
Facing Big Data System Architecture Deployments: Towards an Automated 

Approach Using Container Technologies for Rapid Prototyping 
 

Matthias Volk, Daniel Staegemann, Ashraful Islam, Klaus Turowski 

Otto-von-Guericke University Magdeburg, Germany 

{matthias.volk, daniel.staegemann, ashraful.islam, klaus.turowski}@ovgu.de 

 

 

Abstract 
Within the last decade, big data became a 

promising trend for many application areas, offering 

immense potential and a competitive edge for various 

organizations. As the technical foundation for most of 

today´s data-intensive projects, not only 

corresponding infrastructures and facilities but also 

the appropriate knowledge is required. Currently, 

several projects and services exist that not only allow 

enterprises to utilize but also to deploy related 

technologies and systems. However, at the same time, 

the use of these is accompanied by various challenges 

that may result in huge monetary expenditures, a lack 

of modifiability, or the risk of vendor lock-ins. To 

overcome these shortcomings, in the contribution at 

hand, modern container and task automation 

technologies are used to wrap complex big data 

technologies into re-usable and portable resources. 

Those are subsequently incorporated in a framework 

to automate the deployment of big data architectures 

in private and limited resources.  

1. Introduction  

Within the last decade, the storage, management, 

and processing of huge amounts of differently 

structured data have become more important than 

ever. With the advent of new trends, such as social 

media, the internet of things, and other data-intensive 

application scenarios, the necessity to handle those 

became ubiquitous [1]. As a result, apart from new 

technologies, sophisticated architectural concepts 

were required that provide a scalable and robust 

framework for the current and future development. 

However, at the same time, this reinforced the 

complexity of the engineering of the related systems 

and, thus, potentiated the lack of qualified staff [2]. 

Consequently, several deployment solutions and 

commercial services came up that promise potential 

users to easily realize their data-intensive endeavors 

and thus facilitate the rapid prototyping of novel ideas 

and testbeds. However, the convenience to have 

everything at one place comes in most of the cases 

with the cost of technology and platform-specific 

knowledge. Prominent examples, such as Amazon 

Web Services or IBM BigInsight offer a broad range 

of potential technologies, functionalities, and 

sophisticated pay-per-use models. However, not only 

the use of the platform-specific technologies 

themselves but also the cost estimation of their usage 

can be sometimes cumbersome. Currently, the 

maintenance of internal software, external expert 

knowledge, and customization efforts denote 

oftentimes the biggest sources of unplanned costs [3]. 

As a result, the combined use of multiple technologies 

and services in parallel may not only be challenging to 

realize, sometimes it can be even prevented, due to a 

lack of existing connectors or interfaces. Ultimately 

this could not only result in high monetary 

expenditures, extensive knowledge required to handle 

big data projects but also a potential vendor lock-in 

effect, through which the user is forced to solely stick 

to the services offered by the provider. Especially the 

latter was noted for many different providers in several 

research studies, such as [4–6].  

In contrast to this, free and open-source solutions 

such as the Developing Data-Intensive Applications 

with Iterative Quality Enhancements (DICE) 

framework [7], Apache BigTop, or the Cloudera 

Hortonworks project, which partially attempt to 

overcome the referred problems, are in many cases 

limited in terms of their applicability. For instance, 

Cloudera offers inter alia their distribution as a 

sandbox that comes with an extensive collection of big 

data technologies, however, in many cases they exceed 

what the user needs, which in turn results in the 

necessity for a potentially complicated and 

cumbersome customization and configuration. 

Generally speaking for these solutions, there is no 

opportunity to extend or reduce the setup to its 

required technologies. In the flux of big data, a 

multitude of technologies is constantly emerging or 

changing [1]. Therefore, compared to currently 

existing solutions, a lightweight and modifiable 

approach that relies on open-source technologies, 
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allowing an automated system architecture 

deployment, appears to be highly aspirational. To 

facilitate bridging this gap, the following research 

question shall be answered throughout this work: 

How could a modifiable and open-source-based 

approach for automated big data system architecture 

deployments be facilitated and designed? 

Resulting from this question, the main purpose of 

this work is to provide a convenient and low 

complexity solution, where individual components 

can be offered as re-usable and re-configurable 

packages. This also includes their combined use, 

allowing for components to be added or removed to 

complex architectures with minimal effort and without 

specialized knowledge for the deployment to 

eventually facilitate rapid prototyping setups. The 

desired solution should be platform agnostic, 

extendable, and adjustable to suit the available 

computing resources.  

