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Abstract 

 
Interactions of banks with their customers are in-

creasingly shifting to web and mobile channels. Being 

at risk of losing the role of the customer agent to 

FinTechs and digital challenger banks, incumbent 

banks are seeking ways to exploit technologies such as 

mobile phones as channels to generate insights and to 

sell products that their customers need. For many 

banks the potential of mobile banking to individualize 

products and personalize services from information 

collected by the mobile device’ sensory components 

are largely untapped. In this paper, we draw on design 

science research in exploiting spatio-temporal infor-

mation to build an algorithmic model to target custom-

ers with credit offers. While past research aimed to 

solve similar problems mainly through customer seg-

mentation, our approach demonstrates the benefits of 

having a transparent and interpretable decision model 

for each individual customer. Our artifact enables the 

development of digital products and services, without 

large-scale, often unavailable data. 

 

 

1. Introduction  

 
Remaining low interest rates, ongoing technologi-

cal advances, and increased competition are forcing 

banks to rethink their business and operating models 

to stay profitable. The ongoing integration of digital 

technology into banking is omnipresent. The conver-

gence of previously disparate developments such as 

connected mobile devices, wireless networks, web 

technologies, and the internet of things creates oppor-

tunities for an unparalleled customer orientation, en-

trepreneurial spirit, and digital innovation [2].  

To surf on these trends and react to the shifting cus-

tomer expectations, banks are looking for ways to par-

ticipate more deeply in the life of their customers, 

providing purposeful services through the increasingly 

important mobile channel. Banking is a relationship 

business and to remain a close relationship with their 

customers, it is vital for them to learn about and pro-

actively reach out to their customers. At the same time, 

it is critical that customers remain receptive to such in-

teractions, requiring a balance between an overflow of 

encounters and no interaction at all.  

Any bank has access to its customer information 

such as incoming and outgoing transactions or other 

information that are implicit and hidden in transac-

tional data. This lays the groundwork for analytical 

models that use statistical methods and machine learn-

ing to computationally create profiles and obtain valu-

able information about customer wishes and wants, 

and to predict customer behavior upon that. One appli-

cation area to exploit the value of data is in the provi-

sioning of financial products such as consumer credits.  

Our research objective is to explore how banks 

may leverage the affordance of location based technol-

ogies in unlocking new business opportunities. Hence, 

the specific purpose of this paper is to develop an al-

gorithmic model that predicts when a client likely 

needs a consumer credit based on his/her location. 

While the model is intended to use conventional infor-

mation such as transaction data from customers’ bank 

accounts and information about their preferences, an-

other type of data is added – location data. Depending 

on a customer’s geographical position and their pref-

erences, targeted credit offers can be sent directly to 

the customer’s smartphone. In a situation in which the 

customer could make use of consumer credit, an indi-

vidual offer is sent. The client can then either accept 

or reject it. For the development of this prototype, a 

German bank provided us with anonymized customer 

data. Prior to this study, the customers have consented 

to share their data for research and testing purposes. A 

later implementation of our model must succeed with 

the consent of a customer given to all participating par-

ties prior to signing up. This is a necessary step in or-

der to use the model in accordance to the GDPR in the 

EU. While our model is developed for credit offerings, 

it can easily be adapted to other financial services con-

texts where the client may be advised. 

To clarify the practical issue that our DSR study 

addresses, we outline three main benefits of the pro- 
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posed solution to the key stakeholders. First, our arti-

fact is intended to equip banks with the confidence to 

initiate a digital interaction by offering more targeted 

products that the customer is likely to accept. Com-

pared to other forms of consumer credits (e.g. credit 

cards), it is the bank and not the customer who initiates 

the lending process by sending an offer in a specific 

situation. If successfully implemented, this can ulti-

mately result in increased revenue for the bank, as 

more credits are emitted. Second, many customers per-

ceive financial products as complex and opaque, and 

hence they may not always know which products exist 

on the market and which specific one may best solve 

their problem. Having a more sophisticated under-

standing of the behavior of their clients can help banks 

provide more personal advice and is therefore of great 

value to both the customer and the bank. Third, cus-

tomers, on the other hand, benefit from having another 

payment option next to other installment plan payment 

methods such as credit cards or in-store financing op-

tions. In-store financing options usually require 

lengthy sign-up procedures and background checks at 

each store individually. When paying with credit card, 

though, a credit card company is sitting between the 

customer and the bank with often higher interest rates. 

Our proposed model does not intend to involve third 

parties in this concern.  

Adding a spatio-temporal dimension to conven-

tional profiling models, we argue that the artifact is 

more accurate in understanding and predicting cus-

tomer desires and needs. It offers a starting point for a 

more controlled and incremental ingestion of digital 

technologies and artificial intelligence into the modus 

operandi of banks which are traditionally more risk 

averse than FinTechs and challenger banks when it 

comes to adapting the business and operating model 

because of their legacy.  

