
Facing Big Data System Architecture Deployments: Towards an Automated

Approach Using Container Technologies for Rapid Prototyping

Matthias Volk, Daniel Staegemann, Ashraful Islam, Klaus Turowski

Otto-von-Guericke University Magdeburg, Germany

{matthias.volk, daniel.staegemann, ashraful.islam, klaus.turowski}@ovgu.de

Abstract
Within the last decade, big data became a

promising trend for many application areas, offering

immense potential and a competitive edge for various

organizations. As the technical foundation for most of

today´s data-intensive projects, not only

corresponding infrastructures and facilities but also

the appropriate knowledge is required. Currently,

several projects and services exist that not only allow

enterprises to utilize but also to deploy related

technologies and systems. However, at the same time,

the use of these is accompanied by various challenges

that may result in huge monetary expenditures, a lack

of modifiability, or the risk of vendor lock-ins. To

overcome these shortcomings, in the contribution at

hand, modern container and task automation

technologies are used to wrap complex big data

technologies into re-usable and portable resources.

Those are subsequently incorporated in a framework

to automate the deployment of big data architectures

in private and limited resources.

1. Introduction

Within the last decade, the storage, management,

and processing of huge amounts of differently

structured data have become more important than

ever. With the advent of new trends, such as social

media, the internet of things, and other data-intensive

application scenarios, the necessity to handle those

became ubiquitous [1]. As a result, apart from new

technologies, sophisticated architectural concepts

were required that provide a scalable and robust

framework for the current and future development.

However, at the same time, this reinforced the

complexity of the engineering of the related systems

and, thus, potentiated the lack of qualified staff [2].

Consequently, several deployment solutions and

commercial services came up that promise potential

users to easily realize their data-intensive endeavors

and thus facilitate the rapid prototyping of novel ideas

and testbeds. However, the convenience to have

everything at one place comes in most of the cases

with the cost of technology and platform-specific

knowledge. Prominent examples, such as Amazon

Web Services or IBM BigInsight offer a broad range

of potential technologies, functionalities, and

sophisticated pay-per-use models. However, not only

the use of the platform-specific technologies

themselves but also the cost estimation of their usage

can be sometimes cumbersome. Currently, the

maintenance of internal software, external expert

knowledge, and customization efforts denote

oftentimes the biggest sources of unplanned costs [3].

As a result, the combined use of multiple technologies

and services in parallel may not only be challenging to

realize, sometimes it can be even prevented, due to a

lack of existing connectors or interfaces. Ultimately

this could not only result in high monetary

expenditures, extensive knowledge required to handle

big data projects but also a potential vendor lock-in

effect, through which the user is forced to solely stick

to the services offered by the provider. Especially the

latter was noted for many different providers in several

research studies, such as [4–6].

In contrast to this, free and open-source solutions

such as the Developing Data-Intensive Applications

with Iterative Quality Enhancements (DICE)

framework [7], Apache BigTop, or the Cloudera

Hortonworks project, which partially attempt to

overcome the referred problems, are in many cases

limited in terms of their applicability. For instance,

Cloudera offers inter alia their distribution as a

sandbox that comes with an extensive collection of big

data technologies, however, in many cases they exceed

what the user needs, which in turn results in the

necessity for a potentially complicated and

cumbersome customization and configuration.

Generally speaking for these solutions, there is no

opportunity to extend or reduce the setup to its

required technologies. In the flux of big data, a

multitude of technologies is constantly emerging or

changing [1]. Therefore, compared to currently

existing solutions, a lightweight and modifiable

approach that relies on open-source technologies,

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 6125
URI: https://hdl.handle.net/10125/80083
978-0-9981331-5-7
(CC BY-NC-ND 4.0)

allowing an automated system architecture

deployment, appears to be highly aspirational. To

facilitate bridging this gap, the following research

question shall be answered throughout this work:

How could a modifiable and open-source-based

approach for automated big data system architecture

deployments be facilitated and designed?

Resulting from this question, the main purpose of

this work is to provide a convenient and low

complexity solution, where individual components

can be offered as re-usable and re-configurable

packages. This also includes their combined use,

allowing for components to be added or removed to

complex architectures with minimal effort and without

specialized knowledge for the deployment to

eventually facilitate rapid prototyping setups. The

desired solution should be platform agnostic,

extendable, and adjustable to suit the available

computing resources.

To find a suitable answer to the aforementioned

research question, the constructive design science

research (DSR) methodology is followed [8] and the

six-stepped workflow as recommend by Peffers et al.

[9] is implicitly employed. This leads to the

publication being structured as follows. After giving

an initial motivation and definition of the main

objectives an overview of the existing theory is

needed. This is realized through the presentation of

theoretical background information as well as a

structured literature review. The latter is used to

identify existing approaches, container technologies,

and other guidelines for the intended artifact.

Eventually, the obtained findings are used for the

design and development of the artifact. Afterward,

everything is demonstrated using one of the most

prominent big data architectures for real-time stream

processing. In the end, a thorough evaluation is

performed at which the created solution is compared

to similar existing approaches. Concluding remarks

will end the paper.

