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ABSTRACT

The injection of liquid wastes into a groundwater environment saturated

with density-stratified fluid is simulated by a finite-difference numerical

model. The fluid transport equation is simultaneously solved with the

convective-dispersion equation for salinity. The migration of the injected

liquid waste effluent is then tracked by solving a second convective­

dispersion equation for an ideal tracer dissolved in the effluent. The

convective-dispersion equation for the ideal tracer is solved with the flow

velocities obtained from the simultaneous solution of the fluid transport

and the salinity convective-dispersion equations. The equations are solved

for the two-dimensional case of a line of injection wells set close together

parallel to the coastline. Total length of the line of injection wells is

considered to be much longer than the distance to the ocean so that any ver­

tical cross section taken normal to the coastline will appear the same.

Results are presented in a time-series of contour maps in the vertical

plane: one map for each time-step, with lines of equal concentration for

the salinity (isochlors); and the effluent tracer (isopleths). The more

concentrated effluent is found to migrate vertically upward around the

injection well due to buoyant force, while dilute effluent solutions migrate

horizontally, displaying very little buoyant rise.
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INTRODUCTION
Background

Over the past several years the practice of waste disposal by subsur­

face injection has become increasingly widespread in Hawai'i. Peterson and

Lau (1974) have described the mechanics and some of the problems associated

with subsurface injection into the Hawaiian groundwater body, and Takasaki

(1974) has inventoried the extent of the waste injection practices in

Hawai'i. Since the publication of Takasaki's inventory in 1974 numerous

additional waste injection facilities have gone into operation.

The single most obvious advantage of subsurface injection over other

waste disposal alternatives is economics: the cost (at least capital cost)

is considerably less than for most other methods of liquid waste disposal.

However, there are also serious potential--and in some cases actual--prob­

lems associated with injection of liquid wastes. The two basic kinds of

problems involve: (1) possible contamination of potable groundwater and

shallow near-shore coastal waters, and (2) at the other end of the spectrum,

clogging in the immediate vicinity of the injection wells to the extent that

injection capacity is severely restricted.

Clogging has been a very common problem at many of the small injection

facilities in Hawai'i and currently is being investigated by one of the

authors (Petty and Peterson 1979). Contamination of either potable ground­

water supplies or near-shore coastal waters is not known to be a problem at

the present time, but remains a very real potential problem as more and

larger injection facilities continue to be put into operation. Considerable

investigation by the authors and others using physical laboratory models has

been undertaken (Wheatcraft, Peterson, and Heutmaker 1976; Heutmakcr, Peter­

son, and Wheatcraft 1977; Williams 1977). The laboratory work, which has

utilized the sandbox and Hele-Shaw models, has resulted in many Interesting

findings; however, all of this work has one common limitation. That is, it

is impos~ible to accurately model effects of hydrodynamic dispersion with

the sandbox and Hele-Shaw models. Furthermore, the boundary conditions lm­

posed by the Hele-Shaw and especially the sandbox model, considerably

restrict the type of injection situations that could be modeled.

Consequently, the present investigation utilizing mathematical modeling

was undertaken. This investigation will allow the study of hydrodynamic

dispersion as well as enabling a much wider range of injection problems and
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conditions to be considered.

Objectives

The overall objective of this study was to obtain a better understand­

ing of the process of liquid waste injection in Hawai'i through use of

mathematical modeling. To do this, the following specific questions were

investigated.

1. What is the distribution of effluent and salinity In space and

time?

2. To what extent does hydrodynamic dispersion affect the effluent

and salinity distribution?

3. What is the relative significance on the injection process of

various aquifer and injection well parameters, such as formation

dispersivity and anisotrophy, ambient flowfield strength, formation

fluid and effluent densities, and injection rate and depth.

Conduct of Study

In order to achieve the objectives described above, the physical situa­

tion must first be stated as a mathematical problem with the appropriate

set of governing equations and boundary and initial conditions. Then, the

resulting equations must be transformed into a suitable numerical scheme, in

this case using the finite difference method. Next, to assure that the

resulting finite difference program correctly solves the governing equations,

the problem is reduced to simple cases for which an analytic solution or a

previous numerical solution is already known, and the results from the sim­

plified program and the known solution are compared.

It is necessary to calibrate the physical parameters of the numerical

model to have predictive value for a specified field situation. Ideally,

the calibration procedure would involve using extensive field data collected

over a period of years, however, for Hawai'i no such data exists. There­

fore, the results from the numerical model are compared to the results

obtained from previous sandbox modeling studied conducted by the authors

(Wheatcraft, Peterson, and Heutmaker 1976; Heutmaker, Peterson, and Wheat­

craft 1977). The dispersivity parameters used in comparing the numerical

results to the sandbox model are shown to be much higher than those in the
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sandbox model, but much lower than those commonly experienced in field

studies. This is because experience has shown that field values calculated

for dispersivity are nearly always higher than laboratory values calculated

for the same material!

Because there is no field calibration procedure applied to this model,

it should not be regarded as a predictive model, but rather as an interpre­

tive model. An interpretive model provides useful information that helps

in understanding the various physical processes that contribute to a system

but claims no accurate predictive value. A primary value of the model

developed here lies in being able to satisfy in a general way the objectives

posed earlier in this chapter. A second value is that the model simulations

can be used in future field studies to help determine the optimum location,

spacing, and depth of injection wells, and in addition can be used to help

determine the optimum spatial distribution and depth of monitoring sites

around the injection welles).

