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Abstract

Several computational models have been proposed
to quantify trust and its relationship to other system
variables. However, these models are still under-utilised
in human-machine interaction settings due to the gap
between modellers’ intent to capture a phenomenon and
the requirements for employing the models in a practical
context. Our work amalgamates insights from the
system modelling, trust, and human-autonomy teaming
literature to address this gap. We explore the potential
of computational trust models in the development of
trust-aware systems by investigating three research
questions: 1- At which stages of development can trust
models be used by designers? 2- how can trust models
contribute to trust-aware systems? 3- which factors
should be incorporated within trust models to enhance
models’ effectiveness and usability? We conclude with
future research directions.

1. Introduction

Recent technological advances have led to the
inclusion of some levels of automation in a wide
range of applications. The Industry 4.0 is seeing a
shift in automation from a mere tool in the hand of
human operators to accomplish a task, to machine
autonomy, where automation is a cognitive artificial
actor with the capacity to work with, or even replace, the
human. Thanks to artificial intelligence, machines have
become able to perform sophisticated high level tasks
including planning and decision making. Nonetheless,
fully autonomous machines that operate in dynamic
and unstructured environments are not expected to
be realised in the near future, due to their lack
of human-like general intelligence. Aside from the
technical challenges, it may not be desirable to give
machines full autonomy due to ethical concerns and the
need for accountability [1]. Thus, interaction schemes
that combine the strengths of human and automation
capabilities have been the focus of many recent studies.

Supervisory control is an interaction scheme that
allows automation to operate at a higher level of
autonomy while requiring the human to monitor its
operation and intervene when needed. Hence, rather
than acting as an operator, the human is asked to
perform the role of a supervisor or a teammate who
can take over control in unexpected events or intervene
only when needed to modify goals. In such a setting,
trust is vital for improving system performance due
to its impact on human willingness to delegate tasks
to automation. Besides, trust affects the frequency of
human’s intervention with automated tasks and his/her
rate of acceptance of automation recommendations [2].
The reliance behaviour adopted by the human can
eventually affect mission success and performance [3].

Both over-trust and distrust in automation can lead to
catastrophic outcomes. For instance, human over-trust
in automation was blamed for the death of the owner
of a Tesla car in March 2018 [4]. This happened when
the auto-pilot failed to recognise a concrete barrier, so
the car veered off the highway, accelerated, and crashed
into the barrier. Later, Tesla revealed that the driver
had enough time to intervene to prevent the crash, but
no action was taken. On the other hand, the disuse
of reliable, though imperfect, automation results in
dismissing its potential benefits. It has been warned
that if the public rejected the auto-pilot, its safety
levels would be dismissed causing the loss of about
900,000 lives that could otherwise be saved [5]. Thus,
designing trust-aware human-automation interaction
can be critical to mission success. Towards this end,
many pieces of research have been devoted to studying
factors that affect trust [6] as well as investigating
methods for trust calibration [7, 8].

Several computational models have been
proposed by past studies to quantify trust and
represent its interaction with other factors. While
different individual, cultural, environmental, and
automation-related factors can affect trust and its
role within a mission [2], existing trust models do
not incorporate all these factors together, as such a

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 375
URI: https://hdl.handle.net/10125/63786
978-0-9981331-3-3
(CC BY-NC-ND 4.0)



comprehensive model would require extensive human
experiments to collect the data required for model
calibration. Instead, many existing models capture
the relationship between automation capabilities, trust,
reliance rate, and system performance [9, 3, 10, 11].
In addition, some models include other variables
like self-confidence [9], workload [12], and human
expectations [3]. This raises a question about the truely
important factors that need to be incorporated within a
computational model for trust and that may affect the
accuracy of its prediction.

