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Chapter 1 Introduction 

1.1 Design Considerations and Objectives 

The natural acoustics within a room is often overlooked or ignored when 

determining the functional use of the space.  The electrical, ventilation, structural, 

and architectural requirements, as well as other key engineering disciplines, have 

long been incorporated into building construction industry standards for proper 

building design.  However, acoustics, sound insulation, and noise control are also 

quickly becoming dominant design issues in certain building types.  This increase 

in attention to acoustics has generated not only the recognition of well-designed 

and constructed new buildings, but also an awareness of the lack of desirable 

acoustics in existing buildings and aging structures. 

Although there are many different types of acoustical related problems 

facing the building construction industry, this paper focuses solely on the natural 

acoustics within large reverberant spaces.  The goal of this research is to 

develop a cost effective and environmentally minded solution for controlling the 

build-up of reverberant sound energy in these acoustically “live” spaces.  This 

paper also includes a case study of the King Intermediate School and of how the 

application of the solution developed herein would benefit the multipurpose 

gymnasium, currently existing as a very large and excessively reverberant space.   

1.1.1 Background of King Intermediate School 

King Intermediate School is located in Kaneohe, Hawaii and has a 

multiuse gymnasium with very poor natural acoustics.  This gymnasium is not 

only used for sporting events, but it is also used for music performances by the 

school band and choir and for plays and other performances by the drama and 

art departments.  The gymnasium is also used for speeches, presentations, 

political rallies, general assembly meetings and other community events and 

activities.   The gymnasium is very large with a footprint size of 158 feet by 115 

feet and an air volume of approximately 565,000 cubic feet.  A floor plan, 
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immediately noticeable.   Spoken words, even when amplified, are largely 

unintelligible and blend into one continuous sound, and musical phrasings are 

not discernable to the listener.  The excessive reverberation time in the 

gymnasium render the space to be non-effective or minimally effective for the 

many uses.  

1.1.2 Design Objectives 

The design objectives for acoustically treating the King Intermediate 

School gymnasium were thoroughly discussed with the school staff.  First and 

foremost, the treatment must be effective and perform well.  The improvement 

gained by adding the treatment must be significant and easily noticeable to the 

students, staff, and community users of the facility.  Developing a product with a 

sound absorbing performance similar to fiberglass insulation would be ideal, 

since fiberglass insulation is highly absorptive.  There was a strong desire 

amongst the school staff to use recycled materials in an effort for the school to 

promote environmentally friendly practices.  The most difficult design objective 

discussed with the school staff was the cost of the treatment.  Given the size of 

the space and the anticipated amount of treatment necessary to make a 

significant improvement, a target installed cost of $2.00 / ft2 was established.  As 

can be seen in the section below, this target cost rules out all commercially 

available products, so the school was hopeful for an unconventional solution that 

could satisfy their cost requirement.  The school was interested in involving the 

community, school staff, and students for this project.  A sense of ownership in 

improving the use of the gymnasium in a collaborative working environment with 

the community, staff, and students could be considered a benefit for the school.  

However, because the project may involve a large number of people, the 

acoustical treatment should have the capability of being installed in phases in 

order to reduce the burden in any given year.  A total of four project phases was 

discussed such that the total treatment could be installed within four years.   
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1.2 Background 

1.2.1 Acoustics Overview 

Generically speaking, acoustics is defined as the scientific study of sound, 

especially its generation, transmission, and reception (Egan 1988).  Some of the 

basic metrics of sound, include the frequency (Hz), wavelength (ft), period (s), 

and amplitude, or relative amplitude (dB).  The frequency of sound (also referred 

to as the pitch in music references) is just as important as the sound level.  The 

human audible frequency range is 20 Hz to 20,000 Hz.  Typical speech ranges 

from 250 Hz to 2,000 Hz and most music falls within the range from 60 Hz to 

8,000 Hz. 

The Decibel (dB) is named after Alexander Graham Bell who was Scottish 

born in 1847 before he moved to the United States and invented the telephone in 

1876.  The Decibel is defined as the logarithmic ratio of a signal level to a 

reference level.  One Bel is when the signal level is 10 times the reference, so 

one decibel is 1/10th of a Bel.   

ܮ ሾ݀ܤሿ ൌ 10 ݃݋ܮ ቆ
ܺ
ܺ௥௘௙

ቇ (1) 

Sound levels range from 0 dB at the threshold of hearing to approximately 

140 dB at the upper pain threshold, although louder sounds are certainly 

possible.  The corresponding sound pressure ranges from 0.00002 Pa to 200 Pa.    

It’s because of this dynamic range of sound pressure (Pa) that the sound 

pressure level (dB) is used to evaluate sound.  Common sound levels for 

everyday noises can be found in the figure below (Egan 1988). 
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10ቀ
௅
ଵ଴ቁ ൌ

ܺ
ܺ௥௘௙

 (1) 

The addition of two values, X1 and X2, can be combined linearly.  But to 

determine the change level (dB), the following relationship describes the 

calculation for logarithmic addition of two source values. 

ଵܺାଶ

ܺ௥௘௙
ൌ ଵܺ

ܺ௥௘௙
൅

ܺଶ
ܺ௥௘௙

 (2) 

10ቀ
௅భశమ
ଵ଴ ቁ ൌ 10ቀ

௅భ
ଵ଴ቁ ൅ 10ቀ

௅మ
ଵ଴ቁ (3) 

ሿܤሾ݀	ଵାଶܮ ൌ 10 ݃݋ܮ ൬10ቀ
௅భ
ଵ଴ቁ ൅ 10ቀ

௅మ
ଵ଴ቁ൰ (4) 

1.2.2 Existing Acoustical Treatment Options 

There are a wide variety of commercially available acoustically treatment 

options ranging in aesthetics, installation method, durability, effectiveness, cost, 

and many other factors.  The following is not an exhaustive list of all available 

products, but it includes some of the main types of products used for absorbing 

reverberant sound energy within a room. 

Table 1.  Commercially Available Acoustical Treatments 

Treatment Type Material Description 
Estimated Installed 

Cost 

Spray-on 
Chemically treated 
recycled natural fibers 

$8.00 / sq. ft. 

Wood Fiber Panels 
Cementitious wood fiber 
board  

$10.00 / sq. ft. 

Wrapped  
Fiberglass Panels 

Semi-rigid fiberglass core 
with acoustically 
transparent wrap 

$14.00 / sq. ft. 

Processed Cotton 
Panels 

Processed from recycled 
cotton into semi-rigid 
panels 

$14.00 / sq. ft. 
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absorbers because they are not porous.  The do not resist air flow, they 

completely block it.  

In addition to evaluating the sound absorption of commercially available 

treatments, non-standard building materials have also been evaluated.  

Bosmans’ et al (1999) measured the sound absorption coefficients of a multi-

layered stretched ceiling using an impervious synthetic PVC membrane.  The 

results from Bosmans’ research showed that the absorption coefficients varied 

significantly with frequency and were most absorptive at the resonant frequency 

of the system.  As expected the resonant frequency and resulting sound 

absorption changed with increasing and decreasing cavity depths behind the 

membrane. 

McGinnes et al (2005) conducted research on non-standard building 

materials by testing the absorption coefficients of straw, as an eco-friendly 

building element.  McGinnes concluded that the performance of natural fibers, 

such as straw can be similar to non-natural fibers, such as fiberglass or rock 

wool.  However, he noted a general trend showing a large reduction in sound 

absorption of the natural fibers at frequencies below 1,000 Hz.  This recent study 

reinforces the importance and interest of using environmentally friendly 

acoustical materials. 

The absorption coefficients are used to predict the reverberation time 

within a space, and they offer a key metric for quantifying the acoustics.  This 

assessment of the reverberation time is essential in spaces where the ability to 

hear and comprehend is important.  Sato et al (2008) conducted an objective 

evaluation of the speech intelligibility within reverberant rooms and found a very 

strong correlation between listening difficulty/speech intelligibility and the 

reverberation time. 