MATHEMATICAL FORMULATION
Nature of Problem

In simplest terms, the problem being investigated involves the emplace­

ment of liquid effluent into, and the subsequent migration of the effluent

through a Ghyben-Herzberg groundwater body. In this case the effluent con­

tains solute, but in concentrations so small that its density is comparable

to the density of fresh water. The ambient groundwater body into which the

effluent is injected also contains solute, but in concentrations which

increase as a function of depth. Thus near its top the salinity and density

of the ambient groundwater body is comparable to that of fresh water; how­

ever, with increasing depth the salinity and density of the ambient ground­

water body eventually approaches that of sea water.

Several transport mechanisms exert significant influence on a fluid

and the solutes contained in it, which move through a porous medium. In

this investigation only those mechanisms which play an important role in

transporting effluent from an injection well and the resultant interactions

with ambient fluid in a Ghyben-Herzberg lens system will be considered.

The fluid itself (both injected effluent and ambient groundwater) is strictly

*J~-Bea~l~i7: personal communication.
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transported by convection, which in the field of groundwater hydrology is

used to describe both horizontal and vertical fluid displacement.

In addition to the fluid, there are two solutes whose transport must

also be described: the solute of the injected effluent, and the "salt" or

"salinity" of the ambient groundwater. In general, three important mecha­

nisms are involved in the transport of any solute in a porous medium: the

primary means is by convection in a moving fluid; other mechanisms are

mechanical dispersion and molecular diffusion which are generally lumped

together and referred to as hydrodynamic dispersion, or simply dispersion.

Unless a reference is made specifically to one or the other, the term dis­

persion will be used to include both mechanical dispersion and molecular

diffusion. For a detailed review of the phenomenon of dispersion, see Bear

(1972, chap. 10).

It is recognized that injected effluent contains many different types

of dissolved solids as well as suspended solids. However, in this study the

assumption is made that the effluent is composed of fluid and dissolved

solids that do not react with the porous medium and have no time-dependent

decay rates. The injected fluid is therefore treated as containing one

solute which behaves in a characteristic manner for all of the solutes dis­

solved in the effluent. This characteristic solute is assumed to be in low

enough concentrations that it does not significantly affect the density of

the fluid. In other words, the solution of the fluid transport equation is

not dependent on the concentration of effluent solute, therefore the two

equations for fluid transport and effluent solute transport can be indepen­

dently solved. The problem of suspended solids is not treated here because

of their tendency to adhere to the porous medium itself and thus cause

reduction in porosity and intrinsic permeability. This is the problem of

"aquifer clogging" and should be treated separately.

Treatment of the second solute, the salinity of the ambient ground­

water, is a much more complicated problem. This second solute is present as

a result of the intrusion and mixing of sea water with the resident fresh

water of the aquifer. For this study, the sea water can be thought of as

fresh water containing one solute with a concentration equal to the total

dissol ved solids (TOS) present in sea water. An average value for the TDS

in sea water is about 35.8~ (35.8 parts per thousand) (Weast 1972). The

salinity contained in the fluid can therefore range from 0 to nearly 36~.
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This range of salinity significantly affects the density of the fluid and

thus adds a buoyant term to the convective movement of the fluid. This

means that the solution to the fluid transport equation is dependent upon

knowing the salinity; but the solution of the salinity solute transport

equation in turn depends upon knowing the solution to the fluid transport

equation. Thus the two equations are coupled and must be simultaneously

solved.

Basic Governing Equations

For the problem of waste injection into porous media containing

density-stratified fluid as described above, there are five unknowns,

requiring five equations. The unknowns are fluid density (p), salinity

concentration (C), pressure (P), specific discharge (q), and effluent
'\.J

tracer concentration (T). Two more unknowns (~c and ~T' specific discharges

of the respective salinity and effluent solutes are briefly discussed and

it is shown how they can be eliminated. The fluid transport equation pre­

viously referred to is really a combination of two equations which represent

conservation of momentum (Darcy's law) and conservation of mass (continuity)

for a fluid flowing through porous media. It is necessary to write a con­

servation of mass equation for the salinity and an equation of state which

relates how the salinity concentration affects the density of the fluid.

Finally, a mass conservation equation for the effluent tracer must be

written. Since the effluent tracer does not affect the fluid density, an

equation of state for the tracer is not needed.

The five equations are:

Momentum Equation (Darcy's law),

q = -kill (VP + pgV~);
'\.J ::::

Conservation of Mass for the Fluid,

v • Pq = - ~~ - Q({*);

Conservation of Mass for the Salinity,

v • Cq = - Qn.C
'\.Jc dt

(1)

(2)

( 3.1)
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Equation of State,

Conservation of Mass for the Effluent Tracer,

9 • T~ = - d;tT - QT(~*) .

( 4)

(5. 1 )

Two new variables have been introduced here: qc' the velocity of the
"v

salinity solute, and ~, the velocity of the effluent tracer solute. to show

that the velocity of a solute is not the same as the average fluid velocity

because of hydrodynamic dispersion. These two unknowns can be eli nn nated

through constitutive relationships developed from continuum mechanics.

