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Abstract 
 

Wearables are becoming more computationally 

powerful, with increased sensing and control 

capabilities, creating a need for accurate user 

authentication. Greater control and power allow 

wearables to become part of a personal fog system, but 

introduces new attack vectors. An attacker that steals a 

wearable can gain access to stored personal data on 

the wearable. However, the new computational power 

can also be employed to safeguard use through more 

secure authentication. The wearables themselves can 

now perform authentication. In this paper, we use gait 

identification for increased authentication when 

potentially harmful commands are requested. We show 

how the relying on the processing and storage inherent 

in the personal fog allows distributed storage of 

information about the gait of the wearer and the ability 

to fully process this data for user authentication locally 

at the edge. While gait-based authentication has been 

examined before, we show an additional, low-power 

method of verification for wearables. 

 

 

1. Introduction  

 
Wearables are becoming ubiquitous for consumers. 

Smartwatches, wireless headphones, fitness trackers, 

and even medical wearables, such as insulin pumps and 

heart rate monitors, are becoming commonplace in the 

lives of millions of consumers. These devices collect 

significant data about the user. Heart rate, movement, 

location data, activity level, and, in the case of medical 

wearables, private medical data about the user. The 

amount of data collected makes wearables an enticing 

target for attackers.  

While the ubiquity has increased, so too has the 

power and storage of the wearables themselves. 

Devices like the Apple Watch 3 [1] or Samsung Gear 

[19] are both capable of performing major processing 

for apps that can be loaded directly into the internal 

storage of the watch. We also see increased power in 

devices like the Here One [7] that can process audio 

and remove or amplify specific sounds from a user’s 

environment. This shows that wearables, as is the case 

with most technology, are moving towards the point 

where wearables are as capable as our current phones. 

In fact, the Apple Watch has about the same processing 

power as the iPhone 4 [9]. 

With the increase in processing power of the 

wearables, it becomes possible to make the wearables 

be edge nodes in a fog architecture. When combined 

with an additional base station layer, this architecture 

becomes a personal fog [22], in which all fog nodes are 

owned by the user. By using the personal fog, it is 

possible to process the data collected by the wearable’s 

sensors directly on the wearable and make additional 

decisions, either for security or for app functionality. 

The computational load can also be shared by all peer 

fog nodes, rather than only the wearable or only its 

base station.  

Unfortunately, with the increased power, data 

collection, and other functional capabilities of 

wearables, there is a risk that, if the wearable falls into 

the wrong hands, it could allow an attacker to gain 

personal information about the original user. For 

example, Android Smart Lock [10] allows devices that 

have been declared by the user to be trusted to unlock 

the users’ phone. Thus, as long as the trusted wearable 

is within Bluetooth range the phone will be unlocked. 

This accessibility poses a serious security risk. An 

attacker needs only to steal a trusted wearable and the 

phone to gain access to all data stored on the phone.  

The idea behind the Android Smart Lock system is 

to allow the user to have increased privacy without 

compromising convenience. However, especially with 

the trusted devices option, this feature goes too far in 

opening the door for attackers. It would be better for 

the user if there was a method of using their data from 

their wearables to authenticate the user without the 

user needing to perform any major action, but in a way 

that, if an attacker managed to gain access to the 

wearable and base station, they would not be able to 

access the user’s personal data.  

In this paper, we use a user’s gait for authentication 

when attempting to perform tasks that may be harmful 

to the user should an attacker have access to the 

wearable/base station. We choose gait as our 

authentication method because it is unobtrusive for the 
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user (a user does not need to perform any additional 

identification beyond standard use), is easily collected 

with existing wearables and base stations, and has been 

used by other researchers as a method of user 

identification with high accuracy.  We propose the use 

of the personal fog to distributed stored data on each 

fog node to all fog nodes in the system, allowing 

independent verification by each fog node to ensure a 

potentially compromised fog node does not allow an 

attacker to gain access to a user’s personal data. We 

show that Pearson correlation can be used as a low-

computational cost method of authentication and 

confirm that the additional time to verify is negligible 

for the user.  

