PARTICIPATION AND RETENTION WITHIN A PREDOMINANTLY ASIAN ADULT ESL POPULATION IN HONOLULU, HAWAII
 Roderick A. Gammon
 McKinley Community School for Adults

Abstract

This study quantifies adult student participation and retention in an English as a Second Language (ESL) program in Honolulu, Hawaii. Within the prior literature, American quantitative participation studies often under-represent non-Spanish or English-speaking populations. The retention literature is commonly qualitative and considers binomial retention. Using data gathered by the institution's testing system, the discussion in this paper therefore first asks, how does the observed population ($N=918$; n $=594$), which is largely Asian, compare to the national population? Second, what predictors can be identified relevant to multinomial retention? In brief, the population is younger and better educated, but less often employed than the national population. Logistic regression analyses indicate that class type and prior diploma predict withdrawal within two weeks with 68.60% accuracy. However despite significant model fits ($p<.005$), overall predictive ability ranged between 51.30% and 66.00% for assessed models.

INTRODUCTION

This study reports on Asian adult English as a Second Language (ESL) participation and retention within a population in Honolulu, Hawaii. Particularly the Asian population is compared to the national adult ESL population, to fill a gap in American participation literature. Additionally, retention is treated as a multinomial variable to better clarify late enrollment, early withdrawal, and disruptively brief attendance. The following literature review contextualizes the study's concerns and frames the research questions. The review will also describe the inferential techniques applied to the data.

National Adult ESL Participation

This section summarizes observations of the national adult ESL population in the US, of which the studied population is a component. The section ends by reviewing an important gap in the research, under-representation of Asian students in the US population, and proposes one of the two research questions investigated by this study. The studied population is suitable to fill gaps in the study of Asian adult ESL students because Honolulu and the studied population are respectively 68% (US Census Bureau, 2000) and 94% of Asian ethnicity.

The US Department of Education provides an important source of American adult education data with its National Education Household Surveys (NHES) that were created to serve a Congressional information collection mandate (Brick, 1996, pp. 1-2) ${ }^{1}$. Given by telephone in both English and Spanish, these studies are also valuable in that their populations are impressively large, NHES: 99 included 194,625 participants (Kwang \& Creighton, 1999, p. 12).

Silva, Cahalan, and Lacireno-Paquet (1998, p. 3), in a US Department of Education analysis of national adult education, divided adult education into four types: English as a second language (ESL), basic skills and general equivalency diploma, credential related, and work and career related. Fitzgerald (1995), reviewing the US Department of Education commissioned National Evaluation of Adult Education Programs, found that ESL participation is greater than any other component of adult education. Fitzgerald (1995) further found that 21% of ESL programs are the prominent component of their institutional programs.

Kwang and Creighton (1999, p. 12) note that for NHES: 99, current ESL students were an estimated 1% of all adults in the US. Subdividing all adults by highest diploma, 3% of adults with less than a high school (HS) diploma had attended ESL, 1% had an HS diploma and ESL, 1% had some postsecondary education and ESL, and 1% had a baccalaureate or higher degree and ESL.

Fitzgerald (1995) found that within the American adult ESL population, 19\% are Asian, 85% in major metropolitan areas, 72% in the Western US, 98% foreign born, 73%

[^0]initially enroll at the lowest level, 48% employed, 33% not in labor force, and 50% completed at least high school. Creighton and Hudson (2002, p. 5), summarizing cumulative data from NHES administrations from 1991 through 1999, calculated that 22% of adult ESL students were Asian.

Kwang, Collins, and McArthur (1997, p. 2) found the candidate ESL population as the NHES: 95 reported to be 12 million adults who do not speak English in the home. Reviewing cumulative NHES data from the 1990's, Creighton and Hudson (2002, p. 24) and McArthur (1998) each note that 11% of that ESL candidate population attended ESL courses, while Kwang et al. (1997, pp. 3-4) reported that 10.8%, roughly 1.3 million, of the adult ESL candidate population took an ESL class in the 12 months preceding their survey response. Kwang et al. (1997, p. 5) further reported that 58% of adult ESL students (about 754,000) are studying ESL without it being a college requirement.

Summarizing factors affecting participation, Henry and Basile (1994) include age, gender, ethnicity, education, occupation, employment status, course length, and course meeting time. Among those taking ESL courses outside of a college program, "communicative concerns" was the most often cited reason for participation (29%; Kwang et al., 1997, p. 5). McArthur (1998) notes that among NHES: 95 ESL candidates without participation in the last 12 months but who are "interested," the most represented group were ages 26-45, claim to read English less than "very well," and have immigrated within the past 25 years.

Kwang et al. (1997, p. 4) determined that the following NHES: 95 respondent characteristics were significantly related to ESL participation in the prior 12 months: age, educational attainment, length of US residence including as native born Americans, and self-reported English reading ability. Regarding each of those features, Kwang et al. (1997, pp. $4 \& 11$) report that 31.8% of ESL participants were under age $45,14.3 \%$ had a high school diploma, 58.5% had lived in the US for less than six years, and 15% felt that they do not read well. Low household income, Spanish use in the home, and employment status were not found to be significantly associated with participation (Kwang et al., 1997, p. 8). Among adult ESL participants, 37.1\% engaged in programs with zero personal monetary expenses (Kwang et al., 1997, p. 16, table 3). Creighton and Hudson (2002, p. 4) note that from 1991-1999, 89\% of ESL participants were under age 44, 18\%
were unemployed, and nearly half had no high school diploma, but 23% had some postsecondary degree.

