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ABSTRACT 

The Amazon forest is playing a critical role in the global carbon cycle and implementation of 

Reduce Deforestation and Forest Degradation (REDD+). However, the range of possible carbon 

emissions in this region is broad. Most carbon in the Amazon forest is stored in biomass and 

biomass can be the potential carbon emission when disturbances occur (e.g., deforestation, 

degradation, and fires). Therefore, the accurate estimation of biomass can help better predict 

carbon emissions in the Amazon forest. However, the biomass estimations of previous studies 

show little agreement on their values and spatial distributions in this region. In addition, 

deforestation and degradation in the Brazilian Amazon have changed significantly from large-

scale patterns to fine-scale patterns since the early 2000s. However, existing biomass maps for 

the Brazilian Amazon forests are limited in capacity to capture fine-scale biomass variations due 

to their coarse spatial resolutions. Besides, due to the high level of biomass and heterogeneity of 

tropical forests, the commonly used regression models perform worse in tropical forests 

compared to boreal and temperate forests. Deep learning is a promising way to improve the 

accuracy of biomass estimations, which are increasing in success across a variety of remote 

sensing tasks. The application of deep learning models in estimating forest biomass is still in a 

nascent stage. Given the aforementioned research gaps, this research proposed a deep learning 

framework to estimate and map aboveground biomass on a fine-scale for the Brazilian Amazon 

with inventory data, airborne LiDAR data, and Landsat imagery. Three stages are involved in the 

framework development. 

In the first stage, a multiplicative power model was developed to link airborne LiDAR metrics 

with biomass inventory data. To determine the best fitting approach to estimate parameters for 

the multiplicative power model, three multiplicative power models fitted by nonlinear least-

square (NLR), linear ordinary least-square (OLSR), and weighted linear least-square (WLSR) 

were compared by ANOVA and Tukey’s Test. The results show that significant performance 

differences existed among the three models at a 99% confidence level. More extreme predictions 

and lower accuracies were produced by NLR compared to OLSR or WLSR. OLSR had the most 

accurate prediction performance. Accordingly, OLSR was used to fit the LiDAR-based model 

that was used in the subsequent stages to calculate biomass for each LiDAR transect in the 

Brazilian Amazon forests. 
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In the second stage, a deep feedforward fully connected neural network (DNN) model was 

developed to estimate and map aboveground biomass with airborne LiDAR data and Landsat 8 

imagery. The effects of hyperparameter values on the DNN model performances were 

comprehensively investigated. The results show that the model with Scaled Exponential Linear 

Unit (SELU) had the best performance compared to other activation functions. Besides, both too 

large and too small learning rates could not achieve optimal results. The learning rate of 0.001 

was chosen for the Adam optimizer. The DNN model with these optimal hyperparameters 

significantly outperformed the Random Forest model, Support Vector Regression model, and 

linear regression model with the R2 of 0.64 and RMSE of 55.7 Mg/ha. This stage provides new 

insight into the application of deep learning in estimating forest biomass.  

In the last stage, Landsat time-series imagery was utilized to enhance the relationship between 

Landsat spectral reflectance and biomass. An RNN-FNN model integrating the long short-term 

memory network (LSTM) and the fully connected neuron network (FNN) was proposed to 

capture time dependencies in Landsat time-series data. The RNN-FNN model was compared to 

the Random Forest model and linear regression model implemented with single-date predictors. 

The results indicate that the RNN-FNN model significantly outperformed the Random Forest 

model and linear regression model. The RNN-FNN model yielded an R2 of 0.63 and RMSE of 

25.5 Mg/ha with 10-year time-series data (2004-2013). At last, the RNN-FNN model was used to 

generate a map of biomass density for the study area, which demonstrated the practical value of 

the proposed model. 

The proposed framework that bridges inventory data, airborne LiDAR data, and Landsat imagery 

provides an effective way for forest managers to estimate and understand the spatial distribution 

of aboveground biomass in the Brazilian Amazon forests. In addition, this research illustrates the 

value of deep learning in estimating forest biomass and provides practical guidance for future 

studies on biomass estimations with deep learning. 
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Chapter 1 Introduction 

1.1 Research Background and Motivations 

Greenhouse gas (GHG) increases are mainly responsible for climate change over the past 1000 

years (Crowley, 2000). Terrestrial ecosystems impact GHG concentration in both carbon 

emission and sequestration. Studies indicate that terrestrial ecosystems annually release 10-20% 

of the total global CO2 to the atmosphere and sequester about 30% (Harris et al., 2012; Houghton 

et al., 2017; Friedlingstein et al., 2019; Xu et al., 2021). Forests significantly affect the carbon 

fluxes as a result of management (e.g., afforestation) and disturbances caused by direct and 

indirect human influences (e.g., deforestation, wood harvesting, fires, and droughts). Therefore, 

both IPCC reports and Paris Agreement indicate that climate change mitigation goals cannot be 

achieved without the inclusion of forests (IPCC, 2014; IPCC, 2019; UNFCCC, 2015). A recent 

study found that global forests were a net carbon sink of -7.6 ± 49 GtCO2eyr-1from 2001 to 2019 

(Harris et al., 2021), but the gross emission in tropical forests was still as high as the energy-

related carbon that the United States emitted in 2019 (Harris et al., 2021; U.S. Energy 

Information Administration, 2020).  

Amazon basin contains more than 50% of the world’s remaining tropical forests (Fritz et al., 

2003). Therefore, the Amazon forest plays a critical role in the global carbon cycle and the 

achievement of climate change mitigation goals. However, the value and spatial distribution of 

carbon stock in Amazon forests remain uncertain (Brown et al., 1992; Fearnside, 1997; Malhi et 

al., 2006; Saatchi et al., 2007; FAO, 2010; Tejada et al., 2020). Houghton et al. (2001) compared 

seven estimates of carbon stock in Amazon forests. The results indicate large differences in their 

values varying from a high of 93 ± 23 PgC (Malhi et al., 2006) to a low of 38.9 PgC (Olson et 

al., 1983). At the same time, their spatial distributions showed little agreement as well (only 5% 

area agreement of the Brazilian Amazon) (Saatchi et al., 2007; Houghton et al., 2001; Tejada et 

al., 2019).  

The spatial distribution of tropical forest biomass is important in understanding the carbon cycle 

for two reasons. First, spatially explicit estimates of biomass can reduce the uncertainty in 

estimates of carbon emission from disturbances over large areas (Baccini et al., 2012). Houghton 
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et al. (2000) indicated that more than 60% of the uncertainty in their estimates of annual forest 

carbon flux from the Brazilian Amazon resulted from uncertain estimates of forest biomass. The 

Brazilian Amazon forests have 56% carbon stored in biomass (Pan et al., 2011) and biomass can 

be the potential carbon emission when disturbances occur (e.g., deforestation, degradation, and 

fires). Disturbances may occur in forest areas with biomass that are significantly different from 

the average biomass, so linking specific locations of disturbed areas would decrease certain 

uncertainty compared to using average biomass in calculations of carbon emission. Second, 

spatial distribution can help detect and measure the spatial changes of carbon stock, such as 

changes in forest areas and changes in land cover types. The importance of the spatial 

distribution of biomass has been recognized by researchers and several attempts have been made 

to generate biomass maps for the Brazilian Amazon (Avitabile et al., 2016; Nogueira et al., 2015; 

Mitchard et al., 2014; Baccini et al., 2012; Saatchi et al., 2011; Nogueira et al., 2008; Saatchi et 

al., 2007).  

However, existing biomass maps for the Brazilian Amazon forests are limited in capacity to 

capture fine-scale biomass variations due to their coarse spatial resolutions. Deforestation and 

degradation in the Brazilian Amazon have changed significantly from large-scale patterns to 

fine-scale patterns since the early 2000s. Tyukavina et al. (2017) reported that non-stand-

replacement disturbances (e.g., fires and selective logging) exceeded human clearing of forest in 

the area by 2013 (53% versus 47%). An average of 21% of aboveground carbon loss was from 

selective logging (Putz et al., 2012) and an average of 30% was from fire (Alencar et al., 2006). 

However, the spatial resolutions of existing biomass maps range from 1000 m to 500 m (Saatchi 

et al., 2007; Nogueira et al., 2008; Saatchi et al., 2011; Baccini et al., 2012; Mitchard et al., 2014; 

Nogueira et al., 2015; Avitabile et al., 2016), which have limited sensitivity to fine-scale 

variations in forest structure. Therefore, a fine-scale biomass map across large areas of the 

Brazilian Amazon is needed to better understand the global carbon cycle and mitigate climate 

change.  

1.2 Existing Methods Used for Mapping Forest Aboveground Biomass and 

Their Limitations 
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The existing methods used for mapping spatial distribution of forest aboveground biomass can 

be classified into three classes. The first class includes biogeochemical models (e.g., Olson et al., 

1983; Potter et al, 1999). The implementation of biogeochemical models often requires a large 

number of vegetation input variables (e.g., leaf area index, canopy height, and the fraction of 

absorbed photosynthetically active radiation) to simulate ecological processes (e.g., 

photosynthesis, C allocation, and respiration) (Asner and Ollinger, 2009). For example, the 

Century model and PnET-CN model require more than 30 input variables to simulate the growth 

and mortality of plants, the subsequent accumulation, and turnover of soil organic matter (SOM) 

(Parton et al., 1988; Aber et al., 1997). The second class is to apply GIS-based interpolations or 

extrapolations to estimate biomass (e.g., Brown et al., 1992; Fearnside et al., 1997; Houghton et 

al., 2000). This method heavily relies on a sufficient number of field measurements and other 

environmental factors, such as rainfall, tree species, and elevation. Additionally, a clear 

understanding of the indirect relationships between forest biomass and environmental factors is 

required, which sometimes is challenging. The two classes of biomass mapping methods rely on 

the volume and variety of field measurements, which are time-consuming, labor-intensive, and 

difficult to collect especially in tropical forests. 

The last class generates biomass maps using remote sensing data. Remote sensing provides a 

promising way to overcome the obstacle of the requirement of large volume field measurements 

with several advantages, such as low cost, continuous data collection, and availability in 

inaccessible areas. Several biomass maps have been generated using remote sensing data (e.g., 

Saatchi et al., 2007; DeFries et al., 2000; Chen et al., 2015; de Almeida et al., 2019; Jiang et al., 

2020). For example, Saatchi et al. (2011) generated a pantropical biomass map with the 

resolution of 1 km based on forest inventory data, large footprint LiDAR data from Geoscience 

Laser Altimeter System (GLAS), and Moderate Resolution Imaging Spectroradiometer 

(MODIS). Baccini et al. (2012) generated a pantropical biomass map with a resolution of 500 m 

based on forest inventory data, GLAS, and MODIS. 

Although remote sensing-based methods are practical and feasible for mapping and estimating 

biomass over a large area, some studies show that the insensitivity or saturation of sensor signals 

significantly limits the application of optical and radar data on estimating biomass in forests with 

moderate to high biomass levels (Waring et al., 1995; Carlson et al., 1997; Turner et al., 1999). 
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Hyde et al. (2006) reported that passive multispectral and hyperspectral sensors are of limited 

use especially in dense forests. Steininger (2000) found that Landsat TM signals saturate when 

the aboveground biomass approaches 150 MgC/ha or the forest age reaches over 15 years in the 

successional secondary forests in Manaus, Brazil. Toan et al. (2004) indicated that the saturations 

of AirSAR and E-SAR signals occur around 30, 50, and 150–200 MgC/ha at C, L, and P bands 

in temperate, boreal, and tropical forests. The Brazilian Amazon consists of dense tropical 

forests. The average value of biomass estimations in the Amazon basin is 177 MgC/ha 

(Houghton et al., 2001). As a result, the applications of satellite optical imagery and radar are 

limited due to the high level of biomass in the Brazilian Amazon forests. 

Light detection and ranging (LiDAR) is a promising approach to mitigate the saturation problem 

suffered by optical imagery and radar. LiDAR systems can keep sensitive at a high level of 

biomass with an ability to penetrate the canopy through small leaf gaps for detecting horizontal 

and vertical vegetation structure simultaneously (Lefsky et al., 2002). LiDAR does not saturate 

even at 1300 MgC/ha (Means et al., 1999). Therefore, LiDAR can be used as an extensive 

sampling tool to provide supplemental ground information especially in areas where adequate 

inventory plots are not available (Nelson et al., 2012; Gobakken et al., 2012). Although the 

availability of airborne LiDAR data is rapidly increasing, collecting wall-to-wall LiDAR data 

over large areas is still challenging due to its high acquisition cost (Pflugmacher et al., 2012). 

The cost-free Landsat imagery provides wall-to-wall coverage over large areas (White et al., 

2016; Brosofske et al., 2014; Cohen et al., 2004). The combination of airborne LiDAR and 

Landsat has been a research topic of great interest to generate wall-to-wall forest aboveground 

biomass maps even at regions with high-level biomass. In addition, integrating vertical structure 

information derived from 3D LiDAR data and horizontally continuous spectral reflectance 

derived from 2D Landsat imagery has the potential to improve the accuracy in mapping forest 

aboveground biomass. Ediriweera et al. (2014) explored the use of LiDAR and Landsat data to 

map forest biomass and found that models incorporating both remote sensing sources performed 

better than using either alone. 

Due to the high level of biomass and heterogeneity of tropical forests, the previous studies with 

conventional machine learning models and parametric regression models have lower estimation 

accuracies in tropical forests compared to boreal and temperate forests (e.g., Bourgoin et al., 
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2018; Santos et al., 2019; Kashongwe et al., 2020). The success of deep learning in a variety of 

computer vision tasks brings a new insight into improving the accuracy of forest biomass 

estimations. Although the use of deep learning on estimating tropical forest biomass is very 

limited, its potential on solving other complex and challenging prediction problems has been 

demonstrated by several studies. For example, Khaki et al. (2020) proposed a deep learning 

framework to forecast corn and soybean yield across the Corn Belt in the United States. The 

proposed model outperformed other conventional machine learning models. Ercanl (2020) 

designed a deep neural network model to predict tree height. The model achieved the RMSE of 

0.694 m. Training a deep learning model requires a huge number of samples, which may be the 

major obstacle to utilizing deep learning techniques in biomass estimation. The airborne LiDAR 

can be used as sampling tools to significantly increase the number of sample data for deep 

learning models. 

To further improve the accuracy of biomass estimation in tropical forests, the ready availability 

of Landsat time-series imagery offers additional help. Landsat time-series imagery in a 

consistent, long temporal coverage format has led to the new application of forest disturbance 

and recovery history in forest management (e.g., Huang et al., 2010; Frazier et al., 2014; Zald et 

al., 2016; Nguyen et al., 2020). By quantifying disturbance and recovery dynamics, Landsat 

change metrics can improve the estimation accuracy and partially mitigate Landsat saturation in 

tropical forests (Lu, 2006; Zald et al., 2016). In contrast to the single-date image, the temporal 

trajectory method can capture abrupt spectral changes (e.g., harvesting and fires) and show the 

regrowth process in forested pixels. The method allows for trend analysis of forest biomass with 

disturbances and recovery history (Deo et al., 2016). Although previous studies have 

demonstrated that temporal trajectory methods can aid in forest aboveground biomass modeling 

(e.g., Powell et al., 2010; Pflugmacher et al. 2012, 2014; Zald et al., 2016; Matasic et al., 2018; 

Nguyen et al., 2019), few studies utilize temporal data for estimating biomass in tropical forests. 

Therefore, the performance of modeling with disturbance and recovery history derived from 

Landsat time-series imagery in the Brazilian Amazon forests should be further explored. 

1.3 Objective and Research Questions 

The overarching goal of this research is to propose a deep learning framework for mapping forest 

aboveground biomass in the Brazilian Amazon with field inventory data, airborne LiDAR data, 
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and Landsat imagery. The framework consists of two stages. At the first stage, the relationship 

between airborne LiDAR metrics and aboveground biomass is determined by multiplicative 

power models. At the second stage, wall-to-wall aboveground biomass maps are generated by 

deep learning with metrics derived from Landsat and Landsat time-series imagery. This research 

provides new insight into estimating and mapping biomass in tropical forests with state-of-art 

deep learning models. 

Three key research questions are explored in this research: 

Question 1: Which is the best fitting approach to estimate model parameters for multiplicative 

power models used to explore the relationship between airborne LiDAR metrics and 

aboveground biomass? 

This question aims to contrast different fitting approaches and find the best one to develop a 

multiplicative power model. The multiplicative power model would be used to calculate biomass 

for each LiDAR transect in the subsequent chapters. 

Question 2: Can the deep learning techniques improve the accuracy of aboveground biomass 

estimation in tropical forests with airborne LiDAR and Landsat 8 imagery? 

