
A Primer on NoSQL Databases for Enterprise Architects:
The CAP Theorem and Transparent Data Access with MongoDB and Cassandra

Fumbeya Marungo
Johns Hopkins University

fmarung1@jhu.edu

Abstract—MongoDB and Apache Cassandra are the dom-
inant “Not Only SQL” (NoSQL) database management
systems for persisting structured records. Moreover, the
pair are respectively in the top-five and top-ten of database
management systems generally. Therefore this work seeks
to present the two leading systems, along with the un-
derlying principle of the CAP Theorem, in the context of
creating transparent data access tiers capable of support-
ing flexible enterprise architectures.

1. Introduction

The goal of this work is to present the tightly related
principles of the CAP Theorem, BASE semantics, and
ACID transactions, along with the two leading “Not
Only SQL” (NoSQL) database management systems
MongoDB [22] and Apache Cassandra [1] in the context
of enterprise architecture.

The interplay of CAP, BASE, and ACID are not
only conceptual underpinnings of NoSQL systems, but
also have fundamental implications on location, trans-
actional, and redundancy decisions across the enterprise
architecture.

This work focuses on MongoDB and Cassandra as
the dominant NoSQL leaders; respectively receiving
50% and 15% of NoSQL LinkedIn Skills mentions
[5]. More broadly, MongoDB is ranked in the top-five,
and Cassandra in the top-ten in popularity across all
database systems [26].1 Each system offers an alter-
native data model to that of the traditional relational
database management system (RDBMS), along with
distinct straight-forward replication and transaction ap-
proaches.2

Given the level of popularity of MongoDB and
Cassandra there is a need for examination of their poten-
tial applications to enterprise architecture. For example,
the current version of The Open Group Architecture
Framework (TOGAF) [27] is from 2011; it does not
mention either NoSQL systems, the database models
they provide, or the CAP Theorem. This work presents

1. A third system, Redis [4], is roughly tied with Cassandra.
However, it stores scaler key-value pairs rather than structured data.
Combined the three systems represent 80% of LinkedIn mentions [5].

2. For examples this work uses the sample database provided by
the Eclipse Foundation’s Business Intelligence and Reporting Tool
(BIRT) Project [2]. IBM is a BIRT project sponsor and the project
underlies the company’s Tivoli reporting software.

the features of MongoDB and Cassandra that are rele-
vant to the development of data access tiers.

In the Software Engineering View of TOGAF [27],
the data access tier of a five-tier software architecture
provides an intermediary interface between the data
store tier and one or more application tiers across the
enterprise. The tier it serves persisted data classes to the
application architecture while hiding the complexity of
the data architecture.

To define the requirements for hiding complexity,
the TOGAF Software Engineering View outlines a set
of transparency properties drawn from the ISO Ref-
erence Model for Open Distributed Processing (RM-
ODP). The purpose of a transparency is to specify a
class of problems a component safely hides from its
clients [21].

Thus, application tier clients can use the data access
tier to access persisted objects while safely meeting
service level agreement (SLA) requirements. Common
requirements include providing: a) 99.9% availability
with database commits for human user systems within
5 ms [17], and b) replicated redundancy sufficient to
recover from site-wide or regional failure for business
continuity planning.

This work examines relevant features of MongoDB
and Cassandra in enabling the data access tier to address
six RM-ODP transparencies3 .

2. The CAP Theorem, ACID and BASE

The technical motivation for developing NoSQL
systems grew from the CAP Theorem — also called
Brewer’s Conjecture [11]. The three factors in the the-
orem are as follows:

• Consistency is the guarantee that simultaneous
reads from separate locations return the same
value. That is the system does not return stale or
conflicting data.

• Availability is both the responsiveness of a system
in normal operations and the likelihood of outages.

• Partition is the number, fallibility, and performance
of independent components in the system, and the

3. There are six RM-ODP transparencies, two are not applicable to
this work: a) location transparency is typically provided by a separate
naming or directory service, and b) persistence transparency concerns
issues of stateful object lifecycle management, which is optional and
distinct from the data access tier’s stateless operations on the data
store.

Proceedings of the 51st Hawaii International Conference on System Sciences | 2018

URI: http://hdl.handle.net/10125/50472
ISBN: 978-0-9981331-1-9
(CC BY-NC-ND 4.0)

Page 4621

mailto:fmarung1@jhu.edu

network that connects them. Modern enterprise
architectures are distributed — i.e. partitioned —
by default.

By the modern construct of the CAP Theorem: in
the presence of partitioning, choose between consis-
tency or availability [7].

Choosing consistency over availability prioritizes
receiving a guarantee that a read does not return stale
or conflicting data while accepting slower overall re-
sponsiveness due to the added coordination burden for
each query, and the risk of an indefinite outage due to
a network or system component failure.

Choosing availability over consistency gives prece-
dence to receiving an immediate read even if the results
are stale or inaccurate, and to accepting an acknowledg-
ment of a write even if the change may not be visible
throughout the system, and may be subsequently lost.

2.1. ACID

In traditional database theory, ACID transactional
properties [14], [15] are the dominant paradigm. The
terms stand for:

• Atomic, all of a transaction’s writes are committed
or rolled back as one unit. There are no partial
writes.

• Consistent, a transaction does not see interim
changes of another transaction. That is, the trans-
action only reads committed data.

• Isolation, once a transaction reads or writes data it
is guaranteed that the data is not changed by a con-
current transaction until the commit or rollback.

• Durable, a successful transaction is recoverable if
the system fails.

2.1.1. ACID and The CAP Theorem. CAP consis-
tency and ACID consistency are different. CAP con-
sistency concerns simultaneous queries returning the
same value regardless of location. ACID consistency
concerns hiding a transaction’s writes from concurrent
transactions until a commit.

For example, in a bank transfer, reading the first part
of the transfer before the second is performed violates
ACID consistency, but CAP consistency is not violated
so long as the value read is the same. Conversely, read-
ing the correct state of both accounts before the transfer
at one location, and simultaneously reading the correct
state after the transfer is ACID consistent, but reading
two different values at the same time from separate
locations is not CAP consistent. For the remainder of
this paper, consistency refers to the CAP concept.

