

Evolutionary Software Requirements Factors and their Effect on Open

Source Project Attractiveness

Radu E. Vlas

University of Houston-Clear Lake

vlas@uhcl.edu

William N. Robinson

Georgia State University

wrobinson@gsu.edu

Cristina O. Vlas

University of Texas at Dallas

cristina.vlas@utdallas.edu

Abstract

Successful projects effectively manage their requirements.

How the mix of different requirements evolves throughout a

successful project life-cycle is poorly understood. Moreover,

requirements practices may be changing, according to the

authors of the New RE—a model of six critical requirements

factors. The New RE focuses on leveraging existing

components to create new functionality. This practice is also

central to open-source development. Thus, to understand the

proposed New RE model and its relationship to open-source

development, in this study, we analyze over 200 projects from

GitHub.com and compare them with a prior analysis of 31

projects from SourceForge. The results show that many of the

proposed New RE factors are related to project attractiveness,

which is important for open-source project success.

1. Introduction

The difficulty of requirements engineering (RE) tasks “has

shifted from managing internal complexity to adapting and

leveraging upon external and dynamic complexity.”[1] Jarke

and Lyytinen argue that software design is “is more about

adjusting multiple interconnected software systems and

components and improving their environmental “fit” by

adapting them into a growing number of technical, social, and

organizational subsystems.” This growing design paradigm,

that of reuse and adapting rather than designing from a blank

slate, is not just a general RE concern, but is also an open-

source development concern.

Recently, the established practice of modularization [2]

has been elaborated to explain a form of emergent open-

source coordination, called superposition [3]. This

practice addresses requirements evolution by supporting

design evolution through adaption. Superposition is the

result of development behavior, in which (potentially

dispersed) code is augmented to fulfill new functionalities

(similar to aspect-oriented programming [4]). This theory

asserts that developers aim to contribute independent

work with few dependencies: “[t]hese changes layered on

top of each other over time, each conceived and

implemented for their own sake, yet simultaneously

creating the circumstances taken as given for the

production of the next layer in a way analogous to the

superposition of rock strata.”[3] This development

technique supports independent, evolutionary software

development.

Both the New RE and open-source superposition,

assert that modern software development activities are

focused on incremental, evolutionary design adaptation.

We aim to measure software projects to understand if, and

how, these two theories are instantiated in practice. In this

study, we provide a means to measure New RE

evolutionary practices. These measures and then

correlated with project attractiveness, which is important

for open-source project success.

1.1 The New RE

According to Jarke et. al., requirements engineering (RE)

is changing. “Despite its success over the last 30 years, the

field of Requirements Engineering is still experiencing

fundamental problems that indicate a need for a change of

focus to better ground its research on issues underpinning

current practices” [5]. We posit that these practices have

changed significantly in recent years. We identify four new

principles that underlie contemporary requirements processes,

namely: (1) intertwining of requirements with implementation

and organizational contexts, (2) dynamic evolution of

requirements, (3) emergence of architectures as a critical

stabilizing force, and (4) need to recognize unprecedented

levels of design complexity.” [5] Their paper summarizes

changing research and practices in support of their assertion.

Finally, they present potential new practices, for each of the

four new principles. Within the second principle, named

evolve designs and ecologies, they present four potential new

practices in a form similar to CMM practices [6]:

 SG 2 Manage Requirements in Context

 SP 2.1 Monitor and evolve customer requirements

 SP 2.1 Monitor and evolve context requirements

 SP 2.1 Monitor product satisfaction of requirements

(continuous validation)

These practices focus on monitoring requirements,

mainly in support of managing their continuous change—

a theme intertwined throughout the four new principles. In

theory, awareness of the changing requirements will aid

their management, which in turn will improve software

development. The particulars of what requirements

5316

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41806
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

mailto:vlas@uhcl.edu
mailto:wrobinson@gsu.edu

qualities should be monitored is addressed in recent

editorial from [1], which we consider next.

1.2 Six V’s of The New RE

Classically, requirements engineering has focused on

consistency, correctness, and completeness of the

requirements document [7-9]. From the perspective of the

New RE, addressing issues of requirements within a

complex environment is central: “Whereas most of the

interest in the past focused on understanding and

managing the inner and static complexity of the design

task by using abstraction, modularization, and related

principles, today’s complexity is of a different ilk. It is

also external and dynamic.” Their Six-V requirements

measures illustrate how to address RE qualities in the New

RE world.

Many of the V-measures are long-held qualities in

requirements engineering, which have simply been

renamed for alliteration. These include the first three V’s

of Error! Reference source not found.. The last three V’s

are presented as new measures, although some RE

researchers may take issue with the novelty

characterization—certainly, vagueness and variance have

been concerns, and in fact are supported by research and

tools [10-13]. Most, however, would agree with the

general view presented: RE needs modern measures for

the New RE, especially regarding measures of external

and dynamic complexity.

The Six-V model is a modern interpretation of

established measures. This study takes the model as given,

rather than justify or extend the theory. Herein, we simply

aim to assess the value of this model. The results may then

be used to justify or extend the proposed Six-V model.

Consider modern agile development, where the project

dashboard is critical to managing projects [14]. The

centerpiece of these dashboards are burndown charts,

which graph progress toward work completion [15].

Based on characteristics (e.g., slope, x-intercept) of such

charts, managers can recognize and recover from potential

project failure. For the New RE, one can envision

dashboards graphically displaying assessments of the Six-

V’s, thereby providing a modern assessment through

requirements. This is critical because managing

requirements is often cited as the most important factor in

determining project success [16, 17].

