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Abstract 
 

Application design has been revolutionized with 
the adoption of microservices architecture. The ability 
to estimate end-to-end response latency would help 
software practitioners to design and operate 
microservices applications reliably and with efficient 
resource capacity. The objective of this research is to 
examine and compare data-driven approaches and a 
variety of resource metrics to predict end-to-end 
response latency of a containerized microservices 
workflow running in a cloud  Kubernetes platform.  
We implemented and evaluated the prediction using a 
deep neural network and various machine learning 
techniques while investigating the selection of 
resource utilization metrics. Observed characteristics 
and performance metrics from both microservices and 
platform levels were used as prediction indicators. To 
compare performance models, we experimented with 
a benchmarking open-source Sock Shop containerized 
application. A deep neural network technique 
exhibited the best prediction accuracy using all 
metrics, while other machine learning techniques 
demonstrated acceptable performance using a subset 
of the metrics. 
 
 
1. Introduction  
 

Recent progress made in container technology 
paves new ways to adopt containerized microservices 
in cloud infrastructure [1]. Containers orchestrating 
and scheduling platforms such as open-source 
Kubernetes [2] enables to automatically deploy, host 
and scale distributed containerized microservices [3]. 
A microservice could be built and bundled with all 
dependencies as one deployable image using a 
containerization technology such as Docker [4] and 
scheduled to run on a platform such as Kubernetes. 
The number of instances of each microservice in 
addition to the amount of required resources - such as 

memory and central processing unit (CPU) - of each 
instance could be specified to run applications 
reliably. Kubernetes cloud platform takes the 
responsibility to accommodate hosted microservice 
instances with adequate capacity. A microservice 
caters functionality with one or several deployed 
containerized instances, known as Kubernetes Pods. 
Typically, an application is composed of several 
microservices that are deployed and run in a cluster of 
infrastructure nodes (Kubernetes cluster). 

Despite all the benefits of using Kubernetes, the 
distributed nature of cloud platforms comes with 
operation challenges to reliably manage running and 
to scale microservices [5]. The performance of 
microservices run as containers hosted on a 
Kubernetes cluster can degrade often in unpredictable 
ways. Microservices performance degradation could 
manifest with increased values in response time. 
Therefore, end-to-end response latency is considered 
to be one of the microservices reliability indicators.  
End-to-end response latency is commonly determined 
in terms of a percentile (i.e. 90th Percentile or 95th 
Percentile) within a certain time-window. Targeting a 
certain end-to-end response latency threshold assists 
in evaluating microservices reliability, dynamic 
microservices scaling, performance anomaly detection 
and alerting [6]. For instance, when a service exhibits 
an unacceptable latency threshold, software 
practitioners might need to rollback a newly deployed 
culprit release, adjust scaling a service with an 
adequate number of replicas, or fix a bug that causes 
the latency.  

End-to-end response latency is sensitive to changes 
in either the application, operating system or hardware 
[7]. Hence, a variety of observed characteristics in 
microservices and the underlying cloud platform could 
be used as indicating factors to predict end-to-end 
response latency of requests flowing through 
microservices. For example, we can leverage 
performance metrics and build performance models to 
predict end-to-end response time of a purchasing order 
workflow in an online shopping application deployed 
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as containerized microservices in a cloud platform 
such as Kubernetes. A flow of a purchasing order 
request may involve many microservices in its 
execution path, each performs a certain task. For 
instance, a typical request might need to invoke 
requests to a shopping cart, payment, shipping and 
probably user information microservices. Observed 
resources utilization and other performance metrics of 
microservices in workflow and underlying cluster 
nodes of the platform could be used to predict how 
long it took since a user requested until a response 
returned. 

