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Abstract—In this paper we report evidence from the Italian
industrial sectors whereby firms that buy and sell are spatially
distributed with a pattern that reflects the microeconomic
powers at play. The main finding is that firms are neither
clustered around population centers nor are they situated at
random. Although geography has an important role in shaping
the population map of Italy, the reasons for the positional
pattern of buyers and sellers appear to be social. Geographic
proximity between sellers and their buyers is supported by the
excess in short-distance social ties.

I. INTRODUCTION

The main aim of this paper is to test whether or not firms
within an industrial sector are geographically located with
association to their trade partnerships. Our major finding
is that Italian firms in a given sector, cluster at a certain
distance from their competitors, irrespective of their role
as sellers or buyers, confirming to Hotelling’s “linear city
model” [1], where firms are positioned so as to maximize
their market share. A second finding confirms that the
number of seller-buyer links is indeed inversely proportional
to the distance between the seller and the buyer.

One of the key features of networks is their distance
metric. In its reduced form it is the minimal number of
nodes it takes to pass when going from an origin to a
destination node by following the links. In the case of
real-world networks, the nodes are also situated on a 2-
dimensional surface and their network location is usually
unrelated to their geographical position. It is not surprising,
therefore, that in network analysis the Euclidean metric drew
little attention. Over time, it has become clear that actual
bodies that are deposited on the surface of the Earth must
sometimes be put in geographical context.
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Especially in social networks, incuding trade-networks,
frequent personal encounters are likely to be reflected in the
social web [2]. So, for example, the distance of travel from
one location to another could affect the decision of partici-
pants to find and maintain direct contacts. This is in support
of the industrial knowledge spillovers that occurred in and
around industrial parks., e.g. see [3] for a comprehensive
account of the innovation boosts and growth of cities as
explained by the covariate of knowledge spillover.

Knowledge spillover is a prominent factor that determines
firm’s spatial location choices and their tendency to cluster
in order to fully capitalize on increasing returns. This
idea is now a cornerstone in economic growth and R&D
management, since the publication of the seminal paper by
Krugman [4], which was followed by numerous other works
showing that spatial concentration plays an important role in
innovative activity, and providing robust empirical evidence
in support of this theory. For an excellent literature review,
the reader is referred to [5].

From an Economic perspective, freight may also be a
major component affecting the mobility of goods, so en-
vironmental features such as hills and roads will therefore
become relevant. Since this cost is generally shared with
the customer, a sale would be priced lower in areas of
dense cargo travel and flat lands. The reader could appreciate
that competition between sellers exists with relation to the
cost of the shipments, and to a lesser extent, with the
distance of travel. Moreover, both the sellers and their buyers
are expected to strategically position themselves on the
map by factoring in the production and accessibility to the
goods. Let us consider a production chain in which each
producer is a seller of output material and a buyer of input
inventories. Three financial forces act upon the producer: (1)
the requirement to be in close proximity with its resources,
(2) the desire to keep competitors at bay, and (3) the trivial
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appeal to create or sit in dense populations of customers.

All the participants obey these three forces, conditional
on their placement in the Leontief Input/Output model of
trade between firms. For example: A Wheel and Tire factory
will probably buy steel and rubber, in contrast to the small
chance that it will buy aircraft seats. Following this intuitive
example, the cost of moving steel may be high and the
Wheel and Tire factory may find it useful to be situated next
to steel works, and farther away from the potential client
pool.

The reader may be tempted to inquire about the online
ordering mechanisms that are so widespread nowadays. Do
these come into play in the context of industrial trade-
partnerships? Also, how has the digital age shaped the face
of the industrial sectors, as it would appear that the distances
between the buyers and their sellers bear no consequence to
the buyers?. However, consider the industrial sectors that
offer goods or services, rather than wholesale and retail.
These industries do need to factor the transportation costs
into the sale price, especially when the buyer is situated
far away. The issue of transportation costs has a well docu-
mented distance barrier by which short distances are always
favored [6]. This intra-national home bias was shown to
shrink significantly but remains non-negligible when adding
the possible social network effect, or information barrier as
it is sometimes called. This barrier is defined by the ability
of the firm’s management to promote trade while exploiting
their social ties that are inherently local [7] [8]. The bias
due to network effects however, shows correspondence with
the chosen unit area [6]. As a result the quantification of
reduction in the intra-national home bias due to online
ordering and network effects is limited. Our intuition is,
therefore, that in comparison to the manufacturing industries,
the consumer goods sectors (wholesale and retail) have
responded in a more extreme fashion to the introduction of
internet shopping.