1.3 Open Source Requirements Engineering

Many open source projects are successful [22, 23]. In

open source, the software product is developed,

distributed, and supported by users. Common

characteristics are (1) many developers, (2) volunteering

rather than delegating, (3) limited emphasis on design

activities, and (4) few plans, list of deliverables, or

timelines[24]. Requirements are not represented in a

classic requirements documents.

Table 1. Six “V’s” of Requirements [1].

In open source development, many developers are also

product users. They are stakeholders expressing needs that

define system requirements [25]. It may appear that the

requirements analysis stage is absent. However, Scacchi

has identified software informalisms, which are “the

Feature Definition Classic RE New RE

Volume The size of the

requirements

pool

influencing the

scope of the

work

Major focus of

RE as

influences

effort

estimation

Medium to

Large

Significant

during RE

as influences

effort

estimation [18]

Large to Ultra-

large

Veracity To what extent

requirements

express the

needs of the

stakeholders

and are

consistent

Emphasized as

the key feature

of RE task,

works well if

requirements

can be frozen

Important as an

ideal but not

key feature of

most RE efforts

[5, 19]

Volatility The rate at

which the

requirements

change over a

given period of

time

Recognized as

a key reason for

the failure of

waterfall, e.g.

[20]

Constant

feature of

software

development

for most

environments

[18]

Vagueness To what extent

designers and

other

stakeholders

understand the

content and

consequences

of the

requirement

Not recognized

as an important

element other

than to be

avoided during

RE task

Inherent feature

of many RE

initiatives due

to initial lack

of user learning

or

understanding

of the

dynamism

introduced by

the software in

the

environment

Variance The variation in

the design

scope and

consequences

of the

requirement

pool and the

heterogeneity

of design

components

involved

Not recognized

as an important

element in RE

activity

Significant

element

influencing RE

dynamics and

complexity.

[5, 18]

Velocity The rate at

which

requirements

are changing

over time

Not important

and recognized

Significant

contributor at

specific context

of RE

especially in

software

platforms [21]

5317

information resources and artifacts that participants use to

describe, proscribe, or prescribe what's happening in an

open source project” [26]. Scacchi identifies two dozen

types of software informalisms, which include chats,

email, forums, project digests, etc. By analyzing these

unstructured, informal, natural language artifacts, one can

better understand the requirements, and thus open source

development. Such requirements analysis may help to

predict successful projects.

One can apply text-mining techniques to classify

software informalisms as kinds of requirements [27-32].

In the case of a SourceForge project, one can apply text-

mining techniques to interpret the feature requests as

requirements and their associated qualities. This provides

a mechanism for analyzing the Six-Vs, both for research

as well as presenting a modern requirements dashboard.

1.4 Project Attractiveness

Open source projects need to attract users and

developers to keep a project active and successful [33-36].

Important success factors include, developer motivation

and interest [37-42], and user interest [43]. Projects also

have a self-reinforcing effect of attractiveness [44]. Users,

often serving as the observing “eye balls” to bugs [45],

contribute to a project’s success. Hence, it is important for

an open source project to attract both developers and

users. Scweik et al. showed that for each developer

added to an open source project, the chances of success

increases 1.24 times [46]. Several studies attempted to

identify what makes an open source project favored by

developers and users. Drivers of attractiveness include

contributors’ intrinsic and extrinsic motivations for

joining open source projects [38-42], contextual factors of

the project [44], visibility of the project, and the work

activities performed towards software maintenance and

improvement [44]. To understand better the

requirements context, we will analyze the relationship

between requirements measures and project

attractiveness.

1.5 Sustained Participation

An open source project cannot survive without

sustained participation. Success, which has been

extensively examined in the open source literature, is

mostly measured at one time. Sustained participation, on

the other hand, focuses on long established open source

projects. Considering that 80 percent of open source

projects fail, not due to quality, but because of insufficient

long-term participation [47], it is important to predict

sustained participation. Fang and Neufeld [42] investigate

why developers continually contribute to open source

projects in a sustainable way. Results show that situated

learning and identity construction behaviors are

associated with sustained participation. Qureshi and Fang

[48] examine growth patterns of developers' socialization

behavior and how that relates to their status progression.

They identify four groups of newcomer behavior, based on

the initial level of social resources of the developer and

the growth rate of his/her socialization. The software

development platform contributes to the socialization

process.

GitHub.com is an example of a social-coding

development-platform [49, 50], which supports rich,

developer communications. Dabbish, et al. [51] found that

developers use social coding capabilities for complex

social activities, such as “inferring someone else’s

technical goals and vision when they edit code, or

guessing which of several similar projects has the best

chance of thriving in the long term. Users combine these

inferences into effective strategies for coordinating work,

advancing technical skills and managing their reputation.”

Thus, people that are attracted to successful projects will

follow them or download their code. Measures for

tracking sustained participation include the number of

developers and users and their various contributions over

time, as well monitoring the projects that they follow.

1.6 Measuring Project Attractiveness

There are a number of ways to measure open-source

project attractiveness. Two ways are stars and forks. When

a project is starred, it is a kind of web bookmark, allowing

a person to follow the project’s activities. A fork is a kind

of project copy, more common to developers who want to

review or contribute to the code base. Both of these

measures allow one to monitor the attractiveness of a

project. We use these measures in our analysis of GitHub

projects.

1.7 Article Overview

In this article, we present our study of how the Six-V

requirements model relates to project attractiveness.

