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Abstract 
Selenium (Se) is an essential micronutrient element linked to many biological functions 

in human health (1).  Two proteins involved in Se metabolism are Selenoprotein P (Sepp1) and 

Selenocysteine lyase (Scly).  Previous studies in our lab showed that when both Sepp1 and Scly 

were disrupted, male double knockout Se-supplemented mice (MDKOSe) exhibited decreased 

survival, severe neurological impairment and susceptibility to audiogenic seizures (AGS) (2).   

Further investigation indicates that between 70 and 80% of MDKOSe mice will develop 

seizure characteristics between 8 and 12 weeks of age, with about 40% requiring euthanasia prior 

to 10 weeks.  A significant decrease in motor coordination starting around 6 weeks of age along 

with wobbly or abnormal gait precedes seizure development.  Seizures occur within a week of 

weight loss commencement, accompanied by a decrease in food and water intake.  Female 

DKOSe mice have decreased motor coordination starting at 7 weeks of age and increased 

percentage of inguinal and gonadal white adipose tissue fat deposits and elevated serum 

glutathione peroxidase 3 levels.  The neurological deficit becomes severe, leading to seizure 

development if high selenium supplementation is removed at weaning.   

  Disruption of the maturation of GABAergic inhibition seems to be the main neurological 

effect leading to the development of AGS in MDKOSe mice.  Preadolescent castration rescues 

the MDKOSe phenotype.  It delays onset of neuromotor deficits in male Sepp1 knockout mice 

on a Se deficient diet and is protective of male wild type mice exposed to the neurotoxin 

dizocilpine maleate (MK-801).   Testosterone re-administration to sham-operated MDKOSe 

mice appears to be beneficial but not preventative.   

  Together, these results indicate that there is a critical time point in which Se is essential 

for the prevention of neurological impairment in both female and male DKOSe mice.  MDKOSe 

may have a greater need for Se during the course of their sexual reproductive period due to 

competition between the testes and the brain for Se.  The specific deficits in behavioral tests and 

underlying GABAergic system maturation disruption could allow DKOSe mice to potentially 

serve as a model for the study of ictogenesis and therapeutic drug testing of novel drugs for 

epileptic patients.   
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Chapter 1: Selenium – the Micronutrient 
Introduction 

Selenium (Se) was first discovered by Jöns Jacob Berzelius in 1817 when he identified it 

as the toxic element causing illness in Swedish plant workers (3).  For years, it was studied due 

to its connection with livestock.  Se toxicity in livestock leads to lameness, emaciation, and other 

detrimental conditions.  Deficiency results in what has been called “white muscle disease” due to 

the white appearance of dying cell membranes in heart and skeletal muscles (3; 4).  It was not 

until 1957 that the nutritional value of Se was recognized in the diet of rats (5).  Later, in 1969, 

the role of Se as an essential micronutrient was established through a study of dietary deficiency 

in multiple rat generations (6).  Se in the form of selenocysteine (Sec) was found to be a key 

component of glutathione peroxidase (Gpx), which is essential in the body’s defenses against 

oxidative stress (7). 

Since then, Se has been linked to many biological functions in human health including 

thyroid hormone synthesis and antioxidant stress defense (1).  Whereas Se toxicity leads to 

musculoskeletal disorders (alterations in cartilage) (8), Se deficiency has been linked to clinical 

disorders such as Keshan disease (a cardiomyopathy) and Kashin-Beck disease (degenerative 

osteoarthropathy) (1) and low Se levels have been indicated in febrile seizures (9; 10; 11).  

Genetic mutations in genes related to Se metabolism have been shown to cause congenital 

muscular dystrophy (Selenoprotein N defect), progressive cerebello-cerebral atrophy (SEPSECS 

mutation) and retarded growth (SEC1SBP2 Syndrome) (12).   

As an essential micronutrient, Se is acquired through dietary intake.  Plants are the main 

source of Se for humans.  Se accumulation in plants is dependent on soil Se (13; 14) and local 

climate factors such as precipitation and seasonal weather variation play key roles in Se soil 

distribution (7; 15).  Globally, it is estimated that half a billion to one billion people are Se 

deficient (15; 16) and this is predicted to increase in the future due to local climate factors (17). 
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Figure 1.1: Selenium Dietary Intake Recommendations.  Selenium dietary intake of adults (top) 

and children ages 0-13 years of age (bottom) (7; 18; 19). 

 

The recommended dietary intake for Se varies depending on a person’s stage of 

development.  For adults, the daily recommendation is 55-70 µg/day with an upper tolerant limit 

of 400 µg/day.  Clinical signs of toxicity are seen when intake reaches around 750 µg/day (18; 

20).  In children, the recommended Se intake and toxicity levels rely heavily on developmental 

stage with recommended intake varying between 15-40 µg and upper limits of 45-280 µg (Figure 

1).   

In mammals, adequate nutrient intake is a key factor in maintaining health and is 

important for normal growth and development.  Although there are general guidelines for daily 

nutritional requirements, it has become evident that other factors (e.g. genetics, sex, and age) can 

alter an individual’s nutritional needs.  Malnutrition at key points of development can lead to 

long-term effects and chronic disease (21; 22; 23; 24).  The FAO reported in 2004 that 

malnutrition affects about 852 million people worldwide (25).  In a more recent 2015 release, it 
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was estimated that about 777 million people worldwide are chronically undernourished (26) and 

according to the 2015 WHO Global Health 

Estimates report, nutritional deficiencies account 

for about 1% of deaths worldwide (27).  In 

children, it is estimated that malnutrition 

contributes to close to 5 million deaths per year 

and causes an additional 182 million to be 

physically and cognitively stunted (24).  

Investigation into the role of specific nutrients 

and the physiological pathways affecting key life 

stages is necessary to provide clinical targets that 

may help alleviate this global burden. 

Of the elements listed on the periodic 

table, nineteen elements, including Se, are 

considered to be essential in the human diet to 

provide adequate nutrition.  In the US, eight are 

recognized as “trace” elements (micronutrients hereafter) (18) as they are required in very small 

amounts (Table 1.1).  Micronutrients tend to have narrow biological therapeutic ranges and 

excess can lead to toxicity in humans, as is the case with Se.   

In the last decade, there has been a shift in how malnutrition is viewed.  It is evident that 

inadequate micronutrient intake can lead to metabolic disruption and DNA damage (28; 29; 30; 

31; 32).  This has been particularly important in the raising of livestock as food sources.  In 

cattle, even though the epigenome of an animal is heritable, it can be modified by diet (29; 32) 

giving insight into a possible application of “personalized nutrition” in both animals and humans 

(21).  With advancements in genomic sequencing and studies in epigenetics, it may be that in the 

future clinical providers can match nutritional supplementation recommendations to a person’s 

current genomic and environmental status thereby optimizing the body’s ability to remain 

healthy and fight physical ailments. 

 

 

 

Table 1.1: Current FDA Recommendations 
for Daily Micronutrients Intake (18). 

Element 2017 FDA 
Recommended 
Daily Amount 

Iron (Fe) 18 mg 

Zinc (Zn) 15 mg 

Copper (Cu) 2 mg 

Manganese (Mn) 2 mg 

Iodine (I) 150 μg 

Chromium (Cr) 120 μg 

Molybdenum (Mo) 75 μg 

Selenium (Se) 70 μg 
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Selenium absorption and metabolism 

The complete pathway of Se absorption and metabolism in the body has yet to be 

determined.  It has been reported that Se can be obtained through dietary means in either organic 

forms, i.e. selenomethionine or selenocysteine, or inorganic forms, i.e. selenite, SeO3
-2; selenide, 

Se-2; selenate, SeO4
-2; and elemental Se (8).  Se can be incorporated into proteins by either 

specific mechanisms, i.e. selenoproteins, or non-specific mechanisms, i.e. replacement of sulfur 

(Figure 1.2) (1; 33; 34).  Selenide (H2Se) is believed to be a central component that can lead 

either to selenoprotein formation or Se excretion (respiratory, urine, or feces).  Mechanisms of 

Se absorption from diet depend on the form received.  Inorganic Se can be processed by simple 

diffusion or co-transport and exchange, whereas organic Se processing is through incorporation 

into the amino acids, selenocysteine or selenomethionine.  Se compounds have been shown to be 

taken up by erythrocytes (e.g. selenite) and bind to albumin (e.g. selenide) as well as α and β 

globulins, low density lipoprotein (LDL) and very low density lipoprotein (VLDL) (8). 

When dietary Se is deficient, the body compensates through increasing metabolites which 

are capable of acting as antioxidants.  Metabolites involved in one-carbon metabolism leading to 

glutathione production are altered in Se deficiency as indicated by increased levels of serine, 

glycine, and threonine along with dysregulation of the methionine-homocysteine cycle (35).  

These can potentially cause changes in redox-methylation, lipid head group formation, and DNA 

methylation (35; 36; 37; 38).  Se deficiency also alters phenylalanine, tyrosine, and tryptophan 

biosynthesis (35) which can affect levels of dopamine, norepinephrine or epinephrine, and 

thyroid hormones (39).   
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Figure 1.2: Selenium Absorption and Metabolism.  Summary schematic of Se absorption and 
metabolism as determined from multiple studies using human tissue and rat and mouse animal 
models (1; 34; 40; 41).   

 

Selenium distribution in the body 

Se tissue distribution and concentrations vary with age and diet.  With adequate dietary 

Se, the biological trend is that the highest concentrations are found in the kidney and liver and 

the lowest in the brain and lung.  In humans, the muscle has the highest percentage of total body 

Se, ranging from 27% to 50%, whereas the liver accounts for approximately 7%, the kidney ~2-

4%, and the brain ~2.5% (42; 43; 44; 45). 

When rats were fed a diet deficient in Se, Se was preferentially retained in the brain, 

pituitary, thyroid, ovaries, adrenal glands, and testes (46; 47), with the brain given priority at the 

expense of other organs (47; 48; 49; 50).  In the rat brain, the highest concentrations of selenium 

are found in the gray matter (45), including the cerebellum, and the lowest concentrations are 

found in the brain stem (50; 51; 52).  Subcellular distribution of Se is highest in synaptosomal 

and mitochondrial areas (51). 
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Selenium, the element 

The element Se is characterized as a metalloid resembling sulfur in chemical terms.  It 

has six isotopes that occur naturally in both organic and inorganic forms.  In humans, it is 

generally accepted that most or all of the biological functions of Se are manifested by its 

presence in the 21st amino acid, Sec.  Sec is structurally analogous to cysteine (Cys), with Se in 

place of sulfur.  However, Sec is not derived from Cys, but is synthesized on the carbon 

backbone of serine (Figure 1.3).  Sec is then incorporated into 30 selenoproteins (53), encoded 

by one of 25 known genes (1).   

Most selenoproteins incorporate Sec in their catalytic sites.  Many studies have been 

conducted on the chemical properties that change when sulfur is replaced by Se (reviewed by 

Arner in 2010).  Se has a higher nucleophilicity than its analog, Cys.  This potentially allows it to 

yield faster reaction rates at physiological pH than, with higher redox potentials in non-

equilibrium states (54). 
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Figure 1.3: Selenocysteine (Sec) Biosynthesis and Incorporation.  Serine (Ser) is 

aminoacylated with special tRNA[Ser]Sec by Ser-tRNA synthase.  Ser is then 

phosphorylated by phosphoseryl-tRNA kinase to yield pSer-tRNA[Ser]Sec.   pSer-

tRNA[Ser]Sec  is then converted to Sec by the enzyme selenocysteine synthase which uses a 

selenophosphate as the Se donor producing Sec-tRNA[Ser]Sec.  Sec is then incorporated into 

the elongating selenoprotein.  During selenoprotein synthesis, Sec-tRNA[Ser]Sec insertion 

occurs at UGA codons when directed by SECIS elements within selenoprotein mRNAs.  
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(H2Se) 

Selenoproteins

Serine 
(Ser) 

Ser-tRNA
Synthase

Phosphoseryl-tRNA
Kinase 

pSer-tRNA[Ser]Sec

Ser-tRNA[Ser]Sec

Selenocysteine 
Synthase 

Selenophosphate
(SePO3H3)

Selenophosphate
Synthatase

Sec-tRNA[Ser]Sec



8 
 

Selenium and the brain 

The roles of the micronutrient Se in brain development and function have become of 

increasing interest.  Sec is incorporated into proteins involved in growth, development, and 

antioxidant defense systems.  These proteins include iodothyronine deiodinases (Dios), 

glutathione peroxidases (Gpxs) and thioredoxin reductases (Txrnds). 

Iodothyronine deiodinases (Dios) catalyze activation and inactivation of thyroid 

hormone, which functions in many aspects of development and body homeostasis.  The two 

predominant brain deiodinases are Dio2 and Dio3.  Dio2, an endoplasmic reticulum (ER) 

anchored enzyme with its catalytic site exposed to the lumen, is predominately found in 

astrocytes, where it activates the thyroid prohormone 3, 5, 3’,5’,-tetraiodothyronine (T4) via 

conversion to the active hormone, 3, 5, 3’-triiodothyronine (T3).  Knockout of Dio2 can lead to a 

hypothyroid state causing changes in bone and muscle, and in carbohydrate and lipid metabolism 

(55).  Hypothyroidism during critical periods of development can lead to cognitive and 

behavioral dysfunction (56).  It can also delay neuronal differentiation (57) and lead to an age-

dependent development of ataxic gait and severe cretinism (58). 

Dio3 is a plasma membrane anchored selenoprotein found in neurons and important in 

thyroid hormone metabolism.  In the brain, it inactivates T4 and T3 by converting them to 

reverse 3, 3’, 5’-triiodothyronine (rT3) and 3, 3’-diiodothyronine (T2), respectively.  In mice, 

Dio3 is highly expressed during the first week after birth, then diminishes rapidly thereafter (59).  

Dio3 has been found highly expressed in areas of sexual differentiation in rat neonates (60).  The 

lack of Dio3 produces a thyrotoxicosis state in mouse neonates, followed by a central 

hypothyroidism state at postnatal day 15, indicating its importance in thyroid axis development 

(59).  It has been reported that there is a “hypo-responsive” period where mammals are unable to 

respond to stress hormones (61).  This corresponds to the time when Dio3 is highly expressed.  

Other studies have linked transient hypothyroidism in neonatal animals to the development of 

audiogenic seizures in adults, with onset at puberty (62; 63).   

Dio3 expression is stimulated by T3 levels.  T3 has been shown to be upstream of p38, 

mitochondria biogenesis, AKT signaling, PI3K/ERK, and mTOR, thereby increasing metabolism 

and oxygen consumption (60).  Dio3 inactivates T3 and therefore decreases the metabolic rate.  

Other pathways, including TGFB3, FGF, and HIF1α, also activate Dio3, resulting in reduced 

metabolic rate and oxygen consumption and increased β-oxidation (64).  
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The Gpxs and Txnrds have important roles in antioxidant defense.  The brain has a very 

high energy requirement, accounting for over 70% of total body energy consumption in 

newborns and 20-30% in adults (65).  The brain runs almost exclusively on glucose with 

glycogen being a short-term energy reserve.  As a backup, the brain relies on ketones with fatty 

acid oxidation releasing twice as much energy as glycogen.  Though not a requirement in adults, 

ketones are required during infancy, with uptake being 3 to 5 times faster in newborns (66).  

Ketones provide the main carbon source for brain cholesterol and long-chain fatty acids of 

structural lipids in development (65).   

With a high metabolic rate comes the need for antioxidant defense.  Se incorporation into 

the structure of Gpx was the key finding that confirmed its role as an essential micronutrient (7).  

Gpx utilizes glutathione as a co-factor in the reduction of hydrogen peroxide and phospholipid 

hydroperoxides, thereby neutralizing oxidative stress.  Sec is incorporated into five of the eight 

Gpxs (67); Gpx1, Gpx2 (gastrointestinal), Gpx3 (plasma), Gpx4 and Gpx6 (olfactory).  Of the 

five, Gpx1 is the most abundant, is found in the cytoplasm in mammalian tissues and catalyzes 

the reduction of hydrogen peroxide to water.  Deletion of Gpx1 in mice revealed sensitivity to 

oxidative stress-inducing agents (68) whereas overexpression has been shown to modulate 

damage to long-term memory resulting from traumatic brain injury (69).   