Now, with respect to competition there have been many
applications following Hotelling’s “linear city model” [1].
The assertion backed by observation is that given a set of
uniformly dispersed customers, competing sellers optimize
their geographical location in such a way that maximizes
their market share and places them in the geometric center,
closest to any potential customer. In the next simplest
instance there are two sellers selling identical goods situated
along a single (linear) street of length 1: the market will
split in half and both sellers will position themselves in the
middle of the street. Consequently, they will be close to
each other. Maintaining market power, on the other hand,
will drive these sellers away from each other, i.e. at 1/4 and
3/4 of the street’s length where, again, each of them controls
exactly half of the market. Any relocation of one seller will
encourage the other to move closer to the middle, gaining
market power. This trade-off between a firm’s market power
and the price competition reaches an equilibrium with the
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Figure 1. The density p(r), or ensemble average number of
customers in any ring of distance r around the 129,584 sellers in
our business network. The number of customers is 345,403 totalling
in 1,117,029 links to buyers. A reference fit to log p(r) is plotted
in solid. Outliers can be explained by intuitive geographic and
demographic features such as commute distance (40km), region
boundary (200km), Milan-Rome and Rome-Palermo (550km), and
long-range monopolist firms (800-1200km). The fitted slope is
—0.000506, declining one order of magnitude over a distance of
three orders magnitude.

optimal positioning of the two sellers. Generalizations to
non-uniform spread of customers were also studied [9], and
yet the sellers generate a similar market splitting response
to competition, under more restrictive setups.

Going back to the Italian business network, the sellers
and the buyers constitute the network’s directional links,
and from the financial statements data set we can locate
the operational addresses of these firms'.

In the analysis that follows we define the search area in
several ways: one would be a rectangular frame overlaid on
the map of Italy, the other would be the area (and shape)
of Italy in the whole. Inside these search areas we deploy
methods of second moment statistics of spatial-statistics
processes in order to find whether or not there is lack of
homogeneity, i.e. clustering of points/nodes. The software
that we use is from the R package spatstat [10].

II. METHODS

As part of obtaining prior knowledge on the geographic
layout of the network we turn our attention to the density of
customers with distance. This, as indicated in figure 1, could
be approximated by a constant. On this evidence we base our
primary theoretical assumption that industrial customers are
uniformly visible to the seller with little regard to distance.

A. Point Processes and Spatial Analysis

A point process is a random process that places points
in space and a spatial point process is a point process that
lays points out in the Euclidean space. The points usually
specify objects of study such as shrubs in the savanna, drops

IThe address of the bank branch where the firm’s headquarters is
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in a cloud or lighting strikes on a surface. Patterns that
emerge from this positioning process can be analyzed using
statistical models. In this context, a point process model is
used to check, for example, spatial homogeneity, dispersion,
centrality and spatial correlation.

Similar to the dynamics in a network, the bottom-up
approach is to model the rules for construction of spatial
patterns. So, the most appealing methodology in spatial
analysis of point processes is to work with the moments of
the distance distribution. In the following sections we will
describe different spatial point processes. For each process
we will define the quantities used for spatial analysis, and
highlight how the process is to be compared to the null
hypothesis, also termed the Poisson Point Process.

The Poisson point process in 2 dimensions: Given that
n points should be dispersed inside a region W, we divide
it into sub-regions W = {UA;} such that p; = wa, /ww is
the proportion of A;’s area to the total area. The probability
that the number of points % that fall inside the sub-region
A; has a binomial distribution.

Pr(na, = k) = (Z) pf(l —]91-)’“’c €))

Without loss of generality we will abbreviate n4, = n.
Now, the mean of the binomial distribution is A = np and
so p = A/n. Putting this into (1) and assuming n — co we
arrive at the Poisson distribution

e
Pr(na, = k) = W)\’“ 2)
for all sub-regions A;. The quantity A is termed the intensity
of the point process.
Distance distribution: The next definition relevant to
our discussion is derived from the distance metric d, g > 0.
This metric is the Euclidean distance between points a and b.
Generalizing this we could estimate the distance between a
and a set of points X as the minimal distance between a and
any point inside X. d, x is called the contact distance. An
important property of this quantity is that point a must have
neighbors in any distance greater than its contact distance.
If we consider the circular sub regions A C W of radius r
centered at a point a € W then

da,X <r <~ Nu(a,r) >0 (3)
noting that the expected number of points in a circular region
u(a,r) is