1.2.3 Environmental Concerns & Green Building Design 

In recent years there has been a significant emphasis on green building 

design.  Environmental considerations are often a key design parameter for 

many new construction buildings and even in building renovations.  The 
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establishment of the Leadership in Energy and Environmental Design (LEED) 

Green Building Rating System has sparked a surge in environmentally friendly 

building design.  The LEED rating system consists of four levels of achievement 

for sustainability, including Platinum, Gold, Silver, and Certified ratings.   

 

Figure 4.  Number of LEED Points Required for Each Level of Certification 

The use and implementation of environmentally friendly acoustical 

treatments can help a building achieve LEED certification.  Although a full 

discussion of the LEED rating system is not part of the scope of this research 

project, it is important to note the growing LEED presence in architectural design 

and the direction of the building construction industry’s focus on environmentally 

friendly, reused, and recycled materials. 

There are many products that are already commercially available which 

use recycled materials, many of which are LEED approved products.  However, 

all these products require a significant amount processing and energy 

consumption to manufacture so that they can be sold as a marketable product.   

If recycled products are beneficial to the environment and conserving resources, 

then reused products requiring no manufacturer reprocessing is even better.  The 

mindset of reusing existing products for a second use is going a significant step 

further than simply using products made from recycled materials.  This paper 

investigates the possibility of one such solution. 
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1.3 Acoustics Models 

In its basic form sound is defined as a vibration in an elastic medium 

(Yerges 1969).  Our human perception of sound is usually caused by oscillating 

pressure of air near our ears.  The basic properties of sound waves are governed 

by the following relationship (Beranek 1988)   

ߣ ൌ
݂
ܿ
 (5) 

Where λ is the wavelength, f is the frequency, and c is the speed of sound. 

The speed of sound in air primarily varies with temperature, although the ratio of 

specific heat at constant pressure to the specific heat at constant volume is also 

considered.  If we assume that air acts like an ideal gas, the follow relationship 

develops (Beranek 1988),  

ܿ ൌ 49.03√ܴ (6) 

where R is the absolute temperature in Rankin.  Assuming a standard 

temperature of 70oF the resulting speed of sound is 1,128 ft/sec (344 m/sec).  

Based on this calculated speed of sound, the following table lists the 

wavelengths for various frequencies.  It is important to keep in mind the 

wavelength of sound when evaluating the acoustics within an enclosed space, 

because for certain room sizes and certain frequencies, the wavelength can be 

longer than any dimension within the room.  For example the wavelength at 16 

Hz is 70.5 feet. 
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Table 2.  Wavelengths for Corresponding Frequencies 

Speed of Sound Frequency (Hz) Wavelength, λ 

1,128 ft/sec 

16 70.5ft 
31.5 35.8ft 
63 17.9ft 

125 9.0ft 
250 4.5ft 
500 2.3ft 

1,000 1.1ft 
2,000 7in 
4,000 3.4in 
8,000 1.7in 

16,000 0.85in 
 

For a pure sine wave the mathematical representation of the pressure 

oscillations is expressed by   

݌ ൌ ܣ  (7) ݐሻ݂ߨሺ2݊݅ݏ

where t is time in seconds, A is the pressure amplitude, and p is the 

resulting pressure.  As mentioned above, the change in sound pressure can be 

very dynamic from quiet sounds to louds sounds.  Therefore, sound pressure is 

typically stated in terms of a sound pressure level (dB) with a standardized 

reference sound pressure of 20 μPa (pressure at the threshold of hearing).  The 

following equation describes the relationship between sound pressure (Pa) and 

sound pressure level (dB).  NOTES:  Root Mean square (effective pressure) of 

eq 7 to get eq 8) 

௣ܮ ൌ ݋10݈ ଵ݃଴ ൬
݌
௢݌
൰
ଶ

ൌ ݋20݈ ଵ݃଴ ൬
݌
௢݌
൰ (8) 

Lp is the sound pressure level (dB), p is the sound pressure (Pa), and po is 

the reference sound pressure of 20 μPa.   

Knowing that the sound pressure level will vary with distance from the 

sound source due to spherical spreading and geometric divergence (Harris 
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1998), the relationship between sound pressure level, Lp, and sound power level, 

Lw, is governed by: 

௣ܮ ൌ ௪ܮ െ ݋20݈ ଵ݃଴ሺݎሻ െ 0.6 ൅  (9) ܥ

where r is the distance to the sound source in feet, and C is a correction 

term due to the ambient air temperature and pressure.  At standard pressure and 

temperature, C = 0.  The above equation only considers the direct sound path, 

Ld, where the direct sound pressure level Ld = Lp in equation 9  However, when 

sound propagates in an enclosed space, we must also consider the reverberant 

or reflected sound level, Lr. According to Harris 1998, 

௥ܮ ൌ ௪ܮ െ ݋20݈ ଵ݃଴ܣ ൅ 16.3 (10) 

where A is the total absorption in Sabins.  It is important to note that this 

relationship is only valid for uniform diffuse sound fields, where Lr is independent 

of the distance from the sound source.  For the research contained in this report 

the absorption A is pivotal to the understanding of sound absorbing surfaces, so 

it may be prudent to elaborate on the discussion of the units of Sabin.  The Sabin 

is a quantitative measure of the sound absorbing performance of a particular 

surface.  The sabin is equal to 1 ft2 of a perfectly absorptive surface.  For real 

surfaces that are not perfectly absorptive, the absorption coefficient, α, is used to 

describe the sound absorbing performance of that real surface, where 

ߙ ൌ
ܾ݀݁ݎ݋ݏܾܽ ܿ݅ݐݏݑ݋ܿܽ ݕ݃ݎ݁݊݁
ݐ݊݁݀݅ܿ݊݅ ܿ݅ݐݏݑ݋ܿܽ ݕ݃ݎ݁݊݁

 (11) 

A surface that has an absorption coefficient of α = 0.90 is a surface that 

absorbs 90% of the energy that is incident upon it.  Therefore, the absorption, A, 

in sabins of a surface is determined by: 
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ܣ ൌ  (12) ܵߙ

where S is the surface area in ft2. For example, a surface that has an area 

of 100 ft2 and an absorption coefficient of 0.90 would a total absorption of 90 

Sabins. 

In order to determine the total sound absorption within a space, we must 

consider the sound absorption of air, Aair, and furnishings, Afurnishings, in addition to 

the walls, floor, and ceiling surfaces, Asurface.  The following relationship develops 

(Harris 1998): 

௢௧௔௟்ܣ ൌ ௦௨௥௙௔௖௘ܣ ൅ ௔௜௥ܣ ൅   ௙௨௥௡௜௦௛௜௡௚௦ (13)ܣ

The sound absorption of the furnishings includes tables, chairs, etc.  In the 

case of an auditorium or theater, the seating manufacturers will often provide 

absorption coefficient data for their products.  The data may include empty seats 

(unoccupied), partially filled seats, or full capacity seating.  The absorption of air 

is frequency dependent, where low frequencies are not absorbed as much as 

higher frequencies given a specific volume.  The absorption of air is also 

dependent on the relative humidity.  Aair can be calculated by the relationship: 

௔௜௥ܣ ൌ 4ܸ݉ (14) 

Where V is the volume of air (ft3), and m is the air attenuation coefficient 

per foot or per meter as shown by Kinsler et al (1982) 

݉ ≅ 5.5 ൈ 10ିସ ൬
50
݄
൰ ൬

݂
1000

൰
ଵ.଻

 (15) 

h is the relative humidity (in percent) between 20% and 70% and f is the 

frequency between 1.5 and 10 kHz.  Values for m can also be found in a chart 

provided by Harris (1998). 
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The following three methods have been developed to quantify the 

relationship between the sound absorption in the room and the reverberation 

time.  The Reverberation Time, T60 or RT60, is the time it takes (seconds) for 

sound to decay 60 decibels after the sound has been turned off.  It’s a 

quantitative measure of how acoustically “live” or “dead” the space sounds.  A 

long reverberation time means that there are few sound absorbing surfaces 

within the room.  Conversely, a short reverberation time means that the room has 

many absorptive surfaces. 