Although the NHES and other national surveys provide important data, there are particular problems with them. Specifically, as Silva et al. (1998, p. 2) note, survey design has a strong influence on participation rates. For example, the NHES may underrepresent non-English/Spanish speakers (Creighton and Hudson, 2002, p. 7; McArthur, 1999; Kwang \& Creighton, 1999, p. 2). Kwang et al. (1997, p. 8) illustrate the gravity of this issue when they note that there was only a 28% survey completion rate for ESL candidates not speaking either English or Spanish in the home. Unfortunately, such omissions run through much of adult education. For example Skilton-Sylvester (2002, p. 23) notes that the Equipped for the Future (Stein, 2001) standards use worker and citizen roles that were decided apart from adult ESL learner input, particularly that of Asian students. The difficulties from such under-representation are further compounded in the studied context because the majority of the Honolulu population is Asian, to an extent well above the national average (68% in Honolulu vs. 4.8% nationally, United States Census Bureau, 2000). Therefore the first research question is:

1. To what extent can the studied population fill knowledge gaps regarding Asian adult ESL participants?

Retention

This section reviews retention and offers an additional research question. Pre/posttesting or repeated linguistic assessment measures are also described because the data collection context in this paper was centered on such an approach.

Kerka's (1988) review of adult student retention research identified the following background factors affecting retention: prior education, age, and gender. Fitzgerald (1995) names the following factors as increasing retention: active use of support services such as counseling and transportation, attendance during the day versus the night, and use of computer assisted learning labs or also independent study. Brod (1995) organizes factors affecting urban literacy program retention into personal and program types. Personal factors include affective state, scheduling concerns, and personal relationships.

Program factors include resource availability, placement concerns, lack of peer community, and curricular relevance.

Skilton-Sylvester (2002, p. 10), interpreting adult ESL retention for Cambodian women in the US, constructs a model where ESL participants react in relation to forces beyond internal motivation including employment and family pressures. Such an approach is useful because, as Belzer (1998) indicates, student absence is not simply a case of dropping out but of changing attendance patterns in relation to other factors; often students plan to return to the institution in later semesters. It should be noted that one effect of fluid attendance rates is that, in practice, one cannot collect exit data because exit dates are only known in retrospect.

The reporting requirements of the No Child Left Behind Act (NCLB; Bush, 2002) have been applied to federally funded adult ESL, ultimately guiding the studied institutions to use the Comprehensive Adult Student Assessment System (CASAS) testing system. The CASAS system is a traditional intervention study model (Brown \& Hudson, 2002, pp. 225-230) using pre- and post tests to measure student gains according to established criteria. A benefit of the CASAS system is that it collects student background data and can provide indication of student drop times via test date records.

Although extremely informative, the retention literature appears to benefit less frequently from quantitative approaches, including consideration of retention as multinomial. For example the studies cited in this section are qualitative with the notable exception of Fitzgerald (1995) who was actually concerned with participation, which is often treated quantitatively. Additionally, the retention literature commonly considers retention as a binomial variable, rather than as a phenomena allowing for withdrawal at different times. Because of the host institution's implementation, described later, this study will be able to consider retention as a multinomial factor. Therefore this study will attempt to answer the following:
2. What factors can be quantitatively identified as predictors of retention as a multinomial factor?

Logistic Regression

Before beginning the study, this final literature review section introduces logistic regression, the inferential statistical method adopted for this study. Regression methods, which attempt to graph outcome fluctuations to a straight line, are often used in the behavioral sciences. Regarding ESL participation, one needs to use a special class of regression methods because, as Tikkanen (1998) demonstrated, methods insensitive to variable interaction effects neglect important aspects of participation data.

Logistic regression is however capable of including interactions among independent variables (Tabachnick \& Fidell, 2001, pp. 519-520). Therefore logistic regression has become prominent in ESL analyses, for example Creighton and Hudson (2002, p. 41) used two step-wise, or iterative and variable-additive, logistical regression models on NHES: 99 data; the first model included all adults while the second focused on employed adults. McArthur (1998, p. 4) also used logistic regression in studying NHES data.

One practical concern with logistic regression is that the number of variable permutations increases with each added variable in a given model, multiplying the opportunities for low observed frequencies of test cases. When observed frequencies are low, one has three options: accept low power, collapse factor levels, or use a goodness of fit test that does not utilize expected frequencies (Tabachnick \& Fidell, 2001, pp. 522 \& 537). One such goodness-of-fit test is reported in the "Model Fitting Information" table given by SPSS, particularly its X^{2} result (Tabachnick \& Fidell, p. 538). Interpretation of X^{2} significance in this study was aided by the critical value table provided by Gravetter and Wallnau (2004, p. 699).

METHOD

Population

The studied population is composed of ESL students at the McKinley Community School for Adults located in central urban Honolulu, Hawaii during fall 2003. The institution was founded in 1948 and is currently supported by state and federal funds. In accordance with its legislative mandate and budgetary stipulations, ESL education is
offered without fee (excepting textbook fees, which may be subsidized in some cases). Enrollment is offered throughout the semester.

