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Abstract

In  this  paper  we  investigate  the  impact  of 
increasing the penetration of wind generation with real 
variability on the risk to, and robustness of, the power 
transmission grid using a dynamic model of the power 
transmission system (OPA).  There are three timescales 
of variability discussed but this paper will focus on the 
impact of two. It is found that with different fractions 
and  distributions  of  wind  generation  and  central 
generation,  varied  dynamics  and  risk  are  possible.  
One important  parameter  is  the fraction of  the total 
power demand supplied by the wind generation.    It is 
found that the risk has a minimum in fraction of wind 
power supplied, after which the risk increased as the 
wind  power  penetration  increases.   In  the  same 
networks, decreasing the number of central generators 
without  decreasing  their  power  supplied  in  general 
increases the risk after a critical minimum number of 
generators is reached. 

1. Introduction  

Around the world there is an increasing role, often 
mandated, of renewable energy sources in electricity 
production [1].  These sources include wind, solar and 
small scale hydro among others.  This increased 
utilization of new energy sources opens many issues 
regarding the impact of this increased penetration on 
the reliability of the power grid. One important factor 
in many of these new sources is the introduction of the 
question of variability of the source and its impact on 
the operation of the grid. This issue of variability is 
also coupled to the question of energy storage [2] to 
continuously meet power demands that opens a whole 
new field of research [3]. 

The variability of these energy sources appears at 
many different time scales. Three are of particular 
interest, short, up to minutes or hours, medium, days to 
months and long, months to years.  On the short time 
scale, a key controlling variable is the ramp rates of 
generators. Hydro and gas have high ramp rates and 
are currently used to compensate for wind and sun 
energy fluctuations during an hour. On the medium 
time scale the generation and grid has to adapt to the 
daily and weekly fluctuations which can be very 
challenging for storage and is often difficult to 
accurately predict. Finally, on a longer time scale, up to 
seasonal variations of the renewable energy sources the 
variability is fairly repeatable and therefore fairly easy 
to predict. However, on this longest time scale, when 
the seasonal variation is large, storage becomes 
impractical.  For the shortest to medium time scales 
there is more interest in having the renewable sources 
coupled to a storage system that must be effective and 
economical. 

In this paper, we focus on the daily and longer time 
scales with the goal being to understand the impact on 
grid reliability and operation with varying degrees of 
penetration of these variable energy sources when 
coupled to a storage system that is effective up to the 
medium time scale. The point being that the 
transmission grid under these conditions of high 
variability and therefore constantly changing dispatch 
is under a higher degree of stress which may affect its 
performance. 

In order to use relatively reliable quantitative 
models of the energy source, we use wind and wind 
generation models for these initial studies that will be 
later extended to multiple types of renewable energy 
sources.  

The incorporation of renewable sources of energy 
to the electric grid although being very desirable is not 
a simple process by itself. The variability of these 
energy sources makes it very difficult to simply 
substitute the fossil fuel plants with wind plants. Here, 
we discuss a process through which we try to connect 
these plants to an existing grid in an efficient manner. 
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This is not a fully realistic process, but helps in 
understanding the problems that would be faced in 
doing so. In time and by improving many of the 
problems we face, it could lead to an efficient method 
for planning this process.  

The method that we use is based on simulations of 
the electric grid operation with the OPA code [4-6] and 
going though a sequence of steps in order to achieve 
our goal. The main steps are: 

1) Optimization of the power flow out of the wind 
power plant in a way that we minimize the storage 
needs on the medium time scale. 

2) Add to the basic network a number of possible 
wind plants on the periphery of the net and attach them 
to nodes more likely to have blackouts. In this work we 
add the wind plants to the periphery, future work will 
look at optimizing the location of the additions across 
the entire grid. 

3) Vary the power produced by the wind plants in 
order to find the most effective size of the wind plants 
for the operation of the network. 

4) Reduce the number of fossil fuel plants 
maintaining the reliability of the overall grid and 
eliminate wind plants that are not needed. 

The idea is then by using this process we can 
effectively switch out a maximum number of fossil fuel 
plants with wind plants without increasing the risk in 
the operation of the power system. We do that using 
several different starting configurations and several 
approaches. These fours steps are discussed in the next 
four Sections. In Section 6, we compare the final 
results and give the conclusions of this study.  