This question aims to determine the most accurate model for upscaling the biomass from LiDAR 

transects to wall-to-wall Landsat imagery.  

Question 3: How can the forest disturbance and recovery history derived from Landsat time-

series data improve the accuracy of biomass estimation with state-of-art deep learning? 

This question aims to further improve the estimation accuracy of biomass with the disturbance 

and regrowth history in the Brazilian Amazon forests. 

1.4 Thesis Structure 

The thesis consists of five chapters. These chapters build upon each other, but they can be read 

independently. The subsequent chapters are organized as follows. 

Chapter 2 explores the relationship between airborne LiDAR metrics and aboveground biomass 

and compares the different fitting approaches for multiplicative power models. 
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Chapter 3 develops a deep feedforward fully connected neural network (DNN) model to estimate 

aboveground biomass with airborne LiDAR and Landsat 8 imagery. 

Chapter 4 proposes a recurrent neural network - fully connected neural network (RNN-FNN) to 

estimate forest aboveground biomass with disturbance and regrowth history derived from 

Landsat time-series imagery. 

Chapter 5 summarizes the main research findings and discusses future research opportunities. 
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Chapter 2 Estimating Forest Aboveground Biomass in the 

Brazilian Amazon Using Airborne LiDAR and Ground 

Inventory Data  

Abstract 
Light detection and ranging (LiDAR) systems provide an effective way to quantify forest 

biomass. Many studies demonstrated the strong relationship between aboveground biomass and 

height metrics derived from small-footprint airborne LiDAR. Multiplicative power models were 

commonly used to represent the relationship between biomass and LiDAR metrics. There are 

two approaches to fit the models. The first one is to directly estimate the parameters without log-

transformation. The other one is to fit the linear model on a log-transformed scale using the 

ordinary least-squares and then back-transform the final model form. However, the differences 

between the two fitting approaches for the biomass-LiDAR metrics model are not systematically 

evaluated in literature. In this study, the performances of three multiplicative power models fitted 

with nonlinear least-square (NLR), ordinary least-square (OLSR), and weighted least-square 

(WLSR) approaches were compared by ANOVA and Tukey’s Test. The ANOVA results 

indicate significant differences among the three models (OLSR, WLSR, and NLR) in both fitting 

and prediction phases with 1000 bootstrap realizations in terms of the 𝑅!"#$%&' , RMSE, %RMSE, 

and Bias. Furthermore, the results of Tukey’s Test indicate that significant differences existed 

between the NLR and OLSR or WLSR at 99% confidence level. More extreme predictions were 

generated by NLR compared to OLSR and WLSR. NLR had a worse prediction performance. In 

contrast, OLSR and WLSR were more accurate in prediction. In conclusion, fitting the biomass-

LiDAR multiplicative power models needs careful cautions of selecting fitting approaches.  
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2.1 Introduction 

Quantifying the aboveground biomass of Amazonian forests is extremely important for 

understanding the global carbon cycle (Fearnside, 1997). Remote sensing techniques have been 

widely used for estimating aboveground biomass (e.g., Kashongwe et al., 2020; Zhang et al., 

2019; Silveira et al., 2019b; Silveira et al., 2019a; Santos et al., 2019; Bourgoin et al., 2018; 

Babcock et al., 2018; Wang et al., 2018; Matesci et al., 2018; Phua et al., 2017; Jiménez et al., 

2017; Garcia et al., 2017; Zald et al., 2016; Cortés et al., 2014). Field measurements are needed 

to further improve the accuracy of the remote sensing-based estimations. However, extensive 

field measurements of forest structure are very difficult and expensive to obtain in Amazonian 

forests (d'Oliveira et al., 2012). Light detection and ranging (LiDAR) systems provide an ability 

to penetrate the canopy through small leaf gaps for detecting horizontal and vertical vegetation 

structure simultaneously (Lefsky et al., 2002). The basic measurement made by a LiDAR system 

is the distance between the sensor and a target surface, obtained by determining the elapsed time 

between the emission of a short duration laser pulse and the arrival of the reflection of that pulse 

(the return signal) at the sensor’s receiver. The distances derived from LiDAR, combined with 

the position of the sensor and the direction of the laser beam, uniquely determine 3D coordinates 

of the objects illuminated (Lefsky et al., 2002, Chen, 2013). LiDAR can generate reliable tree 

height measurements across all stand conditions (Jurjević et al., 2020). Therefore, LiDAR can 

significantly reduce the need for intense forest inventory measurements.  

Many studies demonstrated the strong relationship between aboveground biomass and height 

metrics derived from small-footprint airborne LiDAR in tropical, temperate, and boreal forests 

(Drake et al., 2002a, 2002b; Naesset et al., 2004; Hennaway et al., 2008, Dubayah et al., 2010, 

Beets et al., 2011b). However, there are no generalized models and predictor sets applicable 

across a range of forest conditions. Previous studies showed that the best LiDAR height metric 

used to predict biomass varies from 80th (Patenaude et al., 2004) to 25th (d'Oliveira et al., 2012) 

percentile heights. Chen (2013) summarized that height metrics can be calculated from either 

vegetation returns (returns with a certain height, such as 0.5 m, 2 m, or 3 m above the ground 

surface) or complicated methods (such as an expectation-maximization algorithm). Differences 

in vegetation structure may explain the variability, however, model forms and variable selection 

procedures should not be ignored (Chen, 2013). For example, even though Dubayah et al. 
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(2010), Asner et al., (2012), d'Oliveira et al. (2012), Meyer et al. (2013), and Andersen et al. 

(2014) all focused on tropical forests, the best LiDAR height metrics differ significantly. Three 

different model forms are used by these five tropical studies: multivariate linear models 

(Dubayah et al., 2010; Asner et al., 2012; Andersen et al., 2014); power models (Meyer et al. 

2013); univariate linear models (d'Oliveira et al., 2012). In addition, different variable selection 

procedures were applied as well. Dubayah et al. (2010) used a Bayesian model averaging 

approach. Meyer et al. (2013) used a relative importance analysis and Akaike information 

criterion (AIC). d'Oliveira et al. (2012) and Andersen et al. (2014) used the best subset approach. 

Although these studies have been made to explore the relationship between airborne LiDAR 

metrics and aboveground biomass, they all focused on small forested areas such as the Amaon 

basin (e.g., Dubayah et al. 2010: in La Selva; Andersen et al., 2014 and d'Oliveira et al., 2012: in 

Antimary State Forest, Acre State, Western Brazilian Amazon; Meyer et al., 2013: in Barro 

Colorado Island). Therefore, a more general understanding of the relationship between airborne 

LiDAR metrics and aboveground biomass across the entire the Brazilian Amazon is needed. 

Multiplicative power models were commonly used to represent the relationship between biomass 

and LiDAR metrics (e.g., Knapp et al., 2020; Chen et al., 2016; Longo et al., 2016). There are 

two approaches to fit the models. The first one is to directly estimate the parameters without log-

transformation (e.g., Longo et al., 2016; Asner et al., 2014). The other one is to fit the linear 

model on a log-transformed scale using the ordinary least-squares and then back-transform the 

final model form (e.g., Wangda et al., 2019; Asner et al., 2012). Mascaro et al. (2011) contrasted 

the two fitting approaches for biomass allometric equations using harvest data from six tree 

species. They indicated that directly fitting allometric equations with untransformed variables 

while assuming additive errors may bias stand-level biomass estimates by up to 100 percent for 

smaller diameter trees. However, the differences between the two fitting approaches for the 

biomass-LiDAR metrics model are not explored. 

Given the aforementioned research gap, the main goal of this study is to develop a multiplicative 

power model for estimating forest aboveground biomass in the Brazilian Amazon with the most 

extensive field measurements and airborne LiDAR. Additionally, we mathematically compared 

the differences among three multiplicative power models fitted by nonlinear least-square, 
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ordinary least-square, and weighted least-square in estimating biomass with airborne LiDAR 

metrics. 

2.2 Study Area and Data Processing 

2.2.1. Study sites and field data  

This study covers the Brazilian Amazon region (total 51.46 million hectares). Field inventory 

data were provided by the US Forest Service and the Brazilian Corporation for Agriculture 

Research (EMBRAPA) under the Sustainable Landscapes Brazil program. Three sizes of square 

plots (50*50 m, 40*40 m, and 30*30 m), fixed-sized transects (20*500 m), and DBH-dependent 

probability sampling transects were used in this field inventory (Table 2.1). For square plots 

with the size of 50*50 m and fixed-size transects, trees with diameter at breast height (DBH) 

equal to or greater than 35 cm were measured. Trees with DBH equal to or greater than 10 cm 

were only measured within subplot areas. A correction factor calculated as the ratio of trees with 

DBH greater than 35 m and trees with DBH greater than 10 cm in a given area was used to 

correct the uncertainty caused by different sampling strategies of plot and subplot areas. For 

square plots with the sizes of 40*40 m or 30*30 m, trees with DBH equal to or greater than 10 

cm or 5 cm were measured within the plot area. DBH-dependent probability sampling transects 

used a diameter factor of 10.0 along five 500 m transects including trees with DBH greater than 

5 cm. In order to minimize the effect of plot size for calculating aboveground biomass, the fixed-

sized transects and DBH-dependent probability sampling transects were divided into segments 

with an equal size of 20*50 m. Additionally, these segments were apart from each other at least 

50 m to avoid autocorrelation for aboveground biomass in tropical forests (Saatchi et al., 2011). 

Table 2.1 Summery of inventory sites 

State Municipality Region Site Field 
inventory date 

Plot Size 
(m*m) 

LiDAR 
inventory 

date 
Pará (PA) Paragominas Fazenda Andiroba AND 2013 50*50 2013 

Fazenda Cauaxi CAU 2012 20*500 2012 
Paragominas-I PAR 2013 20*500 2013 

Belterra Tapajos National 
Forest 

TAP 2009 500 long 2008 

Oriximina Saraca-Taquera 
National Forest 

FST 2013 50*50 2013 

Tome-Acu  TAC 2014 30*30 2013 
Santarem-III  SAN 2014 50*50 2014 
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Table 2.1 (Continued) Summery of inventory sites 

Acre (AC) Senador 
Guiomard 

Bonal BON 2013 50*50 2013 

Porto Acre Humaita HUM 2014 50*50 2013 
Rio Branco Talisma TAL 2014 50*50 2013 

Amazonas 
(AM) 

Adolpho Ducke 
Forest Reserve 

 DUC 2011 500 long 2012 

Mato Grosso 
(MT) 

Canarana and 
Querencia 

Fazenda Tanguro TAN 2012 20*500 2012 

Feliz Natal-I  FNA 2013 50*50 2013 
Feliz Natal and 
Uniao do Sul 

 FN2 2015 50*50 2016 

Rondônia 
(RO) 

Itapoa do Oeste Jamari National Forest JAM 2013 50*50 2013 

 

In total, 198 field plots and 207 transect segments were established from 2009 to 2014 across 

five Brazilian states: Acre (AC), Amazonas (AM), Mato Grosso (MT), Para (PA), and Rondonia 

(RO) (Figure 2.1). The field inventory sites cover different forest statuses, including intact, 

degradation, deforestation, and secondary growth. DBH was measured at 1.3 m above the 

ground. Wood density of live trees was obtained from the Global wood density database (Chave 

et al., 2009; Zanne et al., 2009). When the species of live tree is unknown or not available in the 

database, the average value of wood density at genus or family level was used. Wood density of 

standing dead trees was from Keller et al. (2004) and Palace et al. (2007). Individual tree heights 

were measured using a clinometer and tape as the height to the highest point of the tree crown for 

most inventory sites. The heights were not available for certain individual trees at two sites in 

Sao Felix do Xingu Municipality (SFX) and Belterra Municipality (TAP), PA State. The missing 

tree heights were estimated by the DBH-height relationship following Feldpausch et al. (2012): 

H = a(1 − exp	(−b𝐷())                2.1 

where H is height in m, D is DBH in cm, and a, b, c are model parameters. The models were 

fitted by tree heights measurements within plots of the TAP site. 
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Figure 2.1 Location of inventory sites in the Brazilian Amazon 

2.2.2. Field aboveground biomass calculation with allometric models 

The aboveground biomass (AGB) of individual trees was estimated using the following 

allometric models for different vegetation types: 

For living trees (Chave et al., 2014): 

AGB = 0.0673 × (𝜌𝐷'𝐻)).+,-                             2.2 

For standing dead trees (Longo et al., 2016; Chambers et al., 2000): 

AGB = 0.1007 × ρ𝐷'𝐻)../.                    2.3 

For living palm (Long et al., 2016; Goodman et al., 2013): 
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AGB = 0.03781 × 𝐷'.,0.1                  2.4 

For living lianas (Long et al., 2016; Schnitzer et al., 2006): 

AGB = 0.3798 × 𝐷'.-2,                            2.5 

where	ρ is the wood density of living trees or standing dead trees (g/cm3), D is DBH (cm), and H 

is tree height (m).  The AGB of each tree within inventory plots were summed. The AGB density 

(AGBD, Mg/ha) for each plot was then calculated by the total AGB of the plot dividing the plot 

area. 

2.2.3. Airborne LiDAR data processing 

Airborne LiDAR data were acquired from 2012 to 2015, corresponding to the acquisition dates 

of field inventories. Airborne LiDAR survey was conducted by Geoid Laser Mapping Ltda. with 

different sensors, including Optech ALTM 3100 used for 2012, Optech ALTM Orion M-200 

used for 2013 and 2014, Optech ALTM Orion-M300 used for 2015. The average flight altitude 

was 850-900m above ground and the percentage of flightline overlap was around 65%. The 

average return density is 34 pt/m2. 

The ‘lidR’ package (Roussel and Auty, 2019) in R software (R Core Team., 2013) was used to 

process airborne LiDAR data. The relative height of laser points was calculated as the difference 

between Z coordinates and the Digital Terrain Model (DTM) generated by the ground return 

points. A total of 27 LiDAR metrics related to height distribution (e.g., mean, standard deviation, 

and skewness) and vertical structural complexity (i.e., the Shannon index) of all returns were 

extracted for each plot and transect segment (Table 2.2). The Shannon index was commonly 

used to descript the species diversity in biological systems (Magurran, 2013). According to the 

‘lidR’ package, it was used to quantify the diversity and evenness of an elevation distribution of 

laser points. 
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Table 2.2 LiDAR metrics related to height distribution and vertical structural complexity of all 
returns 

Lidar Metrics Description 
H345 Maximum return height 
H3647 Average return height 
H89 Standard deviation of return heights 
H8:6; Skewness of return height distribution 
H:<=> Kurtosis of return height distribution 
H67>=?@A Normalizes Shannon vertical complexity index 
H2B+2>C Percentiles of return height distribution 

 

2.3 Methods 

2.3.1 Airborne LiDAR estimates of aboveground biomass 

Variable selections 

First, a natural logarithmic transformation was applied on both response variables and predictors 

selected by the Random Forest (RF) algorithm (Breiman, 2001). RF ranks variables by assessing 

the impacts of variables on the estimation accuracy. RF was provided by randomForest package 

(Liaw and Wiener, 2002). The top ten variables selected by RF were used as candidate predictors 

for the stepwise subset selection. The stepwise subset selections both in forward and in backward 

modes were then applied to select the most relevant LiDAR metrics, simultaneously considering 

the Bayesian Information Criterion (BIC) (Schwarz, 1978). The statistically significant variables 

with the lowest BIC were used to establish the models.  

Model establishments 

In this study, we evaluated three multiplicative power models fitted by nonlinear least-square, 

ordinary least-square, and weighted least-square in estimating biomass with airborne LiDAR 

metrics.  

(i) Multiplicative power models fitted by ordinary least-square.  

Four steps for the model establishment. First, the multiplicative power models were developed as 

follows: 

Y = 	𝛽)𝑋/
D!𝑋'

D"⋯𝑋E
D#𝑒F                                      2.6 
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Where 𝑌 is the AGBD, 𝑋/,  𝑋', …, 𝑋E are LiDAR-metric variables, and 𝛽), 𝛽/, 𝛽', …, 𝛽E are 

model parameters, and 𝜀 is the unexplained error term.  

Second, a natural logarithmic transformation was applied on both response variables and 

predictors (Equation 2.6). The linear model on log-scale was developed as follows: 

ln(Y) = 𝛽) + 𝛽/ ln 𝑋/ + 𝛽' ln 𝑋' +⋯+ 𝛽E ln 𝑋E + 𝜀                       2.7 

where𝑌is the modeled AGBD, 𝑋/,  𝑋', …, 𝑋E are LiDAR-metric variables, and 𝛽), 𝛽/, 𝛽', …, 

𝛽E are model parameters, and 𝜀 is the unexplained error term. 