Through five expert interviews, we identified three 

objectives for our artifact, which serve as our evalua-

tion measures: 

 

a) Only send customer-specific (targeted) offers 

b) Avoid an overflow of offers for a specific cus-

tomer (no spamming) 

c) Evaluate the customer responses and consider 

the feedback for decisions (continual learning) 

 

 First, only targeted offers shall be sent to achieve 

higher acceptance rates. The purpose of a credit offer 

needs to meet the preferences of the individual cus-

tomer, e.g. that the credit is intended for certain non-

financial products in stores. Specific historic buying 

activities need to be considered. Even if tailor-made 

offers are sent, the risk of overflowing customers with 

offers still exists. The model therefore must adapt the 

frequency of offers. Location data shall be used, as it 

provides spatial and temporal information of a cus-

tomer. In combination with buying behavior in spe-

cific situations, opportunities are identified to adjust 

offer frequencies. When a credit offer is sent, the cus-

tomer can accept or reject it. This feedback infor-

mation in turn provides valuable insights for further 

profiling and must be included in the model to learn 

from customer feedback and to continuously improve.  

Applying design science research, we proceed with 

a literature review about relevant themes and existing 

models for customer profiling within consumer bank-

ing. We then describe our approach to design, build, 

and test our model. We evaluate if the artifact meets 

the objectives and hence its practical utility. We dis-

cuss the results, reflect on our method and compare the 

artifact with existing solutions. 

 

2. Literature Review  

 
2.1. Mobile Computing and Big Data 

 
Location-based services (LBS) were mentioned for 

the first time by the US government in a 1996 mandate 

that required mobile-network operators to locate emer-

gency calls precisely enough to inform first respond-

ers. The positioning algorithms used to determine a 

person’s location were costly and did not receive much 

attention. The introduction of GPS-capable mobile de-

vices 3G broadband wireless service in 2005 enabled 

individuals and businesses to build applications and 

services around location data [4, 5]. There are now 

2.71 billion smartphone users worldwide – a number 

that almost doubled during the last five years [22]. 

Smartphones play an increasingly important role in 

people’s everyday life, and so do the data produced by 

them for businesses. Sensors such as GPS, accelerom-

eters, ambient light sensors, and compasses have be-

come standard features of almost any smartphone [7]. 

Mobile computing and big data both have been 

flourishing fields of research on their own in recent 

time, however only a few studies explore the conver-

gence of both domains [1]. Analyzing data collected 

by mobile devices enables businesses to gain novel in-

sights form hitherto unrecognized sources [1]. This ex-

plains the existence of the relatively new research field 

of Mobile Big Data. Unlike “general” big data, mobile 

big data is distinct in the multi-dimensional, individ-

ual, personal, multi-sensory, and real-time nature of 

the data produced and processed. 

 

2.2. Digital Data Streams 
 

In recent past, the velocity of the data production 
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has rapidly increased, as computers, smartphones and 

tablets became constant companions of people. This 

enabled the capturing of everyday activities digitally, 

leading to a continuous flow of real-time data. This 

technological phenomenon is coined digital data 

streaming (DDS) [18]. 

For analytics purposes, large parts of mobile-gen-

erated data are DDS.  Unlike static data that is stored 

in a database before it is processed, streaming data is 

processed as a so-called event-before-storage. Events 

are individual records consisting of field- and meta-

data. Field data is the actual information contained of 

an event to be analyzed. The meta-data within an event 

determines how an event that is being processed by a 

certain application interacts with and is related to other 

events. If each event is processed as it is delivered and 

only the results are stored in databases, then the data is 

streaming [20].  

Pigni, Piccoli, and Watson [18] investigate charac-

teristics of DDS. According to them, a DDS can be 

human-generated (e.g. posts or tweets) or machine-

generated via sensors (e.g. GPS location). An event of 

a DDS can contain up to six basic informational com-

ponents: the time (when), the location (where), the ac-

tor (who), the activity (what), the tool that created the 

event (how), and the occurrence’ reason (why). In this 

paper, we are mostly interested in the time, location, 

and the actor. 

 

2.3. Customer Profiling in Financial Services 
 

Prior studies such as Hormozi and Giles [12] and 

Shaw, Subramaniam, Woo, and Welge [21] investi-

gate the early attempts of banks to engage in data min-

ing. Data mining refers to any activity aimed to extract 

important information from existing data to enhance 

decision-making. Declining cost of data storage and 

computational power and increasing ease of collecting 

data in an increasingly digitally permeated environ-

ment are major trends that drive data-driven organiza-

tions to engage in data mining and predictive model-

ling [16].  