Gpx4 is essential for early development; it is the only Gpx whose deletion results in 

embryonic lethality (70).  Gpx4 reduces phospholipid hydroperoxides, distinguishing this 

isoform from the other Gpxs.  In the brain, Gpx4 is expressed in neurons but can be found 

upregulated in astrocytes in pathological states (71).  Its mRNA can be detected in all stages of 

brain development, with regional distribution during embryogenesis (71).  It has three isoforms, 

mitochondrial, cytosolic, and nuclear.  The mitochondrial form (Gpx4-mt) appears to be 

important for normal brain development, as selective deletion impairs formation of the hindbrain 

(72).   Mice with a conditional knockout of Gpx4 in neurons have decreased parvalbumin 

positive interneurons (PV+IN), a subpopulation of inhibitory, GABAergic interneurons which act 

to synchronize neural activity, and levels are decreased in Se deficient mice that develop 

audiogenic seizures (2). 

Gpx4 is also crucial for male fertility in mammals.  The testes have a high concentration 

of Se (73) and male rats deprived of Se over two generations become infertile (6).  At the 

beginning of spermatogenesis, Se in the testes begins to accumulate in high molecular weight 
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protein aggregates that were shown to be composed of highly cross-linked, enzymatically 

inactive Gpx4 (73).  This is believed to be due to the essential role of Gpx4 as part of mid-piece 

of sperm (73; 74; 75; 76; 77) with lack thereof leading to sperm abnormalities (78) resulting in 

reduced fertility.   

Thioredoxin reductases (Txnrds) are involved in cellular redox balance, cell signaling and 

DNA synthesis indirectly via their role in thioredoxin (Txn) reduction (79).  Sec is incorporated 

into their C-terminal domains where it acts in electron transport to reduce Txn and prevents 

Txnrds from acting as glutathione reductase (GR) (80).  Two Txnrds are ubiquitously expressed, 

Txnrd1 in the cytosol and Txnrd2 in the mitochondria.  The third, a thioredoxin-glutaredoxin 

reductase, Txnrd3 resides in the testes.  Similar to GR, Txnrds utilizes NADPH to reduce Txn 

but Txn is not their only target.  Txnrds have the ability to directly reduce Txn along with other 

non-disulfide substrates e.g. selenite, hydrogen peroxide and lipid hydroproxides.  This broad 

substrate specificity is what separates them from GR (81).  When globally deleted, both Txnrd1 

and 2 are embryonic lethal.  Nervous system-specific knockout of Txnrd1 leads to growth 

retardation with ataxia and cerebellar hypoplasia due to decreased proliferation of granule cell 

precursors, whereas Txnrd2 knockout shows no obvious pathology (79).  This evidence suggests 

Txnrd1 is more important in cerebellar development than Txnrd2. 

 

Proteins important for selenium metabolism 

Several reviews have been published on selenoproteins and their known functions to date 

(34; 45; 67; 74; 82; 83).  The following chapters focus on two proteins important to Se 

metabolism, selenoprotein P (Sepp1), implicated in Se transport and storage, and selenocysteine 

lyase (Scly), involved in selenocysteine breakdown and recycling.  Sepp1 is a plasma 

glycoprotein that consists of two domains, an N-terminal domain containing a redox motif and a 

C-terminal domain containing multiple Sec residues.  It accounts for about 60% of the Se 

concentration in the plasma and is believed to be the major transporter of Se from liver to other 

tissues (84).  Although plasma Sepp1 is secreted mostly by the liver (40), its mRNA is expressed 

in many tissues including kidney, heart, lung, skeletal muscle, brain, and testis (85; 86).   

In Sepp1 knockout mice (Sepp1KO), both Se and Gpx activity levels are reduced in the 

brain and testes, indicating Sepp1 is important to both of these tissues for Se supply.   Brain Se 

levels have been shown to be independent of plasma Se levels as long as there is local expression 
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of Sepp1 (40), whereas Sepp1KO combined with a Se deficient diet results in neurological 

dysfunction and male infertility (73; 78; 87; 88).  A diet of 0.25 ppm largely prevents 

neurological dysfunction (87) but even with an Se adequate diet, Sepp1KO mice still exhibit 

deficits in contextual fear extinction, latent inhibition, and sensorimotor gating (89).  A high Se 

diet of 1 ppm does not seem to reverse this, as mice on this diet still exhibit deficits in motor 

coordination and spatial learning, and altered hippocampus synaptic transmission and plasticity 

(90).   

Apolipoprotein E receptor-2 (ApoER2) is the primary receptor for Sepp1 in the brain and 

testes.  Similar to Sepp1KO, mice lacking ApoER2 have diminished Se levels in brain and testes 

with resulting infertility.  They exhibit neurological dysfunction and neurodegeneration in 

auditory and motor areas of the brain when fed a Se-deficient diet (91; 92; 93).  ApoER2 

knockout mice also exhibit impaired hippocampal synaptic plasticity and cognitive deficits (94).  

Together, these studies indicate the importance of Sepp1 in supplying Se to the brain via 

ApoER2, to prevent neurological dysfunction.   

Scly has been shown to selectively catalyze the breakdown of Sec into L-alanine and 

selenide (H2Se) allowing Se to be recycled for additional selenoprotein synthesis (95).  Scly, a 

homodimeric enzyme found in most tissues, exhibits high activity in the liver and kidneys, and is 

undetectable in blood and fat (96).  It is necessary for balance in energy metabolism, specifically 

lipid and glucose metabolism, under conditions of dietary Se deficiency (83; 97).  Scly knockout 

mice (SclyKO) fed a Se adequate diet develop normally without neurobehavioral deficits, and 

both male and female mice are fertile (83).  When fed a Se deficient diet, fat accumulation 

becomes apparent as the mice age, which leads to a metabolic syndrome phenotype (97) that is 

more pronounced in males.  SclyKO mice on an Se deficient diet also develop mild deficits in 

spatial learning (83). 

When both Sepp1 and Scly are deleted, mice require supplementation with high Se levels 

to survive past weaning.  They have severe neurological impairments with reduced motor 

coordination and increased susceptibility to audiogenic seizures (AGS), and exhibit 

neurodegeneration in the brainstem (2).  They also show signs of GABAergic system defects 

with reduced density of PV+IN and GAD67, an enzyme that converts glutamate to inhibitory 

neurotransmitter, GABA.  This phenotype was more pronounced in the males as female mice, on 

the same diet, have a milder motor deficit and do not appear to develop AGS (2).   
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Conclusion 

In summary, Se is a micronutrient linked to many biological functions in human health.  

Its biological action is through its incorporation via Sec into selenoproteins involved in growth, 

development and antioxidant defense systems, e.g. Gpxs, Txnrds, and Dios.  When Se is 

deficient in the diet, it is preferably retained in the brain at the expense of other organs 

highlighting the importance of Se as a micronutrient for this organ.  Two proteins involved in Se 

metabolism are Selenoprotein P (Sepp1) and Selenocysteine lyase (Scly).  Sepp1 is involved in 

Se transport, whereas Scly catalyzes the breakdown of Sec, allowing Se to be recycled for 

additional selenoprotein synthesis.  Though knowledge of the nutritional value of Se has 

expanded over the last 200 years, the biological functions and mechanisms of action of 

selenoproteins have yet to be fully understood.  Further investigation into the roles of 

selenoproteins at key points of development would be beneficial in determining dietary 

supplementation requirements.  This knowledge can then be used to optimize individualized 

nutrition in both humans and animals, thereby having potential application to prevent disease 

pathology and as a targeted therapeutic agent.  

  Accordingly, to further investigate the effects of disruption of Se metabolism in vivo, we 

conducted a series of experiments on male and female Sepp1 and Scly double knockout mice 

(DKOSe), which will be discussed in detail in subsequent chapters.  We hypothesize that the 

neurological deficits in the DKOSe are progressive in nature in both male and female mice and 

that the high Se diet and/or lack of high testosterone at puberty may be protective in the case of 

the female mice.  These studies have the potential to elucidate specific targets for further study in 

cases of fetal and childhood Se deficiency, and compensatory mechanisms that are distinct 

between males and females during development, as well as identify potential risk factors that 

may need to be considered in hormone replacement therapies. 
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Chapter 2: Physical Features Preceding Seizure 
Development in Male Sepp1 and Scly Double Knockout 
Mice 
 

Introduction 

 Selenium (Se) is an essential trace element linked to several biological functions in 

human health.  Through the incorporation of Se in the form of the amino acid selenocysteine 

(Sec), Se is thought to act mainly through selenoproteins.  Selenoproteins have been shown to 

play an important part in the defense against oxidative stress, which has implications for the 

development of disease states such as neurodegeneration.   

 Two proteins involved in Se metabolism are Selenoprotein P (Sepp1) and Selenocysteine 

lyase (Scly).  Sepp1 is involved in Se transport and lack of Sepp1 results in impairments in 

neurological function and male fertility (73; 78; 87; 88).  Scly catalyzes the breakdown of Sec, 

allowing Se to be recycled (95).  Scly is important in lipid and glucose metabolism (83; 97).   

Our lab developed and characterized a novel Scly and Sepp1 double knockout (DKOSe) 

mouse to investigate the in vivo effects of disrupted Se metabolism.  These mice are referred to 

hereafter as DKOSe, prefaced by M or F for male or female, respectively.  Se supplementation of 

dams and pups through their drinking water was required for pups to survive past weaning.  Even 

with Se supplementation in their drinking water, MDKOSe mice still developed neurological 

deterioration.  They exhibited decreased survival and severe neurological impairment, including 

loss of motor coordination, susceptibility to audiogenic seizures (AGS) and brain stem 

degeneration, with GABAergic system defects in the inferior colliculus (IC) (2). 

Due to the spontaneous development of seizures, MDKOSe may serve as a potential 

model for the study of epileptogenesis.  Therefore, statistical knowledge of the incidence of 

seizure development as well as physical features leading up to manifestation of seizures would 

be beneficial references for validating intervention therapies.  We hypothesize that seizure 

development in these mice is progressive in nature, therefore, there will be physical signs of 

deterioration preceding first seizure occurrence that can be monitored.  These include possible 

changes in weight, food and water intake, general behaviors e.g. approach response, posture, coat 

condition, and wobbly or abnormal gait.  Accordingly, we single-housed MDKOSe mice starting 

at five weeks of age, tested them weekly for motor coordination deterioration, and monitored 
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them for adverse physical signs of deterioration leading up to seizure development.  Then at ten 

weeks of age, they underwent testing for seizures in the Audio Open Field (AOF) assay and the 

lengths of their aura, ictal, and postictal stages were recorded.  

 

 
 

Materials and methods 

 All animal procedures and experimental protocols have been approved by the University 

of Hawai i’s Institutional Animal Care and Use Committee. 

  Animals: Male and female C57BL/6J (WTj), C57BL/6N (WTn), C57BL/6N on SeH2O 

(WTnSe) and DKOSe mice were generated from breeders in our colony as previously described 

(2). Because DKOSe mice require high selenium supplementation for survival, WTnSe and 

DKOSe dams were maintained on a 1 ppm Se diet consisting of standard chow containing 0.25 

ppm Se and water supplemented with 10 µM sodium selenite (~0.78 ppm Se) (hereafter SeH2O).  

Pups remained on the SeH2O water after weaning.  Animals were weighed and sacrificed and 

tissue collected thereafter at the same time of day (early evening, between 4:00-6:00 pm) to 

account for the 24 hour testosterone cycle.  Blood was collected via cardiac puncture, centrifuged 

at 13,000 x g for 10 minutes and serum taken and stored at minus 80˚C until analyzed.  Brains 

were either collected and weighed following perfusion with 4% paraformaldehyde (PFA) for 

histological analysis or dissected and snap frozen in liquid nitrogen and stored at minus 80˚C 

until use for protein, RNA, enzymatic activity or hormone analysis of specific brain regions.  

  Neuromotor and Behavioral tests: Mice were single housed 24 hours prior to behavioral 

testing except the group-housed mice used in preliminary studies. All tests were performed at the 

Hypothesis:  Seizure development in MDKOSe mice is progressive in nature, therefore, 
there will be physical signs of deterioration prior to first seizure occurrence that can be 
monitored. 

Aim:  Identify visual and behavioral characteristics leading up to the loss of motor 
coordination and onset of seizure activity in MDKOSe mice and obtain the average duration 
of the three seizure stages, aura, ictal and postictal. 

Significance:  MDKOSe mice may serve as a potential model for the study of ictogenesis.  
Data obtained can be used as a reference for evidence of any changes during future 
investigation of mechanistic pathways and for validating possible intervention therapies. 
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same time of day to account for circadian rhythm.  A select group of animals were assessed for 

motor coordination via Rotorod at weekly intervals from age 5 to 10 weeks.  All others subjected 

to behavioral testing were assessed beginning at 10 weeks of age.  After behavioral testing, mice 

were weighed, sacrificed and tissue collected as described above. Behavioral tests included the 

following:  

• Rotorod Assay for motor coordination (ataxia).  Mice were tested 4 times daily (two 

times in the morning and two times in the afternoon) for two consecutive days by being 

placed on a horizontal rod which increases rotation speed from 4 rpm to 40 rpm over a 5 

minute time period.  Latency to fall off the rod is averaged for the 8 trials.   

• Open Field Assay for locomotion.  Mice were tested by placement in an open field 

apparatus (50 x 50 cm) with 40 cm high opaque walls and allowed to explore for 5 

minutes. Animal movement was recorded by an overhead video camera and analyzed by 

video tracking software (VideoMot 2, TSE Systems).  Total distance traveled was 

recorded.  Average speed was calculated as total distance traveled divided by total time. 

• Audio Open Field (AOF) Assay for susceptibility to audiogenic seizures (AGS).  Mice 

were tested for AGS susceptibility as previously described (2).  Briefly, using the open 

field apparatus and video tracking software described above, mice were allowed to 

explore the open field for 2½ minutes, then were exposed to an 85 dB white noise played 

continuously through a loud speaker. Average speed during the pre-sound period of 2½ 

minutes (pre-sound) and in the initial 10 second period following the onset of white noise 

(post-sound) was calculated.  Trials were stopped if animal seized continuously for more 

than 15 seconds.  

• Seizure Trials.  This assay was conducted similar to AOF assay above except there was a 

5 minute acclimation period, followed by the 85 dB white noise being played for 15 

seconds only.  The total time of the aura duration (wild running), ictal duration (from the 

time mice fall over until they stop twitching) and postictal duration (time to regain 

upright on all four paws) were recorded. 

  Monitoring of food and water intake: A select group of mice were single housed starting 

at five weeks of age.  Their body weight, food consumption and water intake were assessed two 

times per week. When weight started to decline, assessment was increased to daily.  

  Body composition: Following sacrifice, total body weight, brain weight and weight of fat 
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depots of the inguinal (ingWAT) and gonadal (gWAT) white adipose tissue were collected and 

recorded. 

Statistical analysis: Statistical tests and sample number varied according to the 

experiment and are indicated in the text and/or figure legends.  Data were analyzed and plotted 

using GraphPad Prism version 5 Software.  All results are represented as mean ± SEM. 

Significance was determined by a p-value of <0.05.  

 

Results: C57BL/6 Genetic Background  

C57BL/6J (WTj) vs. C57BL/6N (WTn) mice 

 During the course of characterizing the DKOSe mice, we became aware of a possible 

complication due to genetic background.  DKOSe mice were developed using selected breeding 

techniques (2).  Briefly, SclyKO mice were bred with Sepp1 heterozygote mice.  Heterozygote 

(Het) offspring were then mated with SclyKO mice to produce SclyKO/Sepp1Het mice.  These 

were then crossed to produce DKOSe mice.  DKOSe mice are born with less than Mendelian 

ratios, indicating a possible embryotic selective process (2).  Since MDKOSe mice are infertile, 

FDKOSe are mated with SclyKO/Sepp1Het males to continue the colony.   

For breeding, our lab used both WTj and WTn mice.  In recent studies, it has been 

reported that the WTj mice have a mutation in their nicotinamide (NAD) nucleotide 

transhydrogenase gene (Nnt).  This gene encodes NAD(P) transhydrogenase, an inner 

mitochondrial membrane protein which catalyzes the reduction of NADP+ to NADPH.  NADPH 

is a cofactor in ATP synthesis as well as in antioxidant defense mechanisms.  WTj and WTn 

mice are reported to differ in metabolism and locomotor activity (98; 99; 100).  