Third, the ordinary least-square regression (OLSR) with lm function in R software was applied to 

estimate the parameters of the linear model on log-scale (Equation 2.7), which minimized the 

sum of squares (𝑆𝑆GHIJ): 

𝑆𝑆GHIJ =	∑ Iln( 𝑌K) − ln(𝑌LJ)K
'E

KM/ 	                2.8 

where 𝑛 is the number of filed plots, ln( 𝑌K)	is field-based log-scale AGBD for plot 𝑖, and ln(𝑌LJ) 

is predicted log-scale AGBD for plot 𝑖 with Equation 2.7.  

At last, the final linear models on log-scale fitted by OLSR were then back-transformed to 

multiplicative power model form. The distribution of  ln( 𝑌) is normal, the distribution of Y is 

skewed. Therefore, the determining of the antilogarithm of ln( 𝑌K)	yields the median of the 

skewed arithmetic distribution rather than the mean (Baskerville., 1972). Therefore, a correction 

factor (CF) is needed to account for the back-transformation error (Baskerville., 1972; Mascaro 

et al., 2011; Asner., 2014). The CF is computed as follows: 

CF = 	𝑒(OIP/')                             2.9 

where 𝑀𝑆𝐸 is the mean square error of the linear model on log-scale. 

(ii) Multiplicative power models fitted by weighted least-square.  

The fitting procedure is similar to the fitting procedure of OLSR but with weighted least-square. 

The weighted least-square regression (WLSR) was applied to estimate the parameters of the 

linear model on log-scale (Equation 2.7), minimizing the weighted sum of squares (𝑆𝑆SHIJ): 
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 𝑆𝑆SHIJ =	∑ 𝑊KIln( 𝑌K) − ln(𝑌LJ)K
'E

KM/                        2.10   

where 𝑊Kis the weights for plot 𝑖. 𝑊K can be generated as a combination of prior knowledge, 

intuition, and evidence derived from inspection of residuals obtained from unweighted OLSR 

analysis (Willett and Singer, 1988). In this study, we assigned 𝑊Kequal to1/σKGHIJ' , assuming 

uncorrelated errors with error variances (Arevalo et al., 2007). σKGHIJ'  is the error variance using 

OLSR approach. 

(iii) Multiplicative power models fitted by nonlinear least-square.  

The nonlinear least-square regression (NLR) was directly applied on Equation 2.6b.  

Y = 	𝛽)𝑋/
D!𝑋'

D"⋯𝑋E
D# + 𝜀                                    2.6b 

The nls function of ‘stats’ Package in R software was used, which applies a Gauss-Netwton 

algorithm to minimize the sum of squares (𝑆𝑆THJ): 

𝑆𝑆THJ =	∑ I𝑌K − 𝑌LJK
'E

KM/ 	              2.11 

where 𝑛 is the number of filed plots, 𝑌Kis field-based AGBD for plot 𝑖, and 𝑌LJis predicted AGBD 

for plot 𝑖 with Equation 2.6b.  

Note that the sum of squares 𝑆𝑆THJ and 𝑆𝑆GHIJ given by equation (2.7) and (2.11) are not 

equivalent and the importance of choosing the proper regression model to estimate the model 

parameters has been highlighted by Baskerville (1972) and Zar (1968).  

2.3.2 Model validation and statistical comparisons 

For each multiplicative power model with different fitting techniques (OLSR, WLSR, and NLR), 

the pseudo coefficient of determination (𝑅!"#$%&' ), root mean square error (RMSE), relative root 

mean square error (%𝑅𝑀𝑆𝐸), and Bias were calculated to assess and compare the modeling 

performance: 

𝑅!"#$%&' = 1 −	∑ (V$BV%W)"
#
$&!
∑ (V$BVX)"#
$&!

	               2.12 
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RMSE = 	\∑ (V$BV%W)"#
$&!

T
               2.13 

%𝑅𝑀𝑆𝐸 = 	 JOIP
VX

                           2.14 

Bias = 	 /
E
∑ (𝑌K − 𝑌LJ)E
KM/               2.15 

where 𝑌] is the mean value of field-based AGBD for all plots, n is the number of samples. In 

order to further assess the prediction performance of each model, the leave-one-out cross-

validation (LOOCV) was used to calculate 𝑅!"#$%&' , RMSE, %RMSE, and Bias. The reasons that 

LOOCV is preferred over k-fold cross-validation were studied by Hawkins et al. (2003). 

LOOCV is almost unbiased since almost all samples are available for model fitting. Repeating k-

fold cross-validation can increase the precision of the estimates but still maintaining a small bias 

(Raschka, 2018).  

The one-way analysis of variance (ANOVA) was applied to examine the performance 

differences among models by analyzing the results in terms of 𝑅!"#$%&' , RMSE, %RMSE, and 

Bias based on bootstrapping sampling. Furthermore, a Tukey’s test was executed for pairwise 

comparison to determine whether the differences between each two models were statistically 

significant.  

2.4 Results 

In total, 403 inventory plots were used to estimate the aboveground biomass (AGB) with 

allometrics models. The plot AGB density (AGBD) ranged from 5.5 Mg/ha to 1333.5 Mg/ha 

across five Brazilian states, with the median value of 195.0 Mg/ha and the mean value of 230.1 

Mg/ha. The AGBD variability shows different patterns with different inventory sites (Figure 

2.2). The variances of AGBD within TAP, CAU sites in PA State and DUC site in AM State are 

higher than other sites. The existence of large trees significantly contributes to the variations. 
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Figure 2.2 Box plot of Field AGBD at field inventory sites 

The variables were also ranked based on MSE index (%IncMSE) from RF (Figure 2.3). MSE 

index indicated the percentage increase of MSE by removal of the ranked variables. Ten 

variables were selected by RF as candidate predictors for the stepwise subset selection, 

including	H-2>C, H-)>C, H,)>C, H+)>C H3647, H:<=>, H8:6;, H4Y?Z6[3647, H67>=?@A and H345. 
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Figure 2.3 Variable selection by RF  

The final variables selected by stepwise subset selection, both in forward and in backward 

modes, are H345,	H-2>C, H+)>C, and H67>=?@A. The selected four variables suggest that the 

variance of AGBD was influenced by not only the height distribution but also the vertical 

structural diversity. The final multiplicative power models using different fitting techniques 

(OLSR, WLSR, and NLR) with all inventory plots are as follows: 

(i) OLSR:  

𝐴𝐺𝐵𝐷GHIJb = 	0.52𝐻\]^B).,2𝐻#E_`&!aB/.,. 𝐻-2_b/.0+𝐻+)_b)..1 ∗ 1.24          2.16 

(ii)WLSR: 

𝐴𝐺𝐵𝐷SHIJb =	−0.09𝐻\]^B).2+𝐻#E_`&!aB/.., 𝐻-2_b/.2)𝐻+)_b)..' ∗ 1.24          2.17 

(iii)NLR: 

𝐴𝐺𝐵𝐷THJb = 	0.45𝐻\]^B).0)𝐻#E_`&!aB/.-0 𝐻-2_b/.0+𝐻+)_b).2'            2.18 
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Table 2.3 Summary of performances of three regression models 

Models 
Re-substitution Cross-validation 

𝑅'()*+,-  RMSE 
(Mg/ha) 

%𝑅𝑀𝑆𝐸 Bias 
(Mg/ha) 

𝑅'()*+,-  RMSE	(Mg/ha) %𝑅𝑀𝑆𝐸 Bias(Mg/ha) 

OLSR 0.42 143.7 62.4% -13.5 0.41 144.7 62.9% -13.5 
WLSR 0.41 144.9 63.0% -17.0 0.40 146.4 63.6% -17.1 
NLR 0.43 142.0 62.0% 2.2 0.41 144.6 62.8% 1.6 

 

The three models yielded similar results (Figure 2.4). The distributions of residual in CAU, 

DUC, and TAP inventory sites were more spread due to the higher AGBD variance existing in 

the three sites (Figure 2.5).  Otherwise, there was no clear pattern of residuals associating with 

inventory sites’ characteristics. The 𝑅!"#$%&' , RMSE, %RMSE, and Bias of each model were 

summarized in Table 2.3. NLR performed slightly better than OLSR and WLSR with the lowest 

Bias and highest 𝑅!"#$%&' in re-substitution. All of the three models underestimated the AGBD 

when the value was larger than 400 Mg/ha. In other words, the modeled AGBD in the study area 

started to saturate at 400 Mg/ha (Figure 2.6). A similar saturation level of molded AGBD based 

on Lidar data was reported by previous studies conducted in the Amazon region (e.g., Longo et 

al., 2016; de Almeida et al., 2019). Among the three models, the NLR generated larger residuals 

when AGBD was larger than 200 Mg/ha comparing to the other two models. 
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Figure 2.4 Comparison of OLSR (A), WLSR (B) and NLR (C) for AGBD predictions. The 

dashed lines are 1:1 line 
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Figure 2.5 Box plot of the residuals for three models at field inventory sites 
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Figure 2.6 Box plot of the residuals for three models at different AGBD levels 

The ANOVA results (Table 2.4) indicate significant differences among the three models in 

fitting and prediction phases with 1000 bootstrap realizations in terms of the 𝑅!"#$%&' , RMSE, 

%RMSE, and Bias. Furthermore, the results of Tukey’s Test (Table 2.5) show that significant 

performance differences existed between NLR and OLSR or WLSR at 99% confidence level 

according to the 𝑅!"#$%&' , RMSE, %RMSE. But all three models presented significant differences 

in terms of	Bias. Figure 2.7 shows the cumulative probabilities of AGBD obtained from the field 

inventory and regression models. NLR predicted AGBD well when the value is larger than 200 

Mg/ha and smaller than 400 Mg/ha. The predicted AGBD values generated by OLSR and WLSR 
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match the values from inventories between 400 Mg/ha and 600 Mg/ha. Table 2.6 summarizes 

the performances of the three models with 1000 bootstrap realizations. The fitting performance 

of NLR is slightly better than OLSR and WLSR. However, the prediction performance of NLR 

was worse than OLSR and WLSR. Figure 2.8 demonstrates the distributions of 𝑅!"#$%&' , RMSE, 

%RMSE, and Bias. More extremes values were generated by NLR model in cross-validation 

comparing to OLSR and WLSR, which infers that NLR had a worse prediction performance. On 

the other hand, OLSR and WLSR were more accurate in prediction.  

Table 2.4 Analysis of variance of the Pseudo R2, RMSE, %RMSE, and Bias according to three 
regression models with 1000 bootstrap realizations 

Source 

Re-Substitution Cross-validation 
Degree 

of 
freedom 

Sum of 
squares 

Mean 
square 

F 
value 

p-
value 

Degree 
of 

freedom 

Sum of 
squares 

Mean 
square 

F 
value 

p-
value 

Pseudo R2 2 0.41 0.205 34.94 <0.001 2 51 25.415 8.47 <0.001 

RMSE 2 6321 3,160.600 12.02 <0.001 2 113,538 56,769 24.93 <0.001 
%RMSE 2 0.12 0.060 15.71 <0.001 2 2.15 1.073 25.46 <0.001 

Bias 2 204,000 102,000 12,864 <0.001 2 176,409 88,205 5549 <0.001 

 

Table 2.5 Summary of Tukey’s Test 

Source Re-Substitution models Cross-validation models 
Groups Difference p-value Groups Difference p-value 

Pseudo R2 
OLSR-NLR -0.021 <0.001 OLSR-NLR 0.282 <0.001 
WLSR-NLR -0.027 <0.001 WLSR-NLR 0.270 0.001 

OLSR- WLSR -0.006 0.217 OLSR- WLSR -0.011 0.988 

RMSE 
OLSR-NLR 2.663 <0.001 OLSR-NLR -13.696 <0.001 
WLSR-NLR 3.372 <0.001 WLSR-NLR -12.290 <0.001 

OLSR- WLSR 0.709 0.591 OLSR- WLSR 1.406 0.787 

%RMSE 
OLSR-NLR 0.012 <0.001 OLSR-NLR -0.060 <0.001 
WLSR-NLR 0.015 <0.001 WLSR-NLR -0.053 <0.001 

OLSR- WLSR 0.003 0.508 OLSR- WLSR 0.006 0.784 

Bias 
OLSR-NLR -15.513 <0.001 OLSR-NLR -14.171 <0.001 
WLSR-NLR -18.959 <0.001 WLSR-NLR -17.762 <0.001 

OLSR- WLSR -3.446 <0.001 OLSR- WLSR -3.591 <0.001 
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Figure 2.7 Cumulative probabilities of AGBD obtained from the field inventory and three 

regression models 

Table 2.6 Summary of performances of three regression models with 1000 bootstrap realizations 

Models 

Re-substitution Cross-validation 
Mean 
𝑅'()*+,-  

Mean 
RMSE 
(Mg/ha) 

Mean 
%𝑅𝑀𝑆𝐸 

Mean 
 Bias 
 (Mg/ha) 

Mean 
𝑅'()*+,-  

Mean 
RMSE	(Mg/ha) 

Mean 
%𝑅𝑀𝑆𝐸 

Mean 
Bias 
(Mg/ha) 

OLSR 0.42 143.1 62.2% -13.1 0.41 144.6 62.8% -13.2 
WLSR 0.42 143.8 62.5% -16.6 0.40 146.0 63.4% -16.8 
NLR 0.44 140.4 61.0% 2.4 0.13 158.3 68.8% 1.0 
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Figure 2.8 Summary statistics for three regression models with 1000 bootstrap realizations 

2.5 Discussion 

The model accuracy in this study is lower than a similar study conducted in the same study area 

by Longo et al. (2016). Four reasons may explain the discrepancy: (1) field plots used in the two 

studies are not identical. Although most of them are similar, we do not have the thirty-two 50*50 

m plots in the Belterra region and twenty-nine 40*40 m plots in São Félix do Xingu region. And 

Longo et al. (2016) did not include 70 TAP plots; (2) the data collected in different years for 

DUC and JAM sites were used in the two studies; (3) the transect segmentations and tree height 

estimations in CAU, DUC, PAR, TAN, and TAP sites brought more uncertainties. Although we 

carefully controlled the segment areas, they may inevitably involve additional errors; (4) we did 

not exclude the extremely large value of AGBD in TAC site as an outlier. The last reason may be 

the major cause of the low model accuracy in this study. The extremely large AGBD value is 
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associated with an American oil palm plantation. The unique DBH-H relationship of American 

oil palm trees results in a very high residual. Chen et al. (2016) indicated that the AGBD of 

American oil palm needs to be modeled separately from other vegetation types. In this study, 

modeling American oil palm with other vegetation types can help us compare the fitting and 

prediction performance of the three models. Additionally, several large AGBD values exist in 

CAU site due to the absence of large trees in plots. These extreme values contribute to the 

lower	𝑅c"#$%&' , higher RMSE, and Bias of all three models compared to previous studies. The 

log-transformation applied in OLSR and WLSR mitigates the effect of extremely large values in 

the model fitting process. The pattern can be observed that the residuals of NLR are consistently 

larger than the value of OLSR and WLSR when the AGBD value is larger than 200 Mg/ha 

(Figure 2.6). 

2.6 Conclusions 

This study developed a multiplicative power model to estimate forest aboveground biomass with 

403 inventory plots distributed across five Brazilian states. The final variables selected by 

stepwise subset selection are Hmax, H65th, H90th, and Hentropy. The values of AGBD in the field 

inventory plots range from 5.5 Mg/ha to 1333.5 Mg/ha with the median value of 195.0 Mg/ha 

and the mean value of 230.1 Mg/ha. The variances of AGBD within TAP, CAU inventory sites 

in PA State and DUC inventory site in AM State are higher than other sites. The ANOVA results 

indicate significant differences among the three multiplicative power models (OLSR, WLSR, 

and NLR) in both fitting and prediction phases with 1000 bootstrap realizations in terms of the 

𝑅!"#$%&' , RMSE, %RMSE, and Bias. Furthermore, the results of Tukey’s Test indicate that 

significant differences existed between the NLR and OLSR or WLSR at 99% confidence level. 

More extreme predictions were generated by NLR compared to OLSR and WLSR. NLR had a 

worse prediction performance. In contrast, OLSR and WLSR were more accurate in prediction. 

