
End-to-End Latency Prediction of Microservices Workflow on Kubernetes: A
Comparative Evaluation of Machine Learning Models and Resource Metrics

Haytham Mohamed
Dakota State University

hmmohamed@pluto.dsu.edu

 Omar El-Gayar
Dakota State University
omar.el-gayar@dsu.edu

Abstract

Application design has been revolutionized with
the adoption of microservices architecture. The ability
to estimate end-to-end response latency would help
software practitioners to design and operate
microservices applications reliably and with efficient
resource capacity. The objective of this research is to
examine and compare data-driven approaches and a
variety of resource metrics to predict end-to-end
response latency of a containerized microservices
workflow running in a cloud Kubernetes platform.
We implemented and evaluated the prediction using a
deep neural network and various machine learning
techniques while investigating the selection of
resource utilization metrics. Observed characteristics
and performance metrics from both microservices and
platform levels were used as prediction indicators. To
compare performance models, we experimented with
a benchmarking open-source Sock Shop containerized
application. A deep neural network technique
exhibited the best prediction accuracy using all
metrics, while other machine learning techniques
demonstrated acceptable performance using a subset
of the metrics.

1. Introduction

Recent progress made in container technology
paves new ways to adopt containerized microservices
in cloud infrastructure [1]. Containers orchestrating
and scheduling platforms such as open-source
Kubernetes [2] enables to automatically deploy, host
and scale distributed containerized microservices [3].
A microservice could be built and bundled with all
dependencies as one deployable image using a
containerization technology such as Docker [4] and
scheduled to run on a platform such as Kubernetes.
The number of instances of each microservice in
addition to the amount of required resources - such as

memory and central processing unit (CPU) - of each
instance could be specified to run applications
reliably. Kubernetes cloud platform takes the
responsibility to accommodate hosted microservice
instances with adequate capacity. A microservice
caters functionality with one or several deployed
containerized instances, known as Kubernetes Pods.
Typically, an application is composed of several
microservices that are deployed and run in a cluster of
infrastructure nodes (Kubernetes cluster).

Despite all the benefits of using Kubernetes, the
distributed nature of cloud platforms comes with
operation challenges to reliably manage running and
to scale microservices [5]. The performance of
microservices run as containers hosted on a
Kubernetes cluster can degrade often in unpredictable
ways. Microservices performance degradation could
manifest with increased values in response time.
Therefore, end-to-end response latency is considered
to be one of the microservices reliability indicators.
End-to-end response latency is commonly determined
in terms of a percentile (i.e. 90th Percentile or 95th
Percentile) within a certain time-window. Targeting a
certain end-to-end response latency threshold assists
in evaluating microservices reliability, dynamic
microservices scaling, performance anomaly detection
and alerting [6]. For instance, when a service exhibits
an unacceptable latency threshold, software
practitioners might need to rollback a newly deployed
culprit release, adjust scaling a service with an
adequate number of replicas, or fix a bug that causes
the latency.

End-to-end response latency is sensitive to changes
in either the application, operating system or hardware
[7]. Hence, a variety of observed characteristics in
microservices and the underlying cloud platform could
be used as indicating factors to predict end-to-end
response latency of requests flowing through
microservices. For example, we can leverage
performance metrics and build performance models to
predict end-to-end response time of a purchasing order
workflow in an online shopping application deployed

Proceedings of the 54th Hawaii International Conference on System Sciences | 2021

Page 1717
URI: https://hdl.handle.net/10125/70820
978-0-9981331-4-0
(CC BY-NC-ND 4.0)

as containerized microservices in a cloud platform
such as Kubernetes. A flow of a purchasing order
request may involve many microservices in its
execution path, each performs a certain task. For
instance, a typical request might need to invoke
requests to a shopping cart, payment, shipping and
probably user information microservices. Observed
resources utilization and other performance metrics of
microservices in workflow and underlying cluster
nodes of the platform could be used to predict how
long it took since a user requested until a response
returned.

Many attempts were made recently to develop
performance prediction modeling either for
independent microservices using an analytical method
[8] or for an interoperable ensemble of microservices
that fall in a request execution path and their running
platform using a data-driven method [6]. Analytical
methods usually need experts’ knowledge to change
and instrument applications code for workload
profiling. Such an approach is not practical in most
cases with cloud applications composed of many
microservices. Research efforts that used a data-driven
modeling approach related observed resource metrics
with the application performance [9]. A very recent
data-driven effort attempted by [6] related CPU
utilization of both the microservices and hosting
virtual machine with application end-to-end tail
latency. Latency in responses could be caused by other
factors besides just the time spent by CPU utilization
during computation time. Thus, we indented to expend
on [6] attempt to consider additional factors in
microservices and underneath platform, such as
network utilization, disk I/O utilization, and the
number of running instances of each microservice.