Many attempts were made recently to develop 
performance prediction modeling either for 
independent microservices using an analytical method 
[8] or for an interoperable ensemble of microservices 
that fall in a request execution path and their running 
platform using a data-driven method [6]. Analytical 
methods usually need experts’ knowledge to change 
and instrument applications code for workload 
profiling. Such an approach is not practical in most 
cases with cloud applications composed of many 
microservices. Research efforts that used a data-driven 
modeling approach related observed resource metrics 
with the application performance [9]. A very recent 
data-driven effort attempted by [6] related CPU 
utilization of both the microservices and hosting 
virtual machine with application end-to-end tail 
latency. Latency in responses could be caused by other 
factors besides just the time spent by CPU utilization 
during computation time. Thus, we indented to expend 
on [6] attempt to consider additional factors in 
microservices and underneath platform, such as 
network utilization, disk I/O utilization, and the 
number of running instances of each microservice.  

This research aims to investigate using machine 
learning techniques and compare their accuracies in 
predicting end-to-end response latency of requests that 
flow through a microservices application. The 
prediction depends on observed runtime performance 
characteristics of all microservices in the request 
execution path in addition to those of the underlying 
Kubernetes cluster nodes. We examined different 
machine learning techniques such as Linear 
Regression (LR), Support Vector Regression (SVR), 
Decision Trees (DT), Random Forest (RF), K-Nearest 
Neighbors (KNN), Extreme Gradient Boosting 
(XGBoost) in addition to Deep Neural Network 
(DNN). In addition to using and comparing between 
different machine learning models, we demonstrate 
that a variety of resource utilization metrics and 
performance characteristics of both microservices and 
underlying Kubernetes cluster platform could impact 
predicting end-to-end response latency. Our findings 
could guide practitioners to observe appropriate 

metrics per specific workflow in a Kubernetes 
platform. Furthermore, obtaining accurate predicting 
performance model would suggest scheduling 
microservices in Kubernetes with properly tuned 
resources.  

The remainder of the paper is organized as follows. 
Section two outlines a recent advancement in 
microservices architecture running in cloud platforms 
and related works in existent research to predict end-
to-end latency. Section three describes the 
experimental setup, the considered machine learning 
techniques, the collected metrics data and their use to 
train and evaluate the models. Experiment results were 
summarized in section four. Section five discusses the 
effort and findings. Section six concludes the paper. 
 
2. Background and related work 
 
2.1. Microservices on cloud platforms 
 

Recent advancement in software development 
introduces the microservices architecture paradigm 
that is well suited to the elasticity feature of cloud 
platforms. Microservice architecture takes designing 
applications to another level with new principles of 
well-defined responsibility, scalability, rapid 
evolvement and easy adoption [10]. Instead of one 
monolithic architecture that encompasses all 
application components as one unit, the new 
architecture breaks application components into 
several microservices. This new architecture creates 
autonomous services in terms of development and 
operational management lifecycle where each service 
evolves independently [11]. A microservice should 
have a well-defined business domain context with a 
single responsibility. For example, an E-Commerce 
online application could be composed of different 
independent microservices, such as shipping, pricing, 
catalog information, checkout, and shopping cart. 
Each of these microservices evolves independently 
and is responsible to execute a specific function. 

Cloud platforms have been widely adopted by 
several industries to deploy and run mission-critical 
workloads. Microservices architecture is well suited to 
leverage the basic functional offerings of cloud 
computing platforms. Container-based microservices 
could be deployed in a cloud-managed cluster of 
virtual machines such as open-source Kubernetes. The 
advantages of deploying microservices applications in 
a managed cloud Kubernetes platform include 
scheduling, scaling, and auto-recovery [12].  

However, running microservices efficiently in a 
Kubernetes cloud platform requires a clear and real-
time understanding of performance characteristics and 
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their effect on microservices reliability [5]. End-to-end 
response latency in a microservices application is 
considered as one of the application’s quality 
indicators [13]. End-to-end response latency of a 
request flows through instances of different 
microservices could be affected by the performance 
characteristics of those instances, in addition to the 
characteristics of the underlying platform. 
 
2.2. End-to-End latency prediction 
 

Researchers such as [14] asserted to the fact that 
monitoring of inter-dependent microservices in cloud 
platforms is challenging. The difficulty was attributed 
to the distributed nature of the microservice 
application deployment. A typical request execution 
path may span multiple and concurrent microservices 
that complicate interaction and tracing across services. 
Furthermore, microservice instances run on the same 
cluster node are subjected to resource utilization 
interference by other processes run on the same node. 
Therefore, the performance of containerized 
microservices that run in a cloud platform such as 
Kubernetes my unexpectedly degrade [6].  These 
challenges suggest that a holistic monitoring approach 
at different cloud application layers (i.e., platform, 
services, containers) would be helpful to detect 
microservices degradation and anomalies.  

