
Engaging Business Students with “Low-Code” Model Driven Development:

Self-Efficacy Beliefs in an Introductory MIS Course

 Kathie Wright Yvonne L. Antonucci Laura Anderson Andrene Townsend

 Salisbury University Widener University Salisbury University Widener University

kmwright@salisbury.edu yantonucci@widener.edu leanderson@salisbury.edu ahtownsend@widener.edu

Abstract
“Low-code/no-code” (LC/NC) platforms are

designed to empower non-IT business professionals to use

model driven development to rapidly create sophisticated

applications. Organizations are increasingly adding

LC/NC platforms to their IT software portfolios. Thus, it is

likely that current business students will encounter such

tools and be expected to be able to use them. This

research assesses the implementation of a low-code app

development case within a business management

information systems (MIS) course to identify whether it

promotes student self-efficacy of learning complex

technology topics. Statistical analysis of pre and post

survey responses indicates that student self-efficacy

beliefs increased after completing the case and the change

in self-efficacy is positively related to interest in further

LC/NC skill development and interest in the MIS major.

Keywords: Model Driven Development, Low-code

App Development, Self-Efficacy.

1. Introduction

Technologies are constantly evolving and re-

emerging in recombinant and novel forms. This

research examines model driven development (MDD)

which is an expansion of the Computer Aided Systems

Engineering (CASE) tools developed three decades ago.

Often characterized as “low-code, no-code” (LC/NC)

application development platforms, MDD tools aim to

create “citizen developers” by leveraging knowledge

worker understanding of business processes. Standard

business process modeling notation and team support

promote the collaboration of functional business

employees with IT staff to increase developer

productivity, improve software quality while reducing

developer backlogs and maintenance costs, and increase

customer satisfaction (Hurlburt, 2021).

Industry analysis of MDD platforms usage across

organizations project significant growth in this software

development sector (Wong et al., 2021). Enterprise-

level providers (Salesforce, Microsoft, SAP) have added

MDD development platforms to augment existing

services and quickly build applications. Thus, it is likely

that current business students will graduate into an

environment where they will need to use a MDD

approach and feel comfortable using MDD tools in

collaborative development projects. While there has

been some success of student MDD platform utilization

(Henkel & Stirna, 2010), there is little research on

success in an entry level MIS course.

This research presents statically analyzed results

from an introductory case, “Free as a Bird” (FaaB),

using the Mendix MDD platform deployed within an

introductory MIS course of a business school. The

purpose is to identify whether low-code app

development within a MIS course promotes student

self-efficacy of learning complex technology topics. It

also relates the experience to student interest in further

LC/NC development and/or interest in the MIS major.

2. Background

2.1. Model Driven Development and Low-

Code/No-Code Platforms

MDD undergirds many commonly used business

applications such as Excel and modern web

communication platforms (Hurlburt, 2021). Motivated

by a need to provide non-IT professionals development-

like capabilities, these tools enable business knowledge

workers to create technology solutions. MDD platforms

are characterized by reusable components and a highly

visual interface emphasizing graphical models with

“drag and drop” connections between objects to create

program workflows.

LC/NC application development tools use similar

approaches to both improve ease of use and advance the

capabilities of earlier generation programming

languages. Automatic page builders containing visual

components with automatic backend bindings and

extension parameters allow the developer to build the

front-end interface quickly. Instead of requiring text-

based code, business logic is typically diagrammed

Proceedings of the 56th Hawaii International Conference on System Sciences | 2023

Page 4649
URI: https://hdl.handle.net/10125/103199
978-0-9981331-6-4
(CC BY-NC-ND 4.0)

mailto:kmwright@salisbury.edu
mailto:yantonucci@widener.edu
mailto:leanderson@salisbury.edu
mailto:ahtownsend@widener.edu

using standard modeling notation. Common data

connectors enable users to connect to application

program interface (API) structures and incorporate data

inflows from external sources

Gartner estimates that 70% of new applications

developed by enterprises will use low-code or no-code

technologies by 2025, up from less than 25% in 2020

(Wong et al., 2021). Organizations increasingly adopt

enterprise-level LC/NC platforms to augment existing

software development platforms and to leverage non-IT

functional talent as “citizen developers”, reducing

pressures on IT development backlogs and enabling

programmers to focus on harder problems.

It also should be noted that employers are resetting

degree requirements for IT recruitment in favor of

demonstrated skills and competencies (Fuller et al.,

2022). Although college degrees continue to be viewed

as a proxy for soft skills, inflated degree requirements

have been identified as a barrier to successful

recruitment. Technical skills validated through pre-

employment testing and certifications enable businesses

to recruit students who have not yet graduated. This

trend, which accelerated through the 2020-2021

COVID-19 pandemic, should be evaluated by educators

responsible for modernizing MIS curriculum.

2.2. Application to the MIS Curriculum

By flattening the technology platform learning

curve, the MDD approach and LC/NC tools shift

application development from a technology-centric

focus to one that emphasizes business process, logic,

and user design. From a pedagogical perspective, it

offers interesting possibilities for presenting and

engaging students in MIS topics (Thacker et al., 2021).

