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Abstract

The growing importance of short-term electricity
trading over independent subsequent markets in
Europe presents market participants with intricate
decision challenges. Established solutions based on
stochastic programs are often used but suffer from
shortcomings such as the curse of dimensionality
in multi-stage decision processes. Reinforcement
learning is a promising alternative. However, best
practices for the comparison of the two approaches
and the ex-post evaluation of reinforcement learning
are not yet established. In this paper, we offer a
comparison of stochastic programs and reinforcement
learning and propose measures for a comparative
performance evaluation between the two approaches.
We demonstrate them on an empirical case study over
subsequent market stages of the German market zone
within the coupled European power market.

Keywords: Reinforcement Learning, Multi-market
Bidding, Stochastic optimization, Sequential
Decision Problems

1. Introduction

The share of intermittent renewable generation in
the energy system is continuously growing (eurostat,
2023) and, consequently, the uncertainty and volatility
on electricity markets rise. In Europe, in light of
self-dispatch, markets react by raising the temporal
granularity of electricity trading. For example, the
auction interval of the German control reserve markets
was decreased from weekly to daily (regelleistung.net,
2022). In reaction to the rising uncertainty, short-term
markets are increasingly liquid (e.g., the traded volume
on the continuous European intraday market (IDM)
increased by 21% in 2021 alone (EpexSpot, 2022)).

In light of these developments, the former
dominance of the auction-based pay-as-cleared one-shot
day-ahead market (DAM) as the central marketplace
for dispatch in the coupled European electricity market

is diminishing giving way for increasingly short-term
sequential dispatching decisions. Consequently,
without a central system operator, market participants
face a sequential decision problem under uncertainty
regarding these decisions (Klæboe et al., 2022). In this
environment, portfolio optimization over all markets
can potentially increase the overall portfolio value
(Löhndorf & Wozabal, 2022; Miskiw et al., 2023).

Solving a sequential decision problem in the
presence of uncertainty can be summarized under the
term stochastic optimization (Powell, 2021). However,
studies that consider multiple revenue streams for
example woth a Stochastic Program (SP) suffer from
the curse of dimensionality as multiple scenarios over
multiple market stages lead to exponentially increasing
number of combined scenarios. This results in high
run-times and requires detailed and careful modeling
of the underlying uncertainty representation (Powell,
2021).

An alternative approach to these sequential decision
problems is Reinforcement Learning (RL) (Powell,
2021), which currently receives considerable attention.
However, despite the growth of RL applications, some
researchers, as well as practitioners remain skeptical
about its performance (Perera & Kamalaruban, 2021).
Part of this skepticism might be caused by the absence
of established practices for evaluating these black-box
models even ex-post in the context of energy markets.

Benchmarking RL and deep reinforcement learning
(DRL) in particular, pose significant challenges due
to their inherent complexities. Unlike traditional
solution methods, which often operate in discrete
and well-defined environments, DRL involves training
neural networks on complex and continuous state and
action spaces. The high dimensionality of these
spaces and the and non-linearity of the underlying
neural networks make it difficult to define standardized
benchmarks or formulate performance guarantees and to
judge the quality of decisions of such algorithms, even
ex-post. Potentially, SPs offer an alternative avenue to
assess the performance of RL algorithms. Powell (2021)
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states that ”the research community has only begun to
exploit the[se] links” between stochastic optimization
approaches. With this paper, we aim to contribute to
the exploration and exploitation of similarities between
SP and RL applied to energy markets and propose
evaluation concepts and benchmarks. We answer the
following two research questions:

1. What are similarities and differences between
current RL and SP applications in terms of
modeled decision complexity, uncertainty, and
performance comparison?

2. What are options and challenges of benchmarking
RL to SP in sequential electricity markets?

To this end, we first introduce the two solution
methods and formalize them according an established
unifying framework for stochastic optimization (Powell,
2021) in Section 3. We then introduce the specific
multi-market bidding problem in Section 4 and answer
the described research questions along with an empirical
study in Sections 5 and 6. We begin by outlining an
overview of the related literature.