To find a suitable answer to the aforementioned 

research question, the constructive design science 

research (DSR) methodology is followed [8] and the 

six-stepped workflow as recommend by Peffers et al. 

[9] is implicitly employed. This leads to the 

publication being structured as follows. After giving 

an initial motivation and definition of the main 

objectives an overview of the existing theory is 

needed. This is realized through the presentation of 

theoretical background information as well as a 

structured literature review. The latter is used to 

identify existing approaches, container technologies, 

and other guidelines for the intended artifact. 

Eventually, the obtained findings are used for the 

design and development of the artifact. Afterward, 

everything is demonstrated using one of the most 

prominent big data architectures for real-time stream 

processing. In the end, a thorough evaluation is 

performed at which the created solution is compared 

to similar existing approaches. Concluding remarks 

will end the paper. 

2. Theoretical Foundation 

In recent years, big data became one of the most 

promising trends. One common way to facilitate the 

deployment of the related technologies and 

architectures is the use of container technologies.  

2.1. Big Data 

With the increasing volume and complexity of 

data produced in today’s society, which are addressed 

by the term big data, traditional techniques for 

 
1 http://dfkoz.com/ai-data-landscape/, accessed on 15-06-2021 

managing and processing data are oftentimes no 

longer sufficient [10]. As a result, new approaches 

have emerged to deal with those challenges. Even 

though they are amalgamated under one umbrella 

term, the corresponding endeavors comprise a variety 

of highly different use cases [1]. Common to them, 

however, is a strong focus on the scalability and 

portability of the deployed solutions [11–13]. 

Furthermore, in many scenarios, a high degree of 

flexibility is desirable [1], which also affects the 

design and development of those solutions. 

Mandatory for the implementation of big data 

projects is the utilization of highly sophisticated and 

scalable technologies, which can cope with the 

challenges resulting from the big data characteristics. 

In general those “summarize technological 

developments and techniques in the area of data 

storage and data processing that allow the handling of 

exponential increases of data in terms of volume, 

variety, velocity, value and veracity” [14]. Many of 

those technologies are widely known today. Some of 

the most prominent representatives include solutions 

from the Apache Foundation, such as Hadoop, Spark, 

Zookeeper, or Hive. While some bring a broad range 

of functionalities, other technologies are only intended 

for one specific purpose. Besides a surge in interest, as 

of today, also a lack of comprehensive knowledge 

prevails [2]. This is largely due to the ever-growing 

market of technologies and tools that renders it nearly 

impossible to always stay up to date concerning its 

development. This was also thoroughly described and 

investigated in [15]. There, a comprehensive big data 

technology ontology (BDTOnto) was introduced that 

comprises existing properties, required knowledge, 

and relations to other technologies. By facing such 

kind of technology mapping concept to the entirety1 of 

big data technologies, it becomes apparent that the 

selection, combination, and implementation depicts a 

complex undertaking, at which numerous steps need 

to be performed. 

The activities related to the planning, design, and 

development of big data systems are oftentimes 

consolidated under the term big data engineering [16]. 

Based on a structured analysis and planning of the 

targeted project, requirements, specifications, system 

design decisions, tests, and deployments are 

determined and carried out. Eventually, this leads to a 

purposeful composition of big data technologies, a big 

data architecture. More precisely, it can be defined as 

an “architecture that provides the framework for 

reasoning with all forms of data. Thus, it is a logical 

structure of core elements used to store, access and 

manage the big data” [17].  
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In many cases, those can be not only very 

complex to be constructed but also to be deployed and 

managed. Hence, with regard to the dynamic nature of 

this domain, reflected by the continuous emergence of 

new application areas, technologies, or architectures, 

it appears to be beneficial to automatize leastwise the 

latter, the time-intensive configuration and 

deployment steps. 

2.2. Container Technologies 

Since big data applications are usually highly 

suited to be deployed in the cloud [18] and need to be 

highly scalable, it is common to use container 

technologies for their implementation. Containers are 

virtualized, lightweight operating system (OS) 

processes that provide portable runtime environments 

independent of the underlying hardware [19]. 

Thereby, they help in dealing with issues like 

dependency conflicts, missing dependencies, and 

platform differences [20]. There are numerous 

technologies, which can be drawn upon. For instance, 

Docker is a container-based technology that offers a 

user-friendly application programming interface (API) 

that is unified across platforms. It uses namespaces to 

completely isolate an application’s view of the 

underlying OS and environment, including process 

trees, network, user IDs, and file systems.  