The survey focuses on self-identified Asian students who have uncorrupted data and who sat for at least one CASAS test, with stratification by time of program entry and time of class. Regarding size, the total population that sat for at least one test was 918, which had 594 complete data records, including 560 Asian students. Further description, including factor level frequencies for seven different population samples, is given in the results section. Tables 1 and 2, which describe the population numerically, are held until the results section so that transformations applied to the data can be described first.

Each member of the population is characterized by institutional and background factors describing the student. The institutional factors are date of entry, number of tests, class level, and class time. Date of entry was collected as a date. However the dates were ambiguous because they could have been recorded on one of two different occasions: at formal registration or on the test date. Therefore the dates were converted to represent the module of entry, a unit denoting a two-week period adjusted for holidays. As used by the institution, a module is specifically 10 instructional sessions of three hours for a daytime class and eight sessions of 2.5 hours for an evening class. The number of tests taken was treated as the outcome variable for the logistic regression and was either 1,2 , or 3 . Because of the method of test provision, sitting for one test indicates 1 module of attendance, two tests indicate 3 modules, and three tests indicate 5 modules.

The class levels were as follows, with their US National Reporting System designation given in parentheses: ESL-1 (beginning, pre-literacy, and literacy, the latter also optionally bilingual with Chinese, Korean, or Vietnamese), ESL-2 (low intermediate), ESL-3 (intermediate), ESL-4 (high intermediate), ESL-5 (low advanced), and ESL-6 (advanced). Class times were morning, afternoon, and evening.

Background factors include all remaining data points: gender, age, highest grade level, highest diploma, native language, labor status, and whether educated in the US. Level of prior schooling was collected as grade level number. Diploma values were none, GED, High School, Technical Certificate, A.A./A.S., four-year college, graduate studies, and other. Reported native languages were: Chinese, English, Farsi, Korean, Russian,

Spanish, Tagalog, Vietnamese, and "other." Labor status included employed, unemployed, not seeking employment, and retired.

Apparatus

The analysis method used three data management systems. Data were collected using the CASAS TopsPro system, that system exported Microsoft Excel (Mac OS X) compatible data that were used for collation and transformative coding, and then the Excel data were analyzed using SPSS (version 11, Mac OS X). This study counts participation in multiple-choice reading tests, although there are also listening tests conducted in ESL-1 through ESL-3. Although the prior semester included exploratory piloting, the Fall semester 2003 saw the first institution-wide piloting of the system that included three test periods in all classes. The primary form of faculty training for the studied period was through text memorandums.

CASAS data are collected in class using Scantron compatible sheets. There are three forms used in the CASAS system. Entry forms are used to collect background data on the student and are generally begun on registration and completed on the first test date; therefore a student's CASAS entry date may be either their registration or first test date ${ }^{2}$. Update forms are used for exit data, including personal goal achievement and hours of instruction, these are completed on the last test date or, in the case of attrition, by the instructor after the semester. Finally test sheets provide performance data and are completed on the date of each particular test. This study uses data from entry and test sheets. The exact data used in the study are detailed in the next section, after description of collection and transformation procedures.

Procedure

Because of the fluid nature of enrollment, three test sessions were provided in the semester; it was hoped that this would increase the number of paired tests. Each test was also administered over an entire module to ensure participation by students who might otherwise have missed a single date. In practice, this meant that one day was given over

[^1]to a class wide test session, and then instructors retained test materials for the rest of the module to administer to any absentees in individual sessions. Therefore absence of a test record indicates a prolonged absence. Only students registering within the first module were considered in the logistic regression because they were the only population segment that had the opportunity to achieve full retention.

All ESL levels took reading tests, the first three levels also took a listening test. In addition to a limited distribution for listening tests, they were administered within a reduced time period because audio prompting precluded concurrent instruction and makeup testing. Therefore this study considers only the reading tests.

The sample was drawn from a total population of 918 students who were of varied ethnicities and entry dates. Of those, there were 594 who had absolutely no data corruption of any kind. Data corruptions that resulted in case removal were absence of data due to corrupted identification numbers and also semantically invalid data for a given field. For that sample and selected views of it, factor level frequencies were tabulated. All studied cases sat for at least one test. Those cases having sat for 0 tests were omitted because all such cases occurred within a wide set of errors. No precise reporting of the number and kind of data errors was attempted.

Birthdates were collapsed into age brackets following the NHES. Level of prior schooling was transformed into grade brackets based on the public school district that the institution resides within: $0,1-6,7-8,9-12,13-16,17-19$ (19 being the highest reported grade).

Different views of the Asian population entering in module 1 were analyzed using multinomial logistic regression in SPSS. Asian students were selected for logistic regression because of the above stated research questions and because they constituted nearly 95% of the whole population; limiting the study to Asian students allowed ethnicity to be both focused upon and factored out. Some categories were further collapsed to enable a valid logistic regression analysis; these manipulations are described in the results sections.

RESULTS

Table 1 (tables are at the end of the paper) provides frequencies for each factor level for each of three population views: all complete student records ($n=594$), all Asian students ($n=560$), and all Asian students who enrolled in the first module ($n=468$). As described, the dependent variable was the post-test count, therefore Table 1 provides level frequencies for each post-test level as well as for the whole population.

