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Abstract 
Cyber-physical systems generate and collect huge 

amounts of usage data during operation. Analyzing 

these data may enable manufacturing companies to 

identify weaknesses and learn about the users of their 

products. Such insights are valuable in the early phases 

of product development like product planning, as they 

facilitate decision-making for product improvement. 

The analysis and exploitation of usage data in product 

planning, however, is a new task for manufacturing 

companies. To reduce mistakes and improve the results, 

companies should build upon a suitable reference 

process model. Unfortunately, established models for 

analyzing data cannot be easily applied for product 

planning. In this paper, we propose a reference process 

model for usage data-driven product planning. It builds 

on three well-established models for analyzing data and 

addresses the unique characteristics of usage data-

driven product planning. Finally, we customize the 

model for a manufacturing company and demonstrate 

how it could be implemented in practice.  

1. Introduction  

The further development of products is the main 

development focus of engineers. In a survey with 247 

engineers, ALBERS et al. found that only 7% of 

developments are true new developments without carry 

overs or adjustments of existing products. In contrast, 

93% of developments represent further developments of 

existing products [1]. To further develop a product, 

engineers need to answer questions like: How does the 

product perform in the field? What are its strengths and 

weaknesses? How do users utilize the product? What are 

new requirements for the product? Answering such 

questions is not trivial, as companies often lack high 

quality information about the product usage phase [2].  

A new solution for this problem emerges from the 

progressive digitalization of products. In recent years, 

the digitalization has transformed mechatronic products 

into so-called cyber-physical systems that integrate 

hardware, sensors, data storage, microprocessors, 

software, and connectivity. These systems can collect 

data about themselves and their environment during 

their utilization [3].  

The analysis of such usage data promises to be 

especially valuable during the early stages of product 

development like product planning [4]. As the initial 

phase or phase zero of product development, product 

planning aims at finding success potentials of the future 

[5] and promising products to be developed [6]. In this 

regard, usage data analytics can help exploit insights 

about predecessor products and their users that lead to 

new success potentials and set the agenda for product 

improvements. In conjunction, usage data analytics and 

product planning span the new research area usage data-

driven product planning [7]. 

At present, the analysis of usage data in product 

planning is not widely researched. For example, 

BERTONI found that research on analyzing data to 

identify customer needs mainly focuses on data from 

social media and online reviews [8]. In addition, 

approaches that address usage data often have a broader 

perspective than product planning. For example, 

WILBERG et al. present a stakeholder-oriented procedure 

for the development of a use phase data strategy [10]. 

The approach addresses stakeholders in different 

business functions, e.g., service or marketing. While 

such approaches help to identify the potential value of 

usage data for the different stakeholders of a company, 

they do not help analyze usage data in product planning.  

As there are no existing approaches, the creation of 

a reference process model for usage data-driven product 

planning is required. In this paper, the term reference 

process model describes a generic process model that 

formalizes recommended practices for a certain domain 

[11]. Our research question is as follows: How does a 

reference process model for usage data-driven product 

planning have to be designed?  
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Utilizing a design science approach, the result of 

this paper is a reference process model for usage data-

driven product planning. It guides companies with a 

stepwise procedure and helps structure projects in usage 

data-driven product planning. It is especially useful for 

manufacturing companies that want to start exploiting 

usage data in product planning.  

The paper is structured as follows: In section 2, we 

describe our research design for the construction of the 

reference process model. Section 3 presents the 

reference process model for usage data-driven product 

planning in detail. In section 4, we show the 

customization of the model for a manufacturing 

company. Section 5 concludes the paper.  

 

2. Research design  

For the development of the reference process model 

for usage data-driven product planning, we followed the 

design science research (DSR) guidelines. According to 

HEVNER et al., DSR aims at developing viable artifacts 

(e.g., models or methods) for relevant business 

problems. These artifacts must be novel and provide a 

clear contribution through solving so far unsolved 

problems. They are created and evaluated by applying 

rigorous methods and utilizing the knowledge base [12]. 