Most of the computational models for trust have
been validated by showing their ability to replicate data
from human experiments [9, 13, 10]. The models
were evaluated based on their accuracy of predicting
subjects’ trust ratings [13, 14], their rates of reliance
on automation [9, 13, 10, 3, 11], and the overall
performance [10, 3, 11]. Nevertheless, there are
relatively few attempts to utilise these models towards
enhanced human-automation interaction. This could be
possibly due to the lack of clarity of the capabilities
of computational trust models and the different ways
in which these models can be utilised towards building
trust-aware systems. That is, a designer may refrain
from using trust models within the development of
human-machine systems as he/she thinks these models
are not practical and do not translate into specific actions
or specific design decisions. Hence, it is important
to characterise how computational trust models can be
used as practical development tools rather than as a
mere abstraction of the phenomenon. We argue that
identifying the means of using such models by system
designers and highlighting their potential in pushing
forward trust-aware interactions would encourage the
designers to utilise these models. Another possible
reason why computational trust models are not widely
employed by designers, could be related to the fact that
most of the existing models ignore important factors (e.g
individual skills and self-confidence) that can affect the
dynamics of trust and reliance within the mission; which
limits model usability.

Our work consider a performance-centeric view
of trust where no deception or security breaches are
expected from the machine. The objective of this
work is twofold. First, this paper aims to characterise
different categories of trust models and demonstrate
how each category can be used within different stages
of the development of trust-aware human-automation
interaction. To our knowledge, this is the first attempt
to investigate the possible ways in which a quantitative
model for trust can be used within human-automation
interaction settings. Second, this work aims to identify
the key factors that should be included in computational

trust models to boost their ability to closely reflect the
interaction between system variables. Models including
these factors are more likely to fulfill designers’ needs
in terms of having a holistic picture of the system.

2. Research Questions

In order to study the research objectives, we
formulate three research questions which this paper
contributes to their answer. The research questions are:

• At which stages of system development can
computational trust models be used by system
designers? To answer this question, section 4
distinguishes between two classes of models,
offline and online models, and show the suitability
of using these models within the design and
deployment stages of system development.

• How do computational trust models contribute to
the development of trust-aware systems? This
question is further divided into two sub-questions:

– How do trust models inform the design
of trust-aware systems? To answer
this question, section 5 uses insights
from system modelling literature to show
how computational trust models provide
analytical tools that help designers identify
design limitations and spot places for
improvements.

– How do trust models contribute to the
deployment of trust-aware systems? The
answer to this question is investigated in
section 6 which brings diverse examples
from the human-autonomy teaming
literature to demonstrate the role of
quantitative trust models in the deployment
of adaptive systems. Figure 1 provides
a summary of the research questions
presented so far.

• What are the key factors that need to be
incorporated within computational trust models to
enhance their ability to meet the needs of system’s
designers? To study this question, section 7
examines the matching between the capabilities of
trust models (in terms of how well they represent
the system) and the system designers’ needs (in
terms of ensuring appropriate human reliance on
automation and optimised system performance).
Thus, we elicit the factors that need to be
incorporated within trust models.

3. Key Concepts

Offline and online models: Existing trust models might
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Figure 1. The role of computational trust models in the development of trust-aware human-automation

interactions.

be classified based on different dimensions, for example
probabilistic [13, 15, 16] versus deterministic [9, 12] or
cognitive [3, 10] versus neural [17] models. However, to
facilitate the investigation of our research questions, we
propose classifying trust models into two classes based
on the input data used to generate their predictions; these
classes are offline and online models. Offline models
use parameter values which are set a priori, i.e while the
system is not under operation, to predict the behaviour
of the modelled system. On the contrary, in addition
to using some parameter values that are set a priori,
online models make use of the observed data that is
available during system operation to generate in-situ
evidence-based predictions.
Customised improvements: we use this term to refer
to design customaisation that is applied for a certain
group of users based on their skills, abilities, or level
of experience.
Adaptation: this term refers to the ability of the system
to finely tune its default settings based on the actual
scenario it is performing in. Three types of adaptations
are studied in the human-autonomy literature: behaviour
adaptation [18], transparency adaptation [16], and level
of autonomy adaptation [19].

