervised model. However, this method
cannot eliminate the difference regarding the training
performance for some author characteristics that are
more sensitive in contributing to the unforeseen impacts
in differing the model performance for different user
groups. However, our method can eliminate the
performance difference while requiring a certain privacy
budget. In contrast, Coavoux et al. [2018] propose
multi-detasking and adversarial generation methods.
These methods train a new classifier from scratch to
evaluate privacy once the parameters of our main model
are fixed. Recently, Beigi et al. [2019] proposed
DPText that learns a differentially private representation
by minimizing the chance of the adversary to infer
whether target text representation is in the database
with the weighted sum objective. However, all these
methods focus on encoding all the text inputs by
Φ(x). However, (1) it’s not possible to ongoingly
share the model with the users’ devices, (2) it can
be computationally intensive for computing all the
embedding via Φ(x) for the local users’ device, and
(3) manipulating the full dataset is easy to be detected
by the adversary. Thus, we investigate the threats in
a more realistic setting and the experimental results
perform higher-performing adversary models than the
embedding inversion attacks [Song and Raghunathan,
2020].

2.2. Attacking the privacy-preserving
representation learning

A line of works [Song and Shmatikov, 2019, Song
and Raghunathan, 2020] leverage attribute inference
attacks to test if embeddings might unintentionally
reveal attributes of their input data that are sensitive.
This threat model is particularly important when
sensitive attributes orthogonal to downstream tasks
are quickly revealed given very little auxiliary data.
However, these methods assume the adversary has
access to Φ by querying a small set of auxiliary
data. However, in most cases, the auxiliary data are
not ideally drawn from the same underlying process
from the training data, which leads to inferior training
performance. In addition, the authors investigate
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membership inference attacks as well. However, our
paper is not focusing on addressing this problem.

3. Methods

In this section, we introduce the adversarial scenario,
the basic defense and attack methods, and the proposed
SGAN approach.

3.1. The Adversarial Scenario

First, we propose to frame the training of the main
classifier as the cloud server via a two-agent process:
(1) the main agent and (2) an adversary. They are
exploiting a setting similar to GAN, where the generator
learns to reconstruct privacy information from the
low-dimensional embeddings, whereas the main agent
learns to perform its main task and to make the adversary
difficult in recovering the privacy. In the adversarial
scenario, each example consists of a triple (x,y, z),
where x is a natural language text for each data instance,
y is a single label, e.g. topic or sentiment, and z is
a vector of private information contained in x. In our
two agents setting, (i) the adversarial generator learns to
predict z from the latent representation r(x) of x used
by the main classifier, and (ii) the main agent learns to
predict y from x. r(x) is composed of two parts of
the training data: the true embeddings r(x; θr) and the
manipulated embeddings r(x; Φ).

In order to evaluate the utility, e.g., accuracy and
privacy of a specific model, we proceed in four phases
as shown in Figure 1:

• Phase 1. Training of the main classifier on
(x,y, z) in adversarial classification case or
(x,y) pairs only in adversarial generation case
and evaluation of its accuracy;

• Phase 2. Generation of a dataset of pairs (r(x), z)
for the adversary, r is the representation function
of the main classifier;

• Phase 3. Training of the adversary’s network
on (r(x), z) in adversarial classification case or
training of the adversary on r(x) in adversarial
generation case;

• Phase 4. Evaluation of the adversary’s
performance for measuring privacy.

3.2. Basic Defense Methods

Here we propose two types of basic defense
methods. The first is to defend the adversarial
classification (DAC) and the second one is to defend

Figure 1: The main agent predicts a label yi from
a text xi, the adversary tries to recover some private
information zi contained in xi from the embeddings (in
red). All back propagations for adversarial classification
are shown in blue. All back propagations for adversarial
generation are shown in blue dashed line.

the adversarial generation (DAG). We will then reveal
the threats for both DAC and DAG. Note that in
both methods, we all first randomly select a small
K proportion of manipulated data from the dataset
(including the training set, the validation set, and the
test set), where K = the number of manipulated data

the number of all data . All the
objectives are only trained on Φ. Other data are not
taking part in the training of the parameter Φ, whereas
trained by normal sentence embeddings as follows.

