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Abstract

Our starting point is a recently introduced spatial multi-

agent game for egress congestion. We present a twotype

extension of the game. In the game, the agent chooses

its strategy by observing its neighbors’ strategies. The

agent’s reward structure depends on its distance to the exit

and available safe egress time (TASET ). Although TASET
is a well-defined physical quantity, it is assumed that the

agents interpret it subjectively: it is assumed that there

are high TASET and low TASET agent types. Also, we apply

the game to a cellular automaton (CA) evacuation model.

We show that high TASET agents are on average able to

overtake low TASET agents. However, the more there are

high TASET agents in the crowd, the more the evacuation

becomes inefficient for the whole crowd.

1. Introduction

In the faster-is-slower effect, the attempt of individuals to

evacuate faster results in a slower evacuation for thewhole

crowd. In [5] the phenomenon was studied experimen-

tally. A group of people were set to evacuate in two dif-

ferent scenarios, one where people tried to evacuate faster

by pushing their way to the exit, and another where push-

ing was forbidden. It was shown that when the individuals

tried to evacuate faster, the evacuation for the whole group

become slower. Contradicting experimental results have

been presented in [8]. However, the results of these two

experiments are not directly comparable with each other

due to differences in incentive systems as well as in the

exit types of the test geometry.

In [6] Helbing gave a physical explanation to the faster-

is-slower effect. When a crowd tries to evacuate through a

bottleneck, the back of the crowd push the agents in front

of them. The driving force of the back of the crowd, com-

bined with the frictional force between the agents, causes

human arches to build up. The arches break down when

there are large enough fluctuations in the forces. These

arches not only slow down the evacuation, but people are

squeezed and suffocated in them.

An indicator of the severity of the arch-formation is the

distribution of time lapses between consecutive evacuat-

ing people. The stronger the human arches are, the more

probable are longer time lapses between consecutive evac-

uating people. In [5] it was shown that in the scenario,

where people tried to evacuate faster, the probability for

longer time lapses was higher. It was also speculated, that

if the situation is competitive enough, the expected value

for the time lapse distribution might not converge. This

means that rare disastrous events are possible.

A common explanation for the self-destructive behav-

ior of a crowd is that people are panicking. However,

sociologists have been unanimous for decades that panic

doesn’t occur in crowds, and that panic is merely a term

for a poorly understood phenomenon [10]. Because

of ethical concerns, there is little experimental research

on the decision-making of people in fire emergencies.

Nonetheless, there are experiments, where a fire emer-

gency has been simulated by using an analogous reward

structure to that in competitive fire egress [11, 13, 14]. In

the experiments, it was shown that the faster-is-slower ef-

fect is a result of rational behavior. If individuals in a fire

emergency are considered rational, their decision-making

can be modeled with game theory [2, 3, 7, 9].

Heliövaara et al. [7] use the spatial game approach to

model the decision-making of agents in an egress conges-

tion. The agents have two different behaviors, or strate-

gies to choose, Patient and Impatient. They observe the

strategies of the agents in their immediate neighborhood

and choose their strategy according to the myopic best re-

sponse rule. In the game, an agent’s reward structure de-

pends on its distance to the exit and available safe egress

time (TASET ). TASET is a widely used measure in the fire

evacuation literature [4]. It describes the time it takes for

the fire conditions to become dangerous.

The game model has been coupled to a cellular automa-

ton (CA) evacuation model in [16, 17]. The CA model is

based on the model by Kirchner et al. [12]. In the CA,

the agents’ positions are updated with simple stochastic

update rules. Many emergent phenomena in evacuations,

e.g., faster-is-slower effect, clogging at bottlenecks, and

herding, can be realistically simulated with a CA [12,16].

Also, since the model is discrete in time and space it is

computationally light.

The model in [16] is the starting point of our article. In

[7,16], it was assumed that all agents have the same value

for TASET . The contribution of this article is to extend the
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game to allow two types of agents in the crowd. Although

TASET is a well-defined physical quantity, it is assumed

that the agents interpret it subjectively: it is assumed that

there are high TASET and low TASET agent types. In Sec. 2

the new game is presented, and in Sec. 3 we examine its

equilibria.

Also, we modify the CA model in Sec. 4. We exclude

the herding effect, since it is not relevant when we are

simulating the evacuation through a single exit. In [16],

the probability that none of the agents are allowed to move

in a situation, where several agents try tomove to the same

cell, was modeled with the friction parameter µ . It was

held constant throughout the simulation. Here, we set µ

to depend on the density of the crowd and proportion of

impatient agents in the crowd.

