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Abstract—This paper builds on the results from our earlier
research on the design of electricity markets that have to
accommodate the uncertainty associated with high penetrations
of renewable sources of energy. The key results show that 1)
distributed storage (deferrable demand) is an effective way to
reduce total system costs, 2) a simple market structure for
energy allows aggregators to meet their customers’ energy needs
and provide ramping services to the system operator, and 3)
using a receding-horizon optimization to dispatch units for the
next market time-step benefits from the availability of more
accurate forecasts of renewable generation and allows market
participants to adjust their bids and offers in response to this new
information. In our two-sided market, distributed storage in the
form of deferrable demand is controlled locally by independent
aggregators to minimize their expected payments for energy in
the wholesale market, subject to meeting the energy needs of
their customers. In addition, these aggregators are responsible for
maintaining a stable power factor by installing local capabilities
that automatically deal with local power imbalances. Failure to
do this triggers penalties paid to the system operator.

Our earlier results have shown that it is optimal for an
aggregator to submit demand bids into a day-ahead market that
include threshold prices for charging and discharging storage
and also ensure that the expected amount of stored energy is
consistent with the capacity limits of their storage. Because de-
partures from the expected daily pattern of renewable generation
are generally persistent (highly positive serial correlated), it is
likely that the system operator determines an optimum pattern
of demand for the aggregator that violates the capacity limits of
storage by the end of the 24-hour period. If the market uses a
receding horizon, the results in this paper show that aggregators
can modify their bids to ensure that the capacity limits of storage
are never violated in the next market time-step.

In an empirical application, a stochastic form of multi-period
security constrained unit commitment with optimal power flow
(the MATPOWER Optimal Scheduling Tool, MOST) using a
receding-horizon optimization determines the optimum dispatch
and reserves for the next hour and forecasts of the nodal prices
for the next 24 hours. The results show that locally controlled
deferrable demand is almost as effective as centrally controlled
deferrable demand as a way to reduce system costs and mitigate
the variability of renewable generation. The additional advantage
from using a receding horizon is that the system operator always
charges/discharges the storage managed locally by aggregators
within the capacity constraints of the storage.

I. INTRODUCTION

System Operators (SOs) of the bulk electricity system are
dealing with increasing amounts of uncertainty and variability
from both supply and demand resources. Wind and solar
power are responsible for much of this problem. Even though

a large effort is underway by both academic and industry
researchers to develop stochastic models for managing power
systems, there is still a significant need for tools that can
reflect the uncertainty of renewable energy and generate the
market signals needed in deregulated markets (e.g., the prices
for energy and ancillary services). The recent literature related
to the modeling of the SO problem with uncertain and variable
resources can be broadly categorized into three approaches:
stochastic programming, probabilistic optimization and robust
optimization. Stochastic programming has dimensionality is-
sues (e.g., [1], [2]) which are handled using sampling methods
to select a subset of possible scenarios by, for example, focus-
ing on the most influential ones [3]. Probabilistic optimization
allows violation of some specified network constraints within
a threshold [4], [5]. Robust optimization considers a lower
bound on the total social benefits by looking at the worst
case realizations before the actual system state is realized
[6]. This paper uses a hybrid method, between stochastic
programming and robust optimization, to model uncertainty
and determine the optimum commitment and dispatch of the
generating units and the corresponding total social benefits and
costs incurred by the market participants. An important feature
of this modeling framework is that the optimum amounts
of generating capacity needed for both dispatching units
and procuring ancillary services are determined endogenously
for a 24-hour horizon. This framework makes it feasible to
determine an optimum strategy for managing storage capacity
to shift load from peak to off-peak hours as well as to provide
ramping services.

The objective of the paper is to demonstrate the potential
benefits of using a simple two-sided market for electric energy
with a receding-horizon optimization in which aggregators
control distributed storage, in the form of deferrable demand,
to minimize the expected cost of purchasing energy from
the grid to meet the energy needs of their customers. In the
application, a market solution is determined each hour for the
next 24 hours, but the actual dispatch is limited to the first hour
of the horizon.1 In this way, it becomes practical to use more
accurate, updated forecasts of variable resources, like wind
generation, and by doing so, reduce the range of likely values
for these variable resources. As a result, the amount of reserve

1The model does have unit commitment capabilities but these were not
used in the empirical application
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generating capacity needed for ramping and the associated
operating costs are lower. Given forecasts of nodal prices
for the next 24 hours, aggregators submit bids to buy with
price thresholds for charging and discharging storage capacity.
These bids can be modified each hour to ensure that the limits
of storage capacity are not surpassed for the next hour. In
contrast, in a day-ahead market in which aggregators submit
only one set of bids into the market, it is highly likely that
the charging/discharging profiles selected by the SO violates
the capacity bounds somewhere in the 24-hour horizon.

In a recent paper [7], we presented an econometric model
for simulating hourly levels of wind speed at different lo-
cations. The simulated values from this model were then
transformed to the corresponding levels of potential wind
generation using a deterministic power curve representing a
wind farm. The econometric model has an ARMAX structure
to capture the highly positive autocorrelations of the residuals
as well as the spatial correlations. For a typical location, the
full model can explain roughly 80% of the total variability for
one-hour ahead forecasts, but the least-squares fit, ignoring
the autocorrelated structure of the residuals, can only explain
10% of the variability. The explanatory power of the forecasts
deteriorates quickly as the number of steps ahead increases,
and the explanatory power of forecasts made more than
eight hours ahead falls to the least-squares fit of 10%. The
implication is that the forecasts of wind generation used in
a day-ahead market are relatively inaccurate for most of the
hours considered in the optimization. In this earlier paper, a
comparison of the optimum amount of ramping capacity com-
mitted using a forecast made one hour ahead versus a forecast
made six hours ahead showed that the range of ramping needed
with the one-hour ahead forecast was only one eighth of the
range needed with the six-hour ahead forecast. Hence, the
evidence from these results suggests that the potential cost
savings from lower ramping needs using updated forecasts
with a receding-horizon optimization could be substantial. In
addition, fuel costs were also reduced because more of the
potential wind generation was dispatched, and less spilled,
using the updated forecasts.