For example, LC/NC connections between the front-end

interface and back-end database tend to be flexible and

bi-directional—i.e., interface objects can be bound to

existing data attributes, however, it is possible to create

new attributes and entities “on the fly” directly from

interface page controls. The immediacy of the effect

supports conversations regarding the integration of the

app interface and data layers and the importance of

promoting data integrity.

Similarly, LC/NC program flows are diagrammed

visually, often using business process modeling notation

(BPMN) as the standard. This supports a common

interface for IT and non-IT professionals to collaborate

on developing application logic. Within the context of

MIS education, this approach enables students to

concentrate on interpreting user requirements and

mapping corresponding business logic rather than using

flowcharts to learn code syntax.

Finally, several LC/NC platforms incorporate agile

project/team management and communication tools to

support activities surrounding the application

development lifecycle. These include technical and

cultural DevOps best practices: making customer needs

the primary focus, collaborating and sharing

responsibility, iterative prototyping and continuous

testing, delivery, and deployment. User Experience

(UX) and design thinking techniques are explicitly

integrated into the development process in the form of

user personas, stories, and user testing/feedback

mechanisms. LC/NC tools are applicable to several

courses in a standard MIS curriculum, including MIS

field survey courses, systems analysis and design,

project management, and to a lesser degree,

programming, and database design (Crumbly & Field,

2020; Litman & Field, 2018; Poe & Mew, 2019). This

enables students to experience many of the critical, but

less technical MIS roles, such as those offered in UX

and project management careers and encourages them

to view themselves as future application co-creators.

Given its potential usefulness in addressing

industry skills gap and promoting experiential learning

across the MIS curriculum, it is particularly important

to identify how LC/NC relates to MIS education

objectives and how to measure student learning

outcomes. This research addresses these areas by

posing the following research questions:

(1) How does the use of a LC/NC platform in an

introductory MIS survey course affect self-efficacy

beliefs? (RQ1)

(2) How does the use of LC/NC tools relate to MIS

student learning outcomes? (RQ2)

(3) Does use of a LC/NC platform increase interest in

application development and/or MIS major? (RQ3)

2.3. Related Work

Current efforts to evaluate modern LC/NC tools are

primarily observational, lacking a consistent theoretical

foundation (Thacker et al., 2021). This research utilizes

Computer Self-Efficacy (CSE), “an individual's

perception of efficacy in performing specific computer-

related tasks within the domain of general computing”,
as a subsidiary construct within social cognitive theory

(Marakas et al., 2007). CSE has been shown to enhance

individual learning of technology tasks and improve

performance outcomes across organizational settings

(Karsten et al., 2012; Kher et al., 2013; Stajkovic, et al.,

1998). In this research, we use a well-known general

CSE scale as well as a second scale specifically germane

to use of LC/NC tools to gauge changes in student CSE

perceptions after LC/NC training (Marakas et al., 2007).

 Studies (Charland et al., 2015; Eder et al., 2019) have

adapted the revised Bloom’s Taxonomy model

(Anderson & Krathwohl, 2001) to relate technology

competencies to basic and complex student learning

Page 4650

outcomes in business schools. Pre- and post-tests

revealed increased knowledge and skills related to

application understanding, ability to apply skills, and

problem-solving knowledge. Basic knowledge related

to Bloom’s levels 1-2 (remember, understand), applied

knowledge related to level 3 (apply), and problem-

solving and using knowledge for decision-making

related to levels 4-5 (analyze, evaluate). Here, we

extend the mapping of Bloom’s model to changes in

CSE perceptions of various technology tasks.

3. Methodology

3.1 The Research Project

During the 2020-2021 academic year, significant

effort was made to revise the introductory MIS course

with the view of incorporating a LC/NC platform

(Mendix) into the course curriculum. Mendix was

already being used in the application development

course and it was determined that students would benefit

from an introduction to “no-code” tools earlier in their

academic career. Industry partners/advisors were

canvased as to the advisability of including LC/NC with

a positive response. Finally, an online Mendix case

entitled “Free as a Bird” (FaaB) was developed to

introduce MIS topics, such as relational database

modeling, user design and application development in

the context of creating a mobile app.

The FaaB case was designed to expose students to

MDD while simultaneously connecting data maintained

as worksheet flat files to a relational data model. The

entire case utilizes a sophisticated mechanism to parse

spreadsheet tables, automatically creating entity

associations and user views in the form of application

pages. The resulting app is responsive and can be

viewed across devices. Because the technical

requirements are abstracted, the exercise rapidly moves

through the introduction of theoretical concepts such as

database relationships, data persistence, application

program interface (API) integration and usability.

The case provides step by step instructions for

completing the application and discusses data integrity,

design thinking and usability. Because the application

unfolds in marked stages it is possible to frame the

exercise as an iterative process, with natural pauses to

consider the app from multiple viewpoints. Subsequent

“enhancements” are presented as a set of user stories to

mimic agile development sprints.

3.2. Measurement of LC/NC Self-Efficacy

Beliefs and Student Learning Outcomes

There is a venerated body of literature linking self-

efficacy beliefs to student performance on computer

tasks (Compeau & Higgins, 1995; Karsten et al., 2012;

Kher et al., 2013).