2.1.2. Distributed ACID Sacrifices Availability.
Gilbert and Lynch [13] provides a formal proof of the
CAP Theorem. The work further proves that provid-
ing ACID transactions requires consistency, and thus
sacrifices availability in a distributed system. The more

partitioning in the system, the greater the loss of avail-
ability due to distributed ACID guarantees.

The loss of availability due to distributed ACID
transactions is not a theoretical result. Each operation of
the system is slowed by transaction management over
the network. Further, the system is vulnerable overall
to a network or component failure.

The true cost of preserving ACID guarantees is
often hidden. Slowed responses are simply accepted.
Manual interventions mask the outages. Moreover, dur-
ing intervention, committed writes are sometimes lost.
Therefore, in reality durability is not an absolute guar-
antee.

2.2. Abandoning Distributed Transactions

The “apostate’s” argument in Helland [16] asserts
that the cost in availability makes ACID-compliant
distributed transactions infeasible in designing scalable
systems.

In Helland [16], scalable information system archi-
tectures consist of entities, where each entity is iden-
tifiable by a key and is stored as a single unit at an
individual machine. Each machine in the system can
only perform ACID-compliant operations on its local
entities. The entities then exchange messages asyn-
chronously — i.e. outside of transactional guarantees.

Helland [16] applies beyond an individual database
management system; it impacts process specification
across architectural phases. Process models should not
rely on transactional enforcement beyond the scope
of a single entity. Thus, verification activities should
be incorporated into process specifications involving
multiple persisted entities in lieu of relying upon trans-
actional guarantees.

2.3. Replication and ACID Relaxation

Replication in Helland [16] cannot occur within a
full transaction; by definition replicating writes is a
distributed activity.

Thus a key implication of the CAP Theorem on
enterprise architectures is that the combination of ACID
transactions and redundancy in fact produces system
fragility.

To fulfill replication requirements, a system must
relax ACID guarantees in order to enable replication
without losing availability, as well as adhere to Hel-
land [16] by limiting transactional scope to a single
record.

2.4. BASE

Neither of the CAP Theorem’s alternative are per-
missible in reality. A system cannot be prone to outages,
or regularly provide stale and inaccurate data. BASE se-
mantics [12] are a representation of the real-world trade-
offs necessary arising from ACID relaxation choices.

Page 4622

The meaning of the acronym is as follows [24]:
• Basic Availability is the expected responsiveness of

the system. It comprises normal and peak demand
response rates, as well as the likelihood of an
outage.

• Soft-state is the data that may be lost. This repre-
sents the uncertainty of reads or writes due to a
failure.

• Eventually consistency is stale or conflicting data
that has not been updated or reconciled. This repre-
sents the uncertainty during normal operations due
to the separation and partitioning of components.

Basic availability is beneficial; soft-state and even-
tual consistency are detrimental. Thus, the goal of ACID
relaxation is to increase the former, or decrease the latter
two.

3. The Emergence of NoSQL Databases

NoSQL database management systems arose in re-
sponse to limitations of RDBMS due the needs to
perform join operations and maintain referential in-
tegrity: [20]

• Object-Relational Impedance Mismatch – The dif-
ficulty in matching RDBMS entity-relational mod-
els to software classes is well-known. A customer
order in the logical data model of Figure 1 is not
one cohesive unit. To create a customer order, a
row in the Orders table must be inserted before
the related rows in the OrderDetails table; the
reverse must be done to delete the order. A wider
concern is that modifying a Customer row has
the hidden side effect of overwriting all previous
orders.

• Distributed Joins – As a RDBMS grows, rows be-
come more distributed as tables are placed in sep-
arate locations, and are further subdivided through
sharding. Performing joins is a costly operation
locally. Without careful administration, joins be-
come far costlier as distributed transactions that
are subject to the CAP Theorem. Moreover, full
ACID compliance is necessary to preserve refer-
ential integrity. For example, the query returning a
customer order in Listing 1 must enforce integrity
over six rows; at scale, it is difficult to ensure the
rows are co-located in a complex database.

• Complex Replication – RDBMS replication is
complex because, not only must individual rows
be replicated, but also referential integrity must
be preserved in the process. As a result, there is
no standard approach to replication. MySQL, for
example, has two separate and distinct clustering
engines, with different transactional guarantees.
Thus the true ACID behavior of a RDBMS de-
ployment with replication is often specific to the
particular RDBMS and a large number of custom
settings.

Figure 1: Tables related to a customer order from the
BIRT sample database [2].

3.1. NoSQL Characteristics

Characteristics of MongoDB, Cassandra, and other
NoSQL systems for avoiding the limitations of joins
and referential integrity include:

• Nested Hierarchal Record Structures4 – Self-
contained records store related data as a unit with-
out the need for joins.

• Single-Record Transactions – The systems limit
transactional guarantees to operations over one
record.

• Simplified Replication – Each NoSQL system of-
fers one record replication method with a small set
of tuning configurations.

Thus, NoSQL systems inherently implement Hel-
land [16]. Each server manages transactional operations
on its local copies of records. Each record is individu-
ally replicated without the need to maintain referen-
tial integrity. NoSQL systems are classified by their
approach to replication: a) Consistency Partition (CP)
systems — such as MongoDB — prioritize returning
the same value across locations, and b) Availability
Partition system (AP) — such as Cassandra — maintain
responsiveness by returning results from low latency
replicas.

To enable reliable replication, each NoSQL system
also explicitly relaxes ACID protections, while pro-
viding BASE tuning settings to manage the degree of
relaxation, for example: a) MongoDB relaxes durability
to permit rollbacks of inconsistent writes, and b) Cas-
sandra relaxes isolation to remove the need to avoid
collisions by disparate servers.