Therefore, fitting the biomass-LiDAR multiplicative power models needs careful cautions of 

selecting fitting approaches.   
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Chapter 3 Mapping Forest Aboveground Biomass in the 

Brazilian Amazon Using Airborne LiDAR, Landsat 

Imagery, and Deep Neural Network 

Abstract 

Deforestation and degradation in the Brazilian Amazon forest have changed significantly from 

large-scale patterns to fine-scale patterns since the early 2000s. However, existing forest biomass 

maps for this region cannot resolve fine-scale variations in forest structure due to their coarse 

resolutions (500 m – 1000 m). The availability of Landsat imagery provides the opportunity to 

estimate forest biomass in a higher spatial resolution. However, the application of Landsat in 

estimate biomass is significantly limited in tropical forests due to the saturation of sensor signals 

at moderate to high biomass levels. Airborne LiDAR systems can keep sensitive at a high level 

of biomass with an ability to penetrate the canopy through small leaf gaps for detecting 

horizontal and vertical vegetation structure simultaneously. Therefore, airborne LiDAR can be 

used as an extensive sampling tool to mitigate the saturation with supplemental ground 

information and increase the number of sample data. In this study, we propose a deep 

feedforward fully connected neural network (DNN) model to estimate and map aboveground 

biomass with airborne LiDAR data and Landsat 8 imagery. The results show that the proposed 

DNN model significantly outperformed the Random Forest model, Support Vector Regression 

model, and linear regression model with the R2 of 0.64 and RMSE of 55.7 Mg/ha. An 

aboveground biomass map was generated by the DNN model for the study area located in the 

Arch of Deforestation. After comprehensively exploring the effects of DNN’s hyperparameters 

on the model performance, we provide practical guidance for future studies on forest biomass 

estimation with deep learning. 
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3.1 Introduction 

Tropical forests contain roughly 471 billion metric tons of carbon (Pan et al., 2011). Between 

10% and 15% of global carbon dioxide emissions originate from deforestation and degradation 

in tropical forests (Van der Werf et al., 2009).  Roughly 77% - 80% of the forest loss in the 

Brazilian Amazon has occurred along an arch-shaped region called the “Arch of Deforestation” 

(Fearnside, 2017; Silva et al., 2021). Deforestation and degradation in this region have changed 

significantly from large-scale patterns to fine-scale patterns since the early 2000s. Tyukavina et 

al. (2017) indicated that small-scale clearing is the second-largest disturbance type in Acre, 

Amazonas, and Rondônia. Non-stand-replacement disturbances (fires and selective logging) 

exceeded human clearing of forest in areas (53% versus 47%) by 2013. An average of 21% of 

aboveground carbon loss is from selective logging (Putz et al., 2012) and an average of 30% is 

from fire (Alencar et al., 2006). Additionally, the Sustainable Palm Oil Production Program 

launched in 2010 incentivizes oil palm development to a fine-scale pattern. Benami et al. (2017) 

analyzed the extent and change in oil palm cultivation from 2006 to 2014 and found that 94% of 

new recently established sites are smaller than 9 ha. However, the existing two forest biomass 

maps for tropical forests based on Moderate Resolution Imaging Spectroradiometer (MODIS) 

and Geoscience Laser Altimeter System (GLAS) cannot resolve fine-scale variations in forest 

structure due to their coarse resolutions (500 m and 1000 m) (Baccini et al., 2012; Saatch et al., 

2011).  

Compared to using MODIS and GLAS, the combination of Landsat imagery and small-footprint 

airborne LiDAR can be more effectively capture the forest structure variability at a finer 30 m 

resolution (Brosofske et al., 2014; White et al., 2016). Deo et al. (2018) evaluated the accuracy 

of aboveground biomass models based on a range of spatial resolutions of predictors derived 

from Landsat imagery. The results showed that the accuracy of models decreased with increasing 

pixel size of the predictors from 30 m to 1000 m. The RMSE increased from 64.38 Mg/ha to 

69.89 Mg/ha, and the adjusted R2 decreased from 0.23 to 0.09. Therefore, the fine resolution 

provided by the combination of small-footprint airborne LiDAR and Landsat imagery has the 

potential to improve the estimation accuracy of biomass and generate biomass maps that can 

represent fine-scale variability. 
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Conventional machine learning models and parametric regression models have been used to 

estimate forest biomass with airborne LiDAR and Landsat imagery (Kashongwe et al., 2020; 

Zhang et al., 2019; Silveira et al., 2019b; Silveira et al., 2019a; Santos et al., 2019; Bourgoin et 

al., 2018; Babcock et al., 2018; Wang et al., 2018; Matesci et al., 2018; Phua et al., 2017; 

Jiménez et al., 2017; Garcia et al., 2017; Zald et al., 2016; Cortés et al., 2014). However, the 

model performance is affected by several factors, including forest type, selected explanatory 

variables, sample size, and validation procedures (Table 3.1). Due to the high level of biomass 

and heterogeneity of tropical forests, models only with spectral variables performed worse in 

tropical forests compared to boreal and temperate forests (Table 3.1). Previous studies showed 

that involving auxiliary data (such as climate, soil, and topographic data) is an effective way to 

improve the accuracy of biomass estimations in tropical forests (e.g., Silveira et al., 2019). 

However, the availability of auxiliary data is limited, especially at fine-spatial scales (i.e., 5 - 100 

m) for large areas.  

Table 3.1 Summary of studies on estimating forest biomass in literature 

Region Mapping 
Area 

Forest Type Modeling 
Method 

Explanatory 
Variables 

Accuracy Publication 

Canada ~ 552 
million ha 

Boreal  Random 
Forest  

Surface 
reflectance; 
spectral indices; 
disturbance 
history; 
geographic 
position; 
topographic 
variables. 

R2 = 0.515; 
RMSE = 
34.37 Mg/ha 

Matesci et 
al., 2018 

Maryland, 
Unites States 

~25,600 km2 Temperate Random 
Forest  

Vegetation 
indices 

R2 = 0.70; 
RMSE = 
35.81 Mg/ha 
 

Wang et al., 
2018 

Saskatchewan, 
Canada 

~37 million 
ha 

Boreal Random 
Forest  

Spectral 
indices; change 
metrics; 
topographic 
variables. 

R2 = 0.50; 
RMSE = 
54.61kg/ha 
 

Zald et al., 
2016 

Alaska, Unite 
States 

730,000 ha Boreal Geostatistical 
linear model 

Surface 
reflectance; 
spectral indices; 
percentage tree 
cover 

R2 = 0.25-
0.55; 
Square-root 
transformed 
CV-RMSE = 
1.96 -2.14 
!𝑀𝑔/ℎ𝑎 

Babcock et 
al., 2018 
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Table 3.1 (Continued) Summary of studies on estimating forest biomass in literature 

Galicia, Spain 3,600 km2 Temperate Linear and 
exponential 
regression 
models 

Surface 
reflectance; 
spectral indices. 

R2 = 0.60-
0.82; 
RMSE = 5.2 
-17.0  Mg/ha 

Jiménez et 
al., 2017 

Pantanillos, Chile 400 ha Temperate Random 
Forest 

Surface 
reflectance; 
spectral indices. 

R2 = 0.77; 
RMSE = 
33.75 Mg/ha 

Cortés et al., 
2014 

California, Unite 
States 

~ 104,000 
ha 

Temperate Support 
Vector  

Surface 
reflectance; 
spectral indices; 
Elevation. 

R2 = 0.73-
0.79; 
RMSE = 
75.43-87.18 
Mg/ha 

Garcia et al., 
2017 

Conghua, China 100 km2 Temperate Stacked 
Sparse 
Autoencoder 
network 

Surface 
reflectance; 
spectral indices. 

R2 = 0.935;  
RMSE = 
15.67 Mg/ha 

Zhang et al., 
2019 

Mai Ndombe 
province, Congo 

~10,000 
km2 

Tropical Random 
Forest 

Surface 
reflectance 

R2 = 0.11;  
RMSE = 
83.77 Mg/ha 

Kashongwe 
et al., 2020 

Sabah, Malaysia 4,924 ha Tropical Multiple 
regression 

Surface 
reflectance; 
spectral indices; 
texture metrics. 

R2 = 0.81;  
RMSE = 
112.15 
Mg/ha; 

Phua et 
al., 2017 

Mato Grosso, 
Brazil 

66,600 
km2 

Tropical Multiple 
linear 
regression 

Surface 
reflectance; 
spectral indices; 
texture metrics. 
 

R2 = 0.49;  
RMSE = 58 
Mg/ha 

Santos et 
al., 2019 

Minas Gerais 
state, Brazil 

Not 
reported 

Tropical Random 
Forest plus 
residual 
kriging 

Surface 
reflectance; 
spectral indices; 
geographic, 
topographic and 
climate data 

RMSE = 
7.72-57.36 
Mg/ha 

Silveira et 
al., 2019b 

Minas Gerais 
state, Brazil 

Not 
reported 

Tropical Random 
Forest 

Surface 
reflectance; 
spectral indices; 
geographic, 
topographic and 
climate data 

R2 = 0.86; 
RMSE = 
20.08 
Mg/ha 

Silveira et 
al., 2019a 

Paragominas 
municipality, 
Brazil 

19,342 
km2 

Tropical Random 
Forest 

Surface 
reflectance; 
spectral indices; 
texture metrics. 

R2 = 0.28; 
RMSE = 
97.1 Mg/ha 

Bourgoin 
et al., 
2018 

 

Developing a model that can take full advantage of spectral information is crucial to efficiently 

map the biomass of tropical forests over a large area. In recent years, the success of deep 

learning in a variety of computer vision tasks brings a new insight into forest biomass 

estimations.  Although very limited studies apply deep learning on estimating tropical forest 

biomass, the potentials of deep learning on solving complex and challenging prediction problems 

have been demonstrated by previous studies (Table 3.2). Lacking training data may be the main 

obstacle to the application of DNN on biomass estimations. The performance of a deep structure 
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essentially depends on the volume and variety of sample data (Bengio et al., 2013). The deeper 

structure of DNN allows it to more efficiently represent highly nonlinear functions than shallow 

networks with one or two hidden layers (Dalto et al., 2015). However, the number of trainable 

parameters significantly increases when the structure become deeper. Consequently, a larger 

training dataset is required to train these parameters. Small-footprint airborne LiDAR can be 

used as a sampling tool to significantly increase the data size (Wulder et al., 2012a), which can 

be further used as training and test data for the implementation of DNN.  

Besides, the selection of hyperparameter values, such as base architecture, kernel initialization, 

activation function, learning rate, and optimization method, also significantly affects the 

accuracies of DNN models (Bengio, 2009). However, there is very limited guidance and 

theoretical solutions for deep structure design and hyperparameter tuning (Lathuilière et al., 

2020; Ithapu et al., 2017). Only the effects of learning rate and base architecture are examined in 

previous studies (Narine et al., 2019; Ercanl, 2020; Astola et al., 2021). Narine et al. (2019) 

examined the effects of DNN structures and learning rates on the model performances of forest 

biomass predictions. The results show that a model with 3 hidden layers (with 500, 300, and 60 

neurons, respectively) performed best. And learning rates of 0.001 were the optimal option. The 

model explained 48% of the variance in simulated AGB with RMSE of 20.29 Mg/ha. Ercanl 

(2020) designed a DNN model to predict tree height-diameter relationships. The author tested the 

number of hidden layers ranged from 3 to 10 and the number of neurons in each hidden layers 

ranged from 10 to 100. The experimental results indicate that the model with 8 hidden layers and 

100 neurons in each hidden layer had the best performance. Astola et al. (2021) examined the 

effects of DNN’s depth and width on predicting forest structural variables. They found that the 

DNN with two hidden layers (with 67and 24 neurons, separately) was the best model in terms of 

RMSE% and BIAS%. Besides the depth and width of DNN and learning rates, the effects of 

other hypterparameters on the model accuracy have not been explored yet.  
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Table 3.2 Summary of existing regression studies with deep learning 

Study 
  

Study 
Objective 

Forest 
Type 

Deep 
Learning 
Model  

Number of 
Hidden 
Layer 

Number 
of 
Neurons 
in Each 
Hidden 
Layer 

Other 
Hyperparame
ters 

Accuracy Datasets 

Shao et 
al., 
(2017) 

Predicting 
forest 
abovegroun
d biomass 

Tropical 
forest 

Stacked 
Sparse 
Autoencoder 
network 
(SSAE) 

N/A N/A N/A R2 = 
0.589-
0.812; 
RMSE = 
21.753-
30.453 
Mg/ha 

Filed 
inventory, 
airborne 
LiDAR, 
Landsat, and 
Sentinel-1A. 

Wang et 
al., 
(2018) 

Predicting 
crop yields  

N/A Recurrent 
neural 
network 
(RNN) 

1 LSTM 
layer; 
1 fully 
connected 
layers 

N/A N/A R2 = -
1.75-0.66; 
RMSE = 
0.26-0.52 
bushels/ac
re 

Field 
inventory, 
MODIS. 

Ayrey et 
al., 
(2019) 

Predicting 
forest 
attributes 
(total 
biomass, 
basal area, 
mean tree 
height, 
volume et 
al.) 

Boreal 
forest 

Convolution
al neural 
network 
(CNN) 

Based on 
Inception-
V3 

N/A N/A RMSE for 
biomass is 
36 Mg/ha 

Field 
inventory, 
airborne 
LiDAR, 
Sentinel-2, 
Landsat, and 
MODIS 

Long et 
al., 
(2019) 

Predicting 
canopy 
height 

Boreal 
forest 

Convolution
al neural 
network 
(CNN) 

2 
convolution
al layers 

N/A Learning 
rate:  0.0001; 
Optimizer: 
Adam; 
Activation 
function: 
ReLU; 
Batch size: 
36; 
Epochs: 500. 

MAE = 
1.7 m-
4.3m 
 

 

Sentinal-2 
and airborne 
LiDAR. 
 

Narine et 
al., 
(2019) 

Predicting 
forest 
abovegroun
d biomass 

Temperat
e forest 

Deep fully 
connected 
network 
(DNN) 

3 fully 
connected 
layers for 
no noise 
scenario; 
2 fully 
connected 
layers for 
no noise 
scenario; 
2 fully 
connected 
layers for 
no noise 
scenario 

500-300-
60; 
300-160; 
600-400 

Learning 
rate:  0.008-
0.0001; 
Optimizer: 
RMSprop; 
Activation 
function: 
ReLU; 
Batch size: 
100; 
Epochs: 100. 

R2 = 0.64-
0.67; 
RMSE = 
15.47-
16.09 
Mg/ha 

Field 
inventory, 
ICESat-2, 
and Landsat. 
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Table 3.2 (Continued) Summary of existing regression studies with deep learning 

Nevavuo
ri et al., 
(2019) 

Predicting 
crop yields  

N/A Convolution
al neural 
network 
(CNN) 

2 
convolution
al layers; 
2 fully 
connected 
layers 

N/A Learning 
rate:  0.0001; 
Optimizer:  
Adadelta; 
Activation 
function: 
ReLU; 
Batch size: 
128; 
Epochs: 50. 

MAE = 
484.3-
680.4 
kg/ha 

Field 
inventory 
and UAV. 

Zhang et 
al., 
(2019) 

Predicting 
forest 
abovegroun
d biomass 

Temperat
e forest 

Stacked 
Sparse 
Autoencoder 
network 
(SSAE) 

N/A N/A N/A R2 = 
0.935; 
RMSE = 
15.67 
Mg/ha; 
rRMSE = 
11.407% 

Field 
inventory, 
airborne 
LiDAR, and 
Landsat. 

Ercanl, 
(2020) 

Predicting 
tree height-
diameter 
relationship
s 

Temperat
e forest 

Deep fully 
connected 
network 
(DNN) 

8 fully 
connected 
layers 

100 in 
each layer 

Activation 
function: 
Rectifier; 
Epochs: 
1000. 

r = 0.984; 
RMSE = 
0.694 m 

Field 
inventory. 

Khaki et 
al., 
(2020) 

Predicting 
crop yields 

N/A Combine 
convolution
al neural 
networks 
and 
recurrent 
neural 
network 
(CNN- 
RNN) 

4  
convolution
al layers; 
1 LSTM 
layer. 

N/A Learning 
rate:  0.0003 
with Adam; 
Optimizer: 
Adam and 
SGD; 
Activation 
function: 
ReLU; 
Batch size: 
25; 
Epochs: 
350000. 

RMSE = 
15.74-
16.48 
bushels/ac
re 

Field 
inventory. 

Hawrylo 
et al., 
(2020) 

Predicting 
growing 
stock 
volume 

Temperat
e forest 

Deep fully 
connected 
network 
(DNN) 

2 fully 
connected 
layers 

70-70 Optimizer: 
rmsprop; 
Activation 
function: 
LeakyReLU. 

R2 = 0.13-
0.46; 
RMSE = 
103.23 -
72.61 
m3/ha; 
rRMSE = 
20.99% -
37.11% 

Field 
inventory, 
airborne 
LiDAR, and 
Landsat. 

Wolanin, 
(2020) 

Predicting 
crop  yields 

N/A Convolution
al neural 
network 
(CNN) 

2 
convolution
al layers 

N/A Learning 
rate:  0.01-
0.0001; 
Optimizer: 
Adam; 
Activation 
function: 
ReLU; 
Batch size: 
100; 
Epochs: 100. 