Table 1. General Computer Self-Efficacy Scale

I could complete the job using the software package:

(1) …if there was no one around to tell me what to do
as I go.

(2) …if I had never used a software package like it
before

(3) …if I had only the software manuals for reference

(4) …if I had seen someone else using it before trying
it myself

(5) …If I could call someone for help if I got stuck

(6) …If someone else had helped me get started

(7) …if I had a lot of time to complete the job for
which the software was provided

(8) …if I had just the built- in help facility for
assistance

(9) …if someone showed me how to do it first

(10) …if I had used similar packages before this one
to do the same job

Table 2. Low-Code Self-Efficacy Measure

I believe I could:

(1) …explain how data is connected in application
development.

(2) …explain what responsive views are.

(3) …explain the benefits of low-code development to
an end user

(4) …identify data relationships needed for
appropriate application development

(5) …identify appropriate data types needed in an
application

(6) …develop initial pages of an application

(7) …develop a domain model for the application with
appropriate relationships

(8) …change appropriate data types in the domain
model

(9) …add values to an enumerated field

(10) …resolve errors in the application development

(11) …identify data relationship issues (referential
integrity).

(12) …identify data requiring modification to support
application functionality.

(13) …evaluate user interface consistency.

(14) …assess the functionality (usability) of the
application.

(15) …conduct tasks related to meaningful evaluation
of the application.

Of particular interest is the relationship of self-

efficacy to student perseverance and performance.

Page 4651

Increased self-efficacy beliefs promote persistence in

the face of challenges. Despite the oft-promoted

characterization of LC/NC as a simple development

platform, the tools mask considerable complexity which

must be understood to use effectively.

To understand the role of self-efficacy on the

learning process, a two-pronged framework (Tables 1

and 2) was adopted utilizing constructs from both

general and application specific CSE measures

(Compeau & Higgins, 1995; Johnson & Marakas, 2000;

Marakas et al., 2007). Compeau and Higgins (1995)

measure of general computer self-efficacy (GCSE) is a

well-established instrument which is purposefully

divorced from referencing specific applications (Table

1). As such, it can be used to provide a baseline level of

computer technology related confidence.

 A second instrument, (“low-code self-efficacy” or

LCSE) focusing on application specific attributes of

LC/NC was developed following the guidance of

Johnson and Marakas (2007). Designed to cohere as a

measure of overall LC/NC proficiency, each item

references a capability of a LC/NC software. These are

presented in terms of progressive complexity to

establish a frontier of individual CSE beliefs (Table 2).

 Learning outcome measures utilized in this study

follows the research of Eder et al. (2019) who mapped

student enterprise systems learning outcomes to five of

the six learning objective levels in Anderson and

Krathwohl’s (2001) revised Bloom’s Taxonomy.

Similarly, the LCSE items were mapped to five of the

six learning objective levels in the revised Bloom’s

Taxonomy model (Anderson & Krathwohl, 2001)

(Table 3). Five items addressing students’ perceptions

of their LC/NC conceptual understanding and ability to

explain concepts were aligned to levels 1-2 learning

outcomes (remember, understand). Similarly, five

LCSE items involving the students’ perceived ability to

execute low-code application tasks were categorized as

a direct measure of the taxonomy level 3 learning

outcome (apply). The most complex of the LSCE items

were developed to capture students’ perceived ability to

interpret, evaluate and enhance the LC/NC application

usability, resulting in five items mapped to taxonomy

levels 4-5 (analyze, evaluate) as evidence of higher

order learning outcomes (Table 3).

Table 3. Alignment of Revised Bloom’s Taxonomy Levels with LCSE Assessments (Adapted from Anderson

and Krathwohl (2001) and Eder et al. (2019))

Learning Objective
Application of

LC/NC
Knowledge

Assessment

1. Remember
Recall and
recognition of
information Low-Code

application basic
skills

Students can use their Low-code application development knowledge
to understand and explain concepts

I believe I could…
…Explain how data is connected in application development.
… Explain what responsive views are.
… Identify data relationships needed for appropriate application
development.
… Identify appropriate data types needed in an application.

… Explain the benefits of low-code development to an end user.

2. Understand
Interpreting,
summarizing,
inferring, comparing,
explaining

3. Apply
Executing,
implementing
procedures

Low-Code
application

applied skills

Students can develop basic pages and connect data.
I believe I could…
… Develop initial pages of an application.
… Develop a domain model for the application with appropriate
relationships.
… Change appropriate data types in the domain model.
… Resolve errors in the application development.

 … Add values to an enumerated field.

4. Analyze
Discovery of
relationships,
differentiating,
organizing, attributing

Problem-solving/
Decision-making

Students can use, interpret, and evaluate data and errors to fix and
enhance application usability

 I believe I could…
… Identify data relationship issues (referential integrity).
… Identify data requiring modification to support application
functionality.
… Evaluate User Interface consistency.
… Assess the functionality (usability) of the application.

 … Conduct tasks related to meaningful evaluation of the application.