Sentence embeddings are functions that map a
variable-length sequence of words x to a fix-sized
embedding vector r(x, θr) through a neural network
model θr. For a input sequence of n words x =
[w1, w2, ..., wn], θr first maps x into a sequence of word
vectors x = [v1, ..., vn] with a word embedding matrix
v such as Glove [Pennington et al., 2014]. Then θr
feeds x to a recurrent neural networks (rnn) [Mikolov
et al., 2010] or Transformer [Jaderberg et al., 2015] and
obtain a sequential hidden representation [h1, h2, ..., hn]
for each word in x. Finally θr outputs the
sentence embedding by reducing the sequential hidden
representation to a single vector representation.

The manipulated embeddings are trained as follows:

DAC The main classifier optimizes:

Lm(x,y, z; Φ, θr,θp) =− α logP (y|x; Φ, θr,θp)

− β logP (¬z|r(x);θp), (1)

where θp represents the parameters for the main
classifier, and Φ represents the parameters for the
manipulated data. The first term of this equation is to
minimize the negative log-likelihood of the y labels, and
the second term is designed to deceive the adversary.
Both α > 0 and β > 0 control the relative importance
of both terms.
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DAG Similarly, the loss of the main model is as
follows:

Lm(x,y; Φ, θr,θp) =− α logP (y|x; Φ, θr,θp)

− β(−L′a(x,y;θ′a,Φ, θr)),
(2)

where θ′a represents the parameters for the adversary
in adversarial generation, the first term minimizes the
negative likelihood of the y labels whereas the second
term is meant at making the recovering difficult by
maximizing the loss of the generator, L′a is defined in
subsection 3.3.

3.3. Basic Adversarial Attacks

We experiment with two types of adversaries:
a classifier that predicts the binary attributes z(x)
used as a proxy for the reconstruction of x and a
character-based language generation model that directly
optimizes the likelihood of the training examples. In
the adversarial attacks, we generalize a dataset made
of pairs (r(x), z(x)), where r(x) is the embedding
from the main classifier and z(x) is a vector of private
categorical variables. In our experiments, we use the
same training examples x for both the main classifier
and the adversary. The two adversaries are as follows:

Adversarial Classification Formally, for a single data
point (x,y, z), the adversarial classifier optimizes:

La(x,y, z;θa,Φ, θr) = − logP (z|r(x);θa). (3)

Once the main model has been trained, the parameters
θr are fixed. θa represents the parameters for the
adversarial classification. As in a GAN, the losses of
both classifiers are interdependent, but their parameters
are distinct: the adversary can only update θa or θ′a and
the main classifier can only update θr and θp. When we
train the main model, the weights for the adversary are
fixed.

Adversarial Generation The second type of
generator is a character-based LSTM language model
that is trained to reconstruct full training examples. For
a single data point, the hidden state of the LSTM is
initialized with r(x), computed by the main model. The
generator optimizes:

L′a(x,y;θ′a,Φ, θr) =

−
C∑

c=1

logP (r(xc)|r(xc−1);θ′a), (4)

where xi is the i-th character in the document, and C
is the length of the document in number of characters.
The generator has no control over r(x), and optimizes
the objective only by updating its own parameters θ′a.

3.4. The proposed SGAN approach

After we have introduced the basic defense strategy,
we will then move to our proposed SGAN approach. For
the adversary, our aim is recovering as much the private
information as possible given the possibly manipulated
input embeddings.

First, we recall that the recovering strategy of
the basic adversaries is to recover as much the
private information z as possible, when the possibly
manipulated embedding r(x) are given. The loss is
to minimize the negative log-likelihood of the private
information z as shown in this formula:

L(θ) =

N∑
i=1

− logP (z|r(x); θ), (5)

where L can be either La or L′a, there are totally N
data instances, θ are the set of all trainable parameters
{Φ,θp}. The problem for the basic adversary is, when
given the possibly manipulated r(x), it is hard for the
adversary to recover any relevant private information z.