This paper is structured as follows. Section II provides a
brief overview of the distinctive features of our analytical
framework, the context of the optimal dispatch problem and
a description of the model used and the advantages that
distinguish it from other models. Section III-B summarizes
the results that we presented in [8] and shows how an
aggregator can use stochastic price forecasts to determine
the hourly price thresholds for charging and discharging and
the corresponding bids to meet customers demand for energy
services and minimize the expected cost of purchases of energy
from the grid. Section IV builds on our previous work [9]
[10] by comparing the characteristics of the stochastic inputs
used with a day-ahead market with the updated inputs used
with a receding horizon. An empirical example, based on a
reduction of the network in New York and New England,
demonstrates the sensitivity of the results to the accuracy of the
stochastic inputs and shows that there are attainable savings

in the cost of reserve capacity using a receding horizon.
The results also show that the bids submitted by aggregators,
with price thresholds for charging and discharging storage,
provide an effective mechanism for approximating how the
same storage would be charged/discharged optimally if it was
controlled centrally by an SO. Furthermore, using a receding
horizon with aggregators managing the storage ensures that the
capacity constraints of storage are not violated. This corrects
an inevitable problem with aggregators submitting bids into
a fixed-horizon market because it is highly likely that the
optimum plan determined by the SO violates the capacity
constraints at some point during the 24-hour horizon. Some
concluding remarks and suggestions for ongoing research are
presented in Section V.

II. FORMULATION OF THE MODEL

The analytical framework used, the MATPOWER Optimal
Scheduling Tool, MOST, can be characterized as a probabilis-
tic hybrid of a stochastic program and a robust optimization
that represents a stochastic form of Security Constrained Unit
Commitment (SCUC). It determines the optimum levels of
ancillary services and the Optimal Power Flow (OPF) en-
dogenously for a 24-hour planning horizon, subject to network
constraints [11].

This works draws on the stochastic optimization literature,
[12], [13], [14], [15], [16] [17], [6] with an emphasis on
the determination of the costs incurred by all participants
in the system. The main differences between our approach
and other approaches can be summarized by the following
four points (i) energy and two kinds of ancillary services
(contingency and load-following reserves) are co-optimized by
solving for the optimal amounts of reserves endogenously as
part of the solution set [18], (ii) the cost of ramping delivered
is internalized by assigning a wear-and-tear cost to changes in
the dispatch of individual generating units [19], (iii) demand
and supply costs are treated symmetrically by pricing Load
Not Served (LNS) at the Value Of Lost Load (VOLL), and (iv)
Energy Storage Systems (ESS) are modeled as a special set
of generators with transversality conditions that value the end-
of-horizon states and allow ESS to provide both load shifting
and ramping services. These characteristics are especially
important when the uncertainty of the stochastic sources of
generation is large [20]. Basically, greater uncertainty leads to
higher costs with more generating capacity being committed
to maintain system reliability.

The objective function for the SO is the probability-
weighted total welfare of all of the participants in all system
states, and it has the following seven components (a) The
cost of energy delivered, (b) The cost of re-dispatching the
system (e.g., deviations from contracts), (c) The benefit that
consumers receive by having their load serviced (i.e., by
avoiding the cost of shedding load), (d) The cost of reserves
(up and down) for low probability events (e.g., to cover
contingencies), (e) The cost of reserves for high probability
events (e.g., to mitigate the variability of wind generation and
load), (f) The cost incurred in the transitions to new system
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Fig. 1. Storage Management

states (e.g., the wear-and-tear costs), and (g) The cost of stored
energy at the end of the planning horizon. The stochastic
resources (e.g., potential wind generation) are modeled as
Markovian processes with a discrete probability distribution
over a finite number of states for each time period (e.g., five
for each hour in the analysis).

A simplified objective function is presented in (2).

min f(x) =fp(p, p+, p−) + fr(rz, r+, r−) + fδ(p)

+flf(δ+, δ−) + fs(psc, psd) + fuc(v, w),
(1)

where,

fp(p, p+, p−) =
∑
t∈T

∑
j∈Jt

∑
k∈Ktj

ψtjk
∑
i∈Itjk

[
C̃tiP (p

tijk)

+ CtiP+(p
tijk
+ ) + CtiP−(p

tijk
− )

]
,

fr(rz, r+, r−) =
∑
t∈T

γt
∑
i∈It

[
CtiR+(r

ti
+) + CtiR−(r

ti
−)

]
,

fδ(p) =
∑
t∈T

γt
∑

j1∈Jt−1

j2∈Jt

φtj2j1
∑

i∈Itj20

Ciδ(p
tij20 − p(t−1)ij10),

flf(δ+, δ−) =
∑
t∈T

γt
∑
i∈It

[
Ctiδ+(δ

ti
+) + Ctiδ−(δ

ti
−)

]
,

fs(psc, psd) =− (CT
scpsc + CT

sdpsd),

fuc(v, w) =
∑
t∈T

γt
∑
i∈It

(CtiP (0)u
ti + Ctiv v

ti + Ctiww
ti).

(2)

Table I summarizes the indices, functions and parameters
considered in this reduced form, and Table II includes the
optimization variables.

The constraints for the problem can be grouped into the
following seven categories of components, (1) The full set of
equality constraints (e.g., power balance equations), (2) The
full set of inequality constraints (e.g., generator’s capability
curves), (3) The set of constraints for reserve, redispatch and
contract deviations, (4) The ramping limits for low probability
events, (5) The ramping limits for high probability events, (6)
The minimum startup and shutdown times, and (7) integrality
constraints.

TABLE I
DEFINITION OF INDICES, FUNCTIONS AND PARAMETERS

T Set of time periods considered, nt elements indexed by t.
B Set of buses in the system, nb elements.
Jt Set of states in the system in period t, nj elements indexed

by j.
Ktj Set of post-contingency states in the system in period t and

state j, nc elements indexed by k, base state k = 0.
Itjk Indices of all units available for dispatch in post-

contingency state k of state j at time t.
Ltjk Indices of all reserve zones defined in post-contingency

state k of state j at time t.
Ztl Set of generators providing reserves in zone l at time t.
CtiP (·) Cost function for active injections for unit i at time t.
C̃tiP (·) Modified cost function for active injection i at time t with

the no load cost subtracted, C̃tiP (p) ≡ CtiP (p)−CtiP (0).
CtiP+(·), CtiP−(·) Cost of increasing/decreasing generation from active power

contract for unit i at time t.
Ctiz (·) Cost function for zonal reserve purchased from unit i in

post-contingency state k of state j at time t.
CtiR+(·), CtiR−(·) Cost function for upward/downward contingency reserve

purchased from unit i at time t.
Ciδ(·) Quadratic, symmetric ramping cost on the difference be-

tween the dispatches for unit i in adjacent periods.
Ctiδ+(·), Ctiδ−(·) Cost of upward/downward load-following ramp reserve for

unit i at time t.
Csc, Csd Vectors representing contributions to the value of ex-

pected leftover stored energy in terminal states from charg-
ing/discharging.