5. Evaluate
Making judgements
based on criteria,
checking, critiquing

6. Create
Plan, produce new
ideas, products

Not evaluated

Page 4652

3.3. Student Intentions Regarding Future

LC/NC Development and the MIS Major

One motivation for introducing LC/NC

development and creating the FaaB case was to

increase the relevancy and appeal of the survey course

for introductory MIS students. Accordingly, the two

following independent survey items (5-point Likert

scale) were proposed: (1) I would be interested in

learning how to build other applications in Mendix; (2)

I would be interested in pursuing an MIS major.

Students were also provided with an open-ended

request for comments after completing the exercise.

3.4. Research hypotheses and survey design

A primary objective of this research is to

determine whether completion of the FaaB case

increases students’ self-efficacy beliefs regarding their

ability to build an application using LC/NC tools

(RQ1). Although related, the GCSE and LCSE scales

are designed to measure a general and software

specific case respectively and are therefore considered

as separate hypotheses:

H1: Students self-efficacy beliefs as measured on

the general computer self-efficacy scale will

increase post-completion of the FaaB case.

H2: Students self-efficacy beliefs as measured on

the LCSE scale will increase post-completion

of the FaaB case.

Note that only LCSE items were mapped to the

revised Bloom’s taxonomy of student learning

outcomes (RQ2), hence:

H3: Increases in student self-efficacy beliefs as

measured on the LCSE scale will relate

positively to corresponding student learning

outcomes.

Finally, recall that one of the motivations for

developing a LC/NC case and learning module for the

MIS introductory course was to increase interest in

both application development and the MIS field. This

leads to the final two hypotheses (RQ3):

H4: Increases in student self-efficacy beliefs as

measured by the LCSE scale are positively

related to student interest in learning LC/NC

application development (Mendix).

H5: Increases in student self-efficacy beliefs as

measured by the LCSE score are positively

related to student interest in pursuing and

MIS major.

To capture the change in student self-efficacy

beliefs and learning outcomes (H1, H2, H3), the

research design required paired pre- and post-exercise

surveys using the GCSE and LCSE scales. Questions

relating to student interest in further LC/NC

application development and in the MIS major were

included in the post-case survey. Open-ended

comments were also solicited on the post-case survey.

3.5. Project implementation and data

collection

Implementation of the FaaB case was conducted

in business school introductory MIS survey courses at

two separate mid-Atlantic universities during the fall

2021 and spring 2022 semesters. Due to COVID-19

pandemic restrictions in the fall semester, all course

sections were conducted in a hybrid online format with

a mix of Zoom lectures and asynchronously delivered

content. In spring 2022, courses returned to an in-

person instructor format. For both semesters, the FaaB

case was presented over a 3-week time period. During

in class periods, instructors would present concepts

relating to the corresponding tasks in the case and

assist students as they completed the application

development steps. For asynchronous delivery,

instructors presented the conceptual material via

online lecture and offered to assist students needing

help via Zoom meetings. Upon completion of the FaaB

application, students submitted the app URL for

verification and ancillary answer sheets for grading.

To account for possible variation in student

backgrounds, demographic characteristics relating to

gender, prior course and/or work experience were

elicited in the preliminary survey. In addition, because

the project spanned multiple instructional settings and

alternate delivery modes (arising from COVID-19

concerns) both the pre- and post-case surveys asked

the students to identify the course instructor. Students

were also asked whether they completed the FaaB

case: (1) independently (2) in the classroom with the

instructor available; or (3) partially independently

with some instructor or other student assistance.

4. Survey results and data analysis

4.1. Demographics

4.1.1. Gender. In the pre-GCSE survey students self-

identifying as Male=300 (70%); Female=127 (29.6%);

Other=2 (0.4%). A Kruskal-Wallis H test was applied

to a pairwise Male/Female analysis (“Other” was too

small to pair with either of the other groups). Some

significant differences were revealed between males

and females (items 1-6) with higher male perceptions

of pre-GCSE. It is interesting to note that these

Page 4653

differences disappeared across all items in the post-

GCSE survey.

An identical analysis of the LSCE pre- and post-

surveys yielded similar results. Male perceptions of

self-efficacy were significantly higher for all of the “I

believe I could…” items except for “…explain what

responsive views are” and “…identify data

relationships needed for appropriate application

development”. Again, significant gender differences

disappeared in the post-LSCE survey analysis.

4.1.2. Prior programming course experience. Sixty-

eight (15.8%) of the students in the survey indicated

that they had taken at least one prior programming

class. Differences in self-efficacy beliefs for both

scales were analyzed using the Mann-Whitney U and

Wilcoxon W tests to arrive at a combined Z-score and

significance level. These students demonstrated

significantly higher self-efficacy beliefs across all

items in both scales in the pre-case survey. The

proportion of students indicating at least one prior

programming course persisted in the post-case survey.

Nevertheless, the FaaB case exercise tended to

mitigate the differential between the two groups.

Experienced students continued to demonstrate

significantly higher self-efficacy beliefs on GCSE

items 2 and 4 and LCSE items 1, 4, 5, 10 and 12 in the

post-case survey.

4.1.3. Course Differences. The FaaB case was

implemented across two universities spanning 7

instructors. Five instructors are from one university

and two at the other. Kruskal-Wallis H test statistics

were generated for both scales with mixed results. For

the pre-GCSE scale, items 3,5,6,7,8,9 and 10 were

significantly different across instructors with students

in courses taught by the two instructors at the second

institution demonstrating higher self-efficacy beliefs.