We are interested in how the agent’s subjective inter-

pretation of the fire threat, i.e., the agent’s type affects the

efficiency of the evacuation on both individual and crowd

level. Thus, in Sec. 5, we study the evacuation efficiency

of high TASET and low TASET agents. We are interested

in their efficiency on both individual and crowd level. We

examine both evacuation time, and the distribution of time

lapses between consecutive agents.

2. Game-theoretical model

Next, we present a twotype spatial multiagent game for

egress congestion. It should be mentioned, that the game

only describes what the agents expect that will happen

in different encounters. The agents’ decision-making is

based on these expectations. We do not assume that the

agents can take into account the full complexity of all in-

teracting agents. Hence, when coupling the game with the

CA model in Sec. 4, the actual outcome of an interaction

is not necessarily exactly what the agents expected when

selecting their strategies.

The game models a competitive egress from a room

with a single exit. In the game, there are n agents, in-

dexed by i, i ∈ I = {1, ...,n}. The agents are located in

a room, which is discretized into a square grid, so that a

single agent occupies a single cell of the grid.

Each agent has an estimated evacuation time Ti. Agent

i estimates it by calculating

Ti =
λi

β
. (1)

Here, λi is the number of agents closer to the exit than

agent i, and β is the capacity of the exit. Since the agents

are packed in front of the exit, the walking time to the

exit is assumed to be much smaller in comparison to the

queuing time. Thus, the agents assume Ti equals only the

time it takes to queue to the exit. In a contest between two

nearby agents i and j, their estimated evacuation times are

approximated Ti j := (Ti +Tj)/2.
Each agent has a cost function u(Ti j), for which

u′(Ti j) ≥ 0. The derivative condition describes the fact

that it is more costly, i.e., there is a larger risk to be ex-

posed to fire related harm, if the estimated evacuation time

Ti j is large. Assuming that 4T is small we can approxi-

mate,

4u(Ti j) = u(Ti j −4T )−u(Ti j)∼= u′(Ti j)4T. (2)

The agents have two strategies to choose from: Patient

and Impatient. It is assumed that in an actual play of the

game, these strategies correspond to patient and impatient

behaviors of the agents, respectively. Denote by Ni the

neighborhood of agent i; it will be specified later. In a

contest between two neighboring agents i and j ∈ Ni, the

agents assume the following outcomes:

1. In an impatient vs. patient agent contest, the impatient

agent can overtake the patient agent. The impatient

agent reduces its estimated evacuation time by 4T .
Thus, the reduction in its cost is4u(Ti j). Because the
patient agent’s evacuation time is increased by4T , its
cost is increased by4u(Ti j).

2. In a patient vs. patient agent contest, the patient agents

do not compete with each other, they keep their posi-

tions and their costs do not change.

3. In an impatient vs. impatient agent contest, neither

agent can overtake the other, but they will face a con-

flict and have an equal chance of getting injured. The

risk of injury is described by a cost C > 0, which af-

fects both agents. The constant C is called the cost of

conflict.

From the aforementioned assumptions, a 2 × 2 game

matrix is constructed

Impatient Patient

Impatient C,C −4u(Ti j),4u(Ti j)

Patient 4u(Ti j),−4u(Ti j) 0,0 .

In the game matrix, agent i is a row player and agent

j a column player. When a particular pair of strategies

is chosen, the costs for the two agents are given in the

corresponding cell of the matrix. The cost to agent i is
the first number in a cell, followed by the cost to agent j.
Because this is a cost matrix, the agents want to minimize

their outcome in the game.
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2.1. Cost function

In the fire safety literature, available safe egress time

TASET is a widely-used physical measure for the time it

takes for the fire conditions to become lethal [4].

Often computer simulations are needed to assess TASET
accurately [4]. Thus, it is hardly conceivable that hu-

mans, that are under time pressure and have limited cog-

nitive abilities [15] could accurately estimate TASET . In

other words, it is very unlikely that humans have a real-

istic perception of the threat of the situation. Probably,

some of them consider the situation more threatening than

others. In our game model, we assume the agents to have

a subjective measure of TASET . We assume that there are

two types of agents in the crowd, high TASET agents and

low TASET agents. We denote their types by T H
ASET and

T L
ASET , respectively. Thus, for the type variable it holds

TASET ∈ {T H
ASET ,T

L
ASET}.