The MDKOSe mice, which have deficits in locomotion and motor coordination, do not 

carry the Nnt mutation.  In the original study characterizing the MDKOSe mice (2), the control 

mice were the WTj mice on SeH2O supplementation, similar to the MDKOSe mice.  It is 

possible that some of the differences detected were influenced by the Nnt mutation in our 

controls.  In addition, in a study on testicular development using male Balb/c mice who were 

given a similar high selenium diet (1 ppm), it was found that the mice in this diet had a decrease 

in mRNA cFos/cjun regulation of redox status along with decreased sperm count and motility, 

similar to that of those on a Se deficient diet (101).  It is possible that the high selenium 

supplementation required for our controls may cause other differences in the WTj mice. 
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 Since both WTj and WTn mice were used in breeding, to determine if the absence of the 

Nnt gene had any significant effect on our previous data, we conducted the same behavioral tests 

that were used in the DKOSe characterization study (2) on WTj, WTn and WTn mice on SeH2O 

supplementation (WTnSe).  At ten weeks of age, the animals were sacrificed, brain and total 

body weight measured and the percentage of inguinal and gonadal white adipose tissue 

(ingWAT, gWAT) calculated relative to the total body weight. 

Sex appears to be a significant factor in motor coordination and locomotion with the 

females performing better than males in all three groups (Two-way ANOVA: Rotorod Sex 

p=0.009; Open Field Distance and Average Speed Sex p=0.0109).  SeH2O supplementation has a 

significant effect on motor coordination with MWTnSe performing significantly better then both 

MWTj and MWTn, and the FWTnSe trending toward better performance than FWTj and FWTn 

(Figure 2.1 A).  Both male and female distance traveled and average speed were similar between 

groups (Figure 2.1 B and C) and none showed susceptibility to AGS (Figure 2.2 A and B)  
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Figure 2.1: SeH2O Effect on Rotorod and Open Field Performance in WT Mice.  (A) Rotorod 

mean latency (mean±SEM) to fall and (B) Open field distance traveled and (C) Average speed 

over a 5 minute period of male and female WTj, MWTn and MWTnSe mice (Rotorod: Two-

way ANOVA Interaction NS, Genotype F(2,44)=8.43, p=0.0008; Sex F(1,44)=7.47,  p=0.009; 

Open Field Distance: Two-way ANOVA Interaction NS, Genotype NS, Sex F(1,37)=7.18, 

p=0.0109; Open Field Average Speed: Two-way ANOVA Interaction NS, Genotype NS, Sex 

F(1,37)=7.17, p=0.0109; Bonferroni Post Test **p<0.01 (MWTj n=6-7, FWTj n=5-6, MWTn 

n=3-9; FWTn=5-8; MWTnSe and FWTnSe n=11). 
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When looking at specific body weight composition, sex and genotype were significant 

factors contributing to differences in total body weight (Two-way ANOVA Sex p<0.0001, 

Genotype p=0.022), brain weight (Two-way ANOVA Sex p=0.0141, Genotype p<0.0001) and 

gWAT% (Two-way ANOVA Sex p=0.0002, Genotype p=0.0013).  Bonferroni post hoc test 

revealed MWTn obtained significantly higher total body weight than both MWTj and MWTnSe.  

This seems to be reversed when looking at ingWAT% and gWAT%.  MWTn had decreased 

ingWAT% and gWAT% compared to both MWTj and MWTnSe, reaching significant 

differences in gWAT% (Figure 2.3).  For brain weight, only MWTj had significantly different 

brain weight compared to MWTn and MWTnSe in the males, but in females all three groups 

were significantly different from each other (Figure 2.3). 
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Figure 2.2: SeH2O Effect on Audiogenic Seizure Susceptibility in WT Mice.  Speed prior 

to 85 dB white noise sounding and 10 seconds immediately after start of 85 dB white noise 

of (A) male and (B) female WTj, WTn, and WTnSe mice (Two-way ANOVA: (A) 

Interaction, Genotype and Pre verses Postsound NS; (B) Interaction and Pre verses 

Postsound NJ, Genotype F(2,40)=5.79, p=0.0062; Bonferroni posttests **p<0.01; MWTj 

and FWTJ n=6; MWTn n=5; FWTn n=6; MWTnSe and FWTnSe n=11). 
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Results: Seizure Stage Characterization and Physical Signs for Seizure Development 

Seizure Susceptibility 

 As previously stated above, MDKOSe mice exhibit susceptibility to audiogenic seizures 

(AGS) starting around 8 weeks of age with few surviving past 14 weeks of age (2). The physical 

condition of the animals leading up to seizure and the length and duration of these seizures has 
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Figure 2.3: SeH2O Effect on Body Composition in WT Mice.  (A) Total body weight, (B) 

brain weight, and (C) percentage of ingWAT and (D) gWAT of male and female WTj, WTn, 

and WTnSe mice. (Two-way ANOVA, Total Body Weight: interaction p= 0.0173 

F(2,49)=4.41, Genotype p=0.0222, F(2,49)=4.12; Sex p<0.0001, F(1,49)=251.50; Brain Weight: 

interaction p=0.1978, F(2,48)=1.68, Genotype p<0.0001, F(2,48)=0.0141, Sex p=0.0141, 

F(1,48)=6.49; % ingWAT: NS; %gWAT: interaction p=0.1318, F(2,46)=2.12, Genotype 

p=0.0013, F(2,46)=7.67, Sex p=0.0002, F(1,46)=16.47; Bonferroni Post Hoc test: 

*p<0.05,**p<0.01, ***p<0.001) (MWTj and FWTj n=4-7, MWTn and FWTn n=4-8, 

MWTnSe and FWTnSe n= 14-15). 



20 
 

yet to be characterized.  Identification of reliable visual and behavioral characteristics leading up 

to seizure activity in the MDKOSe mice and the average duration of their aura, ictal and postictal 

stages would be important parameters for identifying potential effects of any future therapeutic 

interventions. 

Previous studies from our laboratory reported 25-40% survival at 12-14 weeks (2; 102).  

Analysis of two additional MDKOSe groups showed that at 8 weeks of age (Group A) about 

33% of MDKOSe start to show susceptibility to seizures and at 10 weeks of age (Group B), 40% 

required to be euthanized prior to behavioral testing with an additional 33% developing seizure 

susceptibility by 10 weeks (Table 2.1).  Therefore, based on these data, we estimated that about 

33% to 40% of the male mice will show neurological problems with susceptibility to seizures 

around 8 weeks of age and additional 33% by 12 weeks, for an approximate total in the mid 60 to 

mid 70 percent range. 

 

Table 2.1: MDKOSe Mice Statistics. (Abbreviation: P = Postnatal Day) 

MDKOSe # of 
animals 

Age Range Respond to Seizure 
Test 

(Audio Open Field) 

Required to be 
Euthanized prior to 
behavioral testing 

Group A 26 P49-54 (7 to 8 weeks) 33% 0% 
Group B 21 P64-86 (9 to 12 weeks) 33% 40% 
 

To further characterize the physical signs of seizure development, a select group of 

MDKOSe mice were single housed and monitored for behavioral deterioration.  They were 

assessed on the Rotorod weekly starting at 5 weeks of age.  Measurements were made for weight 

change, food and water intake, approach response, posture, coat condition, and wobbly or 

abnormal gait.  At 10 weeks of age, mice underwent testing for seizures in the Audio Open Field 

(AOF) test, as previously described in Byrns et al., 2014 (2).  The aura, ictal, and postictal 

lengths were recorded. The mice were grouped into those that had evidence of seizures prior to 

AOF Test (Seizure Prior AOF) and those in which had no evidence of seizures prior to the test 

but had a seizure when tested in the AOF test (1st Seizure During AOF). 

 

Seizure Incident and Physical Signs 

The percentage of seizure occurrence was similar to our previous results.  Out of nine 

mice, one died spontaneously at eight weeks, 33% had evidence of seizures by nine weeks of age 
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and an additional 33% by ten weeks of age, making a total of 77%.  For those that were observed 

past this age, all eventually developed AGS (n=2). Surprisingly, the average period of weight 

loss was the same regardless of age of seizure onset (Table 2.2).  An additional group was 

monitored for food and water intake during their weight loss period and weight loss appears to be 

accompanied by an average decrease of food intake (14%) and water intake (9%) (Figure 2.4) 

indicating that weight loss may be used as a sign of disease progression to a deteriorating.  

 

Table 2.2: MDKOSe Weight Loss and Seizure Onset.  Average age of weight loss onset, weight 

loss period, period between weight loss start and seizure onset and percentage of animals of 

MDKOSe (n=9, Abbreviations: P = Postnatal day, d = days). 

MDKOSe Ave Age 
Weight 

loss Start 
(P) 

Ave Period 
of Weight 

Loss  
(d) 

Ave Period 
between 

beginning of 
Weight Loss and 
Observance of 
1st Seizure (d) 

Ave Age 
Seizure 

Onset (P) 

% of 
Animals 

Seizure Prior to AOF  57 8 6 63 33% 
1st Seizure during AOF  61 8 9 70 33% 
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Figure 2.4: MDKOSe weight loss, food, and water intake.  Percentage of weight change (A), 

food intake (B), and water intake (C) of MDKOSe mice which were losing weight (n=3).  

Weight change average was -9.0545%/day (slope of graph); Food intake slope -0.4845 or -

14%/day decrease in food intake; Water intake slope -0.3169 or -9%/day decrease in water 

intake.   
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Motor Function 

Weekly Rotorod testing revealed that MDKOSe mice have significant decreases in motor 

coordination compared to their wild type counterparts starting at six weeks of age (Figure 2.5).  

Wobbly gait was the first visual sign evident prior to the beginning of weight loss, occurring 

over a 2 to 5 day period (average of 4 days, data not shown).  Weight loss began an average of 6 

to 9 days prior to seizure development, and was more rapid in those mice that develop seizures at 

early ages (Table 2.2).   
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Figure 2.5: MDKOSe Weekly Rotorod Performance.   

Mean latency to fall of male DKOSe and WTnSe mice 

from five to ten weeks of age (Two-way ANOVA: 

Interaction F(5,60)=3.10, p=0.0148; Genotype 

F(1,60)=100.59, p<0.0001; Week NS; Bonferroni post-test   
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Seizure Stages 

When the average aura, ictal and postictal lengths were compared, the differences 

between the two groups were mainly seen in the postictal state.  Aura periods were of similar 

length with the ictal period being one and a half times longer in the Seizure Prior AOF group.  In 

the postictal stage the average time it took for animals to start to move after the end of the ictal 

stage (1st Try) was three times longer in the Seizure Prior AOF group, and the total time to regain 

all 4 paws (postictal) was seventeen times longer (Figure 2.6), indicating that seizure recovery 

times are lengthened as the condition of the animal deteriorates. 
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Figure 2.6: MDKOSe Duration of Seizure Stages.  

Average lengths of aura, ictal, 1st try, and postictal of 

MDKOSe mice that had seizures prior to and 1st seizure 

during the AOF test (Two-way ANOVA Group F(1,16) 

=31.34, p<0.0001; Stage F(3,16) =39.43, p<0.0001; 

Bonferroni posttest ***p<0.001, n=3) 
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Discussion: 

Genetic background of DKOSe Mice 

  Under the parameters tested, the gWAT% in males and brain weight in females appear to 

be the only significant differences between WTj and WTn mice.  The main effect of SeH2O 

supplementation appears to be on motor coordination, as indicated by results of the Rotorod test 

and the percentage of male gWAT.  Though the increased Rotorod performance may appear to 

be a benefit, the increase in percentage of gWAT to that comparable to WTj may indicate a 

change in a metabolic process.  The Nnt mutation has been known to affect insulin and glucose 

metabolism.  WTj mice have been used as a model for diet-induced diabetes, with males being 

less glucose tolerant than females (103). Transgenic rescue of Nnt was shown to rescue insulin 

and glucose tolerance and β-cell function (100).  However, on a low-fat diet, WTj have a slight 

impairment in glucose stimulated insulin secretion (104). The gWAT of WTj has been said to be 

limited in its storage of fat deposits and reaching this limit is a precursor to the development of 

metabolic syndrome disorders in MWTj mice (105).  The significantly higher percentage of 

gWAT in WTnSe compared to WTn mice may indicate that SeH2O supplementation may be 

having a metabolic effect in these mice.  Further observations over a longer time period along 

with the application of metabolic tests may be necessary to investigate this further. 

The fact that no MDKOSe mice are born with the WTj mutation indicates that, with 

reduced Se metabolism, a functional Nnt gene may be necessary for MDKOSe embryonic 

survival.  The Nnt gene encodes for NAD(P) transhydrogenase, an inner mitochondrial 

membrane protein which uses energy from the proton gradient to catalyze the reduction of 

NADP+ to NADPH.  Loss of NAD(P) transhydrogenase activity leads to a decrease in energy 

production and the GSH/GSSG ratio along with increased sensitivity to oxidative stress (106).  It 

has also been reported that the enzyme may have a role in the modification of another 

antioxidant, the mitochondrial superoxide dismutase (mtSOD).  The absence of both NAD(P) 

transhydrogenase and mtSOD leads to fetal dilated cardiomyopathy and embryonic death in WTj 

mice (106).   

Se is an important component of proteins that have antioxidant activities, e.g. Txnrd.  

Deletion of either Txnrd1 or Txnrd2, ubiquitously expressed selenoproteins located in the 

cytosol and mitochondria, respectively, is embryonic lethal.  Txnrd 2 deletion lethality is due to a 

disruption in cardiac development (79).  It is possible that similar to mtSOD deletion in WTj 



25 
 

mice, the ability of the body to maintain redox balance is severely compromised under the extra 

metabolic strain of Nnt loss in combination with the reduced Se availability for selenoprotein 

synthesis leading to embryonic lethality.  Studies on selenoproteins and their effects on 

embryonic development would be needed to investigate this possibility. 

 

Physical features preceding seizure development in MDKOSe mice 

MDKOSe spontaneously develop seizures starting around 8 weeks of age.  Knowledge of 

the physical features leading up to manifestation of seizures may serve as a reference for 

validating intervention therapies.  Accordingly, we carried out studies to further characterize 

objective signs of seizure development.   

Using our previous data, we estimated that approximately 75% of MDKOSe mice that 

would have susceptibility to seizures between 8 and 12 weeks of age.  As predicted, the 

percentage of mice that developed seizures in this study fell close to this estimation, being 77%.  

Loss of body weight appears to be a reliable indicator of when seizures would start to occur, 

commencing approximately a week before seizure development.  This approximation was 

limited to our ability to observe 1st seizure occurrence through daily checks by animal care staff 

and additional observations made by the researcher at least 3 times a week.  This leaves a 

potential 24 hour gap in time in which the animals are not observed.   A 24 hour monitoring 

system would eliminate this and is recommended for monitoring how often seizures occur once 

they begin.   

Weight loss was accompanied by a decrease in food and SeH2O intake which still leaves 

the question as to whether this is a compounding factor.  Decreased food and SeH2O intake leads 

to further decrease of Se intake and may thereby accelerate seizure progression.  It is possible 

that forced food and SeH2O intake could prevent weight loss but not prevent seizure 

development as, in the animals studied beyond 10 weeks of age, all mice eventually developed 

seizures.  This suggests that seizure development is connected to an aging process in which each 

mouse is affected differently e.g. some by 8 weeks, others by 10 weeks, and still others much 

older. 

Se deficiency has the potential to cause epigenetic changes in metabolites (35).  

Alterations in the levels of different metabolites involved in one-carbon metabolism have 

downstream effects on methylation and hormone biosynthesis which can cause a variety of 
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developmental effects (35; 36; 37; 38; 39).  Investigations into the subtle differences that delay 

seizure onset in one mouse verses another may help reveal key components which determine 

seizure development, and reveal potential targets for therapeutic intervention. 

 

Conclusion 

In this study, 77% of MDKOSe developed seizure characteristics by 10 weeks of age.  

Decreased motor coordination started around 6 weeks of age along with wobbly or abnormal gait 

which preceded weight loss.  Seizure development occurred within a week after weight loss 

commencement, which was accompanied by a decrease in food and water intake.  

Based on these results, we estimate that 70-80% of MDKOSe mice will develop the 

seizure phenotype.  This will start with loss of motor coordination along with a wobbly or 

abnormal gait.  Weight loss will begin prior to first seizure occurrence with postictal duration 

increasing as the mice continue to have seizures. Using the excessive weight loss criteria, about 

40% of the animals will require euthanasia prior to 10 weeks of age.  
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Chapter 3: Effects of High Se Supplementation on 
Neuromotor Deficit in Female Sepp1 and Scly Double 
Knockout Mice 
 

Introduction 

Se metabolism has been shown to differ between the sexes, with females being able to 

retain Se better in all tissues except the brain and reproductive organs (76; 107).  Single gene 

knockout of Sepp1 or Scly resulted in detrimental neurological or metabolic phenotypes that 

were more pronounced in males. Thus, studies of these mouse models focused on males, with 

females only assessed in preliminary initial studies. 