The population first analyzed by logistic regression was drawn from all Asian students who enrolled during module 1 . However, there was no significant model fit, primarily because 65% of potential outcome cells had zero cases in the data. Therefore the class type, age, highest diploma, and labor status independent variables were collapsed, and cases with English as a native language were omitted. Additionally, the highest grade level factor is omitted from Table 2 and from all logistic regression models. That omission was made because it and highest diploma are not independent from each other. Additionally in some models diploma was significant, while substitution of grade level never produced significance. Table 2 describes factor level frequencies for all Asian students enrolled in module 1, after data collapsing, plus sub-populations divided by class time.

Table 3 summarizes goodness-of-fit tests for logistic regression outcomes on the following models: all Asian students enrolled in module 1 (A), A after factor level collapsing (C), one model from C for each time slot of morning (CM), afternoon (CA), and evening (CE), and an analysis of CE with a consideration of interaction effects (CEI). The A, C, and CE models were all significant at $p<0.025$. The number of empty cells in each analysis is also reported in Table 3. The value does not vary except for CEI, because that model consisted only of the significant predictors from CE , thus drastically limiting the number of possible cases.

Tables 4-7 provide factor likelihood ratios for each variable in the significant models, with the significance level for the X^{2} of each variable, based on a zero factor model (as reported by SPSS). Comparisons of Tables 4 and 5 indicate the benefit of collapsing, in that the overall significance of the model increased with collapsing, although particular predictors did shift. The CA model, with significance only at $p<0.1$, contained no
significant predictors, further illustrating the poor capacity of that model. Although the CE model was suitably significant at $p<0.025$, its predictors were similar to, and did not perform better than, C's.

Tables 8 and 9 describe the predictive effectiveness of each significance model as a ratio of correctly identified cases. Overall performance ranged from . 532 to .660. The most predictive model was the CA model, however, recall that Table 6 indicates that the model contains no clear predictors. Overall performance of each model was low, however, for each, performance in the prediction of cases with only 1 test was higher, ranging from .686 to .821 accuracy.

DISCUSSION

The policy to administer tests over several days was a response to fluctuating student attendance rates. However that administrative decision created a situation in which a missed test became evidence of prolonged absence, as opposed to a temporary absence such as an isolated sick day. It is on this basis that the number of tests is interpreted as a proxy for direct attendance data. Matching that information to background data, a search was made for particular factor levels that clustered around particular outcomes. However because logistic regression treats the analyzed outcome variable as discrete, this study provides no indication, positive of negative, of the interaction between those background factors and the causes of poor retention. Therefore the results do not suggest why less than perfect attendance occurs, but provide information on who to ask first when answering that question.

Compared to the national values given in the literature review, Table 1 depicts the population as younger (51.17% under 45 , vs. 31.8%) and better educated (39.06% high school graduates vs. 14.3%, and 34.01% postsecondary degrees vs. 23%), but more often unemployed (46.8% vs. 18%). The evening population is even younger (57.94% under 45), but less educated (38.1% with no degree of any kind) and more often employed (60.32\%). Regarding class type, Honolulu students tend to be in an ESL 1 course, although after data collapsing ESL 4-6 form the primary group. Despite that effect from collapsing, near majorities of the afternoon and evening populations attended bilingual

ESL 1 courses. The most common native language is Chinese (33.16\%), except for the afternoon population who primarily speaks Korean (62.14\%). Low afternoon attendance by Chinese speakers is possibly attributable to there not being a Chinese bilingual ESL 1 course at that time.

Table 2 provides values for the Asian population that may be compared to the national adult ESL population, in answer to the first research question. For the Asian segment of the studied population, we find that most are enrolled in an ESL-1 level class (48.03\%), with the larger portion of that group being enrolled in a bilingual class (27.15\%). 47.10% of the Asian population is under age 45 , making the population younger than the national population, but not as young as the entire institution's student body. The Asian segment of the population is better educated, with 43.39% holding a high school degree and 31.09% holding a postsecondary degree, which are higher than both the institutional and national proportions. The population is unemployed (44.08\%) less often than the institution-wide population, but still much more than the national population.

Unfortunately, the logistic regression models did not provide clear results, leaving the second research question without a clear answer. However the regression results remain useful indicators of populations deserving qualitative study and possible intervention. Additionally, the model fits increased for the subpopulations having only one test; this group is also most important to administration because it represents early dropouts. In practice the institution already attempts telephone exit interviews with students who have ceased attending, but resources are of course finite. Therefore the regression results may increase the efficiency of existing review mechanisms. Table 5 informs us that the factors of class type and diploma are the most informative. Using Table 2, likely early withdrawals are in the higher ESL levels of 4-6 and have a high school diploma.

The institution's administrative policies rationally seek to minimize cases of students sitting for only 1 test, because such cases interfere with NCLB reporting requirements. Regarding the predictors of class type and diploma identified by the logistic regression models (Table 5), the cross-tabulation given by Table 2 is informative. For both the total and evening populations, the earliest withdrawn students tend to be in the higher ESL levels 4-6 and have a high school diploma. To that extent, it seems that low retention is
not caused by frustration borne of the largest language barrier coupled with poor schooling, a common stereotype. Instead, given the intersection of denoted English proficiency and workforce skill these factors could connote, it appears that this population may be ripe for more workplace-targeted programs.

The study also revealed that the CASAS background form's native language question malfunctions; the near majority response was "other" (28.11\%). In practice "other" has included a variety of Asian languages including Ilokan, Indonesian, Japanese, and Thai. Although the item provides a blank for naming the "other" language, capturing and coding of that data is done manually, thereby rendering it more costly and prone to error. A possible solution is to transform the question from list selection to coding based on an established list of languages, unifying language codes and decentralizing the burden of initial data verification into the classroom (instructors are already responsible for initially proofreading the background data on student forms).