While design science research represents the 

foundation of our research design, our concrete 

procedure broadly derives from the Process Model for 

an Empirically Grounded Reference Model 

Construction by AHLEMANN and GASTL. This process 

model emphasizes the importance of consulting domain 

experts when constructing and validating reference 

process models [13]. In addition to that, we analyzed 

established models following DE LA HIDALGA et al. [14] 

and FRANK et al. [15]. To carve out a suitable reference 

process model from all the input data, we utilized VOM 

BROCKE’s design principles [16]. Overall, our 

procedure comprises four phases: Domain analysis, 

Model construction, Empirical validation, and 

Customization (see Figure 1). Subsequently, the phases 

are described in detail.  

  

Figure 1: Procedure model for the development of the 

reference process model 

 2.1. Domain analysis  

In the domain analysis phase, relevant knowledge 

about the domain shall be captured and prepared for the 

model construction [13].  

For the considered domain, MEYER et al. provide a 

recent comprehensive systematic literature review [7]. 

In their work, the authors derive the main concepts, 

advantages, success factors and challenges of usage 

data-driven product planning [7] und thus present a 

substantial overview of the topic. Therefore, we used the 

literature review as our knowledge base.  

Next, we investigated our knowledge base in search 

of necessary process steps for the reference process 

model. AHLEMANN and GASTL propose this step as a 

suitable way to structure and aggregate the knowledge 

available [13]. We analyzed the knowledge base using 

the question: Which process steps does the desired 

reference process model need to include? Table 1 shows 

the derived process steps for the reference process 

model. They represent domain requirements for the 

model construction and conclude our domain analysis.  

Table 1: Necessary process steps for the reference process 

model derived from the knowledge base 

ID Process step 

P-1 Analysis of the product and strategy [10, 17] 

P-2 Analysis of the data analytics capabilities [10] 

P-3 Definition of use cases [4, 17, 18] 

P-4 Definition of data needs [3, 19] 

P-5 Collection of usage data [19–21] 

P-6 Pre-processing of usage data [19, 21–23] 

P-7 Analysis of usage data, i.a. [19, 22, 24, 25] 

P-8 Validity-check of data analysis results [19, 26] 

P-9 Interpretation of the analysis results [19, 27] 

P-10 Creation of new ideas [28] 

P-11 Identification of requirements [4, 27, 29, 30]  

P-12 Planning the improvement of existing and 

future products, i.a. [17, 21, 25, 26, 28, 31, 32] 

2.2. Model construction  

The model construction phase aims at developing a 

first version of the reference process model [13]. This 

version is based on the necessary process steps from the 

knowledge base and on existing process models. 

As our desired reference process model shall 

describe how to analyze usage data of existing products 

to find improvement potentials, we focused our analysis 

of existing process models on models for analyzing data. 

For this, numerous process models exist. MARISCAL et 

al. and PLOTNIKOVA et al. provide an overview about 

existing process models and show that almost all 

identified approaches are based on two original models: 
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the Cross Industry Standard Process for Data Mining 

(CRISP-DM) and the Knowledge Discovery in 

Databases model (KDD) [33, 34]. Therefore, these two 

models are subsequently described in more detail.  

CRISP-DM is an industry-, tool- and application-

neutral process model for data mining. It was created by 

the CRISP-DM CONSORTIUM and is based on the 

experience of numerous data mining practitioners [35, 

36]. For several years, it has been considered the 

de facto standard for data mining projects.  

The process model consists of six iterative phases: 

(1) Business understanding aims at understanding the 

business objectives and requirements and converting 

them into a concrete data mining problem definition. 

(2) In data understanding, the data are collected and 

investigated to spot, for example, data quality problems. 

(3) The data preparation includes tasks like the 

transformation and cleaning of the data to construct the 

final dataset. (4) During modeling, models are built and 

refined with the data. (5) In the evaluation, the model 

must be evaluated regarding the business objectives. 

(6) Finally, in deployment, the model is put into 

operation and a report is generated [35].  