Ctiv , C
ti
w Startup and shutdown costs for unit i at time t in $ per

startup/shutdown.
gtjk(·) Nonlinear AC power flow equations in post-contingency

state k of state j at time t.
htjk(·) Transmission, voltage and other limits in post-contingency

state k of state j at time t.
P tijkmin , P

tijk
max Limits on active injection for unit i in post-contingency

state k of state j at time t.
Rtimax+, R

ti
max− Upward/downward contingency (or zonal) reserve capacity

limits for unit i at time t.
Rtl MW reserve requirement for zone l at time t.
∆i

+,∆
i
− Upward/downward physical ramping limits for unit i for

transitions from base (k = 0) to contingency cases.
τ+
i , τ

−
i Minimum up and down times for unit i in number of

periods.
ψtjk0 Conditional probability of contingency k in state j at

time t, conditioned on making it to period t without
branching off the central path in a contingency in periods
1 . . . t − 1 and on state j being realized in some form
(base or contingency). ψtj00 is the conditional probability
of no contingency, i.e. the base case.

φtj2j1 Probability of transitioning to state j2 in period t given
that state j1 was realized in period t− 1.

ψtjk Probability of contingency k in state j at time t, derived
from transition probabilities φtj2j1 and conditional prob-
abilities of contingencies ψtjk0 . ψtj0 is the probability of
no contingency, i.e. the base case.

γt Probability of making it to period t without branching off
the central path in a contingency in periods 1 . . . t− 1.

γ
t ≡

∑
j∈Jt−1

ψ
(t−1)j0

=
∑

j∈Jt,k∈Ktj
ψ
tjk
. (3)

A central issue for using storage efficiently is to determine
the optimum balance between shifting load from high-price
periods to low-price periods and providing ramping services
to mitigate the hour-to-hour variability of generation from
renewable sources. With stochastic inputs, this issue has im-
portant implications for how energy constraints in the model
are imposed on storage capacity that are illustrated in Figure
1. For each hour, the amounts of energy charged/discharged
from storage is typically different in the intact system states
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representing different levels of the stochastic inputs (e.g. the
amount of potential wind generation). Hence, the optimum
level of energy stored in a given hour is also stochastic. If
the sequence of “worst-case” states (i.e. the system states
with the highest/lowest charging levels) are used to impose
the capacity constraints on stored energy, the capacity limits
are generally reached in a relatively few time steps (hours).
This situation is represented by the black triangles in Figure
1. Both the upper and lower capacity limits are reached at
time t+4, and if these constraints are imposed, the range of
feasible levels of stored energy at time t is reduced to almost
zero. Imposing the worst-case constraints on amount of stored
energy for a 24-hour planning horizon implies that storage
only provides ramping services for the last few time periods
in the planning horizon. For all of the earlier time periods,
the optimum charging/discharging strategy is deterministic and
no ramping services are supported. This is an unreasonable
outcome, particularly when a receding horizon is used to
commit generating units. As a less restrictive alternative, the
capacity constraints are imposed on the expected level of
stored energy (represented by the blue diamonds in Figure 1).
This approach makes it feasible for storage to provide ramping
services throughout the planning horizon.

TABLE II
DEFINITION OF OPTIMIZATION VARIABLES, SIMPLIFIED FORMULATION

ptijk Active injection for unit i in post-contingency state k
of state j at time t.

ptic Active power contract quantity for unit i at time t.
ptijk+ , ptijk− Upward/downward deviation from active power con-

tract quantity for unit i in post/contingency state k of
state j at time t.

rtiz Zonal reserve quantity provided by unit i at time t
rti+ , r

ti
− Upward/downward active contingency reserve quantity

provided by unit i at time t.
θtjk, ptjk Voltage angles and active injections for power flow in

post-contingency state k of state j at time t.
uti Binary commitment state for unit i in period t, 1 if

unit is on-line, 0 otherwise.
vti, wti Binary startup and shutdown states for unit i in pe-

riod t, 1 if unit has a startup/shutdown event in period t,
0 otherwise.

pitsksc , pitsksd Charge/discharge power injections of storage unit i in
post/contingency state k of state s at time t.

vti, wti Binary startup and shutdown states for unit i in pe-
riod t, 1 if unit has a startup/shutdown event in period t,
0 otherwise.

III. SPECIFYING INPUTS FOR THE MODEL

The specifications of the input data for MOST are based on
publicly available sources and include the physical constraints
of a test network and the installed generating units, the
stochastic characteristics of potential wind generation and
load, and the energy and power capacities of Deferrable
Demand (DD). These inputs are essentially the same as the
inputs described in [10], and this section is a summary of
Section III of that paper.

The test network is a 36-bus reduction of a New York and
New England centric version of the Northeast Power Coor-
dinating Council (NPCC) network [21]. As accommodating

the variability of generation from wind farms is an important
feature of the analysis, the model includes the cost of using
conventional generating units to provide ramping services.
These costs are consistent with the information in [22] and
[23], and they are specified by fuel type using quadratic cost
functions. The values are relatively high for base load units
and lower for peaking units.

The stochastic inputs for potential wind generation at 16
locations (nine in New York and seven in New England)
and load for seven regions (four in New York and three in
New England) are derived from estimated time-series models
using hourly data for temperature, wind speed and load. These
models provide the stochastic inputs for MOST.

The amounts of PWG dispatched and the load served are
endogenous in MOST, and a typical optimal dispatch uses
all PWG in the low wind states but may spill some PWG
in the high wind states to reduce the need for ramping. In
other words, even though wind generation is free, it may be
more efficient to use conventional generation to avoid some
ramping costs. In a similar way, some load may not be served,
particularly in the rare contingency states. However, shedding
load is expensive, and the specified VOLL is $10,000/MWh
for urban areas and $5,000/MWh for rural areas.

The specifications of DD consider only thermal storage
for space cooling in this paper because air conditioning is
the main cause of the annual peak system load, and this
peak determines the system requirements for adequacy. In
other words, reducing the peak load reduces the amount of
installed generating capacity needed to meet standards for
generation adequacy. The optimal management of storage
determines when to charge (usually at night) and when to
discharge (usually during peak load periods) the storage. Some
customers have thermal storage but most do not. The energy
capacity of thermal storage is 17 GWh, corresponding to one
half of the total daily amount of electricity used for space
cooling that is potentially deferrable.2 The maximum rate of
charging rate is 2 GW, and the maximum rate of discharging
is almost 3 GW.