Within the banking industry, one specific applica-

tion field for predictive modelling is customer acqui-

sition and retention. Revealing patterns in customer 

behavior enables advanced targeting, as it allows to 

promote products to a specific customer or group, 

which are expected to be interested in a given product 

or service. High cost for non-targeted, universal and 

often ineffective promotions can be cut [9].  

 Prior studies about data mining argue that conven-

tional approaches to customer segmentation lead to in-

creased cost and low response rates, as it is hardly pos-

sible to cluster customers into homogeneous groups 

[21]. Especially when selling financial products like 

credits, highly heterogeneous preferences among cus-

tomers are to be expected [8]. The field of knowledge-

based marketing uses data mining to tackle these prob-

lems. Making use of large accumulations of customer 

preferences in databases, advanced customer profiles 

are created. Shaw et al. [21] claim that customer pro-

filing relies on demographic consumer details as well 

as characteristics of past purchases, such as frequency, 

size or amount, and recency of a transaction. In a dif-

ferent but related study, Kitchens, Dobolyi, Li, and 

Abbasi [14] examine the field of advanced customer 

analytics. The authors argue that key to superior in-

sights is the use of complementary data sources and 

their integration into models across functional silos in-

side and outside of an organization. However, transac-

tion data and customer demographics only serve as the 

basis for a customer analytics solution. 

A recent study by Martens, Provost, and Clark [15] 

introduce a model that employs a bank’s customer 

transaction data to predict which consumers will be 

promising prospects for specific offers, pointing out 

that most target marketing initiatives of banks include 

information about the frequency, the time, and the 

amount of a certain transaction. The study refers to this 

data as structured data but argues that transaction data 

can also include fine-grained information on consum-

ers’ behavior. One way to generate fine-grained infor-

mation is through network analyses. This is done by 

analyzing, which merchant customers are paying in a 

transaction. Customers paying to the same merchant 

are expected to be more similar in their behavior. The 

more connections they share, the more similar are their 

preferences. By including the data of the connections 

of customers in the same model, the authors show that 

the prediction output can be enhanced compared to a 

model that relies only on time, frequency, and amount 

of a transaction [12]. 

Another relevant stream of literature in this area 

pays attention to attrition rate and how to retain exist-

ing customers [13]. Hu [13] employs various methods 

(decision tree, boosted naïve Bayesian network, selec-

tive Bayesian network, neural network, and the ensem-

ble of class of the above methods) to build clusters of 

customers to eventually use these for a more precise 

targeting. A credit card data warehouse served as the 

primary source of data for retention modeling. Addi-

tionally, third party data such as account related demo-

graphic and credit bureau information was used, sup-

plemented by segmentation documentation and a pay-

ment database containing all processed checks of cus-

tomers. 

 

2.4. Location-based Financial Services 
 

Banks have been known to exploit various sources 
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of data for analyzing and predicting customer needs 

[12, 13, 19, 15, 21]. These data include demographics 

(e.g. gender and age), past purchases (e.g. credits, 

bank accounts), payments (e.g., frequency, amount, 

and time of a transaction) as well as meta-data gener-

ated by models through transaction data [15].  

The assessment of recent developments in technol-

ogy has revealed that the increased use of mobile de-

vices leads to the generation of novel data streams with 

unique characteristics [6, 7, 18].  One such data stream 

is location data captured by GPS sensory components 

in smartphones. The above assessment of literature 

and our anecdotal evidence of the European banking 

sector unveiled that banks have not yet embraced the 

value of adding real-time location data in their sales 

approaches and models. Many banks are still explor-

ing internal machine learning use cases, trying to inte-

grate their disparate data silos by setting up a shared 

data warehouse and data lake. 

We argue that adding a customer’s real-time loca-

tion data to profiling models can significantly enhance 

customer profiling and prediction in offering financial 

services and at the same time reduce cost. Real-time 

location data is not new to all financial services pro-

viders, as some use it for fraud prevention. Examples 

include credit card firms Mastercard, Visa, and Amer-

ican Express which block transactions when they hap-

pen in close temporal proximity in disparate geograph-

ical regions. Bonus plan provider Payback uses loca-

tion data to enable participating retailers to market 

their products to individuals near their stores, further 

corroborating that there is a market for such services 

that also banks can tap into by virtue of their business 

model. We intend to embrace real-time location data 

in form of a spatio-temporal component to prediction 

models. 