E[ny,n] = pomr?

where pg = nw /ww is the density of the system. Immedi-
ately following this notation we could write the cumulative
probability distribution of the contact distance as

Pr(da,X < T) = Pr(nu(a,r) > O) =

=1 — e Elu@n] =

—1— g pomr” 4)

This distribution function is denoted by F(r) and called
the empty space function. F(r) depends on the radius of
observation, and could easily be estimated from the data by
counting the points that fall within a radius r around the
origin a.

Nearest Neighbor Distance Distribution and the J func-
tion: The nearest neighbour distance distribution function is
close in its definition to the empty space function. It is the
cumulative probability distribution with respect to a circular
region in the geographic space, as opposed to the contact
distribution that observes the space from the perspective of
the central point, around which neighbors are located. The
NNDD is the number of balls of radius smaller or equal to r
that remain empty of points. Formally, consider a reference
point a in a point process x € X. The NNDD is the distance
distribution of points in X\ {z} of which the contact distance
is r:

NNDD(r) = Pr(dq,x\{s} <)
= Pr(nu(a,r)\{m} > 0) %)

In a stationary Poisson point process, NNDD(r) is identical
to the empty space function F(r).

The contrast between NNDD and the empty space func-
tion is emphasized by what is commonly known as the
J function. This is the proportion of the complementing
cumulative distribution functions of F' and NNDD.

~ 1—NNDD(r)
S ON

The J function often admits a clear analytic solution even
in situations when F' and NNDD cannot be estimated. Its
definition is restricted to cases where r > 0 such that F'(r) <
1.

Another immediate property of the J function is that it
evaluates to unity for Poisson processes. However, we must
also note that due to the closeness of F'(r) and NNDD(r)
fluctuations may be amplified.

Var - Mean ratio: The variance to mean ratio, denoted
1, is one of the simplest measures of how dispersed a point
process is: The random placement of points that could be
described by a Poisson distribution has its variance equal
the mean

E[X] = Var[X] = A

thus, a quick estimation of var/mean allows us to reject the
possibility of complete independence of the point locations.
Inspecting the limiting cases is helpful in classification of
the distribution: roughly, when I = 0 this is a degenerate
distribution where a single value is chosen with probability
1. In the range 0 < I < 1 is a process with a binomial
distribution, and I > 1 is generated by a negative-binomial
(discrete) distribution where points cluster together due to
interactions that increase with 1.
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The method includes a procedure of quadrature of the 2-
dimensional space by which the search area is partitioned
into equal sized square (quadrats) of length L on the side.
As we decrease L each quadrat confines less points. The
procedure will terminate at . = 1km, then an estimation is
made in how many different values of L will I be equal to
unity. A Poisson point process will be such that 7 = 1 for
a wide variety of quadrat sizes.

It is well worth noting that reversing the reasoning of
I = 1 is not always possible, and one cannot assume a
Poisson point process by backtracking from an evidence of
I=11[11], [12].

The Pair Correlation (Radial) Distribution Function
and Ripley’s K: The reason to give further thought on point
processes is that we would like to pin down a possible
clustering of points in space, and the derivations in previous
sections may not be enough to quantify the nature of this
point process.

The radial distribution function and Ripley’s K function
are both second order statistics. The full derivation of these
functions is given in [13], [14], and [15]. What is worthy of
thorough explanation are the intuitions for these measures
and their outcomes.

The pair correlation function in the Euclidean space g(r)
is an estimator for the strength of interaction between points.
This information is used to find if there is regularity in the
point process, or otherwise a clustering mechanism controls
the spatial positioning. g(r) is applicable to dynamic point
processes as well as stationary ones. It is positive and
depends on the radius around an origin point ¢ with no
relevance to the position of this origin. It measures the ratio
of the point count over what would be expected by chance
in a ring of width dr at radius r. For a given radius r
this is identical to the Pearson correlation coefficient. The
estimation of g(r) from data can be written as

_ N (r) o N (r)
9(r) = Npois(r) — 2mrdr - po

(6)

where N, (r) is the count of points = found in the ring
[r,7 4 dr], and Np;s(r) is the expected number of points
in an identical ring. This expectation requires knowledge on
the bulk density po of the points in .