The technical characteristics of storage are based on the
products described in the reports by Evapco [25] and Calmac
[26]. The hourly ice building power rate is 12% and the hourly
ice melting power rate is 16.7% of the total storage capacity,
but these rates vary by the number of chillers installed. The
specified round-trip efficiency of 86% is based on an average
Energy Efficiency Ratio (EER) of 8.8 for thermal storage
compared to an EER of 10.2 for a conventional air conditioner.

A. Modeling the Stochastic Wind Inputs

In our previous research, we estimated a mutivariate auto
regressive moving average model of wind speed for 16 sites
using realistic data from NREL to simulate the basic hourly
inputs for a day [28]. The simulated values of wind speed
at each location are converted to Potential Wind Generation
(PWG) using a deterministic multi-turbine transformation [24].

2This is the same amount as our previous papers.
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For each hour, the aggregate PWG across the 16 sites is ranked
and then assigned to one of five bins, representing five different
system states. This assignment is then used to compute the
transition probabilities from each system state in one hour
to each system state in the following hour. Finally, the same
assignment of total PWG to bins is applied to the values of
PWG for individual sites, and for each hour, the average values
of PWG for the five bins at each site determine the amount
of PWG for the five possible system states.

When a receding horizon is used, the wind inputs are
updated each hour for the following 24 hours, and a new
set of transition probabilities and state-level values of PWG
are computed. It is assumed that the daily profile of load
in the second day is identical to the profile in the first day.
In other words, updating the profile of load corresponds to
taking the first observation in the profile and making it the
last observation for the next update. For PWG, it is assumed
that the expected hourly values of wind speeds in step one
(i.e. the daily profiles of expected wind speeds used with the
fixed horizon) are equal to the realized values of wind speed
that are used to update the forecasts of wind speeds at each
step. The rationale for doing this is because the expected
forecasted levels of PWG in a fixed-horizon optimization
is likely to be different from the actual realized levels of
PWG. Due to the fact that typical forecasting errors for wind
are highly positively correlated, this implies that the actual
realized levels have a tendency to be consistently above/below
the forecasted levels. When this happens, the corresponding
generation costs using a fixed horizon tend to be consistently
higher/lower than they are using a receding horizon based on
updated forecasts of wind because wind generation displaces
more expensive conventional generation. As a result, it is
difficult to draw general conclusions from a comparison of
operating costs between the fixed and receding horizon for
a particular realization of PWG. The realized levels of PWG
in our analysis turned out to be substantially higher than the
forecasted levels. For the empirical analysis, we adjusted the
means of the forecasts for the fixed horizon and made them
equal to the realized levels. Consequently, the comparisons
between the fixed and receding horizons are more meaningful
but also favor the fixed horizon approach. A more complete
analysis evaluating the effects of many different realizations
of PWG is left for future research. Nevertheless, using the
adjusted forecasts of PWG for the fixed horizon leads to lower
levels of wind generation than the receding horizon because
more PWG is spilled when the uncertainty is larger.

B. Modeling the Behavior of an Aggregator

Given the complexity of managing a power system with
an increasing number and variety of Distributed Energy Re-
sources (DER), it is highly likely that the DER is, in the future,
controlled by a Distributed System Operator (DSO). One
possibility is that a DSO could implement instructions received
from the SO, and in this situation, the DER is effectively
centrally controlled by the SO. This type of management hier-
archy is implicitly assumed in most of our previous research

on distributed storage. An alternative organization is for the
DER to be managed locally on behalf of the customers. In this
situation, the DSO represents an aggregator who participates
in the wholesale market by submitting hourly bids and offers.
With the DD from thermal storage, the purchase of electric
energy from the grid to charge the storage can be decoupled
from delivering the required cooling services. Consequently,
unlike, for example, the demand response from turning up
thermostats when electricity is expensive, DD provides a non-
disruptive way to modify the load profile of purchases from
the grid. The downside is that more electric energy must be
purchased to provide the same level of service with DD due
to the round-trip inefficiency of the thermal storage.

We assume for this analysis that the objective of an aggre-
gator is to minimize the expected cost of net-purchases from
the grid and, at the same time, ensure that all energy services
are delivered to customers when they are needed. Hence,
the basic question is how should the aggregators structure
their bids into the wholesale market to buy energy when it
is less expensive and also provide ramping services. This
latter activity is essential if the aggregator is going to be
effective at mimicking the optimum management of DD by
an SO. Initially, we anticipated that the aggregators would
have to participate in both the energy market and some form
of ramping market to get the incentives needed to provide
ramping services. However, we show below that this is not
the case, and a simple structure of bids in the energy market
with price thresholds for charging and discharging DD storage
is sufficient. The requirements are that the aggregators know
the hourly levels of energy services needed and have access
to stochastic forecasts of prices for the next 24 hours.3

Define Dt as the amount of DD energy that needs to
be delivered to customers in hour t and prob(Pt) as the
corresponding probability density function for the wholesale
price of energy. The hourly levels of DD can be met either
by direct purchases of energy from the grid or by discharging
storage. The aggregator’s objective for managing the storage
capacity of DD is to minimize the expected cost of meeting
the demand profile, Dt, and it is shown in [27] that, for any

3If the price forecasts are deterministic, the optimum hourly bids are a fixed
profile of hourly purchases and no ramping services are provided.

 

min
,

[𝑐 ∙ 𝐸(𝑃 |𝑃 ≤ 𝐿) ∙ 𝑃𝑟𝑜𝑏(𝑃 ≤ 𝐿) − 𝑑 ∙ 𝐸(𝑃 |𝑃 > 𝐻) ∙ 𝑃𝑟𝑜𝑏(𝑃 > 𝐻)] 

subject  to     [𝑐 ∙ 𝑃𝑟𝑜𝑏(𝑃 ≤ 𝐿) ∙ 𝑒 − 𝑑 ∙ 𝑃𝑟𝑜𝑏(𝑃 > 𝐻)] = 0 

∀𝑡, −𝑆 ≤ [𝑐 ∙ 𝑃𝑟𝑜𝑏(𝑃 ≤ 𝐿) ∙ 𝑒 − 𝑑 ∙ 𝑃𝑟𝑜𝑏(𝑃 > 𝐻)] ≤ 𝑆 − 𝑆  

where  e  is  the  charging  efficiency  rate,  𝑆   is  initial  storage,  𝑆   is  storage  capacity 

 

min
,

𝑐 𝑃 𝑓 (𝑃 )𝑑𝑃 − 𝑑 𝑃 𝑓 (𝑃 )𝑑𝑃  

 

Fig. 2. A Typical Demand Curve for Charging/Discharging DD Storage
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given hour, this corresponds to charging storage, c, when the
realized price is less than a low threshold, L, and discharging
storage, d, when the realized price is above a high threshold,
H . When L ≤ P ≤ H , no charging or discharging occurs.
The implied form of the demand curve for managing storage
is illustrated in figure 2. Using this strategy, the actual purchase
of energy from the grid is (Dt + c − d) > 0. For each hour,
Min[d, Dt, St−1] is the upper limit on the amount discharged
and Min[c, (Smax - St−1)] is the upper limit on the amount
charged, where St is the amount of energy stored at the end
of period t.

