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Abstract

COBID-19, an infectious disease transmitted by
droplet and contact, is prevalent. In order to
reduce the risk of contact infection, various operations
should be performed in silence and non-contact. A
user interface using non-contact sensors is effective
in such an environment. Among them, Natural
User Interface based on Gesture Recognition using
non-contact sensors are useful, we think.

We have developed our NUI system in which the
user instructs the computer in a full-body gesture. In
this paper, we discuss several methods available for
gesture recognition based on skeleton recognition. And,
for some of the gesture recognition systems we have
implemented with the combination of such methods,
the design policy and experimental results of each are
presented.

1. Introduction

The infectious disease COVID-19 is prevalent.
There is an urgent need to take steps to prevent the
spread of the disease [1]. The COVID-19, an infectious
disease is transmitted by droplet and contact. The
risk of contact infection increases due to touch screens
and buttons that are touched by many people. For
this reason, it has become desirable to perform various
operations silently and without contact.

What is most effective in such an environment is a
user interface using non-contact sensors. Among them,
natural user interfaces based on gesture recognition
using non-contact sensors are useful, we think. We
have developed our NUI system in which the user
instructs the computer in a fully-body gesture [2, 3,
4]. These studies are becoming increasingly important
in environments where contact infection should be
avoided.

In this paper, we discuss several methods available
for gesture recognition based on skeleton recognition.
And, for some of the gesture recognition systems

we have implemented with the combination of such
methods, the design policy and experimental results of
each are presented.

In addition, although we have conducted research
using an RGB-D camera, Microsoft Kinect for
Windows V2 (hereinafter called “Kinect V2”) [5], the
RGB camera is preferable for practical application.
Therefore, we are currently moving to the method using
OpenPose [6], and describe the design policy and plan
of the new system.

2. Skeleton Recognition

Kinect V2 is a RGB-D camera device that recognises
the human skeleton and gets the positions of joints. It
can get 3-D coordinates of each 25 joints for up to 6
people at the same time. Kinect V2 was discontinued
in October 2018, but there is no problem in prototyping
our system.

We have developed NtKinect [7] and
NtKinectDLL [8] to make Kinect V2 available
with many programming languages and development
environments. We released them as Open Source
Software. With NtKinect, you can use Kinect V2 in
Python’s machine learning system with ease.

Intel’s RealSense [9] is also an RGB-D camera. By
using the official SDK, the 3D positions of the face
and hands can be acquired. It can also be used in
combination with software such as Nuitrack [10] to
recognize the whole body skeleton.

OpenPose [6] is a study of skeleton recognition
with RGB camera. It can recognize skeletons of any
number of people at the same time, and it can recognize
skeletons with high accuracy even if a part of the body
is hidden. OpenPose uses Deep Learning to calculate
the possibility that each pixel in a 2D RGB image is
a specific joint, and creates a heatmap for the entire
image. Then, it recognizes the skeleton for each person
by looking for possible pairs of detected joints. The
advantage is that it does not require depth data.
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3. Gesture Recognition

Visual Gesture Builder [11] is a tool for full body
gesture recognition using Kinect V2. In order to
recognize a certain gesture, training is performed by
given information in which the part of the gesture in the
video is labeled as positive(+) and other part is labeled
as negative(-). Two types of gestures, discrete gesture
and continuous gesture, can be learned. The former
uses AdaBoost and the latter uses Random Forest. The
gesture we want to recognize corresponds to continuous
gesture, but we did not adopt this tool because its
recognition rate is not so high.

LeapMotion [12] is a device that operates
applications with gesture, and uses an infrared
sensor to recognize hand and finger movement. We did
not use LeapMotion because we want to recognize the
whole body gestures.

Cippitelli [13] has conducted research on behavior
recognition based on skeleton data acquired by RGB-D
cameras. They used the k-means method to select
poses and Support Vector Machine (hereinafter called
“SVM”) to classify the feature vectors for the behavior
recognition.