If the points that we observe result from a Poisson
process, the number of points in the ring dr at r should be
monotonously increasing with r, independent of the point
of origin a. Thus, given a set of points inside a search area
we may choose each, in turn, to be the origin and estimate
the pair correlation while iterating through the other points.

Ripley’s K function is another familiar second order statis-
tic. Intuitively, the K function is equivalent to the variance
of the sample. With reference to the radial distribution it
could be written as

dK(r)
dr

= 2mrg(r) @)

in other words, K (r) is proportional to the integrated form
of the pair correlation. In particular it is the expected number
of points within distance r of a given point chosen to be the
origin. For example, the K function of a Poisson process is
K(r) = X\"27r?. From this expression it is straightforward
to arrive back at (7).

The major advantage of K over g(r) is that it is invariant
to random translation and thinning of the points in the point
process. A ‘thinning’ process is similar to an observation
missing at random. It is obtained by selecting at random a
subset of points Y from a point process X.

Communication networks and their geographic impact

In networks there is no spatial structure. Even so, there
may be much to learn by analyzing the geographical struc-
ture of the nodes (or agents) in cases where such information
exists [16]. The network gives additional information on
whether two points @ and b truly interact with one another.
Further, in communication networks, where information is
passed between the nodes, travel distances may be skewed
by the added link information. The realization of distances
between points is thus amplified across existing links while
rendering other paths unutilized.

The limiting cases to consider are the fully connected
graph and on the other extreme, a sparse random graph or
Erdos-Rényi (ER). In fully connected networks, the distance
between any two nodes is 1, link information may be
superfluous, and so the distances are dominated by the
point process. A sparse ER network, can be constructed by
beginning with a fully connected graph of N nodes and
removing links at random. This structure causes the average
path length to increase above unity, up until the graph forms
a linear chain with an expected path length N/2. In such
networks the path lengths are dominated by the network
structure rather than the geographic distance [17].

B. The data

Every node in our network is a firm that has an address in
Italy. The data for this trade-network were made available
from a large Italian bank, and comprise two data sets:

o Time series of individual firm balance sheets (and Profit
& Loss statements) in the 8 years between 2002 and
2009. These data contain information that allows one
to know the financial status of a firm. It will hereafter
be abbreviated BS.

« Bank-mediated credit transactions of trading partners in
the year 2007. Each record contains 3 fields of interest:
The identity of the seller, the buyer and the total face
value of the all trade-credit transactions.

In total, BS holds balance sheets of 1.3 million firms over
the 8 year-window, and on average, 700,000 firms are
represented in any given year. The overlap along the timeline
is approximately 300,000. In 2007 there were 703,858 firms
with net-sales greater than zero (potential suppliers) and
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601,535 firms had purchases greater than zero (potential
buyers).

In the TC data set there are 1,578,812 firms, connected by
7,290,072 links. When intersected with the firms in BS we
obtained a total of 345,403 firms connected by 2,874,830
links. This makes a ratio of approximately 1:8 nodes over
links. 273,726 of the firms in the TC data are suppliers
(have incoming links), and of the joined data set TC+BS,
140,580 are suppliers. If we remove the suppliers that are
linked to buyers without BS data, we are left with 129,584
suppler firms, all of whom have at least one buyer with BS
information. We call this set M. 122,728 of the suppliers in
M (94%) have outgoing links and therefore are buyers and
sellers. The remaining 215,819 firms are buyers only.

An individual firm (node) assumes attributes from the BS
such as firm size, credit-rating, financial costs or industrial
classification. The address of each firm can be represented
as a marker on a map of Italy.

III. RESULTS

We begin our exploration by testing the tendency of
selected subsets of firms in the trade-network to cluster. The
first subset consists of the 104 major cities in Italy.

In the past, cities were built along waterways, and there-
after served as major crossroads. They are considered effi-
cient geographic centers for resources and trade opportuni-
ties. Naturally, we would expect that buyers and sellers will
exhibit the tendency to stay close to city centers, and thus
the position of cities should serve as a mediating variable.

Italy major cities n=104

15
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a(r)
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Figure 2. the radial distribution of 104 major cities in Italy. The periodic
structure is visible at 50km (= 0.5 latitudinal degree), 70km (= 50 - V2),
and their multiples thereafter.