These relationships are discussed by Bear (1972, pp. 102-104) and by Pinder

and Gray (1977) and are given by the following equations:

Cq =Cq-D'iJC
"v

c
"v '"

and

r9;r=T~-D9T.

Substituting equations (6) and (7) into (3.1) and (5.1), we have

(6)

(7)

and

9 • D \j C - dnC 0,
~ at (3.2)

\j • T q - \j • D \j T
'V

anT+ -- =at (5.2)

Thus, q and 9T are eliminated and (3) and (5) are written In marc familiar
,,-,c 'v

forms, generally referred to as convective-dispersion equations.

The source term, Q(X*) in (2) is defined as follows:
"v

Q(~* ) = (ddt ~ P d V + Po ~ ~ • ~ d s) <5 (x - Xu;, z - zl.J) . ( 8)

Similarly, the source term in equation (5) is defined as:

Qr(X*) = (,\dt i Td¥ + T, J Q • n d sJ <5 (x - Xu; , z - z!.J) .
"v 0, if 1/ S 't "v

(9)
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Assumptions

Six assumptions were made in setting up this model and their effects

on the governing equations are discussed below.

1. Density-dependent flow is, in general, transient and three­

dimensional in nature. In this study, solution is limited to the two­

dimensional case. This limitation is largely accepted for logistical rea­

sons. In principle, the three-dimensional case is solved by extension of

the methods used to solve the two-dimensional problem, however, it requires

much more computer time and storage and, hence, proportionally raises the

cost of simulation. The two-dimensional case roughly corresponds physically

to a field situation in which a group of wells is spaced closely enough

together in a linear array so that they may be considered a horizontal line

source. It exactly corresponds to a horizontal injection tunnel that is

long, relative to its distance from the coast.

2. In the formulation of the groundwater quality problem, p = p(C, P)

and the term a(np)jat on the right-hand side of (2) is properly expanded:

l- P Bat - 0 C

ap ac
ac at

(10.1)

The three terms on the right-hand side of (10.1) represent, respectively,

the compressibility of the aquifer, the compressibility of the fluid, and

the time rate of density change of the fluid due to change in salinity con­

centration. The first two of these terms are very small compared to the

third and will be ignored in this study. In some parts of the aquifer

region under study, the third term is also negligible compared to the left­

hand side of (2), but in other regions it is not, especially around the

injection well. Furthermore, the areas in which the third term is not

negligible change as salinity is convected away from the well. Therefore

the third term must in general be included everywhere in the solution space.

Hence (10.1) can be simplified to

(10.2)

3. In Hawai'i, the aquifers are known to be anisotropic in the x-z

plane, with kx > k z . The aquifers are also anisotropic in the x-y plane,
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but much less than in the x-z plane. Estimates of the ratio kxlkz generally

range from 10 to 100. Although no quantitative work has been done to deter­

mine this ratio, anisotropy must be taken into account when dealing with the

x-z (vertical) plane since it has the potential of affecting both dispersive

and convective mass transport. Thus, vertical anisotropy will be assumed

for this study.

4. The intrinsic permeability is a second-rank tensor that is constant

with respect to space and time, but directional in nature such that

k = fkx 0 j~
lo k z

where the coordinate axes are taken to be the principal directions. This

assumption introduces a slight error for basaltic regions because the lava

flows dip at an angle of about 7 to 9° from the horizontal. This causes the

principal directions to be tilted at the same angle, 7 to 9° from the coor­

dinate axes. This error is relatively small compared to the precision to

which values for the intrinsic permeability are known and is therefore

ignored.

5. Although the tensor nature of the intrinsic permeability is well

understood for the general anisotropic porous medium, this is not the case

for the coefficient of hydrodynamic dispersion (Dij = Q). Dij is known to

be a second-rank tensor even in isotropic media with Dxx colinear with the

specific discharge vector, and Dzz normal to the specific discharge vector.

However, the exact form of the function of Dij for anisotropic porous media

is not well known and very little work has been done in this area.* There­

fore, for the purposes of this study, it is assumed that the porous media is

isotropic with respect to hydrodynamic dispersion, even though it is being

treated as anisotropic with respect to permeability. For isotropic media,

*Dij = Dm ij + Dd iJ ,

where

*J. Bear 1977: personal communication.

(ll )

(12)
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and

* *Dd"-Dd T "1.-J - 1.-J' (13)

*The tortuosity (Tij), which is related to the porous medium's intrinsic

permeability and is a second-rank tensor, reduces to a scalar (unlike the

dispersion coefficient) in an isotropic medium, Since the tortuosity is

being used here in an isotropic treatment of dispersion, it may be consid­

ered a scalar.

6. Injection is assumed to take place from a point source and the

injection pressure, rather than the injection rate, is specified at the

well. The injection rate can of course be calculated during the simulation

by a divergence-type relationship, and this was done. The relationship

used was

(£.ill:!. + MJ = Q (K*) .
dj..l dZ x=XlJ

z=zlJ

With the above considerations, the governing equations (1) through

(5) reduce to

Darcy's Law:

(14 )

U = -kx QE
l.l dX'

Conservation of Mass:

p [dU + dV) + U .a.e. + V .a.e. = -n PoS/> Sax dZ dX az v t

Convective-Dispersion Equation for Salinity:

(15.1)

(15.2)

(16)

{/.a.c. + V dC + naC + L (D ac + D dC] + a rD ac + D ae] (17)- ax dZ at ax xx ax xz dZ az . zx ax zz az .