Furthermore, to reduce the complexity and effort 

when dealing with dependencies, it packages each 

component and its dependencies. Ansible is a simple 

automation engine to automate cloud provisioning, 

configuration management, application deployment, 

intra-service orchestration, and other needs. When 

utilized, it connects to nodes (servers, containers, or 

VMs) and creates small programs called “Ansible 

Modules”. These programs are resource models of the 

desired state, the system has to be in. Ansible then 

executes these modules and removes them once the 

task is completed. Compared to other similar tools, 

such as Puppet or Chef, Ansible is efficient and lean, 

due to not requiring an active server, daemon, or 

database to run specific modules or keep states. 

2.3. Available Non-Commercial Deployment 

Solutions for Big Data Technologies  

Commercial service providers such as Amazon and 

Google that partially allow (semi-) automated 

deployments of prominent big data technologies in 

their cloud environments provide in many cases 

proprietary, self-developed big data solutions that can 

be used with relatively little effort. However, those 

come with expenses and obligations as mentioned 

before. To our knowledge, only a few non-commercial 

solutions exist that allow an automated deployment of 

well-known big data technologies. As briefly 

described at the beginning of this contribution, these 

are Apache BigTop, the DICE framework [7], and the 

Cloudera distribution. While the latter depicts rather a 

multifunctional suite and provides a variety of well-

known tools, the other two approaches are deployment 

solutions that allow the provision of targeted tools. 

BigTop “is an Apache Foundation project for 

Infrastructure Engineers and Data Scientists looking 

for comprehensive packaging, testing, and 

configuration of the leading open source big data 

components” [21].  

The offered components are packaged, delivered, 

and maintained by the community behind the project. 

According to its declarations, the scope of this solution 

mostly covers but is not exclusively limited to, big 

data technologies from the Hadoop ecosystem. For the 

actual deployment of the components, Docker is used, 

and for their internal configuration Puppet. While 

BigTop offers a wide range of functionalities, 

configurations as well as testing capabilities, many 

technologies outside the Hadoop ecosystem are 

excluded here, presumably, due to complexity and 

integration efforts. 

In contrast to the aforementioned solution, the 

DICE framework originated from an EU project 

funded under the Horizon 2020 program, which seeks 

to “to deliver a quality-driver DevOps toolchain for 

Big data applications that natively support these Big 

data technologies” [7]. In doing so, a comprehensive 

plugin for the integrated development environment 

(IDE) Eclipse is provided that helps step-by-step with 

the implementation of data-intensive applications. 

Through the chained integration of UML diagram 

profiles and technology-specific peculiarities, 

comprehensive and detailed activities of big data 

engineering can be performed, including the planning, 

design and development, testing, and deployment. 

Here, the deployment of related technologies is 

realized using the configuration management tool 

Chef, which fulfills similar functionalities as Ansible 

and Puppet. Through the additional use of the cloud 

industry-standard Topology and Orchestration 

Specification for Cloud Application (TOSCA), cloud 

deployments of related prototypes, as well as 

continuous delivery and testing, are facilitated here. 

Unfortunately, the DICE project ended in 2018. Since 

then, no major extensions or updates have been 

performed. Hence, long-lasting usage cannot be 

recommended, because changes in the big data 

ecosystem will no longer be considered.  

This circumstance, again, reinforces the necessity 

to provide such a solution that remains usable in the 

long term. Notwithstanding that, as one may note, the 
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presented examples comprise just a small excerpt of 

currently existing approaches. Hence, in-depth 

observation of the current state of the art is required 

that shall cover the research conducted in this domain. 

3. State of the Art 

To obtain an overview of the current state of the 

art, a structured literature review according to the 

recommended workflow of Levy and Ellis [22] was 

conducted that further relies on the approach presented 

by Webster and Watson [23]. In the following, the 

review protocol as well as the results are presented.  

3.1. Review Protocol 

For the identification of relevant research articles, 

which incorporate deployment technologies in the 

field of big data, suitable keywords were defined, 

logically connected, and applied in various scientific 

literature databases. Those are namely, IEEE, 

ScienceDirect, Scopus, and CiteSeerx. Depending on 

each query engine, the following search term was 

applied on title, abstract, and keywords to find only 

relevant articles: “big data” AND (architecture OR 

application) AND (DevOps or deployment) AND 

(strategy OR framework OR practice OR method OR 

survey)”.  