The two panels in figure 2 represent the visualization
of the 104 major Italian cities, and the radial distribution
function g(r) estimated inside the coastline contour. This is
a replication of a famous result of the spatial pattern of cities
[18]. Further statistics of this point process appear in figure
3. The subscript Ripley stands for the ordinary isotropic-
corrected estimate which corrects for edge effects that intro-
duce a possible non-uniformity of the point pattern due to
the shape of the sampling window, Trans is the translation-
corrected estimate that is less suited in this measurement on
the map of Italy since we were using a polygonal search area

[14]. Last, Pois is the theoretical g(r) (the radial distribution
function of the Poisson point process).
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Figure 3. relevant statistics of the spatial pattern estimated from the 104
major cities in Italy. Distances are in latitudinal degrees (1 deg = approxi-
mately 100km). The Nearest Neighbor degree distribution is G, the empty
space function is F, K is Ripley’s K-function and J = (1 — G)/(1 — F)

The nearest neighbor degree distribution G(r) in figure 3
and the radial distribution g(r) in figure 2(b) give a clear
indication of a hard-core disc structure at a radius of 30-
50km since the values at r smaller than 0.5 sit well below
the Poisson reference lines Gpois(r) (the blue dashed line
in figure 3 and the green dashed line in figure 2(b)). The
empty space (F) and the K-functions follow the Poisson
reference line and so point to a possibility that the process
is random, especially in small radii. However, the J-function
that amplifies the deviation of NNDD from the empty space
function, shows that the randomness occurs only at small
radii (r < 0.05° or approximately 5 km), much smaller
than the hard core disc reflected by the NNDD. In this set
of plots, the subscripts pois, iso and trans are the same as
in figure 2(b), bord (equivalently rs) is a sample reduction
such that points nearing the border of the search area will
not be considered (will be useful for the large samples
in later analyses), km is the Kaplan-Meier correction that
estimates the distribution using a spectral method on the
reduced samples near the edge [19], and cs (equivalently
han) is the Chiu-Stoyan correction that uses the border-
method, i.e. counting samples about each origin point up
to the respective maximal radius that does not touch on the
border of the search area.

The conclusion is that the major cities in Italy are posi-
tioned in a regular construct, with a characteristic distance
between them that is strictly bounded from below. This
also supports the historical view of Italy; the 104 cities
were territorial capitals until 20th century, with distinct
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boundaries that were guarded and managed by similar sized
populations. By nature of their population sizes, the areas
of these territories were more or less identical. This may be
the reason for the hard-core disc structures.

We could attribute the lack of sensitivity of the K-function
to the fact that the analysis was performed inside the bound-
ary of the Italian peninsula, a closed, peculiar shaped curve,
making it harder to contain edge effects. We found it useful
to place these statistics against the ones obtained inside a
smaller, rectangular, search area to show the difference. In
further analyses we will exercise this method.

Italy NACE=26 sellers n=1405 S=12.854

(@)

Italy NACE=26 sellers n=1405 S=12.854

S 0.002 ' 0.010

0.050 ' 0.200
.

(®)

Figure 4. an illustration of the sampling overflow that may occur in
radial distribution function calculations. g(r) peaks in the range 5-10km
and drops sharply elsewhere. This indicates a high probability of locating
any two firms of this industrial code at 10km apart.

Every firm has an industrial classification that marks
the core trade of the firm (and what products they may
sell) with good approximation. This classification serves
as coordinates in the Leontief Input/Output model of trade
estimations between sectors in the industry. Furthermore,
this classification is important to financial institutions and
regulators that may identify sectors to target their policies.
The sellers in any single industrial sector can be considered
as competitors. There are 51 identified sectors in the Italian
industry.

Figures 4, 6, and 7 display several radial statistics of
seller firms in industrial code 26: ‘Manufacture of other non-
metallic mineral products’. The main trade of this industry
is the fabrication of products made of glass, ceramics, and
clay. The proportion of sellers or buyers with this industrial

code is 1.5% of the total of firms in our network, so this
sector may be regarded as representative of Italian industrial
sectors.

Evidence shows that the firms keep each other at a
distance. It is important to note that the findings reported
for this subset were reproduced in all the other industrial
codes, with small variations in the minimal distance between
neighboring firms.

We can offer the following interpretation of these results:
Firms that are placed in a competitive market may follow
Hotelling’s model trying to control the price of the good
while maximizing their market power.