In previous studies published by our laboratory on Sepp1 and Scly Double Knockout 

(DKOSe) mice, we reported that when both Sepp1 and Scly genes were disrupted, male DKOSe 

(MDKOSe) mice exhibited decreased survival and severe neurological impairment, including 

loss of motor coordination, susceptibility to audiogenic seizures (AGS) and degeneration in brain 

nuclei and tracts involved in auditory and motor pathways, with GABAergic system defects in 

the inferior colliculus (IC) (2).  Female DKOSe (FDKOSe) mice exhibit a milder phenotype so 

they were not examined in detail at the time of MDKOSe study. 

Although the FDKOSe mouse phenotype does not appear to be as severe as that of the 

MDKOSe, further characterization revealed FDKOSe mice do display significantly less motor 

coordination than their wild type counterparts, C57BL/6N (FWTnSe), as tested by Rotorod assay 

at 10 weeks of age (Figure 3.1 A).  Total body weight of FDKOSe was also significantly greater 

than FWTnSe (Figure 3.1 B).  These results suggest a milder neurological phenotype with a 

metabolic component in FDKOSe mice.  Therefore, we hypothesize that, like the MDKOSe 

mice, FDKOSe mice neuromotor deficit is progressive in nature and that the high Se 

supplementation may be protective in the female mice.  To further investigate the FDKOSe 

neuromotor and/or metabolic phenotype, we assessed their neuromotor function by performance 

on a Rotorod at weekly intervals from ages 5 to 10 weeks and measured their body fat 

composition and fasting insulin levels at 10 weeks of age.  For a subgroup of FDKOSe mice, we 

removed the high Se supplementation at different ages and conducted the same behavioral test 

previously used to characterize the MDKOSe mice.   
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Materials and methods 

  Animals: Mice were generated, maintained, and samples collected as previously 

described in Chapter 2.   

  Neuromotor and Behavioral tests: All analyses were conducted as described in Chapter 

2. 

  Body composition: Tissue weights were collected and recorded as described in Chapter 2. 
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Figure 3.1: Rotorod Performance and Body Weight on Male and Female WTnSe and 

DKOSe Mice. (A) Mean latency to fall and (B) Total body weight of male and female 

WTnSe and DKOSe mice at 10 weeks of age (Two-way ANOVA: Rotorod p<0.0001, 

Genotype F(1,40)=53.63 p<0.0001, Sex F(1,40)=7.05 p=0.0113, n=11 all groups; Two-way 

ANOVA: Body Weight Genotype F(1,16)=12.40 p=0.0028, Sex F(1,16)=33.87 p<0.0001, n=5 

all groups; Bonferroni *p<0.05, ***p<0.001). 

 

Hypothesis:  Similar to the MDKOSe mice, FDKOSe mice neuromotor deficit is 
progressive in nature and the high Se supplementation may be protective in the females. 

Aim:  Investigate the possible neuromotor deficit and metabolic phenotype in FDKOSe and 
determine what role the high Se supplementation may play on the female phenotype. 

Significance:  Reveal possible compensatory mechanisms that are distinct between males 
and females during development. 
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  Fasting serum insulin levels: Animals were fasted for 5 hours then sacrificed and blood 

was collected at the same time of day, between 5:30-6:30 pm.  It was then centrifuged at 13,000 

x g for 10 minutes and the serum collected and stored at minus 80˚C until assayed for insulin 

levels. Insulin levels were measured using ALPCO mouse ultrasensitive insulin ELISA kit 

(cat#80-INSMSU-E01) pursuant to the manufactures instructions. 

  Histology and immunohistochemistry:   Tissue was collected and processed as previously 

described (102).  Briefly, mice were deeply anesthetized using 1.2% Avertin and perfused 

intracardially with 0.1 M sodium phosphate buffer (PB) followed by 4% PFA in PB. Brains were 

removed, stored in 4% PFA for 24 hours, then immersed sequentially in 10%, 20%, and 30% 

sucrose in PB (24 hours each solution).  Brains were cut into 40 µm coronal sections. To assay 

for reactive gliosis, sections were incubated with primary antibody-GFAP (Dako #Z0334).  

GFAP was visualized using diaminobenzidine tetrahydrochloride (DAB) immunohistochemistry, 

sections were treated with 0.3% H2O2, blocked, and incubated in primary antibody overnight at 

4°C.  The sections were then probed with the appropriate biotinylated secondary antibody 

followed by incubation in avidin-biotin-peroxidase complex (Vectastain Elite ABC Kit, Vector 

Labs # PK6100) and visualized by peroxidase detection using DAB HRP Peroxidase Substrate 

Kit (Vector Labs # SK4100).  Sections were mounted, dehydrated with graded solutions of 

ethanol followed by xylene, and cover slipped.  

Silver staining: Silver staining was performed using the FD Neurosilver Kit II (FD 

Neurotechnologies # PK301) according to the manufacturer’s instructions. 

Protein extraction and immunoblotting: Mice were euthanized by CO2 inhalation and 

brains were quickly removed.  Brains were cut in half along the longitudinal fissure, with one 

hemisphere being snap-frozen in liquid nitrogen for use as a whole-brain sample.  The remaining 

hemisphere was dissected and the cerebellum, brainstem, and hippocampus snap-frozen in liquid 

nitrogen for later analysis.  Frozen tissues were lysed by sonication in CelLytic MT Cell Lysis 

Reagent (Sigma-Aldrich # C3228) containing protease inhibitors (Calbiochem # 539134) and 

centrifuged at 14,000 x g for 10 minutes at 4°C. Supernatants were collected, and the protein 

concentrations were measured using Nanodrop NP-1000 spectrophotometer.  For Western 

blotting, 40 µg samples of total protein were separated on 4%–20% SDS-PAGE gradient gels 

(Bio-Rad # 567-1094), transferred to Immobilon-FL PVDF membranes (VWR, 28298-022), and 

probed for 2 hours at room temperature with specific primary antibodies.  Membranes were then 
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incubated in the dark with secondary antibodies coupled to infrared fluorophores (LI-COR 

Biosciences).  Blots were imaged and analyzed using an Odyssey infrared imager (LI-COR 

Biosciences) together with Image Studio Version 4.0.  Relative protein levels were determined 

by dividing the optical density of the band representing the protein of interest by that of loading 

controls, α-tubulin or β-actin.  For determining the Gpx3 levels in the serum, Ponseau S in 1% 

(v/v) acetic acid was used to visualize protein bands for normalization.   Blots were then washed 

5 minutes in 5% acetic acid (v/v) followed by two 5 minute washes in dH2O, then blocked and 

probed with primary and secondary antibodies as stated above.  To simplify for comparative 

purposes, the mean normalized optical density for each protein was reported as a ratio to female 

wildtype (FWT) normalization. 

Antibodies: The primary antibodies used for immunohistochemistry were as follows: 

rabbit anti-GFAP (1:2000; DAKO Z0334).  The primary antibodies used for Western blotting 

were as follows: mouse anti-glutathione peroxidase 3 (1:500; LabFrontier LF-MA0114), rabbit 

anti-type 3 deiodinase (1:1000; Novus Biologicals NBP1-05767B), and mouse anti-α-tubulin 

(1:5000; Novus Biologicals NB100-690) 

Gpx activity assay: Soluble proteins were extracted as described above.  Samples were 

diluted to 4 μg/μl in Gpx buffer consisting of 50 mM phosphate buffer + 5mM EDTA, pH=7.4.  

Then 25 μl of sample were loaded into a 96 well plate and incubated at 37˚C for 3 minutes in 45 

μl of master mix: 12.5 μl of 30 mM glutathione (Sigma CAS 70-18-8), 12.5 μl of 30 μg/ml 

glutathione reductase (Sigma 9001-48-3), and 20 μl of 1mM NADPH (Sigma 2646-71-1)).  Five 

μl of 6 mM tert-tutyl hydroperoxide solution was then added to each sample and the plate was 

read by a Spectramax M3 plate reader (Molecular Devices) at 340 nm for 10 minutes.  Using 

Softmax Pro 6.2.1 software, the Gpx activity was measured values determined as the reduction 

rate of tert-butyl hydroperoxide catalyzed by the samples upon the oxidation of glutathione and 

reduced NADPH.  A unit of activity was defined as the consumption of 1 μmol of NADPH per 

minute, calculated from the equation (Vmax x Vt/Vs)/(0.0062 x D), using 0.0062 μM-1 cm-1 as 

the extinction coefficient for NADPH at 340 nm. 

Quantification: The optical density of GFAP immune reactivity and silver staining in the 

IC and XSCP was quantified at the same coronal levels, -5.02 and -4.48 mm respectively.  

Brightfield images (5 x objective) were captured with a digital camera mounted on a Zeiss 

microscope (Axioskop2), imported into ImageJ analysis software, and converted to black-and-
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white images. Contours were drawn around the area of interest and the adjacent area (as 

background control).  Mean optical density was determined as the difference between the area of 

interest and the background control contour.   

Statistical analysis: All were conducted as described in Chapter 2. 

 

Results 

Comparison of physical features and motor performance for male and female DKOSe mice on Se 

supplementation 

Weekly Rotorod averages showed that FDKOSe mice do indeed exhibit a milder 

neurological deficit, with “latency to fall” times that were between those of FWTnSe and 

MDKOSe mice (Figure 3.2).  FDKOSe mice exhibit a decrease in motor coordination starting at 

7 weeks of age compared to their FWTnSe counterparts.  In body composition, there were no 

significant differences in brain weight (Figure 3.3 B).  The FDKOSe mice had significantly 

higher total body weight (Figure 3.3 A) and percentage of inguinal (%ingWAT) and gonadal 

(%gWAT) white adipose tissue (Figure 3.3 C & D) when compared to their FWTnSe 

counterparts, but their fasting insulin levels were not significantly different when compared to 

controls (Figure 3.4).  These results indicate that even with SeH2O supplementation, FDKOSe 

mice develop a neurological deficit. 
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Figure 3.2: Weekly Rotorod Performance of Male and Female WTnSe 

and DKOSe Mice.  Mean latency to fall from 5 to 10 weeks of age of 

male and female WTnSe and DKOSe (Two-way ANOVA: Interaction 

F(15,120)=1.85 p=0.0355, Genotype F(3,120)=42.17 p<0.0001, Week 

F(5,120)=2.74 p=0.5071; Bonferroni: MWTnSe v MDKOSe 6wk-10wk 

p<0.01, FWTnSe v MDKOSe 6wk-10wk p<0.01; MWTnSe v FDKOSe 

6, 9, 10 wk p<0.05; FWTnSe v FDKOSe 6, 9 wk<0.05; FDKOSe v 

MDKOSe 7wk <0.001; n=6 all groups) 
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Figure 3.3: Body Composition in Male and Female WTnSe and DKOSe Mice.  Body (A), 

brain (B) and percentage of ingWAT (C) and gWAT (D) of male and female WTnSe and 

DKOSe mice at 10 weeks of age (Two-way ANOVA: Body weight, genotype F(1,52)=60.68 

p=<0.0001, Sex F(1,52)=75.15 p<0.0001; Brain NS; IngWAT Interaction F(1,52)=7.54 p=0.0083, 

Genotype F(1,52)=31.51 p<0.0001, Sex F(1,52)=12.64 p=0.0008; and gWAT Interaction 

F(1,52)=18.64 p<0.0001, Genotype F(1,52)=47.51 p<0.0001 Bonferroni ***p<0.001, n=14 all 

groups). 
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Impact of timing of SeH2O removal on motor performance for FDKOSe mice 

A Se deficient diet appears to aggravate the phenotype in males of both the Sepp1KO and 

SclyKO.  To date, the FDKOSe tested were on a high Se supplemented diet through their 

drinking water as described in the previous chapter (SeH2O).  In order to determine if their motor 

developmental was related to Se supplementation, we removed the SeH2O supplementation from 

FDKOSe at different ages, postnatal day (P) 22, 37 or 42, and tested for motor coordination and 

susceptibility to seizure development. 

Rotorod performance of FDKOSe-NoSe P42, P37 or P22 groups that survived to P70 

showed a trend of decreasing latency to fall times when compared to FDKOSe mice maintained 

on SeH2O through P70 (Figure 3.5).  Surprisingly, it was found that the performance of the 

FDKO-NoSeP22 that survived to P70 did not change from P34 to P83.  The mice that did poorly 

on P34 did equally poorly on P83 (data not shown) indicating that motor deficits were acquired 

at an early time point prior to P70. 
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Figure 3.4: Five Hour Fasting Serum Insulin 

Levels in Male and Female WTnSe and DKOSe 

Mice.  Serum insulin levels of male and female 

DKOSe and WTnSe mice. (Two-way ANOVA 

Sex F(1,35)=19.15 p<0.0001; Bonferroni NS; 

WTnSe n=3, DKOSe n=4; triplicate) 
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Further characterization of FDKOSe mice maintained on SeH2O through P22, P37 and 

P70 revealed that removal of SeH2O at P22 produced a more detrimental outcome as compared 

to Se removal at the later postnatal dates, resulting in motor performance approaching what we 

originally observed in MDKOSe mice maintained on SeH2O throughout.  In the FDKOSe-

NoSeP22 mice, 83% exhibited motor deficit and/or susceptibility to seizures by ten weeks of age 

(Table 3.1). They had significantly reduced latency to fall times compared to all other groups 

tested (Figure 3.6 A).  Assessment of locomotion and exploratory behavior in the open field 

assay showed FDKOSe-NoSeP22 mice traveled significantly less (Figure 3.6 B) over a 5 minute 

period of time and at significantly slower speeds (Figure 3.6 C).  In the audiogenic seizure assay, 

FDKOSe-NoSeP22 mice exhibited wild running in response to an 85 dB white noise (Figure 3.6 

D).   

When we looked at body composition, FDKOSe-NoSeP22 mice had significantly lower 

total body weight compared to FDKOSe mice with ingWAT% trending lower than FDKOSe.  

Their gWAT% that was intermediate between FDKOSe and FWTnSe mice with significantly 
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Figure 3.5: Effect of SeH2O Withdrawal Age on 

Rotorod Performance in FDKOSe Mice.  Latency to fall 

of FDKOSe, FDKOSe-NoSeP42, P37 and P22 mice at 

10 weeks of age (n=4 all groups except P37 n=3) 
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higher gWAT% compared to FWTnSe yet significantly lower gWAT% than the FDKOSe mice 

(Figure 3.7).  Removal of SeH2O at P37 resulted in FDKOSe-NoSeP37 mice having significantly 

lower gWAT% compared to FDKOSe mice but no differences in the other tissue weighed 

(Figure 3.7).   

 

Table 3.1: FDKOSe Motor Deficit and/or Seizures Development Percentages by SeH2O 

Removal Age. 