Equation of State:

(18)

Convective-Dispersion Equation for Tracer Effluent:

(19) .
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In summary, there are five unknowns (q, P, C, P, and T) and five cor-
~

responding governing equations ([15] to [19]). Equations (15), (16). and (18)

provide the solution to the fluid transport, and (17) provides the solution

for the salinity transport. The solution of each of these two sets of equa­

tions ([15], [16], and [17], [18]) is dependent upon knowing the solution to

the other set. These are the coupled sets of equations which must be simul­

taneously solved and which completely govern the flow field. Once the floW

field has been computed for a given time step, the computed specific dis­

charges are used to solve equation (19), which provides the solution for the

effluent solute transport. for the same time step. Although solution of

(19) is dependent upon solution of the other four equations, the reverse is

not true because the effluent tracer solute, T, is assumed to be an ideal

tracer in which the tracer's concentration does not affect the density (and,

therefore, does not affect the flow field) of the aquifer fluid.

In equations (15) through (19), we now have a mathematical description

of the fluid and salinity transport. To complete the description of the

mathematical problem statement, the init'ial conditions of the system must

be defined, and the behavior of the system on the boundaries of the solution

dum~ilJ uescribed.

Boundary and Initial Conditions

The geometrical boundary conditions are determined by the geology of the

varticu]HT illjection site under consideration; however, the intent of this

study is to produce an interpretive model (not a predictive model for a spe­

cific situation) of a hypothetical injection site to understand the various

physical processes and their effects on the transport of salinity and efflu­

ent tracer. Figure 1.1 is a cross section of a typical volcanic dome (such

as O'ahu) and its grotmdwater occurrence. Most h'aste \lIater injection takes

place in the coastal caprock area which is shown in Figure 1.1 in relation

to the entire island hydrogeology, and in Figure 1.2 in greater detail.

Figure 1.3 is an idealized version of this caprock which illustrates the

geometrical boundary conditions that are employed for this model.

The initial conditions at the start of injection are not straightfor­

ward. It is assumed that the caprock has undergone salt-water intrusion

and that this intrusion has reached a steady-state condition. The ~alinity
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distributions resulting from the salt-water intrusion are determined by

asslUning that the caprock starts with an artificial "pristine" condition,

with a nearly sharp interface between water with essentially no salinity on

top, and water beneath that essentially has a salinity the same as sea

water. The simulation is then carried through until steady-state distribu­

tions of salinity are achieved; thus, the initial conditions for the injec­

tion are provided by the steady-state solution to the salt-water intrusion

problem. This first phase of the simulation, which provides the steady­

state salinity distribution due to salt-water intrusion, will be referred

to as the intrusion phase. The second portion of the simulation begins

with the start of injection (after the steady-state salinity distributions

have been obtained from the intrusion phase), and is referred to as the

injection phase.

The initial conditions for the intrusion phase are

where

C ::: C(z, 0),

C(z, 0) ::: !z [A tan - 1 (z - H/2) + Cs ] .

(20)

(21)

This equation is graphed in Figure 2, and closely resembles the shape of a

typical salinity concentration curve in a relatively undisturbed Ghyben­

Herzberg lens.

The salinity boundary conditions for both the salt-water intrusion and

the injection phase (Fig. 1) of the simulation are as follows:

dC (0 z, t) ::: 0, where U(O, 2, t) < 0 (22.1)
dX '

,

C(O, z, t) Cs , where V(O, z, t) ~ 0 (22.2)

C(L, z, t) ::: Cs , where U(L, z, t) 0 (22.3)

C(C, z, t) ::: 0, where V(L, z, t) ::: 0 (22.4)

Ql2 (x 0, t) ::: QC (x H, t) 0 ,
dZ ' dZ '

where

vex, o. t) ::: vex, H, t) ::: 0 . (22.S)

Equations (22.1) and (22.2), respectively, state that as long as fluid

is leaving the aquifer through the outflow face into the ocean (negative U).
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there is a condition of zero diffusive mass flux, but if the fluid is enter­

ing the aquifer from the ocean (positive V), then it convects salinity into

the aquifer at the same concentration that exists in sea water. Equations

(22.3), (22.4), and 22.5) allow no salinity to enter or leave the aquifer

from any of the other boundaries.

1.0 .----------------------------,

0.8

-I
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.t::! 0.6

I
~
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I.LJ
Cl

a::
I.LJ
u..
::> 0.4
0
<l:

0.2 -

0.0 '- L--I ---'I --'I ----i

10.0 20.0 30.0

CONCENTRATION (%0)

FIGURE 2. INITIAL SALINITY VALUES FOR SALTWATER
INTRUSION PROBLEM
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Initial conditions for pressure are unnecessary because the solution

of equations (15) and (16) are time independent of pressure. This is

explained in more detail in a later section of this report. The boundary

conditions for pressure for both phases (salt-water intrusion and injection)

are as fa 11 ows :

P(O, ~ t) == -Ps gz + Pos" ,

ap (L " t) 0, c ~ z ~ zRax ' '-' , ,

'dP (L z, t) t Uc ' zJ1 ~ z ~ H ,ax ' x

ap (x 0, t) -g (x, 0, t) ,dZ '

ap
3"Z(x, H, t) == -g (x, H, t) .