 

3. Methodology 

 

In line with design science research (DSR) the pri-

mary goal of this paper is to develop a model that effi-

ciently predicts the wishes and wants of a customer in 

each environment [10, 11]. The development of such 

a model seamlessly aligns with the creation of a novel 

artifact described in DSR [17]. The literature review 

has shown that there is an identifiable business value 

in having such an artifact. In DSR, the practical utility 

embodies a central role, ensuring research relevance 

[10, 3]. On the other side, DSR employs the academic 

knowledge base of existing theories, models, and 

frameworks to build the artifact. Designing the artifact 

allows not only to contribute and add knowledge to the 

associated research domains – in this case mobile data 

exploration, customer targeting, etc. – but to create im-

mediately visible benefits to practitioners. 

The search process for an efficient artifact solution 

to a problem is firmly anchored in the DSR approach. 

We conducted five (5) interviews and reviewed ar-

chival documents to help us establish the objectives 

that our artifact would be fulfilling. First, we con-

ducted 2 interviews with senior executives of a major 

German consulting company that specializes in advis-

ing financial services clients and 3 interviews with 

representatives of client banks. Second, we reviewed 

18 consulting and industry reports. This is of im-

portance for solutions like this, which apply relatively 

new methods (e.g., location data and data analytics) to 

a given the problem. Often, several attempts to find a 

suitable solution are needed. DSR provides the liberty 

to generate design alternatives and test them against 

previously defined goals [11, 17].  

 

4. Artifact Description 

 
4.1. The Process 

 

Prior to discussing the technical implementations 

of the artifact, we provide an overview of the designed 

artifact by introducing a process model shown in Fig-

ure 1. On a higher level, the model can be divided into 

two phases: The location model and the decision 

model. Simplified, the process is as follows: 

 

a) The customer shares his/her geographical live 

location 

b) The location model determines if a store is 

close to the customer and if the store is im-

portant to him/her 

c) If yes, this information is passed on to the de-

cision model that determines if a customer is 

likely in need of a credit  

d) If yes, an offer is sent to the customer and the 

feedback (whether it is accepted or not) is used 

to update the decision model 

 

 The starting point is the customer who transmits 

live location data through the mobile device. This lo-

cation data is matched with the location of stores of 

potential interest to the customer. These stores of po-

tential interest are determined upon the historic ac-

count transactions. Stores that appear as a creditor in  

the client’s account data on a frequent basis are pre-

sumed to be of interest to the customer. Once a cus-

tomer is close to such a store a match occurs which 

will be referred to as a location event. For each loca-

tion event, information about the location, date and 

time, and account balance of the customer is captured. 

This information is forwarded to the decision model 

which predicts the probability of a customer to be  
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likely to accept a credit for a location event. A classi-

fication model is initially trained with a dataset gener-

ated through historic account transaction. Once this 

model predicts, that an offer will be accepted by the 

client, it is sent out. The client can either accept or re-

ject the offer. After the client has made a choice, this 

observation is stored and added to the training data of 

the model. Thus, training data is continually updated, 

and each following prediction is made upon all previ-

ous choices by the client.  

 

4.2. The Location Model 
 

The model uses live location data of customers and 

combines it with historic account information. Two 

data sources feed the model: historic transactions of a 

customer and live location data. To train the model, a 

dataset containing anonymized historic transaction 

and customer data was provided by a leading German 

provider of multibank-capable banking solutions. The 

dataset contained all bank account transactions of a 

customer from the past two years, totaling 679 trans-

actions. The second data source is live location data 

which is ingested into the model in form of latitude 

and longitude data as well as a time stamp. 
Since one of the paramount intentions of this arti-

fact is to obtain supplementary value from location 

data when modelling a customer’s preferences, the in-

itial stage of the model is concerned with the creation 

of an interface for constant retrieval of live location 

information. The sole retrieval of live location data is 

of little value until brought into context and combined 

with other data. To build the desired artifact, there is a 

need to gather insights on the specific stores the cus-

tomer visits frequently, and thus, are of interest. Sub-

sequently, the live location data can be used to deter-

mine, whether a customer is close to such a store. To 

retain information about stores of potential interest, 

the model starts by processing information contained 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in the account data set. For this purpose, the creditor 

of a transaction account data delivers valuable content, 

as it specifies the payee. In the first stage, this attribute 

is filtered, so that only in-store purchases appear. This 

is a necessary step, since recurring transfers such as 

rental payments, insurance payments, gas or electricity 

bills are not of interest for this model. 

Upon this data, another dataset is generated, which 

provides information about the frequency of appear-

ances of each creditor in the account transactions file. 

Each creditor is ranked upon the number of transac-

tions the customer has made within the previous two 

years. This dataset offers an overview of the most fre-

quently visited stores and, based on that, allows to de-

fine stores of interest to the client. For the implemen-

tation of this model, a threshold was set, which defines 

stores which were visited more than ten times in the 

last two years as stores of interest to the client. This 

threshold is not fix but can vary as desired by future 

users of the model. 