Age to which SeH2O was 
continued 

% of mice that exhibited motor 
deficits and/or seizures by P70 

% of mice required to be 
euthanized prior to P70 

P22 83% 28% 
P37 29% 0% 
P70 0% 0% 
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Figure 3.6: Effect of SeH2O Withdrawal Age on Rotorod, Open Field and Audio Open Field in 

FDKOSe Mice.  Mean latency to fall (A), distance traveled (B) and average speed (C) in open 

field. Average speed 2½ minutes prior (PreSpeed) and 10 seconds after (PostSpeed) 85 dB 

white noise played (D) of female WTnSe, DKOSe, DKOSe-NoSeP37 and DKOSe-NoSeP22 

mice at 10 weeks of age (One-way ANOVA: Rotorod p<0.0001, FWTnSe and FDKOSe n=14, 

P37 n=7 and P22 n=11; One-way ANOVA: Open Field Distance p=0.0084, Ave. Speed 

p=0.0084, FWTnSe and FDKOSe n=12, P37 n=7, P22 n=10; Audio Open Field NS n=11 all 

groups except FDKOSe-NoSeP37 n=4; Tukey’s Multiple Comparison Test *p<0.05, 

**p<0.005, ***p<0.0005). 
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Assessment of neuroinflammation and neurodegeneration in DKOSe mice 

As the FDKOSe-NoSeP22 neuromotor performance was decreased similar to what has 

been observed in the MDKOSe in the past, we assessed neurodegeneration in same areas of the 

brain found to be affected in the MDKOSe, the inferior colliculus (IC) and decussation of the 

superior cerebellar peduncle (XSCP), along with brain Gpx activity.  FDKOSe-NoSeP22 mice 

exhibited significantly higher levels of GFAP average optical density in the IC and XSCP 

compared to FWTnSe, FDKOSe and FDKOSe-NoSeP37 (Figure 3.8), indicating substantial 

FWTnSe

FDKOSe

FDKOSe-N
oSeP

37

FDKOSe-N
oSeP

22
0

10

20

30 ***
**

To
ta

l B
od

y 
W

ei
gh

t (
g)

FWTnSe

FDKOSe

FDKOSe-N
oSeP

37

FDKOSe-N
oSeP

22
0.00

0.25

0.50

0.75

B
ra

in
 W

ei
gh

t (
g)

FWTnSe

FDKOSe

FDKOSe-N
oSeP

37

FDKOSe-N
oSeP

22
0.00

0.75

1.50

2.25
***

%
 in

gW
AT

 re
la

tiv
e

to
 to

ta
l b

od
y 

w
ei

gh
t

FWTnSe

FDKOSe

FDKOSe-N
oSeP

37

FDKOSe-N
oSeP

22
0

1

2

3

***
**

**
**

%
 g

W
AT

 re
la

tiv
e

to
 to

ta
l b

od
y 

w
ei

gh
t

A B

C D

Figure 3.7: Effect of SeH2O Withdrawal Age on Body Composition of FDKOSe Mice.  Body 

(A), brain (B) and percentage of ingWAT (C) and gWAT (D) of female WTnSe, DKOSe, 

DKOSe-NoSeP37 and DKOSe-NoSeP22 at 10 weeks of age (One-way ANOVA Total Body 

p=0.0002, Brain NS, ingWAT% p=0.0005, gWAT% p<0.0001; **p<0.005, ***p<0.0005; 

n=13 all groups except P37 n=4). 
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astrocyte reactivity.  Silver staining, a stain used to detect degenerating neuronal somata, axons 

and terminals which become argyrophilic as they deteriorate, showed significant 

neurodegeneration in the axons of the motor tracts in the XSCP of FDKOSe-NoSeP22 mice 

(Figure 3.9).  When we examined Gpx activity levels there were no significant differences 

between FDKOSe and FDKOSe-NoSeP22 mice.  Both had significantly decreased levels in the 

whole brain compared to FWTnSe mice.  In the brain stem there was a trend of decreased levels 

with FDKOSe-NoSeP22 having the lowest levels (Figure 3.10).  

 
 

 
Figure 3.8: Effect of SeH2O Withdrawal Age on Glial Fibrillary Acidic Protein (GFAP) 

Immunoreactivity in FDKOSe Mice.  A. Representative images of IC and XSCP of FWTnSe, 

FDKOSe, FDKOSe-NoSeP37 and FDKOSe-NoSeP22 GFAP mice at 10 weeks of age with 

quantification of average optical density, IC (B) and XSCP (C). (One-way ANOVA IC 

p=0.0003, XSCP p=0.0151; Tukey’s *p<0.5, **p<0.005, ***p<0.0005; n=3 all groups). 
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Figure 3.9: Effect of SeH2O Withdrawal Age on Silver Staining in FDKOSe Mice.  A. 

Representative images of silver staining in IC and XSCP of FWTnSe, FDKOSe, FDKOSe-

NoSeP37 and FDKOSe-NoSeP22 mice at 10 weeks of age with quantification of average 

optical density, IC (B) and XSCP (C) (One-way ANOVA IC NS, XSCP p=0.0187; Tukey’s 

*p<0.5; n=3 all groups). 
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Impact of the DKOSe genotype on thyroid metabolism 

 The FDKOSe neurological phenotype appears to be dependent on SeH2O 

supplementation through a specific developmental time point, P37.  Selenoproteins play a role in 

bodily processes such as thyroid hormone (TH) metabolism.  TH affects the metabolic activities 

of most tissues and is important in growth and development.  Selenoproteins are also important 

in oxidative stress defense, which has implications in the development of disease states such as 

neurodegeneration.  We investigated two selenoproteins that might give insight into which of 

these processes are influenced, brain stem type 3 deiodinase (Dio3) and serum glutathione 

peroxidase 3 (Gpx3).   

Dio3, a critical selenoenzyme in thyroid hormone metabolism, was present in the brain 

stems of 8 week old MDKOSe mice at almost double the level found in FDKOSe, and was also 

elevated compared to WT male and female mice (Figure 3.11 A). In FDKOSe mice, Gpx3 was 

elevated approximately 25% more in the serum compared to MDKOSe mice, and it was 
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Figure 3.10: Effects of SeH2O Withdrawal Age 

on Glutathione Peroxidase (Gpx) Activity 

Levels in FDKOSe Mice. Gpx Activity in the 

whole brain and brain stem of FWTnSe, 

FDKOSe and FDKOSe-NoSeP22 mice at 10 

weeks of age. (One-way ANOVA WB 

p<0.0001; BS NS p=0.0820; Tukey’s Post Hoc 

Test ****p<0.0005, n=3 to 4 in triplicates) 
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significantly greater compared to wild type females (Figure 3.11 B).  These data indicate that 

there may be a possible TH effect in these mice but as these findings are preliminary further 

investigations are needed to determine this.  
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Figure 3.11: Serum Gpx3 and Brain Stem Dio3 Levels in Male and Female DKOSe mice.  

Mean normalized protein levels relative to FWT in brain stem (A) and serum (B) of male and 

female WT and DKOSe mice at 10 weeks of age. (Two-way ANOVA: Dio3 NS; Gpx3, 

Genotype F(1,12) =8.64 p=0.0124, Sex F(1,12) =3.59 p=0.0826, Bonferroni post-test *p<0.05, 

n=4 all groups). 
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Discussion 

In the previous study characterizing DKOSe mice, the severe phenotype of MDKOSe 

was not observed in FDKOSe (2). Herein, we confirm that FDKOSe mice exhibit a milder 

neurological phenotype.  FDKOSe mice have decreased Rotorod performance starting at seven 

weeks of age, a week later than MDKOSe mice.  A significant reduction in performance 

compared to FWTnSe was observed when they reached nine weeks of age indicating that, though 

milder, this condition was progressive.   

SeH2O supplementation until at least P37 appears to be critical in preventing the more 

severe consequences observed in MDKOSe from occurring in FDKOSe mice.  With SeH2O 

removal at weaning (P22), FDKOSe mice developed a phenotype similar to that seen in 

MDKOSe mice.  They had significant decreases in motor coordination and locomotion, along 

with increased susceptibility to seizure development.  Neuroinflammation and neurodegeneration 

were evident in the same areas of the brain, IC and XSCP, as previously observed in MDKOSe 

mice, indicating the possibility that the same developmental factors and/or mechanistic pathways 

are disrupted in both males and females. 

MDKOSe mice develop increased susceptibility to audiogenic seizures (AGS) with 

GABAergic system defects including decreased GAD67 and PV+IN density in the IC (2).  Other 

mouse models of AGS have shown that GABAergic system defects during a critical postnatal 

development period of P12-22 is a factor in rodent susceptibility to audiogenic seizures (AGS).  

This may be due to mouse brain development at this time.  It is estimated that onset of 

myelination in IC occurs at about P12 and auditory radiations and PV peaks at P16.  Studies have 

shown that GABA deficient mutant animals have lower seizure threshold and/or spontaneous 

seizures.  In propylthiouracil (PTU) audiogenic seizure mice, administration of PTU (an anti-

thyroid drug) at 0-19 days postnatal causes hypothyroidism during that time which is believed to 

cause GABA circuit defects in the mice, rendering them susceptible to audiogenic seizures 

(AGS) starting at around 7 weeks.  Administration of a GABA agonist/positive modulator was 

able to restore GABA inhibition in adolescence.  To determine if FDKOSe mice develop 

seizures similarly to MDKOSe, studies on PV+IN and GABAergic system defects in these brain 

areas need to be conducted. 

Even with SeH2O supplementation, FDKOSe mice showed increased percentage of 

ingWAT and gWAT deposits compared to their FWTnSe counterparts, but no significant 
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differences in fasting insulin levels.  If insulin secretion was affected, we expected there to be 

lower levels of insulin present in the groups that are defective.  But, if the glucose uptake 

mechanism is affected, then insulin levels may appear elevated or comparable between the 

groups.  As the fasting insulin levels were comparative between the groups a follow-up of fasting 

glucose and/or glucose tolerance test may need to be conducted to confirm the later affect.   

In mammals, white adipose tissue is used for energy storage in the form of lipids and is 

considered one of the largest endocrine organs involved in both immunity and metabolic 

mechanisms (108; 109).  An increase in subcutaneous fat normally occurs prior to abdominal 

(visceral) deposits (110) and has been shown to be an independent predictor of type 2 diabetes 

without the presence of insulin resistance (IR) (111).  Visceral obesity is an important 

determinate of the development of pathogeneses of chronic inflammation and insulin resistance 

(IR) leading to metabolic syndrome and increased risk of type 2 diabetes mellitus and 

cardiovascular disease development (108; 109; 112).  The increased fat deposits in FDKOSe 

could be evidence of the beginning of a metabolic deficit that appears mild at this age, under the 

current diet but further testing would be needed to determine this.   

In addition, the elevated serum Gpx3 levels in FDKOSe mice may also indicate the 

beginning of a metabolic deficit (Figure 3.11).  Gpx3 is an extracellular glutathione peroxidase 

that accounts for about 30% of Se in the plasma (113; 114). It has been found to be synthesized 

and secreted into the follicular lumen of the thyroid.  In the follicular lumen it is thought to 

modulate hydrogen peroxide (H2O2) supply, the rate limiting co-factor in TH biosynthesis, and 

catalyze thyroglobulin polymerization into a highly cross-linked, storage form (74; 115; 116).  It 

is possible that Gpx3 may be having an effect on TH by modulating its synthesis and storage but 

further investigation would be needed to evaluate this possibility.   

Alternatively, Gpx3 has also been implicated as a status marker in development of 

metabolic syndrome as increased serum levels of Gpx3 have been found in patients with this 

disorder (117).  In FDKOSe mice both ingWAT and gWAT deposit percentages are significantly 

increased.  Since increased subcutaneous fat deposits even without evidence of IR has been 

indicated to precede metabolic syndrome development, this seems to be the more likely 

explanation for the increased Gpx3 levels in these mice.  The mild phenotype may be due to the 

relatively young age of the mice tested and, as metabolic syndrome severity tends to increase 
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with age, a longer observation may be beneficial in confirming whether further metabolic 

disruption would develop. 

 

Conclusion 

Based on the data presented above, it is apparent that FDKOSe mice have a neurological 

deficit which becomes severe leading to seizure development if SeH2O is removed prior to age 

P37.  When SeH2O supplementation is removed at weaning, 83% of FDKOSe developed a 

severe neurological phenotype by 10 weeks of age.  FDKOSe mice had significantly increased 

percentage of ingWAT and gWAT fat deposits as well as serum Gpx3 levels which may indicate 

a metabolic component but it appears to be mild at this age as fasting insulin levels were 

unaffected compared to FWTnSe mice. Together, these results indicate that there is a window of 

development in which Se is important for FDKOSe mice to prevent severe neurological deficits. 
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Chapter 4: Competition between the Brain and Testes for 
Se in MDKOSe mice 
Introduction 

Se distribution in the body varies by tissue, with priority given to the brain and endocrine 

tissues (107), and this is also sexually dimorphic.  Females have been shown to have higher 

retention in all tissues except the brain, where it is similar in both sexes, and the reproductive 

organs, where retention is higher in the testes compared to ovaries (76; 107).  The similar Se 

brain levels appears to change in the DKOSe mice, as the Se concentration was found to be about 

27% higher in the females than males (Figure 4.1) which could be due to a change in retention, 

availability or turnover.  

  Testosterone is an androgen produced by the adrenal cortex and gonads that increases in 

concentration in males during puberty is testosterone (118).  It primarily affects the maturation 

and function of secondary sex organs, determination of male sexual characteristics, and is 

involved in tissue and muscle growth.  Males have three surges of testosterone production during 

development. In rodents, these occur before birth, right after birth and at puberty (119).  

MDKOSe mice have decreased survival, neurological dysfunction and onset of susceptibility to 

AGS, which occur around puberty at 8 weeks of age the same time as the reported testosterone 

surge to adult levels. Thus, we hypothesized that testosterone could possibly be an agonist in the 

production of the MDKOSe neurodegenerative state via its ability to increase cell metabolism 

and thereby oxidative stress.     

  In males, greater than 95% of testosterone is made in the testes.  Therefore, in order to 

determine if testosterone could be a factor in the MDKOSe neurological deficit development, we 

first castrated the male DKOSe, Sepp1KO, and WT mice and tested them for neurological 

impairment.  Then, we re-administrated testosterone to a group of castrated and sham operated 

mice to determine if testosterone could reverse the effects of castration and/or alter the MDKOSe 

phenotype. 
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Materials and methods 

Animals: Mice were generated, maintained, and samples collected as previously 

described in Chapter 2 with the exception of WT mice used in the MK-801 study. These mice 

were group housed until 8–10 weeks of age and then single housed 5 days before the onset of 

experiments.  Behavioral testing was conducted on adult mice between the ages of 9 and 15 

weeks during the light cycle. 

Diet:  A select group of animals were administered a low Se diet of 0.01 ppm selenium 

beginning at either weaning (WT MK-801 experiments) or at 10 weeks of age (Sepp1KO 

experiments).    

Castration and Sham Surgery: Four to five week old MWTnSe and MDKOSe mice were 

anesthetized and surgical area prepared. An abdominal incision was made near the groin area, the 
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Figure 4.1: Se Brain Concentrations in 

DKOSe Mice.  Brain Se levels in male and 

female DKOSe relative to MDKOSe (n=4, 

Student T-test **p=0.0011) 

Hypothesis:  Testosterone supplementation may exacerbate or potentially ameliorate the 
MDKO neurodegenerative phenotype. 

Aim:  Determine the neurological effects of testosterone in the MDKOSe phenotype. 

Significance:  Identifying the underlying factors and compensatory processes that are 
distinct in males versus females during childhood and adolescent development may provide 
new insights into potential therapeutic targets in cases of fetal and childhood Se deficiency. 
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tunica was pierced and the testes along with epididymis were exposed and removed. The incision 

was then sutured closed and animals received postoperative analgesic administration. Sham 

animals underwent the same procedure but testicles and epididymis were not removed.  

MK-801 drug treatment: At 6 weeks of age, select WT mice received intraperitoneal 

injections of PBS or MK-801 (Sigma-Aldrich; 0.2 mg/kg in PBS) for 5 consecutive days.  

Histology and immunohistochemistry: All were conducted as described in Chapter 3 

except for in immunofluorescence the appropriate AlexaFluor-labeled fluorescent secondary 

antibodies were used for visualization instead of DAB.  Perineuronal nets (PNNs) were labeled 

by incubation in a solution containing biotinylated Wisteria floribunda lectin (1:1000; Sigma, 

L1516), washed, and then incubated with fluorescent avidin (1:500; Vector Labs) for 

visualization.  

Silver staining: Silver staining was performed as described in Chapter 3. 

Protein extraction and immunoblotting: All were conducted as described in Chapter 3 

except relative protein levels were determined by dividing the optical density of the band 

representing the protein of interest by that of α-tubulin (loading control).  The mean normalized 

optical density for each protein of interest in sham DKOSe mice was recalibrated to equal 100. 

Antibodies: The primary antibodies used for immunohistochemistry were as follows: 

mouse anti-GAD67 (1:20,000; EMD Millipore, MAB5406), rabbit anti-PGC-1 (1:200; Santa 

Cruz Biotechnology SC-13067), rabbit anti-GFAP (1:2000; DAKO Z0334), goat anti-ApoER2 

(1:50; Santa Cruz Biotechnology SC-10113), rabbit anti-selenophosphate synthetase 2 (1:1000; 

Rockland 200-401-999), rabbit anti-parvalbumin (1:5000; Swant PV 25), and rabbit anti-c-Fos 

(1:5000; EMD Millipore PC38). The primary antibodies used for Western blotting were as 

follows: mouse anti-α-tubulin (1:5000; Novus Biologicals NB100-690), rabbit anti-PGC-1 

(1:1000; EMD Millipore AB3242), goat anti-glutathione peroxidase 1 (1:500; R&D Systems 

AF3798), rabbit anti-GPx4 (1:1000; Cayman Chemical 10005258), and rabbit anti-SelM (1:500; 

Sigma-Aldrich HPA019601).  