Previously, Vlas and Robinson analyzed 31 projects from

SourceForge, in a similar study [52]. Here, we develop a

slightly different six-V measurement model and analyze

the correlation between the Six-V’s and project

attractiveness. Herein, we study 248 projects from

GitHub, where two of the Six-V metrics are new. We set

out to confirm the findings of the prior analysis with a

larger data set from a different repository. (Note that many

GitHub projects are scripting projects, compared to the

standard programming projects from SourceForge.) Our

results here confirm the prior study, but with higher

statistical significance. There are also other significant

differences, which we elaborate in later sections. In short,

the Six-V model helps monitor requirements and relate

their qualities to project attractiveness. Next, we introduce

the research hypotheses, followed by the research design,

results, and finally conclusions.

5318

2. Research Hypotheses

Having introduced related research on project

attractiveness and the Six-Vs of requirements engineering,

we now present our research model, consisting of six

hypotheses.

2.1 Hypotheses

Following Jarke and Lyytinen, we start with the

volume of requirements, defining it as “the size of the

requirements pool influencing the scope of the work.” [1]

We adopt the generally accepted assumption that

requirements reflect stakeholders’ needs. Therefore, a

large volume of requirements may have a positive effect—

it indicates a large volume of needs and, in the context of

open source, a large interest in the software artifact under

development. A larger interest in an open-source project

leads to a larger pool of contributors and a larger volume

of discussions describing the needs and preferences of the

project community. This helps improve the overall quality

of the software artifact, and consequently, its

attractiveness and success. A large volume of discussions

may also have a negative effect—indicating either: (a) a

lack of consensus among community participants, or (b)

an inability of the developers to convert community needs

and preferences into software artifact features. Given

these two perspectives, positive and negative, on the

volume of the requirements discussions, we interpret the

volume of requirements as having an inverse U-shaped

relationship with project attractiveness. According to our

interpretation, at lower values of requirements volume,

increases in volume have a positive effect on project

attractiveness (via increased interest). At higher values of

requirements volume, further increases in volume have a

negative effect on project attractiveness (via increased

dissonance).

Hypothesis 1 volume: Requirements volume has a

curvilinear effect on open-source project attractiveness.

Jarke and Lyytinen define requirements velocity as the

rate at which project requirements change over time. We

apply this perspective to open-source development. In

GitHub.com, the initial assertion of a requirement is

established with the posting of an issue. The subsequent

comments to that issue (i.e., the threaded conversation)

are the changes, until the requirement/issue is closed. Our

velocity metric counts the number of events, from issue

open, through modifications, to issue close. High velocity

means many steps that a requirement goes through before

its closing. We interpret this as requirements dissonance

and a sign of instability within the project. Consequently,

we expect high velocity to have a negative effect on a

project community’s perceptions of project attractiveness.

Hypothesis 2 velocity: Requirements velocity has a

negative effect on open-source project attractiveness.

Requirements volatility is defined as a rate of change

of requirements content—meaning the topics of

discussion[1]. Such volatility is inevitable, as it is arises

from the innate variance within the pool of features that

can fulfill project goals. Requirements volatility indicates

a discussion of the goals or the means to fulfill those

goals. However, after a threshold, increased volatility

suggests a lack of focus, and the inability to respond

consistently to stakeholders’ needs. Therefore, we claim

that volatility has a negative effect on project

attractiveness.

Hypothesis 3 volatility: Requirements volatility has a

negative effect on open-source project attractiveness.

Requirements vagueness is the extent to which

requirements exhibit ambiguity. Requirements ambiguity

impedes developers’ ability to understand the needs and

preferences of stakeholders. It impedes the ability of an

open-source community to focus efficiently on topics of

interest and value to the project, or to work efficiently

towards specifying consistent requirements.

Consequently, a higher value of vagueness is associated

with an increased likelihood of wrong assumptions and

interpretations, leading to a bad project with reduced

attractiveness.

Hypothesis 4 vagueness: Requirements vagueness has

a negative effect on open-source project attractiveness.

Table 2. Variable Operationalizations and Hypothesized

Influence on Attractiveness.

Variable Interpretation Operationalization H

Volume
Amount of project

requirements

Count of requirements per

data window
∩

Veracity

The consistency

and fidelity of the

requirements in

expressing

stakeholder needs

Count requirements within

categories of

completeness, consistency,

and accuracy per data

window

+

Volatility

Rate of change in

the focus on a key

subset of

requirements over

time

Total change in

requirements category

rankings, as calculated

between adjacent data

windows; the more

requirements in a category,

the higher the ranking.

-

Vagueness
Amount of

ambiguity present

in requirements

The inverse of the count of

requirements categorized

as unambiguous
-

Variance

Rate of change in

the concepts

represented in

requirements over

time

Count of requirements

types that appear or

disappear between

adjacent data windows

+

Velocity
The rate at which

the requirements

are changed

The rate of change in the

average workflow length

per data window
-

A fifth factor described by Jarke and Lyytinen as

defining the new requirements engineering is veracity.

Requirements veracity is the extent to which requirements

5319

are consistent and express the needs of the stakeholders

[1]. We interpret requirements veracity as a measure of the

extent to which requirements (a) express consistent points

of view, (b) comprehensively express the needs of

stakeholders, and (c) are accurate. A high value of veracity

indicates a good match between requirements and

stakeholders’ needs. This has a positive effect on the

perceived attractiveness of the software artifact.

Hypothesis 5 veracity: Requirements veracity has a

positive effect on open source project attractiveness.

Requirements variance is defined a measure of design-

related variability and heterogeneity[1]. We measure this

as the changes in the mix of requirements types at various

periods within a project. A high value for variance

indicates that many requirement types are considered. We

interpret no-longer-considered requirements types as

describing features that have been implemented within the

software artifact, and newly-considered requirements

types as new directions for the project. Both cases are

indications of progress. Therefore, we conclude that

variance has a positive effect on the attractiveness of the

project.