2. Optimization of the power flow out of 
the wind power plant  

The first step in this work is to make a model for 
the wind electricity production that can be incorporated 
in the OPA code in order to evaluate the dynamics of 
the power transmission model with wind production. In 
order to build this model, we first have analyzed wind 
data from the north of California [7]. These data from 
different locations present similar characteristics. There 
is an annual slow variation, with a maxima in the 
summer months, and a high level of fluctuations on top 
of these mean evolution. An example is shown in Fig. 
1. 

In Fig. 1, we have plotted the cube of the velocity 
because the power production of the windmills is 
proportional to this quantity. We show only the daily 
variation because in this first study we will limit 
ourselves to looking at the generation in daily steps. 
We also show a fit to the data based on  a sinusoidal 
function that describes the slow variation of the wind 
power during the year. 

An important issue related to the power production 
is the issue of energy storage. Many methods of energy 
storage are being developed just now [2]. Here we do 
not discuss the various storage approaches, their 
feasibility, costs or pro and cons, we just assume that 
an efficient one exists that can supply the needed 
storage up to the daily variability time scale.  We can 
calculate the energy storage needed in order to be able 
to guarantee an average power supply in the presence  
of the highly variable wind power production. First we 
need to evaluate what the daily power flow is that can 
be delivered to the customers in order to maximize 
efficiency and minimize the cost of storage. If P(t) is 
the wind power produced every day and PF(t) is the 
power flow out of the plant, we can estimate the energy 
storage needed to maintain the power flow by 
calculating: 

The maximum value of R gives us the storage 
needed. We have to calculate the power flow out  PF(t) 
by minimizing the maximum value of R with the 
condition R > 0.  

Fig. 1. Daily variation of the cube of the 
wind velocity and a fit showing the slow yearly 
variation

Because of the large annual variation and the desire 
to use this technique for the daily variability we 
separate the power flow out PF(t) by month in such a 
way that the company may contract a fixed power 
production each month. Then we have developed a 
simple optimization algorithm based on a Monte Carlo 
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approach that allows  the calculation of the power flow 
that should be used to minimize the storage and while 
keeping the condition R > 0. We have applied this 
method to several sets of wind data. An example of the 
resulting power flow out and wind power are shown in 
Fig. 2a and storage needed is shown in Fig. 2b. 

Fig. 2a. Power flow model for a simple 
example.

Fig. 2b. Storage needs for the same simple 
example.

For the power flow out of the plant shown in Fig. 2, 
the PDF of the fluctuations of the wind power 
produced around the mean flow delivered is shown in 

Fig.3. This PDF is also approximately described by a 
gaussian distribution. 

 Using this information, we construct a model 
to be use in the OPA code. In this model, the power 
flow out is given by the function PF(t) we have just 
calculated. The power produce by the plant, P(t), is 
equal to PF(t) plus a daily random value given by the 
Gaussian distribution in Fig. 3. If P(t) is greater than 
PF(t), the excess power is accumulated in the storage, if 
it is smaller power is taken out from the storage. In 
case there is not enough power stored, the power 
delivered is less than PF(t). We also set up two 
generation limits. The days in which the wind power 
production goes above a given limit, the power 
production is set to zero, because this very high 
production implies very strong winds and windmills 
cannot operate in this condition. Also if the production 
goes below a second limit, the production is set to zero. 

It is important to note that we are using this model 
to examine the impact of these various types of 
variability and control of the the variability on the 
reliability of the power transmission grid.  Therefore, 
the underlying details of the wind generation model 
and storage are not important as long as they capture 
the basic time series characteristics.  We are also 
assuming that each wind generation facility has its own 
power storage co-located with the generation.  This 
will of course not always be the case and the impact of 
generalizations of the storage locations will be 
investigated in future work. 

Fig. 3. PDF of the daily wind fluctuations for 
the model in Fig.2 and a gaussian fit

To quantify the proportion of wind power  
contributed to the grid we use the time average of the 
ratio of the sum of generation limits of the wind plants, 
PW divided by the total power demand, PD.  
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For the power dispatch, we use a cost for the wind 
generation, which is half of the cost of the other 
generation plants. In this way, the wind generation is 
dispatched first. Using smaller values of the cost, like 
5% of the other costs, did not make any difference for 
the cases considered here. 