In most cases the reverberation time is not simply calculated for the entire 

audible frequency range as a single value.  Instead the audible frequency range 

is typically divided into many frequency bands, usually octave bands or one-third 

octave bands ranging from 125 Hz to 4,000 Hz, each with its own reverberation 

time value.  Although the audible frequency range extends below this range 

(down to 20 Hz) and above (up to 20 kHz), the extremes are ignored from most 

calculations.  Low frequency reverberation times are often difficult to predict 

because of the longer wavelengths do not allow for a truly diffuse sound field 

within the room.  Higher frequency sound is more easily absorbed by air and 

other surfaces, and they do not generally significantly aid the evaluation of how a 

room “sounds”.  

1.3.1 Sabine Method 

Early studies on the effects of reverberant sound energy were conducted 

by Wallace C. Sabine.  The Sabine Method for calculating reverberation time and 

sound absorption is undoubtedly the most common and most widely used.  The 

Sabine equation was first developed in the last decade of the 19th century.  The 

empirical formula is stated as (Harris 1998): 

଺ܶ଴ ൌ
0.049ܸ
ܣ

 (16) 

଺ܶ଴ ൌ
0.049ܸ
ߙܵ

 (17) 
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Since there are likely to be many different surfaces and types of finishes 

(Si -ft
2) within a space, where each of these surfaces has a different sound 

absorption performance (αi), the equation can also be rewritten as: 

଺ܶ଴ ൌ
0.049ܸ
∑ ௜ܵ ௜ߙ

 (18) 

1.3.2 Eyring Method 

The Eyring–Norris Equation differs from the Sabine Equation by using an 

average sound absorption coefficient,	ߙത, for the entire space versus summing up 

the product of the absorption coefficient and area for each surface.  The resulting 

equation follows (Eyring 1933): 

଺ܶ଴ ൌ
0.049ܸ

െܵ ݈݊ሺ1 െ തሻߙ
 (19) 

1.3.3 Millington-Sette Method 

The Millington-Sette Equation is similar to the Sabine equation where the 

absorption of each surface is summed together using the relationship below.  

However, as the absorption coefficient approaches unity, the T60 goes to zero, 

which does not actually happen (Beranek 1988).  The equation simply does not 

hold true for highly absorptive surfaces, and is better suited for situations with 

moderately absorptive finishes, or if the highly absorptive surface can be 

averaged into larger less absorptive surfaces. 

଺ܶ଴ ൌ
0.049ܸ

െ∑ ௜ܵ ݈݊ሺ1 െ ௜ሻߙ
 (20) 
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Chapter 2 Test Assembly 

2.1 Acoustic Filler 

The primary sound absorbing material in the test assembly, the acoustic 

filler, is comprised entirely of used tee shirts made from 100% cotton.  The cotton 

tee shirts were not altered in any way from their existing condition.  No dyes, 

chemical treatments, or any processing of the tee shirts were used, other than 

the processing treatments that were used to originally manufacture the tee shirts.   

100% cotton tee shirts were selected as the acoustic filler because of the 

fibrous nature of cotton at its ability to restrict air flow while remaining porous, a 

desirable material property for high performing sound absorbing products.  In 

addition, the availability of discarded, recycled, and reused cotton clothing is 

easy to find.  For this research, all of the cotton tee shirts were donated by local 

residents. 

Cotton is already used in certain types of acoustical treatment products.  

Recycled blue jeans are used to make products from exterior wall insulation to 

surface applied semi-rigid acoustical panels.  Although these products already 

make use of recycled cotton clothing, a considerable amount of energy and 

resources is required to process the manufactured cotton insulation into the final 

product.  The goal of this research was to take the already environmentally 

friendly recycled cotton products one step further in conservation by eliminating 

the manufacturing processes.  Eliminating the manufacturing processing not only 

reduces energy consumption but it also greatly reduces the financial cost of the 

finished product. 

2.2 Outer Wrap 

The outer wrap protecting the tee shirts and holding the acoustic filler 

together was a pair of square shaped sailcloth sewn into “pillowcases.”  Sailcloth 

was selected for the outer wrap for several reasons.  Although sailcloth is 

selected for sailing use because of its stretch resistance (elasticity), tensile 

strength, creep resistance and the ability to stand up to the ultraviolet solar 
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radiation, for this experiment sailcloth was selected because of porous nature 

and durability.  Sailcloth was also selected as the outer is because discarded 

sailcloth is relatively easy to find in coastal communities.  Boat owners and 

sailcloth fabricators routinely retire weathered sailcloth that is no longer 

seaworthy. However this material, in its weathered state, is still in a satisfactory 

condition for use in the proposed acoustic pillows.  Again, the reuse of a product 

that would normally not have a second life is noteworthy environmental 

consideration. 

Although there are many different types of sailcloth, the most common and 

most available is Polyester (PET), polyethylene terephthalate, which is made 

from a thermoplastic polymer resin.  Many sailors refer to this type of sailcloth by 

its brand name, Dacron, which was created in 1950 by Dupont.   PET is a very 

strong fiber that when woven into a fabric mesh is by nature, porous.  In fact, 

some types of PET have a translucent or somewhat transparent appearance.  

The sound absorption of the sailcloth is assumed to be negligible compared to 

the sound absorption of the acoustic filler. 

2.3 Material Properties 

Not all of the sailcloth and tee shirt acoustic pillows were fabricated to 

exactly the same size.  Some pillows were slightly larger than others.  However, 

the average size was approximately 17in x 17in.  The average pillow thickness 

was approximately 2in.  The 17in x 17in size was selected for of many reasons 

including the ease of fabrication and transportation.  The size was also selected 

because its resistance to sag while still allowing the 2in thickness to be 

maintained.  Pillows larger than 17in x 17in tended to sag in the middle, where 

the tee shirts would gather in the middle.  This caused the pillow to be thicker in 

the middle and thin around the perimeter.  Essentially, the larger pillows became 

too thick and fabrication was more cumbersome.  On the other hand, the pillows 

would end up being too thin if they were made smaller than 17in x 17in.  The 

smaller pillows would also add time to fabrication because the they would require 

a greater number of pillows be fabricated for the same coverage area as 
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17inx17in pillows.  Although other pillow sizes can still be used effectively, the 

author recommends a square pillow ranging from no smaller than 14” to no larger 

than 24” be used. 

2.3.1 Acoustic Filler Properties 

Cotton is a desirable clothing textile because it is lightweight and 

breathable.  It is composed primarily of cellulose, possibly the most common 

organic compound found on earth.  Also in cotton are trace amounts of 

Protoplasm, waxes, mineral salts, and water. 

The tee shirts used in this research came in a variety of different sizes, 

weights, and densities.  The average density of the acoustic filler was calculated 

to be approximately 9.4 lb/ft3 based on an average filler weight of 2.9 lb per pillow 

(excluding the weight of the sailcloth) and an estimated volume of approximately 

0.31 ft3 per pillow.  The stated density should be considered an average density 

since not all tee shirts are manufactured with the same fabric weight and density.  

In addition, the air gaps within the folds of the tee shirts that are stuffed inside of 

the pillowcase create and inherently inhomogeneous material.  This average 

density is slightly higher than the density of most commercially available 

acoustical treatment products.  By comparison, the typical fabric-wrapped 

fiberglass wall panel has a core density of 5 to 7 lb/ft3.  The manufactured cotton 

panels typically have a core density in the range of 3 to 6 lb/ft3. 