Once the stores of interest are determined, the next 

step is concerned with the acquisition of their location 

data in order to later match these with the live location 

data of the customer. To do so, a geographical region 

is defined. For the implementation of our model the 

City of Cologne, Germany was chosen. The purpose 

of this stage of the model is to create a dataset contain-

ing all branches of stores of interest to the customer 

within the given region. If a customer, for instance, 

frequently shopped at Shell gas stations, all Shell gas 

stations within the given geographical region need to 

appear in the dataset. We collected this information 

from Google Maps and Open StreetMap and created a 

dataset that contained all branches of a store of interest 

with addresses within the defined geographic region.  

To ease a later match with the live location data, 

we rounded the latitude and longitude of each store to 

three decimals which corresponds to an approximate 

accuracy of 100m. To determine a location with one 

Figure 1. Process Overview of the Model 
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single argument instead of two (longitude and lati-

tude), the rounded latitude and longitude are concate-

nated and form a unique location identification, which 

is referred to as a location code.  

Each store’s location code defines its location with 

only one argument and with the proximity of 100m. 

Based on this location code, the live location data will 

be matched to determine if a customer is close to one 

of his or her preferred stores. Hence, the live location 

data is formatted in the same way and a location code 

is created for each live location observation that enters 

the model.  

This constitutes the necessary preprocessing of the 

data to enable a matching between a customer’s stores 

of interest and the live location. Every time a customer 

sends live location data, this is being transformed into 

a location code which is then compared to the location 

code of any of his stores of interest. If a customer is 

within the range of approx. 100m to one of these 

stores, the model generates what is further labeled a 

location event. However, if a customer’s live location 

data does not match any of his store’s location, no 

event occurs. Hence, a location event is the necessary 

foundation to initiate further processing steps of the 

model. For each location event, the following infor-

mation was saved in a dataset: store, date, time, and 

current account balance. 

 

4.3. The Decision Model 
 

Once a location event occurred, this information is 

passed on to the second stage of the artifact: the deci-

sion model. For each location event that takes place, 

the decision model makes a prediction, whether the 

customer is likely to accept a credit offer at this spe-

cific store at the given time. As soon as the probability 

of accepting a credit is predicted to be higher than .7, 

an offer is sent, otherwise no offer is sent. If more than 

one location is in reach, the store with the highest 

probability is picked. In other words, the decision 

model attempts to classify each location event into two 

classes: accept or reject. To perform this task, a sup-

port vector machine (SVM) is used. The SVM parti-

tions a given population of individuals Ω into two clas-

ses {−1,+1}. For each individual i ∈ Ω, there is: 

𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑘): vector of explanatory variables 

𝑦𝑖 ∈ {−1, +1}: class membership. 

The goal is to predict the class membership of new 

individuals for which the explanatory variables are 

known, i.e.,  

𝑥𝑛𝑒𝑤 → 𝑦𝑛𝑒𝑤 ∈ {−1, +1} 

An SVM defines a hyperplane (𝑤𝑇𝐱 + 𝑏 = 0), 

which is a boundary in a n-dimensional space, that best 

separates the two classes. The hyperplane acts as a dis-

criminative classifier and is later in the prediction 

phase used to classify new objects depending on their 

positioning in the multi-dimensional space:  

𝑦 𝑛𝑒𝑤 = {
+1    𝑖𝑓 w𝑇 𝐱𝑛𝑒𝑤 + 𝑏 > 0

 −1    𝑒𝑙𝑠𝑒                               
 

To build such a model and to find an adequate de-

cision boundary, data is needed. Data that initially 

serves to define the decision boundary is referred to as 

training data. This training data, i.e. observations 

where a customer accepted a credit and observations 

where a customer rejected a credit in the past, is cre-

ated by using the account transactions of the last two 

years of the client. For each transaction, a given class 

membership accepted or rejected is defined. To do this 

in a meaningful way, an economic assumption is 

made. It is assumed that the interest payable for a neg-

ative account balance is higher than the interest paya-

ble for a consumer credit. Thus, an economically act-

ing consumer will prefer paying interest for a credit 

over overdrawing the account. For every transaction 

that took place in the past, the amount of the transac-

tion is compared to the balance of the bank account at 

the specific time of the transaction. For all cases where 

the account balance was smaller than the amount spent 

in a transaction, it is assumed that a value maximizing 

customer would accept a credit because its interests 

are cheaper than the interest due to overdrawing the 

account. Using this method, all account transactions 

were classified either as “accepted” or “rejected”. This 

data serves as training data to set up the SVM and to 

initially define a decision boundary between the two 

classes.  

For our model, the explanatory variables are the 

store, date, time and account balance. This information 

is contained in every account transaction but can also 

be gathered for each location event. Ultimately, the 

target is to predict whether a customer accepts or re-

jects a credit offer based on what his or her account 

balance at a given date and time at a given location 

(i.e., store).  