We follow the principle that if θ is trained on the
manipulated data, it’s hard for the adversary to recover
any useful information, but if we can identify which part
of the embeddings are manipulated and which part of
the data are not, the training can be only conducted on
the true embeddings, and the recovering ability for the
adversary will not be a problem. In order to address this,
we propose an SGAN approach, where the adversarial
network distinguish the true embeddings from the
manipulated embeddings. Semi-supervised learning
needs a few labeled examples from the auxiliary dataset
Da and many unlabeled examples. We can get the
small set of labeled examples from an external domain.
The true and manipulated embeddings for the small
labeled set can be obtained by training θs via the
positive and the negative loss in (4). In other words, we
introduce another neural network θs for distinguishing
the true embeddings from the manipulated embeddings,
the labels ys for θs is binary, i.e., either true (ys = 1) or
false (ys = 0).

Here we introduce the SGAN approach, because
we have both the labeled data and unlabeled data, our
loss function for training the GAN then becomes the
supervised loss Lsu plus the unsupervised loss Lun :

Lsum(θs) = Lsu + Lun, (6)
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where

Lsu(θs) =

− Ex,ys∼Da(x,ys) logP (y|x,ys = 1;θs), (7)

and

Lun(θs) = −Ex∼D log[1− P (ys = 0|x;θs)]

− Ex∼D log[P (ys = 0|x;θs)]. (8)

For the supervised loss, we have decomposed the total
cross-entropy loss into its loss function, which is the
negative log probability of the label, given that the true
embedding. For the unsupervised loss, we recall that
the approach for the standard GAN is shown in (9).
We maximize the probability for the true embedding
is classified as true, and we minimize the probability
for the generated data g is true, because the generator
G is against the discriminator D. We also know that
D(x) = 1− P (ys = 0|x). Thus, by substituting D(x)
with 1−P (ys = 0|x), the unsupervised loss for (8) is in
fact the standard GAN game-value as becomes evident
when we substitute D(x) = 1 − P (ys = 0|x) into the
expression:

Lun = −Ex∼D(x) log[D(x)]

− Eg∼noise log(1−D(G(g))). (9)

The only difference is, for the SGAN, we do not
introduce a generatorG for generating new embeddings,
we consider all the generated data are coming from the
batch training of D instead, since it includes the true
embeddings r(x; θr) and the manipulated embeddings
r(x; Φ) already. The full scenario is shown in Figure 2.

Figure 2: General setting illustration. The red lines show
that only the true embeddings r(x; θr) are leveraged
to train the adversary. Thus, the parameters for the
adversary, i.e., θa or θ′a will not be perturbed by the
manipulated embeddings.

4. Experimental results

In this section, we discuss the tasks and datasets,
settings, and the experimental results on both tasks.

4.1. Tasks and datasets

We conduct our experiment on two tasks. For the
first task, the downstream task for the main classifier
is sentiment analysis while the adversary conducts
adversarial classification. For the second task, the main
classifier conducts text classification while the adversary
conducts adversarial generation. Next, we introduce
these two tasks:

Sentiment Analysis We use the Trustpilot
dataset [Hovy et al., 2015] for sentiment analysis.
This corpus contains reviews associated with a
sentiment score on a scale of five points. We use the five
subcorpora corresponding to five areas, i.e., Denmark,
France, Germany, United Kingdom, and United States.
We extract examples containing both the birth year and
gender of the author of the review and use these as the
private information. We classify the age of the author
into two categories (’under 35’ and ’over 45’) based
on a previous work [Hovy et al., 2015]. Finally, we
randomly split each subcorpus into a training set (80%),
a validation set (10%) and a test set (10%). We consider
two types of auxiliary data Da: same-domain and
cross-domain data. For same-domain data, we use a set
of 500 randomly sampled examples from the Trustpilot
dataset that is disjoint to the test set. For cross-domain
data, we use a set of 300 randomly sampled examples
from the blog posts dataset [Schler et al., 2006].

We would also like to evaluate whether the
adversary’s task is easier when the variables to predict
are explicitly in the input, compared to when these
information are only potentially and implicitly in the
input. As an additional experimental setting, we include
both gender and age as input to the main model. We
do so by adding two additional tokens at the beginning
of the input text, one for each private information.
It has also been shown that those variables can be
used to improve text classification [Hovy et al., 2015].
In the rest of this section, we use RAW to denote
the setting where only the raw text is used as input
and +DEMO to denote the setting where the two
demographic variables are also used as input.