2. Related Work

One method for handling sequential and uncertain
settings is the application of multi-stage SP, as in
(Heredia et al., 2018) and (Löhndorf & Wozabal,
2022). A literature review of solution methods using
optimization approaches for a stochastic representation
of multiple revenue streams is outlined by Finnah
(2022). The uncertainty in sequential multi-market
bidding problems is sometimes simplified by assuming
perfect foresight or evaluating single revenue streams
(Klæboe et al., 2022). This reduces the computational
burden and complexity compared to SPs with multiple
stages (Aasgård, 2022; Klæboe et al., 2022).

RL is used increasingly for different tasks in
the energy domain and especially for energy trading
problems (Di et al., 2020; Perera & Kamalaruban,
2021; Yang et al., 2020). RL promises to overcome
the mentioned curse of dimensionality by developing
an optimal bidding, i.e., operation strategy through
a forward-looking procedure, rather than requiring
exhaustive evaluations of all combinations of possible
system states. More importantly, it does not require any
a priori quantification of the uncertainty and it can make
strategic decisions without full knowledge of the system
(Perera & Kamalaruban, 2021). Most of the previous
work only considers one market as in (Lehna et al.,
2022) but simplified research settings on multi markets
exists (Al-Gabalawy, 2021; Anwar et al., 2022; Demir
et al., 2023; Di et al., 2020).

To evaluate the performance of developed RL agents,
current literature evaluates RL algorithms in various
non-standardized ways. Due to the stochasticity of
RL performance, Müller-Brockhausen et al. (2022)
suggest that RL is slipping into a replicability crisis,
which highlights the need for proper comparison and
benchmarking. Some RL applications in the energy
domain rely on rule-based approaches to benchmark
RL applications (Al-Gabalawy, 2021; Demir et al.,
2023; Lehna et al., 2022). Heuristics enable a
straightforward comparison and provide a lower bound
for the solution of a sequential decision problem, but
so far, no standardized and broadly accepted approach
has emerged. Others use a deterministic optimization
assuming perfect foresight as an upper bound (Berlink
et al., 2015; Qiu et al., 2016). Such an optimization
assumes complete knowledge of the future and cannot
replicate the uncertainty associated with multi-market
bidding in practice.

SPs might be a more suitable benchmark because
they also consider uncertainty. Some studies aim to
replicate an SP with an RL algorithm and evaluate their
performance in comparison, which we discuss further in
the remainder.

3. Solution Methods: Stochastic
optimization

Stochastic optimization in itself is a term comprising
different research communities that attempt to solve
sequential decision problems under uncertainty (Powell,
2021). In the next section, we introduce solution
methods of this domain and focus those that have been
used to benchmark RL, namely SPs. To bridge the
formal differences between the methods, we use the
framework introduced by Powell (2021). According to
Powell (2021), a sequential decision problem can be
formalized as the trajectory in Equation (1). We start
with an initial state (S0), in which a decision (x0) is
made. After a state an information update follows (W1)
that leads to the next state (S1) and so on.

(S0, x0,W1, S1, x1, ...,W3, S3, x3) (1)

3.1. Multi-Stage Stochastic Programming

SP can be interpreted as a version of deterministic
programming, optimizing a target function that includes
random variables. These random variables are
discretized in possible realizations ω in the finite
probability space Ω, often referred to as scenarios.
Consequently, SPs can quickly become hard to solve
as they are roughly speaking |Ω| times larger than
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Figure 1. Translation of the information availability

in a three-stage sequential decision problem into a

scenario tree.

their deterministic counterpart. This can result in the
curse of dimensionality, which leads to long run-times
(Miskiw et al., 2023). To limit their complexity, a lot
of effort is invested into the definition of the respective
scenarios (Powell, 2021). The scenario generation
is a multi-step process that requires several modeling
choices itself. First, the stochastic process is modeled,
and then scenarios are generated and reduced (Möst &
Keles, 2010).

Multiple decision stages require the quantification of
scenario trees prior to optimization, as shown in Figure
1. The state S0 comprises all the initial information,
meaning of one entire scenario tree with all the paths
and their realization probabilities. The exogenously
available information that is revealed at time step t
(WKt

t , t ∈ T, kt ∈ Kt) is equivalent to the realization
of the different scenario paths along the tree, which
consequently reveals updated information and shapes
the subsequent scenario paths and leads to state St. T is
the set of stages at which new information is revealed,
and Kt is the set of discrete scenario realizations,
namely the uncertainty quantification, defined for this
stage.