To employ the model in a meaningful manner, 

however, the data needs to be further aggregated. The 

model converts given dates into weekdays. Having the 

individual weekdays on which a customer shops or 

solely appears at a certain store allows to discover 

more sophisticated patterns on buying behavior and 

preferences than just a simple date. Further, the store 

is used as an explanatory variable. We encode them as 

one-hot encoded variables. All previously defined 

stores of interest which appear as creditors within the 

transaction data are used as explanatory variables. The 

balance of the bank account and the given time is also 

added to the information.  
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Each explanatory variable represents one separate 

dimension in the multi-dimensional space. Stores and 

weekdays are binary encoded, while the time and the 

account balance are expressed as integers. The class 

membership (“accepted”) is represented as a Boolean 

which can take the values of “true” and “false”. Hav-

ing transformed the data, the SVM is trained upon the 

classified transaction information. The classification 

achieved with the training of the SVM is now used to 

classify location events. Each location event enters the 

model and is predicted to be in one of the classes.  

As described in the location model section of this 

paper, the location event first determines a specific 

branch of a store chain by matching its location code 

with the live location code of the customer. However, 

not the specific location code or address of the specific 

branch is added to the information, but the name of the 

store chain. The same information is provided in each 

account transaction, where the store chain – and not a 

specific branch – appears in the creditor column. Thus, 

stores in location events have the exact same title as 

stores in the account transactions, which allows a di-

rect match. This abstraction from the individual 

branch enables to make statements about the general 

preferences regarding a chain of stores. Consequently, 

patterns can be detected across different branches. If 

the model determines, that a customer is likely to ac-

cept a credit for a given store chain at a given time, this 

will apply to all branches of this store in the defined 

region. 

It is important that the explanatory variables are in 

the exact same format for both the initial account 

transactions and the location events to enable a predic-

tion and a later accumulation of instances for training. 

As the data of a location event is prepared, it enters the 

SVM for prediction. Depending on the outcome of the 

prediction, the information contained in the location 

event is subsequently used as further training data to 

improve the model.  

The SVM model predicts a probability for a class 

membership for the location event. If the probability, 

that the new instance is within the “Accepted” class is 

higher than .7, an offer is sent to the customer. Other-

wise, the information is not further processed, and the 

client receives no offer. For each new instance (loca-

tion event) for which the model has predicted to send 

an offer, an entry in the training data set is added, leav-

ing the class membership blank because the feedback 

from the customer to accept or reject a credit offer is 

pending. Once the customer made a choice, this infor-

mation is added to the training data to complete the 

entry. Every time, a new instance is added, the model 

is trained again with all available training data up to 

that point. Thus, all upcoming predictions of the model 

include the newly created instance, which allows the 

model to continuously learn from the provided cus-

tomer feedback in a transparent and understandable 

manner. 

By continuously feeding customer feedback into 

the training data of the model, the number of entries 

increases over time. As a result, the originally gener-

ated training data will play an increasingly subordinate 

role as the ratio of new information to the original in-

formation increases. This is intentional, as the actual 

interests of the customer are consequently increasingly 

considered. The initially generated training data from 

the account transactions, hence, solely serves as a ba-

sis to start the model and make first logical predictions 

based on economic assumptions that are basically 

common-sense. 

  

5. Evaluation  
 

This section seeks to demonstrate how the artifact 

functions and fulfills the previously defined goals. The 

achievement of goals in areas outside the development 

environment are assessed [10]. Table 1 provides an 

overview of how each part of the model contributes to 

providing a solution to the problem. 

First, it will be evaluated, to what extent targeted 

offers are considered in the model. An element associ-

ated with these are the stores of interest. Therefore, the 

account data plays an important role, as it allows to 

continuously identify the most recently visited stores. 

Because the account data are filtered by the shops that 

the customer has visited very often lately, targeting is 

already achieved at one the initial steps of the model. 

Less frequently visited businesses that are of minor in-

terest to the client are therefore excluded at this first 

step. Although the general preferences of a customer 

are identified by the targeting, there is still the possi-

bility to create an overflow of targeted offers. Conse-

quently, another objective is to not spam the customer. 

This is accomplished in two steps by the model: First, 

the location model fixes a location match when a cus-

tomer is nearby a store of interest. For all situations, a 

customer is not close to one such store, the model does 

not send an offer. Two datasets of live location data 

were imported into the model. One record contained 

coordinates that did not match any of the stores of in-

terest coordinates. Another record contained coordi-

nates describing a point near one of the stores of inter-

est. Both records were entered as variables. For the 

first record, no location event took place, and the 

model outputs an empty dataset. For the second rec-

ord, in contrast, the model successfully matched the 

live location to one of the stores and wrote this infor-

mation in a data frame and created a location match. 
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In addition, the model employs a more precise fil-

tering of offers in the second stage – the decision 

model. Based on the results of the support vector ma-

chine, offers are sent only for certain location events. 