The study by [6] applied machine learning 
techniques to predict the 95th percentile of end-to-end 
requests latency in a microservices application 
workflow. The authors evaluated the prediction of 
proposed performance models such as Linear 
Regression, Support Vector Regression, Decision 
Tree, Random Forest and Deep Neural Network. The 
neural network model performed best to predict end-
to-end latency using the CPU utilization rate at the 
microservices and infrastructure virtual machines 
levels. As the authors accounted solely for CPU 
utilization rates to make the prediction, we extend their 
efforts to examine the prediction but leveraging 
utilization metrics of other resources besides the CPU 
utilization rate.  

Other prior efforts include the work by [8] who 
developed a performance modeling, prediction 
method for independent microservices and formulated 
a microservice-based application workflow 
scheduling problem for minimum end-to-end delay. 
The authors of this study focused on microservices 
scheduling to minimize the end-to-end response delay 
under a pre-specified budget constraint.  Another 
effort by [15] used response latency as a driving factor 
to trigger autoscaling cloud microservices. Moreover, 
[16] focused to investigate the impact of the heap size, 

garbage collection, concurrency and service demand 
on the tail latency of Java microservices.  

Our work extends prior attempts to build 
performance prediction models of microservices by 
evaluating mostly the typical performance models 
examined by [6] while considering performance 
metrics such as services CPU utilization, services 
network utilization rates, number of replicas of each 
service, besides indicators such as CPU utilization, 
network utilization and Disk I/O (input/output) 
utilization rates on the managed Kubernetes nodes 
level. Further, we aimed to build performance models 
taking into account a combination of various resource 
metrics from a Kubernetes platform and microservices 
levels. 
 
3. Methodology  
 
3.1. Experimental setup 
 

We collected various telemetry data from all 
microservices instances involved in making a 
purchasing order request. CPU and input/output (I/O) 
utilization of underlying cluster nodes were also 
collected. To be able to perform a comparison with the 
inspiring effort done by [6] we also collected the 95th 
percentile response latency metric.  Data collected 
were fed into various machine learning models from 
which the prediction accuracy results were noted. 

To set up the experiment, we leveraged the open-
source “Sock Shop” [17] microservices application 
developed by Google. “Sock Shop” microservices 
application was commonly used in prior efforts as a 
performance characterization benchmarking and 
simulating application. It implements an online e-
commerce experience where users can browse items, 
add items to a cart and make purchases. It is composed 
of many e-commerce microservices such as front-end, 
user, catalog, payment, cart, and order. Microservices 
in this application were implemented using different 
programming languages such as Node.js, Java and Go-
Lang. 

All microservices were deployed on a cloud-
managed Kubernetes cluster maintained by “Linode” 
[18] cloud platform provider. The Kubernetes cluster 
consists of up to five nodes, each has 4 vCPU and 8 
GB of RAM. It is worth mentioning that a 
microservice is not an individual object to track but 
complicated as its replicas are deployed across many 
nodes in the cluster. Therefore, to provide a uniform 
way to observe and collect metrics at the 
microservices level we enabled our Kubernetes cluster 
with the open-source “Istio” [19] service mesh. The 
application was subjected to various workloads of 
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concurrent requests using the benchmarking open 
source load test tool ”Locust” [20]. The workloads 
ramped up to 1,500 concurrent users with a stepping 
rate of 10 users every 5 minutes. The metrics were 
pulled from the application using open source 
“Prometheus” [21] rules in 15-second intervals. 
Collected metrics were stored in a time-series enabled 
“Postgres” [22] database. 