KDD refers to the overall process of discovering 

useful knowledge from data [37]. FAYYAD et al. define 

the KDD process as “the nontrivial process of 

identifying valid, novel, potentially useful, and 

ultimately understandable patterns in data” [38].  

The process consists of nine iterative steps: (1) In 

learning the application domain, relevant domain 

knowledge and the desired goals are captured. 

(2) Creating a target dataset aims at selecting the 

dataset to be analyzed. (3) In data cleaning and pre-

processing, basic operations like noise reduction and 

outlier removal take place. (4) Data reduction and 

projection focuses on tasks like feature engineering and 

dimensionality reduction. (5) In choosing the function of 

data mining, the purpose of the desired model is decided 

(e.g., classification, regression). (6) Choosing the data 

mining algorithm(s) addresses the selection of suitable 

method(s) for searching patterns in the data, e.g., by 

comparing different models and parameters. (7) Data 

mining describes the search for patterns in the data. (8) 

In interpretation of the results, the patterns discovered 

are interpreted and translated into the domain language. 

(9) The final step usage of the discovered knowledge 

covers documenting the new knowledge, reporting it 

and taking action [38].  

In addition to these industry-neutral models like 

CRISP-DM, KDD, and their derivatives, we decided to 

also analyze one manufacturing-focused approach to 

account for any industry-specific aspects. The 

VDI/VDE 3714 guideline presents a standard for the 

implementation and operation of big data applications in 

the manufacturing industry. It aims at aggregating the 

numerous contributions towards big data analytics in the 

manufacturing industry and at unifying them into one 

model [39].  

The guideline describes seven iterative phases: 

(1) In the definition phase, the questions and objectives 

to be answered or achieved need to be specified. 

(2) Next, exploring the data situation aims at describing 

and structuring the available data and defining 

additionally required data. (3) In data management, data 

from different sources are merged. (4) Modeling deals 

with creating an evaluable model from the data. 

(5) Subsequently, an initial evaluation of the data 

analysis results with respect to the project goals is 

necessary. (6) Implementation and rollout aims at 

transferring the big data application into continuous 

operation. (7) The final phase sustainability addresses 

the project documentation as well as an assessment of 

economic, technical and social aspects to ensure a 

sustainable impact of the big data project [39]. 

To construct our first version of the reference 

process model, first, we analyzed the three existing 

process models CRISP-DM, KDD, and the VDI/VDE 

3714 guideline. We followed DE LA HIDALGA et al. and 

FRANK et al. and created a detailed process model for 

each, including all tasks and steps mentioned in their 

descriptions [14, 15]. We also synchronized their steps, 

thereby highlighting gaps and similarities in the models.  

Second, we aggregated the established reference 

models to build one exhaustive model from the three 

original models [16]. We found that we could sort all 

process steps into four main processes: (1) Planning of 

the data analysis, (2) Analytics and data preparation, 

(3) Analytics workflow design and modeling and 

(4) Exploitation of the data analysis results. In detail:  

(1) Planning of the data analysis contains process 

steps related to the early business perspective on the 

project: Parts of CRISP-DM’s business understanding 

(e.g., the determination of business objectives and 

requirements); KDD’s learning the application domain; 

VDI/VDE 3714 guideline’s definition.  

(2) Analytics and data preparation includes 

process steps concerning the clarification of the 

analytics task as well as the selection and collection of 

the data: Parts of CRISP-DM’s business understanding 

(e.g., the determination of data mining goals), CRISP-

DM’s data understanding; KDD’s creating a target 

dataset; VDI/VDE 3714 guideline’s exploring the data 

situation and data management.  

(3) Analytics workflow design and modeling 

summarizes the process steps addressing data pre-

processing and analysis: CRISP-DM’s data preparation 

and modelling; KDD’s data cleaning and pre-

processing, data reduction and projection, choosing the 

function of data mining, choosing the data mining 

algorithm(s), and data mining; VDI/VDE 3714 
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guideline’s modeling and parts of the evaluation of the 

data analysis results.  