In this case, the task for the main classifier predicts
the sentiment analysis results y from training examples
x. z is a vector of binary variables, representing,
e.g., Age or Gender information about the author. The
adversary predicts z.

Text Classification We perform privacy data
prediction on blog posts. We used the blog authorship
corpus presented by [Schler et al., 2006], a collection
of blog posts associated with the Age and Gender of
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Table 1: Sizes of both datasets in number of examples

Datasets Training Validation Test
Germany 12596 1574 1574
Denmark 82193 10274 10274
France 9136 1141 1141
UK 48647 6080 6080
USA 22142 2767 2767
Blog posts 5144 642 642

the authors, as provided by the authors themselves.
Because the blog posts have no topic annotation, we ran
the Latent dirichlet allocation (LDA) algorithm [Blei
et al., 2003] on the whole collection (with 10 topics).
The LDA outputs a distribution on topics for each blog
post. We selected posts with a single dominating topic
(> 80%) and discarded the other posts. For the main
classifier, we binned Age with two classes, under 20
and over 30. The sizes of both datasets in number of
examples are shown in Table 1.

For the adversary, we binned Age with two
characters ′U ′ and ′O′, where ′U ′ represents under 20,
and ′O′ represents over 30. We also binned the Gender
with two characters ′F ′ and ′M ′, where ′F ′ represents
female and ′M ′ represents male. For the 256 characters
in total, we model each of the character as an one-hot
class label. For this dataset, we concatenate each post
with a < eod > token and two characters of the private
information. For example, the following Figure 3 shows
an example of the blog posts data that we generated. In
the testing phase, the LSTM reads through the whole
sequence, and start to predict the first output when
reading the < eod > token. Then for each prediction
step, the< eod > token is fed as the input and the target
character index (treated as a class label) is expected as
the output. Finally, we split the corpus into a training
set (80%), a validation set and a test set (10% each). For
Da, we follow the aforementioned setting.

[Every day should be a half day., < eod >, ’U’, ’F’]

Figure 3: An example about our generated dataset.

In this case, the task for the main classifier predicts
the text classification results y from training examples
x. y is a vector of binary variables, representing e.g.,
Age or Gender information about the author. z is the
one hot representation for each two private characters
at the end of each example. The adversary predicts z
through adversarial generation.

4.2. Settings

Implementation details We implemented our model
using Dynet [Neubig et al., 2017]. The feedforward
components (both of the main model and of the
adversary) have a single hidden layer of 64 units with
a ReLU activation. Each character is modeled as an
one-hot class label. The word embeddings have 32 units.
We used the Adam optimizer [Kingma and Ba, 2014]
with the default learning rate, and 0.2 dropout rate for
the LSTM. We used α = β = 1 for the DAC, based on
preliminary experiments. For the DAG method, we used
α = β = 1 as well. For each dataset, and each LSTM
state dimension ({8, 16, 32, 64, 128}), we train the main
model for 8 epochs (sentiment analysis) or 16 epochs
(topic classification), and select the model with the best
accuracy on the development set. Then, the adversary
model is trained based on the training data D for 16
epochs.

Baselines We compare our methods with the
following three baselines:

• We utilize adversarial classification (AC) and
adversarial generation (AG) without (w.o.)
SGAN as a straightforward baseline.

• We compare our adversarial generation with the
embedding inversion attacks (EIA) [Song and
Raghunathan, 2020], where the adversary’s goal
is to invert a target embedding Φ(x) and recover
embeddings in x. The adversary can access Φ.

• We compare our adversarial classification with
the Sensitive attribute inference attacks
(SAIA) [Song and Raghunathan, 2020], where an
adversary performing the inference by learning a
classifier f on Da with the access to Φ.

Evaluation metrics For the main classifier, we report
a single accuracy measure. For measuring the privacy of
an embedding, we use the following metrics:

• For the sentiment analysis: we use X as the
accuracy of the adversary on the prediction of
gender and age.

• For the text classification: we use F as the F-1
score of the adversary on the prediction of gender
and age.

4.3. Experiments on both tasks

In this subsection, we answer three questions as
follows: 1) Does our method achieve the best adversarial
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Table 2: Comparisons between best adversaries (via rnn) for AC w.o. SGAN, SAIA, and AC (when K = 35%). All
metrics reported in this table are X(%).