2. Theoretical Foundation

In recent years, big data became one of the most

promising trends. One common way to facilitate the

deployment of the related technologies and

architectures is the use of container technologies.

2.1. Big Data

With the increasing volume and complexity of

data produced in today’s society, which are addressed

by the term big data, traditional techniques for

1 http://dfkoz.com/ai-data-landscape/, accessed on 15-06-2021

managing and processing data are oftentimes no

longer sufficient [10]. As a result, new approaches

have emerged to deal with those challenges. Even

though they are amalgamated under one umbrella

term, the corresponding endeavors comprise a variety

of highly different use cases [1]. Common to them,

however, is a strong focus on the scalability and

portability of the deployed solutions [11–13].

Furthermore, in many scenarios, a high degree of

flexibility is desirable [1], which also affects the

design and development of those solutions.

Mandatory for the implementation of big data

projects is the utilization of highly sophisticated and

scalable technologies, which can cope with the

challenges resulting from the big data characteristics.

In general those “summarize technological

developments and techniques in the area of data

storage and data processing that allow the handling of

exponential increases of data in terms of volume,

variety, velocity, value and veracity” [14]. Many of

those technologies are widely known today. Some of

the most prominent representatives include solutions

from the Apache Foundation, such as Hadoop, Spark,

Zookeeper, or Hive. While some bring a broad range

of functionalities, other technologies are only intended

for one specific purpose. Besides a surge in interest, as

of today, also a lack of comprehensive knowledge

prevails [2]. This is largely due to the ever-growing

market of technologies and tools that renders it nearly

impossible to always stay up to date concerning its

development. This was also thoroughly described and

investigated in [15]. There, a comprehensive big data

technology ontology (BDTOnto) was introduced that

comprises existing properties, required knowledge,

and relations to other technologies. By facing such

kind of technology mapping concept to the entirety1 of

big data technologies, it becomes apparent that the

selection, combination, and implementation depicts a

complex undertaking, at which numerous steps need

to be performed.

The activities related to the planning, design, and

development of big data systems are oftentimes

consolidated under the term big data engineering [16].

Based on a structured analysis and planning of the

targeted project, requirements, specifications, system

design decisions, tests, and deployments are

determined and carried out. Eventually, this leads to a

purposeful composition of big data technologies, a big

data architecture. More precisely, it can be defined as

an “architecture that provides the framework for

reasoning with all forms of data. Thus, it is a logical

structure of core elements used to store, access and

manage the big data” [17].

Page 6126

In many cases, those can be not only very

complex to be constructed but also to be deployed and

managed. Hence, with regard to the dynamic nature of

this domain, reflected by the continuous emergence of

new application areas, technologies, or architectures,

it appears to be beneficial to automatize leastwise the

latter, the time-intensive configuration and

deployment steps.

2.2. Container Technologies

Since big data applications are usually highly

suited to be deployed in the cloud [18] and need to be

highly scalable, it is common to use container

technologies for their implementation. Containers are

virtualized, lightweight operating system (OS)

processes that provide portable runtime environments

independent of the underlying hardware [19].

Thereby, they help in dealing with issues like

dependency conflicts, missing dependencies, and

platform differences [20]. There are numerous

technologies, which can be drawn upon. For instance,

Docker is a container-based technology that offers a

user-friendly application programming interface (API)

that is unified across platforms. It uses namespaces to

completely isolate an application’s view of the

underlying OS and environment, including process

trees, network, user IDs, and file systems.

Furthermore, to reduce the complexity and effort

when dealing with dependencies, it packages each

component and its dependencies. Ansible is a simple

automation engine to automate cloud provisioning,

configuration management, application deployment,

intra-service orchestration, and other needs. When

utilized, it connects to nodes (servers, containers, or

VMs) and creates small programs called “Ansible

Modules”. These programs are resource models of the

desired state, the system has to be in. Ansible then

executes these modules and removes them once the

task is completed. Compared to other similar tools,

such as Puppet or Chef, Ansible is efficient and lean,

due to not requiring an active server, daemon, or

database to run specific modules or keep states.

2.3. Available Non-Commercial Deployment

Solutions for Big Data Technologies

Commercial service providers such as Amazon and

Google that partially allow (semi-) automated

deployments of prominent big data technologies in

their cloud environments provide in many cases

proprietary, self-developed big data solutions that can

be used with relatively little effort. However, those

come with expenses and obligations as mentioned

before. To our knowledge, only a few non-commercial

solutions exist that allow an automated deployment of

well-known big data technologies. As briefly

described at the beginning of this contribution, these

are Apache BigTop, the DICE framework [7], and the

Cloudera distribution. While the latter depicts rather a

multifunctional suite and provides a variety of well-

known tools, the other two approaches are deployment

solutions that allow the provision of targeted tools.

BigTop “is an Apache Foundation project for

Infrastructure Engineers and Data Scientists looking

for comprehensive packaging, testing, and

configuration of the leading open source big data

components” [21].

The offered components are packaged, delivered,

and maintained by the community behind the project.