(2 ~. 2)

In.3)

(23.4)

(23.5)

Equation (23.1) stipulates linear pressure (constant head) along the ocean­

side boundary, I'Jhile (23.2) and (23.3) specify, respectively, zero and con­

stant flux along separate parh of the recharge bound.a.ry. Equations (23.4)

and (23.5) specify, respectiv~ly, zero flux through the bottom and top of

the aCJui fer.

In addition to the above boundary and initial conditions, two more con­

ditions are necessary for pressure and salinity concentrations for the

injection phase of the problem.

(24. 1)

(24.2)

The effluent tracer (diSSOlved solids of the effluent) is also introduced

into the system at the start of injection and its boundary and initial con­

ditions must be accounted for as follows:

T(x, z, 0) To, x == xw' z Zw , (25.1)

T(x, '7 0) == 0, elsewhere, (25.2)'-' ,

T(Xw, zi!» 0) To (25.3)

T(xw zu;, t) no (25.4):0 ,
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aT (0 z, t) = 0, where V(O, z, t) < ° (25.5)ax '

T(O, z, t) = 0, where Vel, z, t) ~ ° (25.6)

T(L, z, t) = 0, where VeL, z, t) ~° (25.7)

aT 0) aT (x, H, t) ° (25.8)az (x, = az = ,

vex, 0, t) = vex, H, t) = ° (25.9)

Equations (25.1), (25.2), and (25.3) prescribe constant tracer concen­

trations at the well and zero concentrations everywhere else in the solu­

tion domain initially. Equation (25.4) provides for constant effluent

tracer at the well throughout the simulation. Equations (25.5) and (25.6)

provide for the flux of tracer through the outflow face and into the ocean

and (25.7), (25.8), and (25.9) prescribe zero tracer flux through the other

boundaries.

A complete mathematical formulation of the problem of waste injection

into porous media saturated with density-stratified fluid has now been

given.

FORMULATION OF GOVERNING EQUATION AND
BOUNDARY CONDITIONS INTO A NUMERICAL MODEL

Solving Coupled Fluid Transport and
Convective-Dispersion Equations

Equations of groundwater flow (fluid transport) and of mass transport

(convective-dispersion) have been extensively treated. The many problems

that have been solved fall into two categories: (a) problems in which the

quantity of water is the desired answer, and (b) problems in which the

quality of the water (distribution of a dissolved constituent) is the

desired answer. In (a) it is only necessary to solve the equations of

groundwater flow (eqq. [1], [2]); in (b) it is necessary to solve the equa­

tions of groundwater flow, and to use the resulting velocity field as input

for the convective-dispersion equation (3).

The use of numerical methods for the solution of fluid transport and

convective-dispersion equations has been widespread for many years. Remson,
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Hornberger, and Moltz (1971) provide a large amount of information on the

finite difference method (FDM) solutions to these equations. Trescott,

Pinder, and Larson (1976), Cooley (1974), and Pinder and Gray (1977) provide

solutions to these equations by the finite element method (FEM).

Two major difficulties have been encountered using the FDM to solve

the convective-dispersion equation: numerical dispersion (also known as

numerical dissipation, numerical diffusion, and numerical smearing); and

numerical overshoot. Numerical dispersion refers to the artificial smearing

of the front or breakthrough curve that produces results indicative of a

larger dispersion coefficient than has actually been specified. Numerical

overshoot is an instability in the solution which produces erroneously high

values upon approach to the front on the upstream side. Numerical under­

shoot is a similar phenomenon, but produces erroneously low concentration

values on the downstream side of the front. These two phenomena are

referred to collectively as numerical overshoot or simply as overshoot in

this study because they are basically the same thing. Examples of numerical

dispersion and overshoot are shown in Figure 3 .
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Numerical dispersion and overshoot can be especially severe when con­

vective transport dominates over dispersive transport, i.e., when DiJ is

small compared to q. An excellent review of these two problems is provided
rv

by Pinder and Gray (1977, pp. 147-69). Various schemes have been devised

to reduce or eliminate numerical dispersion and overshoot for the FDM.

Usually, one is reduced or eliminated at the expense of increasing the

other. Pinder and Gray (1977) show that keeping the dimensionless parameter

(26)

larger than a certain critical value eliminates the problem of numerical

overshoot. The parameter Dk is a dispersion coefficient that is a constant

scalar rather than a second-rank tensor and a function of the velocity. It

is used in stability analysis of the numerical methods that solve the

convective-dispersion equation and is dimensionally the same as L!iJ. For

the nonlinear case, it can be thought of as taking on the highest value of

Dij in the solution region. This critical value is much smaller for the

FEM than for the FDM. One can interpret this as meaning that the FDM has a

limited ability to convect a sharp front and is therefore not very good at

simulating systems that closely mimic two-phase flow regimes, in which mass

transport takes place as piston-like flow. In recent years, the FEM has

been increasingly used to solve problems in convective-dispersion because

the severity of such problems as numerical dispersion and overshoot are

lessened or entirely overcome by certain types of FEM formulations (Pinder

and Gray 1977).