Best adversaries for AC w.o. SGAN Best adversaries for SAIA Best adversaries for AC
RAW +DEMO RAW +DEMO RAW +DEMO

Gender Age Gender Age Gender Age Gender Age Gender Age Gender Age
Germany 24.8 39.6 24.8 41.4 65.7 69.4 66.7 70.1 70.7 74.8 73.1 78.4
Denmark 31.5 24.7 38.0 36.6 73.7 72.4 76.5 73.4 80.1 78.5 83.5 80.2
France 39.0 42.9 39.0 39.4 77.2 79.9 80.4 83.1 84.9 85.1 87.1 89.0

UK 33.6 36.5 40.1 38.2 74.0 75.4 79.1 80.3 83.1 85.0 86.7 88.4
USA 18.7 25.1 35.3 36.1 53.4 55.1 60.0 61.4 60.9 64.5 66.7 67.1

Table 3: Comparisons between best adversaries (via rnn) for AG w.o. SGAN, EIA, and AG (when K = 35%). All
metrics reported in this table are F (%).

Best adversaries for AG w.o. SGAN Best adversaries for EIA Best adversaries for AG
RAW +DEMO RAW +DEMO RAW +DEMO

Gender Age Gender Age Gender Age Gender Age Gender Age Gender Age
Blog - - 33.9 42.0 - - 71.5 79.4 - - 76.7 83.2
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Figure 4: The performance for different sentence embeddings for both tasks in +DEMO setting.
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Figure 5: The impact of K in +DEMO setting.
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performance in recovering the privacy such that we
can claim privacy-preserving text representation is
still vulnerable, 2) how different sentence embedding
methods, such as rnn and Transformer, affect the
recovering ability, and 3) how does K affects the
recovering ability?

The best adversarial performance In Table 2 and
Table 3, we show the performance comparisons between
the best adversaries for both tasks. For all datasets, we
can see that the recovering ability for Age is usually
better than Gender (except the Denmark subcorpora).
Besides, the best adversaries for our approach are
always better than the adversary baselines. The reason
is our SGAN approach is successful in distinguishing
the true embeddings from the manipulated embeddings.
Another observation is for +DEMO setting, the
adversaries achieve better performance since the privacy
data are explicitly existing in the text as shown in
Table 2. However, when the private information is not
explicitly existing, SAIA and AC still preserve certain
recovering ability as the demographic information
inherently exists in the text. The results show
that our method produces higher-performing models.
For example, for the Trustpilot dataset, our method
achieves 89.0% in terms of the accuracy for recovering
private information, which is 5.9% higher than the
state-of-the-art SAIA approach. For the Blog posts
dataset, our method achieves 83.2% in terms of the
accuracy for recovering private information, which is
3.8% higher than the EIA approach.

The performance for different sentence embeddings
In Figure 4, we show the performance for different
sentence embeddings for both tasks in +DEMO
setting, in which the first row shows the experimental
results for the two tasks for the rnn embeddings and
the second row shows the experimental results for the
two tasks for the Transformer embeddings. Other than
the recovering ability for Age is usually better than
Gender (possible due to the age is more sensitive than
gender for different writing styles), we also find that
the transformer models achieve higher recovering ability
for the private information, because of the fact that the
Transformer models have more capacity in terms of rich
meaning. Therefore, they are more capable of leaking
private information as well.

The impact of K In this paragraph, we investigate
the impact of K, as K denotes the proportion of the
manipulated data that takes part in all the examples
from the dataset. It’s not hard to infer that as K
increases, the recovering performance decreases since

the lacking of the true embeddings to sufficiently train
θa or θ′a. As shown in Figure 5, as K increases, the
recovering performances for the three methods decrease
differently. For AC w.o. SGAN and AG w.o. SGAN
approaches, when K = 0, the recovering performances
are similar to AC and AG. However, when the number
of manipulated data increases, the performances for
these two methods decrease rapidly. SAIA and EIA
approaches are more resilient while comparing with AC
w.o. SGAN and AG w.o. SGAN. However, when K
increases, the performances decrease almost linearly.
For our proposed AC and AG approaches, the adversary
is trained by a combinatorial loss that leverages both the
supervised auxiliary data and the unsupervised training
data. The model doesn’t need too many true embedding
for training. Thus, our proposed AC and AG are the
most resilient methods.

