
The Snowflake Decoding Algorithm

December 2012

Catherine Walker

Thesis Committee:
Dr. J.B. Nation

Dr. Prasad Santhanam

Graduate Committee:
Dr. George Wilkens
Dr. Monique Chyba
Dr. Rufus Willett

Dr. Mickael Chekroun
Dr. Erik Van Erp

1

Acknowledgements

I would like to thank my advisor, J.B. Nation, for introducing me to coding theory,
making me learn fortran, and welcoming me into his office to talk story. I also thank
Prasad Santhanam for his enthusiasm in teaching and suggestions to improve this paper.
In addition, I would like to thank each of my professors at the University of Hawai‘i who
have all taught me a great deal. I am also grateful to Manabu Hagiwara and Justin Kong
for their ideas and suggestions in the coding seminar. Last but certainly not least I would
like to thank my mom for always supporting me in everything I do, even if it means being
audience to the same presentation twenty times to help me prepare.

MASTER’S THESIS: THE SNOWFLAKE DECODING ALGORITHM

CATHERINE WALKER

Abstract. This paper describes an automated algorithm for generating a group code
using any unitary group, initial vector, and generating set that satisfy a necessary condi-
tion. Examples with exceptional complex reflection groups, as well as an analysis of the
decoding complexity, are also included.

1. Introduction

Slepian introduced group codes using orthogonal groups acting on real vector spaces in
1968 [4]. Later, Mittelholzer and Lahtonen [5] published a comprehensive paper on real
reflection group coding. Fossorier, Nation, and Peterson [6] then refined these codes by
introducing subgroup decoding as an efficient way to decode real reflection group codes.
This was extended by Kim, Nation, and Shepler [2] to certain complex reflection groups
G(r, 1, n) acting on Cn. Subgroup decoding does not work for all complex reflection groups,
but Kim [1] devised an algorithm to correctly decode these groups.

All of these group codes share the same basic scheme. A finite group G of isometries
acts on a vector space V . The codewords are a subset of the orbit Gx0= {gx0 : g ∈ G}.
A codeword w = g−1x0 is transmitted and the received vector is r = w + n, where n
represents channel noise. Let r0 = r. We recursively apply a transformation ck+1 from a
specified set Xk+1 ⊂ G to obtain rk+1 = ck+1rk. The process terminates in a set number
m of steps and we decode as g′ = cm...c1.

In this paper a method to construct effective unitary group codes will be presented. Given
any finite unitary group G, a suitable initial vector x0, and generators X satisfying

(†) for every w ∈ Gx0 − {x0} there exists c ∈ X such that ‖cw − x0‖ < ‖w − x0‖
it yields a decoding algorithm. For some groups G, with a suitable choice of x0 and X,
decoding algorithms of very low complexity are obtained. Examples using complex reflection
groups will also be provided, along with an analysis of the decoding complexity.

2. Preliminaries

All vectors are column vectors and MH denotes the conjugate transpose of a complex
vector or matrix M.

Definition 2.1. A unitary matrix U is a square complex matrix such that UHU = I.

Definition 2.2. A unitary group is a group of n × n unitary matrices, with the group
operation of the usual matrix multiplication.

Definition 2.3. The inner product is 〈x,y〉 = xHy.

Proposition 2.4. A unitary group acting on a vector space preserves the inner product.

Date: August 2012.

2

MASTER’S THESIS: THE SNOWFLAKE DECODING ALGORITHM 3

Proof. Let U be a unitary matrix and x,y be elements of the vector space.

〈Ux,Uy〉 = (Ux)HUy

= xHUHUy

= xHy

= 〈x,y〉
Thus, the inner product is preserved. �

Definition 2.5. The norm of the inner product space is defined as ‖x‖ =
√
〈x,x〉. The

distance between vectors x and y is given by ‖x− y‖.

Proposition 2.6. A unitary group acting on a vector space is an isometry with respect to
the norm from the inner product.

Proof. Let U be a unitary matrix and x,y be elements of the vector space.