4. Offline and Online Models for Trust

As offline trust models are able to generate
predictions, based on only an initial set of parameters,
they are naturally suitable for being used within the
design stage of system development. Offline models
can be used to study system performance under different
conditions and to gain deeper insights on how different

factors interact to determine the human behaviour.
Given a set of parameter values as input, an offline
model of trust can be used to predict a full sequence of
the levels of trust, rates of reliance on automation, and
measures of performance over the time of the mission.
Such models are usually based on feedback loops such
that the state of the system, in terms of the values of
its variables, at a given time step determines its state at
the next time step [9, 3]. This can be useful to evaluate
both performance trends and overall performance under
different initial conditions. Therefore, offline models
can be useful in evaluating alternative design options
and to give an estimate of performance bounds.

A handful of offline models for human trust in
automation has been proposed in previous studies. For
instance, Gao and Lee [9] modelled the interaction
between human and automation using a quantitative,
feed-back based system. The model takes as input
the initial levels of trust and self-confidence as well as
the levels of automation and human capabilities. Trust
and self confidence are modelled to change overtime
according to the perceived performance of automation
and human, respectively. The gap between trust and
self confidence is then used to estimate the decision of
reliance on automation. Lastly, the reliance decision
determines whether the system performance in the
next step will be determined by automation or manual
performance.

Another example of offline models is presented
in [3] in which the author proposed a system dynamics
model for trust in human-automation interaction in
scheduling tasks of collaborative multiple unmanned
vehicles. In this model, the level of trust changes based
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on the gap between the expected and the perceived
performance. The rate of human interventions is
modelled to be negatively related to the current level of
trust. The negative effects of increased human workload
on performance are captured by relating the human
added value to the number of interventions using an
inverted U-shaped table function. Both the automation
capability and the human added value are used to
estimate area coverage rate, which is in turn used to
calculate the perceived performance.

On the other hand, online trust models rely on data
extracted from the actual interaction to generate their
prediction. Thus, they can be used to provide real-time
estimation of the level of trust. In fact, most of the
existing computational models for trust fall into the
class of online models. Although trust can be measured
directly through questionnaires, this can be impractical
as it leads to frequent interruptions of task execution.
Therefore using models for estimating trust is a more
convenient alternative as it provides a non-intrusive way
of estimating trust. Hence, online models are beneficial
to sense changes in trust and respond accordingly.

Xu and Dudek [13] proposed a probabilistic model
for trust based on dynamic Bayesian networks to predict
the level of trust based on real-time data. The model uses
both causal and evidential variables to infer the current
level of trust. The causal variables used are the previous
and current levels of automation performance and the
previous level of trust. Meanwhile, the evidential
variables are the current rate of interventions besides
trust evaluation, if any. Xu and Dudek used subjects’
data to train and evaluate their models such that a
separate personalised model was used for each subject.

Nam et al. [15] proposed a probabilistic model for
the real-time estimation of human trust in simulated
robot swarms in target foraging missions. The model
is based on the hypothesis that human trust in the swarm
at a certain time step is a function of the swarm physical
characteristics at this time step as well as the previous
level of trust. To calibrate model parameters, Nam et
al. used subjects’ ratings of their level of trust along
the experiment. General as well as personalised models
have then been built to be used to predict trust given
in-situ observed data about swarm parameters.

Offline and online models for trust use input data
that can be available at the design and deployment
stages of system development, respectively. This, in
fact, highlights the opportunity of using these models in
these two stages within the development of trust-aware
systems. While insights obtained at the design stage
can inform the design decisions and guide to ways of
system improvements, the information obtained within
the deployment stage can be used to adjust the system

and finely tune its settings to suit the current situations.