Taha [14] studied behavior recognition to monitor
using RGB-D camera. The data is pre-processed by
“rotating the joint data around the y-axis to formulate
the data facing frontally” and “converting joints position
to polar coordinates to eliminate the influence of pysical
features”. They use the Markov Model to recognize
behavior.

Researches on gesture recognition based on pose
recognition have made remarkable achievements. Many
of them recognize human skeletons using RGB-D
cameras and extract the temporal features of human
skeletal joints using Deep Learning techniques as
Recurrent Neural Network (hereinafter called “RNN”)
and Long Short Term Memory (hereinafter called
“LSTM”).

Yan [15] proposed Spatial-Temporal Graph
Convolutional Networks (ST-GCN) for automatically
learning both the spatial and temporal patterns from
data.

Omran [16] proposed Neural Body Fitting (NBF).
It integrates a statistical body model within a
CNN, leveraging reliable bottom-up semantic body
part segmentation and robust top-down body model
constraints.

Li [17] proposed the actional-structural graph
convolution network (AS-GCN), which stacks
actional-structural graph convolution and temporal
convolution.

4. Target of Our Research

Our goal is to develop an NUI system that operate
computers by natural movement using the whole body.
A natural motion is one intuitively performed by a
human without wearing some devices like markers
and sensors. However, it should be noted that
“natural move” can vary depending on the culture and
background of the users. Therefore, it is desirable that
the gestures to be recognized are not fixed, but can be
changed and extended by the user.

In our research, skeleton recognition is performed
by the device such as Kinect V2, Intel RealSense or
OpenPose. In other words, we are in a position to
use existing tools for skeleton recognition. Thus, the
procedure of our study is as follows.

• Selecting gestures to recognize
• Creating classifiers that detect gestures from

time-series skeleton position data
• Providing APIs to other applications to use

gesture recognition

A gesture classifier is created by machine learning.
We treat gestures as poses arranged in chronological

order. Among poses that make up a gesture, we define
some poses as distinctive poses each of which is crucial
to the identification of the gesture. We recognise a
specific gesture by detecting the appearance of the
distinctive poses in order within a short period of time.

Therefore, the following work is required to create a
classifier that detects a gesture from time-series skeleton
position data.

• Selecting distinctive poses
• creating classifiers to detect distinctive poses
• detecting the appearance of time-series sequence

of dictinctive poses

We have developed four systems and conducted
experiments to investigate various methods. Table 1
shows the design policy of each system. The expression
’n-stage relative’ in the table means that the relative
positional relationship between the joints is expressed
in n stages.

5. Distinctive Pose

We define each pose that determines the gesture as
a distinctive pose. Gestures are recognized by detecting
the appearance of destinctive poses in time series.

Figure 1 shows an example of n skeleton data Sk

(k = 1, 2, · · · , n) in gesture G. In order to select L
skeleton data as distinctive poses from n skeleton data,
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Table 1. Policies of each system

Gesture Recognition System version 1 version 2 version3 version 4
Skeleton Recognition Tool Kinect V2 Kinect V2 Kinect V2 OpenPose
Data Representation 3-stage relative Polar Coordinates 5-stage relative 5-stage relative
Selection time tick - time span time span
Distinctive Pose + k-means + k-means
Detection SVM RNN SVM NNDistinctive Pose
Gesture Recognition Exact Match RNN RNN

Figure 1. Time Sequence of Distinctive Poses

Figure 2. Non-Flexible Selection of Distinctive Pose

Figure 3. Flexible Selection of Distinctive Pose

you can select L − 2 distinctive poses between S2 and
Sn−1 if the first S1 and last Sn must be adopted.

5.1. How to Select Distinctive Pose

There are two ways to selectL distinctive poses from
n skeleton data.

• Non-Flexible selection: equally divided time tick
• Flexible selection: equally divided time span and

k-means

Non-Flexible selection divides the elapsed time T of
the gesture equally into L− 1, and select the pose at the
each time tick as distinctive pose (See Figure 2).