Within the scenario trees, the SP determines the
optimal solution, considering the uncertainties and
dynamics of the sequential problem. This results in a
transparent and interpretable result.

3.2. Deep Reinforcement Learning

RL algorithms are based on Markov Decision
Processes (MDP) (Bellman, 1957). Formally, an MDP
is defined by a tuple (S,A, P,R, γ), where S is the state
space of the system. Based on the current state s, an
action a is chosen. Then, the state of the system changes
in accordance with the transition probability P (s′|s, a)
from the transition probability distribution P . The goal
is to find a policy π that maximizes the total reward
R(s, a, s′), whereby γ is the weight with which later
rewards are discounted. The policy π maps states to
actions, i.e., π(s) = a.

The MDP is similar to the sequential decision

Figure 2. Formulation of the MDP for a decision in

a sequential decision problem following Powell, 2021.

problem described by Powell (2021) as shown in Figure
2. The state S of the MDP consists of the defined
exogenous information Wt, t ∈ T , which leads us
to the resulting new state St defined according to
Powell (2021). The set of actions A is equivalent to
the set of the decision variables xt. The reward in
the MDP equals the value of the objective function
R(St, xt, St+1) from (Powell, 2021). As the domain
around RL grew, distinctive ways of deriving the
optimal policy π developed to handle both discrete and
continuous state and/or action spaces. We focus on
approaches that can handle continuous state and action
spaces, which limits the eligible algorithms mainly to
DRL algorithms (Sutton & Barto, 2018). While DRL
promises to solve high-dimensional and mixed-integer
non-convex problems, they also have drawbacks. As a
data-driven black box model, they are limited in their
explainability. In addition, the advantage of not having
to model the uncertainty explicitly comes at the cost of
having to tune DRL algorithms to optimally interpret
provided data (Powell, 2021). This lengthy process can
lead to overfitting on a particular problem domain and
introduces stochasticity to the algorithm’s performance.
This further highlights the need for a comparison of
the DRL results with well-established methods and to
develop common benchmarks.

4. The Sequential Decision Problem in
Electricity Market Trading

In the following, we introduce the sequential
electricity market setting in Europe and formulate the
sequential decision problem to be solved by RL and SP
using Powell’s unified framework (Powell, 2021).

4.1. European Electricity Markets

In the European electricity market setting employing
self-dispatch, power plant operators face an increasingly
complex short-term operational optimization problem.
In general, they can trade electricity over-the-counter or
on power exchanges. The latter span multiple trading
options and products as illustrated in a generalized
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Figure 3. Simplified timeline of trading options on

the European exchange balancing and energy markets

(following Miskiw et al. (2023)).

and simplified way for the European setting in Figure
3. The markets can be separated into those for the
provision of balancing capacity and energy (grey shaded
background) and energy (green shaded background).

While many specifications of the general market
setting in Europe are standardized across member states,
some small differences remain. The specific lead times
named here relate to the German market zone. The
first market to be cleared in a day is the control reserve
market (CRM). Several products are traded, which differ
by their lead times and product requirements. Next, the
DAM is cleared at 12 aṁ. Here, the energy delivery
for the 24 hours of the next day is traded with an
hourly resolution. The third market is the IDM, which
can be divided into an initial auction at 3 pm and
the subsequent continuous market with a pay-as-bid
offer-based mechanism. Quarter-hourly products can be
traded on the IDM. The closest auction to real-time is the
energy auction for the activation of the control reserve,
which takes place 45 minutes before the actual delivery.

4.2. Multi-Market Bidding in the Unified
Stochastic Optimization Framework

As the bidding decisions on each auction of the
described sequence influence each other (Klæboe et al.,
2022), dispatching energy and capacity evolves to the
sequential decision problem, and the uncertainties over
all market stages must be considered jointly. In the
following paragraphs, we model this setting based on
(Kraft et al., 2023) and (Miskiw et al., 2023) using the
framework provided by Powell (2021) and explain the
dynamics of each decision stage.