4. MongoDB

MongoDB is an open-source system by the epony-
mous company; it is often deployed as the data storage
component of the MEAN JavaScript-based three-tier
web application stack. The remainder of the stack con-
sists of: Express.js for application logic, Angular.js for
the user interface within the browser client, and Node.js
to execute Express.js components on the server. Thus
the system is designed as a straight-forward means to
persist user interactions.

4. Except in the case of scalar key-value stores.

Page 4623

1 SELECT o.OrderNumber, OrderDate, RequiredDate, ShippedDate, Status,
2 c.CustomerNumber, CustomerName, ContactLastName, ContactFirstName,
3 Phone, AddressLine1, AddressLine2, City, State, PostalCode,
4 Country, SalesRepEmployeeNumber, OrderLineNumber, QuantityOrdered,
5 p.ProductCode, ProductName, PriceEach
6 FROM Orders o JOIN OrderDetails od ON o.OrderNumber = od.OrderNumber
7 JOIN Customers c ON o.CustomerNumber = c.CustomerNumber
8 JOIN Products p ON od.ProductCode = p.ProductCode
9 WHERE o.OrderNumber = 10102

10 ORDER BY OrderLineNumber
11
12 ORDERNUMBER |... |CUSTOMERNUMBER... |ORDERLINENUMBER |PRODUCTCODE...
13 ------------|----|------------------|----------------|-----------...
14 10102 |... |181 ... |1 |S18_1367 ...
15 10102 |... |181 ... |2 |S18_1342 ...

Listing 1: SQL statement to retrieve the BIRT
customer order.

1 > use birt
2 switched to db birt
3 > db.orders.insertOne({
4 ... "_id": 10102, "date": ISODate("2011-01-10"),
5 ... "required_date": ISODate("2011-01-18"),
6 ... "shipping_date": ISODate("2011-01-14"),
7 ... "status" : "shipped",
8 ... "customer": {
9 ... "customer_number": 181, "customer_name": "Vitachrome Inc.",

10 ... "contact_last_name": "Frick",
11 ... "contact_first_name": "Michael",
12 ... "phone_no": "415-555-1450",
13 ... "address_line_1": "2678 Kingston Rd.",
14 ... "address_line_2": "Suite 101",
15 ... "city": "NYC", "state": "NY", "postal_code": "10022",
16 ... "country": "USA", "sales_rep_employee_number" : 1286
17 ... },
18 ... "order_details": [{
19 ... "product": {
20 ... "product_code": "S18_1367",
21 ... "product_name":
22 ... "1936 Mercedes-Benz 500K Special Roadster",
23 ... },
24 ... "quantity": 41, "unit_price": 43.13
25 ... },{
26 ... "product": {
27 ... "product_code": "S18_1342",
28 ... "product_name": "1937 Lincoln Berline",
29 ... },
30 ... "quantity": 39, "unit_price": 95.55
31 ... }
32 ...],
33 ... })
34 { "acknowledged" : true, "insertedId" : 10102 }
35 > db.orders.findOne({"_id": 10102})

Listing 2: Adding the customer order to MongoDB
using the JavaScript shell. The birt database and
orders collection are created automatically.

4.1. A JSON Database

A database in MongoDB contains collections. The
records in each collection are in a variant of JavaScript
Object Notation (JSON) called Binary JSON (BSON).
BSON has an extended typing system, but it is essen-
tially JSON. We refer to the records as JSON documents
in the remainder of this paper.

JSON is a language-independent ECMA-
standard [3] data format for object interoperable
representation. The protocol that is popular in Internet
development due to its simplicity and compatibility
with JavaScript.

Listing 2 adds the BIRT customer order to an
orders collection, and then retrieves it from the
database.

The listing highlights that MongoDB is immedi-
ately ready to persist objects. If the birt database
and orders collection do not exist, the system cre-
ates them. The database system is entirely schema-less.

Each document can have an arbitrary structure. Also,
the JSON document is in a simple, human readable
format. In addition, the queries and responses are JSON
documents as well. Querying the database is declarative,
and does not involve complex manual programming.

Listing 2 uses the mongo JavaScript interactive shell
included with the database. In addition there is offi-
cial support for Java, Python, C#, C/C++, PHP, Ruby,
and other programming languages. Enterprise architects
who have worked with XML, and at least one scripting
language, in the past should find the system easy to use.

4.2. Consistent Replication

MongoDB manages replication through a group of
nodes called a replica set. In normal cases, a replica
set represents an entire collection. Each member of the
replica set has a full copy of the entire collection along
with any search indexes declared on the collection. With
very large collections, or to distribute the work load, the
collection is divided evenly, or sharded; each replica set
handles a shard rather than an entire collection.

If the collection is not sharded, ACID operations
can occur over multiple records within a collection
because each replica set member has a copy of the
entire collection. Once a collection is divided into
shards, atomic operations can only occur on a single
document, because there is no longer a guarantee that
different documents within the collection share the same
replica set. Therefore, MongoDB follows the approach
in Helland [16], transactional guarantees are limited to
operations of a node on its local replicas.

When the replica set begins, the voting members
elect a primary member by majority vote. The primary
handles writes for the collection or shard. With each
write, the primary writes an update entry to a local
oplog of the changes to a record(s) and related indexes.
Each secondary replicates writes by copying over the
entries.

In this approach the primary is the “true” state of
the data. While the secondaries can lag behind and
become consistent eventually. Under the default settings
all reads are also routed to the primary.

Therefore, MongoDB is a CP system because, both
reads and writes are performed at a single source.

4.3. BASE Considerations: Regional Availabil-
ity, and Soft-State Durability Relaxation

Clients far from the primary node (in network dis-
tance) have considerably lower basic availability due to
added network latency. Each write must be handled by
the primary node. However, it is possible to increase
responsiveness for reads by configuring a query’s read
preference to permit routing to nearby secondaries.

By BASE semantics, changing the read preference
introduces eventual consistency. To avoid excessive stal-

Page 4624

eness, MongoDB also provides query settings to limit
the lag time of the nodes permitted to perform the read.