CONCLUSION

This study attempted to fill gaps in the adult ESL literature by providing a profile of an Asian population where before there had been mostly survey attrition statistics. Additionally a logistic regression analysis was conducted in an attempt to identify students who might be most likely to leave an adult ESL program early. In addition to the two research questions, this study helped resolve practical administrative concerns. Having completed this study, three additional questions present themselves.

One perpetual administrative concern is the continued improvement of test administration practices. Therefore, a useful first follow-up study would be to compare data from subsequent semesters and quantify any trends in factor levels and data quality. Factor level trends, changes in the student body, are interesting in themselves, while changes in data quality may demonstrate the impact of in-service training.

Although this study has provided useful results, extrapolation to national populations cannot be directly made. In part, because the population is under-represented, it neglects adult students in tuition-bearing programs within the same geographic neighborhood. However the differences between the population and the national ESL population are
likely to be increased by considering those programs. Such programs are primarily offered as college programs, which are unlikely to increase the aggregate age, or decrease the educational level, of the population. Still, a deeper problem exists, which is whether the studied sample is representative. The sample was collected by omitting records with invalid data, however it may be that certain subsections of the population are prone to data errors, perhaps caused by linguistic or cultural barriers. If so, then this study would have very little ability to directly illuminate other contexts.

Finally, the study presents a qualitative opportunity as well. Specifically, case studies need to be considered for the task of identifying and intervening in student withdrawal. Currently the institution can only react to withdrawal; this study was a step in the institution's attempt at becoming more proactive.

REFERENCES

Belzer, A. (1998). Stopping out, not dropping out. Focus on Basics, 2(A). Retrieved March 4, 2004 from http://www.gse.harvard.edu/~ncsall/fob/1998/belzer.htm

Brick, J. M. (1996). Undercoverage bias in estimates of characteristics of adults and 0to 2-year-olds in the 1995 National Household Education Survey. Working Paper No. 96-29. Washington, DC: US Department of Education, National Center for Education Statistics. Retrieved March 30, 2004 from http://nces.ed.gov/

Brod, S. (1995). Outreach and retention in adult ESL literacy programs. ERIC Digest. (ED383241). Retrieved March 27, 2004 from http://www.ericfacility.net/databases/ERIC_Digests/ed383241.html

Brown, J. D., \& Hudson, T. (2002). Criterion-reference language testing. Cambridge: Cambridge University.

Bush, G. W. (January 7, 2002). The No Child Left Behind Act of 2001, executive summary. US Department of Education. Retrieved November 10, 2003 from http://www.ed.gov/nclb/overview/intro/execsumm.pdf
Creighton, S., \& Hudson, L. (2002). Participation trends and patterns in adult education: 1991 to 1999, NCES 2002-119. Washington, DC: US Department of Education, National Center for Education Statistics. Retrieved March 23, 2004 from
http://nces.ed.gov/pubsearch/pubsinfo.asp? pubid=2002119
Fitzgerald, N. B. (1995). ESL instruction in adult education: Findings from a national evaluation. ERIC Digest. Washington, DC: National Clearinghouse for ESL Literacy Education. (EDRS No. EDO-LE—95-03). Retrieved March 23, 2004 from http://www.cal.org/ncle/digests/FITZGERA.HTM
Gravetter, F. J., \& Wallnau, L. B. (2004). Statistics for the behavioral sciences ($6^{\text {th }}$ ed.). Belmont, CA: Thomson \& Wadsworth.

Henry, G. T., \& Basile, K. C. (1994). Understanding the decision to participate in formal adult education. Adult Education Quarterly, 44(2), pp. 64-82.
Kerka, S. (1998). Strategies for retaining adult students: The educationally disadvantaged. ERIC Digest No. 76. ERIC Clearinghouse. Retrieved March 4, 2004 from http://www.ericfacility.net/databases/ERIC_Digests/ed299455.html

Kwang, K., Collins, M., \& McArthur, E. (1997). Participation of adults in English as a second language classes: 1994-95. Washington, DC: US Department of Education, Office of Educational Research and Improvement. (NCES 97-319). Retrieved March 24, 2004 from http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=97319

Kwang, , K., \& Creighton, S. (1999). Participation in adult education in the United States: 1998-99. Washington, DC: US Department of Education, National Center for Education Statistics. (NCES 2000-027). Retrieved March 24, 2004 from http://www.nces.ed.gov/

McArthur, E. (1998). Issue brief: Adult participation in English-as-a-second-language (ESL) classes. Washington, DC: US Department of Education, National Center for Education Statistics. Retrieved March 23, 2004 from http://www.nces.ed.gov/

Silva, T., Cahalan, M., \& Lacireno-Paquet, N. (1998). Adult education participation decisions and barriers: Review of conceptual frameworks and empirical studies. Washington, DC: US Department of Education, National Center for Education Statistics.

Skilton-Sylvester, E. (2002). Should I stay or should I go? Investigating Cambodian women's participation and investment in adult ESL programs. Adult Education Quarterly, 53(1), 9-26.