To cover only articles that were proposed after the 

early hype of big data, no papers published before 

2014 were considered. This resulted in a total of 2988 

unique articles that were manually checked. Those are 

distributed as follows: 93 (IEEE), 2237 

(ScienceDirect), 367 (Scopus) and 291 (CiteSeerx). 

To refine the overall amount of articles, several 

inclusion and exclusion criteria were used as proposed 

in [22]. As soon as one of the latter was valid, the paper 

was rejected, the same applies to those who did not 

fulfill all inclusion criteria. A list of the inclusion and 

exclusion criteria is given in Table 1. 

 

Table 1. Inclusion and exclusion criteria 

Inclusion Criteria Exclusion Criteria 

Discusses big-data/ large-

scale deployments 

Published before 2014 

Incorporates non-

commercial technology 

Vague to no deployment 

information 

Presents enough 

information for replication 

Focus on proprietary 

technologies 

Use of modern 

technologies 

Focused on a very specific 

application 

Written in English Use of outdated or 

unmaintained technologies Peer-reviewed publication 

3.1 Literature Review Results 

During further examination, it was noticed that a 

large number of research articles were focused on 

smart-cities, smart-grid, large sensor networks, or 

relying heavily on commercial infrastructures with 

little to no information about the deployment. 

Eventually, a number of eight papers remained that 

appeared promising for consideration.  

Feller et al. [24] discuss in their article how 

Hadoop clusters are deployed in the cloud. In their 

deployment discussion, they note that Hadoop was not 

designed to be deployed in VMs as it expects data and 

compute nodes to coexist and there is also no concept 

of elasticity. A potential solution for the deployment 

of Hadoop workers in the cloud was given in [25]. 

Here, the authors highlight that in cloud environments 

the computing VMs are typically running full OSs. 

However, the hypervisor in VMs often degrades the 

performance of the virtual OS. To overcome this issue, 

an approach is proposed that harnesses the capabilities 

of Docker. Wu et al. [26] propose in their work the 

YZStack architecture, where big data tools are 

implemented in separated layers. The deployment of 

those is performed using an adaptive image. In the 

infrastructure layer, they pre-generate a virtual server 

image that includes the OS and minimum required 

modules that are commonly used. The intended big 

data tools are then built onto these images with all 

configurations happening in an ad-hoc manner.  

In the work of [27], an automated deployment 

model for high-performance clusters (HPC) is 

described. The presented solution focuses on the 

complexity of deployment automation and 

configuration management. Especially container 

technologies are highlighted here as the key 

technology for HPC cases. Specifically, Ansible was 

mentioned as one of the most important deployments 

automation engines. This is due to the reason that, inter 

alia, common standards such as SSH are used and no 

dedicated daemons on each node are required, which 

effectively reduces the overall overhead. Apart from 

that, all configurations can be done using YAML (Yet 

Another Markup Language). The authors highlight 

that configurations for deploying a component can be 

abstracted into roles, which consist of several tasks 

[27]. The flexibility of running a task or role on 

specific nodes using inventories offers complete 

convenience and freedom for system administrators to 

define and maintain re-usable scripts, called 

playbooks, that can be used to take a node into the 

desired state for a specific package or technology. 

Docker images were also of major interest in other 

research articles, such as in [28]. Within this article, 

the authors propose a deployment method, which is 
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based on a general docker workflow, where individual 

components are packaged into Docker images and 

deployed in container engines as necessary. Beyond 

that, they highlight the benefits of using this approach 

compared to classic VMs. Morabito et al. [29] 

performed a comparison between the hypervisor and 

container-based virtualization technologies. In doing 

so, various strengths and weaknesses of each type 

were highlighted. The work presented by Felter et al. 

[30] denotes another comparison of virtual machines 

and Linux containers. In particular, KVM as 

hypervisor and Docker as container engine were used. 

They came to similar conclusions as Morabito et al. 

[29] and concluded that generally speaking, both 

solutions achieved a mature status. However, 

container deployments using Docker still outperform 

the KVM deployments in terms of all tested metrics. 

Nevertheless, both solutions have their advantages and 

disadvantages. Lastly, in [31], an approach to deploy 

large-scale datasets in cloud environments is 

presented. Using configuration management tools and 

a modified version of BitTorrent, automation of their 

deployment is achieved.  