3. Basic network with a number of possible 
wind plants  

To study the various ways to incorporate wind 
plants into existing power transmission networks, we 
start by using small artificial networks [8], for instance 
the 200 and 400 node artificial networks with network 
characteristics similar to real power transmission grids. 
The 200 node network has 37 generator nodes and the 
400 node network 59. To these artificial networks, we 
have added generator nodes on the periphery 
corresponding to the wind power plants. We then use 
different criteria to add these nodes. One method was 
adding them randomly, another was to add to the nodes 
that are more likely to have blackouts. This second 
approach seems to work the best. These criteria are not 
realistic, however since we are using artificial 
networks, we do not have geographical locations to 
proceed in a more realistic way.  When we start to 
study real networks, we will modify the criteria to 
adapt it to the geography of the location. Once we have 
added the nodes corresponding to the wind power 
generators, we run the OPA code with this new 
network. In this way, we know which lines have to be 
upgraded, and by how much, as a consequence of the 
addition of new generators. This then completes the 
construction of these new networks 

In Fig. 4a, we show the 200 node network with 40 
and in Fig. 4b with 60 added wind nodes. The wind 
nodes are colored. 

  
Fig. 4a The 200 node network with 40 wind 

nodes added

 

Fig. 4b. The 200 node network with 60 wind 
nodes added

In these two networks, we have separated the wind 
nodes into several groups according their location and 
assumed that in each group the wind properties are 
similar and therefore the variability of the wind in each 
group is the same but the variability across the groups 
is not correlated.  This is important because the more 
regions there are, the smaller the overall variability in 
the total wind power being supplied to the system.  
However at the same time this increases the power 
being transferred between the regions which can add 
stress to the system. An example of the 200 node 
network with three groups of wind generation is shown 
in Fig. 5, the nodes of each group are colored 
differently. We have followed the same process with an 
initial artificial network with 400 nodes. When we 
follow the time evolution of these networks, we can 
follow the usage of the storage. Combining wind plants 
with different variability may reduce the storage needs 
which can then be taken into account. We then use all 
these networks in the calculations of OPA which will 
be discussed in the next sections.   

Fig. 5. The 200 node network with the 
added 60 wind nodes divided in three groups
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4. Optimal power generation of the wind 
power plants  

Next step is to incorporate the wind power plant 
model and the corresponding energy storage discussed 
in Section 2 in OPA. On a given day, if the power 
production is higher than the expected power flow out, 
the difference is added as energy in the storage. If the 
production is lower than the expected power flow, we 
get power from the storage to serve as close as possible 
the corresponding power flow. With this tool we can 
investigate the the impact of changing both the 
penetration of the wind power and the distribution of 
the wind and central generation. 

In what follows we use <PW/PD> as a measure of 
the generation capacity of the wind plants, that is the 
average ratio of the power wind production to the total 
demand. Because of the annual and daily variability of 
the wind, the actual ratio PW/PD varies the day to day.  

As an example, in Fig. 6 for the 200 node network 
with 60 wind nodes, we show the actual distribution of 
the values of PW/PD for two different values of <PW/
PD>. Since these distributions are not gaussian, <PW/
PD> may not be the best measure of the efficiency of 
the system and better parameters will be investigated in 
the future. We can see that for the case with <PW/PD> = 
0.37, on most of the days the power consumed is about 
0.42 of the total demand, while for the case <PW/PD> = 
0.45, that is about 0.5 of the total demand. We can also 
see in Fig. 6 that the range of values for which the 
wind electricity production contributes significantly  to 
the grid is broad and the averaged value of PW/PD may 
be a bit pessimistic. 

Fig. 6. PDF of the values of PW/PD for two 
different values of <PW/PD>.

In this version of the OPA model with the wind 
plants, due to the daily variability of the wind, there are 
days with practically no wind energy production. On 
those days all power must be supplied by the storage or  
in cases where the storage can not supply the extra 
demand, other power plants. As we increase the 
proportion of wind production in the grid, the operation 
of the grid starts to become less reliable. Above a given 
value of <PW/PD> there is a sudden increase in the size 
of the blackouts and the system becomes unreliable. 
The best way to see that is by calculating a risk metric. 
We define the risk as the probability of a blackout 
times the cost [9], we then integrate the risk over all 
possible blackouts to define the risk metric. This is 
then normalized to the risk of the case without wind 
power added so 1 is the same risk as a no wind power 
case (all power supplied by the central generation, less 
then 1 means the grid has become less risky (more 
reliable) and greater then 1 means more risky or less 
reliable. We call this the normalized risk and will use it 
as our primary metric. 