The available information before each bidding
decision in the sequential electricity market setting1

can be formalized as shown in Figure 4. A

1We focus on the CRM, DAM, and IDM since the participation
in the control energy auction is independent of the CRM results
and, hence, is an additional income possibility that does not impose
restraints on the former stages (Kraft et al., 2023).

Figure 4. Timeline of information availability (above

time axis) and decision making (below time axis) of

the multi-stage decision problem following Powell

(2021) and Miskiw et al. (2023).

market participant aims to maximize her profit, which
comprises the revenue over all markets (ϕCRM,pos

W1
,

ϕCRM,neg
W1

, ϕDAM
W2

, ϕIDM
W3

) in which she takes part

minus the variable costs of the dispatch κU
W3,u

of her
power plants u ∈ U . This is formulated in Equation (2).

maxEW1,W2,W3|S0

{
(ϕCRM,pos

W1
+ ϕCRM,neg

W1

+ϕDAM
W2

+ ϕIDM
W3

−
∑
u∈U

κU
W3,u) | S0

} (2)

Control Reserve Market Decision. The first
auction of the day is for capacity in the CRM. The
different control reserve products are auctioned in four
hourly intervals, namely ts ∈ TS. We model the
bidding decision xCRM,pos,bid

S0,lp,ts
as a choice of volume bid

on price levels lp ∈ LP , where the number of elements
in the set LP defines the granularity of the submitted
bidding curve. LP can either be an exogenously defined
discrete price level to avoid non-linear relationships
or a decision variable yCRM,pos,bid

S0,lp,ts
for the price.

The acceptance of a bid is modeled with the binary
β̂CRM,pos,bid
W1,lp,ts

, which is one if the price level of the bid

yCRM,pos,bid
S0,lp,ts

is below the realized price in the market
(see Constraint (3)). As shown in Constraint (4), the
pay-as-bid remuneration in the CRM is accounted for
by including the price level yCRM,pos,bid

lp,ts in the revenue.
It must be noted that the reserve capacity sold to the
transmission system operator is a firm commitment.

x̂CRM,pos,trade
W1,ts,lp

= β̂CRM,pos
W1,lp,ts

xCRM,pos,bid
S0,lp,ts

∀ts ∈ TS
(3)
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ϕCRM,pos
W1

=

TS∑
ts=1

LP∑
lp=1

(
yCRM,pos,bid
S0,lp,ts

x̂CRM,pos,trade
W1,ts

) (4)

Day-Ahead Market Decision. In the next step,
new information W1 becomes available, including the
results of the CRM auctions and updated forecasts,
which leads to state S1. In state S1, the bidding decision
for the DAM is made. Contrary to the CRM, market
participants can take long and short positions in this
market since they can be closed in the IDM and do not
constitute a firm commitment towards the transmission
system operator. Hence, the bidding decision comprises
a bid for selling generation xDAM,gen,bid

S1,lda,h
or taking

long xDAM,long,bid
S1,lda,h

or short xDAM,short,bid
S1,lda,h

positions,
respectively, that pairs a volume with a chosen price
levels yDAM,gen,bid

S1,lda,h
, yDAM,long,bid

S1,lda,h
and yDAM,short,bid

S1,lda,h
.

The time resolution of the DAM is hourly, which is
denoted by the indices h ∈ H . After this decision,
the next exogenous information update W2 emerges,
comprising the DAM clearing and updated forecasts.
Based on the realization of the clearing price ŷDAM

W2,h
,

the generation, long and short bids are accepted or
not, which is modeled with the binary β̂DAM,gen

W2,lda,h
.