NSE = 
0.868 

Field 
inventory, 
MODIS, and 
meteorologic
al data. 
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Table 3.2 (Continued) Summary of existing regression studies with deep learning 

Shah et 
al., 
(2020) 

Predicting 
canopy 
height 

Temperat
e forest 

Convolution
al neural 
network 
(CNN) 

4 
convolution
al layers; 
1 fully 
connected 
layers 

N/A Activation 
function: 
ReLU 
(convolutiona
l layer), 
Linear (fully 
connected 
layer); 
Epochs: 
2000. 

MAE = 
3.092m 

Landsat and 
airborne 
LiDAR. 
 

Astola et 
al., 
(2021) 

Predicting  
forest 
structural 
variables 
(stem 
volume, 
basal area, 
stem 
diameter, 
and tree 
height) 

Boreal 
forest  

Deep fully 
connected 
network 
(DNN) 

2 fully 
connected 
layers 
 

67-24 Learning 
rate:  0.0001; 
Optimizer: 
Adam; 
Activation 
function: 
ReLU; 
Batch size: 
100; 
Epochs: 250. 

R2 = 0.65-
0.71; 
rRMSE = 
28.2%-
42.4% 

Field 
inventory, 
Sentinel-2, 
and airborne 
LiDAR. 

Khaki et 
al., 
(2020) 

Predicting 
crop yields 

N/A Combine 
convolution
al neural  
network 
(CNN) and  
fully 
connected 
network 
(DNN) 

7 
convolution
al layers;  
2 fully 
connected 
layers 
 

100-50 Learning 
rate:  0.0005; 
Optimizer: 
Adam; 
Activation 
function: 
ReLU; 
Batch size: 
32; 
Epochs: 
4000. 

Corn: 
MAE = 
12.71-
18.24 
bushels/ac
re 
Soybean:  
MAE = 
3.66-6.05 
bushels/ac
re 

Field 
inventory, 
MODIS. 

Liu et 
al., 
(2021) 

Predicting 
forest 
structural 
parameters 
(stem 
diameter, 
tree height, 
stem 
volume, 
and stem 
density) 

Temperat
e forest 

Combine 
deep full 
connected 
network 
(DNN) and 
radial basis 
neural 
network 
(RBN) 

5 fully 
connected 
layers 
1 RBN 
layer 

100-80-
60-40-20 

Learning 
rate:  0.001; 
Optimizer: 
Adam; 
Activation 
function: 
ReLU; 
Batch size: 
100; 
Epochs: 100. 

R2 = 0.67-
0.86; 
rRMSE = 
6.95%-
20.34% 

Field 
inventory, 
airborne 
LiDAR. 

Ogana 
and 
Ercanl, 
(2021) 

Predicting 
tree height-
diameter 
relationship
s 

Tropical 
forest 

Deep fully 
connected 
network 
(DNN) 

6-7 fully 
connected 
layers 
 

100 in 
each layer 

Activation 
function: 
Rectifier; 
Epochs: 
1000. 

RMSE = 
1.939 – 
3.887 m 

Field 
inventory. 

 

Given the aforementioned research gaps, this study developed a deep feedforward fully 

connected neural network regression model (DNN) to estimate and map aboveground biomass in 

the Arch of Deforestation with airborne LiDAR and Landsat 8 imagery. Specifically, we make 

the following contributions: (1) we comprehensively investigated the effects of hyperparameter 
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values selection on the DNN model performances with a large size of sample data; (2) we 

compared the model accuracies of DNN model, linear regression model, and two conventional 

machine learning methods, i.e., Random Forest (RF), Support Vector Regression (SVR); (3) we 

examined the importance of spectral bands and vegetation indices derived from Landsat 8 

imagery in estimating aboveground biomass; (4) we generated an accurate aboveground biomass 

map for the study area located in the Arch of Deforestation. 

3.2 Study Area and Data 

3.2.1 Study area 

The study area is located in the Arc of Deforestation, Brazil (Figure 3.1A). This region 

corresponds to one Landsat scene (WRS-2 Path/Row 232/066). GlobeLand30 was applied to 

understand the land cover and land use in the study area, which is a 30-meter resolution global 

land cover data product developed by China (Jun et al., 2014). GlobeLand30 can be downloaded 

from the National Geomatics Center of China 

(http://www.ngcc.cn/ngcc/html/1/396/400/16121.html). According to the land cover map, eight 

land cover classes exist in the study area including Cultivated land, Forest, Grassland, Shrub 

land, Wetland, Water bodies, Artificial surfaces, and Bare land. The Forest class is defined as the 

land covered with trees and vegetation cover over 30%. Accordingly, the areas classified as 

Forest were extracted for further analysis (Figure 3.1B). 
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Figure 3.1 Location of study area (A); False color Landsat imagery of forested areas in the study 

area (B); LiDAR data overlaid on Landsat scene of the study area (C) 

3.2.2 Lidar data-based aboveground biomass calculations 

In total, twenty airborne LiDAR transects are available across the Brazilian Amazon (Figure 

3.1A). The airborne LiDAR data were acquired in 2012 - 2015 by Geoid Laser Mapping Ltda 

with the ALTM 3100 and Optech ALTM Orion M-200 sensor. The average flight altitude was 

850-900 m above ground and the percentage of flightline overlap was around 65%. The average 

return density is 34 pt/m2. The ‘lidR’ package (Roussel and Auty, 2019) in R software (R Core 

Team., 2013) was used to extract LiDAR metrics. According to Equation 3.1 developed in 

Chapter 2, the LiDAR-based aboveground biomass density (AGBD) was generated in a 30*30 m 

grid corresponding to the spatial resolution of Landsat imagery. The LiDAR-based AGBD was 

used to calibrate and validate the DNN model. 
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𝐴𝐺𝐵𝐷b = 	0.52𝐻\]^B).,2𝐻#E_`&!aB/.,. 𝐻-2_b/.0+𝐻+)_b)..1 ∗ 1.24              3.1 

3.2.3 Landsat 8 imagery acquisition and predictor generation 

Surface reflectance imagery derived from Landsat 8 Collection 2 Level 1 Operational Land 

Imager (OLI) data is available on the United States Geological Survey for Earth Observation and 

Science. The surface reflectance products were generated with specialized software called Land 

Surface Reflectance Code (LaSRC) (Vermote et al., 2016). LaSRC applied atmospheric 

correction routines to the standard data product of the Landsat sensors with help of auxiliary data 

such as water vapor, ozone, and Aerosol Optical Thickness (AOT) retrieved from MODIS. 

Additionally, the bidirectional effect associated with the geometric relationships between the Sun 

and sensor angles was reduced by LaSRC (Otto et al., 2020). In total, thirteen Landsat-8 surface 

reflectance images acquired from 2013 to 2016 were downloaded, corresponding to the 

acquisition dates of field inventories and airborne LiDAR data.  

Vegetation indices and Tasseled Cap components derived from spectral bands were widely used 

to estimate forest aboveground biomass, but their importance in explaining biomass variations 

varies with vegetation types and modeling methods (Gómez et al., 2014; Silveira et al., 2019). 

Therefore, their importance was evaluated in this study. We involved 7 surface reflectance bands 

(SR), 4 commonly used vegetation indices, and 3 Tasseled Cap components as predictor 

variables (Table 3.3).  

Table 3.3 Summary of predictors 

Predictors 
Abbreviation 

Name Details/Formula Reference 

B1 SR Band 1 Coastal aerosol, 0.43-0.45 μm  
B2 SR Band 2 Blue, 0.45-0.51 μm  
B3 SR Band 3 Green, 0.53-0.59 μm  
B4 SR Band 4 Red, 0.64-0.67 μm  
B5 SR Band 5 Near Infrared, 0.85-0.88 μm  
B6 SR Band 6 Shortwave infrared 1, 1.57-1.65 μm  
B7 SR Band 7 Shortwave infrared 2, 2.11-2.29 μm  
NDVI Normalized Difference 

Vegetation Index 
𝑁𝐼𝑅 − 𝑅𝐸𝐷
𝑁𝐼𝑅 + 𝑅𝐸𝐷 Tucker, 1979 

EVI Enhanced Vegetation 
Index 2.5 ∗

𝑁𝐼𝑅 − 𝑅𝐸𝐷
𝑁𝐼𝑅 + 6 ∗ 𝑅𝐸𝐷 − 7.5 ∗ 𝐵𝑙𝑢𝑒 + 1 Huete et al., 2002 

EVI 2 Enhanced Vegetation 
Index 2 2.4 ∗

𝑁𝐼𝑅 − 𝑅𝐸𝐷
𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 1 Jiang et al., 2008 
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Table 3.3 (Continued) Summary of predictors 

NIRv Near-infrared 
reflectance of 
vegetation 

𝑁𝐼𝑅 ∗ 𝑁𝐷𝑉𝐼 Badgley et al., 
2017 

TCB Tasseled Cap 
Brightness 

0.3037	𝐵𝑙𝑢𝑒 + 0.2793	𝐺𝑟𝑒𝑒𝑛 + 0.4743	𝑅𝑒𝑑
+ 0.5585	𝑁𝐼𝑅 + 0.5082	𝑆𝑊𝐼𝑅1
+ 0.1863	𝑆𝑊𝐼𝑅2 

Kauth and 
Thomas, 1976 

TCG Tasseled Cap 
Greenness 

(−0.2848)	𝐵𝑙𝑢𝑒 − 0.2435	𝐺𝑟𝑒𝑒𝑛 − 0.5436	𝑅𝑒𝑑	
+ 0.7243	𝑁𝐼𝑅 + 0.0840	𝑆𝑊𝐼𝑅1
− 0.1800	𝑆𝑊𝐼𝑅2 

Kauth and 
Thomas, 1976 

TCW Tasseled Cap Wetness 0.1509	𝐵𝑙𝑢𝑒 + 0.1973	𝐺𝑟𝑒𝑒𝑛 + 0.3279	𝑅𝑒𝑑
+ 0.3406	𝑁𝐼𝑅 − 0.7112	𝑆𝑊𝐼𝑅1
− 0.4572	𝑆𝑊𝐼𝑅2 

Kauth and 
Thomas, 1976 

 

3.3 Methods 

3.3.1 Deep neural network 

In this study, the effects of structure design and hyperparameter values selection on the DNN 

model performances were comprehensively evaluated with massive amounts of sample data. The 

predictor variables (Landsat SR bands, vegetation indices, and Tasseled Cap components, as 

discussed in Section 3.2.2) were fed into a DNN to generate numerical AGBD outputs. The 

trainable parameters were optimized in the process of learning, which can be used to predict 

AGBD across the entire study area. The DNN in this study was built on Keras with TensorFlow 

backend in Python. The free Google Colaboratory 12GB GPU was used to train the DNN.   

Base architecture 

The DNN implemented in this study is a fully connected feedforward neural network, which 

consists of an input layer, multiple hidden layers, and an output layer. The hidden layers contain 

multiple neurons, and the neurons between layers are fully connected (Figure 3.2A). In this 

study, the number of hidden layers and neurons in each layer is determined by trial and error. 

Inspired by the suggestions for shallow structures provided by Doukim et al. (2010) and Huang 

(2003), deeper structures with the combinations of the number of 1, 2, 4, 8, 16, 32, 64, and 128 

neurons and the number of 6, 8, 10, 12, 14, and 16 hidden layers were tested to identify the 

optimal structure. 
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Figure 3.2 Structure of a fully connected feedforward neural network (A); structure of a neuron 

(B) 

The output of ith neuron (Figure 3.2B) in the lth layer can be mathematically represented as 

follows: 

𝑦Kd = 𝑓(∑ 𝑤Ke𝑥edB/E
eM/ + 𝑏Kd)             3.2 

where 𝑓(∙) is the activation function. 𝑤Ke and 𝑏Kd are the weight and bias respectively.  𝑥edB/ is the 

output of jth neuron from 𝑙 − 1 layer, 𝑗 = 1,2… . 𝑛. 

Activation function 

Activation function f(.) determines the output value of each neuron as demonstrated in Equation 

1, which adds non-linearity to the output so that the neural network can solve nonlinear 

problems. Many efficient activation functions are proposed and applied to solve complex 

learning tasks (e.g., Szegedy et al., 2013; Mourgias-Alexandris et al., 2019; Ide and Kurita, 
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2017). Given the regression problem in this study, six unbounded activation functions are 

explored. 

Rectified Linear Unit (ReLU) is the most widely used activation function of neural networks 

(Nair and Hinton, 2010). It overcomes the vanishing gradient problem, allowing neural networks 

to train faster and perform better. Therefore, ReLU has become the default activation function 

for many successful deep networks, such as VGG-16 (Simonyan and Zisserman, 2014), Faster R-

CNN (Ren et al., 2015). The ReLU function can be written as follows: 

𝑓(𝑥) = max	(0, 𝑥)                  3.3  

If x is positive, the output value is equal to x. Otherwise, the output value is equal to 0. In other 

words, only the positive neuron will be activated.  

Leaky ReLU is proposed to mitigate the “dying ReLU problem” by allowing a small, non-zero 

gradient when the x is negative (Maas et al., 2013). The Leaky ReLU function can be 

demonstrated by, 

𝑓(𝑥) = r𝑥, 𝑖𝑓	𝑥 > 0;
0.01𝑥, 𝑒𝑙𝑠𝑒.                   3.4 

Parametric ReLU (PReLU) generalizes Leaky ReLU to a situation where the slope α is input-

specific and trainable (He et al., 2015), instead of 0.01 in the Leaky ReLU function: 

(𝑥) = r𝑥, 𝑖𝑓	𝑥 > 0;
α𝑥, 𝑒𝑙𝑠𝑒.                       3.5 

Exponential Linear Unit (ELU) pushes mean unit activations closer to zero, which speeds up 

learning by bringing the normal gradient closer to the unit natural gradient (Clevert et al., 2015). 

The ELU function can be written as follows: 

𝑓(𝑥) = r
𝑥, 𝑖𝑓	𝑥 > 0;

𝛼(𝑒^ − 1), 𝑒𝑙𝑠𝑒.                   3.6 

where α is the predefined parameter and α >= 0. 
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Scaled Exponential Linear Unit (SELU) introduces an internal normalization technique to avoid 

the vanishing and exploding gradient problem. It ensures training a deep network with many 

layers and robust learning (Klambauer et al., 2017). The SELU function can be given by, 

𝑓(𝑥) = 𝜆 r
𝑥, 𝑖𝑓	𝑥 > 0;

𝛼(𝑒^ − 1), 𝑒𝑙𝑠𝑒.                  3.7 

where 𝜆 and α equal to 1.05070098 and 1.67326324, which follows the suggestions provided by 

Klambauer et al. (2017). 

Swish is a smooth, non-monotonic function, which requires a single scalar input to realize the 

self-gating. Compared to the non-smooth nature of ReLU, the smoothness of Swish plays a 

beneficial role in optimization and generalization, reducing the sensitivity to initialization and 

learning rates (Ramachandran et al., 2017). The Swish function can be demonstrated by, 

𝑓(𝑥) = 𝑥 ∗ /
/f#./0

                   3.8 

Optimization 

A number of optimization algorithms are proposed to minimize the value of the cost function by 

adjusting the parameters iteratively. There is no clear conclusion in the literature regarding the 

best optimization algorithm for DNN regression problems. In this study, the effects of seven 

popular optimization algorithms on the accuracy of modeling ABGD are explored. The loss 

function was defined with the mean squared error (MSE). 

Stochastic Gradient Descent (SGD) algorithm is an iterative optimization process of the first 

order. SGD converges fast on large datasets because it employs a single sample at each iteration 

to avoid data redundancy.  

Adagrad is an optimization algorithm with parameter-specific learning rates. It adapts the 

learning rate to the parameters’ update frequency. Adagrad uses a different learning rate for 

every parameter at every time step (Duchi et al., 2011).  Dean et al. (2012) concluded that 

Adagrad greatly improved the robustness of SGD for training a large-scale distributed deep 

network.  
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Adadelta is a more robust extension of Adagrad. Adadelta introduces a new dynamic learning 

rate using only first-order information. According to Zeiler (2012), Adadelta does not require 

manual setting of a learning rate and appears robust to large gradients, noise, and architecture 

choice. 

Root Mean Square Propagation (RMSProp) is proposed to overcome Adagrad's drawback of 

diminishing learning rates by changing the gradient accumulation into an exponentially weighted 

moving average (Hinton and Tieleman, 2012). Specifically, Adagrad adjusts the learning rate 

according to the history of the squared gradient, while RMSProp only considers recent gradients 

for that weight (Lathuilière et al., 2019). Hinton and Tieleman (2012) suggested a good default 

value for the learning rate is 0.001. 

Adaptive Momentum Estimation (Adam) updates the RMSProp by incorporating momentum. 