Hypothesis 6 variance: Requirements variance has a

positive effect on open source project attractiveness.

3. Research Design

3.1 Data Selection

We collect data from 272 open-source projects from

GitHub. We did not constrain data collection to any

specific time frames. To obtain a sample with variation

among successful projects, we use a stratified sampling

strategy to sample projects with different level of

popularity. The GitHub metrics, number of stars and

number of forks, are proxies for the level of popularity to

users and developers. We selected approximately 68

projects from each of the following sets:

1. >= 10,000 stars and >= 1,000 forks

2. 5,000 >= stars < 10,000, and 750 >= forks < 1,000

3. 1,000 >= stars < 5,000 and 500 >= forks < 750

4. 1,000 > stars and 250 > forks and in Java

We distinguished Java (in set 4) to investigate if

language plays a role in projects’ development patterns.

Most GitHub projects are scripting languages, like JScript,

rather than traditionally complied languages (as found in

SourceForge). The initial projects were reduced to the

final 248 due to data issues.

3.2 Data Preparation

KNIME workflows automate our data acquisition and

preparation. Data was obtained directly from GitHub.com

and stored into a SQL database. The GitHub data is

comprised of 16 collections, which are combined, through

filtering and joining, into a single table for data mining.

Our data was derived from these collections: issues, issue

events, issues comments, pull requests, and pull request

comments. Each record in the table provides a vector for

input into our data mining process.

The table represents a sequence of Git events. Of the

18 Git events, we focus on six, which most closely

associate with software development:

1. IssuesEvent: An issue is created, closed, or reopened.

2. PushEvent: Commit (push) code to the repository.

3. PullRequestEvent: A user requests that new code be

pushed to the repository.

4. IssueCommentEvent: Comment associated with an issue.

5. CommitCommentEvent: Comment associated with a

commit (PushEvent).

6. PullRequestReviewCommentEvent: A comment is

associated with a PullRequest.

From these events, we obtain text, which we analyze

for requirements. Additionally, we characterize workflows

to place the requirements in context. For example, these

workflows allow us to characterize the number of events

associated with requirements, which we use to

characterize requirements velocity.

3.3 Development Workflows as Motifs

Git events, such as push and commit, represent work;

however, the context of the work is missing. Work in most

GitHub projects begins with an IssueEvent or a

PullRequestEvent. Both represent a typical unit of

development work, which may be scheduled, opened,

closed, reopened, etc. Each contains text of requirements

that guide software development. An IssueEvent typically

represents a bug or enhancement. It follows a lifecycle of

being opened, followed by code changes represented by

commits, and then an issue close. For example:

IssuesEvent.open, PushEvent, PushEvent,

IssuesEvent.close

Other events may intervene (e.g., comment events), as

well as the issue may be reopened or never closed.

The PullRequestEvent is similar to the IssueEvent, but

the subsequent work events are related to integrating the

new code into the project’s code repository.

A rule-based system is applied to recognize event

sequences beginning with IssueEvent or a

PullRequestEvent. We think about them as design

workflows, which are initiated in response to a work

request (e.g., issue or pull request). However, we use the

more neutral term, motif, to indicate recognition of these

common sequence patterns.

The rule-based system recognizes two kinds of work

motifs in Git events. The basic form is as follows:

1. (IssueEvent | PullRequestEvent) .*

2. (Reopen (of #1)) .*

5320

As indicated above, a work motif begins with either an

IssueEvent or PullRequestEvent, followed by any other

Git event that references the initiating event (by number).

The motif records the initial event, and all subsequent

events (and their attributes). When either an IssueEvent or

PullRequestEvent is reopened, it is consider a new

instance of the second motif pattern (above). Thus, open

and reopen are each considered the beginning of a work

motif.

We use work motifs to characterize requirements

velocity. The motif length is the number of Git events it

contains. We calculate velocity as (MotifLengthw /

MotifLengthw-1), where w represents a data window.

3.4 Data Windows

In support of trend analysis, we divide the timestamped

project data into windows by date. Within each window,

various measures are computed, and then compared

between adjacent windows. Data mining with this

approach is known as stream-mining [53]; panel data

statistics are applicable to such windows [54]. Data

window size can affect the analysis. After various tests to

ensure sufficient data in each window, we settled on 4-

week windows, which is also meaningful to development

cycles of GitHub projects.

3.5 Recognizing Requirements

Text in various Git events is parsed and analyzed for

the discovery of requirements and of requirements types.

Here we use an adapted version of Vlas and Robinson’s

method of identifying and classifying requirements [28].

This method generates classifications for the identified

requirements from a set of 23 defined requirements types

[55].

3.6 Analysis Approach

The dataset is analyzed as panel data using STATA 13.0

tool. Subject to list-wise deletion, our final data set has

9,268 observations. Multiple observations for each project

over time raises concerns of potential interdependence

among observations, which is addressed by lagging all our

predictor and control variables with one window,

compared to our dependent variable. This procedure also

supports the claimed causation between predictor and

dependent variable. Our dependent variable is project

attractiveness and is measured with the natural

logarithmic function of number of forks. The

hypothesized causation between the predictors and the

dependent variable is modeled using linear panel

regression. Poisson regression is used to test results’

robustness. The Hausman test reveals that either random

or fixed effects models are appropriate [51]. We choose

the fixed effects model as it may better reflect the structure

of our panel and the possible correlations that may exist

within projects. To avoid an increase in multicollinearity,

we start with a baseline model, which includes only

controls, and sequentially add variables. We therefore

build 8 models and compute the variance inflation factors

(VIF) of the uncentered variables for each model [52].