According to its declarations, the scope of this solution

mostly covers but is not exclusively limited to, big

data technologies from the Hadoop ecosystem. For the

actual deployment of the components, Docker is used,

and for their internal configuration Puppet. While

BigTop offers a wide range of functionalities,

configurations as well as testing capabilities, many

technologies outside the Hadoop ecosystem are

excluded here, presumably, due to complexity and

integration efforts.

In contrast to the aforementioned solution, the

DICE framework originated from an EU project

funded under the Horizon 2020 program, which seeks

to “to deliver a quality-driver DevOps toolchain for

Big data applications that natively support these Big

data technologies” [7]. In doing so, a comprehensive

plugin for the integrated development environment

(IDE) Eclipse is provided that helps step-by-step with

the implementation of data-intensive applications.

Through the chained integration of UML diagram

profiles and technology-specific peculiarities,

comprehensive and detailed activities of big data

engineering can be performed, including the planning,

design and development, testing, and deployment.

Here, the deployment of related technologies is

realized using the configuration management tool

Chef, which fulfills similar functionalities as Ansible

and Puppet. Through the additional use of the cloud

industry-standard Topology and Orchestration

Specification for Cloud Application (TOSCA), cloud

deployments of related prototypes, as well as

continuous delivery and testing, are facilitated here.

Unfortunately, the DICE project ended in 2018. Since

then, no major extensions or updates have been

performed. Hence, long-lasting usage cannot be

recommended, because changes in the big data

ecosystem will no longer be considered.

This circumstance, again, reinforces the necessity

to provide such a solution that remains usable in the

long term. Notwithstanding that, as one may note, the

Page 6127

presented examples comprise just a small excerpt of

currently existing approaches. Hence, in-depth

observation of the current state of the art is required

that shall cover the research conducted in this domain.

3. State of the Art

To obtain an overview of the current state of the

art, a structured literature review according to the

recommended workflow of Levy and Ellis [22] was

conducted that further relies on the approach presented

by Webster and Watson [23]. In the following, the

review protocol as well as the results are presented.

3.1. Review Protocol

For the identification of relevant research articles,

which incorporate deployment technologies in the

field of big data, suitable keywords were defined,

logically connected, and applied in various scientific

literature databases. Those are namely, IEEE,

ScienceDirect, Scopus, and CiteSeerx. Depending on

each query engine, the following search term was

applied on title, abstract, and keywords to find only

relevant articles: “big data” AND (architecture OR

application) AND (DevOps or deployment) AND

(strategy OR framework OR practice OR method OR

survey)”.

To cover only articles that were proposed after the

early hype of big data, no papers published before

2014 were considered. This resulted in a total of 2988

unique articles that were manually checked. Those are

distributed as follows: 93 (IEEE), 2237

(ScienceDirect), 367 (Scopus) and 291 (CiteSeerx).

To refine the overall amount of articles, several

inclusion and exclusion criteria were used as proposed

in [22]. As soon as one of the latter was valid, the paper

was rejected, the same applies to those who did not

fulfill all inclusion criteria. A list of the inclusion and

exclusion criteria is given in Table 1.

Table 1. Inclusion and exclusion criteria

Inclusion Criteria Exclusion Criteria

Discusses big-data/ large-

scale deployments

Published before 2014

Incorporates non-

commercial technology

Vague to no deployment

information

Presents enough

information for replication

Focus on proprietary

technologies

Use of modern

technologies

Focused on a very specific

application

Written in English Use of outdated or

unmaintained technologies Peer-reviewed publication

3.1 Literature Review Results

During further examination, it was noticed that a

large number of research articles were focused on

smart-cities, smart-grid, large sensor networks, or

relying heavily on commercial infrastructures with

little to no information about the deployment.

Eventually, a number of eight papers remained that

appeared promising for consideration.

Feller et al. [24] discuss in their article how

Hadoop clusters are deployed in the cloud. In their

deployment discussion, they note that Hadoop was not

designed to be deployed in VMs as it expects data and

compute nodes to coexist and there is also no concept

of elasticity. A potential solution for the deployment

of Hadoop workers in the cloud was given in [25].

Here, the authors highlight that in cloud environments

the computing VMs are typically running full OSs.

However, the hypervisor in VMs often degrades the

performance of the virtual OS. To overcome this issue,

an approach is proposed that harnesses the capabilities

of Docker. Wu et al. [26] propose in their work the

YZStack architecture, where big data tools are

implemented in separated layers. The deployment of

those is performed using an adaptive image. In the

infrastructure layer, they pre-generate a virtual server

image that includes the OS and minimum required

modules that are commonly used. The intended big

data tools are then built onto these images with all

configurations happening in an ad-hoc manner.

In the work of [27], an automated deployment

model for high-performance clusters (HPC) is

described. The presented solution focuses on the

complexity of deployment automation and

configuration management. Especially container

technologies are highlighted here as the key

technology for HPC cases. Specifically, Ansible was

mentioned as one of the most important deployments

automation engines. This is due to the reason that, inter

alia, common standards such as SSH are used and no

dedicated daemons on each node are required, which

effectively reduces the overall overhead. Apart from

that, all configurations can be done using YAML (Yet

Another Markup Language). The authors highlight

that configurations for deploying a component can be

abstracted into roles, which consist of several tasks

[27]. The flexibility of running a task or role on

specific nodes using inventories offers complete

convenience and freedom for system administrators to

define and maintain re-usable scripts, called

playbooks, that can be used to take a node into the

desired state for a specific package or technology.