From this, we can calculate the actual traded volume
from the positions, which is shown for the generation
bid x̂DAM,gen,trade

W2,h
in Constraint (5). The traded

volume for the long position is calculated analogously,
and the revenue from the pay-as-cleared DAM can,
consequently, be calculated as in Constraint (6).

x̂DAM,gen,trade
W2,h

=

LDA∑
lda=1

β̂DAM
W2,lda,hx

DAM,gen,bid
S1,lda,h

∀h ∈ H

(5)

ϕDAM
W2

=
∑
h∈H

ŷDAM
W2,h

(
x̂DAM,gen,trade
W2,h

+

x̂DAM,short,trade
W2,h

− x̂DAM,long,trade
W2,h

) (6)

Intraday Market Decision. Using the updated
information, the IDM stage is performed. The
continuous auction of the IDM theoretically needs to be
considered with an infinite number of subsequent stages
to replicate the continuous trading opportunities. This
is often simplified in literature with just one auction
using the ID3 price (the weighted average of bid prices
3 hours before delivery) as a uniform price (EpexSpot,

2022; Kraft et al., 2023). This reduces the IDM decision
at this state to the same as for the DAM but with a
quarter-hourly qh ∈ QH resolution.

Realization Decision. After the IDM clearing
(W3), state S3 is reached, in which the dispatch is
realized. This aggregates all former stages, as the market
commitments are known and it must be ensured that they
are fulfilled while considering the technical constraints.
The dispatch of the power plants u ∈ U of a market
participant can be formulated as in Constraint (7) and
the CRM results in Constraints (8). To account for
the different temporal resolutions we use qh(h), which
denotes the mapping of the quarter hours contained in
the respective hour h (e.g., for h = 1 follows qh(1) =
1, 2, 3, 4).

∑
u∈U

xdispatch,U
S3,qh,u

= x̂DAM,trade,gen
W2,h

+x̂IDM,trade,gen
W3,qh

∀h, u, qh(h)

(7)

∑
u∈U

xreserve,pos,U
S3,qh,u

= x̂CRM,pos,trade
W1,ts

∀ts, u, qh(ts)

(8)

It must be ensured that the speculative positions
(long and short) are closed before the actual delivery
since high imbalance costs need to be paid otherwise
(see Constraint (9)).

x̂DAM,short,trade
W2,h

+ x̂IDM,short,trade
W3,qh

=

x̂DAM,long,trade
W2,h

+ x̂IDM,long,trade
W3,qh

∀h, qh(h)

(9)

This dispatch must be in line with the capacity
constraints of the power plant portfolio and enable
the provision of the accepted reserve (Constraints (10)
to (14)). In the interest of brevity, we abstain from
including other technical constraints, such as ramping.
A more complete formulation can be found in (Kraft
et al., 2023).

xreserve,pos,U
S3,qh,u

+ xdispatch,U
S3,qh,u

≤ Pmax
u ∀qh, u (10)

xdispatch,U
S3,qh,u

− xreserve,neg,U
S3,qh,u

≥

Pmin
u δreserve,neg,US3,qh,u

∀qh, u.
(11)
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xreserve,neg,U
S3,qh,u

≤ BIGMδreserve,neg,US3,qh,u
∀qh, u (12)

xdispatch,U
S3,qh,u

≥ Pmin
u δreserve,pos,US3,qh,u

∀qh, u
(13)

xreserve,pos,U
S3,qh,u

≤ BIGMδreserve,pos,US3,qh,u
∀qh, u (14)

5. Qualitative Comparison:
Reinforcement Learning & Stochastic
Programs

Based on this introduction, we now compare RL and
SP applied to multi-market bidding problems currently
present in the literature along several axes, namely
the modeled decision complexity, uncertainty, and the
performance comparison.

Decision Complexity. Modelers try to avoid
non-linearities as SPs potentially suffer from high
computational times. Market prices, for instance, are
often discretized with different predefined price levels
(Kraft et al., 2023; Löhndorf & Wozabal, 2022). Models
may still include a broad variety of continuous decision
variables. For example, Kraft et al. (2023) model three
markets, where on each market, a step-wise bidding
curve with a minimum of five different price levels
can be submitted for generation, as well as short and
long positions. In the interest of comparability, the
RL action space should at least be able to represent
the same decision complexity as corresponding SPs.
However, existing RL studies often employ simplified
decision representations, such as tabular approaches,
which do not enable continuous decision variables
(Cao et al., 2020a; Perera & Kamalaruban, 2021).
Some studies utilize function approximation methods
(Ye et al., 2020), but the action spaces of the bidding
strategies are simplified. For example, certain models
focus on selecting risk factors that indirectly determine
the quantity and price of bids (Al-Gabalawy, 2021).
Others concentrate solely on choosing the dispatched
volume and disregard the uncertainty associated with the
bidding price, which defines whether a bid is successful
(Anwar et al., 2022; Cao et al., 2020b; Ochoa et al.,
2022). Consequently, scanning the literature reveals that
RL approaches often do not yet replicate the complex
market environments modeled in state-of-the-art SPs.