The full model’s VIF is 1.85, well below the

recommended threshold of 10. Control and independent

variables are standardized and lagged.

3.7 Dependent Variable

Our dependent variable is project attractiveness. We

operationalize it with the natural logarithmic function of

number of forks. Forks represent the interest of a user to

use the project and are a proxy for the level of project

attractiveness, because it reflects the popularity that each

project has among users. The distribution of the original

variable is highly skewed and therefore we log it. The

resulting variable has a near normal distribution.

3.8 Independent Variables

We conceptualize a set of six predictor variables

(volume, velocity, volatility, vagueness, veracity, and

variance) as determinants of project attractiveness. In the

following, we describe these six predictor variables and in

the next section we report the regression results that test

the relationships among the predictor and the dependent

variables.

Volume. To operationalize the concept of requirements

volume we count the total number of requirements within

each data window. The identification of requirements

within a data window is performed by using an adapted

version of the requirements discovery process proposed by

Vlas and Robinson [27].

Velocity. Vlas and Robinson previously operationalized

velocity as the rate at which the volume of requirements

changes over time [52]. This operationalization as an

aggregate value at the data window level was justified by

the infeasibility of a manual requirement-level data

extraction (extremely time consuming and error-prone). In

this study, we benefit from the availability of additional

requirement-level data. We define velocity as the rate of

change in the number of events within a requirement

workflow (the sequence of events from the inception

throughout the closing of the requirement). We interpret

this as the velocity of an individual requirement, and it

aligns with the traditional concept of requirements

change.

Volatility. Following the definition of volatility as the

rate of change in requirements content, we create a

ranking of the requirements types present in a window

based on the count of requirements within each type. We

label the top-most rank in a data window as the focus of

the data window. When there is a subset of two or more

5321

requirements types that have same number of

requirements we rank them equally by assigning them the

top-rank within the subset. We compute the volatility of

an individual requirement type as the absolute value of the

difference between its rank in current data window and its

rank in previous data window. To compute the overall data

window volatility we sum up all individual requirement

type volatilities. This approach measures the extent to

which requirements content type changes over time.

Vagueness. Open source requirements are present in

software informalisms [25]. Capturing requirements

vagueness requires the ability to identify ambiguity in

textual data. This is highly dependent upon being able to

capture and analyze the context of the item of interest, the

requirement in our case. In text mining, capturing context

is a major challenge. However, the identification of the

inverse of vagueness (clarity) is not as dependent upon

context. Thus, we first measure clarity by counting the

number of requirements classified as simplicity,

conciseness, or self-descriptiveness and we add them up.

Second, we inverse the value of clarity and we interpret it

as vagueness. This procedure allows us to measure a lack

of clarity—in other words, vagueness.

Veracity. Veracity is defined as a measure of

consistency and fidelity. Following this definition, we

focus on requirements completeness, consistency, and

accuracy. We interpret the count of all these requirements

as a measure of consistency and of the match between

users’ needs and the features expressed by requirements.

Variance. To compute a measure of variability of a set

of requirements, we first identify and count the

requirements types present in current data window that

were not present in previous data window. Second, we

identify and count the requirements types not present in

current data window but present in the previous data

window. To compute the overall variance of a data window

we sum up all identified requirement types.

3.9 Control Variables

We control for a number of project characteristics that may

explain project attractiveness. Project stars reflects the

popularity that each project receives. As projects receive stars

from users, they may become more attractive and therefore

may influence the number of forks each project receives.

Project age reflects the time that has elapsed since the start of

the project (in weeks). Because users’ interest in the projects

increase with time, project attractiveness may also be

confounded by the passing of time. Commits represent updates

made to the project. Committed updates are likely to affect the

attractiveness of the project by raising users’ awareness of

project quality. Total event size represents the total number of

Git events in workflows and reflects changes made to the

project or how active it is. Total event duration represents the

time length of a work motif or how long it takes for an

IssueEvent or PullRequestEvent to be closed. Comments

represent the total count of comments associated with an issue,

PullEvent or PullRequest in the workflow. These variables

affect the complexity of a project and how quickly an issue can

be resolved. LOC added represent the number of lines of codes

written and LOC deleted represent the number of lines of code

deleted. Together, these variables can affect the complexity of

the project and the difficulty of solving an issue related to the

project. We control for time series with Window fixed effects.

4. Research Results

4.1 GitHub

We calculate descriptive statistics and correlations between

variables using STATA. Project attractiveness has the highest

correlation with the volume of requirements (r = 0.36*),

meaning that as the volume of requirements increases, project

popularity also increases. The Appendix presents the results of

linear panel fixed-effects regression. We start with a baseline

model with control variables only. Models 1 and 2 test

Hypothesis 1 suggesting that requirements volume has a

curvilinear (inverse U shape) effect on projects’ attractiveness.

For this hypothesis to be supported, Model 1 must report a

positive coefficient for the volume term at the first power and

Model 2 must report a negative coefficient for the volume term

at the second power while maintaining a significant effect for

the first power term. All these conditions are met.

Accordingly, we safely claim that Hypothesis 1 is supported.

Hypothesis 2 claims that requirements velocity

negatively affects project attractiveness. In Model 3, the

velocity coefficient is β = -0.018 significant at p < 0.05.

As a result, Hypothesis 2 is supported.

Hypothesis 3 claims that requirements volatility has a

negative effect on project attractiveness. The negative and

significant coefficient for the volatility term (β = -0.117,

p < 0.001) in Model 4 supports Hypothesis 3.

Hypothesis 4 claims that project attractiveness is

negatively affected by requirements’ vagueness. The

negative and significant coefficient obtained in Model 5,

β = -0.021 with p < 0.05, supports Hypothesis 4.