Although numerical dispersion can cause serious errors when using FDM

in situations where dispersivity coefficients aL and aT (and therefore Dij)

are small, these errors may be insignificant for situations in which the

nodal spacing is on the same order of magnitude as the values of aL and aT'

Robertson (1974) reported values for aL and aT for fractured-rock aquifers,

such as flow basalts in Idaho, as high as 100 m. Lenda and Zuber (1970)

presented similar values and Robertson* reports dispersivities as high as

400 m with aL and aT having approximately the same value. The grid spacing

for many problems of practical value is on the same order of magnitude as

dispersivity values; therefore it appears that for these problems there is

*J.B. Robertson 1978: personal communication.
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no inherent advantage with respect to accuracy in using FDM or FEM to solve

the convective-dispersion equation.

The problem we are addressing in this study falls into a third, much

more complicated category for which the flow is coupled. That is, the

fluid density is a function of the salinity, hence the fluid transport and

convective-dispersion equations must be simultaneously solved. Very little

previous research has been done on coupled flow problems, and most of the

work that has been done treats problems of sea-water intrusion and upconing.

However, this is most useful for the waste injection problem at hand because

sea-water intrusion is a subset of the waste injection problem, i.e., a

steady-state solution to the problem of sea-water intrusion is used as a

set of initial conditions for the problem of waste injection. Salt-water

upconing is, in a sense, the reverse problem of waste injection. For waste

injection, the values of salinity and effluent tracer are known at the well,

whereas for salt-water upconing, the salinity values at the well are unknown

and are ultimately what one is seeking to find as an answer. Also, there is

no need to introduce a second convective-dispersion equation for salt-water

upconing or sea-water intrusion since no fluid from a well is entering the

system.

Henry (1964) solved a set of coupled equations for the problem of sea­

water intrusion of the form:

k
pg) (27 . 1)q = - (\JP +

'\., jJ '\.,

\J • p q = 0 (27.2)
"'v

\J • C q Dk \J2 C = 0 (27.3)
'\.,

p = Po + (1 - E) C (27 .4)

This set of equations is for steady-state and assumes a constant scalar

dispersion coefficient. Henry's analytic solution was by a Fourier-Galerkin

double-series expansion and was so difficult to evaluate that it could not

in practice yield values for field condition parameters.

Pinder and Cooper (1970) solved a similar set of equations by numerical

methods. The only difference is that their convective-dispersion equation

was transient:

=.QC
'dt

(28)
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Their solution was achieved by using a type of FDM for the fluid-transport

equation and the method of characteristics (MOC) , which is related to FDMs,

for the convective-dispersion equation. Pinder and Cooper showed that the

transient numerical solution approached Henry's steady-state analytic solu­

tion at long times. They did not, however, extend the solution to an actual

field case.

Lee and Cheng (1974) solved the same steady-state set of equations

that Henry solved (27) but with the FEM. They showed that their results

were in good agreement with Henry's and then extended their model to an

actual field problem (the Biscayne aquifer in the Cutler area, near Miami,

Florida [Kohout 1964]) for which extensive field data have been produced.

Good qualitative agreement with the field study was found.

All of the above studies assumed the dispersion coefficient to be a

constant scalar. Pinder and Gray (1977) extended the work of Lee and Cheng

(1970) on the Biscayne aquifer by using a dispersion coefficient that is a

second-rank tensor and a function of the velocity.

McCracken et al. (1977) provide a FEM equation-solving code for a set

of two coupled, three-dimensional, transient, nonlinear partial differential

equations. With modification, this code can be used to solve the sea-water

intrusion problem and the salt-water upconing problem (Hsieh 1977).

Choice of Methods for this Study

One of the greatest advantages in using the FEM, relative to the FDM,

is its ease of formulation for irregularly shaped geometries. However, this

advantage is lost in the present study which focusses on the solution of a

hypothetical problem with simple rectangular geometry (Fig. 1.1). There­

fore, the FDM was chosen for this study for two reasons: (1) the FDM is

relatively easy to formulate for problems with rectangular geometry, and

(2) its behavior for coupled, nonlinear problems is well understood (Pinder

and Cooper 1970; Trescott, Pinder, and Larson 1972; Pinder and Gray 1977).

In order to decide which of the FDM methods to use, equations (IS) to

(17), and (19) must -be classified according to which type of partial differ­

ential equation they are. Equations (IS) and (16) can be combined in the

following way:
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(29.1)

(29.2)

Equation (29) will be referred to as the fluid transport equation and

is a Poisson-type equation. It is important to note that even though the

function F (eq. [29.1]) is a function of time, there is no time derivative

of pressure in equation (29.1). This means that once F is known at a given

time, the solution of (29) is steady state with respect to pressure; in

other words, at each time step the solution of the fluid transport equation

is in equilibrium. Thus, an iterative FOM must be chosen to solve the fluid

transport equation. It was decided to use the iterative-alternating­

direction-implicit (lAOI) method because it has been successful in solving

the fluid transport portion of other salt-water intrusion problems (Pinder

and Cooper 1970). Some authors have successfully used the FEM for similar

problems (Lee and Cheng 1974; Pinder and Gray 1977), but the FEM was dis­

carded for reasons presented above.