5. Offline Models in the Design of
Trust-Aware Systems

Offline models can be very useful in evaluating
candidate design options by predicting their effects on
performance under different possible contexts in which
the system is intended to operate. In the conceptual
model of trust in [2], Lee and See show that different
individual, cultural, and environmental contexts can
influence the formation of trust and the decision to
rely on automation. Individual factors including age,
propensity to trust, gaming frequency, and level of
experience were shown to significantly affect human
trust and reliance behaviours [20, 21]. Similarly,
uncontrolled environmental conditions, such as risk and
uncertainty, have some implications on trust and its role
in predicting the level of reliance on automation [22, 23].

Offline models for trust can be used by system
designers to evaluate the performance of design
alternatives at early stages of system development.
Models that readily incorporate task-related human
and environmental factors are helpful in estimating
performance bounds under various environmental
conditions and across different user categories.
Furthermore, such models can be used to set human
selection criteria as they enable the quantitative analysis
of the role of individual factors on system performance.

In addition, as models serve as abstraction of
real-world systems, the careful analysis of these
models can lead to revealing potential modifications
to system design that are likely to result in enhancing
system performance. Below is a discussion on how
computational models for trust can be utilised towards
improved design of trust-aware systems.

5.1. Model leverage points

Trust models can be used to reveal leverage points
in the system. According to Meadows, leverage points
are “ places within a complex system (a corporation, an
economy, a living body, a city, an ecosystem) where
a small shift in one thing can produce big changes in
everything” [24, p. 1]. Leverage points are of particular
significance to system designers as they are potentially
the right places where wellfocused actions can lead to
enduring improvements [25].

By closely analysing a system model, its leverage
points can be identified by exploring positive or negative
behaviours and by looking for the causes of these
behaviours. For instance, model sensitivity analysis
can be used to uncover some leverage points by
identifying model parameters to which the outputs
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are most sensitive. These parameters can represent
automation characteristics, requirements on training, or
criteria for human selection. Thus, rather than testing
and evaluating the system under a wide range of possible
settings, this process identifies potential changes to the
system which will most likely result in considerable
improvements. These potential changes can then be
subjected to more thorough testing which can include
actual human experiments. In this way, limited testing
resources can be optimally allocated to investigating
promising solutions.

Clare [3] used sensitivity analysis to identify
important parameters in his system dynamics model
which captures the relationship between trust, human
interventions, workload, and system performance. His
analysis revealed that initial trust and real-time human
expectations of performance were the human-related
parameters to which the performance was most
sensitive. Based on these results, he proposed the use of
positive/negative information framing about automation
performance, as a way of priming humans to influence
their level of initial trust. Besides, he investigated
priming subjects’ expectation in real-time using a
graphical comparison that shows the difference between
their own progress and the progress achieved by a group
of other subjects who achieved high/low performance,
to raise/lower their expectations.

However, there is a major challenge inherent in
the mapping between model sensitive parameters and
the actions needed to influence their corresponding
qualitative variables. That is, while model analysis can
help with the identification of leverage points, it does not
say much, if anything, about what actions are required
to utilise them. For instance, the model in [3] predicted
that heightened human expectations would lead to a
significant increase in system performance. Yet, it is
beyond the model scope to predict whether the graphical
comparison between subjects’ progress and the progress
of high performers is a suitable method of raising
subjects’ expectations. In fact, the results of the human
experiments revealed that this method was not effective.
The author explained that this method probably led to
frustrating the subjects leading them to lower, rather
than raising, their expectations. This example highlights
the need for validating the effect of the proposed
intervention on the leverage point of interest; which is
by itself far from being straightforward.