As one may note, according to the given 

summaries, it becomes apparent that different 

approaches exist that attempt to provide suitable 

solutions for the deployment of technologies in 

resource-limited infrastructures, including also big 

data tools. For instance, while in [26] a pre-packaged 

VM was used to offer a complete solution, another 

approach used configuration and management tools to 

allow automation for the configuration and 

deployments of various components, such as Ansible 

[27]. Despite the great acceptance of classical VM-

based approaches, including not only the OS but also 

multiple preinstalled functionalities, it was noted that 

in many cases container technologies delivered better 

results in a direct comparison [29]. Thus, Docker and 

Ansible appeared to be desirable solutions for further 

deployment and configuration management.  

4. Design and Development  

Emerging from these considerations, in the 

following design and development section, the 

intended artifact of this work is presented. In 

particular, a convenient, platform-agnostic, and low 

complexity concept is proposed that allows the 

deployment of individual components and re-

configurable packages. As found out during the 

investigation of existing theory and the performed 

literature review, container technologies are a widely 

acknowledged solution when it comes to the 

deployment of a large number of components in 

limited-resource environments. They offer many 

different advantages, such as dependency 

management and conflict mitigation [20] as well as a 

high degree of portability of the created solution that 

allows, in turn, easy migration from e.g. public to 

private cloud deployment models [27].  

4.1. Preliminary Considerations 

After investigating the recommended container 

and automation from the literature review in more 

detail, general steps were identified, which are 

required for the basic implementation and application 

of a potential solution. This includes the setup of 

related deployment and management nodes. While the 

first is used for the actual deployment of the targeted 

technologies and architectures, the latter is utilized to 

manage and handle all required implementations. 

After that, in case that available registries do not 

already provide them, the components for each 

technology need to be created. Consequently, for each 

component, a base image is used and extended, 

following the required container technology 

component creation guidelines and the idea of the 

adaptive image. For the automation, then, a 

deployment management framework is required that 

converts manual process steps into automated small 

scripted steps. Those are predominantly important in 

complex environments, as it is the case for the big data 

domain. Hence, the capability to deploy a large 

number of isolated or compound components does not 

only allow the provision of single big data tools but 

also complete architectures. To cover the information 

required for such a sophisticated artifact, a suitable 

concept needs to be utilized that delivers an all-

encompassing overview in terms of existing 

technologies, their fulfilled functionalities, 

implementation details as well as relations between 

each of those. When looking at other approaches, such 

as the DICE framework [7] or Apache BigTop, this 

shall offer an opportunity to easily extend or reduce 

the planned setup to its required technologies.  

4.2. A Basic Framework for the Automated 

Deployment of Big Data System Architectures 

By taking all of the aforementioned information 

into consideration, a hybrid framework was derived, 

where big data components, as well as their 

combination, configuration, management, and 

deployment, are prepared via machine-readable 

format, to achieve increased automation, portability, 

and reusability. Compared to other existing solutions, 

the focus was on non-commercial, low complex, 

resource conservative, and easily extendable elements. 

For an improved (re-) usability, a sophisticated 
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concept is utilized that allows potential users to 

discover, identify and keep track of interdependencies 

between single big data technologies as well as 

complex architectures. Eventually, for the developed 

artifact, the BDTOnto [15], Docker, and Ansible were 

used, most of all due to their prevailing benefits 

compared to alternative solutions, which were 

presented in the aforementioned sections. An 

overview of the framework is depicted in Figure 1. 

All required information, which is relevant for the 

general understanding of the technologies and their 

relation to each other, are stored in the ontology [15]. 

This includes not only single technologies and their 

general compatibilities, version information, provided 

functionalities, and deployment details, but also in 

which way they can be composed to specific 

architectures, such as in [32, 33]. Since Docker 

containers are used for the packaging of big data 

technologies, essential information for the 

construction of those or even the used deployment 

files can be linked within the ontology.  

In case that a container for a specific technology 

is neither created nor available in openly accessible 

registries, an initial creation needs to be performed. 

Once a container image is created, it can be persisted 

and distributed for later reuse through a private or 

public Docker registry, such as DockerHub. There, a 

multitude of publicly available big data 

implementations is already provided. Generally, an 

adhering deployment of single components and 

generic architectures can already be performed 

through docker-compose files, created using YAML.  