‖Ux−Uy‖ =
√
〈Ux−Uy,Ux−Uy〉

=
√
〈U(x− y),U(x− y)〉

=
√
〈x− y,x− y〉

= ‖x− y‖
Thus, U preserves distance and length. �

3. Snowflake Decoding Algorithm

We consider a finite unitary group G acting on a complex vector space Cn, with a fixed
initial vector x0. As usual, the codewords are a subset of the orbit Gx0= {gx0 : g ∈ G}.
A codeword w = g−1x0 is transmitted and the received vector is r = w + n, where n
represents noise.

Let r0 = r. We recursively apply a transformation ck+1 from a specified set Xk+1 ⊂ G
to obtain rk+1 = ck+1rk. After a set number m of steps, terminate and decode as cm...c1.
The two key parts to the snowflake coding scheme are which elements should be included
in each set Xi and how the transformation ck+1 should be chosen.

3.1. How to choose ck+1. The transformation ck+1 ∈ Xk+1 is chosen such that ‖ck+1rk−
x0‖ < dk+1 + εk+1, where di and εi are predetermined distances that vary for each step.
Following is the procedure to determine di and εi.

Let X ⊂ G be a generating set for G. In general, this set may include any generating
matrices, and powers thereof, elements used in the group’s presentation along with their
inverses, and the identity. In order for the algorithm to work, X must be chosen so that
the condition (†) is satisfied. Let W0 be the set of all codewords and d0 = max ‖w − x0‖.
Define

d1 = max
w∈W0

min
h∈X
‖hw − x0‖.

The distance d1 is the closest all of the codewords can get to the initial vector using any of
the provided transformations in X. Now set

W1 = {w ∈W0 : ‖w − x0‖ ≤ d1}.
Thus we get the subset W1 of codewords which are within the distance d1 of the initial
vector. Since (†) is satisfied, for every codeword w ∈ W0 there exists h ∈ X such that
‖hw − x0‖ < ‖w − x0‖. Therefore d1 < d0 and W1 ⊂W0.

We then recursively get
dj+1 = max

w∈Wj

min
h∈X
‖hw − x0‖.

4 C. WALKER

and

Wj+1 = {w ∈Wj : ‖w − x0‖ ≤ dj+1}.
We continue this process until we get d1 > d2 > · · · > dm = 0, and W0 ⊃W1 ⊃ ... ⊃Wm =
{x0}.

Ideally we would choose ck+1 such that ‖ck+1rk − x0‖ < dk+1. However some tolerance
must be built in to account for noise. The tolerance, εi, should intuitively be half the
difference between the distance di and distance to x0 of the nearest codeword outside the
ball of radius di. For k > 0 let

ek = min
w ∈W0

‖w − x0‖ > dk

‖w − x0‖.

Then εk = 1
2(ek − dk).

3.2. Determining the set Xk+1. If we let Xi = X for each step, then the decoding
process will terminate; however, it will be much longer than necessary. The program will
apply each transformation h in the set then calculate ‖hrk − x0‖ to see if it is less than
dk+1. The program continues to make these comparisons until a desired transformation is
found. Decreasing the number of comparisons by finding ordered sets Xi will increase the
efficiency of the decoding process.

Example. Start by applying all transformations in the set X to all codewords in Wk −
Wk+1 = {w ∈ Wk : ‖w − x0‖ > dk+1}. This will produce an array of codewords and the
transformations which will move them to within dk+1 of the initial vector. For example,
the table below shows a relationship between codewords and transformations. An entry
ai,j = 1 if ‖hjwi − x0‖ ≤ dk+1, and zero otherwise.