4.3.1. Primary Failure Soft-State Non-Durability. By
default the primary acknowledges a write immediately
after making it locally durable. This increases basic
availability by reducing the wait time for a response,
however, the acknowledgment does not confirm repli-
cation.

If the primary fails, or is no longer part of a ma-
jority of the replica set due to a connectivity loss, the
remaining majority elect a new primary. Any write that
was not replicated to at least one of the participants in
the election is rolled back.

Therefore, MongoDB relaxes ACID durability dur-
ing failover; acknowledged writes may be lost after a
primary becomes inaccessible to a replica set majority.

To monitor the status of the replica set, members
exchange heartbeat messages. Within 10-30 seconds, a
majority of the replica set can detect that the primary
is no longer accessible; concurrently, the primary (if it
is operating) discovers it can not access a majority and
steps down.

When the former primary rejoins the replica set, it
rolls back the writes it acknowledged which the electing
majority did not capture.

4.3.2. Increasing Durability. To ensure a write is
durable, the query’s write concern setting must direct
the primary to acknowledge a write only after durable
replication by a majority of the replica set.

To prevent reading data that may be rolled back a
query’s read concern setting must direct the primary to
linearize all reads. That is the primary only reads data
that are confirmed to be durably replicated by a majority
before the read was submitted. None of the results are
subject to a future rollback.

By BASE principles, the reduction in soft-state
uncertainty comes at the cost of basic availability.
By receiving acknowledgments for writes only after
replication to a majority, and linearizing reads, queries
have fully ACID-compliant replication. However, these
setting do not circumvent the CAP Theorem. Writes
have latencies arising from the primary waiting for
acknowledgment from the last member necessary to
form a majority. Reads require a time out setting to
avoid the possibility of an indefinite wait time.

5. Cassandra

Cassandra began as a Facebook project to support
inbox search [18]. The Apache open-source project has
evolved to provide an environment similar to a RDBMS
without the JOIN operator. Since 2015, the system’s
standard programming interface is a custom SQL-like
language, Cassandra Query Language (CQL). Like an
RDBMS, drivers are available for many languages, as
well as for Open Database Connectivity (ODBC).

Figure 2: A Cassandra table for the BIRT sample
database’s business order [2].

5.1. A Table Partition Record with CQL

A database in Cassandra is called a keyspace. The
keyspace contains a set of tables. Each record in Cas-
sandra is a partition of its table with rows grouped by
a column(s) called the partition key. The rows within
the partition are identified by the clustering column(s)
that are unique within the partition.

The primary key is the union of the partition key and
clustering columns. This is a confusing point because,
the primary key uniquely identifies the row, but the
record is not one row, it is a partition.

Static columns store partition-wide data that is not
part of the partition key. The remainder of the columns
store data for each row.

Cassandra permits collection typed columns which
are maps, sets, or lists. Map or set columns perform
well; however, the documentation advises against lists
because of performance concerns.

5.1.1. The CQL Orders Table. A partition in CQL
is akin to a LEFT OUTER JOIN on a single row from
the left table in SQL. The partition key and static
columns correspond to the one row in the left table,
and the clustering columns and non-static data columns
are from the matching zero to many rows in the right
table.

Figure 2 is an Orders table in Cassandra. The
partition key, OrderNumber, identifies the order, with
the related parent data in static columns. The cluster-
ing column, LineItemNumber, identifies the line item
within the order, with the remaining columns containing
the child data for each line item.

Respective static and non-static columns in the
Orders table contain the customer and product infor-
mation originally in separate tables of the BIRT sample
relational database.

Therefore, each partition in the Cassandra Orders
table conforms to Helland [16]. One record holds the
entire customer order record.

A review of the CQL in Listing 3 provides a view
into the language and Cassandra’s record structure. Sec-
tion 5.2 covers the WITH REPLICATION declaration.

Line 9 and Line 10 declare the respective
CustomerInfo and ProductInfo map columns. Two
limiting factors of collection columns are: the need
to declare the type of a collection column’s contents,

Page 4625

1 -- create a birt keyspace
2 CREATE KEYSPACE birt WITH REPLICATION = {'class' : 'SimpleStrategy', 'replication_factor' : 1};
3 --- WITH REPLICATION = {'class' : 'NetworkTopologyStrategy', 'dc1' : 3, 'dc2' : 3, 'dc3' : 3};
4 USE birt;
5
6 -- create the orders table
7 CREATE TABLE Orders (
8 OrderNumber int, OrderDate timestamp STATIC, RequiredDate timestamp STATIC, ShippedDate timestamp STATIC, Status varchar STATIC,
9 CustomerInfo MAP<varchar, varchar> STATIC,