To have all information in one place, the created 

files and images can be gathered via the linkage with 

the specific entries for each big data technology, 

within the ontology. For multiple components, 

different tasks are required, such as the structuring, 

copying, managing, or changing of configurations, not 

only regarding the aimed destination but also in terms 

 
2 https://data.cityofnewyork.us/Transportation/2017-Green-Taxi-

Trip-Data/5gj9-2kzx, accessed on 15-06-2021 

of the component interaction. Those tasks are 

automated through the use of Ansible and logically 

structured by utilizing the role concept. These roles, in 

turn, can be used within playbooks, which define, 

similar to docker-compose files, the structure of 

potential architectures. All used images of relevant big 

data technology components need to be either build 

prior or directly pulled from an existing registry. The 

persistency and linkage of the created playbooks can 

be achieved for complex architectures in the same way 

as the Docker components, through a registry and the 

used ontology. To reduce the effort of manual settings 

and frequent interactions during the deployment 

process, various configuration information are 

required within the playbooks, such as the specific 

endpoints. This information has to be declared in 

inventory files. After the successful creation of a 

playbook, the deployment of the big data architecture 

can be executed. Ansible autonomously performs all 

steps required for the deployment to the desired host 

in sequential order. Again, to provide a global source 

of information, these files are then linked to the 

ontology, similar to the Docker container information. 

For multi-user management and user-specific endpoint 

declarations, the inventory files are stored in separate 

data storage. 

5. Evaluation of the Developed Artifact  

For the evaluation of the proposed concept, 

experimental implementation and application of a 

potential big data architecture was realized. The 

ascertained complexity was afterward compared to the 

DICE framework [7] and Apache BigTop, based on 

various criteria. As one of the most prominent 

approaches, the Kappa architecture was used [33] and 

tested with an openly accessible dataset of green taxi 

trips in New York City2. Generally speaking, this 

architecture presents an answer to the Lambda 

Figure 1. Architectural Setup 
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architecture [32]. Compared to the two required 

systems of the Lamba approach, the Kappa 

architecture requires only a stream processing system 

through which the data is incoming and transformed. 

Afterward, everything is stored within an analytical 

database [33]. The streaming layer, as the heart of the 

system, is constituted by a messaging system, in that 

case, Apache Kafka. Further technologies that are 

frequently used in the context of this are the data 

storage Apache Cassandra, as the serving layer, as 

well as Apache ZooKeeper, for cluster state 

management [33]. An overview of the architecture can 

be seen in Figure 2. 

 

 
Figure 2. Kappa Architecture 

5.1. Prototypical Implementation of the 

Artifact 

For the implementation of the architecture, a 

multi-node setup was chosen, for which the 

preparation of the management and deployment nodes 

are required. On both machines, Docker is required as 

well as for the manager node additionally Ansible. 

Here, two VMs are used, each of them with 2x2.2GHz 

cores, 4GB RAM, a 50 GB disk storage, and Ubuntu 

Linux 18.04.1 LTS as the distribution. The first VM 

contains the processing layer and cluster management, 

represented by Kafka and Zookeeper, along with the 

evaluation data as the test workload. In the second 

VM, a Cassandra cluster and the stream processors 

were deployed. Both VM1 and VM2 were connected 

using an overlay Docker network that can be accessed 

from both nodes, allowing communication between 

them. For the deployment of the architecture, each 

component was prepared and defined in an 

independent cluster configuration, using a docker-

compose file. The initially required information about 

general relations and dependencies of the architecture 

as well as the specific technologies were already 

included within the used BDTOnto [15]. However, by 

using additional classes as well as data and object 

properties, further extensions were performed after the 

successful deployment. This includes general 

implementation information, such as the specific 

runtime environment, and also the linkage to the 

related files for the deployment. After the Docker-

compose files were created for each component, those 

have been used in Ansible. In particular, different 

tasks were defined and combined into roles that dealt 

with the setup of the specific component. Then, each 

role was put together into one single playbook that is 

in charge of the automated deployment of the 

architecture. The needed inventory information for the 

used machines were defined in the user-specific 

inventory file. Thereupon, the deployed architecture 

was successfully tested, using the exemplary dataset as 

well as some simple data analysis methods. 

Eventually, all created files were linked to the related 

big data technology classes within the ontology. The 

same applies to the user-specific information in the 

user data storage, regarding the connection endpoints 

of the used machines. Through the use of a computer-

supported solution that gathers all required files and 

information, the deployment is afterward automated 

and made executable via one-click. 

5.2. Framework Comparison 

After the successful implementation and 

evaluation of the artifact, for the identification of its 

usefulness, an additional comparison to non-

commercial solutions was performed. In particular, 

this comprises the previously described DICE 

framework [7] as well as Apache BigTop. All required 

information for the comparison were either directly 

tested or extracted from the related documentation. 