This research aims to investigate using machine
learning techniques and compare their accuracies in
predicting end-to-end response latency of requests that
flow through a microservices application. The
prediction depends on observed runtime performance
characteristics of all microservices in the request
execution path in addition to those of the underlying
Kubernetes cluster nodes. We examined different
machine learning techniques such as Linear
Regression (LR), Support Vector Regression (SVR),
Decision Trees (DT), Random Forest (RF), K-Nearest
Neighbors (KNN), Extreme Gradient Boosting
(XGBoost) in addition to Deep Neural Network
(DNN). In addition to using and comparing between
different machine learning models, we demonstrate
that a variety of resource utilization metrics and
performance characteristics of both microservices and
underlying Kubernetes cluster platform could impact
predicting end-to-end response latency. Our findings
could guide practitioners to observe appropriate

metrics per specific workflow in a Kubernetes
platform. Furthermore, obtaining accurate predicting
performance model would suggest scheduling
microservices in Kubernetes with properly tuned
resources.

The remainder of the paper is organized as follows.
Section two outlines a recent advancement in
microservices architecture running in cloud platforms
and related works in existent research to predict end-
to-end latency. Section three describes the
experimental setup, the considered machine learning
techniques, the collected metrics data and their use to
train and evaluate the models. Experiment results were
summarized in section four. Section five discusses the
effort and findings. Section six concludes the paper.

2. Background and related work

2.1. Microservices on cloud platforms

Recent advancement in software development
introduces the microservices architecture paradigm
that is well suited to the elasticity feature of cloud
platforms. Microservice architecture takes designing
applications to another level with new principles of
well-defined responsibility, scalability, rapid
evolvement and easy adoption [10]. Instead of one
monolithic architecture that encompasses all
application components as one unit, the new
architecture breaks application components into
several microservices. This new architecture creates
autonomous services in terms of development and
operational management lifecycle where each service
evolves independently [11]. A microservice should
have a well-defined business domain context with a
single responsibility. For example, an E-Commerce
online application could be composed of different
independent microservices, such as shipping, pricing,
catalog information, checkout, and shopping cart.
Each of these microservices evolves independently
and is responsible to execute a specific function.

Cloud platforms have been widely adopted by
several industries to deploy and run mission-critical
workloads. Microservices architecture is well suited to
leverage the basic functional offerings of cloud
computing platforms. Container-based microservices
could be deployed in a cloud-managed cluster of
virtual machines such as open-source Kubernetes. The
advantages of deploying microservices applications in
a managed cloud Kubernetes platform include
scheduling, scaling, and auto-recovery [12].

However, running microservices efficiently in a
Kubernetes cloud platform requires a clear and real-
time understanding of performance characteristics and

Page 1718

their effect on microservices reliability [5]. End-to-end
response latency in a microservices application is
considered as one of the application’s quality
indicators [13]. End-to-end response latency of a
request flows through instances of different
microservices could be affected by the performance
characteristics of those instances, in addition to the
characteristics of the underlying platform.

2.2. End-to-End latency prediction

Researchers such as [14] asserted to the fact that
monitoring of inter-dependent microservices in cloud
platforms is challenging. The difficulty was attributed
to the distributed nature of the microservice
application deployment. A typical request execution
path may span multiple and concurrent microservices
that complicate interaction and tracing across services.
Furthermore, microservice instances run on the same
cluster node are subjected to resource utilization
interference by other processes run on the same node.
Therefore, the performance of containerized
microservices that run in a cloud platform such as
Kubernetes my unexpectedly degrade [6]. These
challenges suggest that a holistic monitoring approach
at different cloud application layers (i.e., platform,
services, containers) would be helpful to detect
microservices degradation and anomalies.

The study by [6] applied machine learning
techniques to predict the 95th percentile of end-to-end
requests latency in a microservices application
workflow. The authors evaluated the prediction of
proposed performance models such as Linear
Regression, Support Vector Regression, Decision
Tree, Random Forest and Deep Neural Network. The
neural network model performed best to predict end-
to-end latency using the CPU utilization rate at the
microservices and infrastructure virtual machines
levels. As the authors accounted solely for CPU
utilization rates to make the prediction, we extend their
efforts to examine the prediction but leveraging
utilization metrics of other resources besides the CPU
utilization rate.