To start with we briefly look at the impact of the 
added “optimal” storage calculated in in section 2 on 
the risk.  Figure 7 shows the normalized risk as a 
function of <PW/PD> for 3 cases. One case (red) with 
the no storage, another case (green) has the optimal 
storage added and the final case has the daily 
variability (the noise) turned off (blue).   These results 
show a few important things.  First, there is an 
improvement in the grid for all three cases for small 
penetration values.  Next, in the case with no storage 
the system reliability gets much worse quickly with the 
curve turning over sooner and rising rapidly. Third, the 
case with storage remains reliable up to higher values 
of wind power fraction but also turns over and starts to 
rise much more quickly than the case with no 
variability.  This is at least partly because the storage is 
not perfect so there are times in which the storage is 
not able to meet the demands of the daily variability 
necessitating a switch to the central generation which 
causes a large short term stress on the grid, increasing 
the probability of large failures. Finally, even the  case 
with no short term variability (the no noise case)  turns 
up with the risk increasing as the wind power 
penetration increases.  This is due to the slow long 
term (seasonal) variation of the power supplied by the 
wind generators.  This causes an annual stress to the 
system and is behind much of the results that follow.  
All the rest of the results will include the storage and 
variability. 
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Fig. 7. Normalized blackout risk as a 

function of  <PW/PD>  for the 200 node plus 60 
wind nodes network for No Storage, Storage 
and No daily variability (no noise) cases.

Fig. 8 shows the normalized risk for the 200 node 
network with different 60 added wind plants like the 
green curve in figure 7 but extended.  It is important to 
note that both the frequency and size of blackouts 
decreases when a small amount of wind power is added 
to the grid. The risk as a function of  <PW/PD> then has 
a minimum value and starts increasing sharply. This 
improvement is logical because we have increased the 
distribution of the generation without decreasing yet 
the conventional generation.  

Fig. 8. Normalized blackout risk as a 
function of  <PW/PD>  for the 200 node plus 60 
wind nodes network.

The improvement on operation of the network is 
seen not only on the decrease of the frequency but in 
the whole reliability of the system. But once the 
fraction exceeds a certain value the system rapidly 
becomes much worse reaching a normalized risk of 
100 (that is 100 times worse the the no wind base case) 
with just under 50% average wind fraction.  

The impact also depends on how many different 
regions there are with the wind production 
synchronized in the region but not across regions. With 
a larger number of regions the system works better for 
higher wind fractions, as shown in Fig. 9. This case has  
200 nodes with 60 wind plants and the region in with 
the rise in risk becomes sharp is moved from a fraction 
or ~0.3 to ~0.45 a large change. This makes sense 
because the different variations in the different regions 
partially cancel each other out. However, only the short 
time scale variability is canceled out meaning that 
there is a maximum possible improvement which 
would look like the no variability case in figure 7.  
Another way of looking at this would be to look at the 
ratio of a unit of normalized risk to a unit of wind 
penetration.  We do not expect the minimum to change 
substantially because the after the minimum, the 
increase of the risk is very fast relative to the increase 
in the power but will investigate this in future work.  

Fig. 9. Normalized blackout risk as a 
function of  <PW/PD>  for the 200 node plus 60 
wind nodes network and increasing the 
number of regions of synchronized generation

Similar results are obtained with the 400 node 
network with 60 wind plants added. This can be seen in 
Fig. 10. 
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Fig. 10. Normalized blackout risk as a 
function of  <PW/PD>  for the 400 node plus 60 
wind nodes network and increasing the 
number o f reg ions o f synchron ized 
generation.

From these results we see that an optimal value of  
<PW/PD> exists for each network which maximizes the 
use of the wind power without increasing the risk of 
blackouts. This optimal value of <PW/PD> is directly 
related to the power produced by each of the wind 
plants. This way we can determine the most efficient 
size of the wind power plant. Once we have that 
determined we can move to the next step reducing the 
number of central generation plants, fossil fuel plants. 