Docker images were also of major interest in other

research articles, such as in [28]. Within this article,

the authors propose a deployment method, which is

Page 6128

based on a general docker workflow, where individual

components are packaged into Docker images and

deployed in container engines as necessary. Beyond

that, they highlight the benefits of using this approach

compared to classic VMs. Morabito et al. [29]

performed a comparison between the hypervisor and

container-based virtualization technologies. In doing

so, various strengths and weaknesses of each type

were highlighted. The work presented by Felter et al.

[30] denotes another comparison of virtual machines

and Linux containers. In particular, KVM as

hypervisor and Docker as container engine were used.

They came to similar conclusions as Morabito et al.

[29] and concluded that generally speaking, both

solutions achieved a mature status. However,

container deployments using Docker still outperform

the KVM deployments in terms of all tested metrics.

Nevertheless, both solutions have their advantages and

disadvantages. Lastly, in [31], an approach to deploy

large-scale datasets in cloud environments is

presented. Using configuration management tools and

a modified version of BitTorrent, automation of their

deployment is achieved.

As one may note, according to the given

summaries, it becomes apparent that different

approaches exist that attempt to provide suitable

solutions for the deployment of technologies in

resource-limited infrastructures, including also big

data tools. For instance, while in [26] a pre-packaged

VM was used to offer a complete solution, another

approach used configuration and management tools to

allow automation for the configuration and

deployments of various components, such as Ansible

[27]. Despite the great acceptance of classical VM-

based approaches, including not only the OS but also

multiple preinstalled functionalities, it was noted that

in many cases container technologies delivered better

results in a direct comparison [29]. Thus, Docker and

Ansible appeared to be desirable solutions for further

deployment and configuration management.

4. Design and Development

Emerging from these considerations, in the

following design and development section, the

intended artifact of this work is presented. In

particular, a convenient, platform-agnostic, and low

complexity concept is proposed that allows the

deployment of individual components and re-

configurable packages. As found out during the

investigation of existing theory and the performed

literature review, container technologies are a widely

acknowledged solution when it comes to the

deployment of a large number of components in

limited-resource environments. They offer many

different advantages, such as dependency

management and conflict mitigation [20] as well as a

high degree of portability of the created solution that

allows, in turn, easy migration from e.g. public to

private cloud deployment models [27].

4.1. Preliminary Considerations

After investigating the recommended container

and automation from the literature review in more

detail, general steps were identified, which are

required for the basic implementation and application

of a potential solution. This includes the setup of

related deployment and management nodes. While the

first is used for the actual deployment of the targeted

technologies and architectures, the latter is utilized to

manage and handle all required implementations.

After that, in case that available registries do not

already provide them, the components for each

technology need to be created. Consequently, for each

component, a base image is used and extended,

following the required container technology

component creation guidelines and the idea of the

adaptive image. For the automation, then, a

deployment management framework is required that

converts manual process steps into automated small

scripted steps. Those are predominantly important in

complex environments, as it is the case for the big data

domain. Hence, the capability to deploy a large

number of isolated or compound components does not

only allow the provision of single big data tools but

also complete architectures. To cover the information

required for such a sophisticated artifact, a suitable

concept needs to be utilized that delivers an all-

encompassing overview in terms of existing

technologies, their fulfilled functionalities,

implementation details as well as relations between

each of those. When looking at other approaches, such

as the DICE framework [7] or Apache BigTop, this

shall offer an opportunity to easily extend or reduce

the planned setup to its required technologies.

4.2. A Basic Framework for the Automated

Deployment of Big Data System Architectures

By taking all of the aforementioned information

into consideration, a hybrid framework was derived,

where big data components, as well as their

combination, configuration, management, and

deployment, are prepared via machine-readable

format, to achieve increased automation, portability,

and reusability. Compared to other existing solutions,

the focus was on non-commercial, low complex,

resource conservative, and easily extendable elements.

For an improved (re-) usability, a sophisticated

Page 6129

concept is utilized that allows potential users to

discover, identify and keep track of interdependencies

between single big data technologies as well as

complex architectures. Eventually, for the developed

artifact, the BDTOnto [15], Docker, and Ansible were

used, most of all due to their prevailing benefits

compared to alternative solutions, which were

presented in the aforementioned sections. An

overview of the framework is depicted in Figure 1.

All required information, which is relevant for the

general understanding of the technologies and their

relation to each other, are stored in the ontology [15].

This includes not only single technologies and their

general compatibilities, version information, provided

functionalities, and deployment details, but also in

which way they can be composed to specific

architectures, such as in [32, 33]. Since Docker

containers are used for the packaging of big data

technologies, essential information for the

construction of those or even the used deployment

files can be linked within the ontology.

In case that a container for a specific technology

is neither created nor available in openly accessible

registries, an initial creation needs to be performed.