10 OrderLineNumber int, ProductInfo MAP<varchar, varchar>, QuantityOrdered int, PriceEach decimal,
11 PRIMARY KEY (OrderNumber,OrderLineNumber));
12
13 -- an 'upsert' that inserts only top-level partition data, because the clustering column is not included
14 INSERT INTO Orders
15 (OrderNumber, OrderDate, RequiredDate, ShippedDate, Status, CustomerInfo)
16 VALUES
17 (10102, '2011-01-10', '2011-01-18', '2011-01-14', 'In process',
18 {
19 'customer_number': '181', 'customer_name': 'Vitachrome Inc.',
20 'contact_last_name': 'Frick', 'contact_first_name': 'Michael',
21 'phone_no': '415-555-1450',
22 'address_line_1': '2678 Kingston Rd.',
23 'address_line_2': 'Suite 101',
24 'city': 'NYC', 'state': 'NY', 'postal_code': '10022', 'country': 'USA',
25 'sales_rep_employee_number' : '1286'
26 });
27
28 SELECT * FROM Orders WHERE OrderNumber = 10102
29 ordernumber | orderlinenumber | orderdate |...| status | customerinfo | priceeach | productinfo...
30 -------------+-----------------+------------+...+------------+--+-----------+------------...
31 10102 | null | 2011-01-10 |...| In process | {'address_line_1': '2678 Kingston Rd.'... | null | null...
32
33 -- upsert that inserts the first row in the partition, note the previous `null' row disappeared
34 INSERT INTO Orders
35 (OrderNumber, OrderLineNumber, ProductInfo, QuantityOrdered, PriceEach)
36 VALUES
37 (10102, 1,
38 {
39 'product_code': 'S18_1367',
40 'product_name': '1936 Mercedes-Benz 500K Special Roadster'
41 },
42 41, 43.13);
43
44 SELECT * FROM Orders WHERE OrderNumber = 10102
45 ordernumber | orderlinenumber | orderdate |...| status | customerinfo | priceeach | productinfo ...
46 -------------+-----------------+------------+---+------------+---+-----------+----------------------------...
47 10102 | 1 | 2011-01-10 |...| In process | {'address_line_1': '2678 Kingston Rd.'... | 43.13 | {'product_code': 'S18_1367'...
48
49 -- upsert that both inserts the second row , and update the Status (a static column),
50 INSERT INTO Orders
51 (OrderNumber, OrderLineNumber, Status, ProductInfo, QuantityOrdered, PriceEach)
52 VALUES
53 (10102, 2, 'Shipped',
54 {
55 'product_code': 'S18_1342',
56 'product_name': '1937 Lincoln Berline'
57 },
58 39, 95.55);
59
60 SELECT * FROM Orders WHERE OrderNumber = 10102
61 ordernumber | orderlinenumber | orderdate |...| status | customerinfo | priceeach | productinfo ...
62 -------------+-----------------+------------+---+---------+---+-----------+----------------------------...
63 10102 | 1 | 2011-01-10 |...| Shipped | {'address_line_1': '2678 Kingston Rd.'... | 43.13 | {'product_code': 'S18_1367'...
64 10102 | 2 | 2011-01-10 |...| Shipped | {'address_line_1': '2678 Kingston Rd.'... | 95.55 | {'product_code': 'S18_1342'...

Listing 3: CQL statements to create, populate, and select from a table for orders.

and the inability to nest collections — i.e. a collection
cannot not contain another collection5. As a result of
the former, the customer number in the customer infor-
mation is a varchar.

In the primary key declaration (Line 11), the first
column, is the partition key, and the remainder are the
clustering columns. To declare Multi-column compound
partition keys, enclose the opening columns in paren-
thesis.

5.1.2. Upserts. One byproduct of Cassandra’s design is
that all writes are upserts (Section 5.3.1). If a record or
a row does not exist, it is created automatically. In fact,
INSERT and UPDATE are interchangeable in CQL; they
perform the same operations, and only differ in syntax.

5. It is possible to store a nested collection as a blob using the
frozen keyword. But this approach prevents accessing the entries
directly via CQL.

The first upsert can only operate on static columns
because the clustering column is not included. The
syntax is similar to SQL, except for the JSON-like
format for the map column.

Since the first upsert only provides the partition key
and static row data, the SELECT returns one row with
all null for the clustering and non-static data columns.
Again, this behavior mirrors a LEFT OUTER JOIN.

The second upsert adds the first row to the partition.
It is not necessary to include the static columns because
they are already set. The earlier null row is replaced
with a complete row.

The next upsert demonstrates the two-level nature
of the partition. It is both an insert of a row, and an
update of the static Status column to “Shipped.” The
subsequent SELECT produces two result rows, and static
status information is modified in both. Again this is
similar to a LEFT OUTER JOIN.

Page 4626

5.2. Cassandra’s High Availability Replication

Cassandra is a peer-to-peer system. Multiple repli-
cas (copies) of a record are distributed across the cluster.
There is no particular replica that is considered the
“true” copy of a record. The replication factor is the
number of replicas of each partition in a keyspace.
In Cassandra, each keyspace has a replication strategy
that is responsible for determining where to place each
replica (see Listing 3).

In deployment, the strategy takes into account net-
work topology by setting a factor for each data center.
For example, if a Cassandra cluster is deployed to 3
data centers, with 12 nodes at each data center, and
the replication strategy sets the replication factor for
each data center to 3, then each node holds roughly
¼ of the keyspace’s partitions. For development, a
simple strategy sets a cluster-wide replication factor —
normally 1.

5.2.1. Eventual Consistency and Isolation Relax-
ation. To assure high availability, Cassandra permits
any node in the cluster to handle a query, i.e. a coordi-
nator. Coordinators do not rollback any upsert (write),
and each replica reflects the latest upserts it has re-
ceived. Therefore: a) the system is eventually consistent
because replicas converge to the state of the most recent
updates, and b) isolation is relaxed because concurrent
coordinators can simultaneously update separate repli-
cas of the same record at different locations.

5.2.2. The Coordinator. Cassandra assigns each CQL
query to a coordinator. The coordinator is responsible
for managing the query’s processing.

In an upsert, each query is timestamped with the
time it is received by the system. When the coordinator
receives the query it sends the upsert and the timestamp
as a message to all active nodes maintaining a copy of
the partition. Each active node that receives the message
updates its local replica, and associate the timestamp
with each cell in the partition that is modified. The
receiving node sends an acknowledgment to the coor-
dinator once the change is durable.

The coordinator reports success once it receives
acknowledgments from enough nodes to fulfill the con-
ditions set by the query’s write consistency level. For
nodes where the coordinator does not receive an ac-
knowledgment, it performs a hinted handoff — i.e. the
coordinator retries the update once every ten minutes
for up to three hours.

In handling a read, the coordinator sends messages
requesting data to the active nodes maintaining replicas
of the partition. The coordinator evaluates each cell
using the timestamps to determine which replica has the
most recent value. The coordinator informs the appro-
priate nodes of any stale values it received, this process
is called read repair. After the coordinator receives
enough repair acknowledgments to fulfill the query’s

read consistency level, it returns results using on the
most up-to-date cell entries. After returning results, the
coordinator continues with its read repair, if necessary.
Finally, the coordinator performs a hinted handoff to
any remaining non-responsive nodes.