Gpx activity assay: Gpx activity was measured as described in Chapter 3 

Neuromotor and Behavioral tests:  All analyses were conducted as described in Chapter 

2 except the Open Field test for the testosterone re-administration group. The 2½ minute 

acclimation period was used in lieu of conducting a separate test. 

For the WT MK-801 study mice underwent the following additional test: 
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• Barnes Maze test for spatial learning and memory.  Assay was conducted as 

described previously (120). In brief, the maze consists of 40 equally spaced 

wholes on a white circular board, with a removable escape tunnel attached to one 

whole. Mice were trained to find the escape tunnel with two 3 minutes trials for 

10 days.  If a mouse failed to find the escape tunnel within the 3 minute period, it 

was placed in the escape tunnel by the researcher and allowed to stay there for 15 

seconds.  The latency to locate the escape tunnel and the number of incorrect 

holes checked (errors) before locating the escape tunnel were recorded.   

Se analysis: Se was measured using a modification of the fluorometric assay of Koh and 

Benson (1983) and Sheehan and Gao (1990). Briefly, tissue was predigested in nitric acid at 

150°C followed by digestion with perchloric nitric acid (1:4) solution at 190°C over a 1½   hour 

time period.  Solution cooled to 150°C, as it cooled 0.5 ml of concentrated HCl was added, 

samples were then maintained between 125°C and 150°C for 30 minutes. Next, 2 ml of 0.1 M 

EDTA and 0.5 ml of 2, 3-diaminonaphthalene were added, followed by 3 ml of cyclohexane and 

samples allowed to incubate at 60°C for 30 minutes. Fluorescence was then measured by a 

PerkinElmer LS 55 fluorometer and concentrations determined via comparison with a standard 

curve.  

Testosterone measurement: Blood was collected from adult mice via cardiac puncture 

during the early evening period (4:00–6:00 P.M.). Serum testosterone levels were then 

determined by means of a testosterone ELISA kit (Crystal Chem) pursuant to the manufactures 

instructions. 

Testosterone and Placebo Administration: Testosterone 60 day releasing pellets at 25 

µg/day and placebo pellets (Innovative Research of America, Testosterone and matching Placebo 

1.5 mg 60 day releasing pellets catalog # SA-151 and SC-111) were administered via 

subcutaneous insertion at between 5 to 6 weeks of age.  

Stereology: Analysis of cell density was performed on a Zeiss microscope (Axioskop2) 

equipped with Stereo Investigator software (MBF Bioscience).  An optical dissector (counting 

box) was used to count cells.  The retrosplenial granular cortex and IC were outlined using a 5 x 

objective at specified levels relative to bregma (retrosplenial granular cortex -1.46 mm, IC -5.02 

mm).  Optical fractionator analysis was conducted at high magnification (20 x objective) using a 

300 x 300 μm counting frame to quantify the number of positively labeled cells. At each 
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counting site, the mounted section thickness was determined. Mean section thickness was 

calculated by averaging all counting sites, and this value was used to determine the number of 

positively labeled cells per unit volume. For double-label experiments, parvalbumin (PV)-

positive cells (red) were counted first then the filter was switched, and WFA-positive cells 

(green) were counted by revisiting the same sites previously sampled. Finally, counting sites 

were revisited again and cells with overlapping markers (PV, WFA) were counted as PNN-

labeled PV interneurons. 

Quantification of immunohistochemistry and silver staining: Analysis were conducted as 

previously described in Chapter 3. 

Statistical analysis: All were conducted as described in Chapter 2. 

 

Results: Castration of Male DKOSe, Sepp1KO and WT Mice 

MDKOSe mice 

  We found that castration prevented severe neurological dysfunction in MDKOSe mice.  

Castrated MDKOSe mice had 100% survival at 10 weeks (Figure 4.2 A) with significant 

increases in motor coordination and locomotion (Figure 4.2 B and C).  They failed to develop 

audiogenic seizures (Figure 4.2 D).  When we examined the areas where neurodegeneration is 

normally observed in these mice (i.e. the inferior colliculus (IC) and decussation of superior 

cerebellar peduncle (XSCP)), neurodegeneration was not observed (Figure 4.3).  Brain Se levels 

were significantly increased in adult castrated mice (Figure 4.4 A), as well as, Gpx activity in 

both the whole brain and brain stem (Figure 4.4 B).  Castration seems to have promoted the 

maturation of parvalbumin expressing interneurons (PV+IN) as detected by a higher percentage 

of PV+IN enclosed by perineuronal nets (PNNs) (Figure 4.5), which are specialized extracellular 

matrix that enwrap PV+IN as they mature, thereby promoting interneuron maturation and 

synaptic network stability. 
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Figure 4.2:  Percent Survival and Rotorod, Open Field and Audio Open Field Behavior in 

Castrated MDKOSe Mice.  A. Survival curve of sham (n=31) and castrated (n=20) DKOSe 

mice.  B. Mean latency to fall off rotorod (Student t-test: t(22)=3.422 **p<0.01; sham n=7, 

castrated n=17).  C. Mean distance traveled during the open field test (Student t-test: 

t(20)=2.886 **p<0.01; sham n=9, castrated n=13).  D. Mean speed before 85 dB white noise 

and in the 10 second period after start of 85 dB white noise (Two-way ANOVA: Interaction 

F(1,19) =22.69 p<0.001; Sound F(1,19)=725.51 **p<0.001; Castration F(1,19)=7.232 p<0.05; 

sham n=5, castrated n=16).  

A B

C D Audio Open Field
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Figure 4.4:  Brain Selenium and Gpx Activity Levels in Castrated MDKOSe Mice.  A. 

Mean (±SEM) whole brain Se levels in male (n=4), castrated (n=5), and female (n=4) 

DKOSe mice (One-way ANOVA p=0.0001, Tukey’s post hoc *,** and *** p=<0.05); B. 

Mean (±SEM) normalized GPx activity in whole brain (n=4 or 5 per group) and brainstem 

(n=8 per group) of sham and castrated DKOSe mice, samples relative to sham samples. 

(Student t-test: whole brain t(7) =3.037, *p<0.05; brainstem t(14) =2.235, *p<0.05) 

A B

 

Figure 4.3:  Silver Staining Density in Castrated MDKOSe Mice.  A.  Representative 

images (20x) of silver stained sections from IC and XSCP of sham (left) and castrated 

(right) MDKOSe mice; B. Quantification of average optical density of IC and XSCP of 

sham (n=3) and castrated (n=3) (Student t-test: IC t(4)=3.422 *p=0.0052; XSCP t(4)=4.906 

*p=0.0080). 

 

A B
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MSepp1KO mice 

  When administered a Se-deficient diet, Sepp1KO mice develop neurological dysfunction 

(93).  Castration of Sepp1KO mice on a Se-deficient diet appeared to reverse this effect.  

Castrated Sepp1KO mice exhibited significantly better Rotorod performance than sham mice 

after five weeks of a Se-deficient diet (Figure 4.6 A) and none exhibited wild running nor seizure 

 

Figure 4.5:  Parvalbumin Expressing Interneurons in Castrated MDKOSe.  A. 

Representative immunofluorescent images of PV (red) and PNNs (WFA-labeled, green) 

from the IC of sham and castrated DKOSe mice. Yellow arrows indicate WFA-labeled PV 

interneurons in merged images. B. Mean (±SEM) density of PV interneurons per mm3. C. 

Mean (±SEM) density of PNNs (WFA-labeled) PV interneurons per mm3 (Student t-test: 

t(7)=2.446, *p<0.05; sham: n=4, castrated: n=5; Scale bar, 100 μm). 

Sham

Castrated

A

B C
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response when tested in the AOF (Figure 4.6 B).  The IC and XSCP had significantly less silver 

staining, indicating neurodegeneration was diminished in these brain regions (Figure 4.7 A and 

B).  Gpx activity was significantly higher in the brain stem of castrated Sepp1KO mice compared 

to the sham operated mice with activity trending higher in the brain as a whole (Figure 4.7 C).  

Though castration appeared to be protective under Se-deficient conditions in these mice, this 

effect was not long-lasting as onset of neurological dysfunction was only delayed by three 

weeks. 

 

 

Figure 4.6: Weekly Rotorod and Audio Open Field Behavior in Castrated MSepp1KO on 

Se-deficient Diet.  A. Castration delays neurological impairment and neurodegeneration in 

Sepp1KO mice challenged with a Se-deficient diet.  A. Mean (±SEM) latency to fall off 

rotorod from 0 to 4 weeks on a low Se diet (Two-way ANOVA: time F(2,36)=6.661, p<0.01; 

interaction F(2,36)=3.788, p<0.05; Week 4 Student t-test: t(18)=2.954, *p=0.0106, n=10 per 

group) and (B) Mean (±SEM) speed before 85 dB white noise and in the 10 seconds period 

immediately after start of 85 dB white noise after 5 weeks on a low Se diet (n=10 per 

group) of castrated and sham Sepp1KO mice. (Two-way ANOVA: interaction F(1,18)=5.836, 

**p< 0.05; Post-sound t(18)=2.990, *p<0.05). 

 

A B
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Figure 4.7: Silver Staining and Gpx Activity Levels in Castrated Sepp1KO Mice on Se-

deficient Diet.  A. Representative images of silver-stained brain sections containing the 

XSCP (left) and the IC (right); Scale bar, 200 μm.  B.  Mean (±SEM) optical density of 

silver staining in sham (n=5) and castrated (n=4) Sepp1KO mice (Student t-test: IC t(7)= 

2.415,* p< 0.05; XSCP t(7)=2.671, *p<0.05).  C. Mean (±SEM) normalized GPx activity in 

brainstem and whole-brain samples (Student t-test: brain stem t(4)=7.340, *p<0.01, n=6 per 

group). (CIC=Central nucleus of inferior colliculus; ECIC=external cortex of inferior 

colliculus.).  

A
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MWT mice 

  In addition to DKOSe and Sepp1KO mice, we castrated wild type mice (WT) and 

exposed them to dizocilpine maleate (MK-801) at puberty.  MK-801 is a non-competitive 

NMDA receptor antagonist which would elevate oxidative stress, causing neurotoxicity.  It has 

also been reported to impair maturation of GABAergic neurons (121).  Castrated WT MK-801 

mice had improved spatial learning, as tested in the Barnes maze (Figure 4.8), and trended to 

better performance on the Rotorod (Figure 4.9 A) compared to sham WT.  Their Gpx activity 

levels were significantly elevated (Figure 4.9 B) and PV+IN density was increased in the regions 

the retrosplenial cortex normally affected by the MK-801 neurotoxin (Figure 4.10). 
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Figure 4.8: Barnes Maze Behavior in Castrated WT Mice Administered MK-801.  A. 

Mean (±SEM) latency to locate the escape tunnel during Barnes maze training (Two-

way ANOVA: primary latency F(4,108)= 71.87, p< 0.0001).  B. Mean (±SEM) number of 

incorrect holes checked before locating the escape tunnel during training (Two-way 

ANOVA: primary errors F(4,108)=71.87, p<0.0001).  C. Mean (±SEM) latency to locate 

the escape tunnel during trial block 3 (p<0.1123). D. Mean (±SEM) number of incorrect 

holes checked before locating the escape tunnel during trial block 3 (One-way ANOVA: 

primary errors F(2,27)=3.930, *p<0.05 compared with MK-801 group; n=10 per group). 

 

A B
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Figure 4.9:  Rotorod Behavior and Gpx Activity Levels in WT Mice Administered MK-801.  

A. Mean (±SEM) latency to fall off Rotorod. B. Mean (±SEM) normalized GPx activity in 

samples from cortex, hippocampus, and brainstem (One-way ANOVA: Cortex F(2,11)=6.440, 

*p< 0.05; n=4 per group). 
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Figure 4.10: Parvalbumin Expressing Interneurons in WT Mice Administered MK-801.  

A. Representative immunofluorescent images of PV (red) and WFA (green) from the 

retrosplenial cortex. Yellow arrows indicate WFA-labeled PV interneurons in merged 

images.  B. Mean (±SEM) density of PV interneurons per mm3 (One-way ANOVA: 

F(2,15)=4.817, *p<0.05 compared with Control group). C. Mean (±SEM) density of WFA-

labeled PV interneurons per mm3. Scale bar, 100 μm.  
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  Thus, castration seems to be neuroprotective.  It appears to rescue the MDKO phenotype, 

delay neurological effects of a Se deficient diet in MSepp1KO mice, and provides partial 

protection from the neurotoxin, MK-801, in WT mice.  The main neurological effect of 

castration observed was the promotion of PV+IN maturation thereby promoting normal 

excitatory/inhibitory balance.  This finding, along with the increased Se concentration and Gpx 

activity in the brain, indicate that the brain and testes may compete for Se supply in the absence 

of Scly and Sepp1, which may lead to the male sex specific phenotype. 

 

Results: Testosterone Re-administration in MDKOSe Mice 

Upon further characterization of the MDKOSe mice, we found that disrupted Se 

metabolism appears to be preceded by signs of reactive gliosis at 4 weeks of age (data not 

shown), weeks prior to the apparent GABAergic system deficits and loss of PV expression seen 

in adult MDKOSe mice at 8 weeks of age.  This early onset of disruption in certain brain areas 

has been previously reported in Sepp1KO mice (122).  As stated above, castration seems to 

rescue the MDKOSe phenotype and delays the onset of motor dysfunction in MSepp1KO mice 

on a Se deficient diet.  When investigating Se levels, we found that castration appears to 

significantly increase Se concentrations in the brains of MDKOSe mice (Figure 4.4 A) but when 

comparing Se concentrations in the testes, although MDKOSe had significantly reduced Se 

levels compared to MWT, Se levels were not significantly different from those found in male 

Sepp1KO that do not develop a neurological phenotype (Figure 4.11).  Therefore, the apparent 

protection from castration seems to be due to increased Se availability in the brain (102) but the 

permanent susceptibility to Se deficiency in these mice implicates a developmental process that 

is possibly being disrupted prior to weaning at 4 weeks of age.   

  Testosterone has been shown to reverse the decreased cellular metabolism in castrated 

rats (123). The effect of testosterone may increase/accelerate the degeneration in the MDKOSe 

mice due to increased oxidative stress associated with increased metabolism. This would be 

manifested in reversing the protective effects of castration in neuromotor and behavior tests.  A 

detrimental effect of testosterone replacement would have implications in hormone replacement 

therapies in males with compromised anti-oxidative defense systems, as oxidative status may 

need to be taken into consideration prior to prescribing testosterone as a treatment. Alternatively, 
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if testosterone replacement does not exacerbate the neurological phenotype, this would imply 

that the effects of castration stem from eliminating competition for Se between brain and testes. 

 

 
 

 
 

 

 

MWT MSepp1KO MDKOSe
0

2

4

6

Te
st

es
 S

e 
(n

g/
g)

re
la

tiv
e 

to
 M

D
K

O *
**

 
Figure 4.11: Testes Se Concentrations in Male WT, Sepp1KO, 

and DKOSe Mice.  Mean (± SEM) Se levels relative to MDKOSe 

in testes of MWT (n=4), MSepp1KO (n=6) and MDKO (n=4) 

mice (One-way ANOVA p=0.0001, Tukey’s post hoc * and ** 

p=<0.05). 

 

Hypothesis:  Protective effects of castration are due to either or both of the following: 1) the 
action of testosterone in brain development; and/or 2) competition between brain and testes 
for available Se when the trace element is limited. 

Aim:  Determine if MDKOSe phenotype is due to testosterone or brain Se status effect. 

Significance:  Identify potential risk factors that may need to be considered in adult 
hormone replacement therapies. 
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Preliminary group-housed mice 

  Preliminary data revealed that at puberty there was a reduction in average serum the 

testosterone levels in MDKOSe mice compared to MWT and MSepp1KO mice, although the 

differences did not reach statistical significance (Figure 4.12 A).  When comparing non-alpha 

male testosterone levels between group-housed mice, although MDKOSe were trending to lower 

testosterone levels then the other groups of non-alpha males this was not significant (Figure 4.12 

B).  No significant differences were found when comparing DKOSe males that developed 

audiogenic seizures and those that do not (Figure 4.12 C) but it appears that the DKOSe alpha 

males (males with the highest testosterone levels) fare better in retaining motor coordination at 7 

weeks of age than their cage mates (Figure 4.12 D).  Mice in this study were group-housed and 

alpha male mice were not analyzed separately, thus conclusions on the correlation between 

testosterone levels and neurological impairment are premature.  Therefore, we conducted 

experiments where we re-administered testosterone to castrated and sham operated MDKOSe 

mice along with one group of castrated MDKOSe mice taken off of SeH2O a few days after 

castration, at postnatal day 37 (MDKOSe-Cast-NoSeP37).  