Other prior efforts include the work by [8] who
developed a performance modeling, prediction
method for independent microservices and formulated
a microservice-based application workflow
scheduling problem for minimum end-to-end delay.
The authors of this study focused on microservices
scheduling to minimize the end-to-end response delay
under a pre-specified budget constraint. Another
effort by [15] used response latency as a driving factor
to trigger autoscaling cloud microservices. Moreover,
[16] focused to investigate the impact of the heap size,

garbage collection, concurrency and service demand
on the tail latency of Java microservices.

Our work extends prior attempts to build
performance prediction models of microservices by
evaluating mostly the typical performance models
examined by [6] while considering performance
metrics such as services CPU utilization, services
network utilization rates, number of replicas of each
service, besides indicators such as CPU utilization,
network utilization and Disk I/O (input/output)
utilization rates on the managed Kubernetes nodes
level. Further, we aimed to build performance models
taking into account a combination of various resource
metrics from a Kubernetes platform and microservices
levels.

3. Methodology

3.1. Experimental setup

We collected various telemetry data from all
microservices instances involved in making a
purchasing order request. CPU and input/output (I/O)
utilization of underlying cluster nodes were also
collected. To be able to perform a comparison with the
inspiring effort done by [6] we also collected the 95th
percentile response latency metric. Data collected
were fed into various machine learning models from
which the prediction accuracy results were noted.

To set up the experiment, we leveraged the open-
source “Sock Shop” [17] microservices application
developed by Google. “Sock Shop” microservices
application was commonly used in prior efforts as a
performance characterization benchmarking and
simulating application. It implements an online e-
commerce experience where users can browse items,
add items to a cart and make purchases. It is composed
of many e-commerce microservices such as front-end,
user, catalog, payment, cart, and order. Microservices
in this application were implemented using different
programming languages such as Node.js, Java and Go-
Lang.

All microservices were deployed on a cloud-
managed Kubernetes cluster maintained by “Linode”
[18] cloud platform provider. The Kubernetes cluster
consists of up to five nodes, each has 4 vCPU and 8
GB of RAM. It is worth mentioning that a
microservice is not an individual object to track but
complicated as its replicas are deployed across many
nodes in the cluster. Therefore, to provide a uniform
way to observe and collect metrics at the
microservices level we enabled our Kubernetes cluster
with the open-source “Istio” [19] service mesh. The
application was subjected to various workloads of

Page 1719

concurrent requests using the benchmarking open
source load test tool ”Locust” [20]. The workloads
ramped up to 1,500 concurrent users with a stepping
rate of 10 users every 5 minutes. The metrics were
pulled from the application using open source
“Prometheus” [21] rules in 15-second intervals.
Collected metrics were stored in a time-series enabled
“Postgres” [22] database.

Individual performance time-series metrics of each
microservice in the order workflow were extracted
from the “Postgres” database and written out to
comma-separated files. The same was done for metrics
collected from the nodes in the cluster. The data was
correlated using a date-time index, resampled with 15-
second time-window and rearrange into a one dataset
matrix of size 6,766 rows and 29 columns (including
the latency metric). The collected data was then used
to train and evaluate the end-to-end latency prediction
accuracy of different machine learning models. Figure
1 below depicts the applied experiment method. We
would like to note that, the experiment was not
concerned with fixing any application or platform
limitation issues to run as an error-free simulation.
Rather, the experiment focused only on being able to
subject the application to requests and gather various
run-time metrics.

Figure 1. Metric collection simulation

3.2. Machine learning models

We considered different machine learning
algorithms to perform the prediction. Overall, we built
performance regression algorithms such as Multiple
Linear Regression (LR), second-degree Polynomial
Linear Regression (PLR), Support Vector Regression
(SVR), k-Nearest Neighbors regressor (KNN) and
Decision Tree (DT). LR is a technique that uses
several explanatory variables to predict the outcome of
a continuous response variable. The goal of LR is to
model the linear relationship between the explanatory
(independent) variables and a response (dependent)
variable. The main aim of SVR is to decide a decision
boundary at a distance from the original hyperplane
such that data points close to the hyperplane or the
support vectors are within that boundary line. The
KNN algorithm uses “feature similarity” to “k”
number of nearest data points to predict a value. This
means that the new point is assigned a value based on

how closely it resembles those number of “k” points in
the training set. DT branches out using information
gain as the splitting criterion leading to decision
hierarchy and ultimately to a final predicted value.

Additionally, we evaluated the prediction from
some of the ensemble algorithms such as Random
Forest (RF) and Extreme Gradient Boosting
(XGBoost). Ensemble algorithms are a powerful class
of machine learning that combine the predictions from
multiple models. Last but not least, we also
implemented a Deep Neural Network (DNN) by
composing a one-dimensional convolutional network
and a fully multi-layer neural network. We supplied all
metrics to the DNN model and only a selected subset
to all other machine learning techniques.