Table 1. Output for dk+1

h1 h2 h3 h4 h5
w1 1 0 1 1 1
w2 1 1 0 0 1
w3 1 1 1 0 0
w4 0 0 0 1 0
w5 0 0 1 0 0
w6 0 1 0 0 0
w7 1 0 0 1 0
sum 4 3 3 3 2

Naively, we could choose the transformations based on how many codewords they could
be used for. The transformation h1 is used 4 times, so it would then be the first one
chosen. Then if we ignore rows 1, 2, 3, and 7 and sum the remaining rows, we find that
h2, h3, and h4 all need to be used once and must be included in the set Xk+1 as well. The
transformation h5 can be excluded. Let X ′k+1 = {h1, h2, h3, h4} be an ordered set. If we
compute the number of comparisons that need to be made to decode these seven elements
in this one round we get one comparison each for codewords w1,w2,w3, and w7 since the
program would choose h1 for all of them. Then, for codeword w6, w5, and w4 we have 2,
3, and 4 comparisons respectively. This totals to 13 comparisons for this step of decoding.

Now we will look at another way to determine the set Xk+1. Instead of considering
only the frequency of a transformation, let us also take into account the criticality of the
transformation. In Table 1 we can see that h2, h3, and h4 must be used since they are

MASTER’S THESIS: THE SNOWFLAKE DECODING ALGORITHM 5

the only transformations available for w6, w5, and w4. Therefore, they are more critical
than a transformation which only has overlapping uses. To quantify this idea, consider the
weighted table below which has row sums equal to 1. According to Table 2, h4 should be the

Table 2. Weighted Output for dk+1

h1 h2 h3 h4 h5

w1
1/4 0 1/4

1/4
1/4

w2
1/3

1/3 0 0 1/3
w3

1/3
1/3

1/3 0 0
w4 0 0 0 1 0
w5 0 0 1 0 0
w6 0 1 0 0 0
w7

1/2 0 0 1/2 0

sum 17/12
20/12

19/12
21/12

7/12

first transformation in Xk+1. Then, we omit rows 1, 4, and 7 and recompute the sums. We
get that column 2 has the highest sum, so h2 should be the next transformation in Xk+1.
The only remaining codeword is w5, thus h3 is the final transformation in our set. We let
Xk+1 = {h4, h2, h3} be the ordered set. Note that |Xk+1| < |X ′k+1| but more importantly,
fewer comparisons are made using the set X rather than the set X ′. With X, a total of
(3 · 1) + (3 · 2) + (1 · 3) = 12 comparisons are made for all codewords in this round.

The previous example highlighted some of the key concepts for analysis when forming
the generating sets Xi. Here is the general algorithm to find the ordered set X1. Define the
function

N(w, d) = |{g ∈ X : ‖gw − x0‖ ≤ d}|
which counts the number of transformations which move codeword w to within d of the
initial vector. Then, let

B1,0(g) = {w ∈W0 −W1 : ‖gw − x0‖ ≤ d1}
and

S1,0(g) =
∑

w∈B1,0(g)

1

N(w, d1)

Choose h0 that maximizes S1,0, i.e., S1,0(h0) ≥ S1,0(g) for all g ∈ X. Now let

B1,1(g) = {w ∈W0 −W1 : ‖gw − x0‖ ≤ d1} −B1,0(h0)

S1,1(g) =
∑

w∈B1,1(g)

1

N(w, d1)

and choose h1 that maximizes S1,1. Recursively,

B1,i+1(g) = {w ∈W0 −W1 : ‖gw − x0‖ ≤ d1} −
⋃

0≤t≤i
B1,t(ht)

S1,i+1(g) =
∑

w∈B1,i+1(g)

1

N(w, d1)

and choose hi+1 which maximizes S1,i+1. Terminate when S1,r+1 ≡ 0 or equivalently when
B1,r+1(g) = Ø for all g ∈ X. The definition of d1 guarantees that for all codewords, w,
there exists c ∈ X such that ‖cw − x0‖ ≤ d1. Therefore this process will terminate in at

6 C. WALKER

most |X| steps. The ordered set X1 = {h0, h1, . . . , hr} is the ordered set of transformations
to be used in the first round.

For Xk we begin again with

Bk,0(g) = {w ∈Wk−1 −Wk : ‖gw − x0‖ ≤ dk}

and

Sk,0(g) =
∑

w∈Bk,0(g)

1

N(w, dk)
.