 

2. Background  

 
Gait-based authentication has been examined by 

other researchers. Boyle et al. [3] used the Euclidean 

norm of accelerometer readings and a k Nearest 

Neighbors algorithm to identify users’ gaits. They were 

fairly accurate, though in some cases they had an 

accuracy of as low as 70%. Sharma et al. [20] used 

image processing techniques to identify walkers with a 

97.5% accuracy. Papavasileiou et al. [18] used “Smart 

Socks” to authenticate users by their gait. They 

achieved perfect recognition, though they were only 

comparing between the two socks. Ho et al. [8] used a 

phones accelerometer to detect user’s gait. They 

combined the data from the x, y, and z axes and used a 

Bayesian classification to identify the user. In most 

cases, they achieved an accuracy of between 69.7 and 

100%.  

Xu et al. [23] used a smartwatch for gait 

authentication. Their method requires significant 

computation to use, as it performs pre-processing and 

focuses on identifying walking, running, and idling for 

its identification. Muaaz and Mayrhofer [14] used 

adapted Gaussian mixture models to identify users 

based on their gait from a cell phone. Their method 

also requires significant computation, as they omit 

unusual walking cycles and estimate the user’s gait 

from the actual data. Their method does allow for 

orientation independent verification, however [15]. 

Cola et al. [5] used a wrist-worn device, simulating a 

smartwatch, for their gait analysis. Their method 

depends on preprocessing, feature extraction, and 

anomaly detection, producing an accuracy between 

97.3 and 99.6%.  

Gait has been used for purposes other than 

identification. Hwang et al. [11] examined gait to 

measure walking quality using an Arduino attached to 

the user’s leg. They were able to fairly accurately 

(between 81.6 and 95.8%) identify different walking 

styles. Xu et al. [24] used gait to generate secret keys 

between wearable devices and their base stations. Their 

method identified the heel strike, which can be 

identified by all wearables on the body, to generate 

secret keys for encryption of Bluetooth traffic. They 

were able to generate keys with an accuracy between 

72.1 and 98.3%. However, eavesdroppers were able to 

generate keys accurately approximately 50% of the 

time, reducing the usefulness of the method.  

The fog, despite it being a relatively recent 

computing architecture, has been used for a large 

number of applications. These applications include 

providing resilience at scale [4], robotics ([6], [12]), 

data analysis [21], and social sensing for limited 

internet connectivity [16]. It is likely the fog could 

target many applications that require additional 

computing resources, making it ideal for mobile and 

Internet of Things applications. 

 

 

3. The Personal Fog  

 
In this section, we describe how wearables can 

interact within the personal fog. In the personal fog 

described in [22], wearable devices have additional 

processing and storage capabilities. This assumption 

reflects the increasing capabilities of devices such as 

the Apple Watch and the Samsung Gear, which both 

contain additional storage space and processing power 

for data collection and housing developer apps. Each 

wearable is treated as a fog node at the edge, taking 

information from the built-in sensors, performing basic 

processing and compression, and forwarding that data 

to their base station, in this case a phone. While not all 

wearables contain this additional processing power, the 

personal fog invokes a trend of increasing processing 

power to the edge in recent years and makes the 

assumption that all wearables will be powerful enough 

to function as a fog node.  

With the expected increased computational power 

of the wearables, it becomes possible for wearables to 

reason about their environment without relying on their 

base station. In a traditional wearable architecture, the 

base station is in complete control of the wearable and, 

if the wearable is capable of controlling the base 

station (as is the case with smart watches being able to 

change/pause music or unlock the phone), the base 

station must relinquish its control to the wearable. 

There is no additional verification performed to ensure 

the wearable is not being used by an attacker to control 

the phone. With the personal fog, and the additional 

computational power on the edge, the wearables can 

make local decisions, based on their sensor data, to 

verify the user. 
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The architecture of the personal fog is depicted in 

Figure 1. Note that the wearables act as a fog node 

connected directly to their sensors. The wearables are 

connected directly to the base station, which can 

communicate directly with the cloud. By making the 

wearables their own fog nodes, it becomes possible to 

maintain the structure of a fog while ensuring that all 

nodes except the cloud are owned by the user, creating 

a true personal fog.  