One of the complications of modeling storage that was
discussed earlier in this section is how to impose the con-
straints on the accumulated amount of energy stored each
hour to ensure it is non-negative and less than the energy
capacity of the storage. Using the same rationale as before,
the constraints are imposed on the expected amount of stored
energy. In addition, it is assumed that the expected amount
of stored energy at the end of the planning horizon is equal
to the initial amount. Without a constraint of this type, the
final amount of energy stored would always be zero and the
initial amount would be treated as a free source of energy.
Finally, the round-trip inefficiency of storage implies that the
amount of energy purchased from the grid is larger than the
energy discharged to meet DD. The objective function for an
aggregator can now be written as follows:

min
Lt,Ht

∑
t∈T

(
DtE(Pt) +

∑
t∈T

(
cE(Pt|Pt ≤ Lt)prob(Pt ≤ Lt)−

Min[d,Dt]E(Pt|Pt > Ht)prob(Pt > Ht)
))

,

st.
∑
t∈T

(cprob(Pt ≤ Lt)e−Min[d,Dt]prob(Pt > Ht)) = 0,

0 ≤ S0 +
t∑
i

(cprob(Pi ≤ Lt)e−Min[d,Dt]prob(Pi > Ht))

≤ Smax ∀t,
(4)

where T = 24, e is the round-trip efficiency of storage,
S0 is the initial charge of the storage, and Smax is the energy
capacity of storage.

The full set of first-order conditions for minimizing the
expected cost of the energy purchased to meet the hourly levels
of Dt are derived in [27]. However, the optimum strategy is
very simple and intuitive if the expected amount of stored
energy, E(St), never reaches the capacity limits for the energy
stored. First, both the high and low price thresholds remain
constant for the whole planning horizon, and second, the
optimum low threshold, L∗, is equal to the high threshold
times the round-trip efficiency, H∗e. Hence, the price arbi-
trage between the two thresholds must be large enough to
compensate for the round-trip inefficiency of storage, and the
optimum thresholds are chosen to make the expected total
amount of energy discharged, when the price is above H∗,
equal to the expected total amount of energy charged, when the
price is below L∗, times the round-trip efficiency. In practice,
it is quite possible that the storage is charged in one system
state and discharged in another for the same hour, and this

capability implies that DD can provide ramping services even
though there is no formal market for ramping. Consequently,
the benefits of the aggregator’s strategy for managing storage
are not limited to minimizing the expected cost of meeting the
DD requirements. The bid strategy also provides the flexibility
needed to deliver ramping services to the SO even though the
nodal price of energy is the only market signal.

In a power system with a high penetration of renewable
generation, flexibility in demand is highly valuable because
the amount of renewable generation available in any hour is
uncertain. In general, for a system with no demand response,
all potential renewable generation would be dispatched if
the realized amount of generation is lower than expected.
In addition, it may also be necessary to dispatch reserve
units to avoid shedding load. When the potential generation is
higher than expected, some generation may be spilled to avoid
ramping down units that that are already generating. Becuase
the price of energy is typically high when the realized wind
generation is lower than expected and low when it is higher
than expected, 4 a self-interested aggregator provides ramping
services to the SO even though no explicit instructions to do
this have been given. The two main objectives of the next
section are to compare the performance of 1) the decentralized
control of DD by aggregators with centrally controlled DD
managed by an SO, and 2) using a fixed 24-hour horizon in
a day-ahead market with a receding horizon in which inputs
are updated each hour and the system is re-optimized.

C. The Four Cases Analyzed

The results presented in the next section summarize the
costs of serving a given demand profile for a 24-hour period
for four different cases on the annual peak load day using both
a fixed and a receding horizon. The analysis assumes that the
wholesale market is deregulated and run by an SO.

The following four cases are evaluated.
1) Case 1: Base case
2) Case 2: Case 1 + 16GW of New Wind Capacity at 16

locations
3) Case 3: Case 2 + 17GWh of DD Storage at 5 load centers

managed by the SO
4) Case 4: Case 3 with DD Storage managed by Aggrega-

tors

IV. EMPIRICAL RESULTS

Table III summarizes the optimum levels of operation for the
four cases using a fixed 24-hour horizon and the corresponding
four cases using a receding-horizon based on 24 separate
optimizations with updated forecasts of PWG for each hour
of the day.

The four cases using the conventional fixed-horizon opti-
mization in table III replicate the results presented in earlier
papers. The extra wind capacity in Case 2 displaces over 15%
of the conventional generation in Case 1, but at the same

4An aggregator submitting a high threshold price for discharging and a low
threshold price for charging reduces purchases from the grid if the price is
high enough and increases purchases if the price is low enough.
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TABLE III
SUMMARY OF THE OPTIMUM OPERATING LEVELS FOR THE FIXED AND RECEDING HORIZONS

Fixed Horizon Receding Horizon

Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4

1. E[Wind Generation] (MWh) 689 206,117 208,433 209,362 719 211,769 214,492 214,449
2. E[Conventional Generation] (MWh) 1,268,793 1,063,375 1,063,570 1,058,375 1,268,764 1,057,719 1,059,379 1,058,302
3. LF Up Reserve (MW) 22,030 35,049 25,084 25,756 22,060 28,363 23,234 25,438
4. LF Down Reserve (MW) 20,360 31,072 23,324 20,954 20,390 25,674 21,378 21,751
5. Contingency Reserve (MW) 18,087 25,038 10,309 10,785 18,777 18,433 7,113 10,878

Conventional Generation, Max Intact States (MW) 62,100 56,985 54,962 55,052 62,100 56,502 54,486 55,566
Conventional Generation, Max (MW) 63,078 57,857 55,842 55,913 63,078 57,535 55,511 56,614
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Fig. 3. Expected Operating Costs for Case 2

time, the combined amounts of capacity needed for up, down
and contingency reserves increases by just over 50% from 60
GW/day in Case 1 to 91 GW/day in Case 2.5 In spite of the
increase in total reserves in Case 2, the maximum amount of
conventional capacity committed6 is reduced by more than
5 GW from 63.1 GW in Case 1 to 57.9 GW in Case 2,
corresponding to roughly one third of the new wind capacity
in Case 2. The importance of this reduction is that although
the objective function considers only the costs of operating
the system, reducing the maximum capacity committed at the
system peak load corresponds to reducing the capital costs of
the installed capacity needed to ensure that generation capacity
is adequate. The main effects of adding deferrable demand
in Case 3 compared to Case 2 are 1) slightly less of the
PWG is spilled, 2) much less reserve capacity (53 GW/day)
is committed because the deferrable demand provides some
ramping services, and 3) an additional 3 GW less conventional
capacity is needed to maintain adequacy because the deferrable
demand shifts some load from the system peak to off-peak
hours.