3.3. Performance metrics

Users commonly interact with online e-commerce
web applications using the HTTP protocol. They
usually use an HTTP URI to perform actions through
a graphical web interface. Typically, a request
execution path in a microservices application flows
across different services, each performs a certain task.
All visited instances that part of a request execution
flow forms a directed acyclic graph (DAG). As was
noted by [6], this would cause end-to-end latency to
be impacted by the performance characteristics of all
visited microservice instances in the request execution
path.

We focused in this paper on the purchasing order
workflow. Hence, we observed and collected
performance metrics that pertained only to all
microservices that are part of the order requests graph.
The list of these microservices was leveraged from the
work done by [6] and verified by using the open-
source virtualization tool “weavescope” [23].
Microservices that are part of the purchasing order
requests execution path are illustrated in Figure 2
below and include front-end, orders, user, shipping,
payment, cart, users-db, orders-db and cart-db.

There are two levels of key metrics we considered
in our case: metrics from the managed Kubernetes
cluster nodes level and metrics from the microservices
workload level. From the microservices level, the
following metrics were collected for every
microservice in the orders requests execution flow:

• Microservices CPU utilization rate in
seconds

• Microservices network utilization rate in
bytes

• Microservices number of instances

Page 1720

Figure 2. Microservices in the orders request

execution path

On the cluster nodes level, and to further capture the
inference impact of these microservices on each other,
the below metrics from the managed Kubernetes nodes
were also collected:

• Nodes CPU utilization rate in seconds
• Nodes network utilization rate in bytes
• Nodes disk I/O utilization rate in bytes

Additionally, we also captured the requests rate
and observed the 95th percentile of the end-to-end
response latency (in seconds) from requests flew
through the orders microservice.

3.4. Training, evaluation and features
selection

A behavior of one microservice is affected by the
performance characteristics of all its instances in a
cluster. These performance characteristics defined as
Service Level Indicator (SLI) metrics were used as
independent input features to predict the end-to-end
response latency.

All machine learning algorithms were
implemented in Jupyter notebooks [24] using Python
scikit-learn [25] machine learning tools. All individual
collected metrics were concatenated together to form
a total of 6,766 records and saved in one file to read by
the notebook. A record consists of 29 columns, each
with 28 observed metric data elements, in addition to
the last column that contains the 95th percentile of the
response latency. To avoid over-fitting of the
performance models we reduced the number of
features using the stability features selection
technique. As performed by [6], we leveraged Python
scikit-learn Randomized Lasso to obtain a fewer
number of relevant features to the latency values.
Randomized Lasso penalizes the absolute value of the
coefficients with a positive penalty term that less than
1. This technique reduced the features to only consider
the request rate besides the CPU utilization of the
front-end, orders database, user database, shipping
and carts services. Additionally, the technique also

considered the network utilization of orders, shipping,
payment, carts and carts database microservices.
From the cluster nodes metrics, the technique picked
the CPU and disk I/O utilization.

The selected features and target orders latency
fields were then used to train and validate the machine
learning models. For the machine learning technique,
we hold-off 20% of the data for testing, while used the
rest to train and validate the models. The grid search
cross-validation technique of 10 folds was used with a
pipeline of tasks to scale and train the different
regression models. The grid cross-validation
performed picking the optimum hyper-parameters out
of many configuration options that would achieve the
highest coefficient of determination R2 score. R2 score
is an indicator of how perfectly a regression prediction
fits the data. Table 1 below lists the machine learning
techniques and their various hyper-parameter options
to search the optimal configuration for the highest
performing models. Theoretically, if a model could
explain 100% of the variance in the observed data, the
predicted values would always equal the measured
values and, therefore, all the data points would fall on
the fitted regression line [6]. The more the R2 score
value is close to 1 the more the model fits well with
the data.

Furthermore, a deep neural network model was
also implemented using Python Keras tools [26]. The
deep neural network model was formed using a 1-
dimensional Convolutional Neural Network (CNN)
followed by fully connected hidden layers that ended
with a sigmoid output layer. The CNN part of the
model was used to extract features out of all 28 input
metric indicators before feeding a fully connected
multi-layer neural network to perform the prediction.
The CNN model consists of two layers each with 32
filters and a kernel size of 2, followed by a 0.1 dropout
rate layer, a 1-dimension maximum pooling layer with
a pool size of 2 and a flattening layer. The neural
network consists of four layers of size 200, 100, 50 and
10 nodes in sequence before ending in a last linearly
activated output layer. The deep neural network model
used the mean squared error as a loss function to
minimize while learning the complex pattern between
the input metrics features and the latency values. The
data was sliced to 10% for testing, 10% for validation
and the rest to train the model.