Let us now go back to Eq. (2). If we for simplicity as-

sume4T = 1, we have4u(Ti j)∼= u′(Ti j). So, the cost of
being overtaken is approximately u′(Ti j). Let’s make an-

other assumption about u(Ti j). Recall, that u′(Ti j) ≥ 0.
We additionally assume that u′′(Ti j) ≥ 0, i.e., an agent

considers the cost of being overtaken larger if the esti-

mated evacuation time Ti j is larger. Also, we assume that

when Ti j = TASET , the agent is indifferent between being

overtaken or risking an injury in a conflict against another

impatient agent, i.e., u′(TASET ) =C.
Now we can give an explicit form to the cost function

u(Ti j). An example of a cost function that fulfills these

conditions is

u(Ti j) =


CT 2

i j

2TASET
, ifTi j ≥ 0,

0, ifTi j < 0.
(3)

In Fig. 1, the cost functions for high TASET agents

(T H
ASET = 1000), and low TASET agents (T L

ASET = 400) are
depicted.

For both cost functions, the cost of conflict parameter is

set C = 3. From the figure, it can be seen that for the low

TASET agent, the cost function grows faster. Now, substi-

tute 4u(Ti j) = u′(Ti j) in the game matrix, and divide it

by u′(Ti j). This does not affect the equilibria of the game.

Finally, substitute u′(Ti j) = Ti j/TASET . Then, we get the

following game matrix

Notice how the game now only depend on the parame-

ter TASET/Ti j. Whether agents i and j are of same or dif-

ferent type, the game is either symmetric or asymmetric,

respectively. In a symmetric game, the costs only depends

on the strategies chosen by the agents, not on which agent

is playing them. In an asymmetric game, the costs also

depend on which type of the agents is playing the strate-

gies. For general comments on 2 player 2× 2 games see

Figure 1: Cost functions for high TASET agents (T H
ASET = 1000),

and low TASET agents (T L
ASET = 400).

Impatient Patient

Impatient
TASET

Ti j
,

TASET

Ti j
−1,1

Patient 1,−1 0,0 .

the appendix in [7].

In the symmetric case, when 0 < TASET/Ti j ≤ 1, the
game played is Prisoner’s Dilemma, PD, and the only

Nash equilibrium (NE) is (Impatient, Impatient). The only

NE of PD is an evolutionary stable strategy (ESS) [18].

And when TASET/Ti j > 1, the game played is Hawk-Dove,

HD, and there are two pure strategy Nash equilibria (Im-

patient, Patient) and (Patient, Impatient). There is also a

mixed strategy equilibrium, where the strategy Impatient

is played with probability Ti j/TASET , and the strategy Pa-

tient with probability 1−Ti j/TASET . The mixed strategy

equilibrium is an ESS.

In the asymmetric case, it holds for agent i, TASET =
T H

ASET , and for agent j, TASET = T L
ASET , or vice versa:

if 0 < T H
ASET/Ti j,T L

ASET/Ti j ≤ 1, the game played is an

asymmetric PD, and the only NE is (Impatient, Impa-

tient), which is an ESS; and, when T H
ASET/Ti j > 1 and

0 < T L
ASET/Ti j ≤ 1, the game played is less-known in the

game theory literature, but it is sometimes called the game

of Samson and Delilah. From hereon, we will call this

instance of the game Samson. In Samson, the only NE,

which is an ESS, is where the high TASET agent plays Pa-

tient and the low TASET agent plays Impatient. Lastly, if

T H
ASET/Ti j,T L

ASET/Ti j > 1, the game played is an asymmet-

ric HD, and there are two pure strategy NE (Impatient, Pa-

tient) and (Patient, Impatient). There is also a mixed strat-

egy equilibrium, where the high TASET agent plays Impa-

tient with probability Ti j/T L
ASET , and Patient with proba-
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bility 1−Ti j/T L
ASET , and the low TASET agent plays Impa-

tient with probability Ti j/T H
ASET , and Patient with proba-

bility 1−Ti j/T H
ASET . The pure strategy NE’s are ESS’s.

2.2. Update of strategies

Next, we present how the agents update their strategies.

The agents play the game with the agents in their Moore

neighborhood, i.e., the agents in the 8 nearest cells. We

denote the set of agents in the Moore neighborhood of

agent i by Ni. Notice that when we later set the agents

to move, the neighboring agents will change as the agents

move.

The game is played over periods t = 0,1, .... Agent

i’s strategy on period t is denoted by st
i . Here, st

i ∈ S
and S = {Patient, Impatient}. The agents are assumed

to update their strategies according to the shuffle update

scheme, i.e., during n periods each of the agents updates

its strategy once. The order in which the agents update

their strategies is randomly chosen.

The agents’ objective is to minimize the sum of costs

against their neighbors. The agents are assumed to up-

date their strategies with the myopic best-response rule,

i.e., agent i observes the current strategies of its neigh-

bors in Ni, not considering past or future play, and chooses

its best-response strategy. The best-response strategy of

agent i is denoted by BRi. Note that the types of the neigh-

boring agents doesn’t affect BRi. The reason for this is

that the agent’s type is its private information, which we

assume the other agents can’t observe.