5The reported amounts of reserves are the sums of the 24 hourly commit-
ments for each type of reserves

6This maximum is the sum of the maximum commitments for each
generating unit over all system states and hours
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Turning now to the differences in results between the fixed
and receding horizons, the differences for Case 1 are trivial
because the initial amount of wind capacity is very small,
but in Case 2 with 16 GW of additional wind capacity, the
receding horizon does lead to lower average costs than the
fixed horizon, particularly in the early hours of the morning
when most charging occurs (see figure 3). The main reasons,
based on the results in table III, are that using the receding
horizon leads to 1) slightly less of the PWG is spilled, 2)
less up and down reserves for ramping are needed because
the updated forecasts of PWG are more accurate, 3) less
contingency reserves, and 4) a lower maximum commitment of
conventional capacity. These positive effects are even larger in
Case 3 with deferrable demand. However, the overall benefits
of the receding horizon are quite modest compared to our
initial expectations. A possible reason for this is that adjusting
the mean hourly forecasts of PWG for the fixed horizon to
make them equal to the hourly levels of PWG that are actually
realized using the receding horizon definitely favors the fixed
horizon. This conclusion of modest benefits using a receding-
horizon optimization may well change if a new comparison
is made using many different realizations of PWG in future
evaluations.

Using a receding horizon, the results for the aggregators in
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Case 4, shown in table III, are not as close to the results
for the SO in Case 3 as they are using a fixed horizon.7

There is no obvious reason for the larger differences between
Cases 3 and 4, but it is likely that the forecasted prices used
by the aggregators to determine their bids are systematically
higher/lower than the prices actually determined by the SO
in Case 4. Efforts to characterize the differences between
Cases 3 and 4 are continuing. Nevertheless, the simple strategy
for energy bids used by aggregators still reduces the amount
of reserve capacity needed from 46.8 GW/day in Case 28,
with additional wind capacity but no deferrable demand, to
35.4 GW/day in Case 4. However, this is still substantially
more than the 30.3 GW/day needed in Case 3 when the SO
manages the deferrable demand. Finally, in Cases 3 and 4
with deferrable demand, the reduction in the total capacity
needed for adequacy compared to Case 2 is not as large with
a receding horizon as it is with a fixed horizon even though
the reserve capacity needed is lower. This is another issue that
is still being investigated, but it suggests that using a receding
horizon may put relatively more weight on providing ramping
services than shifting load compared to using a fixed horizon.
This issue is important because reducing the capacity needed
for system adequacy is an effective way to reduce total system
costs.

An important feature of Case 4 using a receding horizon is
that the capacity limits on storage are never exceeded because
the updating of the bids by the aggregators each hour sets
feasible limits on the amounts of charging/discharging that are
feasible in the next hour given the amounts of energy stored
at the end of the previous hour. This feature is illustrated in
figure 4, and the infeasible discharging that occurs using a
fixed horizon probably biases the amounts of reserve capacity
needed and operating costs downward.

Table IV summarizes the components of the daily operating
costs for all of the cases shown in table III and it reinforces the
results discussed above. The main savings in cost from Case 1
for both the fixed and receding horizons come from displacing
fossil fuel generation by wind generation. The extra cost of
ramping in Case 2 using a fixed horizon is small compared
to the reduction in the cost of conventional generation. As a
result, the value of reducing the cost of ramping by adding
deferrable demand or updating forecasts of PWG has only a
minor effect on total operating costs. The main result is that
aggregators participating in only the energy market in Case 4
do as well as the SO in Case 3, and if a receding horizon is
used, the actual charging/discharging determined by the SO in
Case 4 is feasible and the capacity limits on storage are never
exceeded.

7In this analysis, the high and low price thresholds are held constant and
not updated each hour. Procedures for updating the thresholds, and most
importantly, dealing with the effects on bids when energy capacity limits
are reached are still being developed.

8The corresponding amount using a fixed horizon is 60.1 GW/day in Case
2, and the reduction using a receding horizon is indicative of the value of
more accurate forecasts of PWG

V. SUMMARY AND CONCLUSIONS

This paper presents and evaluates a proposal for improving
the operations of an electricity system when there is a high
level of uncertainty about stochastic inputs by implementing a
receding horizon that incorporates updated forecasts of these
inputs, and in the empirical application, the stochastic inputs
are the hourly amounts of potential wind generation at differ-
ent locations. The analysis uses a stochastic form of multi-
period Security Constrained Unit Commitment (SCUC), the
Matpower Optimal Scheduling Tool MOST, and the forecasts
of the potential wind generation at different locations are
derived from estimated ARMAX models of wind speeds. The
empirical application uses a reduced network representing
New York State and New England on a hot summer day when
the system peak load occurs. The three cases of most interest
are Case 2 with 16 GW of installed wind capacity, Case 3
with the addition of 17 GWh of deferrable demand (thermal
storage) managed by a system operator, and Case 4 with the
deferrable demand managed by an aggregator who submits
bids/offers into the energy market. For each case, the analysis
compares the results using a single fixed 24-hour horizon with
the results using a receding horizon that solves for a 24-hour
horizon each hour using updated forecasts of potential wind
generation.

The typical forecasting errors for wind are highly positively
correlated and incorporating this error structure in the AR-
MAX models provides most of the explanatory power (70%
of total variation for one-hour ahead forecasts) compared to the
deterministic components (10% of total variation). In addition,
the explanatory power from the estimated residual structure
decreases to almost zero after seven or eight hours ahead, and
as a result, the amount of uncertainty about the actual levels
of wind is much larger for the latter part of the day using a
fixed horizon compared to a receding horizon based on hourly
updated forecasts of potential wind generation. At each step,
the receding horizon dispatches generating units for the next
hour only even though the optimization determines the pattern
of dispatch for the next 24 hours. In effect, the implied patterns
of dispatch for hours t + 2 to t + 24 determined at hour t
are superseded when better forecasts of wind are available at
hour t + 1. One complication in comparing the two methods
is that in practice the actual realized levels of wind may be
consistently higher/lower than the forecasted levels used in
the fixed horizon, and therefore, the corresponding operating
costs tend to be consistently lower/higher using a receding
horizon. For this reason, we scaled the mean hourly forecasts
used in the fixed horizon to be equal to the actual levels, and
consequently, the only difference in inputs for our analysis is
that there is less uncertainty about potential wind generation
using the receding horizon.