 

 
Figure 1. The Personal Fog Architecture 

 

We place a common app on each personal fog 

node, i.e. the wearables and the base station. This app 

can process the collected data at the edge wearable in 

the personal fog to determine if the user is in an 

insecure environment, as described in [22]. The base 

station can also perform the data collection and 

determination. The wearable analyzes only its own 

data and compares it against internal rules that assess 

the environmental parameters and determine the 

security status. The base station aggregates data from 

all connected wearables to perform its own 

determination of the current security status. If either 

denote insecure as the status, then the devices react to 

that state until a secure status is verified.  
Imagine a user has a Garmin Smartwatch. This 

watch allows the user to set up the watch to reply to 

text messages, unlock the users phone, and view 

notifications, even if the phone does not show the full 

notification on screen. If an attacker gets access to the 

watch and the base station, the attacker will gain access 

to the user’s phone, even if the user has a strong 

password or fingerprint verification enabled. If the user 

did not set up the watch to be able to unlock their 

phone, the attacker will still be able to read messages 

and reply to texts as the user. Such scenarios can be 

prevented by the additional power granted to wearables 

by the personal fog, allowing the wearable to locally 

process and verify the user based on data collected by 

its own sensors or peer wearables. 

The architecture of the personal fog is not required 

for the wearable to verify with only its own data. 

However, this verification method could be faked by 

an attacker. The attacker needs only to get root access 

to the wearable and force the stored data used for 

verification to be replayed. With the interconnectivity 

of the personal fog, the verification data can be spread 

across all devices, where each device can verify all 

other device data. In this way, authentication is 

performed by all devices and, should the user fail 

authentication, the fog nodes can shift into an insecure 

state to prevent further attacks. 

It should be noted that, for the purposes of this 

paper, we focus only on the interconnectivity between 

the wearables and the base station for authentication. 

While the cloud is capable of informing the base 

station of its state and collecting data from the base 

station, there are existing methods of verification for 

cloud communication [2]. We do not propose the use 

of gait information when communicating with the 

cloud, though this may be implemented in the future. 

For the purposes of this work, the cloud only 

aggregates information about the current security state 

of the user and is responsible for informing the user 

when they enter an insecure state.  

 

4.  Collecting Valid Gait Information  

 
For authentication, we chose to use accelerometer 

data of a user walking to verify using the wearer’s gait. 

Wearables already collect this data, often using the 

accelerometer data to control functions of the device 

(smartwatches that light up when the wrist is flicked, 

the Apple Watch that opens Siri when watch is brought 

up to the users’ mouth). With the additional edge 

power granted as part the personal fog architecture, we 

can perform additional processing and storage of this 

data collected locally by the wearable. The wearable, 

running our personal fog app, can identify when the 

user is walking, collect valid gait information for 

storage and later use, and adapt to potential attacks if 

authentication fails. 

We focus on a user’s gait primarily because it is 

unobtrusive to collect for a user of the personal fog and 

its accuracy in identification. Other biometric options 

are available, including facial recognition, retinal 

patterns, fingerprints, speech recognition, or facial 

thermograms [13], but each requires additional work 

by the user and additional hardware to be implemented 

by device manufacturers. For facial recognition or 
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retinal patterns, cameras must be installed in all 

wearables and base stations and the user must raise 

each device to their face for identification. A similar 

issue exists for fingerprinting and facial thermograms. 

Speech pattern recognition could work, though any 

attacker who has a recording of the users’ voice could 

perform verification and user verification may not be 

possible in noisy environments.  

There are wearables, such as the Nymi band [17], 

that use ECG sensors to verify a user by their 

heartbeat. This sensor could possibly be used as a more 

secure authentication, but a user is required to press 

their finger into the device to perform the ECG 

reading, adding an additional step, and only the single 

device can be used. Until more wearables make use of 

an ECG, as well as find a way to eliminate the 

additional user step, it is infeasible for the average 

consumer to use the device to ensure their information 

is secure. Thus, for use with the personal fog, gait is a 

very feasible option requiring no additional steps for 

verification (save for actual steps when walking) and 

no additional burden on device manufacturers.  

In order to authenticate a user by their gait there 

must be consistent “valid” data collected. This 

collection should be performed by the user when they 

first set up a new device. It is reasonable to assume that 

when a user adds a fog node to their system they are a 

valid user.  

When a user first sets up their device, our app looks 

for accelerometer data that is consistent with walking. 

We specifically look for long stretches of rhythmic 

jumps in the accelerometer data that imply footsteps. 

This examination is done by searching for peaks and 

valleys in the data that are relatively close to each other 

(local maximums and minimums within a small error 

window of about 0.05). We define a valid amount of 

data to be greater than 5000 data points, equivalent to 

20 seconds of walking.  