Adam implements the exponential moving average of the gradients to scale the learning 

rate.  Adam is computationally efficient and requires little memory. Adam always has a good 

performance on problems that are large in terms of data/parameters (Kingma and Ba, 2014). Two 

variants of Adam are also evaluated. They are Adamax (Kingma and Ba, 2014) and Nadam 

(Dozat, 2016). 

Other hyperparameters 

Batch size and learning rate 

In practice, the optimal choices of batch size and learning rate can significantly reduce training 

time and improve performance. The overfitting may occur if the learning rate is too small. In 

contrast, the training will diverge if the learning rate is too large. According to empirical 

experiences documented in the literature (Smith, 2018), the learning rates tested in this study are 

0.01, 0.001, and 0.0001. Given the AGBD regression problem and 12GB GPU memory 

limitation, the batch sizes of 500, 800, 1000, and 1200 were tested. 

Weight and bias initialization 

The convergence rate and accuracy of the DNN are affected by the initial choice of weights and 

bias according to the input data distribution. Improper weight and bias initializations would slow 

the training speed and increase the generalization error. We explored four efficient weight 
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initializations for the asymmetric activation functions selected for the AGBD regression, 

including Random Normal Initializer, Truncate Normal Initializer, LeCun Normal Initializer 

(LeCun et al., 2012), Glorot Normal Initializer, Glorot Uniform Initializer, and He Normal 

Initializer (He et al., 2015). Additionally, two bias initializations were tested, including Zero 

Initializer and Constant Initializer. 

3.3.2 Linear regression model and conventional machine learning methods 

Linear regression and two conventional machine learning methods were used to compare the 

performance of the proposed DNN. Linear regression model was commonly used to model the 

relationship between AGBD and predictor variables. Linear regression model is easy to apply 

and interpret. The model form was shown as follows: 

YJ = 𝛽)y+ 𝛽/y𝑋/ + 𝛽'y𝑋' +⋯+ 𝛽Ey𝑋E               3.8 

where YJ is the modeled AGBD, 𝑋/,  𝑋', …, 𝑋Eare predictor variables, and 𝛽)y, 𝛽/y, 𝛽'y, …, 𝛽Eyare 

model parameters. In this study, the ordinary least-square with lm function in R software was 

used to estimate the model parameters. 

Two conventional machine learning methods were widely applied in estimating forest biomass in 

literature. Random Forest (RF) method is an ensemble-learning algorithm consisting of a set of 

regression trees (Breiman, 2001). Each regression tree uses a different bootstrap sample of input 

data. Each node of a tree is split by the predictor variables randomly selected from all input 

variables and the best split is determined with the lowest Gini Index (Breiman, 2001). Due to the 

advantages of being less sensitive to noise and low risks of overfitting, RF is popular in mapping 

forest biomass over large areas (e.g., Baccini et al., 2008; Zald et al., 2016; Matesic et al., 2018). 

Support Vector Regression (SVR) is formulated as an optimization problem by minimizing the 

convex ξ-insensitive loss function and finding the flattest tube that contains the most training 

samples (Awad and Khanna, 2015). 

3.3.3 Evaluation of models’ performance 

In order to examine the importance of spectral bands and vegetation indices derived from 

Landsat 8 imagery in estimating aboveground biomass, we designed two schemes. The first 

scheme includes spectral bands, vegetation indices, and Tasseled Cap components. The second 
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scheme only contains seven spectral bands (Table 3.4). 70% of the samples were used to train 

the model and 30% of the samples were used to evaluate the model’s performance in terms of R2 

and RMSE. 

Table 3.4 Two schemes of predictors 

Scheme Predictors 
Scheme 1  SR Band 1- 7, NDVI, EVI, EVI2, NIRv, TCB, TCG, TCW 
Scheme 2  SR Band 1-7 

 

3.4 Results 

A total of 157,200 samples were generated for experiments in this study. Among them, 110,040 

samples (70%) were used to train each model, and 47,160 samples (30%) were used to evaluate 

the results. The optimal base architecture of the DNN consists of 1 input layer, 8 hidden layers, 

and 1 output layer. The number of neurons (128-128-128-64-64-64-32-32-32) at each hidden 

layer and trainable parameters in each layer is listed in Table 3.5. A total of 54,816 parameters 

were trained. This base architecture was used for all other experiments. 

Table 3.5 Architecture and hyperparameters of the proposed DNN model 

Layers Output Shape # Trainable Parameters 
Fully Connected (N, 128) 1024 
Fully Connected (N, 128) 16512 
Fully Connected (N, 128) 16512 
Fully Connected (N, 64) 8256 
Fully Connected (N, 64) 4160 
Fully Connected (N, 64) 4160 
Fully Connected (N, 32) 2080 
Fully Connected (N, 32) 1056 
Fully Connected (N, 32) 1056 

 

The activation function played an important role in deep learning techniques. We evaluated six 

unbounded activation functions with the testing dataset (Table 3.6). The results showed that the 

model with SELU had the best performance, which achieved 0.64 for R2 and 55.7 Mg/ha for 

RMSE. In contrast, ELU had the lowest accuracy, which yielded an R2 of 0.59 and RMSE of 

61.7 Mg/ha. We also tested different values of β in Swish, including 0.01, 0.1, 0.5, 1, and 
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5.  However, the value of β did not have a significant effect on the model performance. When 0.1 

was chosen for β, the highest R2 of 0.61 and the lowest RMSE of 58.1 Mg/ha were achieved. 

When 0.01 was chosen, the lower R2 of 0.57 and the highest RMSE of 62.9 Mg/ha were yielded. 

Table 3.6 Comparison of DNN model performance with different activation functions 

Activation Function R2 RMSE (Mg/ha) 
ELU 0.59 61.7 
ReLU 0.59 61.7 

Leaky ReLU 0.60 59.2 
Swish 0.61 58.1 

PReLU 0.62 57.3 
SELU 0.64 55.7 

 

The results of the comparison of model performance with different optimizers indicated that 

optimization algorithms significantly affected the model accuracy (Table 3.7). The values of R2 

ranged from -0.04 to 0.64, and the values of RMSE ranged from 102.1 Mg/ha to 55.7 Mg/ha. 

The model with the Adam optimizer had the highest accuracy and the model with the Adagrad 

optimizer yielded the lowest accuracy. Therefore, the Adam optimization algorithm was selected 

as the optimizer to test the effectiveness of batch size and learning rate. 

Table 3.7 Comparison of DNN model performance with different optimization algorithms 

Optimization Algorithm R2 RMSE (Mg/ha) 
Adagrad -0.04 102.1 
Adadelta -0.04 102.1 
RMSprop 0.56 63.7 

SGD 0.58 62.2 
Adam 0.64 55.7 

 

We found that the choice of batch size and epoch only had significant effects on the model 

training time but not on the model accuracy (Table 3.8). The executing time was almost doubled 

when increasing the epoch number from 1,000 to 2,000, but the accuracies kept similar. Besides, 

when the batch size was set to 800, the model slightly outperformed others. Accordingly, 1,000 

and 800 were chosen for epoch and batch size, respectively. In order to understand the effect of 

learning rates on the model capacity, we plotted the loss value of each epoch in Figure 3.3. Both 
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too large and too small learning rates could not achieve the optimal results. Therefore, the 

learning rate of 0.001 was chosen for the Adam optimizer. 

Table 3.8 Comparison of DNN model performance and training time with different values of 
epoch and batch size 

Epoch Batch Size Executing Time R2 RMSE (Mg/ha) 
1000 500 34m33s 0.61 58.1 

800 14m24s 0.64 55.7 
1,000 12m22s 0.63 56.1 
1,200 10m22s 0.63 56.3 

2000 500 45m25s 0.61 58.1 
800 30m25s 0.63 56.1 

1,000 26m15s 0.60 59.2 
1,200 21m12s 0.63 56.1 

 

 

Figure 3.3 Plot of loss values 

Weight initializations had a slight influence on the model performance (Table 3.9). The model 

with Truncate Normal weight initialization achieved the highest R2 and the lowest RMSE. 
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However, the models with other weight initializations had very similar accuracies. Besides, after 

testing Zero Initializer and Constant Initializer, we also found that bias initializations had little 

influence on model accuracies as well. 

Table 3.9 Comparison of DNN model performance with different weight initialization 

Weight Initialization R2 RMSE (Mg/ha) 
Random Normal 0.56 63.7 
Truncate Normal 0.64 55.7 
LeCun Normal 0.61 58.1 

He Normal 0.61 58.1 
Glorot Normal 0.62 57.3 
Glorot Uniform 0.59 61.7 

 

Table 3.10 summarizes the values of R2 and RMSE of DNN, RF, SVR, and linear regression 

model. It can be seen that DNN has the best performance. Obviously, SVR and linear regression 

could not effectively deal with the complex relationship between AGBD and Landsat metrics. It 

is different from our expectation that including VIs and TC components did not improve the 

accuracy for all models. 

Table 3.10 Comparison of DNN, RF, SVR, and linear regression model with two schemes 

 Scheme 1 (7 predictors) Scheme 2 (14 predictors) 
Regression Model R2 RMSE (Mg/ha) R2 RMSE 

(Mg/ha) 
DNN 0.64 55.7 0.61 58.4 
RF 0.50 65.9 0.50 65.9 

SVR 0.03 91.9 0.04 91.6 
Linear regression -0.0002 105.3 -0.0002 105.3 

 

The distribution map of AGBD was generated by the optimal DNN model with 7 SR band 

predictors for the study area (Figure 3.4). The maximum and minimum values of AGBD are 

632.1 Mg/ha and 0.8 Mg/ha. The average value is 46.9 Mg/ha. Overall, the higher values are 

concentrated in the eastern part. Some lower values can be observed along the western side of 

the Amazon River. 
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Figure 3.4 Map of AGBD generated by DNN model for the study area 

3.5 Discussion 

Deep learning techniques bring new opportunities to forest biomass estimation. However, two 

challenges need to be addressed. First, it is challenging to collect a large amount of sample data 

to train sophisticated neural networks. Field inventory data is too cost-consuming to be 

generated. Only 0.001% of the Brazilian Amazon biome area is sampled (Tejada et al., 2019). 

The development of LiDAR techniques offers a new way to extend the sample size. The 

Sustainable Landscape Project (SL) is a leading project launching airborne LiDAR surveys over 

the Amazon biomes. This study takes advantage of the SL project to generate 157,200 sample 

data from 20 LiDAR transects for training and validating the proposed DNN model. The second 

challenge is related to tuning hyperparameters of deep neural networks. Few studies focus on the 
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application of deep learning in estimating forest biomass. Therefore, the understanding of 

hyperparameters’ effects on model accuracy is lacking.  

The neural network structure is directly related to the number of network parameters. When the 

neural network becomes deeper and wider, the model capacity increases. At the same time, the 

model would require more training sample to train increased parameters. Therefore, it is 

challenging to keep the number of network parameters low and preserve the model predicting 

ability. Different network structures are used in previous studies. For example, Narine et al. 

(2019) designed a shallow but wide structure with three hidden layer (500-300-60). Both Ogana 

and Ercanl (2021) and Ercanl (2020) used a deep and symmetric structure with 6-8 hidden layers 

(100 neurons in each hidden layer). Astola et al. (2021) found that a shallow and narrow 

structure with 2 hidden layers (67-24) was efficient. The network structure used in this study is 

deep and asymmetric with 8 hidden layers (128-128-128-64-64-64-32-32-32). The number of 

neurons in hidden layers followed a decreasing trend from the first to the last layer, as it in 

Narine et al. (2019) and Astola et al. (2021). These different network structures were compared 

in terms of R2 and RMSE (Table 3.11). The model 1 with a deep and asymmetric structure 

proposed in this study had the highest accuracy and had less trainable parameters compared to 

deep and symmetric model 2. The model 4 with a shallow and narrow structure had a lower 

accuracy than the model 3 with a shallow but wide structure due to less trainable parameters. It is 

worthy to note that the model 3 had the highest number of trainable parameters but it did not 

have the best prediction performance. The deep and asymmetric structure proposed in this study 

keeps the balance between the number of network parameters and the model predicting ability. 
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Table 3.11 Comparison of DNN model performances with different structures 

Model The Number of 

Hidden Layers 

The Number of 

Neurons in 

Hidden Layers 

Total Trainable 

Parameters 

R2 RMSE 

(Mg/ha) 

1(proposed in 

this study) 

8 128-128-128-64-

64-64-32-32-32 

54,816 0.64 55.7 

2 (deep and 

symmetric ) 

8 100 in each layer 71,500 0.59 61.7 

3 (shallow but 

wide) 

3 500-300-60 172,360 0.55 63.0 

4 (shallow and 

narrow) 

2 67-24 2,158 0.51 64.8 

 

Vegetation indices (VIs) and Tasseled Cap (TC) components are commonly reported as valuable 

variables to estimate forest biomass. However, we found that including vegetation indices and 

TC components cannot improve the model accuracies for DNN, RF, SVR, and linear regression 

model. Compared to previous studies, this study involves a very large size of sample data 

(157,200 samples). Sufficient sample data may deliver enough information to determine the 

relationship between biomass and Landsat spectral bands. Besides, the mathematics behind DNN 

may contribute as well. A large amount of nonlinear functions exists in hidden layers of DNN. 

When only SR bands used as predictors, the output of these hidden layers may carry the similar 

information as VIs and TC components carried. Therefore, involving VIs and TC component 

cannot provides additional useful information. The final DNN model includes 7 SR band 

predictors, which is more efficient to map biomass over a large area since no additional 

calculations of VIs and TC components are needed. 

Five sources of uncertainty would be associated with the AGBD map generated in this study: (1) 

the first source is related to the field inventory sampling design. Specifically, the distribution of 

inventory plots and LiDAR transects and plot sizes would bring uncertainties to the results; (2) 

the second source is associated with allometric models, including the errors related to 

explanatory variables (e.g., species diversity, wood density, and tree height and DBH field 

measurements) and model parameter estimates; (3) the third source is related to the regression 

models linking field AGBD with remote sensing metrics; (4) the fourth source is the co-



53 
 

registered error; (5) the last one is related to the temporal differences between the field and 

remote sensed data. In this study, we only consider the third source of uncertainty. For the first 

source, the inventory plots and LiDAR transects are relatively evenly distributed over the 

Brazilian Amazon (Figure 3.1). And Mascaro et al. (2011) found that the influence of differing 

plot shape on estimate accuracy is very low (1.5 Mg C /ha). For the second and fourth source, we 

cannot assess them due to the lack of access to destructive AGB datasets and more information 

related to GPS positional error. We carefully minimized the fifth source by selecting the Landsat 

imagery to match the acquisition dates of field and LiDAR campaigns. 

3.6 Conclusions 

This study develops a deep feedforward fully connected neural network (DNN) model to 

estimate and map aboveground biomass in the Arch of Deforestation with airborne LiDAR and 

Landsat 8 imagery. The proposed DNN model achieved the R2 of 0.64 and RMSE of 55.7 

Mg/ha, which significantly outperformed the Random Forest model, Support Vector Regression 

model, and linear regression model. After comprehensively investigating the effects of 

hyperparameter selection on the DNN model performances with a large size of sample data. We 

found that the model with SELU had the best performance compared to other activation 

functions. Besides, optimization algorithms significantly affected the model accuracy. The 

values of R2 ranged from -0.04 to 0.64, and the values of RMSE ranged from 102.1 Mg/ha to 

55.7 Mg/ha with different optimization algorithms. Additionally, we found that 1000 and 800 are 

the optimal choices for epoch and batch size respectively. And both too large and too small 

learning rates cannot achieve optimal results. The learning rate of 0.001 was chosen for the 

Adam optimizer. Furthermore, the weight and bias initializations had slight influences on the 

model accuracy. Different from previous studies, we found that including vegetation index and 

Tasseled Cap components did not improve the model performance. This study provides new 

insight into the application of deep learning in estimating forest biomass. 

 

 

 



54 
 

Chapter 4  Mapping Forest Aboveground Biomass in the 

Brazilian Amazon using Airborne LiDAR, Landsat time-

series Imagery, and Recurrent Neural Network 

Abstract 

Due to the high level of biomass and heterogeneity of tropical forests, the previous studies with 

conventional machine learning models and parametric regression models have lower accuracies 

in tropical forests compared to boreal and temperate forests. Landsat time-series data provide a 

promising opportunity to improve the accuracy by enhancing the relationship between Landsat 

spectral reflectance and forest aboveground biomass with disturbance and recovery dynamics. 