63 
 

 
 

MWT MSepp1KO MDKOSe
0

2

4

6

12

Te
st

os
te

ro
ne

 (n
g/

m
l) Non-alpha Animals

MWT MSepp1KO MDKOSe
0

2

4

6

Te
st

os
te

ro
ne

 (n
g/

m
l)

A B

C D

MDKOSe Alpha MDKOSe Non-seizure MDKOSe Seizure
0.0

0.5

1.0

1.5

2.0

2.5

Te
st

os
te

ro
ne

 (n
g/

m
l)

re
la

tiv
e 

to
 N

on
-s

ei
zu

re

5wks 6wks 7wks
0

20

40

60

80

100

MDKOSe Alpha
MDKOSe Non-seizure
MDKOSe Seizure

La
te

nc
y 

to
 F

al
l (

s)

 

Figure 4.12: Testosterone Levels in Male WT, Sepp1KO and DKOSe Mice. A. Mean (± 

SEM) testosterone levels in male WT (n = 5), Sepp1KO (n = 5), and DKO (n = 4) mice; B. 

Mean (± SEM) testosterone levels in group housed, age matched male WT, Sepp1KO, and 

DKOSe males (each group consisted of 1 cage with n=4 to 5 mice); C. Mean (± SEM) 

testosterone levels in male DKOSe alpha (MDKOSe Alpha, mice with the highest 

testosterone concentration), male DKOSe mice that developed seizures (MDKOSe Seizure) 

and male DKOSe that did not develop seizures (MDKOSe Non-seizure) (Alpha, n=4;Non-

seizure, n=6; Seizure, n=5); D. Mean (± SEM) latency to fall off Rotorod at 5, 6 and 7 weeks 

of age for alpha male DKOSe (MDKOSe Alpha, mice with the highest testosterone 

concentration), male DKOSe that did not develop seizures (MDKOSe Non-seizure) and male 

DKOSe mice that developed seizures (MDKOSe Seizure) (Alpha, n=4; Non-seizure, n=6; 

Seizure, n=5) (each group consisted of 1 cage with n=4 to 5 mice). 
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Testosterone re-administration to castrated and sham-operated MDKOSe Mice 

  Testosterone supplementation was able to raise the levels of testosterone in castrated and 

sham MDKOSe mice, with sham supplemented testosterone levels being the highest (Figure 

4.13).  The levels approached those seen under normal conditions.  This was expected as sham 

mice still had the ability to produce testosterone due to intact testes in addition to the testosterone 

re-administration.  There appears to be no change in the performance on the Rotorod nor in the 

Open Field tests in the castrated mice.  Sham mice on testosterone supplementation had 

significantly better motor coordination, as tested by Rotorod, compared to the placebo group 

(Figure 4.14 A).   There were no significant differences in locomotion average distance (Figure 

4.14 B) nor average speed (Figure 4.14 C) but there was a 37% decrease in seizure occurrence in 

testosterone supplemented sham mice (Figure 4.14 D) indicating that testosterone was protective 

in this group.   
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Figure 4.13: Testosterone Levels in 

Testosterone Supplemented MDKOSe Mice.  

Serum testosterone levels in testosterone and 

placebo supplemented castrated and sham 

operated MDKOSe mice (Two-way ANOVA 

Condition F(1,22)=7.18, p=0.0137; 

Supplementation F(1,22)=9.93, p=0.0046; 

Bonferroni posttests **p<0.001). 
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SeH2O removal from castrated MDKOSe mice at P37 

  When we examined the castrated group that was taken off SeH2O at P37 (MDKOSe-

Cast-NoSeP37), it appeared that prepubescent castration attenuated the need for high Se 

supplementation in these mice.  On Rotorod testing, they were able to maintain a better weekly 

performance than MDKOSe mice, reaching significantly better levels at 10 weeks (Figure 4.15 

A) and none developed audiogenic seizures (Figure 4.15 B).  Signs of reactive gliosis were not 

observed in the IC nor XSCP (Figure 4.16 A, B and C) although there were no significant 

differences in whole brain nor brain stem Gpx activity compared to MDKOSe mice (Figure 4.16 
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Figure 4.14: Rotorod, Open Field and Audio Open Field Behavior in Testosterone 

Supplemented MDKOSe Mice.  Rotorod mean latency to fall (A), acclamation period 

average distance traveled in 2 ½ min prior to sound (B), and average speed 2 ½ min prior 

(PreSpeed) and 10 s after (PostSpeed) 85dB white noise played (C). D. Percentage of 

animals that had seizures by P70 of MDKOSe-Cast P, Cast T, MDKOSe-Sham P and 

Sham T mice (Two-Way ANOVA Rotorod p=0.0049; Open Field p=<0.0001; Audio 

Open Field p=0.0020 Bonferroni *p=<0.05; **p=<0.01; ***p=<0.001). 
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D).  Together, these data indicate that the neuroprotective effect of castration stems from the 

elimination of the testes as a competitor for Se supply under conditions of compromised Se 

metabolism largely independent of any effect on testosterone levels. 
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Figure 4.15: Effect of SeH2O Removal at P37 on Rotorod and Audio Open Field Behavior in 

Castrated MDKOSe Mice.  A.  Rotorod mean latency to fall from 6 to 10 weeks of age and (B) 

average speed 2½ minutes prior (PreSpeed) and 10 seconds after (PostSpeed) 85 dB white 

noise played (Two-way ANOVA: Interaction F(2,50)=3.01 p=0.0585; Genotype F(2,50)=3.10 

p=0.0537; Sound F(1,50)=1.50 p=1.51; Bonferroni post-test *p<0.05, **p<0.01) of MWTnSe, 

MDKOSe and MDKOSe-Cast-NoSeP37 (N=6). 
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Figure 4.16: Effect of SeH2O Removal at P37 on Glial Fibrillary Acidic Protein (GFAP) 

Immunoreactivity and Brain Gpx Activity Levels in Castrated MDKOSe Mice.  A. Select images 

of IC and XSCP of MWTnSe, MDKOSe-Sham P, MDKOSe-Sham T, MDKOSe-Cast P, 

MDKOSe-Cast T and MDKOSe-Cast-NoSeP37 mice with quantification of average optical 

density, IC (B) and XSCP (C) (One-way ANOVA: IC p=0.0069, Tukey’s post hoc t(21)=5.286, 

*p<0.05; XSCP p=0.0359, Tukey’s post hoc t(21)=4.560, *p<0.05; n=3-6 mice per group).  D. 

Gpx Activity in the whole brain and brain stem of MWTnSe, MDKOSe and MDKOSe-Cast-

NoSeP37 mice (One-way ANOVA: WB p<0.0001; BS p<0.0003; CEB p=0.0002; Tukey’s Post 

Hoc Test ****p<0.0005, ***p<0.005; n=4-6 mice per group). 
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Discussion 

  Se distribution in the body varies, with priority given to the brain and endocrine tissues 

(91).  Brain Se status appears to be independent of plasma Se status when Sepp1 is expressed in 

the brain (40), whereas, the lack of Sepp1 or its receptor, ApoER2, leads to the development of 

neurological dysfunction and deficits in spermatogenesis upon the administration of a Se-

deficient diet (93; 124).  When both Sepp1 and Scly are deleted, male mice exhibit decreased 

survival and severe neurological impairments (2).  Herein, we show that castration has a 

neuroprotective effect in both the Sepp1KO and DKOSe phenotypes.  Castration rescued the 

MDKOSe phenotype, delayed the neurological effects of a Se deficient diet in MSepp1KO mice 

and provided a partial protection from the neurotoxin, MK-801, in MWT mice.  When 

testosterone was re-administered to castrated mice, there was no significant effect but it did 

appear to be beneficial to sham operated mice.  This would seem to indicate that the brain and 

the testes compete for Se under Se deficiency thereby leading to the sex-specific phenotype of 

the MDKOSe mice. 

Previous studies have shown that the brain has priority over the testes for Se supply.  

Using 75Se, it was demonstrated that in Sepp1KO mice on a Se deficient diet the Se 

concentration in testes decreased to about 19% of wild type (WT) whereas the brain Se 

decreased to about 46% of WT.  When Se is re-administrated in the diet at a level 20 fold higher 

than the Se deficient dietary requirement of 0.1 ppm, brain levels return to normal (WT) whereas 

testes levels did not (84).  In both the 75Se study and ours it is important to note that although the 

brain has priority over the testes when Se is deficient, the testes still maintain a certain level of 

Se even when the brain Se levels are decreased.   

It is known that Se is important for sperm development as one selenoprotein, Gpx4, is 

incorporated as a structural component of sperm (125).  It is possible that the uptake of Se from 

circulation to the testes for sperm development at puberty causes just enough Se to be diverted 

from the brain to result in the neurological phenotype.  Our results seem to indicate this is the 

case as MDKOSe-Cast-NoSeP37 mice appear to not need the SeH2O supplementation.  

The gonads have two functions: steroid hormone production, i.e. secretion of cholesterol-

derived steroid hormones under control of the hypothalamo-pituitary axis (HPA), and 
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gametogenesis.  Sex steroid hormones produced in the gonads are made from cholesterol.  

Cholesterol accumulates in the brain from birth to adolescence with low turnover and minimal 

loss in adults (126).  The majority is found in myelin. It can be obtained through diet (i.e. low 

density lipoprotein (LDL)) or by de novo synthesis in the ER.  The blood brain barrier prevents 

lipoprotein cholesterol uptake from circulation so the brain relies primarily on de novo synthesis. 

The testes, on the other hand, rely on 50% LDL uptake and 50% de novo synthesis.  Ovaries rely 

primarily on LDL uptake (127).  Free Se has been said to bind lipoproteins (e.g. very low density 

lipoprotein (VLDL) and LDL) which allow transport through blood and membranes via trans-

membrane proteins (8).  Due to the lack of the Se specific transporter Sepp1, other mechanisms 

of Se uptake are in effect.  The ability of the testes to uptake LDL to a greater extent than the 

brain is just one possibility of how Se may be diverted to the testes.  Investigation into alternative 

methods of Se transport in the absence of Sepp1 would provide further insight into this matter. 

Testosterone does not reverse the effects of castration but proves to be beneficial, though 

not preventative, in sham MDKOSe mice.  In the brains of males, testosterone is converted to 

estradiol and dihydrotestosterone (DHT) with actions that can be region specific (128).  In aging 

men, brain levels of testosterone and its metabolites e.g. DHT and estradiol, decrease with age, 

termed andropause (129).  Decreased testosterone has been indicated as a risk factor that 

precedes metabolic syndrome and the development of cognitive neuropathies (130; 131).  

Alternatively, increased testosterone has also been negatively associated with cognitive 

impairments in Caucasians with high oxidative stress status (132) and adverse cardiovascular 

events (133).  In rats, testosterone deficiency leads to decreased mitochondrial gene expression 

and therefore decreased metabolism in the hippocampus, thus demonstrating its effect on energy 

metabolism through alterations in mitochondrial gene expression (123).  

Reactive oxidative species (ROS) are normal byproducts of energy metabolism, and 

abnormal levels can lead to oxidative stress, a risk factor in neurodegeneration.  We 

hypothesized that testosterone may contribute to the MDKOSe phenotype due to its potential 

effect on energy metabolism.  To the contrary, this does not appear to be the case.  Testosterone 

had no effect on castrated mice.  It appears to be beneficial in sham-operated mice but its effects 

were not sufficient to overcome the apparent deficits due to Se being diverted from the bran to 

the testes. 
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Disruption of GABAergic inhibition seems to be the main neurological effect leading to 

the development of audiogenic seizures in MDKOSe mice.  This is consistent with other studies 

demonstrating that diminished GABAergic inhibition in the inferior colliculus is associated with 

audiogenic seizures (134).  Our findings indicate that redox imbalance impedes the development 

and function of PV+IN.  PV+IN are a subclass of GABAergic cells that synchronize activity 

within populations of principal neurons (135). They have high metabolic demands making them 

particularly susceptible to oxidative stress (136).   As they mature, PV+IN are encapsulated by 

PNNs, a specialized extracellular matrix. PNNs are believed to limit plasticity and maintain 

excitatory/inhibitory balance upon neural network maturation and possibly serve as a protective 

barrier against oxidative stress (137; 138).  In our study, the density of the PV+IN and PV+IN 

with PNNs appeared normal at 4 weeks of age but this was not the case at 8 weeks of age.  This 

indicates that the maturation of PV+IN was impaired.  Moreover, castration was found to 

promote PV+IN maturation and prevent audiogenic seizures. Together, it appears that there is a 

critical threshold in which decreased Se and therefore, selenoprotein levels in the brain, causes 

PV+IN dysfunction to occur, leading to seizure development and neurodegeneration.  As a 

follow-up to this study, the impact on seizure threshold in the presence of varying concentrations 

of GABA agonist/modulators could be used to further probe the functional GABAergic defects 

in the DKOSe mice.   

Conclusion 

  MDKOSe mice exhibited severe neurological dysfunction and neurodegeneration in brain 

nuclei and tracts involved in auditory and motor pathways, with GABAergic system defects in 

the IC (2).   Preadolescent castration rescued the MDKOSe phenotype and eliminated the need 

for SeH2O supplementation in MDKOSe adults.  It delayed the onset of neuromotor deficits in 

MSepp1KO mice on a Se deficient diet and was protective of MWT mice exposed to MK-801 

neurotoxin.   Testosterone re-administration to sham-operated mice appeared to be beneficial but 

not preventative.  Together, these results suggest that there is a critical time frame in which 

selenium is essential for the prevention of adolescent and adult neurological impairment in males 

and that males may have a greater need than females for Se during the course of their sexual 

reproductive period due to the need for selenium in the testes. 
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Chapter 5: Conclusions and Future Directions – potential 
model for the study of ictogenesis and novel drug testing 
Introduction 

Seizures can spontaneously develop in both male and female DKOSe mice.  This 

spontaneous development is due to a nutritional deficiency caused by a deficit in the metabolism 

of the micronutrient Se, and it does not affected all mice equally e.g. 75% of males and 83% of 

females by ten to twelve weeks of age.  This provides three key areas for the study of seizure 

development: spontaneous seizure occurrence, nutritional influence, and influence of sex.   

  Our results indicate that there is a critical time point in which Se is essential for the 

prevention of neurological impairment in both male and female DKOSe mice.  MDKOSe may 

have a greater need for Se during the course of their sexual reproductive period due to 

competition between the testes and the brain for Se.  Disruption of the maturation of GABAergic 

inhibition seems to be the main neurological effect leading to the development of audiogenic 

seizures in MDKOSe mice which can be rescued with preadolescent castration.  Castration 

delays onset of neuromotor deficits in MSepp1KO mice on a Se deficient diet and is protective 

of MWT mice exposed to the neurotoxin dizocilpine maleate (MK-801).  Testosterone re-

administration to sham-operated MDKOSe mice appears to be beneficial but not preventative. 

  The specific deficits in behavioral tests and underlying GABAergic system maturation 

disruption could allow DKOSe mice to potentially serve as a model for the study of ictogenesis.  

Further investigation into the roles of selenoproteins at key points of development would be 

beneficial in determining dietary supplementation requirements.  This knowledge can then be 

used to optimize individualized nutrition in both humans and animals, thereby having potential 

application to preventing disease pathology in the case of Se deficiency and as a potential model 

for targeted therapeutic agents in epileptic patients. 

 

Seizures 

 Seizure disorders are considered a major type of neurological diseases (139).  Typically, 

we think of seizures as convulsions where the body shakes uncontrollably, but this is only a 

symptom of some types of seizures.  A seizure, as defined by Medline Plus, is “the physical 
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findings or changes in behavior that occur after an episode of abnormal electrical activity in the 

brain” (140).  This can range from a brief, 1 second action, to prolonged 1 to 2 minute actions.  

Convulsions associated with seizures depend on the area of the brain where abnormal activity 

occurs and if it spreads to other areas or remains focal.   