Stein, S. (2001). Equipped for the future content standards: What adults need to know
and be able to do in the $21^{\text {st }}$ century. Washington, DC: National Institute for Literacy. Tabachnick, B. G., \& Fidell, L. S. (2001). Using multivariate statistics (4 ${ }^{\text {th }}$ ed.). Boston: Allyn \& Bacon.
Tikkanen, T. (1998). The age-participation relationship revised: Focus on older adults. Adult Education Quarterly, 49(1). Retrieved March 23, 2004 from EBSCO Host/Academic Search Premier (Institutional URL).

United States Census Bureau. (2000). Hawaii quick facts from the US Census Bureau. Retrieved November 11, 2003 from http://quickfacts.census.gov/qfd/states/15000.html

Table 1
Level Frequencies: Three Views

Gender	Female Male	203	126	108	437	0.7357	190	121	105	416	0.7429	148	103	101	352	0.7521
		73	47	37	157	0.2643	69	44	31	144	0.2571	46	40	30	116	0.2479
	Total	276	173	145			259	165	136			194	143	131		
Age ${ }^{\text {b }}$	16-24	26	9	7	42	0.0707	22	7	6	35	0.0625	10	5	6	21	0.0449
	25-34	64	38	23	125	0.2104	61	37	19	117	0.2089	43	32	17	92	0.1966
	35-44	74	32	31	137	0.2306	68	30	29	127	0.2268	55	26	28	109	0.2329
	45-54	33	36	30	99	0.1667	33	35	29	97	0.1732	25	32	28	85	0.1816
	55-64	34	33	21	88	0.1481	32	33	21	86	0.1536	25	28	20	73	0.1560
	65+	45	25	33	103	0.1734	43	23	32	98	0.1750	36	20	32	88	0.1880
	Total	276	173	145			259	165	136			194	143	131		
Native Language	Chinese	88	58	51	197	0.3316	87	58	51	196	0.3500	64	53	49	166	0.3547
	English	3	4	1	8	0.0135	3	3	0	6	0.0107	2	3	0	5	0.0107
	Farsi	0	0	1	1	0.0017	0	0	0	0	0.0000	0	0	0	0	0.0000
	Korean	68	43	48	159	0.2677	68	43	48	159	0.2839	48	35	46	129	0.2756
	Russian	2	1	0	3	0.0051	0	0	0	0	0.0000	0	0	0	0	0.0000
	Spanish	5	2	5	12	0.0202	0	0	0	0	0.0000	0	0	0	0	0.0000
	Tagalog	2	0	0	2	0.0034	0	0	0	0	0.0000	0	0	0	0	0.0000
	Vietnamese	22	13	10	45	0.0758	22	13	10	45	0.0804	20	13	10	43	0.0919
	Other	86	52	29	167	0.2811	79	48	27	154	0.2750	60	39	26	125	0.2671
	Total	276	173	145			259	165	136			194	143	131		

Factor	Level	Complete Records ($n=594$) Test Count					Asian Students ($n=560$) Test Count					Module 1, Asian ($n=468$) Test Count				
		1	2	3	Total	\%	1	2	3	Total	\%	1	2	3	Total	\%
Highest Grade Level ${ }^{\text {c }}$	0	4	6	2	12	0.0202	4	6	2	12	0.0214	4	6	2	12	0.0256
	1-6	18	10	17	45	0.0758	18	9	14	41	0.0732	14	9	13	36	0.0769
	7-8	6	8	14	28	0.0471	5	8	14	27	0.0482	5	8	14	27	0.0577
	9-12	157	101	71	329	0.5539	149	95	67	311	0.5554	110	83	65	258	0.5513
	13-16	76	42	38	156	0.2626	71	42	36	149	0.2661	52	33	34	119	0.2543
	17-19	15	6	3	24	0.0404	12	5	3	20	0.0357	9	4	3	16	0.0342
	Total	276	173	145			259	165	136			194	143	131		
Highest Diploma	None	44	37	51	132	0.2222	43	37	46	126	0.2250	32	35	45	112	0.2393
	GED	3	0	3	6	0.0101	3	0	3	6	0.0107	3	0	3	6	0.0128
	High School	120	69	43	232	0.3906	113	65	41	219	0.3911	86	58	39	183	0.3910
	Technical Certificate	8	10	4	22	0.0370	5	10	4	19	0.0339	4	9	4	17	0.0363
	AA/AS	20	18	7	45	0.0758	19	18	7	44	0.0786	16	13	7	36	0.0769
	4yr College	54	27	25	106	0.1785	50	27	24	101	0.1804	38	22	22	82	0.1752
	Graduate Studies	10	4	3	17	0.0286	9	1	2	12	0.0214	6	1	2	9	0.0192
	Other	17	8	9	34	0.0572	17	7	9	33	0.0589	9	5	9	23	0.0491
	Total	276	173	145			259	165	136			194	143	131		
Ed. Outside U.S.? ${ }^{\text {d }}$	Yes	200	111	96	407	0.6852	186	104	94	384	0.6857	146	88	90	324	0.6923