Uncertainty Quantification. For SPs, the
uncertainty has to be quantified explicitly and is
provided with exogenous input parameters a priori.
The performance and results depend on this underlying
representation of uncertainty (Ochoa et al., 2022).
Therefore, much effort is dedicated to the right scenario
definition (Russo et al., 2022). In contrast, RL

methods are data-driven and do not need to quantify
the uncertainty explicitly. The underlying uncertainty
is accounted for by modeling the partial observability
of the state. This is generally a challenge in the RL
domain (Stapelberg & Malan, 2020). Consequently,
many multi-market bidding applications assume full
observability, where information such as uncertain
market prices is included with perfect foresight in the
state space (Anwar et al., 2022; Ochoa et al., 2022).
The uncertainty in renewable generation is more often
accounted for (Lehna et al., 2022). If uncertainty is
considered, the state space often incorporates exogenous
demand, renewable generation or price forecasts, akin
to the uncertainty quantification methods used in SPs
(Cao et al., 2020b; Demir et al., 2023; Lehna et al.,
2022). In summary, the RL approaches have the
theoretical advantage of not needing an uncertainty
quantification. However, current approaches mostly
neglect uncertainty in general or only consider a small
subset of uncertainties in comparison to SP models.

Performance. Due to the discussed inherent
differences in simulation setups, comparing the results
of these approaches is challenging. Yet, some studies
in the literature attempt to do so. Mohammadi and
Hesamzadeh (2022) apply an SP and tabular Q-learning
to the same problem. Both methods rely on discrete state
spaces. In (Mohammadi & Hesamzadeh, 2022), tabular
Q-Learning outperforms the respective SP approach for
prosumer management in the IDM. This most likely
originates from the uncertainty quantification of the SP,
but only little information is provided on the multi-step
scenario generation process applied. Ochoa et al. (2022)
demonstrate that in their study, the SP approach is
superior with regard to the daily market income, but
the DRL agent achieves less penalized imbalances. Yet,
the DRL agent is trained and evaluated on historical
data, while the SP only produces results based on the
discrete scenario trees. In both comparisons, the RL
agent can be expected to outperform the SP. This is
because the uncertainty quantification in the scenario
trees condenses information and underrepresents some
of the variance present in the data. The RL agent can
leverage this remaining variance to increase its profit.
This plays into the strengths of the RL agent, as it
captures patterns that are not reflected in the uncertainty
quantification of the SP. Both comparisons discuss only
to a limited extent how the results from the scenario trees
of the SP are linked to historical realizations. (Ochoa
et al., 2022) assess their scenario trees with the energy
score and Mohammadi and Hesamzadeh, 2022 analyse
the effect of the number of scenarios on the generated
profit.
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6. Quantitative Comparison:
Reinforcement Learning & Stochastic
Programs

We evaluate both approaches using an empirical
study to tackle the named qualitative differences and
to propose comparison measures and benchmarks. The
performance evaluation is demonstrated using two
different comparisons between SP and RL: Intrinsic
and empirical. The process for these comparisons and
results in our study are shown in Figure 5.

The intrinsic evaluation is based on the results of
the methods relative to their theoretical optimum under
perfect foresight. The RL approach is evaluated against
the perfect foresight optimization of the decisions on
the empirical data. On the contrary, the SP result is
evaluated against the Wait-and-see solution within the
scenario trees, which allows deciding after one of the
uncertain scenario is realized (Conejo et al., 2010). The
latter can be averaged over the simulation period by
using the probability of each scenario tree, which also
results in the average expected daily profit.