The results from the empirical comparison of the two opti-
mization procedures are consistent with our prior expectations
in terms of direction but the magnitudes are somewhat smaller
than we expected. Using the fixed horizon, wind generation
displaces conventional generation in Case 2 but this requires
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TABLE IV
A SUMMARY OF THE OPERATING COSTS FOR THE FIXED AND RECEDING HORIZONS

Fixed Horizon Receding Horizon

Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4

Composition of Wholesale Costs ($1000/day)
E[Generation Cost] 30,947 22,871 19,565 19,575 31,992 21,845 19,324 19,559
E[Ramp Wear Cost] 2 198 28 29 5 29 5 5
LF Ramp-Up Reserve Cost 234 1,161 363 376 272 690 294 327
LF Ramp-Down Reserve Cost 204 387 239 219 244 304 167 186
Contingency Reserve Cost 88 122 50 53 94 92 36 54
E[Cost of change in stored energy] 0 0 1,074 0 0 0 1,681 0

E[Total Operating Cost] 31,475 24,739 21,320 20,252 32,607 22,960 21,505 20,131

more conventional capacity committed for ramping reserves.
In addition, the total amount of conventional capacity required
for operating reliability is smaller, and this implies that less
installed capacity is needed to maintain generation adequacy.
Adding deferrable demand in Case 3 and Case 4 reduces this
installed capacity further by shifting load from peak to off-
peak hours, and deferrable demand also provides a substantial
amount of the ramping services needed. Comparing these
results with the equivalent cases using a receding horizon
shows, for Cases 2, 3 and 4 that 1) less of the potential
wind generation is spilled with a receding horizon, 2) less
conventional capacity is needed for ramping, and 3) less in-
stalled conventional capacity is required for adequacy. In these
three ways, the receding horizon has positive system benefits.
Although the magnitudes of these benefits are small in this
application, this may be partly due to rescaling the initial 24-
hour forecast of wind to favor the fixed horizon optimization. It
would be interesting to see in future research how these results
change when the two approaches are evaluated with different
realizations of wind, and in particular, when the actual wind
is lower than expected and conventional sources of generation
have to be increased by drawing down reserves.

The differences in the results between Cases 3 and 4 are
small using a fixed horizon and show that the simple two-sided
market in Case 4 with local control of deferrable demand by
aggregators performs almost as well as Case 3 when a system
operator manages everything. Using a receding horizon, the
differences between Cases 3 and 4 are somewhat larger and
work is continuing to determine the specific causes. In Case 4,
the aggregators submit bids to buy energy with high threshold
prices for discharging storage and low threshold prices for
charging storage. Given stochastic forecasts of future prices,
this bid structure minimizes the expected cost of supplying
the energy needs of their customers, and at the same time, it
implicitly provides ramping services to the system operator.
If a receding-horizon optimization is used, the aggregators
can update their bids at each time-step to ensure that the
energy capacity limits of the storage are respected, and this
corrects a problem that occurs frequently using a fixed-horizon
optimization. It should be noted that updating bids in response
to new price forecasts using a receding horizon market is very
similar to the how the Australian electricity market has been
operating for almost two decades.

Currently, there are two competing proposals for managing

Distributed Energy Resources (DER). The first is to extend
the logic of nodal pricing from the high-voltage grid to
distribution systems. The second, which we favor, is to have
DER managed locally by aggregators who submit bids into
the energy market and work on behalf of their customers. We
have demonstrated that this type of simple two-sided market
with distributed storage controlled locally by aggregators can
perform well. The market is simple because the aggregators
only participate in the energy market and yet they still provide
ramping capabilities to the system operator. The overall result
is that the variability of renewable sources of energy can be
accommodated. Negative prices when there is too much wind
generation, for example, are a major incentive for charging
storage. Similarly, high prices trigger a reduction in purchases
from the grid. Ideally, distributed storage could smooth out
the generation from conventional sources and increase their
average capacity factors. This is a valuable improvement for
the supply system because earnings in the wholesale market
tend to fall for conventional generators when there are high
penetrations of renewable generation.

Our empirical analysis assumes implicitly that the optimum
results in all system states are in equilibrium with a unit power
factor. However, with rooftop solar, for example, there are
several local voltage problems when clouds pass overhead.
We assume that these problems are managed locally through
the installation of equipment such as smart inverters, because
the response times needed to deal with voltage problems
are typically shorter than the market time-step. A simple
market mechanism that already exists for some wholesale
customers is to provide incentives for aggregators to maintain
a stable power favor by charging a penalty for violations. This
combination of aggregators submitting bids for distributed
storage in the energy market and equipment to manage volt-
age problems automatically is a practical, and possibly cost
effective, solution that is consistent with the concept of “grid
edge intelligence.”9

ACKNOWLEDGMENTS

This material is based upon work supported by the De-
partment of Energy under Award Number DE-OE0000779,
the National Science Foundation through the CRISP Type 2

9See, for example, the presentation http://energy.gov/oe/downloads/
electricity-advisory-committee-meeting-presentations-march-
2016-thursday-march-17-2016)

3120



grant #1541177 and the CyberSEES grant #1442858, the US
Department of Energy through the Consortium for Electric
Reliability Technology Solutions (CERTS). The authors would
like to thank Ray D. Zimmerman, Carlos E. Murillo-Sanchez,
Luis F. Zuluaga, and Robert J. Thomas for their comments and
input. The authors are responsible for all conclusions presented
in the paper and the views expressed have not been endorsed
by the sponsoring agencies.

REFERENCES

[1] E. Denny and M. O’Malley, “Wind generation, power system operation,
and emissions reduction,” Power Systems, IEEE Transactions on, vol. 21,
no. 1, pp. 341 – 347, feb. 2006.

[2] F. Bouffard and F. Galiana, “Stochastic security for operations planning
with significant wind power generation,” Power Systems, IEEE Trans-
actions on, vol. 23, no. 2, pp. 306 –316, may 2008.