Let us assume the initial strategy profile of the agents to

be s0 = (s0
1, ...,s

0
n). On period t agent i chooses its strategy

as follows

s(t)i = BRi(s
(t−1)
−i ;Ti,T−i)

= argmin
s′i∈S

∑
j∈Ni

vi(s′i,s
(t−1)
j ;Ti j). (4)

Here, the notation s(t−1)
−i is used to denote the strategies

of all other agents than agent i at period t −1, and T−i in-

cludes the estimated evacuation times of these agents. The

function vi(s′i,s
(t−1)
j ;Ti j) gives the cost defined by the pre-

viously introduced game matrix to agent i, when it plays

strategy s′i, and agent j has played strategy s(t−1)
j on period

(t −1)
The simplicity of the myopic best-response rule reflects

the limited cognitive abilities that humans are assumed to

have in a stressful situation [15]. Also, it is unrealistic to

assume that the agents updated their strategies simultane-

ously. In many real social systems the agents update their

strategies independent of each other [19]. Thus, the shuf-

fle update scheme is more suitable for strategy update.

3. Equilibrium analysis

In a Nash equilibrium of the spatial game, none of the

agents can lower its cost by unilaterally deviating from its

equilibrium strategy. In [7, 16] the equilibria of the spa-

tial multiagent game for egress congestion with a single

agent type was analyzed. There, given any initial configu-

ration of strategies, the game always converges to an equi-

librium, when all the agents have updated their strategies

about 10 times with the shuffle update scheme. For a cer-

tain sized crowd, with a specific value for TASET , there are

multiple equilibria, i.e., the strategies can be distributed in

many ways in the square grid, so that no agent can lower

its cost by unilaterally deviating. However, the proportion

of impatient agents is the same in each of these equilibria.

Next, we analyze the equilibria of the twotype spa-

tial multiagent game for egress congestion. where 1498

agents have been set to play the game until equilibrium is

reached. In an egress congestion, people typically orga-

nize into a half-circle-like formation in front of the exit.

Thus, the agents are set into a half-circle in front of the

exit. We set T H
ASET = 1000 and T L

ASET = 400. In Fig. 2a all
agents are high TASET , in Fig. 2b all agents are low TASET ,

and in Fig. 2c, we consider a crowd with 50 % high TASET
agents and 50 % low TASET agents. In Fig. 2, the equi-

librium configurations of these three scenarios are shown.

Black squares represent impatient agents and gray squares

represent patient agents. The half-circles divide the area

into subareas, where different games are played.

As expected, the strategies of the agents in Figs. 2a and

2b converged to an equilibrium. In Fig. 2a, we can distin-

guish between two areas. They are separated by a black

curve. In the area inside the black curve, all the agents

play HD. Outside the black curve, the estimated evacua-

tion time Ti j is so large in comparison to TASET that the

agents play PD. Thus, all agents outside the black curve

are impatient. This area is denoted with C. In Fig. 2b,

TASET is lower in comparison to Fig. 2a. Thus, the agents

are more threatened by the situation, and a higher propor-

tion of agents are impatient, in comparison to Fig. 2a. This

results in the agents playing PD much closer to the exit.

Thus, the black curve is much lower here than in Fig. 2a.

The area in Fig. 2b, where the agents play HD is denoted

by A.
Interestingly, also in Fig. 2c, where there are two type

of agents, the strategies converge to equilibrium, when the

agents have updated their strategies about 10 times with

the shuffle update scheme. In the equilibrium, we can dis-

tinguish between 3 different areas. In area A, agents of the
same type play HD against each other, and agents of dif-

ferent type asymmetric HD against each other. In area C,
agents of the same type play PD against each other, and

agents of different type asymmetricPD against each other.
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(a)

(b)

(c)

Figure 2: Equilibrium configurations, where (a) all agents are

high TASET , (b) all agents are low TASET , (c) 50% are high TASET
agents and other 50 % low TASET agents. Black squares repre-

sent impatient agents and gray squares represent patient agents.

The half-circles divide the area into subareas, where different

games are played.

In between these two areas is area B, where high TASET
agents play HD against each other, low TASET agents play

PD against each other, and agents of different type play

the game Samson against each other.

A surprising effect can be noticed, by comparing the

proportion of impatient agents in the different scenarios

of Fig. 2. In the single type crowd, in Fig. 2a, ca. 60 % of

high TASET agents are impatient, whereas, in the twotype

crowd, in Fig. 2c, only 40 % of high TASET agents are im-

patient. However, the opposite effect does not happen to

low TASET agents, in both the single and twotype crowds

ca. 90 % of the low TASET agents are impatient.