Individual performance time-series metrics of each 
microservice in the order workflow were extracted 
from the “Postgres” database and written out to 
comma-separated files. The same was done for metrics 
collected from the nodes in the cluster. The data was 
correlated using a date-time index, resampled with 15-
second time-window and rearrange into a one dataset 
matrix of size 6,766 rows and 29 columns (including 
the latency metric). The collected data was then used 
to train and evaluate the end-to-end latency prediction 
accuracy of different machine learning models. Figure 
1 below depicts the applied experiment method. We 
would like to note that, the experiment was not 
concerned with fixing any application or platform 
limitation issues to run as an error-free simulation. 
Rather, the experiment focused only on being able to 
subject the application to requests and gather various 
run-time metrics. 

 
Figure 1. Metric collection simulation 

3.2. Machine learning models 
 

We considered different machine learning 
algorithms to perform the prediction. Overall, we built 
performance regression algorithms such as Multiple 
Linear Regression (LR), second-degree Polynomial 
Linear Regression (PLR), Support Vector Regression 
(SVR), k-Nearest Neighbors regressor (KNN) and 
Decision Tree (DT). LR is a technique that uses 
several explanatory variables to predict the outcome of 
a continuous response variable. The goal of LR is to 
model the linear relationship between the explanatory 
(independent) variables and a response (dependent) 
variable. The main aim of SVR is to decide a decision 
boundary at a distance from the original hyperplane 
such that data points close to the hyperplane or the 
support vectors are within that boundary line. The 
KNN algorithm uses “feature similarity” to “k” 
number of nearest data points to predict a value. This 
means that the new point is assigned a value based on 

how closely it resembles those number of “k” points in 
the training set. DT branches out using information 
gain as the splitting criterion leading to decision 
hierarchy and ultimately to a final predicted value.  

Additionally, we evaluated the prediction from 
some of the ensemble algorithms such as Random 
Forest (RF) and Extreme Gradient Boosting 
(XGBoost). Ensemble algorithms are a powerful class 
of machine learning that combine the predictions from 
multiple models. Last but not least, we also 
implemented a Deep Neural Network (DNN) by 
composing a one-dimensional convolutional network 
and a fully multi-layer neural network. We supplied all 
metrics to the DNN model and only a selected subset 
to all other machine learning techniques. 
 
3.3. Performance metrics  
 

Users commonly interact with online e-commerce 
web applications using the HTTP protocol. They 
usually use an HTTP URI to perform actions through 
a graphical web interface. Typically, a request 
execution path in a microservices application flows 
across different services, each performs a certain task. 
All visited instances that part of a request execution 
flow forms a directed acyclic graph (DAG). As was 
noted by  [6], this would cause end-to-end latency to 
be impacted by the performance characteristics of all 
visited microservice instances in the request execution 
path.  

We focused in this paper on the purchasing order 
workflow. Hence, we observed and collected 
performance metrics that pertained only to all 
microservices that are part of the order requests graph. 
The list of these microservices was leveraged from the 
work done by  [6] and verified by using the open-
source virtualization tool “weavescope” [23]. 
Microservices that are part of the purchasing order 
requests execution path are illustrated in Figure 2 
below and include front-end, orders, user, shipping, 
payment, cart, users-db, orders-db and cart-db. 

There are two levels of key metrics we considered 
in our case: metrics from the managed Kubernetes 
cluster nodes level and metrics from the microservices 
workload level. From the microservices level, the 
following metrics were collected for every 
microservice in the orders requests execution flow: 

• Microservices CPU utilization rate in 
seconds 

• Microservices network utilization rate in 
bytes 

• Microservices number of instances 
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Figure 2. Microservices in the orders request 

execution path 

On the cluster nodes level, and to further capture the 
inference impact of these microservices on each other, 
the below metrics from the managed Kubernetes nodes 
were also collected: 

• Nodes CPU utilization rate in seconds 
• Nodes network utilization rate in bytes 
• Nodes disk I/O utilization rate in bytes 

Additionally, we also captured the requests rate 
and observed the 95th percentile of the end-to-end 
response latency (in seconds) from requests flew 
through the orders microservice.  
 
3.4. Training, evaluation and features 
selection  
 

A behavior of one microservice is affected by the 
performance characteristics of all its instances in a 
cluster. These performance characteristics defined as 
Service Level Indicator (SLI) metrics were used as 
independent input features to predict the end-to-end 
response latency.   