The default read and write consistency levels are
ONE. That is, if the coordinator receives a result or an
acknowledgment from one node maintaining a replica
it returns a success.

Therefore, Cassandra is tuned to attempt to com-
plete a query whenever at lease one replica of the related
record is available.

5.3. BASE Considerations: Quorum Consis-
tency and Very-Likely Writes

In a peer-to-peer system, consistency does not re-
quire unanimity, only a majority. If the coordinator
receives acknowledgment of an upsert to a record from a
quorum, then any read of the record is visible because at
least one member of a responding quorum has received
the original upsert. Since, the coordinator uses the latest
value for each cell, upsert is guaranteed to be visible
to within quorum until it is overwritten. Thus, quorums
produce consistency without the need for a central node.

Quorum based approaches are not immune to the
CAP Theorem, however. To increase basic availability,
Cassandra offers quorum consistency levels that are
local quorums over a data center. Thus, consistency
is possible between multiple machines at a site, where
latencies are on the order of 1 ms or less [25].

5.3.1. Lightweight Transactions for Isolation. Data in
Cassandra are in a volatile state because the coordina-
tors are each acting independently. Quorum consistency
does not address the issue fully because, a node may
modify a local replica of a record immediately after
sending the copy’s contents.

Thus, Cassandra upsert queries should be idempo-
tent, i.e. resubmission should produce the same result.
Inserts are not idempotent because a second submis-
sion will fail; thus, the need for upserts in Cassandra.
The assignment x = 5 is idempotent, as opposed to
x = x + 1. In fact the latter expression lacks meaning
since x is volatile.

In Cassandra, increments must be performed in the
following manner:

1) Read x
2) Calculate y = x+ 1
3) Read x.
4) If the value of x has not changed then set x = y,

else return the current value of x.
To ensure another node does not change x between

steps 3 and 4, Cassandra offers lightweight transactions
employing a quorum-based Paxos protocol [19]. Setting
the read consistency level to enforce durable serial

Page 4627

writes invokes the transactional protection; writes must
be acknowledged after a quorum forms.

For similar reasons writes in Cassandra are normally
upserts. Lightweight transactions are necessary to en-
force true inserts and updates. Otherwise, there is no
way to tell if a record exists because, it may be created
or deleted elsewhere.

Using lightweight transactions makes Cassandra
ACID-compliant. The CAP Theorem still applies al-
though Paxos is a non-locking protocol. There is still a
cost to availability and a risk of an unbounded wait [17].

5.3.2. Soft-State Write Timeouts. In Cassandra, a
timeout error does not mean that a write did not occur.
The coordinator sends the error to indicate that it did
not receive the acknowledgments necessary to confirm
that the conditions of the write consistency level were
met. In most cases, a timeout write is subsequently
replicated; the error is better described as an uncertain
write “in-process” message [9].

A write is exceedingly unlikely to fail. First, a
coordinator does not attempt a query if it is aware that
the current status of the cluster cannot meet the query’s
consistency level; instead, it returns an unavailable
error. In this case, the client is aware that the write did
not occur. A node typically becomes aware of a fault(s)
on the cluster within 15 sec [18].

Second once the coordinator does attempt the write,
one or more replications may occur, but not the num-
ber required. The coordinator includes the count of
the acknowledgments it received in the error message.
Cassandra does not rollback a persisted write. Therefore
through automated and maintenance repair processes,
the write is eventually replicated.

Third, the coordinator attempts to perform hinted
handoffs to any nodes that did not acknowledge its ini-
tial message — even if it received no acknowledgments.
Therefore, the soft-state in Cassandra is the result of
timed out write. But generally, the uncertainty lies in
when, not if, the write become visible.

6. NoSQL Data Access Transparency

A data access tier hides common problems in dis-
tributed data persistence. Thus, the application tier can
safely use the intermediary’s interface to meet SLA re-
quirements without a need to understand the underlying
data architecture. [21]

TOGAF outlines to a set transparencies specified in
the ISO Reference Model for Open Distributed Process-
ing (RM-ODP) [21], [27] for hiding the complexities of
distributed processing. This work discusses the features
of MongoDB and Cassandra that are applicable to im-
plementing six transparencies.

Eventual consistency latency benchmarks for assess-
ing SLA requirements are based on the results for an
Amazon Web Service (AWS) deployment reported in
Bermbach, Zhao and Sakr [6]: a) MongoDB’s results

Figure 3: The Cassandra Orders table as an UML
composition.

are 5 ms within an availability zone (roughly a data
center), 15 ms within a region, and 90 ms across
regions; and b) Cassandra’s results are 1 ms within an
availability zone, 6 ms within a region, and 110 ms
across regions.

6.1. Access Transparency

Access transparency provides a language indepen-
dent interface to data objects without the need to con-
sider the logical data model. In cases where a software
class can be placed in a single record, object-relational
impedance mismatch is addressed.

MongoDB has native access transparency. Records
are stored in a recognized language-independent pro-
tocol, JSON, capable of general-purpose data object
storage. There is no need to hide the logical data model
as MongoDB does not impose one.

In Cassandra tables can be matched to a UML
composition in software engineering with no more than
one level of collection (map, set, and list) attributes.
As the representation of the customer order in Figure 3
highlights, there are many contexts in which Cassan-
dra’s one-to-many representation is sufficient.

6.2. Transaction Transparency

Both MongoDB and Cassandra adhere to the prin-
ciples in Helland [16] by providing single record trans-
actional scopes. Thus the data access tier only needs to
address ACID relaxation.

MongoDB relaxes of durability to allow for a roll-
back of inconsistent records. Rollbacks are rare how-
ever. For rollbacks to occur, a primary server must be
able to receive a write, but not to replicate it to at least
one member of a replica set quorum. If a member is
available within the data center, the rollback window
is abut 5 ms [6]. If there is a site-wide or regional
failure the window is roughly 20 seconds. However,

Page 4628

this scenario would likely occur under disaster recovery
and business continuity SLA requirements rather than
normal operations.