This can be explained by examining the agents’ best-

response strategy from Eq. (4), which can be expressed as

an inequality. Recall the costs associated with interactions

of different strategists. Now, agent i should play Impa-

tient, if the cost of playing Impatient against its neighbors

is less than or equal to the cost of playing Patient:

∑
j∈Ni

TASET

Ti j
+(|Ni|− |NImp

i |)≤ |NImp
i |, (5)

where |Ni| is the number of agents in the neighborhood

of i and |NImp
i | is the number of impatient agents in the

neighborhood of i. To make the analysis simpler, let us

approximate Ti = Tj, j ∈ NImp
i . Then the above inequality

can be written as

|NImp
i |
|Ni|

≤ Ti

TASET
. (6)

Here, |NImp
i |/|Ni| is the proportion of impatient agents

in the Moore neighborhood of agent i. In a spatial equi-

librium of the game, Eq. (6) has to hold for all agents

i ∈ N. We can infer that in an equilibrium a low TASET
agent plays Impatient with a higher proportion of impa-

tient agents in its neighborhood compared to a high TASET
agent. Thus, in a twotype crowd, in an equilibrium, low

TASET agents are going to fill most of the space for impa-

tient agents.

3.1. Sensitivity analysis

Next, the same simulation setup is used as in Fig. 2. We fix

the value for T H
ASET and alter the value for T L

ASET . Then,

we study the proportions of impatient agents in the spa-

tial equilibrium of the game. The simulations for each

fixed T H
ASET are run for 100 different values of T L

ASET ,

equally distributed in the interval [0,T H
ASET ]. The inter-

polated curves of the data points are shown in Fig. 3.

For example, see Fig. 3, the curve in the top, there

T H
ASET = 500. The simulations show that when the value

for T L
ASET is increased, the proportion of impatient agents

in the spatial equilibrium decreases.

In Fig. 4 we examine how altering the proportion of low

TASET agents in a crowd changes the proportion of impa-

tient agents in the equilibrium. The simulations are run

for 100 different proportions of impatient agents, equally
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Figure 3: Proportion of impatient agents in the spatial equilib-

rium, when T H
ASET is fixed and T L

ASET is altered.

distributed between [0,1]. Otherwise, same settings are

used as in Fig. 2, i.e., T H
ASET = 1000 and T L

ASET = 400.

Figure 4: Proportion of low TASET agents in the crowd vs. the

proportion of impatient agents in the equilibrium of the crowd.

As the proportion of low TASET agents in the crowd in-

creases, the proportion of impatient agents in the equilib-

rium of the game increases.

It should be noted that the size of the crowd also has an

effect on the proportion of impatient agents in the equilib-

rium. Since, when the agents update to their best-response

strategy, they consider the ratio TASET/Ti j. Recall Eq. (1);

Ti j is calculated for an agent by considering the amount of

agents closer to the exit than the agent in question. Thus,

if the crowd size is increased, the agents in the back of the

crowd will have higher values for Ti j.

4. Simulation model

The interactive decision-making situation of individuals

in an egress congestion can be modeled with a spatial

game as above. Next, we present the CA model, to which

the game is coupled. The CA is a modified version of

the model used in [16]. In the CA, the agents move in

the cells of a discrete square grid. At the beginning of

a time step, the agents are allowed to move one cell in

orthogonal directions. The dimensions of a cell are as-

sumed to be 0.4m× 0.4m, and the length of a time step

0.3s. Movement in diagonal directions is not allowed,

since it accounts to a higher velocity. The agents’ move-

ment directions are determined by transition probabilities.

These transition probabilities are proportional to the static

floor field SF . The closer the cells are to the exit, the

higher values SF attains. In [16] a more complex CA

was used, where the agents movement also depended on

the so-called dynamic floor field DF . The dynamic floor

field is omitted here, since its main purpose is to model

the herding effect of agents, which is not relevant phe-

nomenon in the evacuation geometries we use in this arti-

cle.

So, in our model the probability plm for an agent to

move to a neighbor cell (l,m) is calculated as follows

plm =
1
Z

ekSF SFlm(1−ξlm), (7)

where

ξlm =

{
1 for forbidden cells (walls and occupied cells)

0 else

and the normalization

Z = ∑
(l,m)

ekSF SFlm(1−ξlm).

Here, kSF ∈ [0,∞) is the agent’s coupling parameter to

SF . Basically, the larger kSF is, the more straight the agent

is moving towards the exit, or the more assertive they

are. For a thorough analysis on how the floor fields and

coupling parameters affect the movement of the crowd,

see [1, 12, 16].