Page 1721

Table 1 Machine learning models hyper-
parameter options

Model Hyper-parameters options
LR Normalize parameter: false, true
PLR Normalize parameter: false, true
SVR Regularization parameter: 1, 0.5,

0.8
Kernel: linear, RBF

KNN Number of neighbors: 3, 5,7
DT Minimum samples in leaf: 1, 2, 3
RF Maximum features: 14, 13, 11, 9

Number of estimators: 15, 10, 8,
6

XGBoost Learning rate: 01, 0.05
Alpha: 1, 5
Subsample ration of columns:
0.5, 0.8
Maximum depth: 25, 50
Number of estimators: 100,150

4. Results

We used Parallel Coordinates Plots with a portion
of the applied workload to examine the effect of
different metrics indicators on the response latency.
The graphs displayed in Figure 3 and Figure 4 contrast
between various levels of response latency based on
the CPU and network utilization of all microservices
involved in the order request execution path (front-
end, orders, users, carts, shipping and payment). Both
shipping and payment microservices did not have
noticeable CPU and network utilization variances. It is
also shown that latency increased despite low CPU
utilization rate values, indicating other time-
consuming processes such as input/output (I/O)
operations to cause delays in responses. Furthermore,
Figure 5 illustrates the effect of the cluster nodes’
CPU, disk I/O and network utilization rate on the
response latency. It is noticeable that the nodes CPU
and network utilization rate had more impact on
increasing responses latency, while the disk I/O
utilization rate did not show a big influence.

To take a look into the workload effect on latency,
Figure 6 illustrates the relationship between the
applied request rate and the corresponding observed
response latency. It is shown that the latency spiked
when the request rate increased, and latency decreased
when the application was subjected to a lower rate of
requests.

Figure 3. Parallel coordinates plot illustrates
the effect of CPU utilization rate on latency

Figure 4. Parallel coordinates plot illustrates

the effect of network utilization rate on
latency

Figure 5. Parallel coordinates plot illustrates

the effect of nodes CPU, disk I/O and
network utilization rate on latency

Figure 6. Request rate vs latency

Table 2 summarizes the achieved prediction
accuracy of each model in terms of R2 and the same is
plotted in Figure 7. The prediction accuracy obtained
was varied based on the regression algorithm used.
Linear regression (LR) only resulted in R2 score of
44.4%. However, by using a second-degree
Polynomial Linear Regression (PLR) we were able to
increase the accuracy score to 69.2%. K-Nearest
Neighbors (KNN), Decision Tree (DT) and Support
Vector Regression (SVR) models achieved accuracy
scores of 72.3%, 73.6% and 76.2% respectively. The
prediction accuracy was further enhanced using
ensemble techniques such as Random Forest (RF) and
XGBoost models. RF excelled with R2 score of 79.3%
while XGBoost enhanced the accuracy slightly and

Page 1722

achieved R2 score of 79.6%. As anticipated for a deep
neural network to learn the complex relationship
between the metrics indicators and response latency,
our hybrid model of convolutional neural network and
multi-layer neural network architecture was able to
learn the pattern from all of the 28 metric features and
resulted in a high R2 prediction accuracy score of
80.0%.

Table 2. Models predication accuracy (R2)

Model R2 hyper parameters /
configuration

DNN 0.8002 CNN: 2 1-D conv Layers (32
filters / 2 kernel size) +
dropout + maxPooling +
flatten layers
NN: (200, 100, 50, 10, 1)
nodes layers
Epochs: 1500, lr: 0.01, batch:
300

XGBoost 0.7957 alpha: 1, colsample_bytree:
0.8, learning_rate: 0.05,
max_depth: 50,
n_estimators:150

RF 0.793 max_features: 14,
n_estimators; 15

SVR 0.7618 C: 1, kernel: rbf
DT 0.736 min_sample_leaf: 3
KNN 0.7231 n_neighbors: 3
PLR 0.6916