We then trim this data to the middle 1100 data 

points. This cleaning of the data ensures that the data 

we rely on is not from the very beginning or very end 

of a walk, as in practical tests this data was inconsistent 

with normal walking. This reason is because users 

being studied would walk slightly more irregularly at 

the very beginning or end of their trip, perhaps as a 

result of knowing they were carrying a wearable for 

testing. It may also be due to a user needing to take a 

number of steps to reach a natural stride. We chose to 

store 1100 data points so that we can choose 100 data 

points for end verification with a starting point 

anywhere between the start and the 1000th data point, 

allowing some variation in the start and end points 

during verification. This choice is not needed but adds 

an extra layer of complexity that wearables can use to 

verify. When verifying, fog nodes can choose any 

point within the 1100 datapoints to use for verification, 

provided it meets the requirements for verification, 

which are discussed in Section 6. 

Once consistent data is collected, it is temporarily 

stored. This stored data is then verified as being 

accurate the next time a walk is detected. If verification 

succeeds, the data is distributed to the other fog nodes 

for storage and to be used by the other fog nodes when 

verification is required. Once a confirmed consistent 

walking pattern is stored on other devices, fog nodes 

store only the most recently consistent walking pattern. 

This peer storage method allows a wearable to send the 

most recently collected gait data to be used when 

authentication is required and a user is not walking. It 

is likely to be the case often, as users tend to be 

stationary for longer periods of time than they are 

walking.  

 

5. Distribution of Gait Data 

 
Both wearables and phones, acting as the 

wearables' base station, are constantly collecting 

accelerometer information, and may tell the user to 

move if the user has been stationary for too long. Many 

wearables use their accelerometer data to calculate 

steps or to recognize the orientation of the device. With 

this data, it becomes possible to create a “walking 

profile” of the user.  

Because wearables are worn on the same parts of 

the body (a smartwatch is usually worn on the same 

wrist at all times) and the base station is often stored in 

a consistent location (pocket, external bag), gait 

information from each device will be consistent for 

each user. Thus, there is a reasonable expectation that a 

user will provide consistent gait information across 

their devices when they are walking. While specific 

devices may differ (the base station will have different 

accelerometer readings than a smartwatch, for 

example) the data collected from a single device will 

be consistent with that device.  

When a wearable attempts to perform an action that 

the system or the user has determined to be a potential 

security risk, such as unlocking the users phone or 

sending a reply message, the wearable attempts to 

authenticate with the other nodes in the users personal 

fog. Figure 2 shows the flow of this authentication. 

First, the wearable requests verification from all 

connected nodes in its personal fog. Once the nodes 

have responded that they perform the requested 

verification, the wearable sends its most recently 

collected valid gait data. The fog nodes then verify the 

gait data they receive from the wearable. If the gait 

data is valid, a fog node sends back a “True” value to 

the wearable.  
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Figure 2. Communication Flow for Gait Verification 

 

 The wearable cannot just accept this true value as 

being valid, however. An attacker may attempt to 

fool the device by intercepting the transmissions 

using a man-in-the-middle attack and send back a 

“True” value regardless of the actual verification 

result. To prevent this spoofing, the other fog nodes 

also send their most recent gait data to the wearable. 

The wearable then uses its stored data from those 

devices to validate each device. Once validated, the 

wearable can assume the previous response is correct 

and, if the user has been authenticated, perform the 

action the user attempts. If the response is not 

validated or the wearable receives a “False” value, it 

blocks the action and shifts into an insecure state, 

preventing additional attacks. 

There can be an issue when the wearable is connected 

to a new base station and does not yet have a copy of 

the base station’s gait profile. In this case, if there are 

no other peer wearables available in the personal fog, 

the wearable will assume it is not allowed to perform 

any of the potentially harmful actions that require 

authentication. While this problem means the user 

would be unable to use their device without 

additional authentication methods, it is temporary, 

since the base station will provide the wearable with 

gait data once the user has walked with the new base 

station. 

 

6. Authenticating Gait Data  

 
To authenticate the gait data, we propose a simple 

method based on Pearson Correlation. By correlating 

the data in this way, we reduce the computational 

power needed to perform the verification so that it 

can be performed by a wearable. Other methods, such 

as those described in the background, can be used as 

well. 

For our method, we take the first 1000 datapoints 

and find a series of datapoints from the middle of a 

walking cycle. We select the next 100 datapoints for 

validation. More datapoints could be used, but a 

smaller number allows for more variation in speed of 

walk cycles, as a user may have slowed down or sped 

up within a walk. Minor variation could cause issues 

with the correlation for a larger number of datapoints. 