Compared to the single-date image, Landsat time-series data can capture abrupt spectral changes 

(e.g., harvesting and fire) and show the regrowth process in forested pixels. However, very 

limited studies take advantage of Landsat time-series data to estimate aboveground biomass in 

tropical forests. Recurrent neural networks (RNN) are powerful deep learning techniques to 

capture time dependencies in sequence data. However, RNN has not been used to estimate forest 

biomass yet. Therefore, this study is the first attempt to propose an RNN-FNN model for 

estimating forest biomass with Landsat time-series imagery and airborne LiDAR data. The 

RNN-FNN model integrates the long short-term memory network (LSTM) and the fully 

connected neuron network (FNN). We compared the RNN-FNN model with the Random Forest 

model and linear regression model implemented with single-date predictors. The results 

indicated that the RNN-FNN model significantly outperformed the Random Forest model and 

linear regression model with the R2 of 0.63 and RMSE of 25.5 Mg/ha. This study demonstrates 

the value of RNN and Landsat time-series imagery in estimating forest biomass.  
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4.1 Introduction 

The deforestation rate in the Brazilian Amazon averaged 1.89 ± 0.6 million hectares per year 

from 1995 to 1999, not including areas affected by degradation (INPE, 2000). Brazilian Amazon 

forests can be a source of CO2 due to deforestation and degradation. Therefore, accurately 

mapping forest aboveground biomass (AGB) can help consistently monitor carbon stock changes 

(e.g., Kashongwe et al., 2020; Santos et al., 2019; Bourgoin et al., 2018; Zald et al. 2016; Saatchi 

et al., 2007; Houghton et al., 2001). However, traditional methods used for mapping AGB 

heavily rely on field measurements that is not widely available in the Amazon forest. In addition, 

field measurements in the Amazon forest are too sparse in time and space to allow spatially 

sufficient and accurate estimations of aboveground biomass. The airborne LiDAR can be used as 

an extensive sampling tool to provide supplemental ground information. However, due to the 

high acquisition cost, the wall-to-wall LiDAR data are always not available over large areas. The 

combination of airborne LiDAR and Landsat imagery becomes the most practical way to 

mapping AGB over large areas by taking advantage of reliable structure information derived 

from LiDAR data and continuous spectral reflectance derived from Landsat imagery (e.g., Wang 

et al., 2020; Zhang et al., 2019; Ediriweera et al., 2014; Yavasli, 2016). 

Due to the high level of biomass and heterogeneity of tropical forests, the previous studies with 

conventional machine learning models and parametric regression models have lower accuracies 

in tropical forests compared to boreal and temperate forests (e.g., Bourgoin et al., 2018; Santos et 

al., 2019; Kashongwe et al., 2020). To enhance the relationship between Landsat spectral 

reflectance and AGB, previous studies have successfully incorporated the Landsat time-series 

data (LTS) for AGB estimations (e.g., Copper et al., 2021; Nguyen et al., 2020; Matasic et al., 

2018; Kennedy et al., 2018; Boisvenue et al., 2016; Zald et al., 2016; Gómez et al., 2014; 

Pflugmacher et al. 2012, 2014; Powell et al., 2010, 2014). An early example conducted in the 

Blue Mountains of eastern Oregon, USA showed that disturbance and regrowth trajectories 

derived from spectral profiles of annual LTS have a higher correlation with AGB than variables 

derived from single-date imagery (Pflugmacher et al., 2012). They reported that disturbance and 

regrowth history metrics significantly improved model accuracy compared to single-date data 

(R2 increased from 0.58 to 0.80, RMSE decreased from 65.1 Mg/ha to 46.9 Mg/ha). The value of 

utilizing disturbance and regrowth change metrics derived from LTS in estimating AGB is 
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further evaluated by recent studies. For instance, Nguyen et al. (2020) derived change metrics 

from LTS to characterize the changing pattern of AGB in Victoria, Australia. The model with 

change metrics achieved the RMSE value of 132.9 Mg/ha (RMSE% = 46.3%) and the R2 value 

of 0.56. In addition, the relationship of Landsat temporal trajectory metrics and AGB relies on 

the choice of predictor variables (Deo et al., 2017). For example, Pflugmacher et al. (2012) 

indicated the strong correlations between live biomass and Tasseled Cap angle (TCA) before and 

after the greatest disturbance. Zald et al. (2016) indicated Tasseled Cap (TC) indices (including 

TC angle and TC distance), change metrics (change magnitude, post-change magnitude, years 

since the greatest change, and post-change evolution rate), and elevation were the most important 

predicting variables related to AGB. Deo et al. (2017) used six predictors for aboveground 

biomass modeling: band-5 surface reflectance, normalized difference vegetation index (NDVI), 

normalized burn ratio (NBR), integrated forest z-score (IFZ), tasseled cap angle (TCA), and 

disturbance index (DI). However, most previous studies focus on boreal and temperate forests in 

North America and Europe, none of them explores the relationship between temporal 

information derived from LST and AGB in tropical forests.  

Instead of calculating change metrics from sequence data, recurrent neural networks (RNN) are 

powerful deep learning methods for directly using sequence data as input to capture time 

dependencies in modelling process (Sherstinsky, 2020). Two most recent studies have 

demonstrated the effectiveness and efficiency of RNN, specifically the long short-term memory 

model (LSTM), in predicting corn and soybean yield (Khaki et al., 2020) and sorghum biomass 

(Masjedi et al., 2019). Khaki et al. (2020) integrated Conventional Neural Network (CNN) and 

RNN to forecast corn and soybean yield across the Corn Belt in the United States for years 2016, 

2017, and 2018 using historical data. They concluded that the CNN-RNN model was able to 

capture the time dependencies of environmental factors and the CNN-RNN model outperformed 

other popular methods (Least Absolute Shrinkage and Selection Operator, Random Forest, and 

Deep Connected Neural Network). Masjedi et al. (2019) applied RNN to predict sorghum 

biomass with multi-temporal LiDAR and hyperspectral data. They compared the model 

performances of RNN and Support Vector Regression (SVR). The results showed that the R2 of 

predictions with RNN was higher than those with SVR. The advantages of RNN have also been 

demonstrated in other research fields, such as the prediction of COVID-19 (Chimmula and 

Zhang, 2020; Shahid et al., 2020), financial market forecasting (Bukhari et al., 2020; Wang et al., 
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2021), cyberattacks detection (Gasmi et al., 2019; Kim et al., 2020). However, no studies take 

advantage of RNN in estimating AGB with LTS data.  

In this study, we propose a recurrent neuron network- fully connected neural network (RNN-

FNN) model to map forest aboveground biomass in Arc of Deforestation, Brazil with LTS and 

airborne LiDAR data. The major contributions of this study include: (1) it is the first attempt to 

utilize RNN in estimating AGB; (2) this study tests the hypothesis that disturbance and regrowth 

information carried by LTS can significantly improve model accuracy compared to single-date 

Landsat data in the AGB estimation; (3) this study explores the ability of RNN to deal with LTS 

data in estimating AGB for tropical forests. 

4.2 Study Area and Data 

4.2.1 Study area 

The study area is located in the Arc of Deforestation, Brazil (Figure 4.1A). This region 

corresponds to one Landsat scene (WRS-2 Path/Row 232/066). GlobeLand30 was applied to 

understand the land cover and land use in the study area, which is a 30-meter resolution global 

land cover data product developed by China (Jun et al., 2014). GlobeLand30 can be downloaded 

from the National Geomatics Center of China 

(http://www.ngcc.cn/ngcc/html/1/396/400/16121.html). According to the land cover map, eight 

land cover classes exist in the study area including Cultivated land, Forest, Grassland, Shrub 

land, Wetland, Water bodies, Artificial surfaces, and Bare land. The Forest class is defined as the 

land covered with trees, with vegetation cover over 30%. Accordingly, the areas classified as 

Forest were extracted for further analysis (Figure 4.1B). 
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Figure 4.1 Location of study area (A); False color Landsat imagery of forested areas in the study 

area (B); LiDAR data overlaid on Landsat scene of the study area (C) 

4.2.2 Single-date LiDAR-based aboveground biomass calculation 

Airborne LiDAR can be used as a sampling tool to significantly increase the number of samples 

in forests (Wulder et al., 2012b). In this study, single-date LiDAR data was used to generate 

aboveground biomass density (AGBD) for training and validating the RNN-FNN model. The 

airborne LiDAR data partially cover the Landsat imagery (Figure 4.1C). Three airborne LiDAR 

inventory sites are available in and near the study area including TAL, JAM, and FNA (Figure 

4.1A). The airborne LiDAR data was acquired in 2013 by Geoid Laser Mapping Ltda with the 

Optech ALTM Orion M-200 sensor. The average flight altitude was 850-900 m above ground 

and the percentage of flightline overlap was around 65%. The average return density is 34 pt/m2. 

The ‘lidR’ package (Roussel and Auty, 2019) in R software (R Core Team., 2013) was used to 

extract LiDAR metrics. According to Equation 4.1 developed in Chapter 2, the LiDAR-based 
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AGBD is generated in a 30*30 m grid corresponding to the spatial resolution of Landsat 7 

ETM+ imagery. 

𝐴𝐺𝐵𝐷b = 	0.52𝐻\]^B).,2𝐻#E_`&!aB/.,. 𝐻-2_b/.0+𝐻+)_b)..1 ∗ 1.24             4.1 

4.2.3 Landsat time-series data pre-processing 

Landsat 7 ETM+ surface reflectance images which covered the three LiDAR inventory transects 

were downloaded from the United States Geological Survey (USGS) website 

(https://earthexplorer.usgs.gov/). Landsat 7 ETM+ surface reflectance data are generated using 

the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) algorithm by 

USGS, which utilizes Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric 

correction routines to the standard data product of the Landsat sensors (Masek et al., 2006). The 

images were acquired from 2004 to 2013 (Table 4.1). In order to avoid the effect of phenology, 

only images acquired from May to September were downloaded. Clouds were manually 

removed. Due to the failure of scan line corrector (SLC), the Landsat 7 ETM+ images have gaps 

in a systematic wedge-shaped pattern outside of the central 22 km swath of the imagery since 

July 2003 (Wulder et al., 2008). The SLC-off gaps were filled with the ‘landsat_gapfill’ tool 

provided by ENVI. Note that the SLC-off images were used in model training phase to avoid 

involving additional uncertainties. The SLC gap-filled images were only used for generating the 

final maps.  

In total, one hundred and eighty cloud-free WRS-2 scenes of annual Landsat 7 ETM+ surface 

reflectance images were used to extract surface reflectance (SR) bands, vegetation indices (VIs), 

and Tasseled Cap (TC) components. Four VIs and three TC components were calculated as 

predictor variables to compensate for SR bands. They are Normalized Difference Vegetation 

Index (NDVI), Enhanced Vegetation Index (EVI), Enhanced Vegetation Index 2 (EVI2), Near-

infrared reflectance of vegetation (NIRv), Tasseled Cap Brightness (TCB), Tasseled Cap 

Greenness (TCG), and Tasseled Cap Wetness (TCW). The coefficients for the Tasseled Cap 

Functions are listed in Table 4.2. 
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Table 4.1 WRS-2 Path/Row and acquisition date of three scenes Landsat 7 ETM+ imagery 
covering airborne LiDAR inventory sites 

Airborne LiDAR Inventory 
Sites 

WRS-2 Path/Row Date Acquired 

JAM 232/066 July 2004; Aug 2005; July 
2006; Aug 2007; Aug 2008; 
June 2009; Aug 2010; July 
2011; Sep 2012; July 2013. 

TAL 002/067 May 2004; Sep 2005; Sep 
2006; Aug 2007; Aug 2008; 
Aug 2009; June 2010 June 

2011; Aug 2012; July 2013. 
FNA 226/069 Aug 2004; Aug 2005; Aug 

2006; July 2007; July 2008; 
Aug 2009; Aug 2010; Aug 
2011; July 2012; Aug 2013. 

 

Table 4.2 Coefficients for the Tasselled Cap Functions for Landsat ETM+ 
surface reflectance data (DeVries et al., 2016) 

Band 1 2 3 4 5 7 
Brightness 0.2043 0.4158 0.5524 0.5741 0.3124 0.2303 
Greenness -0.1603 0.2819 -0.4934 0.7940 -0.0002 -0.1446 
Wetness 0.0315 0.2021 0.3102 0.1594 -0.6806 -0.6109 

 

4.3 Methods 

4.3.1 RNN-FNN model  

The proposed RNN-FNN model, integrating long short-term memory network (LSTM) and fully 

connected neural network (FNN), consists of k LSTM memory cells and n fully connected 

layers. Figure 4.2 demonstrates the architecture of the proposed model. The LSTM network 

learns the temporal dynamic from the LTS predictors (described in Section 4.2.3) from years t - k 

to t. The output of LSTM feeds into FNN to predict the AGBD of year t. 
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Figure 4.2 Architecture of the proposed RNN-FNN model 

 

Figure 4.3 Structure of the LSTM cell (Modified and adopted from Reddy et al. (2018))   

LSTM is an advanced variant of the traditional recurrent neural network (RNN) that suffers the 

long-term dependencies problem. LSTM and traditional RNN have similar chain structures. This 

chain-like nature enables them to connect previous information to the present output. However, 

unlike traditional RNN, each LSTM memory cell has the gate structure to capture the time 

dependencies (Hochreiter and Schmidhuber, 1997). The gate structure is composed of three gates 

including forget gate (𝑓_), input gate (𝑖_), and output gate (𝑜_) (Figure 4.3). The first step of a 

LSTM memory cell is to feed ℎ_B/ and 𝑥_into the forget gate layer 𝑓_ to decide if the information 

comes from last year should be kept or throw away. The information is completely forgotten if 

the output is 0. In contrast, all the information is kept if the output is 1 (Equation 4.2). Next, the 
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input gate layer 𝑖_ determines the new information that will be stored in the cell (Equation 4.3). 

Afterward, the candidate 𝐶! is updated by 𝐶"! (Equation 4.4, 4.5). Then the output layer 𝑜_ 

generates the information for the output of the cell (Equation 4.6). At last, the output of the 

memory cell ℎ_ is determined by a tanh layer (Equation 4.7) (Equation 4.2 – 4.7 adopted from 

Reddy et al., (2018)).  

𝑓_ = 𝜎(𝑊^g𝑥_ +𝑊bgℎ_B/ + 𝑏g)               4.2 

𝑖_ = 𝜎(𝑊^K𝑥_ +𝑊bKℎ_B/ + 𝑏K)                4.3 

𝐶~_ = tanh(𝑊 (𝑥_ +𝑊b(ℎ_B/ + 𝑏()              4.4 

𝐶_ = 𝑓_𝐶_B/ + 𝑖_𝐶~_                 4.5 

𝑜_ = 𝜎(𝑊 &𝑥_ +𝑊b&ℎ_B/ + 𝑏&)                4.6 

ℎ_ = 𝑜_ ∗ tanh(𝐶_)                  4.7 

The output of LSTM layer feeds into the fully connected layers. The final output yt of the FNN is 

the prediction of AGBD in year t (Equation 4.8) 

𝑦_ = 𝑓(∑𝑤𝑥 + 𝑏)                  4.8  

where 𝑓(∙) is the activation function. 

4.3.2 Experimental procedure 

In order to understand how the time-series length affects the accuracy of RNN-FNN model, the 

time-series ranging from 1 to 10 years were tested separately. The structure of input 3D tensor of 

LSTM was reshaped according to different time-series lengths. The three input dimensions 

represent samples, time steps, and features. Figure 4.3 demonstrates the example structure of 

input 3D tensor of LSTM with different time steps. Other hyperparameters of the RNN-FNN 

model, such as activation function, hidden units, batch size, and kernel initialization, were 

determined by trial and error. 
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Figure 4.4 Structure of input 3D tensor of LSTM with 3 time steps and 10 time steps 

The linear regression model and Random Forest (RF) model were implemented to estimate the 

AGBD with single-date predictors, i.e., the predictors derived from Landsat ETM+ surface 

reflectance images in 2013. Eighty percent of the data were used as the training dataset and the 

other twenty percent of the data were used as the test dataset to evaluate the model performance 

of the proposed RNN-FNN model with LTS predictors and two classic models with single-date 

predictors in terms of R2, RMSE. 

The experiments were conducted on Keras with the TensorFlow backend in Python. The free 

Google Colaboratory 12GB GPU was used to train and test the model. 

4.4 Results 

4.4.1 Vegetation index dynamics 

Throughout the 10-year time-series length (2004-2013), the values of VIs in the JAM, FNA, and 

TAL sites were demonstrated in Figure 4.5. The fluctuation of vegetation conditions in JAM is 

less significant than it in TAL and FNA. The high occurrences of logging activities and fire 

events resulted in the fluctuation patterns in the three sites (Longo et al., 2016). In 2010, FNA 

and TAL were affected by fire events. In the same year, about 35% of JAM had interventions in 

preparation for logging activities. Accordingly, the values of VIs decreased in 2011. Afterward, 
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recovery was observed. In 2012, fires events occurred again in FNA. So there was a slight 

decrease in 2013. Although slight differences existed in the patterns of the four VIs in the three 

sites, they exhibited some general fluctuations of vegetation conditions during the 10 years. It 

can be observed that the peak values occurred in 2007, 2010, and 2012 year. After these peak 

years, a low value was observed in the following year, such as 2008, and 2011. The pattern helps 

the LSTM cells in the RNN-FNN model capture the time dependencies, i.e., a peak value would 

be followed by a low value. 