[3] A. Papavasiliou and S. S. Oren, “Multiarea stochastic unit commitment
for high wind penetration in a transmission constrained network,”
Operations Research, vol. 61, no. 3, pp. 578–592, 2013. [Online].
Available: http://or.journal.informs.org/content/61/3/578.abstract

[4] J. Birge and F. Louveaux, Introduction to Stochastic Programming,
ser. Springer Series in Operations Research Series. Springer London,
Limited, 1997. [Online]. Available: http://books.google.com/books?id=
cfrMw9crazsC

[5] T. Filomena and M. Lejeune, “Warm-start heuristic for stochastic
portfolio optimization with fixed and proportional transaction costs,”
Journal of Optimization Theory and Applications, vol. 161, no. 1,
pp. 308–329, 2014. [Online]. Available: http://dx.doi.org/10.1007/
s10957-013-0348-y

[6] D. Bertsimas, E. Litvinov, X. Sun, J. Zhao, and T. Zheng, “Adaptive
robust optimization for the security constrained unit commitment prob-
lem,” Power Systems, IEEE Transactions on, vol. 28, no. 1, pp. 52–63,
2013.

[7] W.-Y. Jeon, J. Y. Mo, T. D. Mount, H. Lu, and A. J. Lamadrid,
“Modeling stochastic wind generation and the implications for system
costs,” in Proceedings of the Rutgers Western Conference, 2014.

[8] H. Lu, W.-Y. Jeon, T. D. Mount, and A. J. Lamadrid, “Evaluating the
effectiveness of demand aggregators in accommodating the uncertainty
of wind generation,” in Proceedings of the Rutgers Eastern Conference,
2014.

[9] A. J. Lamadrid, “Optimal use of energy storage systems with renewable
energy sources,” International Journal of Electrical Power & Energy
Systems, vol. 71, no. 0, pp. 101 – 111, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0142061515000551

[10] W. Jeon, A. Lamadrid, J. Mo, and T. Mount, “Using deferrable demand
in a smart grid to reduce the cost of electricity for customers,” pp. 1–34,
2015. [Online]. Available: http://dx.doi.org/10.1007/s11149-015-9268-0

[11] C. Murillo-Sanchez, R. Zimmerman, C. Anderson, and R. Thomas,
“Secure planning and operations of systems with stochastic sources,
energy storage, and active demand,” Smart Grid, IEEE Transactions on,
vol. 4, no. 4, pp. 2220–2229, 2013.

[12] F. Bouffard, F. Galiana, and A. Conejo, “Market-clearing with stochastic
security-part i: formulation,” Power Systems, IEEE Transactions on,
vol. 20, no. 4, pp. 1818–1826, Nov. 2005.

[13] J. Arroyo and F. Galiana, “Energy and reserve pricing in security
and network-constrained electricity markets,” Power Systems, IEEE
Transactions on, vol. 20, no. 2, pp. 634–643, May 2005.

[14] W. Powell, Approximate Dynamic Programming: Solving the Curses
of Dimensionality, ser. Wiley Series in Probability and Statistics.
Wiley, 2007. [Online]. Available: http://books.google.com/books?id=
WWWDkd65TdYC

[15] P. Meibom, R. Barth, B. Hasche, H. Brand, C. Weber, and M. O’Malley,
“Stochastic optimization model to study the operational impacts of high
wind penetrations in ireland,” Power Systems, IEEE Transactions on,
vol. PP, no. 99, pp. 1 –12, 2010.

[16] D. Bertsimas, D. A. Iancu, and P. A. Parrilo, “Optimality of affine
policies in multistage robust optimization,” Mathematics of Operations
Research, vol. 35, no. 2, pp. 363–394, 2010. [Online]. Available:
http://mor.journal.informs.org/content/35/2/363.abstract

[17] A. Papavasiliou, S. Oren, and R. O’Neill, “Reserve requirements
for wind power integration: A scenario-based stochastic programming
framework,” Power Systems, IEEE Transactions on, vol. 26, no. 4, pp.
2197 –2206, nov. 2011.

[18] J. Chen, T. D. Mount, J. S. Thorp, and R. J. Thomas, “Location-based
scheduling and pricing for energy and reserves: a responsive reserve
market proposal,” Decis. Support Syst., vol. 40, no. 3-4, pp. 563–577,
2005.

[19] C. Wang and S. Shahidehpour, “Optimal generation scheduling with
ramping costs,” Power Systems, IEEE Transactions on, vol. 10, no. 1,
pp. 60 –67, Feb. 1995.

[20] A. J. Lamadrid and T. Mount, “Ancillary services in systems with high
penetrations of renewable energy sources, the case of ramping,” Energy
Economics, vol. 34, no. 6, pp. 1959 – 1971, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0140988312001818

[21] E. Allen, J. Lang, and M. Ilic, “A combined equivalenced-electric, eco-
nomic, and market representation of the northeastern power coordinating
council u.s. electric power system,” Power Systems, IEEE Transactions
on, vol. 23, no. 3, pp. 896–907, Aug. 2008.

[22] D. Lew, G. Brinkman, N. Kumar, P. Besuner, D. Agan, and S. Lefton,
“Impacts of wind and solar on emissions and wear and tear of fossil-
fueled generators,” in Power and Energy Society General Meeting, 2012
IEEE, 2012, pp. 1–8.

[23] D. Lew, G. Brinkman, N. Kumar, S. Lefton, G. Jordan, and S. Venkatara-
man, “Finding flexibility: Cycling the conventional fleet,” Power and
Energy Magazine, IEEE, vol. 11, no. 6, pp. 20–32, 2013.

[24] P. Norgaard and H. Hottlinen, “A multi-turbine power curve approach,”
in Nordic Wind Power Conference. http://www.ieawind.org/index.html,
2004, pp. 1–5.

[25] EVAPCO, “Thermal ice storage - application and design guide,”
EVAPCO, Inc., Tech. Rep., 2007.

[26] M. Hunt, K. Heinemeier, M. Hoeschele, and E. Weitzel, “Hvac energy
efficiency maintenance study,” CALMAC, Tech. Rep., 2010.

[27] H. Lu, “The economics of demand aggregators in electricity markets,”
Ph.D. dissertation, Cornell University, 2015.

[28] W. Jeon, A. J. Lamadrid, J. Y. Mo, and T. D. Mount, “The controllability
of real things: Planning for wind integration,” The Electricity Journal,
vol. 28, no. 1, pp. 19–28, February 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1040619014002875

[29] nyiso, NYISO, Tech. Rep., 2014. [Online].
Available: http://www.nyiso.com/public/webdocs/markets operations/
documents/Manuals and Guides/Manuals/Operations/trans disp.pdf

[30] pjm, “Two settlement virtual bidding and trans-
actions ,” PJM, Tech. Rep., 2014. [On-
line]. Available: http://www.pjm.com/∼/media/training/core-curriculum/
ip-transactions-201/transactions-201-two-settlement.ashx

3121