Another related challenge lies in the quantification
of the effect of a potential intervention on the qualitative
parameter of interest. While the effect of the
intervention might have been validated in other research
studies, it can still be important to measure the size
of this effect on the parameter of interest so that

the model can generate a quantitative prediction of
the net effect on system performance. For example,
while it can be derived from past studies that carefully
designed training programs have a significant effect
on raising/lowering initial trust, the amount of change
should be determined so that the adequacy of the
intervention can be evaluated early on. The answer to
these two questions (whether or not, and if so, by how
much a given intervention affects the leverage point of
interest) may need to be obtained through a separate
model that is specially designed for such uses, or using
actual human experiments. Figure 2 shows the process
of identifying and utilising leverage points in a system.

In addition to identifying individual leverage points,
sensitivity analysis for parameter combinations can
be used to identify which model parameters should
be changed together and in what direction to cause
the maximum change in model output. Optimisation
techniques are also useful to find candidate values for
model parameters to optimise model output [26].

Figure 2. Identifying and utilising leverage points.

5.2. Customised improvements

The discussion in section 5.1 assumes that a design
option has consistent effects among most people.
However, there can be some interaction between
individual differences and the proposed modifications,
such that the modification may be effective only
within some groups of people, while it may be
ineffective or even detrimental among the others.
Revisiting Clare’s example of priming initial human
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trust [3], the model predicted that low initial trust
would benefit the performance as it would lead to
increasing operators’ interventions, which were needed
for improved performance. However, the proposed
solution was not found to be beneficial among the
test subjects as there was no performance difference
between those with heightened, lowered, and control
initial trust. In addition, those with lowered initial
trust had significantly more errors than subjects in the
other groups. Clare suggested that this could be due
to the high levels of workload accompanying the high
frequency of interventions among subjects with lowered
trust, which led to more errors. By considering only
frequent video gamers, who had more spare mental
capacity due to their high speed, the proposed solution
was found to be effective such that subjects with lowered
initial trust performed significantly better than those
with heightened initial trust.

Another example is increased automation
transparency which has been widely advocated by
many researchers [2, 27, 28, 7] for its anticipated
positive impacts on system performance through
well-calibrated trust and proper reliance on automation.
Nonetheless, mixed results have been reported
in literature, such that some studies found that
increased transparency improved proper reliance and
system performance [29, 30], while others found that
transparency led to lower efficiency without significant
effect on other system performance metrics [31, 8].
While the implementation of transparency could be
a source of this discrepancy, we also expect that
individual differences in information processing
and in cognitive capacity could have been at least
partially responsible for these different findings. Thus,
investigating individual differences that are known to
affect human interaction with automation (e.g. relevant
experience and frequency of playing video games) and
incorporating them within the models, could be very
useful for understanding the behaviours of different user
groups, and hence designing customised modifications
or training programs to improve their performance.

Besides individual differences, understanding how
the system performs under different environmental
conditions can be crucial for estimating its performance
bounds. Closely related to trust are the concepts of risk
and uncertainty without which trust may be considered
irrelevant [32]. Thus, the inclusion of such uncontrolled
contextual factors within trust models is important as it
allows designers not only to have estimated measures
of their impact on the dynamics of the interaction, but
also to investigate the possibility of designing separate
improvements for each condition.

6. Online Models in the Deployment of
Trust-Aware Systems

Online models for trust can also be used to provide
real-time assessments of the level of trust which can then
be used to trigger appropriate responses. As discussed
in section 3, online models for trust use the available
real-time data to provide estimates of the level of trust.
These estimates can be used in various ways to promote
task performance by adapting automation behaviour,
eliciting changes in human behaviour through adapting
automation transparency, or adjusting the level of
autonomy within the interaction.

6.1. Automation Behaviour Adaptation

Automation parameters can be hard-coded to
produce an overall good performance across different
scenarios. However, while performing the task,
the human supervisor can appraise the situation and
maintain a certain level of trust in the automation
based on how well its behaviour given the specifics of
the actual situation. Although the machine can adapt
some of its parameters based on the state of the task,
this adaptation is conditional upon its ability to sense
relevant elements of the task, and determine how its
behaviour should change accordingly. This can be very
difficult in real environments which can be dynamic
such that unmodelled events can take place.