Choose h0 that maximizes Sk,0. Then,

Bk,i+1(g) = {w ∈Wk−1 −Wk : ‖gw − x0‖ ≤ dk} −
⋃

0≤t≤i
Bk,t(ht)

and

Sk,i+1(g) =
∑

w∈Bk,i+1(g)

1

N(w, dk)

Choose hi+1 which maximizes Sk,i+1. Again terminate when Sk,r+1 ≡ 0 to get the set
Xk = {h0, h1, . . . , hr}

With these sets each codeword now has a decoding canonical form. A codeword w =
g−1x0 will be decoded as g = cm...c1 where each ci is the first element of the ordered set
Xi such that ‖ci . . . c1w − x0‖ ≤ di.

3.3. Decoding Theorem. Now that the decoding algorithm has been generated we use
the following theorem to ensure proper decoding with sufficiently small noise.

Theorem 3.1. If ‖r − w‖ < η, where w = g−1x0 and η = min(ε1, ..., εm), then the
Snowflake algorithm decodes r to g.

Proof. Let w decode to g = cm . . . c1. Let r0 = r, w0 = w, rj−1 = cj−1 . . . c1r0 and
wj−1 = cj−1 . . . c1w0. The received vector r would not decode to g if at some step cj is
not chosen. This would occur if a preceding transformation h 6= cj in the ordered set Xj is
chosen, or cj fails to move rj−1 to within dj of x0.

Suppose r has decoded correctly through step j − 1. Note that

‖rj−1 −wj−1‖ = ‖cj−1...c1r0 − cj−1...c1w0‖ = ‖r0 −w0‖ < η.

By the triangle inequality,

(1)
∣∣‖hrj−1 − x0‖ − ‖hwj−1 − x0‖

∣∣ ≤ ‖hrj−1 − hwj−1‖ = ‖rj−1 −wj−1‖ < η

for all h ∈ G.
Consider step j. Suppose some h ∈ Xj precedes cj and satisfies ‖hrj−1 − x0‖ < dj + εj .

However, since h was not chosen for step j by the Snowflake algorithm we know ‖hwj−1 −
x0‖ ≥ dj + 2εj . We then have

∣∣‖hwj−1 − x0‖ − ‖hrj−1 − x0‖
∣∣ > εj ≥ η which contradicts

equation (2). Thus, no preceding h 6= cj can be chosen.
For the other type of error to occur it would mean that ‖cjrj−1−x0‖ ≥ dj + εj . However

by definition, ‖cjwj−1 − x0‖ ≤ dj . Therefore,
∣∣‖cjrj−1 − x0‖ − ‖cjwj−1 − x0‖

∣∣ ≥ εj ≥ η
which again contradicts equation (2). Hence, at each step j, cj is chosen.

By induction, for step m we then have ‖rm−wm‖ = ‖cm...c1r−x0‖ < η ≤ εm. Therefore,
r decodes to cm...c1 = g. Thus for sufficiently small noise the Snowflake algorithm decodes
correctly. �

MASTER’S THESIS: THE SNOWFLAKE DECODING ALGORITHM 7

4. Examples

This section uses irreducible finite complex reflection groups as classified by Shephard
and Todd [3]. Using the Snowflake method, the algorithm introduced by Kim [1] to decode
exceptional complex reflection groups can be refined. Following some preliminary informa-
tion, examples of how to create and decode codes using two and three-dimensional complex
reflection groups are presented.

Definition 4.1. A matrix R is a reflection if

(1) R is unitary, i.e., RRH = I,
(2) R fixes a hyperplane pointwise.

A matrix R is a reflection if and only if R = I− (1− λ)uuH for some λ, u with |λ| = 1
and uHu = 1.

Definition 4.2. A complex reflection group is a unitary group generated by a set of complex
reflections which acts on a finite-dimensional complex vector space.