For the empirical comparison, we need to bridge
the gap between the results on the SP’s scenario trees
(expected profit per scenario tree) and the results of
the RL approach on empirical data (over the empirical
period). One way of doing so is mapping the empirical
days to the scenario trees. Then, the decision made by
the SP in the scenario tree can be evaluated based on the
actual empirical realization. In the SP context, such a
comparison is also called out-of-sample (Conejo et al.,
2010), which differs from the meaning of out-of-sample
in the context of machine learning.

6.1. Case Study

To address the differences in decision complexity,
we use the same study setup for both methods. We
model the positive CRM and DAM for a market
participant with a 100 MW Pmax

u gas-fired power plant.
Hence, we consider the trajectory in Equation (15).2

(S0, [x
CRM,pos,bid
S0,lp,ts

, yCRM,pos,bid
S0,lp,ts

],W1, S1,

[xDAM,gen,bid
S1,h

, yDAM,gen,bid
S1,h

],W2, S2)
(15)

Since we do not model the IDM stage, long or short
bids are not considered because they could not be closed.
The technical unit u has constant variable costs of 40

2Please note that for this case xDAM,gen,trade
S1,h

and

yDAM,gen,trade
S1,h

can be set implicitly since it is always optimal to
offer the entire not traded capacity into the DAM at marginal costs.

C/MWh. For this asset class, ramping and minimum
run constraints are neglectable. The operation from
July 2019 to March 2020 in the German market zone
is simulated. For the initial information S0 and the
update W1, we use empirical CRM (regelleistung.net,
2022) and DAM prices as well as publicly available RES
forecasts, its updates and the forecasted residual load
profiles (Entso-e, 2022).

6.2. Stochastic Program

In line with the mathematical formulation of Section
4 and the solution approach outlined in Section 3, a
SP for the case study setup is formulated. As pointed
out in the qualitative comparison, the quantification of
uncertainty is crucial for the SP’s performance. To do
this properly, we use a previously published, stand-alone
SP approach. Consequently, the information updates are
discretized with constructed scenarios WK1

1 and WK2
2 ,

which are adapted from (Russo et al., 2022) and (Kraft
et al., 2023). In their approach, the prices are simulated
with one additive time series model and one model for
the stochastic residuals with a mean-reversion process
and jump regimes. These simulations are clustered into
different groups for a set of 18 type days. The derived
clusters distinguish between three residual load levels,
the season, and whether it is a weekend. For the scenario
tree constructions, the simulated prices per cluster are
reduced in order to define |K1| = 10 scenarios for the
CRM prices and |K2| = 5 for DAM prices.

6.3. Deep Reinforcement Learning Model

In the implementation of the learning agent,
we employ the Proximal Policy optimization (PPO)
algorithm (Schulman et al., 2017). Built upon the
foundations of actor-critic methods, PPO addresses
the challenge of optimizing policies for sequential
decision-making tasks. The implementation is based on
the Stable Baselines3 framework by Raffin et al. (2021).
The learning agent is trained on the same data set used
to construct the uncertainty quantification for the SP.

At the first state S0, the agent receives the average
CRM and DAM market clearing prices from the same
time on the preceding day yCRM,pos

S0,ts−6 , yDAM
S1,h−24 as well

as the forecasted solar generation and residual load for
the subsequent four hours P solar

ts , P load
ts and information

on the present hour of the day and the season as sin and
cos values Idatets . The actions spaces of the RL agent in

S0 are xCRM,pos,bid
S0,lp,ts

∈ [0, Pmax
u ] and yCRM,pos,bid

S0,lp,ts
∈

[0, 70].
As we aim to maximise the generated revenue, the

agent’s reward is defined in Equation (2). To further
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Figure 5. Concept graph for obtaining the intrinsic and empirical comparison between SP and RL study results.

guide the agent, we subtract an additional regret term
cmts weighted with µ. The regret term equals the
theoretical optimum the agent could have achieved
based on the market prices that were realised.