2.3.2 Outer Wrap Properties 

The properties of PET sailcloth used in this research have not been 

verified, since the origin of the donated sailcloth is unknown.  However, the area 

density of the PET sailcloth was measured to be approximately 7oz/yd2, which is 

slightly heavier than the expected material area density of 5 oz/yd2 .  The 

sailcloth used for this experiment was somewhat heavier and thicker than ideal 

conditions.  PET has a tensile strength of 55 to 75 MPa. 
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testing methods and procedures for the field conditions were used, the author 

attempted to emulate the laboratory conditions as much as possible.  A 

racquetball court was chosen as the reverberant room test chamber because it is 

a highly reverberant space.  Although a racquetball court does not meet all of the 

qualifications for a laboratory test facility per the requirements in ASTM C423-

07a, it is still a highly reverberant space.  The racquetball court was constructed 

with sealed tile flooring and high density composite panels on the ceiling and 

walls.  Parts of the rear and side walls were constructed with a combination of 

composite panels and glass panels. 

Since the acoustical measurements were conducted in field conditions, 

following the conditions outlined in Annex X2 of ASTM C423-07a, it is important 

to note the deviations of the field test chamber compared to an ideal laboratory 

reverberant test chamber.  The primary deviations are the room air volume and 

associating room dimensions, which are discussed below.    

3.1.1.1 Room Air Volume 

The dimensions of a racquetball court had a room air volume of 16,000 ft3 

(450 m3), which is above the recommend air volume of 200 m3 per Section 

7.3 of ASTM Standard Designation C 423-07a, but it satisfies the 

minimum size requirement of 125 m3.  The larger than ideal room size 

means that there will be more air absorption than in a smaller room. 

3.1.1.2 Room Dimensions 

ASTM Standard Designation C 423-07a, Section 7.3 Size and Shape, also 

states “No two room dimensions shall be equal nor shall the ratio of the 

largest to the smallest dimension be greater than 2:1.”  The requirement 

aims at reducing the possibility of standing waves within the space, which 

have an easier time forming when the room has a lot of symmetry.  

Unfortunately, the racquetball court has a lot of symmetry.  The 

dimensions of the racquetball court were 20 feet (W) x 40 feet (L) x 20 feet 

(H), standard regulation court dimensions.  Therefore, the room width and 

room height are the same dimension.  In addition, the room length is 



 23

exactly two times the other two dimensions, which is not ideal.  The scope 

of this research was not to compare the effectiveness of field conditions 

versus laboratory conditions, but it is important to note these deviations.  

The presence of standing waves within the racquetball court could not be 

ruled out. 

3.1.1.3    Sound Diffusion 

Under ideal conditions, the reverberant room would be perfectly diffuse.  

Section 7.4.1 of ASTM c423-07a discusses the use of sound reflective 

panels hung throughout the room with random orientations.  The standard 

also discusses the possibility of incorporating diffusive panels on a rotating 

shaft.  Since the test chamber used to conduct this research was not a 

laboratory and had other uses, these diffusive treatments were not 

incorporated into the field test chamber. 

3.1.2 Measurement Equipment 

The acoustic measurements were conducted using a sound source to 

generate the audio signal, a pair of amplified loudspeakers to create a full sound 

field within the test chamber, and a sound level meter to record the data.  The 

sound source used for the experiment was an Apple iPhone with pink noise WAV 

file saved as an audio track.  The iPhone was connected to a pair of powered 

loudspeakers.  The loudspeakers were placed in opposite corners of the test 

chamber with a random aiming angle.  The handheld sound level meter was a 

Model 824 along with a Model 2541 random incidence microphone and Model 

902 microphone preamp, all manufactured by Larson Davis.  The sound level 

meter, preamp, and microphone are certified Type I equipment per American 

National Standards Institute (ANSI) S1.4, Specification for Sound Level Meters.  

A summary of the measurement equipment can be found in Table 3 below. 
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3.2 Test Methods & Procedures 

The test method was in general accordance with ASTM C423-07a, 

Standard Test Method for Sound Absorption and Sound Absorption Coefficients 

by the Reverberation Room Method.   

3.2.1 Test Assembly Mounting and Placement 

The test assembly, as described above, was arranged on the floor of the 

test chamber in a diamond shaped pattern with the overall dimensions shown in 

the drawing of the test assembly below.  The total area of the test assembly was 

63 ft2 (5.9 m2).  The test assembly was rotated such that the no edge of the 

assembly was parallel to any wall surface, as specified in Section 9.1.3 of ASTM 

C423-07a.  Also as described in the same section, the test assembly was not 

placed in the center of the room.  Instead, the test assembly was positioned 

slightly to the off-center in both length and width.  See the figure below for a 

photograph of the test assembly placement.  Type A mounting was used for the 

measurements.  Type A mounting is positioning the test assembly immediately 

against the surface with no air cavity between the floor surface and the test 

assembly. 
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frequency band.  The decay rate measurements were recorded using the Real 

Time Analyzer setting in the sound level meter.  Sound pressure levels were 

recorded continuously in each one-third octave band with a time interval and 

integration of 20 ms (using linear averaging).  Although Section 8.4.1 of ASTM 

C423-07a requires only a maximum time interval of 50 ms, a faster time interval 

was desired to increase the number of data points and smooth the resulting time 

history plots. 

The sound signal used in the measurements was pink noise (equal 

acoustic energy at each frequency band), as generated from a WAV file audio 

test track.  For each measurement the sound source was turned on for several 

seconds in order to fill the room with a steady state sound field.  The sound 

source was then turned off and the time history of the decay was recorded.  Four 

microphone position locations were selected and random, and such that each 

position was at least 1m away from any other position or any reflective surface, 

as required by Section X2.4.3 of ASTM C423-07a.  Five decays were collected at 

each of the four microphone positions for a total of 20 decays, as per Section 

X2.4.4 of ASTM C423-07a. 

A complete set of decays was collected first with the room empty, and 

then with the test assembly installed.   The sound level meter was calibrated 

before and after the measurements with a Larson Davis CAL 200 acoustic 

calibrator with a 1 kHz sine tone at 114 dB. 
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Reverberation time was measured in the existing gym, as described in 

ASTM E2235-04. The test equipment setup, procedure, and methodology for 

measuring the reverberation time in the gym is very similar to the racquetball 

court measurements described above.  However, the primary difference between 

the two test methods is that ASTM E2235-04 simply stops at the reverberation 

time data collection, and is often used in conjunction with other sound insulation 

measurements within buildings.  The primary goal of ASTM C423-07a is to attain 

the sound absorption and sound absorption coefficients of a test sample.  

However, the two standards are very closely related and the methodologies are 

virtually identical.  Four microphone measurements positions were uses, with five 

decays at each microphone position for a total of 20 decays.   
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As a supplement to this graph, the following figure shows the time history 

plots for all of the one-third octave bands during 1 of the 20 decays. 

 

Figure 15.  Time History Plot at all one-third octave bands for an Empty Room (1 of 20 decays) 
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desirable).  The figure below shows all of the one-third octave band results for 1 

of the 20 decays with the test sample. 

 

Figure 17.  Time History Plot at all one-third octave bands for the Test Sample (1 of 20 decays) 
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4.2 Reverberation Time, T60 

As defined above, the T60 is the time it takes for sound to decay 60 

decibels after the sound has been turned off.  For the decay rate measurements, 

the T60 was obtained using the Standard Schroeder backward integration 

calculation settings within the sound level meter.  The start offset was set to 5 dB 

and the dynamic range was set to 30 dB.  The figure below shows a result of the 

T60 measurements for all 20 decays.  The results indicate consistent data at high 

frequencies, but less agreement at low frequencies.  This result is expected for 

the reasons stated above regarding diffuse sound fields. 