All machine learning algorithms were 
implemented in Jupyter notebooks [24] using Python 
scikit-learn [25] machine learning tools. All individual 
collected metrics were concatenated together to form 
a total of 6,766 records and saved in one file to read by 
the notebook. A record consists of 29 columns, each 
with 28 observed metric data elements, in addition to 
the last column that contains the 95th percentile of the 
response latency. To avoid over-fitting of the 
performance models we reduced the number of 
features using the stability features selection 
technique. As performed by [6], we leveraged Python 
scikit-learn Randomized Lasso to obtain a fewer 
number of relevant features to the latency values. 
Randomized Lasso penalizes the absolute value of the 
coefficients with a positive penalty term that less than 
1. This technique reduced the features to only consider 
the request rate besides the CPU utilization of the 
front-end, orders database, user database, shipping 
and carts services. Additionally, the technique also 

considered the network utilization of orders, shipping, 
payment, carts and carts database microservices. 
From the cluster nodes metrics, the technique picked 
the CPU and disk I/O utilization. 

The selected features and target orders latency 
fields were then used to train and validate the machine 
learning models. For the machine learning technique, 
we hold-off 20% of the data for testing, while used the 
rest to train and validate the models. The grid search 
cross-validation technique of 10 folds was used with a 
pipeline of tasks to scale and train the different 
regression models. The grid cross-validation 
performed picking the optimum hyper-parameters out 
of many configuration options that would achieve the 
highest coefficient of determination R2 score. R2 score 
is an indicator of how perfectly a regression prediction 
fits the data. Table 1 below lists the machine learning 
techniques and their various hyper-parameter options 
to search the optimal configuration for the highest 
performing models. Theoretically, if a model could 
explain 100% of the variance in the observed data, the 
predicted values would always equal the measured 
values and, therefore, all the data points would fall on 
the fitted regression line  [6]. The more the R2 score 
value is close to 1 the more the model fits well with 
the data. 

Furthermore, a deep neural network model was 
also implemented using Python Keras tools [26]. The 
deep neural network model was formed using a 1-
dimensional Convolutional Neural Network (CNN) 
followed by fully connected hidden layers that ended 
with a sigmoid output layer. The CNN part of the 
model was used to extract features out of all 28 input 
metric indicators before feeding a fully connected 
multi-layer neural network to perform the prediction. 
The CNN model consists of two layers each with 32 
filters and a kernel size of 2, followed by a 0.1 dropout 
rate layer, a 1-dimension maximum pooling layer with 
a pool size of 2 and a flattening layer. The neural 
network consists of four layers of size 200, 100, 50 and 
10 nodes in sequence before ending in a last linearly 
activated output layer. The deep neural network model 
used the mean squared error as a loss function to 
minimize while learning the complex pattern between 
the input metrics features and the latency values. The 
data was sliced to 10% for testing, 10% for validation 
and the rest to train the model.  
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Table 1 Machine learning models hyper-
parameter options 

Model Hyper-parameters options 
LR Normalize parameter: false, true 
PLR Normalize parameter: false, true 
SVR Regularization parameter: 1, 0.5, 

0.8 
Kernel: linear, RBF 

KNN Number of neighbors: 3,  5,7 
DT Minimum samples in leaf: 1, 2, 3 
RF Maximum features: 14, 13, 11, 9 

Number of estimators: 15, 10, 8, 
6 

XGBoost Learning rate: 01, 0.05 
Alpha: 1, 5 
Subsample ration of columns: 
0.5, 0.8 
Maximum depth: 25, 50 
Number of estimators: 100,150 

 
4. Results  
 

We used Parallel Coordinates Plots with a portion 
of the applied workload to examine the effect of 
different metrics indicators on the response latency. 
The graphs displayed in Figure 3 and Figure 4 contrast 
between various levels of response latency based on 
the CPU and network utilization of all microservices 
involved in the order request execution path (front-
end, orders, users, carts, shipping and payment). Both 
shipping and payment microservices did not have 
noticeable CPU and network utilization variances. It is 
also shown that latency increased despite low CPU 
utilization rate values, indicating other time-
consuming processes such as input/output (I/O) 
operations to cause delays in responses. Furthermore, 
Figure 5 illustrates the effect of the cluster nodes’ 
CPU, disk I/O and network utilization rate on the 
response latency. It is noticeable that the nodes CPU 
and network utilization rate had more impact on 
increasing responses latency, while the disk I/O 
utilization rate did not show a big influence.  