Therefore, the ability to use the level of human trust
in automation to assess how well the automation is
performing and whether or not adaptation is required,
is an appealing idea. In this way, an overall judgement
of the performance can be obtained without requiring
the human supervisor to explicitly communicate to the
machine whether and how its behaviour should be
adjusted. Xu and Dudek [18] used their trust model
to estimate the real-time decline in the level of trust
to identify whether behaviour adaptation is needed. In
their work, a robot controller selects a set of parameters
that defines the behavior of an unmanned aerial vehicle
(UAV) in a visual navigation task in which the UAV
is required to track the boundary of a given terrain.
When a significant decrease in the user’s level of trust
is estimated, the robot controller adapts its parameters
based on the amount of trust lost. For a small amount
of estimated trust loss, the robot controller adjusts its
parameters incrementally to finely tune its behaviour to
improve the performance. However, if the the amount
of trust lost is sufficiently large, the controller re-adjusts
all its parameters by evaluating different configurations
and modes of operation to determine which one will
produce the most trusted behaviour. In that study, it
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was found that the trust-driven adaptive behaviour led
to a significant improvement in the performance as
compared to the non-adaptive behaviour.

Another way in which automation can adapt its
performance is to change the weight of different
objectives of the performance in response to changes
in the state of the task or to the subjective preferences
of the human supervisor. For instance, in a task where
both speed and accuracy are crucial for the performance,
the speed-accuracy compromise adopted by the human
supervisor can affect his/her selection of performance
strategy. Thus, a supervisor who values accuracy more
than speed will trust the machine that helps them achieve
highly accurate operations than faster ones.

Floyd et al. [33] used a case-based reasoning
approach to find a highly trusted behaviour that aligns
with the preferences of the human operator. Their
algorithm is based on the assumption that operators
with similar preferences will react similarly towards the
same robot’s behaviours. Staring with an initial set of
parameters, the robot calculates the trustworthiness of
the resulting behaviour as a linear function of successful
task completion rate and the rate of human intervention
with robot operation. If the trustworthiness of the
robot behaviour drops below a certain threshold, the
robot adapts its behaviour by applying a random walk
algorithm to change its parameters so that it can explore
new behaviours. When a trusted behaviour is found,
its parameters are recorded. Moreover, the history of
behaviours, together with their trustworthiness values,
that were used before reaching the trusted behaviour are
recorded. This allows the robot to quickly find trusted
behaviours for new operators with similar preferences
rather than starting from scratch with every new human
operator.

Trust-triggered behaviour adaptation is still in its
early stage; and hence the factors affecting its success
have not yet been fully investigated. One of these factors
is that trust has inertia [9], which means that the effect
of automation performance on trust is not instantaneous,
but can occur gradually with some delays. That is, a
decline in task performance at time t may result in a
significant loss of trust, beyond the adaptation threshold,
at time t + τ . This means that the machine gets
delayed information about its low performance aside
from the time it needs to explore and find another set of
parameters for a more trusted behaviour. The effects of
these time delays in relation to the degree of dynamism
of the environment should be investigated to understand
how the adaptation threshold should be set accordingly.

Automation predictability is another important issue.
While the adaptability of automation behaviour is a
desirable capability, it can lead to perceived inconsistent

behaviour as the automation may behave differently in
the same situation each time the situation is repeated.
As predictability is an important basis of trust [2], it is
crucial to examine the effects of behaviour adaptation
on the predictability of the automation and to investigate
the need to correct for such effects, possibly through a
transparent interface that keeps the human updated with
these adaptations.