Hypothesis 5 claims that requirements veracity has a

positive effect on project attractiveness. In Model 6, the

coefficient for veracity is positive (β = 0.161) and

significant at p < 0.001. Thus, Hypothesis 5 is supported.

Hypothesis 6 claims that requirements variance has a

positive effect on project attractiveness. In Model 7, the

coefficient for the variance term is positive (β = 0.274)

and significant at p < 0.001. This result supports

Hypothesis 6.

Model 8 is the full model. This model includes all six

predictor variables. We find that, with the exception of

vagueness, the effects of all predictors are significant and

consistent with the hypothesized direction.

5322

Table 3. Regression Results

4.2 SourceForge Analysis and Comparison

The reported results of GitHub projects are robust and

consistent with previous analysis reported by Vlas and

Robinson on SourceForge projects [52]. Their analysis of

31 SourceForge projects over a 24 six-month long

windows found that the attractiveness of open source

projects (operationalized as download rate) is affected in

a similar manner by the Six-V measures. Volume was

found to display an inverse U-shape relationship with

attractiveness, such that a high volume of requirements

positively affected the download rate up to a threshold

after which it had a negative effect. Velocity and volatility

were hypothesized to negatively affect the download rate

and support was found for the volatility-attractiveness

relationship. Vagueness was conceptualized as “the extent

to which designers make efforts to understand

requirements” and its effect was found significant.

Veracity and variance were hypothesized to positively

affect the project attractiveness and support was found for

veracity but not for variance.

We claim that our analysis brings further support for

Jarke and Lyytinen’s [1] Six-Vs model, and it proposes

improved operationalizations of these factors. While

building on Vlas and Robinson [52], a comparison reveals

significant changes. First, the dependent variable differs.

While Vlas and Robinson [52] capture attractiveness with

the number of downloads, in this study we operationalize

it with the number of forks. This different

operationalization of the same construct (attractiveness)

enhances our understanding and builds robustness.

Second, herein we conceptualize velocity as the rate of

change in the number of events within a workflow. This

metric supports a correlation between velocity and project

attractiveness. The prior study did not find support for this

correlation [52]. Its velocity metric was an aggregate at

the data window level, while our measure of velocity is at

the requirement level, and thus, better aligned with the

definition of the concept.

5323

Third, in Vlas and Robinson [52], vagueness was the

total number of requirements classified as relating to

simplicity, conciseness, and self-descriptiveness. These

three categories were used under the assumption that

requirements in these categories suggest an existing

necessity to fix problems of clarity. This approach to

vagueness indirectly depicts vagueness as the need for

clarity. Therefore, it was hypothesized to have a positive

effect on attractiveness. Here, we take a more direct and

intuitive approach and operationalize vagueness as the

inverse of clarity. To capture clarity we use simplicity,

conciseness, self-descriptiveness, and a fourth category—

communicativeness. Thus, we hypothesize a negative

relationship to project attractiveness. The new measure is

more exhaustive due to the inclusion of this fourth

category. Moreover, our approach on vagueness better

matches the original definition by Jarke and Lyytinen [1]

as “the extent [to which] designers and other stakeholders

understand the content and consequences of the

requirement.”

Fourth, we find support for the positive relationship

between variance and project attractiveness. Our

improved model over the control model results in a 3.7%

increase in R square. This suggests a causation effect

between topic variance in stakeholder discussions and

project attractiveness.

5. Discussion

5.1 Robustness

We test the robustness of our analyses by running an

additional regression test using STATA. Because our

dependent variable is a count of forks (logged) and because

fixed panel data models poorly estimate time invariant (or

slowly changing) effects, which we may have in our dataset

for some long-lifecycle projects, we consider a Poisson

regression to test the robustness of our results. The results are

mostly consistent with the results obtained from the fixed-

effects panel data model. Volume, volatility, veracity and

variance measures affect project attractiveness according to

the hypothesized direction, which extends the explanatory

power of our model. Velocity and vagueness were not found

to be significant in the Poisson regression.

5.2 Contributions

The ability to compare results across open source project

repositories is important. While comparing our GitHub results

to those of Vlas and Robinson, who analyzed SourceForge

projects, we identify a number of valuable contributions. First,

our results strengthen the validity of perceiving the Six-Vs of

requirements engineering as important and defining

characteristics of requirements in modern, open-source

projects.

Second, we find support for the effects of velocity and

variance on project attractiveness, two hypotheses that

were not supported in Vlas and Robinson. This may be

attributed to the larger dataset in our study. We also claim

that our operationalizations of the two factors are more

accurate and better aligned with their corresponding

definitions, as provided by Jarke and Lyytinen.

Third, we address better the challenge of effectively

capturing the spirit of the requirement-level definitions of

Six-V measures. While these requirement-level factors

were previously measured in an aggregate form, we find

operationalizations that bring out the individual

requirement characteristics into their calculation.

5.3 Critical Assessment and Future Research

While our study provides new insights on the importance

of Six-V measures on project attractiveness, we recognize two

important issues that can provide promising opportunities for

future research. First, we use a 4-week rather than a 6-month

data window size. This allows us to capture more refined

trends in project lifecycles, but it can also be limited in

capturing trends of slow-moving projects. Second, we use a

number of aggregate-level measures. It would be ideal to

collect data at the individual requirement level, but this may

only be possible through manual (time consuming and error-

prone) methods that would very significantly limit the sample

size. Future studies may consider a different data collection

technique. Third, we acknowledge the external validity

limitations of our study as our findings may apply to the open

source context only. We identify future research avenues in the

refinement of our text mining tools for a better identification

of requirements. Finally, there are opportunities to extend our

research to other areas of development and to an extended set

of factors that might enhance understanding of the

determinants of project success.