To take a look into the workload effect on latency, 
Figure 6 illustrates the relationship between the 
applied request rate and the corresponding observed 
response latency. It is shown that the latency spiked 
when the request rate increased, and latency decreased 
when the application was subjected to a lower rate of 
requests. 
 

 
Figure 3. Parallel coordinates plot illustrates 
the effect of CPU utilization rate on latency 

 
Figure 4. Parallel coordinates plot illustrates 

the effect of network utilization rate on 
latency 

 
Figure 5. Parallel coordinates plot illustrates 

the effect of nodes CPU, disk I/O and 
network utilization rate on latency 

 
Figure 6. Request rate vs latency 

Table 2 summarizes the achieved prediction 
accuracy of each model in terms of R2 and the same is 
plotted in Figure 7. The prediction accuracy obtained 
was varied based on the regression algorithm used. 
Linear regression (LR) only resulted in R2 score of 
44.4%. However, by using a second-degree 
Polynomial Linear Regression (PLR) we were able to 
increase the accuracy score to 69.2%. K-Nearest 
Neighbors (KNN), Decision Tree (DT) and Support 
Vector Regression (SVR) models achieved accuracy 
scores of 72.3%, 73.6% and 76.2% respectively. The 
prediction accuracy was further enhanced using 
ensemble techniques such as Random Forest (RF) and 
XGBoost models. RF excelled with R2 score of 79.3% 
while XGBoost enhanced the accuracy slightly and 
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achieved R2 score of 79.6%. As anticipated for a deep 
neural network to learn the complex relationship 
between the metrics indicators and response latency, 
our hybrid model of convolutional neural network and 
multi-layer neural network architecture was able to 
learn the pattern from all of the 28 metric features and 
resulted in a high R2 prediction accuracy score of 
80.0%. 

 
Table 2. Models predication accuracy (R2) 

Model R2 hyper parameters / 
configuration 

DNN 0.8002 CNN: 2 1-D conv Layers (32 
filters / 2 kernel size)  + 
dropout + maxPooling + 
flatten  layers                                           
NN: (200, 100, 50, 10, 1) 
nodes layers 
Epochs: 1500, lr: 0.01, batch: 
300 

XGBoost 0.7957 alpha: 1, colsample_bytree: 
0.8, learning_rate: 0.05, 
max_depth: 50, 
n_estimators:150 

RF 0.793 max_features: 14, 
n_estimators; 15 

SVR 0.7618 C: 1, kernel: rbf 
DT 0.736 min_sample_leaf: 3 
KNN 0.7231  n_neighbors: 3 
PLR 0.6916 

 

LR 0.4439   
 

 
Figure 7. Performance models prediction 

accuracy 

5. Discussion 
 

In contrast with the work done by [6], we can note 
that LR did not do good in its R2 prediction accuracy 
scores. This result asserts to the same previous 
research finding, linear regression models were not 
able to capture the non-linearity of response latency. 
However, running the regression with second-degree 

polynomial transformed features and enhanced the 
linear prediction accuracy. Resembling with the 
nearest three neighbors, KNN was able to predict the 
latency with slightly better accuracy. DT achieved a 
prediction accuracy that almost close to that of KNN 
model by limiting its leaf nodes to a minimum of three 
samples. The prediction accuracy score increased with 
SVR model based on RBF kernel. Additionally, the 
ensemble RF algorithm with 15 estimators was able to 
score a better prediction accuracy result and even 
higher using a boosted ensemble algorithm such as 
XGBoost with 150 estimators. While all these models 
learned using a subset of selected features, a DNN 
model that was composed of a CNN followed by a 
fully connected NN was able to learn from all the 28 
metric features and achieved relatively the highest 
prediction accuracy score. The first CNN sub-model 
purpose was to capture the more relevant features out 
of all 28 metrics input and then used that to perform 
the prediction with the subsequent NN model. The 
DNN model was able to capture the non-linearity 
relationship between the observed metrics and 
response latency. 