There were no significant differences in GCSE beliefs

in the post-case survey results. Pre-LCSE survey

results did not indicate significant differences,

however, post-LCSE beliefs for items 1 and 6

(“explain benefits of low-code”, “develop initial pages

of app”) were significantly higher for one of the

instructors at the second university.

 COVID-19 course delivery challenges resulted in

three possible FaaB case completion modes

(independently, with instructor assistance in the

classroom, and asynchronously with instructor/student

assistance available). Kruskal-Wallis H test results for

the three groups did not find significant differences in

any of the items in the GCSE and LCSE scales in

either the pre- or post-samples.

4.2. GCSE and LCSE construct validity

In order to test the hypotheses, we first assessed

the internal consistency of the GCSE and LCSE self-

efficacy measures by examining the internal

consistency of the items used in each scale (Cerny &

Kaiser, 1977).

Analysis of the ten items used to measure GCSE

resulted in a Chronbach’s alpha score of .940 for the

pre-survey and .957 for the post-survey results. Both

tests indicate a high level of internal consistency.

Further analysis of the inter-item correlation indicates

that removal of items 1 and 2 improve the Cronbach’s

Alpha score from .940 to .948 for the pre-survey.

Removal of the same two items from the post-survey

results improve Cronbach’s Alpha from .957 to .967.

Given that the incremental improvement was minimal

and the long-standing robustness of the original

instrument, we opted to retain all 10 items in the

hypothesis tests.

The Kaiser-Meyer-Olkin (KMO) test was applied

in the next stage of the analysis to determine the degree

of common variance among the 8 items (Kaiser,

1974). The KMO measure for pre-case GCSE is .931

demonstrating a “marvelous” degree of common

variance and indicating that a factor analysis will

account for a large proportion of the variance.

Furthermore, the Bartlett’s test of sphericity is less

than 0.05 (p<0.001), supporting the suitability of

factor analysis (Table 4).

Table 4. GCSE Factor Analysis

Factor Analysis Test Pre- Post-

Kaiser-Meyer-Olkin
Measure of Sampling
Adequacy

.931 .910

Bartlett’s Test of Sphericity
(Chi-Square)

3114.9
(p<0.001)

1814.5
(p<0.001)

We performed an identical analysis on the pre-

and post-survey results for the LCSE measure. For the

pre-case survey results, the Chronbach’s Alpha

reliability statistic was .978 and the corresponding

statistic for the LCSE post-case survey results was

.987, both indicating a high level of internal

consistency. Neither survey statistic was improved by

the removal of any of the items, hence all 15 items

were retained for the subsequent factor analysis.

The KMO and Bartlett test statistics are presented

in Table 5, below. For both the pre-and post-case

survey results the KMO test statistic indicates that the

degree of common variance among the 15 variables is

“marvelous” and that a factor analysis will account for

a good amount of variance. Furthermore, Bartlett’s

test statistic is less than 0.05 (p<0.001) significance

Page 4654

level indicating responses collected for this study are

valid and a factor analysis is suitable (Table 5). A

factor analysis of the 15 items used to measure LCSE

in the pre-case survey revealed 1 factor with an

eigenvalue greater than 1.0, explaining that 75.9% of

the common variance can be accounted for by a single

factor.
Table 5. LCSE Factor Analysis

 Pre- Post-

Kaiser-Meyer-Olkin
Measure of Sampling
Adequacy

.959 .948

Bartlett’s Test of Sphericity
(Chi-Square)

4234.2
(p<0.001)

3997.4
(p<0.001)

4.3. Hypotheses Testing

A total of 147 paired responses were obtained

across pre and post data collection. The paired sample

represents approximately 34% of the preliminary

survey result (429 responses). The low post-case

survey response rate may have been due to the

combined effects of COVID-19 and web-based

surveys (which were neither mandated nor monitored).

Recall that following the relevant computer self-

efficacy literature, the GCSE and LCSE used 10 Likert

scales for item responses. As the data were not

normally distributed, non-parametric tests were used

for data comparison (Nachmias & Nachmias, 1987).

Table 6. GCSE paired Wilcoxon Signed Ranks

I could complete the job using
the software package…

Z-
statistic

Sig.
(2-
tailed)

(1) …if there was no one around
to tell me what to do as I go.

-8.014 <.001

(2) …if I had never used a
software package like it before

-6.717 <.001

(3) …if I had only the software
manuals for reference

-6.110 <.001

(4) …if I had seen someone else
using it before trying it myself

-5.972 <.001

(5) …If I could call someone for
help if I got stuck

-3.380 <.001

(6) …If someone else had
helped me get started

-2.991 .003

(7) …if I had a lot of time to
complete the job for which the
software was provided

-3.057 .002

(8) …if I had just the built- in help
facility for assistance

-3.988 <.001

(9) …if someone showed me
how to do it first

-.257 .797

(10) …if I had used similar
packages before this one to do
the same job

-.005 .996

Paired responses for both the GCSE and the LCSE

scales were evaluated using the Wilcoxon Signed

Ranks Test. Negative ranks include paired responses

in which the student indicated a higher pre-case self-

efficacy response. Positive ranks are indicated when

the post-case self-efficacy response is higher, and

“ties” reflect no change in self-efficacy beliefs.