(4) Exploitation of the data analysis results 

consists of process steps for the interpretation and 

utilization of the data analysis results: CRISP-DM’s 

evaluation; KDD’s interpretation of the results and 

usage of the discovered knowledge; Parts of VDI/VDE 

3714 guideline’s evaluation of the data analysis results.  

We omitted the following process steps, as they aim 

at the continuous operation of the built models and 

therefore do not contribute to the purpose of our 

reference process model: CRISP-DM’s deployment; 

VDI/VDE 3714 guideline’s implementation and rollout 

and sustainability. 

Third, again following VOM BROCKE’s design 

principles, we specialized the aggregated model for our 

considered domain [16]. For each necessary process 

step from Table 1, we analyzed if it was already 

sufficiently addressed in the model. If not, we added a 

new process step (e.g., derivation of use cases) 

following DE LA HIDALGA et al. and FRANK et al. [14, 

15]. As a result, we obtained a first version of the 

reference process model with four main and 16 sub 

processes. Figure 2 shows the schematic procedure.  

  
 Figure 2: Schematic procedure for the model construction 

2.3. Empirical validation  

For the validation of the reference process model, 

AHLEMANN and GASTL recommend conducting 

interviews with topic experts [13]. We performed three 

semi-structured interviews of 60-90 mins duration. Our 

interview partners are characterized in Table 2.  

Table 2: Overview about interview partners 

ID Position Experience 

I-1 Innovation and process consultant 6 years 

I-2 Digitalization consultant and 

entrepreneur 

15 years 

I-3 Head of data science department 11 years 

The interviews were aimed at answering the following 

questions: Is the reference process model complete or is 

something missing? Are the sub processes structured in 

a logical sequence? Are the sub processes clearly 

separated from each other? 

We discussed each main and each sub-process with 

all interviewees and protocolled all remarks and 

questions raised in the interviews.  

After each interview, we refined the reference 

process model according to the remarks of the experts. 

For example, we added the sub-process Update product 

strategy in the Exploitation main process. After all 

interviews were conducted, we showed the updated 

reference process model to all experts again. We asked 

for further remarks, but all experts were satisfied and 

confident that it fulfills its requirements. Section 3 

presents the resulting model.  

2.4. Customization  

After the validation, AHLEMANN and GASTL 

suggest to test the reference process model [13]. We 

performed this practical test with a machinery and plant 

engineering company, which produces machine tools 

and production equipment in the field of forming 

technology.  

In the test, we customized the reference process 

model for the company. We used the RACI method, 

which is also known as RAM (Responsibility 

Assignment Matrix) [40]. The method’s goal is to assign 

tasks and responsibilities. For that, it uses a matrix with 

processes in the rows and roles in the columns [40].  

For the assignment of tasks and responsibilities, 

four options are possible. They are derived from the 

name of the method: R, A, C, and I. The letter R stands 

for responsible and describes which person is 

responsible for a task. The letter A stands for 

accountable: It shows who decides whether a task has 

been performed correctly. For example, this could be a 

supervisor. The letter C describes that a person should 

be consulted when the task is performed. Lastly, the 

letter I names all people who need to be informed about 

the events and the results for that specific task [41]. 

While working with the matrix, several assignment rules 
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must be respected, e.g., only a single person can be 

responsible for a given task [41].  

At the start of the workshop, we collected the 

company’s relevant roles for usage data-driven product 

planning. Then, we successively assigned the roles to 

each sub-process of the reference process model. The 

results are shown in section 4.  

3. Reference process model for usage data-

driven product planning  

The reference process model for usage data-driven 

product planning consists of four main processes: 

(1) Planning of the usage data analysis, (2) Analytics 

and data preparation, (3) Analytics workflow design 

and modeling and (4) Exploitation of the data analysis 

results. Each main process comprises four sub-

processes. In the following, all sub-processes are 

described. The sources are given with the corresponding 

IDs, e.g., [I-1] and [P-1] (see Table 1 and Table 2), and 

abbreviations, e.g., [CRISP-DM]. Figure 3 shows the 

reference process model. Please note that the arrows 

represent sequence flows and not information flows.  