In the Flexible selection, the elapsed time T of
gesture is divided equally into L−1. Then, the k-means
method is applied to the the second half of the ith and
the first half of the (i + 1)th period. The data which

Figure 4. Classifier for Each Distinctive Pose

Figure 5. Sequential Outputs of Each Classifier

is the centroid of each cluster of k-means is selected as
the distinctive pose Pi+1 (See Figure 3). If there are
multiple leading clusters in the same time span, then
multiple Distinctive Poses can be selected, which would
make it a more appropriate choice.

5.2. How to Train the Classifier of Distinctive
Poses

We sample m examples of gesture G which contains
time-series skeleton data. The elapsed time for the
gesture is different for each sample, so the number of
skeleton data Si also vary. For each sample data, L
skeleton data are selected as distinctive poses Pjk (1 5
j 5 m, 1 5 k 5 L). Figure 4 shows how to create a
classifier that detects Pk from sampling data, P1k, · · · ,
Pmk. This is a classifier that detects k-th distinctive pose
in the gesture G.

In order to recognize gesture G, it is necessary to
detect the appearance of P1, P2, · · · , PL in this order
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(See Figure 5). This can be done in two ways.

• Non Flexible Detection: Exact Match
• Flexible Detection: RNN

6. Pre-processing of Skeleton Data

When working with skeleton data, the data must be
pre-processed to reduce the difference between data for
the following three points.

• user orientation to the sensor
• distance between sensor and user
• Physical characteristics of users

6.1. Rotation

To eliminate the effect of the user’s orientation to
the sensor, rotate the skeleton data of the user around
the y-axis. The orientation of the user’s front can be
determined from the left and right positions of the waist
for example. To rotate the coordinates (x, y, z) by θ
around y-axis, use the following formula.XY

Z

 =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 xy
z


6.2. Normalization

The size of the skeleton changes according to the
user’s height. The coordinates of measured joints may
be affected by the distance between the sensor and the
user. Therefore, using the coordinates of the joints as
they are will cause problems.

In such cases, it is necessary to normalize the
coordinates of the joints, rather than using them as they
are. For example, the skeleton data are normalized
to coordinates with the lower part of the human spine
(SpineBase) as the origin point and the length of the
spine as the basic unit system.

6.3. Polar Coordinates

Different users have different physical
characteristics. For example, tall or short, long or
short limbs, wide or narrow shoulders, etc.

Therefore, if the 3D coordinates of the joints are used
as they are, individual differences will have a negative
impact on perception. This effect remains even after
applying the normalization process described in section
6.2.

The expression of the state of each joint can be
converted from the position coordinates (x, y, z) in the

Figure 6. Polar Coordinates System

3D coordinates to the polar coordinates (θ, φ, r), which
is the bending degree.

r =
√
x2 + y2 + z2

θ = cos−1(
z

r
)

φ = tan−1(
y

x
)

Because human bones do not change its length, the
parameter r can be omitted. By removing parameter r, it
is possible to eliminate the influence of the difference in
the physical characteristics of the user. Also, since the
number of input data is reduced, there is an advantage
that the time for training is shortened.

For example, the state of the right shoulder is defined
by the positional relationship of the three joints, Spine
Shoulder, Shoulder Right, and Elbow Right. Figure 6
shows an example of this right shoulder state expressed
in polar coordinates.

6.4. Quantization

Figure 7. 3-stage Relative Relation of y-value

between 2 joints

To train the classifier by using the joint data
coordinates as they are, it needs a lot of examples and
time. Quantizing coordinate data allows learning with a
smaller number of examples and also reduces learning
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time. It is also expected to eliminate the effects of
individual physical characteristics, such as limb length.

Instead of using the coordinates of the joints as they
are, there is a way to represent the pose using the relative
positions between the joints.

Figure 7 shows an example of the y coordinates of
the right elbow and the right wrist as a relative position
of the 3-stage. The relative positional relationship
between the y coordinates of the wrist and that of the
right elbow is represented by a value of 1, 0, or -1.

In general, the value can be expressed in n-stage by
taking into account the degree of difference.