Once a container image is created, it can be persisted

and distributed for later reuse through a private or

public Docker registry, such as DockerHub. There, a

multitude of publicly available big data

implementations is already provided. Generally, an

adhering deployment of single components and

generic architectures can already be performed

through docker-compose files, created using YAML.

To have all information in one place, the created

files and images can be gathered via the linkage with

the specific entries for each big data technology,

within the ontology. For multiple components,

different tasks are required, such as the structuring,

copying, managing, or changing of configurations, not

only regarding the aimed destination but also in terms

2 https://data.cityofnewyork.us/Transportation/2017-Green-Taxi-

Trip-Data/5gj9-2kzx, accessed on 15-06-2021

of the component interaction. Those tasks are

automated through the use of Ansible and logically

structured by utilizing the role concept. These roles, in

turn, can be used within playbooks, which define,

similar to docker-compose files, the structure of

potential architectures. All used images of relevant big

data technology components need to be either build

prior or directly pulled from an existing registry. The

persistency and linkage of the created playbooks can

be achieved for complex architectures in the same way

as the Docker components, through a registry and the

used ontology. To reduce the effort of manual settings

and frequent interactions during the deployment

process, various configuration information are

required within the playbooks, such as the specific

endpoints. This information has to be declared in

inventory files. After the successful creation of a

playbook, the deployment of the big data architecture

can be executed. Ansible autonomously performs all

steps required for the deployment to the desired host

in sequential order. Again, to provide a global source

of information, these files are then linked to the

ontology, similar to the Docker container information.

For multi-user management and user-specific endpoint

declarations, the inventory files are stored in separate

data storage.

5. Evaluation of the Developed Artifact

For the evaluation of the proposed concept,

experimental implementation and application of a

potential big data architecture was realized. The

ascertained complexity was afterward compared to the

DICE framework [7] and Apache BigTop, based on

various criteria. As one of the most prominent

approaches, the Kappa architecture was used [33] and

tested with an openly accessible dataset of green taxi

trips in New York City2. Generally speaking, this

architecture presents an answer to the Lambda

Figure 1. Architectural Setup

Page 6130

architecture [32]. Compared to the two required

systems of the Lamba approach, the Kappa

architecture requires only a stream processing system

through which the data is incoming and transformed.

Afterward, everything is stored within an analytical

database [33]. The streaming layer, as the heart of the

system, is constituted by a messaging system, in that

case, Apache Kafka. Further technologies that are

frequently used in the context of this are the data

storage Apache Cassandra, as the serving layer, as

well as Apache ZooKeeper, for cluster state

management [33]. An overview of the architecture can

be seen in Figure 2.

Figure 2. Kappa Architecture

5.1. Prototypical Implementation of the

Artifact

For the implementation of the architecture, a

multi-node setup was chosen, for which the

preparation of the management and deployment nodes

are required. On both machines, Docker is required as

well as for the manager node additionally Ansible.

Here, two VMs are used, each of them with 2x2.2GHz

cores, 4GB RAM, a 50 GB disk storage, and Ubuntu

Linux 18.04.1 LTS as the distribution. The first VM

contains the processing layer and cluster management,

represented by Kafka and Zookeeper, along with the

evaluation data as the test workload. In the second

VM, a Cassandra cluster and the stream processors

were deployed. Both VM1 and VM2 were connected

using an overlay Docker network that can be accessed

from both nodes, allowing communication between

them. For the deployment of the architecture, each

component was prepared and defined in an

independent cluster configuration, using a docker-

compose file. The initially required information about

general relations and dependencies of the architecture

as well as the specific technologies were already

included within the used BDTOnto [15]. However, by

using additional classes as well as data and object

properties, further extensions were performed after the

successful deployment. This includes general

implementation information, such as the specific

runtime environment, and also the linkage to the

related files for the deployment. After the Docker-

compose files were created for each component, those

have been used in Ansible. In particular, different

tasks were defined and combined into roles that dealt

with the setup of the specific component. Then, each

role was put together into one single playbook that is

in charge of the automated deployment of the

architecture. The needed inventory information for the

used machines were defined in the user-specific

inventory file. Thereupon, the deployed architecture

was successfully tested, using the exemplary dataset as

well as some simple data analysis methods.

Eventually, all created files were linked to the related

big data technology classes within the ontology. The

same applies to the user-specific information in the

user data storage, regarding the connection endpoints

of the used machines. Through the use of a computer-

supported solution that gathers all required files and

information, the deployment is afterward automated

and made executable via one-click.

5.2. Framework Comparison

After the successful implementation and

evaluation of the artifact, for the identification of its

usefulness, an additional comparison to non-

commercial solutions was performed. In particular,

this comprises the previously described DICE

framework [7] as well as Apache BigTop. All required

information for the comparison were either directly

tested or extracted from the related documentation.

The criteria that were employed for this step are

derived from the objective of this work, as well as

influenced by non-functional requirements from [34]

as they define “constraints on the services or functions

offered by the system” [35]. Particularly, the usability,

portability, reproducibility, resources requirements,

flexibility, and scalability were observed and

compared to each of the evaluated solutions.