 

   

Figure 18.  Reverberation Time for all 20 decays in the Empty Room 

The results for the room with the test sample show similar trends with 

excellent agreement at high frequencies and less consistency at low frequencies.  
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The figure below shows the results from all 20 decays for the room with the test 

sample. 

 

Figure 19.  Reverberation Time for all 20 decays in the Room with the Test Sample 

For both test conditions (empty room and test sample), the 20 decays 

were linearly averaged.  The figure below shows a comparison of the averaged 

T60 measurements with the empty room to the measurements with the test 

sample.  Immediately noticeable is the large difference between these two curves 
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performance at these frequencies. 
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Figure 20.  Averaged T60 Comparison for the Empty Room and Test Sample 

Also apparent in this graph is the unexpectedly low performance at the 

500 Hz frequency band.  The two curves appear nearly identical at this 

frequency, which implies that the test sample did not reduce the reverberation 

time.  The table below numerically compares these two curves. 

Table 4.  Averaged T60 Measurement Results 
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100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000

T60 (sec) 

Empty Room
3.01 4.80 6.58 6.38 5.95 4.29 2.81 3.05 3.39 3.61 3.76 3.87 4.23 4.77 4.89 4.43 3.80 2.96

T60 (sec) Test 

Sample
2.68 3.99 4.58 4.39 3.90 3.26 2.44 3.03 3.11 3.37 3.47 3.47 3.80 4.22 4.38 4.06 3.58 2.85
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4.3 Absorption Coefficients, α 

Determining the absorption coefficients of the test sample is the primary 

objective of this research.  Recalling equation 16 from above, the Sabine 

equation states the following, which can be rewritten in terms of the absorption, 

A. 

଺ܶ଴ ൌ
0.049ܸ
ܣ

 (21) 

ܣ ൌ
0.049ܸ

଺ܶ଴
 (22) 

The absorption can be calculated for both the empty room and for the 

room with the test sample using equation 22.  The difference between the empty 

room and the room with the test sample is the change in absorption added by the 

test sample where, 

௖௛௔௡௚௘ܣ 	ൌ ௦௔௠௣௟௘	௪௜௧௛	௥௢௢௠ܣ െ ௥௢௢௠	௘௠௣௧௬ܣ ൌ  ௦௔௠௣௟௘ (23)ܣ

௦௔௠௣௟௘ܣ 	ൌ ൬
0.049ܸ

଺ܶ଴
൰
௥௢௢௠௪௜௧௛ ௦௔௠௣௟௘

െ ൬
0.049ܸ

଺ܶ଴
൰
௘௠௣௧௬	௥௢௢௠

 (24) 

The volume of the room, V, is a constant, so the change in the absorption 

is solely based on the change in reverberation time between the two conditions.  

The table below shows the absorption in Sabins for the empty room and for the 

room with the test sample at each one-third octave band.  The difference 

between the empty room and test sample is also shown in the table. 

Table 5.  Total Absorption for the Empty Room and Test Sample 

 

100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000

Empty Room 

(Sabins)
261 163 119 123 132 183 279 257 231 217 209 203 185 164 160 177 206 265

Test Sample 

(Sabins) 292 197 171 179 201 240 322 259 252 232 226 226 206 186 179 193 219 275

Difference 

(Sabins)
31 33 52 56 69 57 43 2 21 15 17 23 21 22 19 16 12 10

One‐Third Octave Band Center Frequency (Hz)
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The next and final step is to calculate the absorption coefficients.  

Recalling equation 12 from above, and rewriting in terms of the absorption 

coefficient, α, the following relationship develops: 

ܣ ൌ  (25) ܵߙ

௦௔௠௣௟௘ߙ ൌ
௦௔௠௣௟௘ܣ

ܵ௦௔௠௣௟௘
 (26) 

The area of the sample, S, was calculated from the field dimensions at 63 

ft2.  The resulting absorption coefficients are shown in the table below. 

Table 6.  One-Third Octave Band Absorption Coefficients of the Test Assembly 

 

 

Absorption coefficients are frequently used in octave bands versus one-

third octave bands for calculations of reverberation times within a space.  

Therefore, the above one-third octave band absorption coefficients were 

translated to octave band absorption coefficients using a logarithmic average 

calculation. The three one-third octave bands were logarithmically averaged in 

order to obtain the octave band absorption coefficients.  For example, the 100 

Hz, 125 Hz, and 160 Hz one-third octave band values were averaged to obtain 

the 125 Hz octave band value.  The following relationship was used for these 

calculations (Beranek 1988): 

݁݃ܽݎ݁ݒܣ ൌ 10
∑௅௢௚ሺ௫ሻ

௡  (27) 

∝ଵଶହு௭	ை௖௧௔௩௘ൌ 10
௅௢௚ሺ∝భబబಹ೥ሻା௅௢௚ሺ∝భమఱ ಹ೥ሻା௅௢௚ሺ∝భలబ ಹ೥ሻ

ଷ  (28) 

The following table shows the resulting octave band absorption 

coefficients, which are also graphed in the figure below. 

100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000

Test Sample 

Absorption 

Coefficient, α
0.50 0.53 0.82 0.88 1.10 0.91 0.67 0.02 0.33 0.24 0.27 0.36 0.33 0.35 0.30 0.25 0.20 0.16

Test Sample Area (sq ft) 63

One‐Third Octave Band Center Frequency (Hz)



 40

 

Table 7.  Octave Band Absorption Coefficients of the Test Assembly 

 

 

 

Figure 21.  Graph of Octave Band Absorption Coefficients of Test Assembly 

 

4.4 Data Analysis 

4.4.1 Comparison of the Test Assembly to Commercial Products 

Although the acoustical performance at high frequencies is less than the 

author had hoped, the low frequency performance is impressive and higher than 

expected.  The peak absorption at the 250 Hz frequency band is not common, 

especially for acoustical treatments that are only 2 inches thick.  As mentioned 
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the low frequency sound absorption performance of a particular material.  
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Product information can be found in the associated website links.  Although there 

are many other types of acoustical products available in the commercial market, 

these four options are very common products, and they have similar uses and 

applications. 

A. K-13 by International Cellulose 

www.internationalcellulose.com  

B. Interior Wall Panels by Tectum, Inc. 

www.tectum.com  

C. AP Acoustical Panels by Decoustics 

www.decoustics.com  

D. Echo Eliminator by Acoustical Surfaces, Inc. 

www.acousticalsurfaces.com  

Table 8.  Direct Comparison of Test Assembly to other Common 2” Acoustical Treatments 

  

Absorption Coefficients 

Octave Band Center Frequency 

125  250  500  1000  2000  4000 

2" thick Test 
Assembly 

0.60  0.96  0.18  0.29  0.32  0.20 

(A) 2" K‐13 
Cellulose Spray‐on 

0.26  0.68  1.05  1.10  1.03  0.98 

(B) 2" Tectum 
Wood Fiber Panels 

0.15  0.26  0.62  0.94  0.62  0.92 

(C) 2" Decoustics 
Fabric Fiberglass 
Panels 

0.23  0.81  1.01  1.13  1.10  1.03 

(D) 2" Processed 
Cotton Panels 

0.35  0.94  1.32  1.22  1.06  1.03 

 

The test assembly shows superior low frequency sound absorption 

compared to all of the above common acoustical treatment options.  However, at 

higher frequencies the test assembly is significantly less absorptive.  Ideally, the 

treatment would be perfectly absorptive at all frequencies, but there are several 

advantages to a product that is better performing at particular frequency bands, 

especially low frequency bands.  In general, high frequency sounds are easier to 
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absorb than low frequencies because the wavelength is much shorter.  Because 

of the difficulty in absorbing low frequency sound, the improper application of thin 

acoustical products can often “unbalance” the room.  This phenomenon happens 

when the surfaces in a room are effective for absorbing high frequency sounds, 

but not very effective for absorbing low frequency sounds.  The resulting room 

will sound “boomy”, with low frequency sounds that have many reflections within 

the space before they die away.  On the other hand, high frequency sounds may 

be easily absorbed in the room and quickly die away.  This type of condition will 

be acoustical “live” at low frequencies with a long reverberation time, and “dead” 

at high frequencies with a short reverberation time.  The unbalanced room is 

typically not desired.   