Proposition 4.3. Conjugating a reflection by any element in a unitary group results in a
reflection.

Proof. Let G be a reflection group, R = I − (1 − λ)uuH be a reflection in G, and S be
some element in G.

SRSH = S(I− (1− λ)uuH)S

= SSH − (1− λ)SuuHSH

= I− (1− λ)(Su)(Su)H

which is another reflection. �

Moreover, the inverse and powers of reflections are also reflections fixing the same hyper-
plane.

4.1. Example 1: A two-dimensional group with an easy presentation is G8 : A4 = B4 = I,
ABA = BAB, |G8| = 96, and it has 18 reflections.

4.1.1. Constructing the group. We start by contructing the generators A and B which are
reflections, so we can write

A = I− (1− λ)uuH

B = I− (1− λ)vvH

For G8 we have λ = i and can let u =

[
0
1

]
so then A =

[
1 0
0 i

]
.

To determine v and construct B we use the relation ABA = BAB. Let c = 1− λ.

ABA = I− cuuH − cvvH + c2(uHv)uvH + c2(vHu)vuH + (c2 − c− c3|uHv|2)uuH

BAB = I− cuuH − cvvH + c2(uHv)uvH + c2(vHu)vuH + (c2 − c− c3|uHv|2)vvH

To have ABA = BAB and uuH 6= vvH we must have c2 − c− c3|uHv|2 = 0. Thus,

|uHv|2 =
−λ

(1− λ)2
=

1

2(1− cos θ)

Where λ = eiθ. With our choice of u we get that |uHv| = v2, thus v22 = 1
2 . Using that

vHv = 1, we then obtain v21 = 1
2 as well. For G8 I will therefore be using

v =

[
1√
2

− 1√
2

]
and B =

[
1+i
2

1−i
2

1−i
2

1+i
2

]
.

8 C. WALKER

Similar steps can be utilized to determine v and B to satisfy other presentations as well.
By counting the orbit of a random vector we can ensure that A and B generate the entire
intended group and not just a homomorphic image.

We use A and B to generate our code by taking the orbit of a unit vector, which will be
denoted as the initial vector, x0.

4.1.2. Choosing the Initial Vector. We would like to choose x0 to be real and for symmetry
we want

‖x0 −Ax0‖ = ‖x0 −Bx0‖,
‖(I−A)x0‖ = ‖(I−B)x0‖,

‖(1− λ)uuHx0‖ = ‖(1− λ)vvHx0‖,
|1− λ||uHx0| = |1− λ||vHx0|,

(2) |uHx0| = |vHx0|.
The above will hold true for any reflection group, but let us return to our example G8 .

Let x0 =

[
s
t

]
, then equation (1) gives us∣∣∣∣[0 1]

[
s
t

]∣∣∣∣ =

∣∣∣∣[1√
2

−1√
2

] [
s
t

]∣∣∣∣ ,
t =

s− t√
2
,

s = t(1 +
√

2).

Let t = 1 then x0 =

[
1 +
√

2
1

]
, which would then be normalized.

4.1.3. The Generating Set X. Let X ⊂ G consist of all the reflections in G, the identity
element I, the element in the presentation of G, and its inverse. By proposition 4.3, we can
conjugate reflections A and B to find the other reflections of G.

The reflections in G8 are

B B2 B3 A A2 A3

BAB3 BA2B3 BA3B3 B2AB2 B2A2B2 B2A3B2

B3AB B3A2B B3A3B A2BA2 A2B2A2 A2B3A2

To satisfy the condition (†) that for each codeword w 6= x0 there exists h ∈ X such that
‖hw− x0‖ < ‖w− x0‖, we need more than just the reflections in our generating set X. In
addition to the above reflections we include the presentation element ABA = BAB, and
its inverse A3B3A3 to form the set of transformations X to be used for decoding.

4.1.4. The Snowflake Algorithm Results. Table 3 shows the results of the snowflake algo-
rithm. Not shown in the table is d0 = 2.0 which is the maximum distance of all codewords
before the decoding process begins. Following the steps described in section 3.1, we get the
distances di, and from the procedure in section 3.2 we get the ordered sets Xi.