The usability does not only focus on the required

technical knowledge but also the ease of operation. For

the proposed approach, the difficulty lies in preparing

each component for deployment and composing all

required elements for the final architecture. However,

once an architecture is prepared, it can be deployed

with little technical knowledge. Therefore, the user

only needs to execute the specific playbook against

deployment nodes and the whole process afterward is

automated. To set up Apache BigTop on deployment

nodes, a specific shell script is provided, which

prepares each node for the package-based deployment

that is provided by the community contributors. For

Docker-based deployments, the focus is mainly put on

Hadoop and the related ecosystem. Additionally, the

deployment management is realized through Puppet.

DICE, in turn, requires for most of the provided tools

only the Eclipse plugin. With the aid of the IDE, the

user is guided through different stages of the

Page 6131

development and deployment of the data-intensive

application (DIA), covering everything from the

modeling up to the initial implementation of the

prototype. However, a multitude of information is

required during the complete setup and use of each

DIA that prevents a simple quickstart, or a rather rapid

deployment, of a system. The user needs, similar to

BigTop, specific details about underlying principles

before using the proposed big data technologies.

With the portability, the effort of operating and

migrating the same architecture to different resources

was evaluated. By following a container-based

approach, increased portability can be ensured in the

proposed artifact. For the validation of this criterion,

the destinations of the targeted machines were

changed. With minor changes in the configuration, the

system was easily deployable to similar pre-

configured environments. For BigTop’s package-

based deployment, a portability is not easily

achievable, since a given installation cannot be

migrated to a different resource without re-configuring

everything from scratch. However, BigTop’s Docker

deployments reveal similar results to the proposed

approach. DICE intends to interact with various cloud

platforms, at which the DIA can be deployed. By using

reconfigurable files and the provided IDE portability

can be achieved to a certain degree.

To investigate the reproducibility in more detail

and find out whether the developed approach always

delivers the same architecture for the same container

images and configuration files, the deployment

playbook of the architecture was run multiple times.

As already presumed, in each run, the architecture was

deployed in the same formation and a stable state.

Once everything is set up and correctly configured,

similar results should be achievable with the DICE

framework. However, compared to the proposed

solution, those configurations will be presumably a bit

more complex, due to the given configuration options.

For Apache BigTop, reproducibility is possible, but

again, new configurations for each deployed

component can be are required.

Regarding the resource requirements, in the

experimental setup for the proposed solution, the

deployment architecture generated individual clusters

on two VMs. Using the idle state resource, the

additional main memory usage for deploying the

ZooKeeper and Kafka cluster was 1.95GB on VM1

and 1.2GB on VM2 for Cassandra and the stream

engine. Similar resource utilization is expected for

BigTop’s Docker-based deployment, due to the same

underlying technology. To harness the basic

functionalities of the DICE framework, the Eclipse

IDE, as well as the plugin and some further tools, are

required. The deployment itself is performed through

the use of the configuration management tool Chef and

cloud environments. In general, it can be expected that

the workload will be relatively equal compared to the

other solutions.

The reuse focuses on the single components,

which can be deployed by each of the approaches. The

proposed solution includes a combination of an

ontology and container-based approach to allow

potential users to easily deploy and extend single big

data technologies and complex architectures to their

desired environment. The configuration of the

deployment is performed within the respective

solution. As a result, the components and architectures

can be reused as individual container images, extended

with custom configurations, and easily shared. For

BigTop’s Docker-based deployments, individual

components are deployed as independent packages. It

creates a generic container, installs system-level

packages of the available components, and

additionally uses a dynamically generated

configuration for each container. This approach differs

from the presented one in the sense that there are no

shareable containers in the end. DICE itself sticks to

container-based deployments. However, the relatively

static inputs for the configurations prevent quick reuse

of the developed components. The same applies to

complex architectures.

The flexibility of each solution was investigated

and compared through the examination of the

modifiability and extendibility. In terms of the

developed artifact, the user can easily add or remove

new components, as well as seamlessly integrate

completely new technologies, without any further

changes on the core. Especially through a self-creation

or use of open access repositories, thorough extensions

are imaginable in a short time (cf. Docker repository).

BigTop, on the other hand, only allows to build and

install specific container images. As a result, the user

is only able to use components that are provided by the

team behind the tool. DICE, in turn, does not intend to

provide further big data technologies, since the tools,

configurations, and functionalities are very complex

and tailored for each of them. In combination with the

discontinued development, this circumstance acts as

the greatest counterargument for a potential

application.

In terms of scalability, the proposed framework

currently uses a pre-defined cluster size and

configuration. To scale to a large cluster or more

complex architecture, additional effort from the user is

required to update the deployment configuration

accordingly. This severely limits the scalability of the

deployment operation. With the integration into

specialized workflows or complex deployment

systems, this could be again automated using

Page 6132

configurations that are passed through. This was

already done in the related tools of the DICE

framework that attempt to reduce the effort for manual

settings as much as possible. In combination with the

used cloud platform, scaling for the deployment is

partially possible. Nevertheless, an initial

configuration has to be performed. For BigTop,

similar limits are applicable and the user has to

configure additional components. However, it allows

a dynamic configuration for deployed components,

which results in much easier and less complex scaling.