 Seizures have been categorized into several types.  Generalized seizures normally begin 

in both hemispheres of the brain.  These include tonic-clonic seizures (grand mal seizures) where 

there is a stiffening phase followed by a jerking phase which can last up to two minutes, and 

absence (petit mal) seizures involving brief periods of loss of consciousness followed by 

returning to  normal cognition.  Sometimes they are accompanied by repetitive blinking and 

rolling of the eyes.  Myoclonic seizures that last only 1 to 2 seconds and may include a jerk or 

loss of consciousness but are difficult to identify due to the brevity of the seizure, and atonic 

seizures where there is a sudden loss of muscle tone leading to a falling or “dropping” of the 

person (141). 

 Partial seizures (focal seizures) normally start in a specific area of the brain and may 

remain limited to that area or spread to other areas of the brain.  If they spread to the other 

hemisphere of the brain then they may lead to a secondary generalized seizure as described 

above.  These are the most common type of seizures found in adults with epilepsy (142; 143).  

They can involve any movement, sensory or emotional symptoms depending on which area of 

the brain that is involved.  These seizures can be “simple” where they last only 30 to 60 seconds 

with consciousness retained or “complex” lasting 1 to 2 minutes with impairment or loss of 

consciousness. 

 Other seizure types include gelastic and dacrystic seizures. These seizures are commonly 

overlooked due to their unusual manifestations (144).  Gelastic seizures manifest as bouts of 

uncontrollable laughter and/or giggling.  They cause facial contractions that cause the person to 

look like they are smiling.  Dacrystic is when the vocalization sounds like crying and the facial 

contractions cause the person to look like they are frowning.  These are commonly overlooked in 

children unless other clinical signs (auras) that occur prior to seizure occurrence, such as eye 

dilation, are recognized.  Usually these seizures are a pre-development of other types of seizures 

such as absence, complex partial or generalized seizures.  These types of seizures may be 

triggered by hypothalamic hamartomas (benign tumor of hypothalamus).  If detected early, 

therapy can be administered to reduce the tumor size to avoid further progression. 
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 Non-epileptic seizures (NES) are not caused by a central nervous system (brain) 

abnormality (145).  They consist of two types, organic or psychogenic.  Organic NESs are 

physical in nature, e.g. low blood sugar or changes in heart function.  Their symptoms can be 

syncope (fainting) or symptoms similar to one of the other seizures mentioned above.  Normally, 

once the underlying cause is corrected the seizures can be controlled or stopped.   

 Psychogenic NESs contain a mental health element such as emotional stress or other 

anxieties.  These include traditional seizure type symptoms and panic attacks.  They are divided 

into dissociative (involuntary) or factitious (under conscious control).  Regardless of their causes, 

they are normally “sudden, short and cause a change of person’s awareness” (145).  Behavior 

modification therapies are normally used in treatment of these types of seizures.     

 As mentioned above, seizures can be a one-time occurrence or epileptic in nature (e.g. 

epilepsy).  According to the World Health Organization, epilepsy affects about 50 million people 

worldwide and six cases out of ten have no known cause (146).  Those with a known cause are 

sometimes considered secondary epilepsy because the seizure is secondary to a primary cause 

such as brain damage and/or malformation; brain trauma due to stroke or blunt trauma; tumor or 

genetic defect.   

 The most common type of epilepsy is temporal lobe epilepsy (TLE) (142).  TLE is 

associated with the medial temporal lobe regions and patients with this type of epilepsy normally 

do not respond to clinical treatment (147).  The temporal lobe is known to be involved in visual 

memory retention, sensory input processing, language and emotion together with the medial 

temporal lobe containing the amygdala, brainstem, hippocampus and neocortical regions.   Since 

most patients do not respond to drug treatment, surgery is usually used to remove the affected 

brain areas.   

 Currently, it is believed that 70% of patients with epilepsy will respond to treatment 

(146).  Treatments include antiepileptic drugs which, if taken regularly, have been shown to 

prevent seizures in 50% of patients and reduce seizure activity in another 20% (148).   For some 

patients, after taking antiepileptic drugs for several years they can be weaned off to be seizure 

free without medication.  For those that do not respond to the antiepileptic drugs, other therapies 

such as electrical/magnetic stimulation, ketogenic diet, surgery and behavioral modification can 

be implemented with or without antiepileptic medications.    
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 Electrical/magnetic stimulation is where electrical or magnetic pulses are used to 

stimulate brain activity.  Though the current studies using this method seem to be focused more 

on mental disorders such as severe depression, it has been found to help some people with 

epilepsy.  Vagus nerve stimulation, wherein a device is implanted that sends 30 second pulses 

through the left vagus nerve, can alter certain neurotransmitters in the areas of the brain that 

affect mood and sleep as well as stimulating the major organs such as heart, lungs and intestines 

(149). 

 Diet is also used for treatment of some types of seizures.  The link between nutrition and 

epilepsy has yet to be elucidated completely and is complicated by the possibility of multiple 

unknown causes (150).  Some people are able to control seizure by fasting (151).  It has now 

been found that about 1/3 of children placed on a ketogenic diet become seizure free.  The 

ketogenic diet mimics starvation forcing the body to burn fat as its main source of energy.  

Children are normally placed on this diet and weaned off antiepileptic drugs over a two-year 

period.  If successful, the child can then be returned to a normal diet, seizure free or with 

successful medication control. 

 Surgery is normally used as a last resort when the individual does not respond to 

available treatments and the seizure arises from a focal area that can be specifically identified 

and removed.  Like all treatments, surgery does not work for some patients as the source of the 

seizures may migrate to the opposite lobe which cannot be removed without significantly 

altering the patient’s mental capacity. 

 Behavioral modification therapies have been used by many people with mixed results.  

They are considered complementary approach as they may help some people improve their 

quality of life (152).  This type of approach is used most often in NES patients wherethe cause is 

voluntary or learned, and can be reversed by changes in mental thought processes.  

 Overall, people who have epilepsy, if given access to treatment therapy, have a good 

chance (70%) of controlling their seizures.  But there is still a need for improvement in current 

therapies and to find new therapies for those that do not respond to existing treatments.  When 

setting up a study that explores treatment options, current models use one of two hypotheses, 

recurrent excitation, which assumes hyper excitability due to abnormal excitatory circuitry, or 

inhibition, the loss of inhibitory neurons.  From these hypotheses, researchers have developed 

two types of animal models, post-status epilepticus (severe insult model due to chemo-



75 
 

convulsant, electrical stimulation, etc.) and kindling models (repetitive exposure to mild 

electrical stimulation leading to seizure development).  With these models, researchers have been 

looking at new potential therapies such as cell therapy (cell grafts), neuroprotective agents and 

other biological agents that might help to restore normal function of the affected areas.  

 

Animal Models in Basic Research 

In basic research, the application of the knowledge obtained is not always readily 

apparent.  It may take years of successive studies, sometimes from multiple independent labs, 

before basic research leads to beneficial treatments that can be applied in clinical settings.  Part 

of this process involves the use of animal models.  By using animal models one can study 

molecular pathways that contribute to diseaseoutcomes and pathology in vivo.  Targets of 

cellular mechanisms can then be investigated to determine if a modification (e.g. administration 

of a novel drug, gene editing or surgery) can be used as a therapy without causing adverse side 

effects. 

The mouse (Mus musculus) has been used as the animal model in basic research for many 

human diseases.  Mice are mammals with a genome of approximately 30,000-40,000 genes, 99% 

of which have human homologues (153).  Mice have a short gestation period (about a month) 

and relatively short lifespan (1-2 years) which make them ideal for studying development, 

puberty and some properties of aging in a reasonable timeframe.  There are multiple resources 

available that help make mouse-human comparisons including Translating Time 

(http://www.translatingtime.net/) and the Allan Brain Atlas (http://www.brain-map.org/).  In 

addition, due to advances in gene manipulation techniques, “custom” mice are becoming more 

common and can be bred to investigate the function of specific genes.   

 An area of medical research that has made advances using animal models is the study of 

potential treatments for epilepsy and seizure disorders.  The brain is a dynamic environment 

involving a complex interaction of multiple molecular and cellular components which cannot be 

completely duplicated by current in vitro techniques.  For such a dynamic system, mouse models 

have been useful tools.  Detailed reviews by Loscher (154), Auvin (155) and Grone and Baraban 

(156) discuss the current models used for research in this area.  In general, these models fall into 

two categories, induced or genetic.  Induced models require the administration of external stimuli 

or insult to normal mice allowing researchers to produce both acute and chronic seizure 

http://www.translatingtime.net/
http://www.brain-map.org/
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disorders.  The development of genetically altered animals have allowed for the modeling of 

known epileptic genes (156).   

 But, like models of other diseases, currently there is no single model that has been able to 

completely represent all features of human seizure disorders.  One of the limitations arising from 

induced models is that most human epileptics have multiple spontaneous seizures indicating that 

the ictogenesis arises possibly from a different mechanism than the one produced by electrical or 

chemical induction.  Genetic models give insights to inheritable phenotypes but do not 

necessarily address all aspects of the condition or epilepsy of idiopathic origin.  

When interpreting animal studies, investigators must keep in mind that most animal 

models do not develop all of the characteristics found in human epileptic seizures (157; 158; 

159).  This is complicated by the fact that normally the cause of the human condition is not fully 

known and therefore, it is unknown how much or little the animal model mimics the clinical 

condition.  For these reasons it might be better to think of animal models as partial or 

“incomplete” models.  They can be used to investigate some of the disease mechanism thereby 

elucidating specific parts of the disease process.  The more one is familiar with the aspects of the 

disease state in the animal model the easier it will be to interpret the experimental results and 

develop relevant treatments. 

Even with incomplete models, progress has been made to develop treatments for patients 

with seizure disorders.  The current models have led to the development of anticonvulsant drugs 

to which 50% of patients respond positively and seizure reduction is seen in another 20% (148).  

Room for improvement is still evident as there are still no treatment options for 30% of patients 

and 20% of those on active treatment still suffer from some type of seizure activity.  Continued 

basic research on the ictogenesis as well as the mechanisms by which anticonvulsants may be 

able to suppress seizure activity is needed.  This will lead to the enhancement of experimental 

interpretation and finally better treatment options to those who suffer from seizure episodes. 

 

Selenium and epilepsy 

 Selenium has become increasing thought to play a role in the pathologenesis of epilepsy 

due to the role of selenoproteins in defense against oxidative stress. In animal models, oxidative 

stress imbalance has been shown to be attenuated upon selenium supplementation (160; 161; 

162; 163; 164; 82) with selenium deficiency leading to increased seizure susceptibility (2; 70; 
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165). Patients with epilepsy have been found to have oxidative stress abnormalities such as 

decreased antioxidants and increased lipid peroxidation (166).  Studies of febrile seizures in 

children have indicated decreased selenium serum levels (167; 168; 169; 10; 11) with some 

studies showing an attenuation of seizure activity upon selenium supplementation (9). 

 

Sepp1 and Scly Double Knockout: potential model for studying seizure development and 

epilepsy 

As stated earlier, six out of ten patients with epileptic seizures have no known cause and 

most have multiple spontaneous seizures.  Two hypotheses for the causes of epilepsy are 

abnormal excitatory or inhibition circuitry.  Induced and genetic animal models of seizures have 

been developed to study these aspects but still 30% of patients do not respond to current 

therapies.  In DKOSe mice, both male and female mice develop seizures and therefore they may 

serve as a potential animal model for studying seizure genesis and for therapeutic drug testing. 

 In compiling all our data to date, we have the following information that can be used for 

investigational purposes: 

 Behavioral  (Figure 5.1) and body composition (Figure 5.2):  Motor cordination is 

expected to decrease as DKOSe mice age, with a percentage of mice in each sex that will 

develop seizures by P70.  For MDKOSe mice, the percentage that will develop seizures is about 

73-77% between 8 to 12 weeks of age with approximately 40% requiring euthanasia prior to 10 

weeks of age.  Decrease in motor coordination begins at about 6 weeks of age.  This is 

accompained by a wobbly or abnormal gait.  Weight loss along with decreasing food and water 

intake will commence approximately a week prior to seizure development.  Aura and ictal stages 

are of consistent duration with the postictal stage duration lengthening as the condition of the 

mice deteriorates.   Castration appears to attenuate the need for SeH2O supplementation after age 

P37, indicating the testes ability to divert Se from the brain. 

 In FDKOSe mice, decreases in motor coordination starts at 7 weeks of age.  This 

becomes significantly different from FWTnSe mice by 10 weeks of age and is accompanied by 

significant weight gain.  When SeH2O supplementation is removed at weaning (P22) about 83% 

will develop a neurological phenotype by 10 weeks of age.  Removal of SeH2O supplementation 

at adulthood (P37) appears to not lead to seizure development but it is still unknown whether this 

would affect them in other aspects e.g. fertility.  As the FDKOSe mice have not been as 
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extensively studied as the MDKOSe mice, further and more comprehensive studies on 

parameters such as food and water intake, weight change and signs leading up to seizure 

development in FDKOSe-NoSeP22 need to be pursued.   

 Brain regions:  Specific brain areas in the male and female DKOSe mice that show signs 

of reactive gliosis and neurodegeneration are the inferior colliculus (IC) and decussation of 

superior cerebellar peduncles (XSCP).  The IC is the principal midbrain nucleus of the auditory 

pathway involved in auditory information processing and sound localization.  The XSCP is 

where motor tract fibers from cerebellar nuclei decussate in the caudal midbrain before 

terminating in the contralateral red nucleus.  Reactive gliosis can be detected as early as 4weeks 

of age in the IC of MDKOSe and neurodegeneration in the IC and XSCP by 10 weeks of age.  

FDKOSe-NoSeP22 mice show reactive gliosis in both the IC and XSCP by 10 weeks of age with 

significant neurodegeneration in the XSCP. 

Brain inhibitory network:  In the brain of DKOSe mice, the brain GABAergic system 

(inhibitory network) has maturation defects.  MDKOSe mice have decreased glutamate 

decarbosylase (GAD67), the enzyme that catalyzes decarboxylation of glutamate to gamma-

amino butyric acid (GABA), which is the most common inhibitory transmitter in the mammalion 

nervous system.  These mice also have decreased density of parvalbumin expressing 

interneurons (PV+IN) (2).  PV is a calcium binding protein found on a subpopulation of 

GABAergic cells.  PV+IN are fast spiking interneurons which control output of principal 

neurons. PV+IN are necessary for fast rhythmic neuronal synchrony and for facilitation of 

information processing during cognitive tasks.   

  As PV+IN mature they become encased by specialized extracellular matrix or agrecan-

enriched perineuronal nets (PNNs) which promote their maturation and synaptic and network 

stability (137).  This maturation process appears to be disrupted in MDKOSe mice, and this 

disruption is preceded by reactive gliosis.  FDKOSe-NoSeP22 mice show reactive gliosis and 

neurodegeneration in the same brain areas as MDKOSe mice which indicates that the same 

neural processes are affected in both males and females.  Further studies investigating the 

GABAergic deficits involved in seizure development would be beneficial in identifying this. 
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Conclusion 

  The aforementioned provides investigational targets for future studies in DKOSe male 

and female mice.  Specific behavioral deficits e.g. motor coordination and weight change, occur 

before seizure onset, allowing deterioration progression to be monitored over a period of time.  

Deficits in GABAergic system maturation in areas of the brain involved in motor coordination 

and auditory processing appear to be the underlying contributory factors.  SeH2O 

supplementation appears to be required during development and adolescent periods but can be 

removed in FDKOSe and castrated MDKOSe mice after P37.   Combined, DKOSe mice could 

potentially serve as a model for the study of ictogenesis and therapeutic drug testing of novel 

drugs for epileptic patients in cases of malnutrition, and to elucidate the compensatory 

mechanisms that are distinct between males and females during development. 
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Figure 5.1: Combined Motor Coordination, Locomotion and Seizure Occurrence Data.  Mean 

latency to fall at ten weeks of age (A), mean latency to fall from six to ten weeks of age (B), 

distance travel (C) and average speed travel (D) in 5 minute period of open field, and speed prior 

to and 10 seconds immediately after start of 85 dB white noise (E) of MWTnSe, MDKOSe, 
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MDKOSe-Cast-NoSeP37, FWTnSe, FDKOSe, FDKOSe-NoSeP37 and FDKOSe-NoSeP22 

mice.  F.  Table of percentage of animals that develop seizures by 10 weeks of age. 
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Figure 5.2: Combined Body Composition Data.  Body (A), brain (B), %ingWAT (C), and 

%gWAT (D) of MWTnSe, MDKOSe, MDKOSe-Cast-NoSeP37, FWTnSe, FDKOSe, FDKOSe-

NoSeP37 and FDKOSe-NoSeP22 mice. 
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