To demonstrate this capability, following simulation 

was performed: To test the prediction, we again as-

sumed that a customer always accepts a credit if the 

amount of the purchase is greater than her bank ac-

count balance, though in reality not all customers will 

make their choice in accordance with the above stated 

assumption. When implemented, customers will deter-

mine their choices upon individual motives. These ch- 
oices are reflected in the feedback of a client which 

serves as further training data. In contrast to the initial 

training data, which is generated upon the above stated 

general assumption, this data is individual training 

data, reflecting the individual preferences of a cus-

tomer. To demonstrate this effect, three customer pro-

files were artificially generated. Subsequently, the 

model was trained upon these profiles. For each cus-

tomer profile, specifically edited training data were 

created according to some assumed preferences. Each 

training data set contains the initial training data and, 

in addition, 400 instances through which the assumed 

preference is mirrored. For 200 of them, the assumed 

preference applies, and they were tagged as “ac-

cepted”. For the other 200, the assumed preference 

does not apply. These instances were tagged as “re-

jected”. For each profile, two test scenarios were pre-

dicted. One, where the above defined condition was 

fulfilled, and another, where it was not fulfilled. In ad-

dition, the initial model – without the individual train-

ing data – was used to predict each given scenario. 

Thus, it can be tested, whether the model adopts to 

each customer profile. Comparing the prediction of the 

model trained upon the initial data with the individu-

ally trained model allows to determine, whether the 

model is capable to include the added individual train-

ing data in its decision base and is thus learning from 

a customer’s feedback. 

 

 

 

While the model which was trained upon the initial 

training data did not correctly predict the customers 

preference in all times, all predictions of the model 

which is trained upon the individual profiles led to the 

correct classification. This proves that the model in-

corporates the feedback from a costumer, includes it 

into the training data, and ultimately makes superior 

predictions as it learns from it.  

Moreover, the accomplishment of these objectives 

has several effects on forecasting consumer demands 

in general and for consumer credits. First, the model 

provides an inexpensive, yet, accurate way to antici-

pate customer needs. With the help of the selected 

classification method one can now very efficiently re-

spond to the individual needs of the customers. This 

equips banks with the necessary information to confi-

dentially approach a client with a personalized offer, 

at the right time and place. This allows a fundamental 

change in customer-bank relationships. In the past, the 

customer-bank interaction was mostly customer 

driven as it involved a certain need, such as a bank 

transfer or loan request. Having superior insights into 

customer desires provided by the artifact, allows banks 

to move away from their rather defensive position 

within the customer-bank relationship and focus on 

meaningfully offer time and place specific, targeted 

products.  

The artifact can be used as part of a bank’s strategy 

to expand their services portfolio into the mobile chan-

nel. The mobile channel is gaining prominence and 

many established channels of customer interaction like 

local branches are becoming obsolete, forcing banks 

to adapt to changing customer behaviors in order to 

remain relevant in the future.  

 

7. Discussion  
 

Gregor and Hevner [10] present a knowledge con-

tribution framework for design science research. The 

 No Spam Targeted Offers Learn from Feedback 

Location Model Depending on the physical loca-

tion of a customer, the sending of 

an offer is initiated or restricted. 

Only stores that appeared 

more than x times in the 

last y months in the ac-

count data are considered. 

 

Decision Model Based on whether a customer has 

previously accepted credits in sim-

ilar situations, the sending of an 

offer is initiated or restricted. 

 Offers that are sent to 

customers serve as fur-

ther training data, as 

soon as a feedback is re-

ceived. 

Table 1.Contributions to the Problem Space 
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framework clusters contributions according to the ma-

turity of both the application domain and the solution. 

We argue that the proposed artifact provides a novel 

solution to a known problem [3]. The literature re-

search reveals no evidence that banks have yet em-

ployed location-based customer prediction systems to 

this date. However, the desire to predict a customer’s 

preference is not new, as previous attempts to cluster 

customers into segments and target them accordingly 

are known beyond the marketing literature. Thus, the 

artifact is an improvement, as it is a new approach to 

solving a known problem. The developed artifact is 

unique in multiple dimensions and differs from past 

research attempting to predict consumer needs.  