5. Discussion

Implications Recently, with an enormous amount of
training data available, NLP is able to reach or even
outperform human-level accuracy on many challenging
tasks such as text classification [Aggarwal and Zhai,
2012], machine translation [Koehn, 2009], and speech
recognition [Jelinek, 1997]. Such tremendous success
leads the explosion of NLP models deployed in many
Internet services and applications that people use on
a daily basis, including inferring disease types from
electronic health records [Gkoulalas-Divanis et al.,
2014], recommending movies on Netflix [Gomez-Uribe
and Hunt, 2015] or videos on YouTube [Covington et al.,
2016], assisting email writing in Gmail [Wu, 2018],
etc. Producing such a text classification/generative
model involves a pipeline starting from collecting the
user’s data and training to evaluation and deployment
on a server as detailed in Section 3.1. In other
words, the individuals regularly create online content
and organizations host online content for such systems.
Usually, the quality of an ML model is measured by
its predictive power on future data, and the accuracy
of prediction is often the only metrics for deciding
deploying ML models in production. However, the
models in these services are often trained on large-scale
sensitive personal data and are also making important
personalized decisions for the users. The personalized
nature and the decision-making role of the models
provide a strong incentive for malicious adversaries to
infer such models for attacking purposes (for example,
inferring about the sensitive training data). It is
thus crucial to understand the potential threats to
such systems. As for the theoretical implications,
since learning representations that exhibit invariance to
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arbitrary nuisance factors yet remain useful for other
tasks is challenging, learning representations of data that
are invariant to changes in specified factors could be
useful for a wide range of problems: removing potential
biases in prediction problems, controlling the effects
of covariates, and disentangling meaningful factors of
variation. An existing approach [Xie et al., 2017] casts
the trade-off between task performance and invariance
in an adversarial way. However, Moyer et al. [2018]
reported specific failure modes of adversarial training.
Therefore, investigating why these methods might fail
remains an open problem.

Limitations and future works Recently, a line of
privacy-preserving text representation works encode the
text inputs by Φ(x) in order to preserve the rich semantic
meaning while not compromising too much utility for
various downstream tasks. For example, Song and
Raghunathan [2020] introduced embedding inversion
attacks and attribute inference attacks. This method
assumes the adversary can query Φ. This method
successfully mimics the model Φ by querying a small
set of auxiliary data Da. However, in most cases,
the auxiliary data is not ideally drawn from the same
underlying process from the training data. In our
work, we investigate the threats for the embedding in a
more realistic setting, where the server only manipulate
a proportion of the training data D via Φ(x) and
manipulating this set of data is sufficient for preventing
the adversary from privacy recovering. The data are not
manipulated (the true embeddings) remain the typical
sentence embeddings. Our method investigates the
threats for the embedding in a more realistic setting,
where Φ is not allowed to be queried by the attacker.
In our method, the server only manipulates a proportion
of the training data via Φ(x) and manipulating this set
of data is sufficient for perturbing the training of the
adversary. However, our method is not applicable when
K = 1. Thus, our future work includes generalizing our
approach to the K = 1 case when Φ is not accessible
by the adversary. Since Moyer et al. [2018] reported
specific failure modes of adversarial training, another
future direction of our work lies in investigating the
training heuristics or other techniques that can improve
the adversary’s performance.

6. Conclusion

Although many recent privacy-preserving
representation learning methods investigate how to
protect user privacy while ensuring the utility, e.g.,
the accuracy of the published data for the downstream
tasks, we demonstrate the new threats by researching the

private information leakage for two different sentence
embeddings. In particular, we propose two classes
of attacks, i.e. adversarial classification (AC), and
adversarial generation (AG), to study information that
might be leaked by embeddings. In particular, AC shows
the embeddings may reveal sensitive attributes letting
alone if it explicitly exists in the input text, and AG
shows the embedding vectors can be partially recovered
from the input data via the generation models. Our
method produces higher-performing and more resilient
adversary models than the two adversary baselines. For
example, our method achieves 89.0% in terms of the
accuracy for recovering private information, which is
5.9% higher than the state-of-the-art SAIA approach.
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