With regard to the GCSE scale, the paired student

responses for items 1-8 indicated that post-case self-

efficacy beliefs were, in the majority of cases, higher,

than for the pre-case survey. These results were highly

significant. In the case of items 9 and 10, the

distribution of negative and positive ranks was less

marked and not significant (Table 6).

Table 7. LCSE paired Wilcoxon Signed Ranks

I believe I could…

Z-
statistic

Sig.
(2-
tailed)

(1) …explain how data is
connected in application
development.

-8.164 <.001

(2) …explain what responsive
views are.

-8.758 <.001

(3) …explain the benefits of low-
code development to an end
user

-8.986 <.001

(4) …identify data relationships
needed for appropriate
application development

-8.445 <.001

(5) …identify appropriate data
types needed in an application

-9.025 <.001

(6) …develop initial pages of an
application

-8.964 <.001

(7) …develop a domain model
for the application with
appropriate relationships

-8.929 <.001

(8) …change appropriate data
types in the domain model

-9.163 <.001

(9) …add values to an
enumerated field

-8.848 <.001

(10) …resolve errors in the
application development

-8.975 <.001

(11) …identify data relationship
issues (referential integrity).

-9.059 <.001

(12) …identify data requiring
modification to support
application functionality.

-9.155 <.001

(13) …evaluate user interface
consistency.

-8.721 <.001

(14) …assess the functionality
(usability) of the application.

-8.679 <.001

(15) …conduct tasks related to
meaningful evaluation of the
application.

-8.931 <.001

 To test the relationship of the LCSE items to the

three Bloom’s Revised Taxonomy categories (H3),

Page 4655

items were separated into the assigned groupings.

Wilcoxon Signed Ranks tests were performed on each

group. As shown in Table 8, post>pre-case CSE

beliefs were highly significant, supporting H3,

although this result should be viewed as somewhat

debatable given the LCSE factor analysis. Additional

commentary on this issue appears in the Discussion.

Similarly, the results for the LCSE scale also

supported H2 in that student post-case low-code self-

efficacy beliefs were higher than pre-case beliefs. All

items were highly significant (p<0.001) (Table 7).

Table 8. LCSE items mapped to Bloom’s

Revised Taxonomy (paired Wilcoxon Signed
Ranks)

Bloom’s Revised Taxonomy
Categories

Z-
statistic

Sig. (2-
tailed)

Post-Pre: Basic Skills -9.400 <.001

Post-Pre: Applied Skills -9.168 <.001

Post-Pre: Problem Solving
Skills

-9.258 <.001

Hypotheses 4 and 5 propose that increases in self-

efficacy beliefs subsequent to the FaaB case will be

positively related to (1) interest in learning more about

low-code (Mendix) application development and (2)

interest in pursuing a major in MIS. Student interest

is gauged by a single question for each variable on the

post-case survey only, measured on a 5-point Likert

scale. Again, the Kruskal-Wallis non-parametric test

was used to evaluate the relationship of each of the

items in the GCSE and LCSE scales with the

Mendix/MIS interest responses. Table 9 summarizes

relationships of individual items (GCSE & LCSE) to

Interest in MIS and Mendix.

Although these results should be interpreted with

caution, they do provide evidence that positive

changes in self-efficacy beliefs engendered by the

FaaB case experience were positively related to

interest in both learning more about low-code

application development and the MIS major.

These findings are echoed in the open-ended

student comments collected in the post-case survey.

The comments were largely, but not uniformly

positive. Common positive adjectives were

“interesting” and “fun”, while negative comments

often described the case as “tedious” and “hard”. The

following (positive) comments elaborate on some of

the themes motivating this research.

“This exercise was super eye-opening to app

development without actual coding. I have a better

understanding of data models and how they are used

in app development.”.

“This exercise helped me understand more in-

depth the issues associated with useability of software

applications and how to properly approach, assess,

and explain them to both programmers and non-

programmers.”

“This not only showed how to identify the

components necessary to build an app, but to also

make an app more user-friendly. Operability does not

always mean usability. I appreciate this resource

because I may have to build my own app one day!”

Table 9. Summary of GCSE/LCSE
items→Mendix/MIS measures

Interest in LC/NC application development (Mendix)

• GCSE
Pre-: All items are positively related to interest in

Mendix. Items 1-7 are highly significant (p<0.01;
items 8-10 are significant (p<0.05).

Post-: All items are positively related and highly
significant.

• LCSE
Pre-: Items 3 and 5 are positively related and

significant; items 4 and 9 are positively related and
highly significant.

Post-: All items are positively related and highly
significant.

Interest in pursuing an MIS major

• GCSE
Pre-: Item 7 is positively related and significant

(.031).
Post-: All items are positively related and highly

significant.

• LCSE
Pre-: None of the item relationships are significant.
Post-: All items are positively related and highly

significant.