6. Conclusions

In the open source literature, success models are of great

interest. While success has been mostly analyzed as a static

concept, we posit and confirm that open-source success

depends on the continuous developing of requirements. By

building on a previous study, we refine the New RE model as

related to project success and apply it to an extended dataset

of open source projects. Our study provides more precise

metrics and confirms the value of the Six-V model.

Researchers and practitioners may find value in applying the

Six-V model to understand how requirements development

contributes to project success over time. This dynamic model,

directly linking development activities to project success,

appears to be significant but remains largely unexplored.

7. References

5324

[1] M. Jarke and K. Lyytinen, "Editorial:“Complexity of Systems

Evolution: Requirements Engineering Perspective”," ACM

Transactions on Management Information Systems (TMIS), vol.

5, p. 11, 2015.

[2] D. L. Parnas, "On the criteria to be used in decomposing systems

into modules," Communications of the ACM, vol. 15, pp. 1053-

1058, 1972.

[3] J. Howison and K. Crowston, "Collaboration through open

superposition: A theory of the open source way," Mis Quarterly,

vol. 38, pp. 29-50, 2014.

[4] R. Filman, T. Elrad, and S. Clarke, Aspect-oriented software

development: Addison-Wesley Professional, 2004.

[5] M. Jarke, et al., "The brave new world of design requirements,"

Information Systems, vol. 36, pp. 992-1008 (most downloaded,

2011), 2011.

[6] C. M. U. Software Engineering Institute, "Capability Maturity

Model Integration (CMMISM), Version 1.1," CMU/SEI-2002-

TR-011, Software Engineering Institute, Pittsburgh, 20022002.

[7] D. Zowghi and V. Gervasi, "On the interplay between

consistency, completeness, and correctness in requirements

evolution," Information and Software Technology, vol. 45, pp.

993-1009, 2003.

[8] A. Davis, Software Requirements: Objects, functions, and

states: Prentice Hall, 1993.

[9] W. N. Robinson, S. Pawlowski, and V. Volkov, "Requirements

Interaction Management," ACM Computing Surveys (CSUR),

vol. 35, pp. 132 - 190, June 2003.

[10] J. A. Goguen, "Formality and Informality in Requirements

Engineering," in ICRE, 1996, pp. 102-108.

[11] A. Fantechi, S. Gnesi, G. Lami, and A. Maccari, "Applications

of linguistic techniques for use case analysis," Requirements

Engineering, vol. 8, pp. 161-170, 2003.

[12] V. Alves, N. Niu, C. Alves, and G. Valença, "Requirements

engineering for software product lines: A systematic literature

review," Information and Software Technology, vol. 52, pp. 806-

820, 2010.

[13] K. Pohl, Requirements engineering: fundamentals, principles,

and techniques: Springer Publishing Company, Incorporated,

2010.

[14] K. Vlaanderen, S. Jansen, S. Brinkkemper, and E. Jaspers, "The

agile requirements refinery: Applying SCRUM principles to

software product management," Information and software

technology, vol. 53, pp. 58-70, 2011.

[15] S. Ambler and M. Lines, Disciplined Agile Delivery: A

Practitioner's Guide to Agile Software Delivery in the

Enterprise: IBM Press, 2012.

[16] G. Standish. (1995). CHAOS. Available:

www.standishgroup.com

[17] P. L. Bannerman, "Risk and risk management in software

projects: A reassessment," Journal of Systems and Software, vol.

81, pp. 2118-2133, 2008.

[18] S. Hansen, N. Berente, and K. Lyytinen, "Requirements in the

21st century: Current practice and emerging trends," in Design

requirements engineering: A ten-year perspective, ed: Springer,

2009, pp. 44-87.

[19] D. T. Ross, "Structured Analysis (SA): A language for

communicating ideas," Transactions on Software Engineering,

vol. SE-3, pp. 16-34, January 1977.

[20] J. Frederick P. Brooks, The Mythical Man-Month: Addison

Wesley, 1995.

[21] M. Fisher, M. Abbott, and K. Lyytinen, The Power of Customer

Misbehavior: Drive Growth and Innovation by Learning from

Your Customers: Palgrave Macmillan, 2013.

[22] K. Crowston, J. Howison, and H. Annabi, "Information Systems

Success in Free and Open Source Software Development:

Theory and Measures," Software Process: Improvement and

Practice (Special Issue on Free/Open Source Software

Processes.), vol. 11, pp. 123-148, 2006.

[23] I. Stamelos, L. Angelis, A. Oikonomou, and G. L. Bleris, "Code

Quality Analysis in Open Source Software Development,"

Information Systems Journal, vol. 12, pp. 43-60, February 2002

2002.

[24] A. Mockus, R. T. Fielding, and J. D. Herbsleb, "Two case

studies of open source software development: Apache and

Mozilla," ACM Transactions on Software Engineering and

Methodology (TOSEM), vol. 11, pp. 309-346, 2002.

[25] B. Fitzgerald, "The transformation of open source software,"

MIS Quarterly, vol. 30, pp. 587-598, 2006.

[26] W. Scacchi, "Understanding Requirements for Open Source

Software," in Design Requirements Engineering – A Multi-

disciplinary perspective for the next decade, K. Lyytinen, et al.,

Eds., ed: Springer-Verlag, 2009.

[27] R. Vlas and W. N. Robinson, "Applying a Rule-Based Natural

Language Classifier to Open Source Requirements: a

Demonstration of Theory Exploration," in Hawaii International

Conference on Software Systems, HI, USA, 2013.