The agents movement is updated with the parallel up-

date scheme, i.e., all the agents desired movement direc-

tions are updated simultaneously. Now, there are situa-

tions where several agents desire to move to the same cell,

i.e., conflict situations. In [12] a friction parameter µ was

introduced, which describes the probability that none of

of the agents in a conflict situation are able to move to the

cell. The friction parameter works as a kind of local pres-

sure between the agents [12]. In [12] it was shown that

these conflict situations are not just an artifact of the par-

allel update scheme, but an important feature to describe

evacuation dynamics correctly.

4.1. Friction parameter

In [12, 16], µ is assumed to be fixed throughout the sim-

ulation. However, if µ is to work as a kind of local pres-

sure between agents, it should vary based on the size of

1333



the crowd, and on the proportion of impatient agents in it.

We define µ as

µ = b1ρaρImp +b2ρa +b3ρImp. (8)

Here, bi, i = 1,2,3 are coefficients for which b1 +b2 +
b3 = 1, and ρImp is the proportion of impatient agents in

the crowd. ρa is calculated by dividing the current size

of the crowd with the initial size of the crowd. Thus, in

the beginning of the evacuation simulation ρa = 1, and as
agents are able to evacuate the room, ρa decreases. This

is a reasonable approximation for the effect of crowd size,

if the initial crowd is large and the agents evacuate from

a room with a single exit. However, for more complex

geometries ρa should be calculated differently.

Since ρa,ρImp ∈ [0,1], it holds that µ ∈ [0,1]. The

interaction term ρaρImp captures the interaction between

crowd size and proportion of impatient agents. We as-

sume the interaction term has the largest impact on µ .

For simplicity, we assume that the impact of ρa and ρImp
equally large. This leads us to use the parameter values

b1 = 0.6,b2 = 0.2,b3 = 0.2 in simulations in our arti-

cle. We are mainly interested in qualitative phenomena

in evacuations. For quantitative accuracy, the correct co-

efficient values should obviously be estimated from ex-

perimental data.

Let us examine how altering the value of a single coef-

ficient bi, i = 1,2,3, affects the value of µ . If the value for

b1 is increased, µ decreases. On the other hand, if b1 is

decreased, µ increases. The effect of parameters b2 and b3
is not so straightforward. If b2 is increased, µ decreases

when ρa > ρImp, and µ increases when ρa < ρImp. For the

parameter b3 the opposite occurs, if b3 is increased, µ in-

creases when ρa > ρImp, and µ decreases when ρa < ρImp.

As ρa and ρImp change during the simulation of an evac-

uation, altering the coefficients b2 and b3 can increase µ

at some stages in the simulation and decrease it in oth-

ers, compared to a simulation done with the values for

bi, i = 1,2,3 used in this article. Thus, altering parame-

ters b2 and b3 results in nonlinear effects on the evolution

of µ during the simulation.

4.2. Spatial game coupled with a CA evacu-

ation model

The spatial game is coupled to the CA evacuation model.

For technical purposes, the movement of the agents is up-

dated in parallel. Without parallel update, there would

be no well-defined time scale. On the other hand, the

strategies of the agents are updated with the shuffle up-

date scheme, because it is more realistic to assume that

agents do not simultaneously update their strategies.

The time scale in updating strategies is assumed to be

much smaller than that of movement. Thus, the crowd is

in a spatial equilibrium at a snapshot of the simulation. Yet

again, it should be reminded that the game the agents play

only models the agents expected outcomes, and it does not

have to correspond to the realization of the CA evacuation

model.

Next, a step-by-step description is given of the spatial

game coupled to the CA evacuation model. In the begin-

ning of the simulation, the agents are located randomly in

the room.

Step 1. At the beginning of each time step, the game pa-

rameters Ti j = (Ti + Tj)/2, i 6= j,∀i, j ∈ I are calculated

according to Eq. (1).

Step 2. The agents’ strategies are updated with the shuf-

fle update scheme until an equilibrium is reached. The

agents observe the strategies of the other agents in their

Moore neighborhood, and choose a best-response strategy

according to Eq. (4).

Step 3. The agents’ behavior in the CA model is set to

correspond their strategy choice. This is done by altering

kSF for the agents as follows:

(a) For an agent playing Impatient kSF = 10.0.

(b) For an agent playing Patient kSF = 1.0.

Step 4. Friction parameter µ is calculated according to

Eq. (8).

Step 5. The agents’ positions are updated in parallel ac-

cording to Eq. (7). In a case of a conflict, one of the agents

is allowed to move with probability 1−µ .

Step 6. Go to Step 1. The procedure is repeated until all

agents have evacuated the room.