6.2. Transparency Adaptation

Automation transparency is a critical interface
element as it enables trust calibration based on the
understanding of how automation works and when
it is more likely to fail. The challenge however
is to determine the proper degree of transparency
that maximises humans’ situational awareness without
overwhelming them with too much information that can
considerably increase their workload. Towards this goal,
Chen et al. [28] proposed the situation awareness based
agent transparency (SAT) model, which is a conceptual
model with three levels of transparency corresponding
to the three levels in Endsley’s model for situational
awareness [34]. The SAT model is aimed at calibrating
trust in real-time while maintaining the desired level of
situational awareness. Chen et al. suggested that the
proper level of transparency should be determined based
on the state of the task to increase the effectiveness of
task performance.

Akash et al. [16] proposed a partially observable
Markov decision process (POMDP) model for the
real-time inference of human trust and workload in
robot-assisted reconnaissance missions. Their work
presents the first attempt to adapt transparency based on
the estimated level of trust. They defined the reward
function in their POMDP model in terms of the level
of trust, workload, and task performance; and they used
transparency as the feedback to maximise this reward
function. They found that their proposed algorithm
for adapting the level of transparency led to significant
positive effects on human workload as well as mission
success and efficiency.

6.3. Flexible Autonomy

Another way in which systems can be adapted
based on the estimated level of trust is by sliding
the level of autonomy in shared-control tasks. Past
studies investigated different ways of performing this
adaptation capability by: allocating the task to either the
human or the machine, changing the level of automation
proactivity, or by adjusting the weights of the manual
and automation inputs.

Wang et al. [12] proposed a model for the mutual
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trust between a human and a robot based on their
individual performance and the overall fault rate.
Human performance is calculated in terms of human
utilization which is a function of the portion of time
the human is manually controlling the robot and the
difficulty of the task. Meanwhile, robot performance
is modelled to decrease overtime when the human is
not manually operating it and to increase overtime
otherwise. According to the level of estimated mutual
trust, task control at a given time step can be exclusively
allocated to the robot or the human.

Sadrfaridpour et al. [35] proposed a real-time model
for trust estimation in human-robot collaboration in
manipulation tasks. In that work, the human and the
robot share the task of impedance control by applying
force to the manipulator to move it to the right position.
The impedance control mode used by the robot is
selected based on the level of trust. When low levels
of trust are estimated, the robot operates in a reactive
mode such that the human performs the motion planning
problem which places more workload demands on the
human. On the other hand, when high levels of trust
are predicted, the robot activates its proactive mode in
which it estimates the human desired motion and acts
accordingly to share the effort of the motion planning
with the human.

Saeidi et al. [36] used the estimated level of
human trust in automation to integrate the manual and
autonomous control inputs in the teleoperation of mobile
robots, such that the control of the robots is continuously
shared between the human and the automation. When
high/low levels of trust are estimated, the interface
gives high/low weights for the machine control inputs,
respectively. Saeidi et al. also used another model
for calculating robot-to-human trust based on human
performance. When the calculated trustworthiness
of the human drops, the robot communicates this
information to the human through haptic feedback.

7. Towards Effective Trust Models

Based on the discussion so far, it is evident that
computational models for trust can be used in a variety
of ways to deliver trust-aware systems. We cited some
examples from literature to consolidate the potential
uses of trust models and to give some evidence on their
promising effects on system performance. Nevertheless,
utilising trust models within the design and deployment
of trust-aware systems is still a largely unexplored
area. This section sheds the light on some aspects of
quantitative trust models that enhance their effectiveness
and usability by system designers.

Firstly, despite the great interest in the concept of

human trust in automation, it is worth recalling that trust
is not an end goal by itself, rather enhanced system
performance that results from proper reliance is what
really matters [37]. Hence, a model that is solely
intended to estimate the level of trust without being
able to give accurate predictions on human reliance can
be of limited value to system designers. The usability
of trust models will be largely dependent on how far
they capture the causes (e.g performance) and effects
(e.g reliance rate) of trust as well as the implications
on overall performance. Furthermore, depending on
the intended use of the model, it may need to include
additional environmental and individual factors.