(1) Planning of the usage data analysis 

(1.1) Identification of investigation needs:  

Input: Product strategy 

Procedure: This sub-process aims at finding critical 

needs for investigation concerning the product or its 

users. For this, the business objectives specified in the 

product strategy are analyzed [CRISP-DM, I-1, P-1]. 

This strategy contains details about the product program 

design, e.g., about the product’s strategic focus and its 

planned evolution [42, 43]. In addition to the strategy, 

the status quo of the product under investigation is 

examined [KDD, CRISP-DM, P-1]. From these 

analyses, critical investigation needs are derived.  

Output: Investigation needs 

(1.2) Analysis of data analytics capabilities:  

Input: -  

Procedure: In this sub-process, the capabilities of the 

organization and the product concerning usage data-

driven product planning are assessed [P-2]. For 

example, the available resources (e.g., data mining 

experts, usage data) need to be analyzed [CRISP-DM]. 

Output: Data analytics capabilities 

(1.3) Definition of boundary conditions and goals:  

Input: Investigation needs (1.1); Data analytics 

capabilities (1.2) 

Procedure: Next, boundary conditions and goals need 

to be defined [CRISP-DM, KDD, VDI/VDE]. Boundary 

conditions include requirements, prerequisites, 

assumptions, and constraints of the project. Just as the 

goals, they can refer to the organization or the product 

context. Goals help achieve the business objectives and 

guide the analytics activities. The boundary conditions 

and goals set the direction for the subsequent steps.  

Output: Boundary conditions and goals 

(1.4) Derivation of use cases:  

Input: Boundary conditions and goals (1.3) 

Procedure: Use cases address the previously defined 

content goals. They link possible influential variables to 

a goal or ask questions about the relationships of goals 

and influential variables [VDI/VDE, I-2, P-3]. For each 

use case, costs and benefits must be estimated 

[CRISP-DM].  

Output: Use cases 

(2) Analytics and data preparation 

(2.1) Specification of analytics objectives:  

Input: Data analytics capabilities (1.2); Use case (1.4) 

Procedure: This sub-process transforms a use case into 

concrete data analytics objectives [CRISP-DM]. If 

domain knowledge is missing, it needs to be captured to 

derive relevant variables and adequate data analytics 

approaches (e.g., clustering or association rule mining) 

[KDD]. For this, the data scientists stay in close contact 

with the domain experts [I-3].  

Output: Data analytics objectives  

(2.2) Definition of data needs:  

Input: Data analytics objectives (2.1) 

Procedure: This sub-process specifies the data and their 

sources [P-4]. Also, it defines specific measurements or 

data objects [VDI/VDE]. This includes the 

transformation of the defined physical variables into 

concrete data attributes in the target dataset. For 

example, from the domain knowledge and demand (e.g., 

noise behavior), raw data and data sources (e.g., sound 

vibrations via a sound level meter) need to be derived.  

Output: Data needs 

(2.3) Collection of data:  

Input: Data analytics capabilities (1.2); Data needs 

(2.2) 

Procedure: In this sub-process, the data needs are 

compared with the actual existing data in the company. 

If the required data are not available, an acquisition 

concept must be developed and implemented [P-5].  

Output: Raw data set 

(2.4) Description of data:  

Input: Raw data set (2.3) 

Procedure: This sub-process is about understanding the 

collected data and analyzing them regarding their 

processing options [CRISP-DM]. Here, the goal is data 

literacy. Steps are a first exploration, a holistic 
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description of the data with relevant meta data, and a 

classification of the data [VDI/VDE]. If data quality is 

not sufficient, it is necessary to go back to the previous 

step and acquire the data with the required quality [I-3].  