Furthermore, we consulted the Shapley Additive 
exPlanations (SHAP)  [27] values of the performance 
models to find out the observed metrics with high 
impact to predict the response latency per our 
experiment. SHAP is based on the game theoretically 
optimal “Shapley Values”. It is a method to explain 
individual instance prediction from a sample or to 
globally explain a model’s prediction in general. 
SHAP values perform the explanation by computing 
the contribution of each feature to the prediction. We 
examined the global interpretation of the RF and DNN 
models using their SHAP values. The horizontal lines 
in a SHAP summary plot illustrate all sample instances 
values in a training dataset for every feature. Values 
with red color illustrate higher values than the ones 
with blue colors. Values on the right indicate a positive 
impact on prediction while values on the left side 
indicate a negative impact.   

As suggested by the right bar on the SHAP 
summary plot of the RF model in Figure 8 the high 
values of CPU and network utilization rates in the 
carts service, network utilization rate in the carts 
database service, CPU utilization rate in the user 
database service, network utilization rate on the 
payment service, high values of CPU utilization rate 
on the cluster nodes and the number of instances of the 
front-end service are all positively impact the SHAP 
values, hence contributing to increase a latency 
predicted value. 

On the contrary, this figure shows that a higher 
disk I/O utilization rate of the cluster nodes and 
network utilization rate of the orders service pull a 
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predicted latency value down. The network utilization 
rate measures both the incoming and outgoing traffic 
between a service and a client. Therefore, we could 
justify that as the network traffic from the orders 
service increases, responses would be faster, thus 
decrease the latency. And we could justify the negative 
impact caused by high values in disk I/O utilization 
rates of the cluster nodes with a reason that as data are 
read/written faster to disk the response would be 
formed faster, thus caused the latency to decrease. Last 
but not least, the plot summary diagram suggests a low 
shipping service impact to the predicted latency 
values, as the orders service performed making 
shipment requests asynchronously. This observation 
agrees to what illustrated by the Parallel coordinates 
plots in Figure 3 and Figure 4 

 

 
Figure 8. RF features important based on 
SHAP values 

Also examining the SHAP summary plot of the 
DNN model in Figure 9, we could see a list of the most 
20 impactful metrics features.  We could also notice 
that the CPU, network of the carts service and the 
network utilization rates of the carts database service 
were still among the highest influencing predictors in 
the model. The CPU utilization rate of the cluster 
nodes was also still having a high impact. It seems that 
the neural network model was sensitive to the number 
of replicas in the front-end and user services as the 
number of pods of each was high in their feature 
values.  
 

 
Figure 9. Neural network features importance 

based on SHAP values 

To illustrate the impact of the features in a further 
simple presentation, the summary plot in Figure 10 
depicts in numeric measures those features matter to 
the DNN model. Features were displayed in 
decreasing importance and the length of the bars in the 
figure helped us to virtually make comparisons 
between all the metric features. Hence, while the effort 
made by [6] used CPU resource utilization, we were 
able to illustrate those resource characteristics such as 
the services number of replicas and network utilization 
rate of the services and platform nodes were 
contributing besides CPU utilization rate to predict the 
response latency. 

 

Figure 10. Features impact to neural model 
prediction output magnitude 

The prior effort made by [6] studied also the 
feasibility of utilizing the proposed performance 
models in making efficient resource scaling decisions 
by formulating a constraint nonlinear optimization 
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problem. The suggested problem sought the maximum 
CPU utilization of all services involved in a workflow 
that meets a desirable Service Level Objective (SLO) 
goal.  Theoretically, our exploration to obtain a 
comparable latency prediction accuracy could 
contribute to extending the suggested optimization 
problem by using our DNN predicting model. The 
solution could consider additional performance 
characteristics in addition to CPU utilization.  

Practically, being able to predict response latency 
with a neural network leveraging a comprehensive set 
of metrics or with other machine learning techniques 
based on selected relevant features would suggest to 
Service Reliability Engineers (SREs) to observe 
appropriate metrics to meet their services SLO target. 
Furthermore, the method used in this research to 
monitor and collect metrics from applications run in a 
Kubernetes cluster is practical for practitioners as it 
used available open-source tools and techniques. 