Cassandra’s relaxation of isolation is unavoidable
during normal operations. Thus, it is ideal to perform
idempotent row inserts while avoiding updates and
deletes. The append-only approach should be specified
in documentation rather than enforced in the data access
tier. To distinguish between an insert and an update
requires costly lightweight transactions.

6.3. Replication Transparency

In MongoDB, replication is visible in the latency of
communication with between the client and the primary
member of the replica set. Thus the location of the
primary member is an important consideration. During
ongoing operations, it is possible to manage the loca-
tion of replica set primaries. Thus the data access tier
can automatically reassign primaries to follow traffic
throughout the day. Each reassignment requires 10-20
seconds; thus several reassignments a day can occur
without impacting SLA delivery.

Cassandra provides seamless replication trans-
parency. The data access tier can connect to any node
in the cluster. By default, writes are acknowledged after
the first successful replication. The system then has
multiple repair mechanisms to ensure the replication
factor is met.

6.4. Failure Transparency

Failure transparency involves minimizing downtime
and soft-state uncertainty. Both MongoDB and Cas-
sandra provide mechanisms for safely hiding single
machine, and site-wide, and multi-site failures.

For MongoDB, primary failover recovery is observ-
able for roughly one minute. Recovery is possible so
long as a majority of replica set members are accessible
to each other, regardless of the number of data centers in
the deployment. As noted, rollbacks during this process
are rare, and are likely be minimal in the context of a
disaster recovery or business continuity scenario.

Cassandra does not stop operations due to faults; it
attempts to continue on with remaining resources. Also,
if two locations lose connectivity, each will continue to
act independently. Thus, aside from consistency con-
cerns across partitions, failures are transparent. More-
over, Cassandra will continue to attempt to repair in-
consistencies once connectivity is restored. Thus, in
Cassandra, an acknowledged upsert is almost never
lost. Soft-state issues concern when the upsert becomes
visible at all locations. For example, Netflix reported
it did not experience a loss of data or availability
in its Cassandra deployment during an AWS outage
that downed one-third of its regional nodes for three
hours [23].

6.5. Migration Transparency

A data access tier with migration transparency shifts
execution location within the network to optimize sys-
tem responsiveness. Thus, the data store must be able
to deliver highly responsive performance across the
architecture. In BASE terms, migration transparency
increases the tier’s basic availability.

By default, MongoDB does not provide functional-
ity for migration transparency; all operations are routed
to the primary member of the replica sets. Read-only
migration transparency is possible by configuring the
read preference. In read-heavy workloads, changing the
setting can enable fulfillment of SLA requirements.
Latencies of 150 ms are possible for globally sepa-
rated locations [25], while human perception is roughly
40 ms; a low latency nearest read can reduce access
time to 5 ms or less [6].

Cassandra inherently supports migration trans-
parency. The data access tier can connect to any por-
tion of the cluster, and receive results from the fastest
responding node(s). Netflix published benchmarks of
performing over one million writes per second [8] on a
roughly 300 node AWS cluster.

6.6. Relocation Transparency

Relocation transparency reflects the ability of the
data access tier to hide changes to the service’s ex-
ecution location. Relocation transparency is inversely
related to the size of the eventual consistency window.

MongoDB’s CP architecture is relocation transpar-
ent by default as all access is routed to the primary.
As discussed previously, the cases where relocation is
visible are in read-only migration, and in failover of a
primary.

While Cassandra is not relocation transparent by
default, a data access tier that routes requests by a user
to an assigned data center, and uses the LOCAL_QUORUM
consistency level creates relocation transparency within
the data center.

7. Summary and Conclusion

This work has presented the CAP Theorem and
related BASE semantics in the context of enterprise
architecture. The principles have a critical implication
process modeling. To create scalable information sys-
tems architectures, process models should limit transac-
tional scopes to entities, with messages between entities
passed asynchronously.

The need to replicate data introduces the CAP theo-
rem despite the use of single record transactions. Thus
an important consequence of the CAP Theorem is that
combining redundancy and consistency creates fragility
in the system. Instead, systems can replicate record in
a CP or AP manner and use BASE semantics to tune
ACID relaxation.

Page 4629

NoSQL systems arose to address the limitations of
join operations and referential integrity enforcement in
RDBMS, along with the constraints of the CAP The-
orem. Thus, common features are: a) a self-contained
record structure without support for join operations, b) a
single-record transactional scope, and c) a simplified CP
or AP replication method with tunable BASE semantics
to manage ACID relaxation.

In a technical architecture, a data access tier serves
to hide the complexities of distributed persistence from
one or more application tiers throughout the enterprise.
Thus it is valuable to assess the NoSQL systems in the
context of supporting transparency functionality.

MongoDB has proven valuable in many general-
purpose applications through its role in the MEAN
stack. The data access requirements in web applications
frequently overlap with requirements of object reposi-
tories, particularly tiers implemented as web services.

MongoDB’s transparency strengths are in: a) access
transparency due to the native use of interoperable
JSON records, b) transaction transparency where dura-
bility relaxation appears rarely, as a result of a site-wide
failure, and c) relocation transparency due to the default
CP implementation of routing all reads and writes to
one primary server.

Netflix in particular has written extensively on its
use of Cassandra within its enterprise. In fact Cassandra
maintains Netflix’s real-time live viewing data [10].

Cassandra’s transparency strengths are in: a) repli-
cation transparency due to multiple repair mechanisms
to ensure successful upserts, b) migration transparency
is automatic as the data access tier can use any coordi-
nator in the cluster with results returned by the fastest
responding node(s), and c) failure transparency where
the system continues operating after a fault with the
limited capacity remaining.

Thus, MongoDB and Cassandra offer complimen-
tary options that are conducive to developing scalable
data access tiers.

References

[1] “Apache Cassandra,” https://cassandra.apache.org/.

[2] “Eclipse BIRT,” http://www.eclipse.org/birt.

[3] “JSON,” https://www.json.org/.