7. Our System: Version 1

Figure 8. Diagram of Version1

We developed our Gesture Recognition System
Version 1 [2] according to the following policy. Figure
8 shows its overall view.

• Skeleton data is pre-processed and expressed in
3-stage relative relation.

• Non-Flexible selection of Distinctive Poses.
• Creating classifier for each Distinctive Pose using

SVM.
• using Exact Match to detect the time-series

appearance of Distinctive Poses for a gesture.

See [2] for details of the experiment and its results.
The version 1 has the following problems:

• 3-stage of relative positional relationships is too
extremely quantized.

• Non-Flexible selection of Distinctive Pose
• Non-Flexible Gesture Detector using Exact Match

8. Our System: Version 2

We have developed Version 2 [3] to improve the
drawbacks of Version 1. Figure 9 shows its overall view.
The design policy of Version 2 is as follows.

Figure 9. Diagram of Version2

Figure 10. RNN Model of Version 2

• The Quantization of pre-processing is not
performed on the skeleton data.

• The skeleton data is rotated around the y-axis,
normalized, converted to polar coordinates, and
input into the RNN.

• Input all time-series skeleton data directly into the
RNN without selecting distinctive poses.

• The RNN is created using TensorFlow [18] and
Keras [19]. The model of the RNN is shown in
Figure 10.

To check the gesture recognition rate of Version 2
system, we conducted some experiments 2a and 2b.
In experiment 2a, the “wave” gesture data from the
Florence 3D Actions Dataset [20] is used. In experiment
2b, we prepared many of the same types of “wave”
gesture data as in 2a.

Dropout1 is the LSTM layer’s dropout rate to input
data. Dropout2 is the LSTM layer’s dropout rate on
every retry. Dropout3 is the Dropout layer’s dropout
rate. We measured the recognition rate while varying
these 3 dropout parameters. The number of hidden
layers in the LSTM is 128, epoch is 100, and batch size
is 64.

Among the result of experiment 2a, the overall
recognition rate is high when Dropout3=0.1. The
experimental results at that time are shown in Table 2.
Training Accuracy is over 90%, but Test Accuracy is
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Table 2. Experiment Result 2a for Version 2 [3]

Dropout1 Dropout2 Training Acc. Test Acc.
0.2 0.2 0.9898 0.7754
0.2 0.3 0.9886 0.7373
0.2 0.4 0.9822 0.7792
0.2 0.5 0.9819 0.7665
0.3 0.2 0.9879 0.7386
0.3 0.3 0.9809 0.8135
0.3 0.4 0.9765 0.7931
0.3 0.5 0.9800 0.7906
0.4 0.2 0.9841 0.7297
0.4 0.3 0.9794 0.7830
0.4 0.4 0.9682 0.7652
0.4 0.5 0.9657 0.7614
0.5 0.2 0.9775 0.7322
0.5 0.3 0.9676 0.7919
0.5 0.4 0.9505 0.7830
0.5 0.5 0.9508 0.7982

Table 3. Experiment Result 2b for Version 2 [3]

Learning Rate Dropout2 Training Acc. Validation Acc. Test Acc.
0.001 0.2 0.8476 0.7147 0.7147
0.005 0.2 0.7301 0.7054 0.6491
0.0001 0.2 0.6926 0.7209 0.5977
0.0005 0.2 0.8379 0.7902 0.7230
0.001 0.3 0.8428 0.8065 0.7201
0.005 0.3 0.4694 0.5483 0.5121
0.0001 0.3 0.6662 0.7229 0.5965
0.0005 0.3 0.8258 0.7773 0.7084
0.001 0.4 0.8252 0.8237 0.7218
0.005 0.4 0.5554 0.6649 0.584
0.0001 0.4 0.5967 0.6745 0.5297
0.0005 0.4 0.8085 0.8211 0.7180
0.001 0.5 0.8169 0.7961 0.6988
0.005 0.5 0.4487 0.4559 0.4119
0.0001 0.5 0.4174 0.4283 0.3830
0.0005 0.5 0.7947 0.7906 0.7005

from 70% to 80%, so it can be seen that overfitting is
occurring. We assume that the number of training data
is insufficient.