 

Figure 4.5 Average vegetation Index dynamics over the 10-year time-series (2004-2013) in TAL 

site (A), FNA site (B), and JAM site (C) 

4.4.2 Model performance and comparison 

In this study, we propose the RNN-FNN model to predict AGB in 2013 with 13 predictors 

derived from annual Landsat 7 ETM+ surface reflectance images from 2004 to 2013. In total, 

8,354 values of single-date AGB and 13 LTS predictors were generated to train and validate the 

model. The proposed RNN-FNN model consists of 1 LSTM layer and three fully layers. The 

model contains 2,389 trainable parameters, including 1,740 parameters in the LSTM layer and 

649 are in the fully connected layers. The optimal hyperparameter was determined by 

independent experiments with a time-series length of 10 years (2004-2013) (Table 4.3). 

Adaptive Momentum Estimation (Adam) was selected as the optimizer and the mean absolute 

error was used as the loss function. The batch size of 200 and the epoch of 1000 were used to 

train the model. The same hyperparameters were used in other experiments to evaluate time-

series lengths.  
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Table 4.3 Architecture and hyperparameters of the proposed RNN-FNN model 

Layers Output 
Shape 

Activation 
Function 

# Trainable 
Parameters 

LSTM (N, 15) tanh 1740 
Fully Connected (N, 32) ReLU 512 
Fully Connected (N, 4) ReLU 132 
Fully Connected (N, 1) Linear 5 

                      Note: N is the input sample size. 

To understand the influence of time-series lengths on the accuracy of RNN-FNN model, time 

lengths ranging from 2 to 10 years were explored separately. From Table 4.4, the model 

prediction accuracy gradually increased with increasing the time length. The values of testing R2 

increase from 0.44 to 0.63, and the values of RMSE decrease from 31.2 Mg/ha to 25.5 Ma/ha. It 

can be observed that the accuracy remains stable after 5 years with the testing dataset. Therefore, 

we assume that the time-series length of 7 years is adequate to capture the trajectory.  

Table 4.4 RNN-FNN model performance with different time-series lengths 

 Training Testing 
Time-series Lengths R2 RMSE 

(Mg/ha) 
R2 RMSE (Mg/ha) 

2 years (2012-2013) 0.38 35.8 0.44 31.2 
3 years (2011-2013) 0.62 28.0 0.46 30.6 
4 years (2010-2013) 0.49 32.5 0.56 27.6 
5 years (2009-2013) 0.68 25.7 0.53 28.5 
6 years (2008-2013) 0.64 27.3 0.60 26.5 
7 years (2007-2013) 0.61 28.3 0.62 25.6 
8 years (2006-2013) 0.62 28.0 0.60 26.4 
9 years (2005-2013) 0.65 27.0 0.62 25.8 
10 years (2004-2013) 0.62 28.0 0.63 25.5 

 

To explore the efficiency of the RNN-FNN model with LTS data, linear regression model and 

RF were used to predict AGB with the same predictors derived from single-date data. The RNN-

FNN significantly outperformed linear regression model and RF with the R2 of 0.63 and RMSE 

of 25.5 Mg/ha (Table 4.5). Although we carefully tuned the parameters of RF, such as the 

number of trees, it still suffered a serious overfitting problem. That means the RF would have 

bad performance on unseen data even if it had a very high R2 in the training phase. In the 



66 
 

contrast, the RNN-FNN had similar values of R2 and RMSE in the training and testing phase, 

indicating that it would have a similar performance on extrapolation.  

Table 4.5 Performance comparison of RNN-FNN model, linear regression model, and RF 

  Training Testing 
Model Dataset R2 RMSE 

(Mg/ha) 
R2 RMSE 

(Mg/ha) 
RNN-FNN 10-year LTS data (2004-

2013) 
0.62 28.0 0.63 25.5 

RF Single-date data (2013) 0.90 13.8 0.45 35.2 
Linear 

regression 
Single-date data (2013) 0.38 34.6 0.34 38.7 

 

4.4.2 Aboveground biomass distribution  

The RNN-FNN model was used to generate the AGBD map of the study area with 10-year time-

series predictors (2004-2013) (Figure 4.6). The maximum and minimum values of AGBD are 

497.2 Mg/ha and 8.5 Mg/ha. The average value is 57.6 Mg/ha. Overall, no obvious AGBD 

distribution pattern can be observed. Relatively high values can be observed in the northern part 

and lower values are more concentrated in the middle part.  
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Figure 4.6 Map of AGBD generated by the RNN-FNN model for the study area 

4.5 Discussion 

This study is the first attempt to utilize RNN in estimating forest biomass. The availability of 

airborne LiDAR and LTS provides an opportunity to improve the accuracy of biomass 

estimation in tropical forests with RNN. Limited sample data is the main obstacle to 

implementing RNN due to its requirement of the volume of training data. In this study, airborne 

LiDAR provided by Sustainable Landscape Project (SL) was used to significantly increase the 

sample size. Besides SL, other airborne LiDAR projects (e.g., Improving Biomass Estimation 

Methods for the Amazon project) and spaceborne LiDAR (e.g., Global Ecosystem Dynamic 

Investigation) are continuously developing to provide more LiDAR data for forest management. 

Therefore, the wide application of RNN in forest biomass estimation is promising.  
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The application of LTS is an ongoing topic of interest, and its value in estimating forest biomass 

has been demonstrated by previous studies (e.g., Copper et al., 2021; Nguyen et al., 2020; 

Matasic et al., 2018). However, no attempt has been made to explore the utilization of LTS for 

estimating biomass in tropical forests. Our results indicate that the RNN-FNN model with LTS 

significantly outperformed the RF and linear regression models with single-date Landsat data in 

the Brazilian Amazon. In addition, the model prediction accuracy gradually increased with 

increasing the time-series length (Table 4.4). We found that the accuracy remains stable after 5 

years in this study. A similar conclusion was generated by Pflugmacher et al. (2014). They 

indicated that as little as 5 years of history were meaningful to derive a relationship between 

Landsat-based disturbance history and AGB. In addition, they suggested that at least 10-20 years 

are necessary for a strong relationship in their study region located in the Blue Mountains of 

eastern Oregon, USA. Similarly, Gómez et al. (2014) indicated that 15-25 years is sufficient for 

capturing significant temporal patterns to estimate AGB in pine forests, Spain. However, our 

results suggest that as little as 7 years of history can achieve high accuracy. This may be 

explained by the shorter recovery period in tropical forests than in temperate forests.  

Different LTS change detection methods were used in previous studies, such as Vegetation 

Change Tracker (Huang et al., 2010), Continuous Change Detection and Classification (Zhu and 

Woodcock, 2012), Breaks for additive Season and Trend Monitor (Devries et al., 2015), and 

Landsat-based detection of Trends in Disturbance and Recovery (Kennedy et al., 2010). The 

performances of these methods on disturbances detections depend on the magnitudes of target 

changes. High-impact or stand-clearing disturbances can be accurately detected, while changes 

caused by medium/low-impact disturbances (e.g., selective logging) are more difficult to 

distinguish and characterize (H Nguyen et al., 2020, Cohen et al. 2017). Therefore, the selection 

of an appropriate change detection algorithm relies on clear understandings of the target changes, 

which may be challenging for some specific applications. Instead of using change metrics 

generated by LTS change detection methods, the RNN-FNN models directly use LTS sequence 

data as the input in the modeling process. Therefore, the selection of LTS change detection 

methods is not needed if the RNN-FNN model is used.  

Although the advances of the RNN-FNN have been demonstrated in this study, the black box 

property is the principal shortcoming of deep learning models (Khaki et al., 2020). Due to the 
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complex structures of neural networks, what is learned in their hidden layers is unknown. An 

increasing number of studies have been conducted to understand the learning behaviors of deep 

learning models (e.g., Khaki et al., 2020; Shen et al., 2020; Guo et al., 2019; Chen et al., 2018). 

For example, Khaki et al. (2020) performed a feature selection method to make the CNN-RNN 

model more explainable. Shen et al. (2020) proposed a visual analytics system to interpret RNNs 

on multi-dimensional time-series forecasts. Further exploration of model interpretation is needed 

for the proposed RNN-CNN applied in estimating forest biomass. 

4.6 Conclusions 

This study proposed an RNN-FNN model, integrating the LSTM and FNN, to estimate AGB 

with LTS and airborne LiDAR data. The RNN-FNN model yielded an R2 of 0.63 and RMSE of 

25.5 Mg/ha with 10-year time-series data (2004-2013), which outperformed the Random Forest 

model and linear regression model with single date data. The model prediction accuracy 

gradually increased with increasing the time-series length. The values of testing R2 increased 

from 0.44 to 0.63, and the values of RMSE decreased from 31.2 Mg/ha to 25.5 Ma/ha when the 

time-series length increased from 2 to 10 years. It can be observed that the accuracy became 

stable after 5 years with the testing dataset. Therefore, we assume that the time-series length of 7 

years is adequate to capture the forest disturbance and recovery trajectory in the study area. At 

last, the RNN-FNN model was used to generate a map of AGBD for the study area, which 

demonstrated the practical value of the proposed model. 
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Chapter 5 Conclusion 

5.1 Main Findings 

The overarching goal of this research is to develop an efficient framework upscaling biomass 

from field inventory plot to airborne LiDAR transects and wall-to-wall Landsat imagery level. 

Three research questions were explored and addressed during the development. The research 

questions and related findings are summarized as follows. 

Question 1: Which is the best fitting approach to estimate model parameters for multiplicative 

power models used to explore the relationship between airborne LiDAR metrics and 

aboveground biomass? 

This question was explored and addressed in Chapter 2. Airborne LiDAR is considered the most 

accurate remote sensing method for estimate forest biomass (Nguyen et al., 2020). Determining 

and calibrating the regression model that links LiDAR metrics and biomass inventory data is 

crucial to accurately map forest biomass over a large area. Multiplicative power models were 

commonly used to represent the relationship between biomass and LiDAR metrics. There are 

two approaches to fit the models. The first one is to directly estimate the parameters without log-

transformation. The other one is to fit the linear model on a log-transformed scale using the 

ordinary least squares (OLS) and then back-transform the final model form. However, the 

differences between the two fitting approaches for the biomass-LiDAR metrics model are not 

explored. Therefore, three multiplicative power models fitted by nonlinear least-square (NLR), 

linear ordinary least-square (OLSR), and weighted linear least-square (WLSR) were compared to 

find the most accurate regression model that would be used to calculate the LiDAR-based 

biomass in the subsequent chapters.   

The ANOVA results indicate significant differences among the three models (OLSR, WLSR, 

and NLR) in both fitting and prediction phases with 1000 bootstrap realizations in terms of the 

𝑅!"#$%&' , RMSE, %RMSE, and Bias (Table 2.5 & 2.6). Furthermore, the results of Tukey’s Test 

indicate that significant differences existed between the NLR and OLSR or WLSR at 99% 

confidence level. More extreme predictions were generated by NLR compared to OLSR and 
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WLSR. NLR had a worse prediction performance. In contrast, OLSR and WLSR were more 

accurate in prediction. 

Question 2: Can the deep learning techniques improve the accuracy of aboveground biomass 

estimation in tropical forests with Landsat 8 imagery and airborne LiDAR data? 

This question was explored and addressed in Chapter 3. Due to the high level of biomass and 

heterogeneity of tropical forests, the commonly used models perform worse in tropical forests 

compared to boreal and temperate forests. In recent years, deep learning methods have been 

increasingly used across a variety of remote sensing tasks. However, few studies have utilized 

deep learning in estimating forest biomass. Therefore, the question aims to explore the 

capabilities of deep learning in biomass estimations. 

A deep feedforward fully connected neural network regression model (DNN) is proposed to link 

LiDAR-based biomass and Landsat spectral metrics. Compared to the Random Forest model, 

Support Vector Regression model, and linear regression model, the proposed DNN improved the 

R2 from -0.0002 (linear regression model) to 0.64 and reduced the RMSE from 105.3 Mg/ha 

(linear regression model) to 55.7 Mg/ha (Table 3.9). Different from previous studies, this study 

found that including vegetation indices and Tasseled Cap components cannot improve the model 

accuracies. The mathematics behind DNN may contribute to this. A large amount of nonlinear 

functions exists in hidden layers of DNN. When only SR bands used as predictors, the output of 

these hidden layers may carry the similar information as VIs and TC components carried. 

Therefore, it can be concluded that the proposed DNN model can accurately and efficiently to 

map biomass over a large area without additional calculations of vegetation indices and Tasseled 

Cap components. 

Question 3: How can the forest disturbance and recovery history derived from Landsat time-

series data improve the accuracy of biomass estimation with state-of-art deep learning 

techniques? 

This question was explored and addressed in Chapter 4. Disturbance and regrowth change 

metrics derived from Landsat time-series data have been demonstrate of great value in estimating 

biomass in boreal and temperate forests. However, no studies explore the relationship between 
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Landsat time-series data and biomass in tropical forests. The study conducted in Chapter 4 

proposed an RNN-FNN model to address the research questions. 

The proposed RNN-FNN model integrates the long short-term memory network (LSTM) and the 

fully connected neuron network (FNN). The LSTM network learned the temporal dynamic from 

the 13 LTS predictors from 2004 to 2013. The output of LSTM fed into FNN to predict the 

AGBD of the year 2013. The accuracy of RNN-FNN model gradually increased with increasing 

the time-series length. The values of testing R2 increased from 0.44 (2 years) to 0.63 (10 years), 

and the values of RMSE decreased from 31.2 Mg/ha (2 years) to 25.5 Ma/ha (10 years). The 

RNN-FNN model was compared to the Random Forest model and linear regression implemented 

with single-date predictors. The results indicate that the RNN-FNN model significantly 

outperformed the Random Forest model and linear regression model.  

5.2 Future Research Opportunities 

The accuracy and generality of the regression model linking LiDAR metrics and field-based 

biomass can be increased to generate more accurate tropical forest biomass maps. Developing 

separate regression models based on stratified inventory plots is a promising opportunity. The 

height-diameter (H-D) allometric relationship might be a clue to stratify the inventory plots. 

However, it remains several challenges. Thomas et al. (1996) used an asymptotic model to 

describe the H-D relationships in 38 species within 6 genera of Malaysian rain forests. They 

found that the H-D relationships were affected by species-specific asymptotic maximal tree 

height. That means that large trees often essentially cease height growth but continue to increase 

in stem diameter. However, it is challenging to obtain species-specific asymptotic maximal tree 

height. Thomas et al. (1996) used height and diameter field measurements to estimate asymptotic 

maximal tree height. But the species in the Malaysian rain forests are different from Amazon 

forests. Besides, environmental and climatic factors also affect the tropical tree H-D relationship. 

Feldpausch et al. (2011) found H-D allometry varies along spatial and environmental gradients. 

Stand-level average H declines more sharply with elevation than does the average D. Soil 

substrate may also interact with elevation to modulate the H-D relationship. In addition, tree 

height is limited by water availability. Maximum tree height may be expected to coincide with 

rainfall distribution. Furthermore, they found that trees growing in regions characterized by 

occasional but extreme wind events, such as cyclones or hurricanes, would tend to be shorter for 
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a given D than those growing in less perturbed environments. Gorgens et al. (2021) explored the 

distribution of the tallest trees in the Amazon basin. They found that trees grow taller in areas 

with high soil clay content (> 42%), lower radiation (< 130 clear days per year), and an optimal 

precipitation range of 1,500 to 2,500 mm/yr. Therefore, more explorations are needed due to the 

complexity of the H-D relationship.  

Spaceborne LiDAR has the potential to provide consistent measurements of the forest canopy 

height and canopy vertical structure on a global scale. The Global Ecosystem Dynamic 

Investigation (GEDI) instrument was launched in December 2018 and starts collecting scientific 

data in operational mode in March 2019. GEDI is expected to produce about 10 billion cloud-

free observations during its 2-year mission length. A very recent study has employed GEDI data 

and Landsat data to generate a 30 m spatial resolution global forest canopy height map for the 

year 2019 (Potapov et al., 2021). This study demonstrates the value of integrating GEDI data and 

Landsat time-series imagery in estimating forest canopy height. The availability of GEDI and 

Landsat provides the promising opportunity for mapping forest biomass on a continental or 

global scale. 
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