We then use the 100 datapoints directly following the 

initial peak. This separation allows our method to 

always begin on a peak and makes it significantly 

more likely to begin on a consistent walking cycle. 

We then run a Pearson correlation on the 100 

datapoints.  

One problem with running a pure Pearson correlation 

on gait data is that attackers could correlate with the 

user by virtue of walking “together”. In such a case, a 
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Pearson correlation will show a significant 

correlation (p < 0.01) between the two users because 

both users will have similar, though slightly different, 

peaks and valleys just from the act of walking to 

maintain the same stride. This situation is obviously a 

problem with using Pearson correlation for 

verification. 

To prevent this issue, we look only for data which 

has an r-value above a preset threshold. The r-value 

is used is a value between -1.0 and 1.0 that represents 

how associated two variables are. A value of -1.0 

shows there is a negative relation, while a value of 

1.0 shows they are completely related. A value of 0.0 

represents no relation. Correlation between two 

different gaits is inevitable, but the degree of 

correlation is not. By specifying a threshold that must 

be met to authenticate a user, we can ignore even 

strong correlations that may arise as a result of both 

user’s gaits being correlated based only on both sets 

of walking data. We choose a threshold of 0.70 for 

our tests, though modification by the user is an option 

for increased security.  

 

 
Figure 3. Verification of Gait by Legitimate User 

 

 
Figure 4. Attempted Verification of Gait by 

Attacker 

 

7. Evaluation  
 

To evaluate our system, we conducted a small test 

with 6 attackers and 5 legitimate attempts at 

verification. For each test, users, acting as an 

attacker, were asked to hold a Raspberry Pi, acting as 

a wearable, in their right hand to mimic a 

smartwatch. They then walked approximately 3000 

feet to measure their gait. All attackers walked the 

same route that the verification data was collected on. 

Attackers ranged in height and gait-length, with one 

attacker having the same height and gait-length of the 

legitimate user and the other attackers having a 

smaller height and gait-length. For the verification of 

the original user, our legitimate user walked the 

initial route to collect the verification data. The user 

then walked the same route on a different day and 4 

different routes at different times over the course of a 

week.  

A graphical representation of one legitimate 

verification attempt can be seen in Figure 3 and one 

attacker attempting to verify can be seen in Figure 4. 

The stored gait data is shown in solid lines, while the 

data being verified is shown in dashed lines. 

These graphs are intended to show that, at a 

glance, the gaits are different enough to say they are 

indeed different users. To show that verification 

worked as intended, we then ran a Pearson 

correlation on each of the attackers and legitimate 

user data. Results of verifying the legitimate user can 

be seen in Table 1, while attempted verification of 

the attackers can be seen in Table 2. 

When examining these tables, the methodology 

looked for verification between X values, Y values, 

and Z values, based on the assumption that the 

wearable is held in the same orientation in the same 

hand across tests. This assumption reflects common 

usage since users wear their devices in approximately 

the same area. Thus, when looking for correlations, 

we are only looking at the values starting from an X 

correlation and going diagonally down to the Z 

correlation.  For example, the X values of each walk 

are correlated with the stored X values, the Y values 

are correlated with the stored Y values, and the Z 

values are correlated with the stored Z values. 

Correlating X values with Y or Z values are not 

examined. 

In Table 1, we can see that all additional walks 

correlate strongly with the stored gait data. The 

lowest correlation, Walk5 Z, still correlates at a value 

of r = 0.71 with Stored Z. This gives a p-value of p < 

0.00001. Of note, however, is that any r value greater 

than 0.256 will give us a p-value less than 0.01. We 

expect this result, as any two users walking will have 

a correlation that they are walking. Our methodology 

relies on incredibly high r values to identify a user by 

their gait. Interestingly, the Y and Z values are all 

highly negatively correlated. For example, Walk5 Z 

is negatively correlated with Stored Y at r = -0.71. 

This result could be added into the verification 

process in the future as an additional check to 
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authenticate a user, though more research would be 

needed to confirm it is the case for all users. It is 

possible that it is just a result of the style of gait that 

the legitimate user has.  