These unbalanced rooms are very common.  For example, many high 

school and middle school music rooms are acoustically unbalanced.  These 

rehearsal spaces often incorporate some type of acoustical treatment for the 

walls and/or ceiling.  However, they often also incorporate carpet floors.  

Although carpet flooring can absorb sound, it usually only absorbs high 

frequency sounds, especially the thin pile carpet that is commonly used in these 

spaces.  Therefore, the carpet flooring naturally tends to unbalance the acoustics 

in these spaces creating a “boomy” sounding room.  The tee shirt and sailcloth 

test assembly can aid the acoustics in this type of space by targeting the 

frequencies that are most challenging to absorb. 

Of course there are commercially available products that are marketed to 

absorb low frequency sounds and not high frequency sounds.  One example is 

the Low Frequency Tuner (LFT) by Decoustics.   A comparison of this product to 

the test assembly is shown in the table below.  The comparison shows 

overlapping performance which can easily be seen in the figure below. 
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Table 9.  Direct Comparison of Test Assembly to Decoustics Low Frequency Tuner (LFT) Panel 

  

Absorption Coefficients 

Octave Band Center Frequency 

125  250  500  1000  2000  4000 

2" thick Test 
Assembly 

0.60  0.96  0.18  0.29  0.32  0.20 

2” Decoustics LFT 
Panel 

0.36  1.07  0.76  0.24  0.07  0.08 

 

 

Figure 22.  Graph of Absorption Coefficients of Test Assembly and Decoustics LFT Panel 

It is important to note the composition of the Decoustics LFT panel 

because it helps with the understanding of the acoustical performance of the test 

assembly.  The LFT panel has an absorptive fiberglass core with a density of 6 to 

7 lb/ft3, which is the standard density for most fiberglass core acoustical products.  

The unique feature that makes the LFT absorb low frequency sounds but reflect 

high frequency sounds is the rigid membrane that is placed over the absorptive 

core.  This membrane acts somewhat like a drum head.  Because the membrane 

is thin, low frequency sounds can pass through it and get absorbed by the 
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fiberglass core behind the membrane.  High frequency sounds, on the other 

hand, never reach the core because they reflect off of the membrane.  The high 

frequency sounds have a wavelength that is too short to pass through the 

membrane surface.   

Since the acoustical performance of the tee shirt and sailcloth test 

assembly is more similar to a low frequency absorber than a standard acoustical 

panel, the outer sailcloth wrap may not be acoustically transparent, as originally 

anticipated.  Upon reevaluation of the sailcloth wrap, the sailcloth used to 

fabricate the test assembly was from a main sail of the boat.  The main sail is 

generally made with the strongest sailcloth fabric that is reinforced with cross 

stitching and double layering in some areas.  This thicker sailcloth was somewhat 

rigid, and although slightly porous, was likely acoustically transparent at low 

frequencies only.  Based on the measurement results, some high frequencies 

were absorbed, but there was a substantial amount of high frequency sound that 

reflected off of the sailcloth and was not absorbed. 

Although the performance of the test assembly being similar to a low 

frequency absorber was not anticipated at the start of the research, the result is 

intriguing and can be seen as an advantageous attribute.  As mentioned above, 

there are commercially available low frequency absorbing products, but they are 

not particularly common and the selection of available products is slim.   

Manufactured acoustical products are not the only surfaces that absorb 

sound.  In fact all surfaces absorb sound, albeit very minimally for some 

surfaces.  Therefore, in order to predict the reverberation time with the space, the 

sound absorption of all surfaces must be included in the calculation, not just the 

acoustical products.   

The table below shows a small sample of the absorption coefficients for 

some common building elements and room finishes.  There are a variety of 

sources which can be referenced for obtaining the absorption coefficients of 

these common elements.  



 

Tablee 10.  Absorpttion Coefficien

45

nts for Commmon Building MMaterials (Harris 1998) 

 



4

a

d

re

a

a

in

e

tr

m

m

F

 

4.4.2 Mid F

The T

 dip in the s

ata, this dip

eviewing th

Figu

As ca

 dramatic d

bsorption c

ndicates ve

xpected.  T

rend of the 

measureme

microphone 

Figure 18 an

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1
0
0

1
2
5

A
b
so
rp
ti
o
n
 C
o
e
ff
ic
ie
n
t

12
Oc

Frequency

T60 data and

sound abso

p becomes 

e one-third

ure 23.  A com

an be seen 

drop in the s

coefficient a

ry minimal 

The perform

performanc

nt data is u

locations a

nd Figure 1

1
2
5

1
6
0

2
0
0

25 Hz 
ctave

2
O

y Perform

d the absor

orbing perfo

somewhat

 octave ban

mparison of O

in the figur

sound abso

at this one-t

sound abso

mance dip is

ce curve.  A

unlikely sinc

and position

9 shows a 

2
5
0

3
1
5

4
0
0

Octav

250 Hz 
Octave

46

mance Dip

rption coeff

ormance at 

“averaged

nd data, as

Octave Band t

re above, th

orption perf

third octave

orption.  Th

s also out o

An anomaly

ce 20 decay

ns.  Howeve

greater deg

5
0
0

6
3
0

ve Band Cente

500 Hz 
Octave

 

ficient data 

500 Hz dip

 out”, but it

s shown in t

to One-Third O

he one-third

formance a

e band is on

his dip in pe

of line with t

y in the colle

ys were rec

er, reviewin

gree of vari

8
0
0

1
0
0
0

1
2
5
0

r Frequency (H

1000 Hz 
Octave

of the test 

p.  For the o

t is more ea

the figure b

Octave Band

d octave ba

t 500 Hz.  I

nly 0.02, a v

erformance 

the general

ection of th

corded at va

ng the data 

iance in the

1
6
0
0

2
0
0
0

2
5
0
0

Hz)

Octave Ban
Coefficient

One‐Third O
Absorption

2000 Hz 
Octave

assembly s

octave band

asily seen b

below. 

 Results 

and data sh

In fact the 

value that 

is not 

l shape and

he 

arying 

shown in 

e reverbera

2
5
0
0

3
1
5
0

4
0
0
0

nd Absorption
s

Octave Band
n Coefficients

4000 Hz 
Octave

show 

d 

by 

 

ows 

d 

ation 

5
0
0
0



 47

time at 500 Hz compared to the two adjacent frequency bands.  These results 

indicate that standing waves in this frequency band could be present in the test 

chamber.  The regular shape of the racquetball court, along with the parallel 

surfaces and integer multiplier of the physical room dimensions (40 ft x 20 ft x 20 

ft) make the possibility of standing waves likely.  The wavelengths of sound 

waves in the 500 Hz one-third octave band are approximately 2 ft. Therefore, 

standing waves in this frequency band are certainly plausible, especially 

considering that the wavelength is an even integer multiplier of the length, width, 

and height of the test chamber.  A standing wave would negatively affect the test 

results because, as the name implies, the standing wave remains stationary and 

does not move.  The sound wave bounces between two parallel surfaces, hitting 

the same location on the surface with each reflection.  This phenomenon allows 

the sound wave to avoid any interaction with the test assembly.  Standing waves 

would result in no change of the measurement data from the empty room to the 

room with the test assembly installed, which was the case for the measurement 

data collected.  The reverberation times for the empty room and for the room with 

the test sample are virtually identical at 500 Hz.  The author believes that 

repeating the series of tests in a laboratory (compared to the racquetball court 

mock laboratory) could prove or disprove this theory. 