The criteria that were employed for this step are 

derived from the objective of this work, as well as 

influenced by non-functional requirements from [34] 

as they define “constraints on the services or functions 

offered by the system” [35]. Particularly, the usability, 

portability, reproducibility, resources requirements, 

flexibility, and scalability were observed and 

compared to each of the evaluated solutions.  

The usability does not only focus on the required 

technical knowledge but also the ease of operation. For 

the proposed approach, the difficulty lies in preparing 

each component for deployment and composing all 

required elements for the final architecture. However, 

once an architecture is prepared, it can be deployed 

with little technical knowledge. Therefore, the user 

only needs to execute the specific playbook against 

deployment nodes and the whole process afterward is 

automated. To set up Apache BigTop on deployment 

nodes, a specific shell script is provided, which 

prepares each node for the package-based deployment 

that is provided by the community contributors. For 

Docker-based deployments, the focus is mainly put on 

Hadoop and the related ecosystem. Additionally, the 

deployment management is realized through Puppet. 

DICE, in turn, requires for most of the provided tools 

only the Eclipse plugin. With the aid of the IDE, the 

user is guided through different stages of the 
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development and deployment of the data-intensive 

application (DIA), covering everything from the 

modeling up to the initial implementation of the 

prototype. However, a multitude of information is 

required during the complete setup and use of each 

DIA that prevents a simple quickstart, or a rather rapid 

deployment, of a system. The user needs, similar to 

BigTop, specific details about underlying principles 

before using the proposed big data technologies.  

With the portability, the effort of operating and 

migrating the same architecture to different resources 

was evaluated. By following a container-based 

approach, increased portability can be ensured in the 

proposed artifact. For the validation of this criterion, 

the destinations of the targeted machines were 

changed. With minor changes in the configuration, the 

system was easily deployable to similar pre-

configured environments. For BigTop’s package-

based deployment, a portability is not easily 

achievable, since a given installation cannot be 

migrated to a different resource without re-configuring 

everything from scratch. However, BigTop’s Docker 

deployments reveal similar results to the proposed 

approach. DICE intends to interact with various cloud 

platforms, at which the DIA can be deployed. By using 

reconfigurable files and the provided IDE portability 

can be achieved to a certain degree.  

To investigate the reproducibility in more detail 

and find out whether the developed approach always 

delivers the same architecture for the same container 

images and configuration files, the deployment 

playbook of the architecture was run multiple times. 

As already presumed, in each run, the architecture was 

deployed in the same formation and a stable state. 

Once everything is set up and correctly configured, 

similar results should be achievable with the DICE 

framework. However, compared to the proposed 

solution, those configurations will be presumably a bit 

more complex, due to the given configuration options. 

For Apache BigTop, reproducibility is possible, but 

again, new configurations for each deployed 

component can be are required.  

Regarding the resource requirements, in the 

experimental setup for the proposed solution, the 

deployment architecture generated individual clusters 

on two VMs. Using the idle state resource, the 

additional main memory usage for deploying the 

ZooKeeper and Kafka cluster was 1.95GB on VM1 

and 1.2GB on VM2 for Cassandra and the stream 

engine. Similar resource utilization is expected for 

BigTop’s Docker-based deployment, due to the same 

underlying technology. To harness the basic 

functionalities of the DICE framework, the Eclipse 

IDE, as well as the plugin and some further tools, are 

required. The deployment itself is performed through 

the use of the configuration management tool Chef and 

cloud environments. In general, it can be expected that 

the workload will be relatively equal compared to the 

other solutions.  

The reuse focuses on the single components, 

which can be deployed by each of the approaches. The 

proposed solution includes a combination of an 

ontology and container-based approach to allow 

potential users to easily deploy and extend single big 

data technologies and complex architectures to their 

desired environment. The configuration of the 

deployment is performed within the respective 

solution. As a result, the components and architectures 

can be reused as individual container images, extended 

with custom configurations, and easily shared. For 

BigTop’s Docker-based deployments, individual 

components are deployed as independent packages. It 

creates a generic container, installs system-level 

packages of the available components, and 

additionally uses a dynamically generated 

configuration for each container. This approach differs 

from the presented one in the sense that there are no 

shareable containers in the end. DICE itself sticks to 

container-based deployments. However, the relatively 

static inputs for the configurations prevent quick reuse 

of the developed components. The same applies to 

complex architectures. 