5. Simulation results

We are interested in how the agent’s type affects the ef-

ficiency of the evacuation on both individual and crowd

level. Thus, in Sec. 5.1, we simulate an evacuation with

both high and low TASET agents, to see how the different

agent types perform against each other. And, in Sec. 5.2,

we simulate an evacuating crowd consisting of a single

type agent, to see how the different types of agents per-

form on a crowd level, and show that the faster-is-slower

effect is a result of agents’ subjective interpretation of the

threat. In the last two experiments, we study the mech-

anism behind the faster-is-slower effect. In Sec. 5.3, we

look at the time evolution of a single simulation, to find

that the agents evacuate in a stepwise manner. Finally, in

Sec. 5.4 we study the distribution of the step lengths, or

time lapses between consecutively evacuated agents.
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In the simulations, we are using a crowd of 200 agents.

Thus, smaller values for T H
ASET and T L

ASET are used in com-

parison to the equilibrium simulations in Sec. 3. We set

T H
ASET = 120 and T L

ASET = 30. The capacity of the exit is

β = 1.25(1/s), in all simulations. For impatient agents

the coupling parameter is set to kSF = 10 and for patient

agents kSF = 1. In all simulations, a one cell, i.e., 0.4m

wide exit is used. The friction parameter is of the form

µ = 0.6ρaρImp +0.2ρa +0.2ρImp.

Sensitivity analysis on the effect of µ on macroscopic

quantities of an evacuation simulation, e.g., flow at exit,

have been already studied thoroughly in [12, 16]. Thus,

the authors are left with the following conclusion: it ap-

pears that the faster-is-slower effect is not sensitive to

changes in b1, as long as it is not decreased too much from

0.6. The faster-is-slower effect is more sensitive to the

values of b2 and b3. They should not be set much higher

than 0.2 for the model to work.

5.1. Performance of the individuals

Next, we study how high TASET agents perform against

low TASET agents. In Fig. 5, a crowd of 200 agents, with

100 high TASET agents, and 100 low TASET agents, have

been set in a room to evacuate through a narrow exit. The

simulation was run 100 times, and the number of evacu-

ated agents as a function of time was monitored. The gray

curve represents the average number of evacuated high

TASET agents, and the black curve the average number of

evacuated low TASET agents.

Figure 5: Evacuation of a crowd consisting of 100 high TASET
agents and 100 low TASET agents. Averaged number of evacu-

ated agents as a function of time for both agent types.

In Fig. 5, it can be seen that the average number of evac-

uated low TASET agents is almost always higher, than the

average number of evacuated high TASET agents. How-

ever, both types of agents have evacuated at about the

same point in time. Thus, our simulations show that the

majority of low TASET agents are able to rush to the exit

before high TASET agents.

Since, at the beginning of each simulation, the agents’

positions were randomized, this shows that on average

low TASET agents are able to overtake high TASET agents

in our simulations. This can be explained by the analyses

from Sec. 3, which show that a low TASET is more prone

to be impatient. Furthermore, in [16] it has been shown

that individual impatient agents are able to overtake pa-

tient agents in the CA evacuation model.

5.2. Performance of the crowd

Next, we study how the agent types perform on a crowd

level. We set all agents in a crowd to be of the same type,

and see which crowd evacuates faster. Otherwise we take

the same simulation setup as in Fig. 5. Two scenarios are

simulated; in the first the crowd consists of high TASET
agents, and in the second, it consists of low TASET agents.

The simulations are run 100 times, and the results are seen

in Fig. 6.

Figure 6: Averaged number of evacuated agents as a function

of time for two different values of TASET .

The gray curve represents the average number of evac-

uated high TASET agents, and the black curve the average

number of evacuated low TASET agents. Whereas an indi-

vidual low TASET agent was able on average to evacuate

faster than an individual high TASET agent in a twotype

crowd, here the crowd with low TASET agents evacuate

slower than a crowdwith high TASET agents. As the crowd

consists of only low TASET agents, there is nobody to over-

take, and the agents just hinder each others’ attempt to es-

cape.

5.3. Time evolution of an evacuation

Because the values in Fig. 6 are averaged, the curves do

not tell us about the development of a single simulation. In
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Fig. 7 we take a look at the first 40 seconds of a single sim-

ulation of the evacuation of both a crowd with only high

TASET agents, and a crowd with only low TASET agents.

Figure 7: The development of a single simulation. Number of

evacuated agents as a function of time for both agent types.

It is interesting to note that the curves, for both agent

types, increase in an irregular stepwise manner. Actually,

for a real crowd it is quite typical that people evacuate in

such irregular successions [5]. In real crowds, it is a re-

sult of human arches forming and breaking down [6]. It

is quite fascinating that the simple CA model can simu-

late this phenomenon. This feature of the CA was already

noted in [12].