This evidence also provides the following important in-
sight: firms do not necessarily position themselves inside
city centers (where the minimal distance is in the order
of 30-50km). Rather, as visually displayed in the zoomed
map (fig. 6) we can clearly detect the positioning alongside
major roads and other geographical features (Northern Italy
is mountainous, so cities are positioned alongside rivers on
the way to the mountain-pass areas)

¥
+

oRBogers n¥4155'sEa sy
Italy %mb&gﬁmﬂ_mﬁi E1a,
o A i G
¥ ©. 0 00 ¥ o5 aap 0% o

B o0 o @

(a)

S ——
0.002 0.010 0.050 0.200
r

(b)

Figure 5. spatial analysis in a window of size 2.5 x 3.5 degrees restricts the
number of analyzed points. Inside this window there are 1258 of the 4125
buyer firms. Panel 5(b) gives the radial distribution function g(r) in log
scale; note it is both above and below the estimated Poisson process. The
smaller than would be expected by chance pair-correlation, with minimum
at 7Tkm, and the larger than what would be expected by chance, at r >
20km, supports the finding in figure 4 that repulsion exists between firms
in the same industry.

A third subset of interest is the groups of buyer firms in a

single industry. If they buy in competitive markets, do they
cluster around resources too? Figure 5 is a display of the

1760



ttaly NAGE=06 sellers n*1405 S42.854____
O * ot
t %o o FURt
Tt o & o

+ o

s
NERTH
e Y

FE
g e
o /53'\

= S gy

(2)

Italy NACE=26 sellers n=1405 S=12.854

o
2
w ]
-
=) S ]
LQ T T T T T T T
© 0.002 0.010 0.050 0.200
r
(b)

Figure 6. With axes similar to 5, we display the analysis of seller positions
in the non-metallic mineral products industry. 558 of the 1405 seller firms
are in the rectangular window. A pair correlation pattern in 6(b) of below
and above the estimated Poisson process indicates that a repulsive force
keeps firms at a distance, as it does in the previous figure.

radial distribution function of industrial code 26 buyers; the
buyers of ceramic, glass and clay products such as wall and
electrical insulators, optical fibers, and bricks as intermediate
inputs. We can detect a similar positioning pattern in this
group of firms that suggests again a hard core process. The
interpretation of this evidence could be twofold:

o buyers are sellers, and if they buy a product in one
industry, they will compete over their own customers
in their own industries, so in any given area, buyers of
a single product will act by responding to competitive
forces inside their own markets.

o buyers and sellers share the positioning pattern due
to another, possibly latent, mediating variable. One
suggestion to this alternative is that online ordering
systems did penetrate these industries, and so less costs
are incurred by approaching a distant seller. This calls
for a differential study between the eras of pre- and
post-internet revolution which the current data does not
cover.

The two options are related in the sense that a possible
mediating variable could be the mere fact that these buyers
are competing for market power in their own industries. We
can just make a note that it is rare to find a buyer inside
the same industry as his/her seller. But since buyers always
purchase inventories from many sellers, it is hard to follow
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Figure 7. statistics of the spatial pattern created by the seller firms in

industrial code 26. Axis labels follow the conventions in figure 3 and the
search area is like in panel 6(a). G infers that it is an inhomogeneous point
process with a hard core disc of 3km, inhomogeneity is indicative of the
placement along roadsides. K suggests a departure from Poisson with a
tendency to cluster. The J function indicates the dominance of the NNDD
(G function) in all distances.

log(n_ab.r/(P * dr))

i ”‘t%ﬂ a
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Figure 8. the radial distribution of sellers and their buyers on double

logarithmic axes, clearly indicating a clustering effect. In this panel r
is measured in kilometers. The right panel illustrates the large aspect of
the search area and that it sits slanted respective to the roads. The width
of Italy is 250km but the roads follow along the latitudes. For practical
purposes the width is 300km. The map in this panel was taken from
wWww.openstreetmap.org

a single path that flows from one seller to one buyer.

An established fact in our data is that 94% of the sellers
are also buyers. It is therefore easier to accept the latter
option while assuming, with the necessary caution, that other
buyers (that are not sellers) do in fact produce and sell, but
our data does not show them as such. There could be many
reasons for missing network information [20], [21], [22].