Labor Status	Employed	70	38	41	149	0.2508	65	36	37	138	0.2464	56	36	37	129	0.2756
	Unemployed	127	92	59	278	0.4680	117	87	55	259	0.4625	79	73	52	204	0.4359
	Not seeking work	52	27	19	98	0.1650	52	26	18	96	0.1714	35	19	17	71	0.1517
	Retired	27	16	26	69	0.1162	25	16	26	67	0.1196	24	15	25	64	0.1368
	Total	276	173	145			259	165	136			194	143	131		
Ethnicity ${ }^{\text {e }}$	Asian	259	165	136	560	0.9428	NA									
	Black	2	0	1	3	0.0051	NA									
	Filipino	2	0	0	2	0.0034	NA									
	Hispanic	11	3	5	19	0.0320	NA									
	Native Hawaiian or other Pacific Islander	3	4	1	8	0.0135	NA									
	White	13	5	7	25	0.0421	NA									
	Total ${ }^{\text {f }}$	NA	NA	NA			NA	NA	NA		NA	NA	NA	NA		

Note. Each vertical slice represents a subset of that slice to the left. Highlighting indicates most frequent level.
${ }^{\mathrm{a}}$ Each module $=10$ class days for morning and afternoon, 8 for evening.
${ }^{\mathrm{b}}$ Matches NHES Brackets.
${ }^{\mathrm{c}}$ Grade level brackets based on school structures in institution's district.

d"No" determined by subtracting row total from n.

${ }^{\mathrm{e}}$ Labels as used on CASAS form.
${ }^{\mathrm{f}}$ Totals are irrelevant, multiple categories could be selected per subject.

Table 2
Level Frequencies: Four Views, Further Collapsing

		Module 1, Asian Collapsed ($n=431$)							ning	$n=202)$				noon	$n=103)$		Count				
Factor	Level	1	2	3	Total	\%	1	2	3	Total	\%	1	2	3	Total	\%	1	2	3	Total	\%
Class Type ${ }^{\text {a }}$	ESL-1	26	27	37	90	0.2088	19	20	24	63	0.3119	5	5	9	19	0.1845	2	2	4	8	0.0635
	ESL-1 Bilingual	39	43	35	117	0.2715	6	4	5	15	0.0743	14	13	13	40	0.3883	19	26	17	62	0.4921
	ESL 2-3	54	31	15	100	0.2320	25	19	6	50	0.2475	8	7	2	17	0.1650	21	5	7	33	0.2619
	ESL 4-6	58	33	33	124	0.2877	34	20	20	74	0.3663	12	7	8	27	0.2621	12	6	5	23	0.1825
	Total	177	134	120			84	63	55			39	32	32			54	39	33		
Gender	Female	137	95	93	325	0.7541	70	46	45	161	0.7970	35	28	29	92	0.8932	32	21	19	72	0.5714
	Male	40	39	27	106	0.2459	14	17	10	41	0.2030	4	4	3	11	0.1068	22	18	14	54	0.4286
	Total	177	134	120			84	63	55			39	32	32			54	39	33		
Age	$16-34^{\text {b }}$	49	35	20	104	0.2413	19	18	10	47	0.2327	8	3	2	13	0.1262	22	14	8	44	0.3492
	35-44	50	23	26	99	0.2297	24	11	13	48	0.2376	10	5	7	22	0.2136	16	7	6	29	0.2302
	45-54	22	31	27	80	0.1856	12	10	9	31	0.1535	4	13	7	24	0.2330	6	8	11	25	0.1984
	55-64	24	26	18	68	0.1578	11	13	9	33	0.1634	7	4	4	15	0.1456	6	9	5	20	0.1587
	65+	32		29	80	0.1856	18	11	14	43	0.2129	10	7	12	29	0.2816	4	1	3	8	0.0635
	Total	177	134	120			84	63	55			39	32	32			54	39	33		
Native Language	Chinese	63	50	48	161	0.3735	36	29	28	93	0.4604	3	1	2	6	0.0583	24	20	18	62	0.4921
	Korean	39	34	40	113	0.2622	17	12	12	41	0.2030	21	18	25	64	0.6214	1	4	3	8	0.0635
	Vietnamese	19	13	9	41	0.0951	2	3	1	6	0.0297	1	1		2	0.0194	16	9	8	33	0.2619
	Other	56	37	23	116	0.2691	29	19	14	62	0.3069	14	12	5	31	0.3010	13	6	4	23	0.1825
	Total	177	134	120			84	63	55			39	32	32			54	39	33		
Highest Diploma ${ }^{\text {c }}$	None	32	33	45	110	0.2552	12	14	18	44	0.2178	2	5	11	18	0.1748	18	14	16	48	0.3810
	All High School	88	57	42	187	0.4339	38	25	18	81	0.4010	26	19	14	59	0.5728	24	13	10	47	0.3730

	Tech. Cert, A.A., A.S.	20	22	11	53	0.1230	13	11	6	30	0.1485	3	3	3	9	0.0874	4	8	2	14	0.1111
	4yr College	37	22	22	81	0.1879	21	13	13	47	0.2327	8	5	4	17	0.1650	8	4	5	17	0.1349
	Total	177	134	120			84	63	55			39	32	32			54	39	33		
	Yes	129	83	80	292	0.6775	63	42	37	142	0.7030	30	21	21	72	0.6990	36	20	22	78	0.6190
Labor Status	Employed Unemployed Not working ${ }^{\text {d }}$	51	33	34	118	0.2738	14	8	7	29	0.1436	5	2	6	13	0.1262	32	23	21	76	0.6032
		72	68	50	190	0.4408	43	35	28	106	0.5248	15	19	12	46	0.4466	14	14	10	38	0.3016
		54	33	36	123	0.2854	27	20	20	67	0.3317	19	11	14	44	0.4272	8	2	2	12	0.0952
	Total	177	134	120			84	63	55			39	32	32			54	39	33		

Note. Factor and level notes from prior tables apply except where superceded by notes below.
Bold indicates most frequent level in group and by test.
${ }^{\text {a }}$ Categories collapsed from Table 1.
${ }^{\mathrm{b}}$ Collapses first two brackets from Table 1.
${ }^{\text {c }}$ Collapses categories from Table 1.
${ }^{\mathrm{d}}$ Collapses last two categories from Table 1.