Models that aim to help designers with the evaluation
of design options under different conditions will need to
have representation of these conditions within the model
boundaries. For instance, the level of task-associated
risk was found to moderate the effect of trust on reliance
such that at high risk situations the rate of reliance
decreases although trust remains unchanged [22, 23].
Thus, a model for a system that is expected to encounter
risky conditions should include the effects of risk on user
trust and reliance. The inclusion of individual factors
can also be warranted by the expected variability among
system users. Systems that target a wide sector of users
(e.g, autonomous vehicles) need their models to include
the effects of relevant individual factors like age and
relevant experience [38]. Modelling such individual
and environmental factors allows the designers not
only to investigate the performance under different
conditions, but also to investigate the possibility of
having customised designs for these conditions.

The increasing interest in studying transparency and
the notable trend of delivering transparent automation
suggest that models incorporating transparency may
prove useful in giving accurate predictions both for
the rates of reliance and for its appropriateness with
respect to the state of the system. This will enable
a closer investigation of the frequency of undesirable
reliance behaviours (incorrect reliance and incorrect
rejection) such that preventive or corrective actions can
be considered by designers.

Finally, the possible effects of potential system
modifications or real-time adaptations on human
workload and situational awareness should be included
within the model to avoid undesirable consequences on
performance through unmodelled factors. For example,
although transparency can benefit trust and situational
awareness, it can equally have negative effects on
workload. Also, a highly trusted machine can operate
at a higher level of autonomy to mitigate workload but
this may hurt situational awareness.
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8. Conclusion and Future Work

In this work, we investigated the use of
computational models for trust within two development
stages, namely design and deployment. We showed
how offline trust models can be used by designers
to evaluate performance under different conditions
and to identify possible improvements/interventions.
We also presented promising uses of online models
to trigger adaptation based on the estimated level of
trust. However, for the models of trust to reach their
potential, they should be adequately representative of
the actual systems by capturing the key factors that
affect trust and reliance, as discussed in section 7.
Our work presents an interdisciplinary overview of
literature to answer the three research questions posed
in the paper. Past studies, considered in this work, were
sampled from the literature on developing, evaluating,
and using computational models for trust. The studies
were selected to represent the different ways in which
such models can be used by system designers. Thus,
our work paves the way towards the development
of a framework for trust-aware human-automation
interaction.

Past studies that utilised trust models for real-time
adaptation demonstrated improved system performance.
Nevertheless, it can be noted that most of these studies
were mainly concerned with the loss of trust and
proposed adaptations to correct for such a loss. As
over-trust can also be detrimental to the performance [2],
we believe that over-trust triggered adaptations can
be equally important to the safe and effective system
operation. These adaptations may include increased
transparency to reveal system weaknesses, but should be
done carefully to avoid its counter-effects of drastically
losing trust.

Systems’ ability to adapt to changes in the
environment is a desirable capability as it ensures a
system’s flexibility and continued usability in dynamic
environments. However, adaptation may lead to
decreased predictability of automation behaviour and
hence can hurt human trust in it. Researchers believe
that user trust in adaptive systems is a must without
which the users are likely to abandon these systems [39].
This raises a few questions regarding the design of
trust-aware automation with adaptation capabilities.
First, how can we use trust calibration mechanisms, e.g
transparency, to mitigate the side effects of adaptation
on trust? Second, can adaptation that is driven by trust,
possibly among other variables, be designed to avoid the
negative side effects on future trust values? And finally,
how the estimated level of trust can be used to correctly
trigger the adaptation? That is, a loss in trust which

is caused by performance drop might need different
adaptation than a loss in trust caused by unpredictability.

While the focus of this paper is on trust, many of
the discussed concepts can be applied to other human
factors, such as workload and situational awareness.
In fact, a holistic model that combines the interactions
among these three factors can be useful for representing
situations where these factors are relevant. This will
enable developing suitable interventions or adaptations
that take into consideration the combined effect of these
factors on system performance.
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