Let us now consider the relationship between the sellers
and their marked buyers. Seller or buyer pools, indepen-
dently, exhibit a characteristic minimal distance. Any buyer
pool Y may purchase a certain product from sellers of
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industrial class X. However, finding the exact seller (or in
reverse - recruiting the exact buyer) is a marketing task and
generally takes a lot of effort in the seller’s account. The
next subgroup to analyze is therefore the sellers and their
direct buyers. In this analysis we place each seller in the
origin, and measure the radial distances of the direct buyers
to this seller. Then, the distances are classified irrespective
of any individual seller (we ignore the labelling or position
of any specific seller).

The estimation of the radial distribution function uses the
counts of buyers in any ring of width dr created around all
sellers. The results are shown on double-logarithmic axes in
figure 8. From this figure we see that the pair correlation is
scale-free up to the width of the search area (250-300km),
and the interpretation is that clustering occurs around sellers
irrespective of their reach (the distance to their farthest
customer).

The existence of many extremely small distances between
sellers and their buyers indicates that geographical clustering
drives the distance distribution towards the origin rather than
network clustering. The fact that the distances are small
means that sellers tend to write contracts with trade partners
that operate close-by.

In previous studies that tried to overlay social phenomena
on a geographic map, it was discovered that clustering occurs
owing to the ease of social encounters in the localities [2].

The rejection of a Poisson process between sellers and
buyers, or between sellers or buyers individually was estab-
lished by means of G, K, F-functions and the pair correlation
function. The regular grid formed by the cities supports the
fact that communication patterns in the industry determine
the pull forces of resources, much more than legacy locations
of centers of operation.

The var-to-mean ratio methods are less interesting than
this last result. Quadrat analysis of var/mean ratio was also
performed inside the subgroups that were defined above, and
the result of the quadrat analysis of buyers connected to a
seller is given in figure 9. The departure from var/mean = 1
occurs in very small radii, and then reaches high proportions
later on, with a peak at L = 300km, a low at L = 550km,
another peak at L = 750km, a low at L = 1050km and
the again a peak at L = 1200km. The peaks (350, 750 and
1200) are an expression of sharp increases of variance with
no significant change in the mean value of counts inside the
quadrats. These may be due to the geography of the search
area, or as mentioned before, due to restrictive elements of
the numerical method: there is but a single quadrat of L =
1200km, and there are no more than 4 quadrats of 750km
on the edge, of which two are heavily occupied by paths
between sellers and their buyers (extending from Rome to
each side of the country). The peak at 350km is again a result
of the existence of major roads on the east-west axis, where
some quadrats have frequent occurrence of paths between
sellers and buyers, otherwise quadrats are empty of such

paths.

Other partitions of the firm data set did not provide extra
information on top of the two main results: (1) that the
var/mean ratio is equal to unity in extremely small radii and
nowhere else, rejecting the possibility of a Poisson point
process that occurs uniformly in all areas of the map, and
(2) that the search area is restrictive, and natural or legal
boundaries are evident.

20000 40000 60000 80000 100000  12000(
I I I I I

0
I

L s s B B s B s B s B s
0 150 300 450 600 750 900 1050 1275 1500

Figure 9. var/mean ratio of quadrats with edge size L. 0 < L < 1500 is
incremented 75km at a time. The magnitude of the peaks is less important
than the quadrat size at which they occur, since the number of quadrats
that fill the map drops with L.

IV. CONCLUSION

The use of second moment spatial analyses and sub-
setting of the data to different species were used previously
in the context of trees in the wood or galaxy catalogs. The
investigation in this paper is unique in the sense that our data
combines the three features: inside the search area of Italy
we obtain (a) the geographical positions of 345,403 firms,
(b) their industry (species), and (c¢) information on the ones
that are connected.

We show the feasibility of intersecting geographical data
of the nodes with network connectivity to retrieve the
relationship between the occurrence of links and the spatial
positions of the nodes in Euclidean space. This is especially
true in social networks, and today evidence accumulates in
the literature to confirm that the affinity of participants in a
social network is reciprocal to the distance between them.

A possible outlook is to consider the applicability of this
method to financial institutions: the points on the map mark
buyer firms that were brought to the attention of the bank by
the borrowers. If the general pattern is a scale-free clustering
of buyers around a seller, then a ‘hole’ (or peak/low) in
the radial distribution function at radius » may mean that
invoices from buyers at radius r were deliberately put aside
[23].
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