Table 3. Snowflake Results for G8

Step i Distance di Ordered Set Xi

1 1.000 {A2B2A2,B2A2B2,BA2B3,B3A2B,A3B3A3,ABA}
2 0.541 {A3B3A3,BAB3,ABA3,A3B3A,AB3A3,ABA,B,A}
3 0.000 {B,B3,A,A3}

MASTER’S THESIS: THE SNOWFLAKE DECODING ALGORITHM 9

Within three rounds all codewords can be decoded.

4.2. Example 2: The three-dimensional complex reflection group G26 has the presentation
A2 = B3 = C3 = I, ABAB = BABA, BCB = CBC, and AC = CA. The group G26

has 1296 elements, and 33 reflections.

4.2.1. Constructing the group. We start with the generators,

A = I− (1− (−1))uuH

B = I− (1− ω)vvH

C = I− (1− ω)ttH

Where ω = e
2πi
3 . Following similar steps to the first example we get that to have ABAB =

BABA, with vuH 6= uvH we must have

|vHu|2 =
1− ω

2(1− ω)
=

1

2

Let u =

 0
0
1

, then v23 = 1
2 .

To satisfy AC = CA with u 6= t, we must have that t3 = 0. Then to have BCB = CBC
we find

|vHt|2 =
1

3

Let v1 = 0, then v22 = 1
2 , t22 = 2

3 , and t21 = 1
3 . Thus,

v =

 0
1√
2

− 1√
2

 and t =

[
1√
3

−
√
2√
3

]
.

The group generators are hence

A =

 1 0 0
0 1 0
0 0 −1

 , B =

 1 0 0
0 1+ω

2
1−ω
2

0 1−ω
2

1+ω
2

 and C =

 2+ω
3

√
2(1−ω)
3 0√

2(1−ω)
3

1+2ω
3 0

0 0 1

 .
4.2.2. Choosing the initial vector. Again we want ‖Ax0−x0‖ = ‖Bx0−x0‖ = ‖Cx0−x0‖
so, |uHx0| = |vHx0| = |tHx0|. If we let x0 = [x y z]H and use u,v, t found above, then we
get

y = z(1 +
√

2) and x = z(
√

3 +
√

2 + 2).

Let z = 1, then x0 =

 √3 +
√

2 + 2

1 +
√

2
1

, which is yet to be normalized.

4.2.3. The Snowflake Algorithm Results. Following the procedures in sections 3.1 and 3.2
produces the distances and sets for decoding G26. Not shown in table 4 is d0 = 2, the
maximum distance of all codewords prior to decoding.

Within five rounds all codewords can be decoded.

10 C. WALKER

Table 4. Snowflake Results for G26

Step i Distance di Ordered Set Xi

1 1.0647 {ABC2BAB2CB2A, BC2BAB2CB2, CB2ACBACB2CB,
CB2ACB2ACB2CB, BAC2B2ACB2, B2ACBAC2B,
B2ACB2AC2B, BAC2BACB2, BACBAC2B2, B2AC2B2ACB,
BACB2AC2B2, B2AC2BACB, CB2ABC2, C2BAB2C}

2 0.9466 {B2C2B2, BCB, BACBAC2B2, B2AC2B2ACB, ABAB, B2AB2A,
AC, AB2C2BA,BC2B2, B2CB }

3 0.7437 {ABA, BACB2AC2B2, B2AC2BACB, AB2A,ABCB2A,
AB2C2BA, B,B2, BCB, B2C2B2, AC}

4 0.4585 {B, B2, BCB2, B2C2B, BC2B2, ABA, AB2A, B2CB, AC}
5 0.0000 { A, B, B2, C, AC, C2, AC2 }

5. Analysis of decoding complexity.

One way to measure the efficiency of a decoding algorithm is the average number of
comparisons, γ for decoding, then calculate the comparisons per bit, δ = γ

log2 |G|
. For

permutation codes on Sn, the theoretical lower bound for δ is 1 [11]. By utilizing the group
structure, the Snowflake algorithm is able to produce group codes with δ less than 1. To get
an idea of how the Snowflake algorithm affects δ we will compare values for some complex
reflection group codes using several schemes. In addition, δ values for several similar groups
using various decoding methods are presented.