 
6. Conclusions 
 

In this research, we used a variety of observed 
performance metrics to evaluate the accuracy of 
different machine learning techniques to predict end-
to-end response latency in microservice application 
flow. Inspired by the work performed by [6], we 
observed and collected different performance metrics 
from the underlying platform cluster nodes and all 
microservices involved in executing a purchasing 
order request in a microservice application called Sock 
Shop deployed on a cloud Kubernetes cluster. We then 
examined different machine learning performance 
models to evaluate predicting end-to-end response 
latencies based on the collected metrics data. We were 
able to obtain a high prediction accuracy using all 
collected features by using a Deep Neural Network 
model. 

To the extent of our knowledge existing work used 
only CPU utilization on the microservices and 
infrastructure VMs levels to predict tail end-to-end 
response latencies. We added more performance 
indicators to perform the prediction. In addition to the 
CPU utilization of the microservices and cluster 
nodes, we examined the effect of network traffic 
utilization in the microservices and the cluster nodes. 
The time consumed by microservices to perform 
reading and writing data through the network may 
cause a response delay. Further, we considered also 
disks input/output (I/O) operations on the cluster 
nodes level. Disk I/O could occur from operations 
performed by database queries in the microservices, 
reading or writing files. Delays on performing 
reading/writing from/to a disk could affect a response 
latency as well. Last but not least, we also put in our 

consideration the factor of the number of instances of 
each microservices. A load balancer may route 
requests to congested microservice instances that 
would cause inverse effects in response latency rates. 
Moreover, we considered using the request rate in the 
experiment workload instead of the number of 
concurrent users as another impacting factor to predict 
the response latency. It is also worth noting that, we 
observed the metrics of the platform nodes on a cloud 
Kubernetes cluster level instead of on the 
infrastructure VMs lower level. 

Our results conformed to the fact that the 
relationship between the metrics features and response 
latency is nonlinear. This observation stemmed from 
the poor prediction accuracy of the Linear Regression 
algorithm. Cutting down the number of metrics by 
selecting relevant ones to the response latency enabled 
us to obtain good results with second-degree 
Polynomial Linear Regression, K-Nearest Neighbors, 
Decision Tree and Support Vector Regression 
machine learning techniques. The prediction was 
enhanced more by using ensemble machine learning 
techniques such as Random Forrest and eXtream 
Gradient Boosting (XGBoost).  We were able to use 
all the performance features with a Deep Neural 
Network model and obtained the highest prediction 
accuracy.  

The findings could help guide reliability engineers 
to consider observing relevant features to predict 
response latency per a specific use case. Software 
operation practitioners might have automation in place 
to automatically rollback a newly deployed version if 
observed metrics resulted in increased latency. 
Automation could also help to automatically scale 
down or up a service to achieve an acceptable latency 
threshold. Also, software engineers might detect bug 
issues alerted by such observed latency.  Furthermore, 
as we were able to manage the CPU resource amount 
in a Kubernetes Pod, we envision to also control 
having adequate network bandwidth to achieve 
obtaining acceptable latency threshold. Software 
practitioners can leverage the experimental bandwidth 
plugin feature [28] in Kubernetes Pod to constrain a 
deployed microservice instance with a certain amount 
of network bandwidth.  Hence, the platform would be 
able to scale based on the network resource utilization 
as well to meet a certain latency SLO target.  

Our effort could also suggest to researchers a 
modified efficient resource scaling problem to solve. 
We envision a further research opportunity to expand 
on investigating this problem to be based on multiple 
variables such as CPU and network utilization, with 
probably other potential indicators, such that to avoid 
violating a target SLO of response latency. We would 
like to mention that our attempt was limited to one 
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flow in an online shopping application. We look 
forward to expanding it to other application domains 
while running the experiment with a load applied to a 
different workflow. Last but not least, we considered 
predicting current latency, we are planning to try 
forecasting future response latency based on prior 
history of microservices performance metrics. 
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