6.4. Intrinsic Evaluation

The described intrinsic comparison leads to the
results for the average daily profit in Figure 5. It lies
in the nature of this comparison, that we evaluate the
methods on different grounds. It is rather an evaluation
of how well the algorithms perform in regard to their
own optimum. The bar of the stochastic program (lower,
orange bar) shows the average profit in comparison to
the wait-and-see solution where the realization in the
scenario trees can be anticipated. We can see that
the SP comes close to its perfect foresight optimum.
The RL approach (upper, blue bar) reaches a similar
percentage of the perfect foresight optimum on the
historical data. Yet, the average daily profit of the
SP is in general higher than with the RL approach,
which originates from the scenarios. One reason for
this might be that, on average, the profit potential is
greater in the quantified scenario trees. Alternatively, it
might be caused by the probabilities used to calculate the
average profit for the scenario trees, especially for days
when revenue is relatively high. This evaluation does
not necessarily allow to compare the two approaches
vis-a-vis. However, it is a useful indicator of whether
the models are well-parametrized and can serve as
benchmarks for each other using different indicators.
One such indicator is presented in the following.

6.5. Empirical Evaluation

For this comparison, the SP is applied to the
empirical data of the simulation horizon. We do so by
mapping an empirical day to the respective scenario tree.
The trees are distinguished based on season, weekend or
weekdays and residual load level. The former two can
be matched easily, while an empirical day is assigned
to the residual load level by finding the level where the
average absolute deviation between the empirical day
and scenario tree residual load is the lowest3. Then, the
optimal decision according to the SP is executed on the
empirical day. The cumulative profit of this comparison
for a weekday in the transition season is shown in
Figure 6. As the scenario tree realizations deviate
from the actual realizations, the cumulative profit is
lower. The scenario trees condense information and
underrepresent some of the variance present in the data.
For example, the scenario trees do not contain outliers.
Analysing the decisions in detail, it becomes clear that
the SP approach more often bids relatively low prices in
the CRM market, since it underestimates the historical
DAM profit opportunities. The RL agent, on the other
hand, mostly bids on the CRM market during periods
with high prices and otherwise participates in the DAM.
Yet, the results and comparisons show why an SP, as
it is considered here, suffers from disadvantages when
compared to RL based on empirical data.

3This is not necessarily optimal and, we could assign a day to
multiple type days and weigh the results. However, we propose this
first approach here.
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Figure 6. Empirical comparison of cumulative profit

made by the solution approach applied to empirical

realizations of a weekday in the transition season.

7. Conclusion

Calculating optimal strategies to bid sequentially on
multiple electricity markets poses a challenging task for
algorithmic solutions due to the dimensionality of the
state and action spaces and inherent uncertainty. This
makes the bidding process a sequential decision problem
that can be addressed using stochastic optimization.
As these classical approaches face the curse of
dimensionality and are challenging to implement in
online settings, reinforcement learning has gained
popularity as an alternative solution.

This paper aims to add to the discussion on
the comparison between stochastic programs and
reinforcement learning. We attempt to bridge the gap
between the methods by formalising the multi-market
bidding problem as a sequential decision under
uncertainty for both methods based on (Powell, 2021).
We explore the similarities and differences in current
applications of reinforcement learning and stochastic
programs and consequently answer the stated research
questions. Our qualitative analysis reveals that while
reinforcement learning is theoretically able to reflect the
continuous action and state spaces as well as partial
observability induced by uncertainty, the applications
do not yet reach the complexity of state-of-the-art
stochastic programs in this domain. While the literature
suggests that reinforcement learning outperforms the
respective stochastic programs when applied to similar
cases, some challenges remain. We discuss two options
to benchmark reinforcement learning with stochastic
optimizations in an empirical study. The study uses data
from the control reserve and day-ahead market of the
German market zone within the European power market

and conducts an intrinsic and empirical comparison.
The intrinsic comparison shows that both methods
perform well relative to their theoretical optimums. This
is a prerequisite for meaningful benchmarking. We
then compare both methods on empirical data. This
reveals the expected outperformance of the stochastic
program by the reinforcement learning approach as the
latter can exploit more variance in the data. Yet, more
work needs to be done to correctly map the results
from the scenario trees to empirical applications, as we
propose and evaluate one naive approach. Our results
contribute to the discussion of using and benchmarking
DRL in electricity market modeling. However, both the
evaluation of deep reinforcement learning as well as its
benchmarking with stochastic programs are still nascent
fields with a need for further research and consensus
building within the community.
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