Output: Data characteristics  

 

(3) Analytics workflow design and modeling 

 

(3.1) Workflow design:  

Input: Data analytics objectives (2.1); Data 

characteristics (2.4) 

Procedure: In this sub-process, pre-processing and 

modeling techniques are selected and composed into 

analytics workflows [I-3]. Typically, there are several 

techniques for the same problem type. Some modeling 

techniques need specific data formats or have certain 

model assumptions. This requires a close link between 

data preparation and modeling as well as an alignment 

of these steps as a coherent workflow [I-3].  

Output: Conceptual workflows 

(3.2) Data pre-processing:  

Input: Raw data set (2.3); Conceptual workflows (3.1) 

Procedure: In this sub-process, analysts need to refine 

the data to prepare it for modeling [CRISP-DM, KDD, 

P-6]. Here, the pre-processing methods defined in the 

workflows must be implemented (e.g., record and 

attribute selection, integration of different data sets, data 

cleaning, data transformation, and feature engineering).  

Output: Pre-processed data 

Figure 3: Reference process model for usage data-driven product planning 
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(3.3) Model building:  

Input: Conceptual workflows (3.1); Pre-processed 

data (3.2) 

Procedure: This sub-process is about implementing the 

algorithms of the workflows together with an adequate 

test design [CRISP-DM, KDD, VDI/VDE, P-7]. The 

latter examines and compares the workflows and their 

parameter settings.  

Output: Analysis results 

(3.4) Model validation:  

Input: Analysis results (3.3) 

Procedure: The models and their results need to be 

validated [CRISP-DM, VDI/VDE, P-8]. For this, 

suitable technical metrics and evaluation criteria must 

be selected. Model building and validation iterate until 

results no longer improve and reach satisfaction.  

Output: Model performance  

(4) Exploitation of the data analysis results 

(4.1) Results interpretation:  

Input: Use case (1.4); Analysis results (3.3); Model 

performance (3.4) 

Procedure: The interpretation of the analysis results 

seeks to reveal unknown, but valuable insights about the 

product and its users [P-9]. It covers the evaluation of 

the analysis results and their transfer into the product 

context, e.g., the description, explanation, and 

verification of the results by product experts [KDD, 

VDI/VDE]. The insights form the starting point for the 

identification of new success potentials for product 

improvement [I-1].  

Output: Success potentials for product improvement 

(4.2) Idea generation:  

Input: Investigation needs (1.1); Success potentials for 

product improvement (4.1) 

Procedure: In this step, promising ideas for product 

improvement are generated [P-10]. They are aimed at 

exploiting the identified success potentials. From all 

ideas, the most promising ones are selected [I-1].  

Output: Ideas for product improvement 

(4.3) Requirements derivation:  

Input: Success potentials for product improvement 

(4.1); Ideas for product improvement (4.2) 

Procedure: Building on the success potentials and ideas 

for product improvement, this sub-process aims at 

translating the new ideas into requirements for product 

development [P-11]. 

Output: Requirements  

(4.4) Product strategy update:  

Input: Requirements (4.3) 

Procedure: In the last sub-process, the product strategy 

is updated based on the new requirements [I-1]. It 

specifies the changes planned for new product 

generations and existing products [P-12].  

Output: Updated product strategy 

4. Customized process model  

To demonstrate how it could be implemented in 

practice, we customized the reference process model 

with a machinery and plant engineering company, 

which produces machine tools and production 

equipment in the field of forming technology (see 

section 2.4). The company links nine roles to the 

implementation of the process: Purchasing agent, sales 

engineer, service technician, pre-developer, mechanical 

developer, electrical developer, virtual developer, head 

of development and CEO. In the following, tasks and 

responsibilities of each role are described. The resulting 

RACI-matrix is shown in Figure 4.  

 Of all roles, the purchasing agent is the least 

involved. He only supports during the identification of 

investigation needs by presenting current and future 

purchasing challenges.  

The activities of the sales engineer are limited to 

the first main process. He is responsible for the 

identification of investigation needs. After that, he is 

consulted because of his close customer relationships. 