The convective-dispersion equations (17) and (19) are exactly the same

mathematically. They are parab(llic equations and, therefore, have a time

derivative of the dependent varlable (C for salinity, T for effluent tracer),

in contrast to the fluid transport equation (29) which has no time deriva­

tive of the dependent variable (pressure). Several FOM methods can be used

to solve this type of equation. The MOC described by Pinder and Cooper

(1970) is particularly good at eliminating numerical dispersion, yet with a

grid spacing roughly the same size as the values for dispersivity, numerical

dispersion is relatively unimportant. No comparison was found in the liter­

ature of the ability of various FOMs to minimize the problem of numerical

overshoot. Shamir and Harleman (1967) found that the alternating-direction­

implicit (ADI) scheme was more efficient than other rOMs for problems in

which dispersion at right angles to the flow is considered, i.e., when the

dispersion coefficient is defined as a second-rank tensor. For this reason,

and because the ADI method is quite similar in formulation to the IADI

method, the ADI method was chosen to solve the convective-dispersion equa­

tions for salinity and effluent tracer.
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Explanation of lAD! and AD! Methods

The IADI and the ADI methods were first described by Peaceman and

Ratchford (1955) and a very clear explanation of both methods is provided

by Trescott, Pinder, and Larson (1972) along with detailed analyses of

stability and convergence criteria for problems relating to fluid transport

in aquifer simulation. Therefore, an explanation of both methods will be

confined here to showing how they are applied to the particular equations

generated for this problem.

The IADI representation of equation (29) can be written as

where

~~
2p62 dZ

2kx
M1 -

(~) 2

2kz
M} -

(62) 2

o (30)

(31.1)

(31.2)

(31.3)

(31.4)

k x
2p~

(31.5)

(31.6)

The superscript m refers to the iteration step which requires two

steps to achieve a complete solution for each iteration. First, the par­

tial derivatives with respect to Z are treated as implicit by setting a 1

and b = 0, thus advancing the solution to the m+l/2 iteration. Second, the

partial derivatives with respect to x are treated as implicit by setting

a = 1 and b = 1, thus advancing the solution to the m+l iteration. The

solution at the m+l iteration is then compared to the solution at the m

iteration and, if the maximum residual is less than a certain small value
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(details in Discussion of Numerical Results), a final solution is then con­

sidered to have been achieved, otherwise iteration continues.

The term 1'1 1 (in eqq. [31.3], [31.4]) is an iteration parameter which

is necessary to force the solution to converge. As long as the numerical

value of 1'1 1 is on the same order of magnitude as the other terms in A2 and

As, convergence can usually be expected to occur. However, most rapid con­

vergence occurs when a set of iteration parameters are used, the set usually

consisting of 5 to 10 separate iteration parameters which are cycled as the

iteration proceeds. The cycle is set up by computing an ordered set of,

e.g. five, iteration parameters (ordered from smallest to largest) and

using 1'1 1 for the first iteration, 1'12 for the second iteration, and so on

until Ms is used on the fifth iteration (assuming convergence criteria have

not been met). The sixth iteration then uses 1'1 1 and the seventh iteration

uses 1'1 2 , and thus the cycle repeats until convergence criteria are met

(maximum residual becomes less than a certain small value). Trescott,

Pinder, and Larson (1972) give equations for the optimum set of iteration

parameters, which they have modified from Peaceman and Ratchford (1955),

for two-dimensional horizontal flow in aquifers. These optimum iteration

parameters are derived from the eigenvalue theory and are related to the

eigenvalues of the matrices generated by equation (30). A further modifi­

cation of these iteration parameters is presented here for equation (30).

Let

1'1 - H [2kX 2kz ]1 - 1 +
P (lix) 2 (6z) 2 •

(32)

This modific:ation normalizes 1'1 1 so that its numerical value is on the same

order of magnitude as the other terms in A 2 and As (eqq. [31.3], [31.4]).

The minimum iteration parameter (Hpmin ) is calculated by finding the mini­

mum of the following two terms:

Hpmin = minimum [2 (33 )

where N = (L/lix) + 1 and 1'1 = (H/6z) + 1. The incremental iteration param­

eter (Hpi ) is calculated by the following equation,
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(34)

where Nip is the number of iteration parameters to be used. As previously

mentioned, the number of iteration parameters (Nip) to be used in the set

for cycling is usually between 5 and 10. For a problem where the coeffi­

cients in equation (30) are variable (like Al, A2, A4 , A6), the optimum

number for Nip is not theoretically known and trial and error provides the

only guide to what value of Nip yields the most rapid convergence. A value

of Nip = 10 usually provided most rapid convergence for this problem.

The complete set of iteration parameters is computed by a recursive

formula,

and

and thus

Hpmin , (35)

(36)

(37)

Solutions of the convective-dispersion equations (17) and (19) by the

ADI method are quite similar in terms of numerical formulation so that only

the solution of the convective-dispersion equation for salinity (17) will

be described here. As in the case for the IADI method, the ADI method was

first described in Peaceman and Ratchford (1955), and Trescott, Pinder, and

Larson (1972) provide a detailed description of the method and its stability

and convergence criteria for problems relating to fluid transport in aquifer

simulation.