Table 3
Model Fits

Model	Empty $\%$	Intcpt -21^{a}	Final -2ll	Model Chi $^{2 \mathrm{~b}}$	$d f$	Chi $^{2} p$ level
Primary	0.638	953.938	843.534	110.405	64	0.005
Collapsed	0.638	860.616	789.438	71.178	38	0.005
Morning	0.623	395.730	366.450	29.280	34	--
Afternoon	0.626	205.868	162.330	43.538	34	0.1
Evening	0.639	258.118	208.487	49.631	34	0.025
Evening	0.083	58.200	37.668	20.531	14	--
w/interactions						

a "-211" = - 2 Log Likelihood.
${ }^{\mathrm{b}}$ "The chi-square statistic is the difference in -2 log-likelihoods between the final model and a reduced model. The reduced model is formed by omitting an effect from the final model. The null hypothesis is that all parameters of that effect are 0.0 (SPSS)

Table 4
Likelihood Ratio for Module 1, Asian

Effect	Model -2ll	Chi^{2}	$d f$	Chi $^{2} p$ level
Intercept	843.534	0.000	0	--
Gender	847.915	4.381	2	--
Age	856.691	13.157	10	--
Class Type	878.364	34.830	18	0.01
Class Time	845.833	2.300	4	--
Diploma	869.090	25.556	14	0.05
Native Language	856.048	12.514	8	--
Labor Status	845.483	1.950	6	--
Ed. outside U.S.?	849.825	6.291	2	0.05

Note. Notes from prior table apply.

Table 5
Likelihood Ratio for Collapsed

Effect	Model -2ll	Chi^{2}	$d f$	$\mathrm{Chi}^{2} p$ level
Intercept	789.438	0.000	0	--
Gender	793.364	3.927	2	--
Age	804.926	15.488	8	0.1
Class Type	804.103	14.666	6	0.025
Class Time	790.208	0.771	4	--
Diploma	805.998	16.560	6	0.025
Native Language	794.781	5.343	6	--
Labor Status	791.607	2.170	4	--
Ed. outside U.S.?	794.627	5.190	2	0.1

Note. Notes from prior table apply.

Table 6
Likelihood Ratio Tests for Afternoon

Effect	Model -2ll	Chi 2	$d f$	Chi $^{2} p$ level
Intercept	162.330	0.000	0	--
Gender	162.353	0.023	2	--
Age	175.642	13.312	8	--
Class Type	168.045	5.716	6	--
Diploma	172.934	10.604	6	--
Native Language	168.799	6.469	6	--
Labor Status	167.313		4	--
Ed. outside U.S.?				

Note. Notes from prior table apply.

Table 7
Likelihood Ratio Tests for Evening

Effect	-2 Log Likelihood of Reduced Model	Chi ${ }^{2}$	$d f$	$\mathrm{Chi}^{2} p$ level
Intercept	208.487	0.000	0	--
Gender	209.000	0.513	2	--
Age	220.735	12.248	8	--
Class Type	220.417	11.930	6	0.100
Diploma	222.265	13.779	6	0.050
Native Language	212.790	4.303	6	--
Labor Status	211.332	2.845	4	--
Ed. outside U.S.?	217.397	8.910	2	0.025

Note. Notes from prior table apply.

Table 8
Classification for Module 1, Asian

Predicted					
Observed	1	2	3	$\%$ Correct	
	1	133	33	28	68.60%
	2	62	53	28	37.10%
	3	39	29	63	48.10%
Overall \%		50.00%	24.60%	53.20%	

Note. This table is provided by SPSS as "Classification."

Table 9
Classification for Collapsed

Predicted					
Observed	1	2	3	$\%$ Correct	
	1	125	31	21	70.60%
	2	59	49	26	36.60%
	3	45	28	47	39.20%
Overall \%		53.10%	25.10%	51.30%	

Note. Notes from prior table apply.

Table 10
Classification for Afternoon

Predicted					
Observed	1	1	2	3	\% Correct
	1	32	2	5	82.10%
	2	12	14	6	43.80%
	3	8	2	22	68.80%
Overall \%		50.50%	17.50%	32.00%	66.00%

Note. Notes from prior table apply.

Table 11
Classification for Evening

Predicted					
Observed	1	2	3	\% Correct	
	1	43	7	4	79.60%
	2	12	24	3	61.50%
	3	14	6	13	39.40%
Overall \%		54.80%	29.40%	15.90%	63.50%

Note. Notes from prior table apply.

[^0]: ${ }^{1}$ In the literature particular administrations of the NHES are given by suffixing NHES with a colon and a two-digit code representing the year. That nomenclature is adopted here.

[^1]: ${ }^{2}$ There are of course precise registration and attendance records, however they are tracked by a computer system segregated from the CASAS system by litigation.