LR 0.4439

Figure 7. Performance models prediction

accuracy

5. Discussion

In contrast with the work done by [6], we can note
that LR did not do good in its R2 prediction accuracy
scores. This result asserts to the same previous
research finding, linear regression models were not
able to capture the non-linearity of response latency.
However, running the regression with second-degree

polynomial transformed features and enhanced the
linear prediction accuracy. Resembling with the
nearest three neighbors, KNN was able to predict the
latency with slightly better accuracy. DT achieved a
prediction accuracy that almost close to that of KNN
model by limiting its leaf nodes to a minimum of three
samples. The prediction accuracy score increased with
SVR model based on RBF kernel. Additionally, the
ensemble RF algorithm with 15 estimators was able to
score a better prediction accuracy result and even
higher using a boosted ensemble algorithm such as
XGBoost with 150 estimators. While all these models
learned using a subset of selected features, a DNN
model that was composed of a CNN followed by a
fully connected NN was able to learn from all the 28
metric features and achieved relatively the highest
prediction accuracy score. The first CNN sub-model
purpose was to capture the more relevant features out
of all 28 metrics input and then used that to perform
the prediction with the subsequent NN model. The
DNN model was able to capture the non-linearity
relationship between the observed metrics and
response latency.

Furthermore, we consulted the Shapley Additive
exPlanations (SHAP) [27] values of the performance
models to find out the observed metrics with high
impact to predict the response latency per our
experiment. SHAP is based on the game theoretically
optimal “Shapley Values”. It is a method to explain
individual instance prediction from a sample or to
globally explain a model’s prediction in general.
SHAP values perform the explanation by computing
the contribution of each feature to the prediction. We
examined the global interpretation of the RF and DNN
models using their SHAP values. The horizontal lines
in a SHAP summary plot illustrate all sample instances
values in a training dataset for every feature. Values
with red color illustrate higher values than the ones
with blue colors. Values on the right indicate a positive
impact on prediction while values on the left side
indicate a negative impact.

As suggested by the right bar on the SHAP
summary plot of the RF model in Figure 8 the high
values of CPU and network utilization rates in the
carts service, network utilization rate in the carts
database service, CPU utilization rate in the user
database service, network utilization rate on the
payment service, high values of CPU utilization rate
on the cluster nodes and the number of instances of the
front-end service are all positively impact the SHAP
values, hence contributing to increase a latency
predicted value.

On the contrary, this figure shows that a higher
disk I/O utilization rate of the cluster nodes and
network utilization rate of the orders service pull a

Page 1723

predicted latency value down. The network utilization
rate measures both the incoming and outgoing traffic
between a service and a client. Therefore, we could
justify that as the network traffic from the orders
service increases, responses would be faster, thus
decrease the latency. And we could justify the negative
impact caused by high values in disk I/O utilization
rates of the cluster nodes with a reason that as data are
read/written faster to disk the response would be
formed faster, thus caused the latency to decrease. Last
but not least, the plot summary diagram suggests a low
shipping service impact to the predicted latency
values, as the orders service performed making
shipment requests asynchronously. This observation
agrees to what illustrated by the Parallel coordinates
plots in Figure 3 and Figure 4

Figure 8. RF features important based on
SHAP values

Also examining the SHAP summary plot of the
DNN model in Figure 9, we could see a list of the most
20 impactful metrics features. We could also notice
that the CPU, network of the carts service and the
network utilization rates of the carts database service
were still among the highest influencing predictors in
the model. The CPU utilization rate of the cluster
nodes was also still having a high impact. It seems that
the neural network model was sensitive to the number
of replicas in the front-end and user services as the
number of pods of each was high in their feature
values.

Figure 9. Neural network features importance

based on SHAP values

To illustrate the impact of the features in a further
simple presentation, the summary plot in Figure 10
depicts in numeric measures those features matter to
the DNN model. Features were displayed in
decreasing importance and the length of the bars in the
figure helped us to virtually make comparisons
between all the metric features. Hence, while the effort
made by [6] used CPU resource utilization, we were
able to illustrate those resource characteristics such as
the services number of replicas and network utilization
rate of the services and platform nodes were
contributing besides CPU utilization rate to predict the
response latency.

Figure 10. Features impact to neural model
prediction output magnitude

The prior effort made by [6] studied also the
feasibility of utilizing the proposed performance
models in making efficient resource scaling decisions
by formulating a constraint nonlinear optimization

Page 1724

problem. The suggested problem sought the maximum
CPU utilization of all services involved in a workflow
that meets a desirable Service Level Objective (SLO)
goal. Theoretically, our exploration to obtain a
comparable latency prediction accuracy could
contribute to extending the suggested optimization
problem by using our DNN predicting model. The
solution could consider additional performance
characteristics in addition to CPU utilization.

Practically, being able to predict response latency
with a neural network leveraging a comprehensive set
of metrics or with other machine learning techniques
based on selected relevant features would suggest to
Service Reliability Engineers (SREs) to observe
appropriate metrics to meet their services SLO target.
Furthermore, the method used in this research to
monitor and collect metrics from applications run in a
Kubernetes cluster is practical for practitioners as it
used available open-source tools and techniques.