5. Discussion

A summary of the hypothesis test results (Table

10) indicates that hypotheses H2, H3, H4 and H5 were

fully supported. The single exception was H1 which

showed an increase in general computer self-efficacy

beliefs as measured by all but items 9 and 10. We offer

two possible explanations. First, because the scale

focus is general CSE, the responses may reflect

student responses across varying software

experiences. Second, both items require prior task

experience which was not available in this training

format.

 The domain and task specific (LCSE) scale

used in H2, however, does provide strong support for

RQ1, supporting increased self-efficacy beliefs post-

completion of the FaaB case. The mapping of the

LCSE items to the revised Bloom’s taxonomy (RQ2)

was also supported by the H3 results. Finally, positive

increases in CSE beliefs were also associated with

increased interest in both application development and

the MIS field more generally (RQ3).

Page 4656

Table 10. Summary of hypothesis test results

Hypothesis Result

H1: Self-efficacy beliefs measured
by GCSE increase post-case.

Partially
Supported

H2: Self-efficacy beliefs measured
by LCSE increase post-case.

Supported

H3: LCSE self-efficacy beliefs,
categorized by Bloom’s Revised
Taxonomy increase post-case.

Supported

H4: Changes in Self-efficacy beliefs
measured by GCSE are positively
related to interest in learning low-
code application development
(Mendix).

Supported

H5: Changes in Self-efficacy beliefs
measured by GCSE are positively
related to interest in pursuing an MIS
major.

Supported

As explained previously, we consider this

research to be exploratory in nature as it was difficult

to maintain a consistent research environment.

LC/NC platforms are intentionally dynamic; indeed,

Mendix releases updated versions of its platform on a

two-week cycle. Six of the seven instructors had

minimal LC/NC experience prior to implementing the

FaaB case, which may explain why student

perceptions of two post-LCSE items were higher for

this instructor. Additional research is needed. Finally,

the research project coincided with highly localized

COVID-19 teaching restrictions, resulting in multiple

case delivery modes.

Thus, the results were quite gratifying,

particularly in their robustness across different

universities, course sections and teaching modalities.

A key takeaway is the support for H2, validating the

creation and use of a software specific self-efficacy

measure (LCSE). A second notable finding was the

positive relationship between increased self-efficacy

beliefs relating to LC/NC and an increased interest in

both learning more application development and

pursuing an MIS major. Students were clearly able to

differentiate between the two objectives; initial

student perceptions of their ability to complete LC/NC

tasks was higher, perhaps reflecting their familiarity

with apps as digital natives and indicating their

enthusiasm for learning about app development. It is

interesting to note that the same student’s initial self-

efficacy beliefs did not relate to an interest in the MIS

major, but that the relationships were positive and

highly significant in the post-case survey. These

results suggest that students not only find value in

learning about LC/NC app development, but that this

possibly increases their understanding of and interest

in the MIS field.

There were, of course, research limitations

requiring additional thought and careful consideration

in subsequent research. Hypothesis 3, while

supported, poses questions regarding the

categorization of the LCSE items given that they

loaded onto a single factor in the preliminary analysis.

This could be due to the internal complexity of each

LCSE item which may contain aspects relating to

multiple categories.

A second possible research weakness regards the

measurement of LC/NC (Mendix) and MIS major

interest. While the simplicity of a single question is

appealing for exploratory research, it could be useful

to refine the gauge of student interest with additional

questions such as “I can see myself working in the MIS

field in the future”. Similarly, interest in application

development could be expanded to further develop

sub-areas, such as user design and/or data modeling.

The final research limitation regards the long-

standing theoretical relationship between self-efficacy

beliefs, perseverance, and performance. These

relationships have been shown to be positive,

significant, and robust across a variety of human

activities. Although the FaaB case instructions

included some individual latitude, such as theme

customization, the steps were fairly concrete with the

end objective of creating a standard application.

 Independent development tasks (e.g., adding a

map object) “on your own" could be added to the FaaB

case as either a case requirement or an extra-credit

activity. Such tasks provide an opportunity to test

student perseverance in the face of challenges and to

gauge student skill-acquisition (performance). Further

investigation is needed for gender, prior programming

course exposure and instructor differences. Gender

differences in pre- and post- GCSE and LSCE items

all indicated males having a higher self-efficacy before

completing the FaaB case than females, however there

were no significances after completing the FaaB case.

Perhaps the engagement in an actual app development

mitigated any prior perceptions. Similarly, students

with prior programming course experience reveal

higher self-efficacy perceptions for all pre-GCSE and

-LCSE items, yet after completing the FaaB case there

remained a few differences indicating a need to further

investigate prior programming exposure. Instructor

differences found in pre-GSCE were also mitigated in

the post-GSCE, possibly reflecting the general nature

of the CSE scale resulting in student responses of

varying software experiences.

6. Conclusion

While the adoption of LC/NC tools by businesses

is still in a nascent stage, analysis of software trends

Page 4657

(Wong et al., 2021) and recent hiring practices indicate

that the movement towards cultivating “citizen

developers” is gaining momentum. Our research

indicates that business students are enthusiastic, but

initially apprehensive about acquiring LC/NC skills.