Table 2 indicates that none of the attacker’s gaits 

correlate at a level we expect for verification. The 

highest correlation comes from attacker 4, with both 

of their X and Y values correlating at a value r > 0.5, 

and from attacker 6, who had a Y value correlated at 

r = 0.65. These values are lower than the 0.71 

minimum found with a legitimate user and below the 

0.7 valued expected for verification. Interestingly, the 

highest correlations came not from correlating the X, 

Y, and Z values with the users corresponding X, Y, 

and Z values, but with correlations between X, Y, 

and Z values. For example, Attacker 5’s Z value had 

a strong negative correlation (-0.75) with the user’s X 

value.  

It is possible that an attacker can try to mimic the 

user’s gait, especially if the attacker is familiar with 

their target. To examine this scenario, we recruited 

two subjects, one of the same height and leg length as 

the legitimate user and one of a different height and 

leg length, attempting to mimic the user’s gait. Both 

walked directly next to the original user, allowing 

them to ensure their steps matched the user as closely 

as possible. Each attacker attempted to mimic the 

user’s gait twice.  

 

Table 1. Pearson Correlation of Legitimate 

User 

  Stored X Stored Y Stored Z 

Stored X 1   
Stored Y -0.13462 1  
Stored Z 0.20493 -0.85757 1 
Walk1 X 0.921468 -0.06334 0.161636 
Walk1 Y -0.21378 0.919074 -0.90257 

Walk1 Z 0.056176 -0.76916 0.871817 

Walk2 X 0.899738 -0.19281 0.259065 
Walk2 Y -0.12032 0.817692 -0.8325 
Walk2 Z 0.009094 -0.80609 0.897764 

Walk3 X 0.915283 -0.27262 0.330213 

Walk3 Y -0.20816 0.907648 -0.87047 
Walk3 Z 0.132923 -0.85172 0.921374 

Walk4 X 0.812616 0.039542 0.160344 
Walk4 Y -0.24806 0.873684 -0.85932 

Walk4 Z 0.084646 -0.7836 0.83035 
Walk5 X 0.890756 -0.29117 0.418455 

Walk5 Y -0.3287 0.845019 -0.71493 

Walk5 Z 0.200942 -0.71473 0.717343 

 

Table 2. Pearson Correlation of Attacker 

  Stored X Stored Y Stored Z 

Stored X 1   
Stored Y -0.13462 1  
Stored Z 0.20493 -0.85757 1 

Attacker1 X -0.6623 0.325599 -0.54795 

Attacker1 Y -0.14655 0.474359 -0.33881 

Attacker1 Z 0.462857 -0.52557 0.491506 

Attacker2 X 0.048722 -0.27774 0.071827 

Attacker2 Y 0.314086 -0.42231 0.221583 

Attacker2 Z -0.36024 0.305483 -0.34226 

Attacker3 X -0.12285 -0.58759 0.545348 

Attacker3 Y 0.196888 -0.51463 0.415218 

Attacker3 Z 0.166804 0.4271 -0.49472 

Attacker4 X 0.569107 -0.18589 0.220556 

Attacker4 Y 0.155689 0.552398 -0.32765 

Attacker4 Z -0.13 -0.45604 0.240945 

Attacker5 X -0.65764 0.246436 -0.35979 

Attacker5 Y -0.10304 -0.3374 0.055477 

Attacker5 Z -0.7479 0.502703 -0.43321 

Attacker6 X -0.24377 -0.54304 0.430248 

Attacker6 Y -0.55745 0.649798 -0.71654 

Attacker6 Z -0.17141 0.30546 -0.43277 

 
Table 3 shows the result of the attackers 

attempting to mimic the user’s gait. Mimic 1 and 2 

are the attacker of the same height and leg length and 

Mimic 3 and 4 are the attacker of a different height 

and leg length. Interestingly, the highest correlation 

at r = 0.57 occurred with the attacker of a different 

height and leg length. If we allow the Z direction to 

be correlated with Y, the attacker of the same height 

and leg length has a maximum correlation of r = 

0.62. However, all of these are below the 0.7 value 

set for gait verification of the user. 

We also validate the time it takes to run the 

Pearson correlation and transfer the required data via 

Bluetooth. We ran the Pearson correlation 100 times 

on the wearable security testbed. On average, the 

Pearson Correlation took 0.19 milliseconds to run. 