[4] “Redis,” http://redis.io/, accessed: 28 February,2016.

[5] M. Aslett, “NoSQL LinkedIn Skills Index –
An Interesting Occasional Update,” https://blogs.
the451group.com/information_management/2016/12/19/
nosql-linkedin-skills-index-an-interesting-occasional-update/,
2016, accessed: 11 April,2016.

[6] D. Bermbach, L. Zhao, and S. Sakr, “Towards comprehensive
measurement of consistency guarantees for cloud-hosted data
storage services,” in Technology Conference on Performance
Evaluation and Benchmarking. Springer, 2013, pp. 32–47.

[7] E. Brewer, “CAP twelve years later: How the “rules” have
changed,” Computer, vol. 45, no. 2, pp. 23–29, 2012.

[8] A. Cockcroft and D. Sheahan, “Benchmarking Cassandra
scalability on AWS – over a million writes per
second,” https://medium.com/netflix-techblog/benchmarking-
cassandra-scalability-on-aws-over-a-million-writes-per-second-
39f45f066c9e, 2011, accessed: 05 June,2017.

[9] J. Ellis, “When a timeout is not a failure:
how Cassandra delivers high availability, part 1,”
http://www.datastax.com/dev/blog/how-cassandra-deals-with-
replica-failure, 2012, accessed: 16 May,2017.

[10] P. Fisher-Ogden, M. Zimmer, J. Kojo, and J. Li, “Netflix’s
viewing data how we know where you are in House of Cards,”
2015.

[11] A. Fox and E. A. Brewer, “Harvest, yield, and scalable tolerant
systems,” in Hot Topics in Operating Systems, 1999. Proceed-
ings of the Seventh Workshop on. IEEE, 1999, pp. 174–178.

[12] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and
P. Gauthier, “Cluster-based scalable network services,” SIGOPS
Oper. Syst. Rev., vol. 31, no. 5, pp. 78–91, Oct. 1997. [Online].
Available: http://doi.acm.org/10.1145/269005.266662

[13] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services,” ACM
SIGACT News, vol. 33, no. 2, pp. 51–59, 2002.

[14] J. Gray, “The transaction concept: Virtues and limitations
(invited paper),” in Proceedings of the Seventh International
Conference on Very Large Data Bases - Volume 7, ser.
VLDB ’81. VLDB Endowment, 1981, pp. 144–154. [Online].
Available: http://dl.acm.org/citation.cfm?id=1286831.1286846

[15] T. Haerder and A. Reuter, “Principles of transaction-
oriented database recovery,” ACM Comput. Surv., vol. 15,
no. 4, pp. 287–317, Dec. 1983. [Online]. Available: http:
//doi.acm.org/10.1145/289.291

[16] P. Helland, “Life beyond distributed transactions: an apostate’s
opinion.” in CIDR, 2007, pp. 132–141.

[17] ——, “Heisenberg was on the write track.” in CIDR, 2015.

[18] A. Lakshman and P. Malik, “Cassandra: a decentralized struc-
tured storage system,” ACM SIGOPS Operating Systems Review,
vol. 44, no. 2, pp. 35–40, 2010.

[19] L. Lamport, “The part-time parliament,” ACM Transactions on
Computer Systems (TOCS), vol. 16, no. 2, pp. 133–169, 1998.

[20] N. Leavitt, “Will NoSQL databases live up to their promise?”
Computer, vol. 43, no. 2, 2010.

[21] P. F. Linington, Z. Milosevic, A. Tanaka, and A. Vallecillo,
Building enterprise systems with ODP: an introduction to open
distributed processing. CRC Press, 2011.

[22] MongoDB Inc., “MongoDB,” https://mongodb.org/.

[23] G. Orzell and A. Tseitlin, “Lessons Netflix learned from the
AWS storm,” 2012.

[24] D. Pritchett, “BASE: An ACID alternative,” Queue, vol. 6, no. 3,
pp. 48–55, 2008.

[25] C. Scott, “Latency numbers every programmer should
know,” https://people.eecs.berkeley.edu/ rcs/research/interac-
tive_latency.html, accessed: 31 May,2017.

[26] solid IT, “DB-Engines Ranking - popularity ranking of database
management systems,” http://db-engines.com/en/ranking, 2016,
accessed: 28 March, 2016.

[27] The Open Group, TOGAF Version 9.1. The Open Group, 2011.

Page 4630

https://blogs.the451group.com/information_management/2016/12/19/nosql-linkedin-skills-index-an-interesting-occasional-update/
https://blogs.the451group.com/information_management/2016/12/19/nosql-linkedin-skills-index-an-interesting-occasional-update/
https://blogs.the451group.com/information_management/2016/12/19/nosql-linkedin-skills-index-an-interesting-occasional-update/
http://doi.acm.org/10.1145/269005.266662
http://dl.acm.org/citation.cfm?id=1286831.1286846
http://doi.acm.org/10.1145/289.291
http://doi.acm.org/10.1145/289.291

	Introduction
	The CAP Theorem, ACID and BASE
	ACID
	ACID and The CAP Theorem
	Distributed ACID Sacrifices Availability

	Abandoning Distributed Transactions
	Replication and ACID Relaxation
	BASE

	The Emergence of NoSQL Databases
	NoSQL Characteristics

	MongoDB
	A JSON Database
	Consistent Replication
	BASE Considerations: Regional Availability, and Soft-State Durability Relaxation
	Primary Failure Soft-State Non-Durability
	Increasing Durability

	Cassandra
	A Table Partition Record with CQL
	The CQL |Orders| Table
	Upserts

	Cassandra's High Availability Replication
	Eventual Consistency and Isolation Relaxation
	The Coordinator

	BASE Considerations: Quorum Consistency and Very-Likely Writes
	Lightweight Transactions for Isolation
	Soft-State Write Timeouts

	NoSQL Data Access Transparency
	Access Transparency
	Transaction Transparency
	Replication Transparency
	Failure Transparency
	Migration Transparency
	Relocation Transparency

	Summary and Conclusion
	References