In experiment 2b, we collected our own gesture data
of the “wave” gesture, 100 positive data and 500 ×
2 = 1000 negative data. Test Accuracy is relatively
high when Dropout1=0.2 and Dropout3=0.2. The
experimental result at that time are shown in Table 3. In
general, neither Training Accuracy nor Test Accuracy
is very high. We assume that the complexity of the
neural network is insufficient to deal with this problem.
A complicated neural network requires a large number

of training data and long training time.
Since our goal is a user-customizable system,

making the neural network more complicated is not
appropriate for our policy.

9. Our System: Version 3

For Version 3 , we decided to make improvements
based on Version 1. Figure 11 shows its overall view.

The design policy is as follows.

• As Version 1, it consists of two components.
One is a component that recognizes distinctive
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Table 4. Experiment Result of Version 3 [4]

Training Acc. Validation Acc. Test Acc.
Florence 3D Actions Dataset 0.9892 0.9913 0.9838
home-made wave data 0.9627 0.9572 0.9622

Figure 11. Diagram of Version3

Figure 12. RNN Model of Version 3

poses. The other is a component that detects the
appearance of a time-series of distinctive poses in
each gesture.

• RNN is used for the component that detects the
appearance of a time-series of distinctive poses.
The model of RNN is shown in Figure 12.

• Skeleton data is preprocessed by normalization
and quantization, and is represented by relative
position relation (5-stage) of joints.

• Distinctive Poses are selected flexibly using
k-means.

Using the experimental data used in Experiment
2a and 2b, we performed Experiment 3 to obtain the

recognition rate of the system Version3. The result of
Experiment 3 is shown in Table 4.

Test Accuracy and Validation Accuracy are both
high, which means that the system can be trained
properly.

However, it has been found that this system
tends to misrecognize similar gestures. It is
presumed that similar poses could not be well
distinguished due to the influence of quantization
(5-stage). Quantization (n-stage) enables high-speed
training and high recognition rate of this system. The
appropriate n value will depend on the set of gestures to
be identified. It is necessary to prepare a set of gestures
that are supposed to be used and determine the value n
suitable for the set by further experiments.

10. Our System: Version 4

Figure 13. Diagram of Version4

Up to Version 3, we have developed our system using
RGB-D camera, Kinect V2. Howerver, from a practical
point of view, it is preferable to recognize the skeleton
using only the RGB camera. Therefore, the basic policy
remains the same as Version 3, but we will change 3D
skeleton recognition component to OpenPose [6] in Our
system Version 4. Figure 13 shows its overall view. NN
means Neural Networks.

Version 4 is currently under development.

11. Conclusion

In this paper, we discussed the gesture recognition
system based on a non-contact sensor based skeleton
recognition system. We have implemented several
versions of gesture recognition systems by combining
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methods that we think to be effective, and we have
measured the recognition rate of those systems.

The Version 1 has the problem that the detection of
time-series distinctive poses is not flexible because of
the Exact Match algorithm.

The Version 2 system tried to perform gesture
recognition in one RNN, which caused the problems
with low recognition rates, requiring a lot of data and
time for training, and being difficult to customize.

The Version 3 showed a fairly high recognition rate.
However, it may work well due to the small n in n-stage
quantization. If n is too small, it will be difficult to
separate multiple types of similar gestures. So we need
to find an appropriate n for the expected set of gestures.

The experimental results showed that a combination
of several methods is useful. Useful methods are
summarized as follows.

• Gesture Recognition System may be better
separated into two components: One is a
component that detects distinctive poses in
Gestures, and the other is a component that detects
the time-series appearance of them.

• Distinctive poses should be selected flexibly using
k-means.

• RNN is suitable for recognition of time-series
distinctive poses.

• Pre-processing of skeleton data is important:
Rotation, Normalization, Polar Coordinates,
Relative positional relations, Quantization
(n-stage).
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