Later, he receives information about the results 

interpretation and the product strategy update.  

The role of the service technician is especially 

important in the first two main processes. As he is in 

close contact with customers, he is consulted during the 

planning and preparation main processes. Furthermore, 

he supports in the results interpretation.  

 The pre-developer helps in the identification of 

investigation needs. At the end, he is informed about the 

product strategy update as it affects his future work.  

Mechanical and electrical developers accompany 

the process from the derivation of use cases to the 

product strategy update. Early on, their expertise is 

needed for the analytics and data preparation. While 

they are only informed about the analytics workflow 

design and modeling, they are again consulted for 

results interpretation and idea generation.  

The virtual developer is the most important role 

for performing usage data-driven product planning in 

the considered company. He is responsible for all sub-

processes of the first three main processes except the 

identification of investigation needs (see sales 

engineer). For the second and third main process, he also 

oversees the results obtained. While he has a consulting 

function for results interpretation, he is only informed 

about the results of the sub-processes idea generation, 

requirements derivation, and product strategy update.  
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 The head of development has a consulting role 

during the planning main process. While he is only 

informed about the second and third main process, he is 

responsible to exploit the identified insights and find 

promising product improvements.  

The last role is the CEO. He is informed about all 

process activities. Furthermore, he oversees the 

planning and exploitation main processes.  

5. Conclusion  

The result of this paper is a reference process model 

for usage data-driven product planning. It consists of 

four main processes: (1) Planning of the usage data 

analysis, (2) Analytics and data preparation, 

(3) Analytics workflow design and modeling and 

(4) Exploitation of the data analysis results. Each main 

process is divided into four sub-processes, which further 

explain the tasks to be performed. The model’s 

customization with a machinery and plant engineering 

company shows how the reference process model could 

be implemented in practice. In the following, our work’s 

contributions to theory and practice are described. 

Finally, its limitations as well as recommendations for 

future research are presented.  

5.1 Contributions to theory and practice 

Usage data-driven product planning is a new and 

promising research field. While there are numerous 

established reference process models for performing 

data mining or big data analyses, none of them can 

easily be applied to product planning. The reference 

process model presented in this paper addresses and fills 

this gap. Thereby, the developed artifact represents a 

valuable addition to the knowledge base as requested in 

design science research [12]. The reference process 

model contributes to the scientific discourse by 

describing the utilization of data analytics approaches in 

the early phase of innovation.  

For the practical contribution, the model provides 

managers an overview about how to perform usage data-

driven product planning. Managers can confidently 

build on the model as it is based on three process models 

that are widely used in practice. For the implementation, 

our paper lays out how to customize the model by 

assigning responsibilities to each sub-process.  

5.2 Limitations and recommendations for 

future research 

The result of this work is subject to four main 

limitations. (1) When analyzing existing reference 

models, we focused on three models: CRISP-DM, 

KDD, and VDI/VDE 3714. However, there are 

numerous further reference models, many of which are 

derivatives of the original CRISP-DM and KDD models 

[34]. These models might have included further aspects 

for our process. Yet, we are convinced that we captured 

all critical aspects with our selection. (2) The validation 

was performed with three interviews. A higher number 

of interviews would probably have generated further 

Figure 4: Results of the customization in a RACI-matrix 
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valuable suggestions. Yet, as our interviewees have 

diverse experiences and perspectives, we are confident 

that they pointed out the most important points. (3) The 

reference process model conceptually describes the 

required steps and tasks of usage data-driven product 

planning. However, concrete methodical approaches are 

not yet included in the reference process model. 

(4) Until now, we have not yet fully applied the 

reference process model in practice, but only parts of it. 

Therefore, some real-world challenges could still be 

unaddressed.  

Considering the limitations, future research should 

focus on the following three recommendations: 

(1) Methodical approaches need to be developed for 

each sub-process. (2) The whole process should be 

performed with multiple companies to find more 

practical challenges. (3) The reference process model 

should be regularly updated and improved, e.g., after its 

first complete application in practice.  
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