6. Conclusions

In this research, we used a variety of observed
performance metrics to evaluate the accuracy of
different machine learning techniques to predict end-
to-end response latency in microservice application
flow. Inspired by the work performed by [6], we
observed and collected different performance metrics
from the underlying platform cluster nodes and all
microservices involved in executing a purchasing
order request in a microservice application called Sock
Shop deployed on a cloud Kubernetes cluster. We then
examined different machine learning performance
models to evaluate predicting end-to-end response
latencies based on the collected metrics data. We were
able to obtain a high prediction accuracy using all
collected features by using a Deep Neural Network
model.

To the extent of our knowledge existing work used
only CPU utilization on the microservices and
infrastructure VMs levels to predict tail end-to-end
response latencies. We added more performance
indicators to perform the prediction. In addition to the
CPU utilization of the microservices and cluster
nodes, we examined the effect of network traffic
utilization in the microservices and the cluster nodes.
The time consumed by microservices to perform
reading and writing data through the network may
cause a response delay. Further, we considered also
disks input/output (I/O) operations on the cluster
nodes level. Disk I/O could occur from operations
performed by database queries in the microservices,
reading or writing files. Delays on performing
reading/writing from/to a disk could affect a response
latency as well. Last but not least, we also put in our

consideration the factor of the number of instances of
each microservices. A load balancer may route
requests to congested microservice instances that
would cause inverse effects in response latency rates.
Moreover, we considered using the request rate in the
experiment workload instead of the number of
concurrent users as another impacting factor to predict
the response latency. It is also worth noting that, we
observed the metrics of the platform nodes on a cloud
Kubernetes cluster level instead of on the
infrastructure VMs lower level.

Our results conformed to the fact that the
relationship between the metrics features and response
latency is nonlinear. This observation stemmed from
the poor prediction accuracy of the Linear Regression
algorithm. Cutting down the number of metrics by
selecting relevant ones to the response latency enabled
us to obtain good results with second-degree
Polynomial Linear Regression, K-Nearest Neighbors,
Decision Tree and Support Vector Regression
machine learning techniques. The prediction was
enhanced more by using ensemble machine learning
techniques such as Random Forrest and eXtream
Gradient Boosting (XGBoost). We were able to use
all the performance features with a Deep Neural
Network model and obtained the highest prediction
accuracy.

The findings could help guide reliability engineers
to consider observing relevant features to predict
response latency per a specific use case. Software
operation practitioners might have automation in place
to automatically rollback a newly deployed version if
observed metrics resulted in increased latency.
Automation could also help to automatically scale
down or up a service to achieve an acceptable latency
threshold. Also, software engineers might detect bug
issues alerted by such observed latency. Furthermore,
as we were able to manage the CPU resource amount
in a Kubernetes Pod, we envision to also control
having adequate network bandwidth to achieve
obtaining acceptable latency threshold. Software
practitioners can leverage the experimental bandwidth
plugin feature [28] in Kubernetes Pod to constrain a
deployed microservice instance with a certain amount
of network bandwidth. Hence, the platform would be
able to scale based on the network resource utilization
as well to meet a certain latency SLO target.

Our effort could also suggest to researchers a
modified efficient resource scaling problem to solve.
We envision a further research opportunity to expand
on investigating this problem to be based on multiple
variables such as CPU and network utilization, with
probably other potential indicators, such that to avoid
violating a target SLO of response latency. We would
like to mention that our attempt was limited to one

Page 1725

flow in an online shopping application. We look
forward to expanding it to other application domains
while running the experiment with a load applied to a
different workflow. Last but not least, we considered
predicting current latency, we are planning to try
forecasting future response latency based on prior
history of microservices performance metrics.

7. References

[1] C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi,

“Cloud Container Technologies : a State-of-the-
Art Review,” vol. 7161, no. c, pp. 1–14, 2017.

[2] Kubernetes, “an open-source system for
automating deployment, scaling, and management
of containerized applications.”.

[3] L. P. Dewi, A. Noertjahyana, H. N. Palit, and K.
Yedutun, “Server Scalability Using Kubernetes,”
TIMES-iCON 2019 - 2019 4th Technol. Innov.
Manag. Eng. Sci. Int. Conf., pp. 1–4, 2019.

[4] Docker, “Containerization technology helps
development teams build and ship applications.”.