4.5 King Intermediate Gymnasium Existing Condition T60 Test 

Results 

A total of 20 decays were measured in the gymnasium, each with a 

recorded time history at each octave band.  The reverberation time was 

determined from the slope of the time history plot for each octave band.  All 20 

decays were averaged with the results summarized in Figure 24 below.  The 

results clearly show excessive reverberation at all frequency bands, but 

especially at the low frequency bands (less than 250 Hz).  The reverberation time 

in the existing space is so severe that it is several times the design goal 

(discussed below).  Given these results, speech intelligibility is likely to be 
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extremely low and complaints on the poor acoustics within the space are more 

than warranted. 

 

 

Figure 24.  Reverberation Time in the Existing King Intermediate School Gymnasium 
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Chapter 5 Case Study: King Intermediate School 

Gymnasium Proposed Acoustical Treatment 

5.1 Gymnasium T60 Design Goal 

The design goal for reverberation time (T60) depends significantly on the 

size of the space (air volume), but it depends equally on the use of the space.  

For example, a room used for choral or orchestral music performance should be 

designed for a longer reverberation time than a room designed for speech and 

presentations, given the same size space.  The longer reverberation time in 

music performance spaces aids the performance by blending musical phrases 

together.  However, for speech the consonances and diction of the speaker must 

be easily heard and distinct.  Therefore, the reverberation time in these spaces, 

where speech is the predominant use, must be lower than for musical 

performances.  Selected the design goal for mixed-use spaces can be 

challenging. 

 Although there are many published opinions and recommendations for 

setting design goals on reverberation within spaces, one such example is from 

Forman (1990), as shown in the figure below showing recommended design 

goals as a function of room air volume and use of the space.   
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because low frequency sound is much harder to absorb than high frequency 

sound.  Thick and soft materials are usually needed to absorb sound at these 

frequencies, and common building materials (i.e., carpet, wall coverings, etc.) are 

too thin for effective low frequency sound absorption.  For music performance 

spaces, a boost in the low frequency reverberation time can actually be a 

desirable condition for many types of music.  The room will give the listener a 

sensation of a warm sounding space because the bass notes will more easily 

blend together, while the shorter reverberation time at mid and high frequencies 

offers definition to individual musical notes in the melody and harmony of musical 

phrases. 

The King Intermediate School gymnasium has many uses, including 

speeches, presentations, and musical performances.  Since selecting one design 

goal for all program uses is not possible, a range of design goals was selected, 

an upper limit and lower limit.  The speech use sets the low end of the design 

goal, the lower limit.  And the upper limit is set for musical performance use.  

Based on a calculated room volume of approximately 565,000 cubic feet for the 

gymnasium, the lower limit for reverberation time should be approximately 1.2 

seconds, and the upper limit for musical performances should be approximately 

2.0 seconds.  For a space of this size, achieving the lower limit design goal for 

speech is not practical.  It would require an extraordinary amount of sound 

absorbing surfaces to be added to the room.  Even achieving the upper limit 

design goal for the gymnasium would be a significant accomplishment.  Figure 

28 below shows a comparison of the exiting reverberation time in the gymnasium 

to the design goal.  The difference between the existing (measured) and the 

design goal is staggering.   
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Figure 28.  Comparison of the Design Goal to the Existing Reverberation Time in the Gymnasium 

 

5.2 Gymnasium Acoustical Treatment Recommendations  

The primary goal of this case study was to determine the effect of the 
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reverberation time in the space, but by how much?  How much area of the 

treatment is needed in order to make a substantial difference, or even better, 

meet the design goal?  Where should the treatment be placed and how should it 

be installed?  These important questions were considered in developing the 
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potential locations for acoustical treatment.  For the gymnasium, the floor is a 

hard reflective surface, but treating the floor with a soft absorptive material is not 

practical.  A soft floor would certainly be detrimental to the use of the gym, and is 

simply not a good idea.  The walls are all hard reflective surfaces.   

Because of its porosity, Concrete Masonry Unit (CMU) block walls can be 

somewhat sound absorbing, but only left unpainted.  All of the walls in the 

gymnasium have been painted leaving them highly reflective.  The walls are 

certainly a potential location for acoustical treatment.  The reflective ceiling is 

also a potential location for acoustical treatment.  It was determined that the 

ceiling was the most effective location for treatment.  Based on the room 

dimensions, the ceiling is likely to generate more sound reflections to the listener 

(audience) than the walls, although the walls will certainly reflect sound to the 

listener.  A simple ray tracing method can be used to illustrate this point.  

Assuming a sound source located in the middle of the basketball court and a 

listener located in the middle of the audience seats, sound reflecting off of the 

side walls will have to travel 160 feet.  The figure below illustrates the ray tracing 

for the sound wave reflecting off of the gymnasium side walls.  That same sound 

wave will only have to travel 80 feet for a reflection off of the ceiling.  Essentially, 

the ceiling is closer to the listener (audience member) than the walls.   

Of course by the very nature of a highly reverberant room, a single sound 

wave may reflect off of multiple surfaces before reaching the listener.  However, 

with each reflection the sound wave weakens not only due to sound energy lost 

at the interface with the surface (i.e., the sound absorption performance), but 

also because of the distance it travels before it reaches the listener.  As 

discussed earlier in this paper, sound energy is lost by spherical spreading, also 

called geometric divergence (Harris 1998). 
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Secondly, the wood blocking adds a small gap between the pillow and roof deck.  

This gap will help the pillow maintain its natural shape.  If the wood blocking was 

not installed, the pillow would tend to flatten as it gets screwed into the roof deck.  

The small gap will also help boost the low frequency sound absorption 

performance of the pillows even further.  Separating the sound absorbing pillow 

for the roof deck increases its effective thickness.  The sound absorbing material 

is moved further away from the reflective surface, which means that it will have 

an easier time absorbing low frequency sound waves that have longer 

wavelengths.   

The idea of offsetting the acoustical treatment from the reflective surface 

is not a new one.  In fact, some acoustical treatment manufacturers publish 

sound absorption coefficient data for a variety of mounting methods.  The most 

common alternates to the Type A mounting (direct mount), are the Type D20 

(20mm [0.75in] gap without insulation), C20 (20mm [0.75in] gap with insulation), 

and C40 (1.5in] gap with insulation).  Although a comparison of these mounting 

method types is not included in the scope of this research, it is important to note 

that alternates to Type A mounting are not uncommon and they typically show an 

increase in performance for low frequency sound absorption. 

The actual improvement in low frequency sound absorption gained by 

adding a small gap between the sound absorbing pillows and the roof deck is not 

known since Type A mounting was used for the acoustical tests.  Future research 

in this area could help quantify the differences in mounting methods.  However, a 

dramatic change in low frequency sound absorption performance is not 

expected.  Rather, the gap may only improve the performance by a small 

amount, and may not be noticeable to the average listener.  Regardless, the 

improvement is noteworthy, and could be investigated further. 

Figure 30 below shows a plan and section drawing of the proposed 

installation assembly method. 
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the King Intermediate School gymnasium is undoubtedly a very large space.  

Naturally, a larger space will require a greater area of treatment for the same 

desired reverberation time.  The reverberation time is directly proportional to the 

room air volume.  Therefore, for the gymnasium, even small reductions in the 

reverberation time will require a significant amount of acoustical treatment.  The 

first step to assessing how much acoustical treatment is necessary is to model 

the room using absorption coefficients for the existing building elements and 

room finishes.  Since the existing reverberation time was measured in the 

gymnasium, the measured levels can be used to “calibrate” the model by adding 

a correction factor for any discrepancies between the model data and the 

measured data. 

The area of all of the various room finishes were documented from field 

observations and from the as-built drawings of the gymnasium.  The following 

table lists these surfaces as the estimated area of each surface. 