For the time it takes to send the validation data via 

Bluetooth, we tested sending the data as a batch of 

100 values to two devices. We sent our test data a 

total of 954 times, taking an average of 5.22 

milliseconds. These two results show that the time it 

takes to verify the user is minimal, around 6 

milliseconds on average. This result is fast enough to 

ensure that the use of multiple different devices for 
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verification and storage will not slow the user down 

significantly. It is below the 40ms used by movies to 

simulate smooth motions and, thus, will not be 

noticed by the user. 

 

Table 3. Pearson Correlation of Attacker 

Mimicing User 

  Stored X Stored Y Stored Z 

Stored X 1   

Stored Y -0.1346 1  
Stored Z 0.20493 -0.8576 1 

Mimic1 X -0.1776 -0.3051 0.09857 

Mimic1 Y 0.32715 -0.5582 0.52614 

Mimic1 Z -0.0097 0.64248 -0.5999 

Mimic2 X -0.4989 0.00445 -0.2864 

Mimic2 Y 0.44001 -0.5401 0.49955 

Mimic2 Z 0.03235 0.63008 -0.5612 

Mimic3 X -0.1993 -0.4968 0.32709 

Mimic3 Y 0.08862 -0.5414 0.55538 

Mimic3 Z 0.0272 0.42123 -0.4385 

Mimic4 X 0.57266 -0.3955 0.32645 

Mimic4 Y -0.1889 0.14998 -0.061 

Mimic4 Z -0.0135 0.26993 -0.0707 

 

8. Conclusions and Future Work  
 

In this paper, we extend gait-based verification 

techniques and apply the concept of gait-based 

authentication to the personal fog architecture.  

Within the personal fog, we shift the authentication 

requirements from the local wearable to all connected 

fog nodes. This shift allows verification of multiple 

different gait profiles from different locations on the 

body and prevents an attacker from accessing 

personal information from stolen wearables. With the 

additional power assumed by the personal fog, we 

allow all connected fog nodes to independently verify 

the gait of the user using the recorded gaits of all fog 

nodes. We show this method is viable for wearables 

through testing using our wearable security testbed.  

It is important to note that this method is designed 

to be used in small scale. A user’s gait data will only 

be passed between their devices, never moving to the 

cloud. If this method is implemented on a large scale, 

with gait data being stored not just on a user’s own 

devices but across multiple fog nodes outside of the 

user’s control, the continuous monitoring of the 

user’s data and storage in a database by a user could 

be exploited by an attacker to identify and target 

specific users based on their gait. Ideally, this method 

is used only on the layers of the personal fog that the 

user has control over and, thus, should never exceed 

the number of devices a user can comfortably wear.  

This method has limitations. One issue is that, if 

an attacker is able to access the wearable without 

needing to then walk to a different location, they can 

use the existing stored gait information to 

authenticate and gain access to the users’ private 

information. This outcome would likely not be an 

issue in most cases. However, if a user left their 

device somewhere, an attacker could gain access 

without needing to take the device to another 

location. This would require the user to leave all their 

wearables and their base station in a single location, 

which is unlikely, but more research is needed to 

prevent this possible attack.  

An attacker with unlimited time to study and 

refine a user’s gait may also be able to successfully 

mimic the users gait enough to fool our system. 

While we tried to address this situation with our own 

testers mimicking the stored user’s gait, we did not 

provide our attackers with unlimited time to learn and 

practice the users gait. Further research is needed to 

discover if, given enough time, an attacker could 

mimic a user’s gait enough to fool our system. 

Another issue with this method is that gait data 

could be seen as medically valuable. Gait can be used 

to recognize health issues in a user and having their 

gait information stored on multiple devices could 

allow attackers to gain access to this health 

information or be used to diagnose medical 

conditions the user was not aware of. Should an 

attacker gain access to this information, either 

through accessing the stored data itself or through 

eavesdropping on the gait data as it is being passed 

between devices, they could gain insight into a user’s 

health or psychological state. This problem is made 

worse if the gait data is passed to a third party for 

verification. While we have focused only on using 

gait data for identification in a personal fog, where all 

devices are owned by the user, the fog, by its very 

nature, can have additional nodes outside of the users 

control added in the future. We do not recommend 

using gait for identification in this case, as an attacker 

gaining access to a third-party node would provide 

them with the stored data from all users that use that 

node.  

We would also like to extend this verification 

method to other devices and other methods of 

verification. User data is often unique enough to be 

used for authentication and wearables are constantly 

collecting data about their user. It is possible that our 

method of storing data for verification across 

multiple devices could expand to use more than just 

gait data.  
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