Though, in the CA, the phenomenon is not a result of

human arches forming and breaking down, because no

actual physical forces in the crowd are modeled. In the

CA, in front of the exit, there are constantly conflict situ-

ations. Whether any of the agents is allowed to move to

the desired cell, is a consequence of the friction parame-

ter µ . The stochastic nature of these conflict situations in-

troduces irregularity to the time lapses between consecu-

tively evacuated agents. In [12] an analytical dependence

between µ and the number of evacuated agents with re-

spect to time has been derived.

The average amount of evacuated agents is indirectly

proportional to the average time lapse between two con-

secutive agents. The step lengths of the curves show how

long the time lapse is between two consecutive evacuated

agents. Judging from Fig. 7, for the crowd with low TASET
agents, the step lengths are longer, and there is more vari-

ability in their lengths.

5.4. Distribution of time lapses

Next, we calculate the average time lapses between two

consecutive agents for both a crowd of only high TASET
agents, and a crowd of low TASET agents. Since the fric-

tion parameter µ gives the probability that none of the

agents in a conflict situation is allowed tomove, the length

of the time lapses is dependent on the value of µ . Recall

Eq. (8); µ depends on the size of the crowd. Thus, the

distribution of the time lapses should depend on the size

of the crowd. As the crowd is evacuating, the size of the

crowd changes with time. Thus, we use data of only the

10 first time lapses from 100 simulations, which results in

1000 data points. For high TASET agents, the mean is 5.40

s and for low TASET agents it is 3.51 s.

In Fig. 8 the complementary cumulative frequency dis-

tribution (complementary CDF) of the time lapses is plot-

ted for a crowd with high TASET agents and for a crowd

with low TASET agents. The complementary CDF equals

1−CDF , and tells the probability of the time lapse, say

4x, being larger than some specific time t. Note that both
of the axes are in logarithmic scale.

Figure 8: Complementary cumulative frequency distribution of

the time lapses 4x between two consecutive evacuated agents

for both a crowd with high TASET agents and a crowd with low

TASET agents.

Note that the probability for low TASET agents is always

larger than the probability for high TASET agents. Thus,

our simulations show that longer time lapses are more

probable for a crowd with low TASET agents.

6. Conclusions

The contribution of our article compared to previous arti-

cles [7, 16] is that here we have extended the spatial mul-

tiagent game, originally presented in [7] with only one

agent type, to allow two types of agents, high and low

TASET agents, and given a new explanation to the faster-

is-slower effect with this model.

In Sec. 3, the equilibria of the game were studied. It

was very interesting to notice that an agent, in a crowd

with only high TASET agents, would be impatient in a cer-

tain location, but in a crowd with two types of agents, in

exactly the same location, the agent would be patient. This

can be explained by the low TASET agents’ best-response
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strategy allowing a larger proportion of impatient agents

in their neighborhood, compared to high TASET agents’

best-response strategy. Thus, in a twotype crowd, in an

equilibrium, it is the low TASET agents that are going to

fill most of the spaces for impatient agents.

In Sec. 4, the spatial game was coupled to a modified

version of the CA evacuation model from [16]. The dy-

namic floor field, which was included in the original CA

evacuation model, was omitted, as its main purpose was

to model the herding behavior of agents. The friction pa-

rameter µ , which describes the probability that none of the

agents in a conflict situation is able to move, was set to de-

pend on the density of the crowd and proportion of impa-

tient agents in it, thusmore realisticallymodeling build-up

of local pressure in the crowd.

In Sec. 5, evacuation of a crowd from a room was sim-

ulated. It was shown that low TASET agents were on av-

erage able to overtake high TASET agents. However, if all

the agents in the crowd were low TASET , they evacuated

slower than a crowd were all the agents were high TASET .

Also, the underlyingmechanism of the faster-is-slower ef-

fect was studied, by examining distribution of time lapses

between consecutive agents. It was shown that the aver-

age time lapse between consecutively evacuating agents

is higher for a crowd with low TASET agents. Moreover,

it seems that longer time lapses are more probable for a

crowd with low TASET agents. Our results coincide nicely

with the experimental results in [5], even though we were

not able to fit a power law to the tail of the complementary

CDF.

In this article, we restricted ourselves to the simple sce-

nario of a crowd evacuating from a room through a sin-

gle exit. When modeling more complex geometries, we

should take into account agents’ exit selection and herd-

ing effects, i.e., that people go where the majority of the

crowd is heading. Also, the static floor field and friction

parameter µ should be set suitable for the new geometry.
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