5.3. Discussion

By summarizing the outlined aspects, it becomes

apparent that the developed solution outperforms

Apache BigTop and the DICE framework in multiple

aspects. In such a fast-changing environment like big

data, a long-lasting and adaptable solution was

proposed that allows system engineers to rapidly

deploy even the most recent big data technologies for

their application scenarios. However, the benefits of

this solution come at the expense of the level of detail

for configuration, which needs to be invested before

the initial deployment. While both of the investigated

approaches deliver numerous additional

functionalities, configurations, and supplementary

material, it was intended to develop a convenient and

low complexity solution, where individual components

can be offered as re-usable and re-configurable

packages. Depending on the role of the user that either

creates or uses the big data technologies, only basic

knowledge is required. Nevertheless, for further

configuration management and other specifications,

additional effort needs to be put into it. Especially the

current scalability should be aimed in the future. For

now, stress testing or the setup of turnkey solutions

may only be feasible in a limited way. However, with

the combination and use of the well-known open-

source technologies Docker as well as Ansible, an

integration in cloud environments, such as the Google

Cloud Platform (GCP) are imaginable without fearing

a potential vendor lock-in effect. Therefore, in future

work, it is planned to facilitate hybrid or multi-cloud

integration to overcome those shortcomings. The

further integration and extension are also intended in

other workflows and systems. For instance, as

proposed by [36], the connection to a technology

selection decision support system for big data projects

appears to be sensible. Decision-makers that not only

want to identify potential technologies but also

determine, in which way those could be deployed may

greatly benefit from such a solution. Through the use

of the ontology, a related setup could greatly increase

the level of automation in the way that decision-

makers may either deploy single technologies or

recommended combinations by one-click.

6. Conclusion

In this work, a lightweight, flexible and

automated framework was proposed that allows

researchers and practitioners to deploy their big data

architectures in various environments. By

investigating the current state of the art, essential

concepts and technologies were discovered. In doing

so, not only a conceptual framework was designed and

developed as an answer to the aforementioned

formulated research question, but also a prototypical

implementation performed and presented. In

particular, a Kappa architecture was constructed,

deployed, and automated. Additionally, for an

adhering evaluation with existing concepts that act

towards our proposed idea, a comparison to those was

performed. As an essential element in continuous

integration and continuous delivery pipelines or

decision support and decision-making systems, this

approach may help future users with the rapid

deployment of their big data environments. Through

the interconnection with the ontology, no all-

encompassing knowledge in all domains is required.

As a benefit, prospective big data technology users can

easily include and use their desired technologies in the

ontology, facilitating their automated deployment at a

low cost. Through the future extension to cloud

environments, their respective cost models could also

be incorporated, when designing new applications,

facilitating an even more elaborated decision making.

Especially in case, if no internal resources are existing

and everything is already located in cloud

environments.

7. References

[1] Davoudian, A. and M. Liu, "Big Data Systems", ACM

Computing Surveys, 53(5), 2020, pp. 1–39.

[2] Lee, I., "Big data: Dimensions, evolution, impacts, and

challenges", Business Horizons, 60(3), 2017, pp. 293–

303.

[3] Mccafferty, D., "How Unexpected Costs Create a ‘Cloud

Hangover’", CIO Insight, 16.12.2015.

[4] Anthony Jnr, B., S. Abbas Petersen, D. Ahlers, and J.

Krogstie, "Big data driven multi-tier architecture for

electric mobility as a service in smart cities",

International Journal of Energy Sector Management,

14(5), 2020, pp. 1023–1047.

[5] Han, J., S. Park, and J. Kim, "Dynamic OverCloud:

Realizing Microservices-Based IoT-Cloud Service

Composition over Multiple Clouds", Electronics, 9(6),

2020, p. 969.

[6] Castellanos, C., B. Perez, D. Correal, and C.A. Varela,

"A Model-Driven Architectural Design Method for Big

Page 6133

Data Analytics Applications", 7281-7415, 2020,

pp. 89–94.

[7] Casale, G. and C. Li, "Enhancing Big Data Application

Design with the DICE Framework", in Advances in

Service-Oriented and Cloud Computing, Z.Á. Mann

and V. Stolz, Editors. 2018. Springer International

Publishing: Cham.

[8] Hevner, A.R., S.T. March, J. Park, and S. Ram, "Design

Science in Information Systems Research", MIS

Quarterly(28), 2004, pp. 75–105.

[9] Peffers, K., T. Tuunanen, M.A. Rothenberger, and S.

Chatterjee, "A Design Science Research Methodology

for Information Systems Research", Journal of

Management Information Systems, 24(3), 2007,

pp. 45–77.

[10] Chang, W.L. and N. Grady, "NIST Big Data

Interoperability Framework: Volume 1, Definitions",

2019.

[11] McSherry, F., M. Isard, and D.G. Murray, "Scalability!

But at What Cost?", in Proceedings of the 15th

USENIX Conference on Hot Topics in Operating

Systems. 2015. USENIX Association: USA.

[12] Roy, C., S. Swarup Rautaray, and M. Pandey, "Big Data

Optimization Techniques: A Survey", International

Journal of Information Engineering and Electronic

Business, 10(4), 2018, pp. 41–48.