5. Reducing the number of fossil fuel plants 
while maintaining the reliability of the 
overall grid.  

To decide which power plants can be closed down 
(still keeping the total power fraction supplied by the 
conventional plants the same), we use two approaches 
based on the results the OPA model. For the first 
approach, we look for the conventional power plants 
that are used less over a length of time when the power 
is dispatched and we close a few of the least used 
generators and iterate the calculation to again remove 
the least used generators. For the second approach we 
use a Monte Carlo like approach and we close random 
sets of power plants and using the risk results from 
OPA evaluate which one is the best choice.  For each 
case, the evaluation of the risk is made for a fixed 
system configuration, namely the number and fraction 
of power from the conventional generators vs the wind 
generators is held constant as the system runs to 
produce the data for the risk calculation. 

For the first approach, we iterate the process of 
closing generators several times till the risk starts to 
increase sharply.  We have applied this method to the 
200 and 400 node networks with 60 added wind nodes. 
We also repeated the calculation reducing the number 
of wind nodes. In Fig. 11a, we show how the 
normalized risk of blackouts changes when we remove 
conventional generators for the 200 node network 
while in Fig. 11b the risk is shown for 11b. Note, the 
normalization of the risk is to the no reduction of 
conventional plants case. 

Fig. 11a. Risk as a function of the number 
of conventional generators for the 200 node 
networks.

Fig. 11b. Risk as a function of the number 
of conventional generators for the 400 node 
networks.
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We can see that, for the 200 node network, we can 
reduce the number of conventional generator from 37 
to 25 keeping the normalized risk about 1. If we try to 
reduced the number further the risk of blackouts 
increases. For the 400 node network, we can reduce the 
number of conventional generators from 59 to about 40 
keeping the normalized risk close to 1 before the risk 
starts to increase. 

The second approach that we have followed is by a 
random process of reduction of the conventional 
generators. We have done a large sampling of cases, 
256 for each case considered and we choose the 
selected set of generators that cause the minimal risk. 
We have consider several reductions for each network 
The results are given in Fig. 12a for the 200 node 
network and Fig. 12b for the 400 node network.  

These results are similar to the ones shown in Fig. 
11. Despite the differences in the reduction methods 
and iterations schemes that are different for each case, 
the conventional generators that have been closed 
down are the same for the cases studied. The 
optimization can still be improved, but it is difficult to 
go beyond those limits in the contribution of the wind 
power without increasing the normalized risk above 1. 
Also one can play with the main variables of the 
system to decide what final configuration is the best for 
the needs of the moment and the costs of the system. 
These type of choices go beyond this work. 

Fig. 12a. Reduction on the number of 
conventional generators using a random 
selection approach for the 200 node networks.

Fig. 12b. Reduction on the number of 
conventional generators using a random 
selection approach for the 400 node networks.

6. Conclusions  

In this paper we have shown a path to optimizing 
power transmission systems with a significant wind 
penetration supported by local storage.  For this work 
is was done on artificial transmission networks with 
placement of wind generation chosen and co-located 
storage.  However the same procedure can be applied 
to real grids with the wind generation properly places 
and the variability regions chosen by real correlations 
in the wind.  The same approach can be used for other 
renewable power sources with variability such as solar 
or both solar and wind.  In addition to making the 
power transmission grids more realistic, additional 
details of the storage location and response, wind 
generation and dispatch can be added in future work. 
One of the observations in this study is that the 
location of the new plants can be important for the 
reliability of the system. In planning ahead for the 
incorporation of new generators in a grid, it would be 
useful, if not critical to study the optimization of 
location for the new generators under the 
corresponding geographical constraints. 

The steps that we use in the optimization process 
are 1) Calculate the optimal power output for each 
wind plant and optimal storage based on local wind 
data. 2) Choose best network connections for the wind 
plants. 3) Optimize the penetration fraction based on 
the previously chosen configuration (with the medium 
and long time variability taken into account).  Finally, 
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4) Optimize the number of conventional power plants 
in the system.  The limiting factors in the system 
reliability are the distribution of the generation and its 
variability.  As the renewable generation varies, forcing 
the conventional generation to pick up the slack, the 
power flow is forced to shift, adding stress to the grid 
increasing the probability of failure. This is worse for 
the high frequency variability [10] (daily) but is still 
true for the slower seasonal variability.  To address the 
shorter time scale we have developed a method for 
calculating both the needed storage to maintain a given 
local power supply. though this is not likely to be 
useful for the seasonal variations unless they are 
significantly smaller then the daily variability.    
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