5.1. Improvement in complex reflection group codes. Table 5 lists the dimension
and order for the group, along with the calculations γ and δ using three different decoding
schemes. Scheme 1 uses the entire set X for each step, choosing ck+1 which minimizes
‖ck+1rk − x0‖. Scheme 2 uses the entire set X for each step, but uses the distances as
described in section 3.1 to choose ck+1 ∈ X such that ‖ck+1rk−x0‖ ≤ dk+1. Scheme 3 uses
the snowflake algorithm in its entirety as detailed in sections 3.1 and 3.2.

Table 5

Scheme 1 Scheme 2 Snowflake

Group Dim. Order γ δ γ δ γ δ

G4 2 24 9.38 2.04 5.83 1.27 4.21 0.92

G5 2 72 20.78 3.37 12.08 1.96 5.76 0.93

G8 2 96 24.66 3.74 11.13 1.69 6.19 0.94

G16 2 600 95.14 10.31 55.07 6.0 16.8 1.82

G20 2 360 63.62 7.49 47.0 5.53 8.86 1.04

G26 3 1296 77.08 7.45 47.2 4.56 15.3 1.48

As the table shows, the number of comparisons per bit is greatly reduced using the
snowflake algorithm. From scheme 1 to the Snowflake algorithm there is a 55 to 82%
decrease in δ, depending upon the group. Even between scheme 2, which uses a portion of
the snowflake scheme, compared to the entire Snowflake algorithm we get a reduction in δ
of 28 to 81%. Through manipulation of the algorithm choices of the sets Xi by hand, it
is possible to make slight improvements for some of the groups. For example, for G4 we
can get δ = 0.81, and for G8, δ = 0.85. However, this is a tedious process even with small

MASTER’S THESIS: THE SNOWFLAKE DECODING ALGORITHM 11

groups for only a minor decrease in δ as compared to the vast improvement from applying
the Snowflake algorithm.

5.2. Comparison of similar groups. Table 6 lists a group G, the decoding method used,
the order of G, and the value δ. The modified insertion sort is described by Fossorier et
al. [6] and produces a lower δ value than the usual insertion sort.

Table 6

Group Decoding method |G| δ
S8 insertion sort 40,320 1.26
S8 modified insertion 40,320 1.04
S16 insertion sort 16! 1.64
S16 modified insertion 16! 1.17
S32 insertion sort 32! 2.35
S32 modified insertion 32! 1.47

G(4, 1, 4) modified insertion 44 · 4! 0.69
G(4, 1, 16) modified insertion 416 · 16! 0.89
G(8, 1, 4) modified insertion 84 · 4! 0.52
G(8, 1, 16) modified insertion 816 · 16! 0.73

G4 Snowflake 24 0.92
G5 Snowflake 72 0.93
G8 Snowflake 96 0.94
G16 Snowflake 600 1.82
G20 Snowflake 360 1.04
G26 Snowflake 1296 1.48

G8
8 o S8 Snowflake and mod. insert. 968 · 8! 0.96

G20
20 o S16 Snowflake and mod. insert. 36016 · 16! 1.07

Nation and Walker [7] formulated a group code using a group G of unitary matrices
to form the wreath product Gn o Sn. The size of Gn o Sn is |G|nn!, which is significantly
larger than either group code, G or Sn, individually, though when combined, the new code
has only a slight increase in δ. The last two groups in table 6 are examples of such wreath
products, and are decoded using a combination of the Snowflake algorithm and the modified
insertion sort. As you can see in the table, several of the group codes using the Snowflake
algorithm, including G8

8 o S8, achieve δ < 1, whereas the insertion sort must have δ ≥ 1.
This makes the complex reflection group codes a competetive alternative to permutation
codes which use an insertion sort.