Introductory curriculum, such as the “Free as a Bird”

case using Mendix can play a helpful role, increasing

self-efficacy beliefs and encouraging students to

consider pursuing further skill development. It may

also enlarge student understanding of the MIS field in

general, prompting reexamination of the major as an

important resource for pursing a future MIS related

career.

7. References

Anderson, L.W., & Krathwohl, D.R. (2001). A Taxonomy for

Learning, Teaching and Assessing: A Revision of

Bloom’s Taxonomy. New York: Longman

Publishing.

Cerny, B.A., & Kaiser, H.F. (1977). A Study of a Measure

of Sampling Adequacy for Factor-Analytic

Correlation Matrices, Multivariate Behavioral

Research, 12(1),43-47.

Charland, P., Allaire-Duquette, G., Léger, P. M., & Gigras,

G. (2015). Developing and Assessing ERP

Competencies: Basic and Complex Knowledge.

Journal of Computer Information Systems, 56(1),

31-39.

Compeau, D. R., and Higgins, C.A. (1995). Computer Self-

Efficacy: Development of a Measure and Initial

Test, MIS Quarterly, 19(2),189-211.

https://doi.org/10.2307/249688

Crumbly, J., & Field, D. (2020). Implementing No/Low

Code Development in a Systems Analysis and

Design Course. Journal of Strategic Innovation

and Sustainability, 15(5), 116-130.

https://doi.org/10.33423/jsis.v15i5.3591

Eder, L.B., Antonucci, Y.L. & Monk, E.F. (2019).

Developing a Framework to Understand Student

Engagement, Team Dynamics and Learning

Outcomes Using ERPsim, Journal of Information

Systems Education, 30(2), 127-

139. https://aisel.aisnet.org/jise/vol30/iss2/6

Fuller, J., Langer, C., & Sigelman, M. (2022). Skills-Based

Hiring Is on the Rise. Harvard Business Review.

https://hbr.org/2022/02/skills-based-hiring-is-on-

the-rise

 Henkel, M., & Stirna, J. (2010). Pondering on the Key

Functionality of Model Driven Development

Tools: The Case of Mendix. In: Forbrig, P.

Gunther, H. (eds) Perspectives in Business

Informatics Research, vol 64. Springer, Berlin,

Heidelberg.

Hurlburt, G. (2021). Low-Code, No-Code, What’s Under the

Hood? IT Professional, 23(6), 4-7.

https://doi.org/10.1109/MITP.2021.3123415

Johnson, R. D., & Marakas, G. M. (2000). Research Report:

The Role of Behavioral Modeling in Computer

Skills Acquisition: Toward Refinement of the

Model, Information Systems Research, 11(4), 402-

417. https://doi.org/10.1287/isre.11.4.402.11869

Kaiser, H. F. (1974). An Index of Factorial Simplicity.

Psychometrika, 39(1), 31-36.

Karsten, R., Mitra, A., & Schmidt, D. (2012). Computer self-

efficacy: A meta-analysis, Journal of

Organizational and End User Computing

(JOEUC), 24(4), 54-80.

https://doi.org/10.4018/joeuc.2012100104

Kher, H.V., Downey, J.P., & Monk, E. (2013). A

longitudinal examination of computer self-

efficacy change trajectories during training,

Computers in Human Behavior, 29(4), 1816-1824.

https://doi.org/10.1016/j.chb.2013.02.022

Litman, M., & Field, D. (2018). Mendix as a solution for

present gaps in Computer Programming in Higher

Education, (2018). AMCIS 2018 Proceedings,14.

https://aisel.aisnet.org/amcis2018/Education/Pres

entations/14

Marakas, G.M., Johnson, R.D., & Clay, P.F. (2007). The

Evolving Nature of the Computer Self-Efficacy

Construct: An Empirical Investigation of

Measurement Construction, Validity, Reliability

and Stability Over Time, Journal of the

Association for Information Systems, 8(1), 16-46.

https://aisel.aisnet.org/jais/vol8/iss1/2/

Nachmias, D. & Nachmias, C. (1987). Research Methods in

the Social Sciences (3rd ed.). New York, NY: St.

Martin’s Press.

Poe, L.F., & Mew, L. (2019). Implementing Agile as an

Instructional Methodology for Low-Code

Software Development Courses. 2019 EDSIG

Proceedings, Cleveland, OH, 5(4951).

Stajkovic, A., Luthens, F. (1998) Self-efficacy and work

related performance: A meta-analysis,

Psychological Bulletin, 124(2), 240-261.

https://doi.org/10.1037/0033-2909.124.2.240

Thacker, D., Berardi, V., Kaur, V., & Blundell, G. (2021).

Business Students as Citizen Developers:

Assessing Technological Self-Conception and

Readiness. Information Systems Education

Journal, 19(5), 15-30.

https://www.researchgate.net/publication/351055

548_Business_Students_as_Citizen_Developers_

Assessing_Technological_Self-

Conception_and_Readiness

Wong, J., Iijima, K., Leow, A., Jain, A., & Vincent, P.

(2021). Magic Quadrant for Enterprise Low-Code

Application Platforms.

https://www.gartner.com/doc/reprints?id=1-

275QSBDL&ct=210813&st=sb

Page 4658

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