[28] R. Vlas and W. N. Robinson, "A Pattern-Based Method for

Requirements Discovery and Classification in Open-Source

Software Development Projects " Journal of Management

Information Systems (JMIS), 2012.

[29] R. Vlas and W. Robinson, "Extending and Applying a Rule-

Based Natural Language Toolkit for Open Source Requirements

Discovery and Classification " presented at the Open Source

Systems (OSS'11), 2011.

[30] C. Castro-Herrera, C. Duan, J. Cleland-Huang, and B.

Mobasher, "Using data mining and recommender systems to

facilitate large-scale, open, and inclusive requirements

elicitation processes," in International Requirements

Engineering, 2008. RE'08. 16th IEEE, 2008, pp. 165-168.

[31] J. Cleland-Huang, H. Dumitru, C. Duan, and C. Castro-Herrera,

"Automated support for managing feature requests in open

forums," Communications of the ACM, vol. 52, pp. 68-74, 2009.

[32] P. Laurent and J. Cleland-Huang, "Lessons learned from open

source projects for facilitating online requirements processes,"

in Requirements Engineering: Foundation for Software Quality,

ed: Springer, 2009, pp. 240-255.

[33] R. Y. Arakji and K. R. Lang, "Digital consumer networks and

producer-consumer collaboration: Innovation and product

development in the digital entertainment industry," in System

Sciences, 2007. HICSS 2007. 40th Annual Hawaii International

Conference on, 2007, pp. 211c-211c.

[34] S. Koch, "Profiling an open source project ecology and its

programmers," Electronic Markets, vol. 14, pp. 77-88, 2004.

[35] G. Von Krogh, S. Spaeth, and K. R. Lakhani, "Community,

joining, and specialization in open source software innovation:

a case study," Research Policy, vol. 32, pp. 1217-1241, 2003.

[36] S. Krishnamurthy, "Cave or community?," 2002.

[37] A. Bonaccorsi and C. Rossi, "Why open source software can

succeed," Research policy, vol. 32, pp. 1243-1258, 2003.

[38] G. Hertel, S. Niedner, and S. Herrmann, "Motivation of software

developers in Open Source projects: an Internet-based survey of

5325

http://www.standishgroup.com/

contributors to the Linux kernel," Research policy, vol. 32, pp.

1159-1177, 2003.

[39] S. Krishnamurthy, "On the intrinsic and extrinsic motivation of

free/libre/open source (FLOSS) developers," Knowledge,

Technology & Policy, vol. 18, pp. 17-39, 2006/12/01 2006.

[40] J. A. Roberts, I.-H. Hann, and S. A. Slaughter, "Understanding

the motivations, participation, and performance of open source

software developers: A longitudinal study of the Apache

projects," Management science, vol. 52, pp. 984-999, 2006.

[41] K. Crowston and B. Scozzi, "Open source software projects as

virtual organisations: competency rallying for software

development," 2002, pp. 3-17.

[42] Y. Fang and D. Neufeld, "Understanding sustained participation

in open source software projects," Journal of Management

Information Systems, vol. 25, pp. 9-50, 2009.

[43] C. Subramaniam, R. Sen, and M. L. Nelson, "Determinants of

open source software project success: A longitudinal study,"

Decision Support Systems, vol. 46, pp. 576-585, 2009.

[44] C. Santos, G. Kuk, F. Kon, and J. Pearson, "The attraction of

contributors in free and open source software projects," The

Journal of Strategic Information Systems, vol. 22, pp. 26-45,

2013.

[45] E. Raymond, "The cathedral and the bazaar," Knowledge,

Technology & Policy, vol. 12, pp. 23-49, 1999.

[46] C. M. Schweik, R. C. English, M. Kitsing, and S. Haire, "Brooks'

versus Linus' law: an empirical test of open source projects," in

Proceedings of the 2008 international conference on Digital

government research, 2008, pp. 423-424.

[47] J. Colazo and Y. Fang, "Impact of license choice on open source

software development activity," Journal of the American Society

for Information Science and Technology, vol. 60, pp. 997-1011,

2009.

[48] I. Qureshi and Y. Fang, "Socialization in open source software

projects: A growth mixture modeling approach," Organizational

Research Methods, vol. 14, pp. 208-238, 2011.

[49] A. Begel, J. Bosch, and M.-A. Storey, "Social networking meets

software development: Perspectives from github, msdn, stack

exchange, and topcoder," Software, IEEE, vol. 30, pp. 52-66,

2013.

[50] M.-A. Storey, C. Treude, A. van Deursen, and L.-T. Cheng, "The

impact of social media on software engineering practices and

tools," in Proceedings of the FSE/SDP workshop on Future of

software engineering research, 2010, pp. 359-364.

[51] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, "Social coding

in GitHub: transparency and collaboration in an open software

repository," in Proceedings of the ACM 2012 conference on

Computer Supported Cooperative Work, 2012, pp. 1277-1286.

[52] W. N. Robinson and R. Vlas, "Requirements Evolution and

Project Success: An Analysis of SourceForge Projects," in

Association for Information Systems Conference (AMCIS),

Puerto Rico, 2015.

[53] M. Gaber, A. Zaslavsky, and S. Krishnaswamy, "Mining data

streams: a review," ACM Sigmod Record, vol. 34, pp. 18-26,

2005.

[54] C. Hsiao, Analysis of panel data: Cambridge university press,

2014.

[55] J. A. McCall, P. K. Richards, and G. F. Walters, Factors in

Software Quality: NTIS, 1977.

[56] J. Neter, W. Wasserman, and M. H. Kutner, Applied linear

statistical models (2nd ed.) IL: Irwin Homewood, 1985.

5326