One such dimension is the general level of abstrac-

tion. Many other models which attempt to predict cus-

tomer preferences are based on segmentation ap-

proaches. Hereby, customers are grouped into clusters 

of peers with similar interests and preferences. Upon 

this, each group is presumed certain preferences and 

customers who are members of a certain group receive 

according offers [21]. Our model instead assumes a 

“segmentation of one”, i.e., customer preferences are 

predicted for an individual customer by evaluating 

only his or her individual information. The trade-off 

between generalizability and precise targeting is in-

creasingly fading away, as the cost of precise, individ-

ual targeting decreases. This artifact takes this devel-

opment into account and applies statistical techniques 

on an individual basis.  

Additionally, and most importantly, the artifact in-

corporates another dimension – spatio-temporal infor-

mation – by adding location data to a customer prefer-

ence prediction model. As the increase of smartphones 

is on the rise, this novel data stream will not only cre-

ate value in the context of predicting the need for 

loans, but also in other fields. Knowing where a cus-

tomer is at a given time and take that information into 

account in real-time can add tremendous value to mul-

tiple kinds of analytics and prediction models. This ar-

tifact is one of many possibilities to incorporate loca-

tion data for precise prediction of customer needs and 

illustrates just one use-case.  

Depending on the specific context in which the 

model is applied, some challenges might arise during 

implementation. One of such challenges is scalability. 

While this artifact shows the concept based on one 

customer profile, practitioners need to have a certain 

infrastructure and toolset to adopt the model in a large 

scale.  

When implemented, the model needs to be trained 

for each individual customer. Once done, it is neces-

sary for the practitioner to test the model’s prediction 

accuracy. As the predictions of the model constantly 

change as new observations are added to the training 

data, keeping track of whether the accuracy increases, 

is essential. One approach to do so is to take a certain 

amount of random observations of the existing training 

data and extract these at a certain point. These obser-

vations are then referred to as test data. For each ob-

servation in the test data, the class membership will be 

neglected, and a prediction for them is made by the 

model upon the remaining training data. The outcome 

of this prediction is then compared to the actual class 

membership, which allows to determine the model’s 

accuracy by comparing the proportion of correctly pre-

dicted observations with false predictions.  

The artifact represents many ways in which mobile 

location data of customers can be used by linking it to 

traditional data, such as in this case existing account 

data, to gain deeper insights in customer behavior. 

Hence, further research can draw upon this approach 

and it can be concluded how the use of spatio-temporal 

data also finds application in other areas. 

 

8. Conclusion  
 

This contribution presents an algorithmic model 

which predicts the need of consumer credits by con-

sidering a given spatio-temporal context of the cus-

tomer. To do so, two data types – historic account 

transactions and live location data – constitute the de-

cision basis of this model. The artifact is split into two 

sub-models, namely the location model and the deci-

sion model. The first part, i.e. the location model 

matches the live location data of a customer with a da-

taset of beforehand defined stores of interest to the 

specific customer. These stores are chosen upon the 

shopping habits of a customer which are derived from 

the transaction history of the corresponding bank ac-

count. Once a customer is geographically close to such 

a store, the model creates a so-called location event, 

containing information about the specific store visited, 

weekday, time, and account balance. Subsequently, 

this information enters the second part of the model – 

the prediction model – which predicts the probability 

of the client accepting a credit offer. This prediction is 

made by a Support Vector Machine, which is trained 

upon previous observations of that specific customer. 

This training data is created of historic transactions of 

the client. Once the model decides that it is likely that 

a client accepts an offer, it is sent. Following, the client 

has the chance to either accept or reject the offer. The 

feedback of the client is afterwards injected to the 

training data, which allows the model to continuously 

increase the precision of predictions over time.  

The artifact sets itself apart from existing solutions 

for consumer preference forecasting in several re-

gards. First, predictions are made on an individual cus-
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tomer level and are not derived from customer cluster-

ing approaches. Second, the artifact takes the spatial 

and temporal situation of customer into account. This 

makes it possible to submit situation-dependent offers 

for future implementers.  

We do however acknowledge that while our con-

tribution unveils what is possible by unpacking the af-

fordances of mobile technology – specifically loca-

tion-based data, there are still hurdles to be crossed for 

practical everyday utility of such a solution. These in-

clude technical issues – such as privacy concerns, eth-

ical/social issues – preventing that vulnerable custom-

ers get caught in debt traps and legal issues – articula-

tion of appropriate regulatory framework within which 

such financial service innovations can thrive [5]. We 

hereby present these as areas for future scholarship to 

explore in order to uncover the theoretical and practi-

cal guidance to the users, developers and regulators of 

location based digital mobile services in the financial 

sector.  

In conclusion, our study provides an illustration of 

how location-based artifacts can be leveraged in crea-

tion and capture of value in financial services. From 

the perspective of the banks, we showcase how mobile 

technology can provide an additional avenue for them 

to potentially provide solutions to high impact areas of 

their customers everyday life as they fend off compe-

tition for FinTechs and other digital disruptions.  
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