The flexibility of each solution was investigated 

and compared through the examination of the 

modifiability and extendibility. In terms of the 

developed artifact, the user can easily add or remove 

new components, as well as seamlessly integrate 

completely new technologies, without any further 

changes on the core. Especially through a self-creation 

or use of open access repositories, thorough extensions 

are imaginable in a short time (cf. Docker repository). 

BigTop, on the other hand, only allows to build and 

install specific container images. As a result, the user 

is only able to use components that are provided by the 

team behind the tool. DICE, in turn, does not intend to 

provide further big data technologies, since the tools, 

configurations, and functionalities are very complex 

and tailored for each of them. In combination with the 

discontinued development, this circumstance acts as 

the greatest counterargument for a potential 

application. 

In terms of scalability, the proposed framework 

currently uses a pre-defined cluster size and 

configuration. To scale to a large cluster or more 

complex architecture, additional effort from the user is 

required to update the deployment configuration 

accordingly. This severely limits the scalability of the 

deployment operation. With the integration into 

specialized workflows or complex deployment 

systems, this could be again automated using 
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configurations that are passed through. This was 

already done in the related tools of the DICE 

framework that attempt to reduce the effort for manual 

settings as much as possible. In combination with the 

used cloud platform, scaling for the deployment is 

partially possible. Nevertheless, an initial 

configuration has to be performed. For BigTop, 

similar limits are applicable and the user has to 

configure additional components. However, it allows 

a dynamic configuration for deployed components, 

which results in much easier and less complex scaling.  

5.3. Discussion 

By summarizing the outlined aspects, it becomes 

apparent that the developed solution outperforms 

Apache BigTop and the DICE framework in multiple 

aspects. In such a fast-changing environment like big 

data, a long-lasting and adaptable solution was 

proposed that allows system engineers to rapidly 

deploy even the most recent big data technologies for 

their application scenarios. However, the benefits of 

this solution come at the expense of the level of detail 

for configuration, which needs to be invested before 

the initial deployment. While both of the investigated 

approaches deliver numerous additional 

functionalities, configurations, and supplementary 

material, it was intended to develop a convenient and 

low complexity solution, where individual components 

can be offered as re-usable and re-configurable 

packages. Depending on the role of the user that either 

creates or uses the big data technologies, only basic 

knowledge is required. Nevertheless, for further 

configuration management and other specifications, 

additional effort needs to be put into it. Especially the 

current scalability should be aimed in the future. For 

now, stress testing or the setup of turnkey solutions 

may only be feasible in a limited way. However, with 

the combination and use of the well-known open-

source technologies Docker as well as Ansible, an 

integration in cloud environments, such as the Google 

Cloud Platform (GCP) are imaginable without fearing 

a potential vendor lock-in effect. Therefore, in future 

work, it is planned to facilitate hybrid or multi-cloud 

integration to overcome those shortcomings. The 

further integration and extension are also intended in 

other workflows and systems. For instance, as 

proposed by [36], the connection to a technology 

selection decision support system for big data projects 

appears to be sensible. Decision-makers that not only 

want to identify potential technologies but also 

determine, in which way those could be deployed may 

greatly benefit from such a solution. Through the use 

of the ontology, a related setup could greatly increase 

the level of automation in the way that decision-

makers may either deploy single technologies or 

recommended combinations by one-click. 

6. Conclusion  

In this work, a lightweight, flexible and 

automated framework was proposed that allows 

researchers and practitioners to deploy their big data 

architectures in various environments. By 

investigating the current state of the art, essential 

concepts and technologies were discovered. In doing 

so, not only a conceptual framework was designed and 

developed as an answer to the aforementioned 

formulated research question, but also a prototypical 

implementation performed and presented. In 

particular, a Kappa architecture was constructed, 

deployed, and automated. Additionally, for an 

adhering evaluation with existing concepts that act 

towards our proposed idea, a comparison to those was 

performed. As an essential element in continuous 

integration and continuous delivery pipelines or 

decision support and decision-making systems, this 

approach may help future users with the rapid 

deployment of their big data environments. Through 

the interconnection with the ontology, no all-

encompassing knowledge in all domains is required. 

As a benefit, prospective big data technology users can 

easily include and use their desired technologies in the 

ontology, facilitating their automated deployment at a 

low cost.  Through the future extension to cloud 

environments, their respective cost models could also 

be incorporated, when designing new applications, 

facilitating an even more elaborated decision making. 

Especially in case, if no internal resources are existing 

and everything is already located in cloud 

environments. 
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