[5] M. Fazio, A. Celesti, R. Ranjan, C. Liu, L. Chen,
and M. Villari, “Open Issues in Scheduling
Microservices in the Cloud,” IEEE Cloud
Comput., vol. 3, no. 5, pp. 81–88, 2016.

[6] J. Rahman and P. Lama, “Predicting the end-to-
end tail latency of containerized microservices in
the cloud,” Proc. - 2019 IEEE Int. Conf. Cloud
Eng. IC2E 2019, pp. 200–210, 2019.

[7] Jialin Li, N. K. Sharma, D. R. K. Ports, and S. D.
Gribble, “Hardware, OS, and Application-level
Sources of Tail Latency,” Chron. High. Educ., vol.
52, no. 20, 2006.

[8] L. Bao, C. Wu, X. Bu, N. Ren, and M. Shen,
“Performance modeling and workflow scheduling
of microservice-based applications in clouds,”
IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 9,
pp. 2101–2116, 2019.

[9] L. Wang, J. Xu, H. A. Duran-Limon, and M. Zhao,
“QoS-driven cloud resource management through
fuzzy model predictive control,” Proc. - IEEE Int.
Conf. Auton. Comput. ICAC 2015, pp. 81–90,
2015.

[10] A. Sill, “The Design and Architecture of
Microservices,” IEEE Cloud Comput., vol. 3, no.
5, pp. 76–80, 2016.

[11] H. Silveira and M. Sundaram, “A Microservice
Based Reference Architecture Model in the
Context of Enterprise Architecture,” 2016 IEEE
Adv. Inf. Manag. Commun. Electron. Autom.
Control Conf., pp. 1856–1860, 2016.

[12] C. Esposito, A. Castiglione, and K. K. R. Choo,
“Challenges in Delivering Software in the Cloud
as Microservices,” IEEE Cloud Comput., vol. 3,
no. 5, pp. 10–14, 2016.

[13] X. Liu, S. Jiang, X. Zhao, and Y. Jin, “A shortest-
response-time assured microservices selection
framework,” Proc. - 15th IEEE Int. Symp. Parallel
Distrib. Process. with Appl. 16th IEEE Int. Conf.

Ubiquitous Comput. Commun. ISPA/IUCC 2017,
pp. 1266–1268, 2018.

[14] D. Géhberger, P. Mátray, and G. Németh, “Data-
driven monitoring for cloud compute systems,”
Proc. - 9th IEEE/ACM Int. Conf. Util. Cloud
Comput. UCC 2016, pp. 128–137, 2016.

[15] G. Yu, P. Chen, and Z. Zheng, “Microscaler:
Automatic scaling for microservices with an
online learning approach,” Proc. - 2019 IEEE Int.
Conf. Web Serv. ICWS 2019 - Part 2019 IEEE
World Congr. Serv., pp. 68–75, 2019.

[16] P. Tennage, S. Perera, M. Jayasinghe, and S.
Jayasena, “An analysis of holistic tail latency
behaviors of java microservices,” Proc. - 21st
IEEE Int. Conf. High Perform. Comput. Commun.
17th IEEE Int. Conf. Smart City 5th IEEE Int.
Conf. Data Sci. Syst. HPCC/SmartCity/DSS 2019,
pp. 697–705, 2019.

[17] Sock Shop, “open-source demonstration online
shopping microservices application.” [Online].
Available: https://github.com/microservices-
demo/microservices-demo.

[18] Linode, “managed Kubernetes service.”
[19] Istio, “open source service mesh that layers

transparently onto existing distributed
applications.”

[20] Locust, “open source load testing tool.” [Online].
Available: https://locust.io/.

[21] Prometheus, “open-source metrics and alerting
monitoring tool.”.

[22] Postgres, “open source relational database.”
[Online]. Available: https://www.postgresql.org/.

[23] Weavescope, “a visualization and monitoring tool
for Docker and Kubernetes.” [Online]. Available:
https://www.weave.works/docs/scope/latest/introd
ucing/.

[24] Jupyter, “web-based interactive development and
computing environment.” [Online]. Available:
https://jupyter.org/.

[25] Scikit-learn, “Python open-source machine
learning tools.” [Online]. Available: https://scikit-
learn.org/.

[26] Keras, “Python Deep learning API.” [Online].
Available: https://keras.org/.

[27] S. M. Lundberg and S.-I. Lee, “A Unified
Approach to Interpreting Model Predictions
Scott,” Nips, vol. 16, no. 3, pp. 426–430, 2012.

[28] N. Plugin, “Kubernetes Network Plugin.”
[Online]. Available:
https://kubernetes.io/docs/concepts/extend-
kubernetes/compute-storage-net/network-plugins/.

Page 1726