The Snowflake algorithm greatly decreases the decoding complexity for complex reflection
groups, however they still do not exceed other known codes. A group code using the wreath
product of cyclic groups G(r, 1, n), has approximately the same number of codewords and
similar minimum distance but runs noticeably faster than the wreath code mentioned above.
There are methods used to optomize the codes for G(r, 1, n), which could be applied to
Gn o Sn to further improve these codes as well.

For some reflection groups there is an alternative decoding method outlined by Hagiwara
and Wadayama [8] and further discussed by Hagiwara and Kong [9] using LP-decoding
of permutation codes. These codes do not produce a canonical form like the Snowflake
algorithm does, but they are otherwise quite efficient. A δ value has not yet been calculated
for the LP-decoding of permutation codes.

Though it is often a prominent topic in code discussions, speed and low complexity may
not be the only desired attribute of a coding scheme. For example, in cryptography other

12 C. WALKER

code properties may be more desirable than speed. Memory storage may require more
stability than efficiency as well, so different codes may be utlized. For example, Jiang et
al. [10] describe an algorithm utilizing permutations for use with flash memory cells. While
their algorithm has benefits such as a canonical form, the use of an insertion sort leaves
room for improvement in efficiency.

6. Future Research

This coding scheme may be made more efficient and robust by utlizing a subset of the
group rather than the entire group to make the code. Particular codewords which require
more steps and/or comparisons to decode could be omitted entirely to decrease the decoding
complexity and possibly allow for a higher noise tolerance. Variations in the generating set
X may also improve the code and lead to lower δ values.

The Snowflake decoding algorithm can be used for any unitary group, thus further re-
search could also include finding specific codes for other groups. Some unitary groups, like
the Mathieu groups, have thus far been unused for coding. With this algorithm they may
be used to make efficient group codes. Other group codes could also be concatenated to
form larger codes with little change in decoding complexity.

The modified insertion sort lowers the decoding complexity for permutation codes. Ap-
plying the Snowflake algorithm to Sn may produce a further improved insertion sort with
an even lower δ value. The algorithm described in this paper is so versatile that it could
potentially be used in a variety of capacities, all of which should be explored.

References

[1] Hye Jung Kim, Complex Reflection Group Coding, Master’s Thesis, Univ. of Hawaii (2011)
[2] H.J. Kim, J.B. Nation, and A. Shepler Group Codes with Complex Reflection Groups, Univ. of Hawaii

and Univ. of N. Texas
[3] G.C. Shephard and J.A. Todd, Finite unitary reflection groups, Canad. J. Math., (1954), 274-304.
[4] D. Slepian, Group codes for the Gaussian channel, Bell Syst. Tech. J. 47 (1968), 575-602
[5] T. Mittelholzer and J. Lahtonen, Group codes generated by finite reflection groups, IEEE Trans. on

Information Theory 42 (1996), 519-528
[6] M. Fossorier, J.B. Nation, and W. Peterson, Reflection group codes and their decoding, IEEE Trans. on

Information Theory 56 (2010), 6273-6293
[7] J.B. Nation and C. Walker, Group codes based on wreath products of complex reflection groups (preprint)
[8] M. Hagiwara and T. Wadayama, LP decodable permutation codes based on linearly constrained permuta-

tion matrices, Proceedings ISIT (2011), 139-143
[9] M. Hagiwara and J. Kong, Kendall tau linear programming decodable permutation codes (preprint)
[10] A.Jiang, R. Mateescu, M. Schwartz, and J. Bruck, Rank modulation for flash memory, Proceedings

IEEE ISIT (2008), 1731-1735
[11] D. Knuth, Searching and Sorting, the art of computer programming, vol. 3, Reading, MA, Addison-

Wesley, 1973

University of Hawai’i
E-mail address: walkercl@hawaii.edu