[13] Günther, W.A., M.H. Rezazade Mehrizi, M. Huysman,

and F. Feldberg, "Debating big data: A literature review

on realizing value from big data", The Journal of

Strategic Information Systems, 26(3), 2017, pp. 191–

209.

[14] Schermann, M., H. Hemsen, C. Buchmüller, T. Bitter,

H. Krcmar, V. Markl, and T. Hoeren, "Big Data",

Business & Information Systems Engineering, 6(5),

2014, pp. 261–266.

[15] Volk, M., D. Staegemann, N. Jamous, M. Pohl, and K.

Turowski, "Providing Clarity on Big Data

Technologies", International Journal of Intelligent

Information Technologies, 16(2), 2020, pp. 49–73.

[16] Volk, M., D. Staegemann, S. Bosse, R. Häusler, and K.

Turowski, "Approaching the (Big) Data Science

Engineering Process", in Proceedings, 5th International

Conference on Internet of Things, Big Data and

Security, Prague, Czech Republic. 2020.

SCITEPRESS.

[17] Immonen, A., P. Paakkonen, and E. Ovaska,

"Evaluating the Quality of Social Media Data in Big

Data Architecture", IEEE Access, 3, 2015, pp. 2028–

2043.

[18] Kune, R., P.K. Konugurthi, A. Agarwal, R.R.

Chillarige, and R. Buyya, "The anatomy of big data

computing", Software: Practice and Experience, 46(1),

2016, pp. 79–105.

[19] Sebastio, S., R. Ghosh, and T. Mukherjee, "An

Availability Analysis Approach for Deployment

Configurations of Containers", IEEE Transactions on

Services Computing, 2018, p. 1.

[20] Merkel, D., "Docker: lightweight Linux containers for

consistent development and deployment", Linux

Journal(239), 2014.

[21] https://bigtop.apache.org/, accessed 6-15-2021.

[22] Levy, Y. and T.J. Ellis, "A Systems Approach to

Conduct an Effective Literature Review in Support of

Information Systems Research", Informing Science:

The International Journal of an Emerging

Transdiscipline, 9, 2006, pp. 181–212.

[23] Webster, J. and R.T. Watson, "Analyzing the Past to

Prepare for the Future: Writing a Literature Review",

undefined, 2002.

[24] Feller, E., L. Ramakrishnan, and C. Morin,

"Performance and energy efficiency of big data

applications in cloud environments: A Hadoop case

study", Journal of Parallel and Distributed Computing,

79-80, 2015, pp. 80–89.

[25] Tan, Y., W. Wang, Q. Wu, and J. Lin, "An

implementation of heterogeneous architecture based

MapReduce in the clouds", in Proceedings of 2016 2nd

International Conference on Cloud Computing and

Internet of Things, CCIOT. 2016. IEEE: Piscataway,

NJ.

[26] Wu, S., C. Chen, G. Chen, K. Chen, L. Shou, H. Cao,

and H. Bai, "YZStack", Proceedings of the VLDB

Endowment, 7(13), 2014, pp. 1778–1783.

[27] Higgins, J., T. Al-Jody, and V. Holmes, Rapid

Deployment of Bare-Metal and In-Container HPC

Clusters Using OpenHPC playbooks, 2018.

[28] Tihfon, G.M., S. Park, J. Kim, and Y.-M. Kim, "An

efficient multi-task PaaS cloud infrastructure based on

docker and AWS ECS for application deployment",

Cluster Computing, 19(3), 2016, pp. 1585–1597.

[29] Morabito, R., J. Kjallman, and M. Komu, "Hypervisors

vs. Lightweight Virtualization: A Performance

Comparison", in Proceedings, 2015 IEEE International

Conference on Cloud Engineering (IC2E). 2015. IEEE:

Piscataway, NJ.

[30] Felter, W., A. Ferreira, R. Rajamony, and J. Rubio, "An

updated performance comparison of virtual machines

and Linux containers", 2015 IEEE International

Symposium on Performance Analysis of Systems and

Software (ISPASS). 2015. IEEE: Piscataway, NJ.

[31] Vaquero, L.M., A. Celorio, F. Cuadrado, and R.

Cuevas, "Deploying Large-Scale Datasets on-Demand

in the Cloud: Treats and Tricks on Data Distribution",

IEEE Transactions on Cloud Computing, 3(2), 2015,

pp. 132–144.

[32] Marz, N. and J. Warren, Big data: Principles and best

practices of scalable real-time data systems, Manning,

Shelter Island, NY, 2015.

[33] https://www.oreilly.com/ideas/questioning-the-

lambda-architecture, accessed 6-15-2021.

[34] ISO, "Systems and software engineering: Systems and

software Quality Requirements and Evaluation

(SQuaRE) - System and software quality models",

35.080(25010:2011), 2011.

[35] Sommerville, I., Software engineering, Pearson,

Boston, 2016.

[36] Volk, M., D. Staegemann, S. Bosse, A. Nahhas, and K.

Turowski, "Towards a Decision Support System for

Big Data Projects", in WI2020, N. Gronau, Editor.

2020. GITO Verlag.

Page 6134