Table 11.  Quantity and Type of the Gymnasium Existing Room Finishes 

Room Finish / Surface 
Area 
(ft2) 

Floor – Wood Sports Floor on Sleepers 6,150 
Floor – Polished Concrete 11,800 
Walls – Metal Doors 340 
Walls – Ventilation Openings 2,100 
Walls – Painted CMU 13,250 
Ceiling – Enclosed Beams 8,050 
Ceiling – Wood Plank Roof Deck 14,700 

  
The absorption coefficients were obtained by combining several of the 

sources in the bibliography of this paper, including Beranek (1988), Harris 

(1998), and others.  The following table summarizes the absorption coefficients 

for each room finish at each octave band. 
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Table 12.  Absorption Coefficients of the Gymnasium Existing Room Finishes 

  

Absorption Coefficients 

Octave Band Center Frequency 

125  250  500  1000  2000  4000 

Floor – Wood Sports  0.18  0.20  0.18  0.12  0.08  0.01 

Floor – Polished Concrete  0.01  0.01  0.02  0.02  0.01  0.01 

Walls – Metal Doors  0.05  0.06  0.05  0.05  004  0.01 

Walls – Ventilation Opening  0.31  0.35  0.42  0.44  0.50  0.20 

Walls – Painted CMU  0.04  0.05  0.07  0.07  0.04  0.01 

Ceiling – Enclosed Beams  0.04  0.06  0.08  0.08  0.04  0.01 

Ceiling – Wood Plank Roof  0.03  0.04  0.04  0.04  0.03  0.01 

 

Using the area of each room finish and the octave band absorption 

coefficients, the total absorption was calculated using the following relationship. 

ܣ ൌ  (29) ܵߙ

In addition to calculating the absorption of the room surfaces and finishes, 

the absorption of air should also be included in the calculations.  Air absorption 

can be significant at higher frequencies and is variant upon the relative humidity.  

The relationship between the absorption of air is governed by the following 

equation (Harris 1998). 

௔௜௥ܣ ൌ 4ܸ݉ (30) 

Where Aair is the absorption of the air (sabins), m is the air attenuation 

coefficient per foot (ft-1) as determined by the figure below, and V is the room air 

volume (ft3).  The air attenuation coefficient can also be calculated using 

equation 15 above. 
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Using the Sabine Equation described above the reverberation time in the 

gymnasium can be predicted.  The Absorption of the miscellaneous surfaces 

above is estimated and is used to calibrate the model to the measured values.  

These miscellaneous can include the bleachers, sports equipment, or any other 

furnishings or equipment that can absorb sound within the space, but were not 

singled out as individual items in the reverberation time calculations. 

5.2.4 Quantity of Treatment and Improvement Gained 

Since the sound absorbing tee shirt and sailcloth acoustical pillows are 

recommend to be installed on the ceiling, the treatment will essentially cover the 

ceiling surface (or at least a substantial portion of the existing ceiling surface).  

Therefore, area of the existing ceiling that is covered by the acoustical treatment 

must be subtracted from the reverberation time calculations because this surface 

area is no longer exposed to the room. 

A total treatment area of 11,000 ft2 is recommended for the gymnasium, if 

the acoustic pillows are used.  The reverberation time prediction using this 

acoustical treatment is shown in the figure below. 
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Figure 37.  Predicted T60 for each Project Phase 

The results indicate that a reasonable improvement could be achieved, 

even by implementing the first phase.  The first phase would like be a noticeable 

improvement to the students, staff, and community members, although it does 

not achieve the design goal.  This graph shows the improvement gained by 

implementing the acoustic pillows, as currently designed.  Adjustments and 

improvements made the pillow design could radically improve the mid and high 

frequency performance.   
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Chapter 6 Conclusions 

6.1 Data Analysis and Potential Improvements to the Test 

Assembly 

6.1.1 Test Method and Test Chamber 

Overall, the fabrication of the test assembly and accompanying acoustical 

measurements showed desirable results.  The tee shirt and sailcloth acoustic 

pillows exhibited a sound absorbing performance that is very effective for low 

frequency sound (250 Hz and below).  The high frequency sound absorption 

performance is less than ideal, but improvements in the design of the acoustic 

pillow could increase the performance.  The performance dip at 500 Hz cannot 

be fully explained, although standing waves within the test chamber are a very 

likely culprit to the downgraded performance.  Retesting the assembly in a 

laboratory setting may yield more favorable results in this frequency band. 

Although the racquetball court was not an ideal testing laboratory, it was 

generally effective for most of the measurement data.  Finding a space of the 

right size and one that has all reflective surfaces is not easy.  The racquetball 

court was certainly a very reverberant space and served as a fair approximation 

for laboratory conditions. 

6.1.2 Test Assembly Improvements 

The marginal performance in high frequency sound absorption is likely 

due to the sailcloth wrap, and not the cotton acoustic filler.  The sailcloth used for 

this experiment was thicker and heavier than an ideal material.  Selecting a 

sailcloth material that is thinner and lighter will likely improve the high frequency 

performance.  An evaluation of sailcloth types could be considered for future 

research.  The author recommends using spinnaker sails instead of the sailcloth 

fabricated for the main sail.  The typically colorful spinnaker sail leads the boat in 

downwind conditions and is not as strong (or as thick) as the main sail, as shown 

in the figure below.  Of course other materials could be used for the out wrap 

instead of sailcloth.  Many other fabrics or even the tee shirt itself could be used.  
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and other warm, humid climates. Naturally ventilated areas have a higher risk of 

mold growth versus conditioned spaces.  Since the King Intermediate School is 

naturally ventilated, concerns over mold growth should be fully evaluated. 

6.2.2 Fire Code Restrictions 

Fire code restrictions may limit the use of the proposed acoustic 

treatment, particularly if installed on the ceiling.  The risk of flame spread should 

be checked by the appropriate personnel.  If local fire codes limit the use of the 

product, a fire retardant incorporated into the acoustic pillow could be 

considered.  The acoustical performance may need to be verified with any 

modifications required by the fire code restriction. 

6.2.3 Structural Support 

Although the weight of one acoustic pillow is not significant, the combined 

weight of a ceiling full of acoustic pillows may add substantial weight to the 

ceiling/roof structure.  A structural engineer should verify the structural support of 

the building framing can handle the additional weight. 

6.3 King Intermediate School Conclusions 

The proposed tee shirt and sailcloth acoustic pillows are certainly a viable 

option for the King Intermediate School.  The assembly satisfies all of the 

school’s goals.  The acoustic pillows have a satisfactory performance for 

absorbing sound.  With the improvement of using a thinner sailcloth material, the 

author believes that the mid and high frequency sound absorption can be 

significantly improved.  The finished product is very environmentally friendly 

because it provides a second use for materials that would otherwise end up in a 

land fill.  

 Although a detailed cost analysis was not included with this research, it is 

apparent that the material costs would be very low.  The main components, the 

sailcloth and tee shirts, are items that can be salvaged or donated to the school.  

There will be materials costs for the thread used to sew the acoustic pillows and 

for the screws and washers used to attach the pillows to structure, but these 
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costs are minimal.  Labor time is likely the most significant cost related items.  

Since the solution is not an “off-the-shelf” item, if will require a lot of time and 

effort to fabricate and install the pillows.  However, since the school stressed 

community, staff, and student involvement, much of the labor time could be 

completed with organized school functions, without the need to hire contractors. 

A “tee shirt drive” could be organized to collect some of the materials.  The art 

department could also be involved in creating a mosaic or some type of artistic 

design with the pillows.  Although the school could save a lot of money by 

fabricating the acoustic pillows, installation of the pillows on the gymnasium 

ceiling may need to be done by a contractor.  Safety concerns of working at the 

height of the gymnasium ceiling may require outside help. 

The acoustic pillow solution may not be perfect in every way, but it is 

potential solution to an existing problem.  It makes use of local materials that are 

in the vicinity of the project and can unite students, teachers, and community 

members in a sizeable project that benefits everyone. 
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