By assuming that mixed derivatives are negligible (compared to other

terms), i.e.,

~= 0
dZdX '

(38)

and that the dispersion tensor is sYmmetric,

(39)
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we can write the ADI representation of equation (17) as:

(40)

where

Dxx [['D= + 'Dxz - ulJ8 1
ax- dZ

=
(6x) 2 26x ,

8 2 = 2n 2Dxx
M- (6x)2 '

(4 J • 1 )

(41.2)

(41.3)

(41.4)

and

(41.5)

lZZ

(6Z)2
+ [(~ + ~Jl

26z J (41.6)

In equation (40), the superscript k refers to the time step (whereas in

[30] the superscript m referred to the iteration step). At the first one­

half time step (k+1/2), a = -1 and b = 0 and the partial derivatives with

respect to z are implicit. After the solution has been advanced to the

k+l/2 time step, a = 1 and b = 1 and the partial derivatives with respect

to x are implicit. The solution at the k+l time step represents the com­

plete solution to equation 17 at the k+l time step.

The boundary conditions reduce the number of unknowns in equations

(30), (40) and the equivalent of (40) for effluent tracer, to two unknowns
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at the boundaries, so that the matrices can be solved by the Thomas

algorithm for solution of tridiagonal matrices. For Dirichlet boundary

conditions, the term at the boundary is known and is put on the right-hand

side of the equation. For Neumann boundary conditions, the equation is

rewritten in terms of the finite difference representation of the known

first derivative, which has only two terms.

Modifications Necessary for Solving Coupled Equations

The coefficients A1 , A2 , Aq , and AG (hereafter, Ai) are functions of

salinity (because density is a function of concentration), thus their exact

values are not known at the advance (k+l) time level until a solution to

equation (40) is attained. But in equation (40), the coefficients B1

through BG (hereafter, Bi) are all functions of pressure (because the dis­

persion coefficients are functions of velocity, which is a function of

pressure). Therefore, the coefficients Bi are unknowns until equation (30)

is solved, thus equations (30) and (40) are coupled. In order to achieve

a solution at the advance time level, a procedure which shall be called

iteration across a time steo (IATS) was used.

The IATS procedure involves computing the Ai and Bi coefficients with

values of pressure and salinity from the previous (k) time step. Since Ai

and Hi are supposed to be computed with values from the k+l time step, the

values from the k time step are considered "guess values." Once a solution

for pressure and salinity has been achieved with these guess values for the

Ai and Bi coefficients, new guess values for Ai and Bi can be computed and

the pressure and salinity values are recomputed for the k+l time step. The

recomputed values for pressure and salinity are compared to the previously

computed values and if the maximum residuals for salinity and pressure are

less than some small value, IATS is completed and the guess values for Ai

and Bi are the true values for the k+l time step. Otherwise new values for

Ai and Bi are computed and the lATS is repeated until the convergence cri­

teria are met. The IATS procedure is summarized in the flow chart in

Appendix B, and Appendix C is a listing of the program used to solve the

problem.

Once the complete solution for equations (29) and (17) (pressure and

salinity) is attained at the k+l time step, then solution of equation (19)
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(effluent tracer) is provided by a normal ADI procedure without IATS,

because equation (19) is not coupled to any of the other equations (although

the velocities obtained from solution [29J are used to calculate dispersion

coefficients for [19], i.e., the coupling is only one way, as explained

earlier). Thus, obtaining the values for effluent tracer completes the

solution at the k+l time step and the entire process is then repeated for

the next time step, and the next, and so on until a steady-state solution

is achieved for salinity and effluent tracer.

DISCUSSION OF NUMERICAL RESULTS
Accuracy

Since two different methods are used to solve the fluid transport and

convective-dispersion equations, the accuracy of these methods are sepa­

rately treated. The fluid transport equation is a steady-state equation

for each time step and the iterative scheme (IADI) discussed in the previous

chapter was used to solve it. The iteration procedure was carried out until

the maximum residual (£p) was less than 0.01 dyne/cm 2
. This value was

chosen because decreasing £p by one morc order of magnitude (to 0.001)

changed the specific discharge by less than 1.0 x 10- 6 cm/s. A specific

discharge as small as 1.0 x 10- 6 cm/s had little effect on the results over

the time period of the simulation.

The accuracy of the ADI solution of the convective-dispersion is

related to stability and convergence and will be discussed in a following

section.

Errors in Vertical Velocity Calculation

The fluid transport equation is solved for the pressure field, hence

the velocities are c3lculated by taking finite difference representations

of the pressure derivatives. For certain situations, this method can cause

significant errors in the calculation of the vertical velocities which are

described below.

The vertical velocity is given by

v = -kz (dP + pgJ .
Wn dZ

(42.1, .2)
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The finite difference representation of this is given by

-kzV ~ --- (0 P + P ) .
~n z ,

When V = 0,

and

(43. I)

(43.2)

(44)

OzP + pg = ET (45)

where ET is the truncation error in estimating ap/az. It is shown in

Appendix A that in general,

ET= (~)2 a3~+ (higher order terms).
. dZ

For the special case where V = 0, (44) holds and (shown in App. A)

( 46)

~(6z) a2c .
ET(V = 0) = '~I PoSe ---2 + (h1gher order terms). (47).). az

In most regions of the solution space, V is non-zero and (47) does not hold

and/or a2c/az 2 is very small and ET(V = 0) is therefore too small to affect

the calculation of V. Figure 4 is a salinity profile similar to Figure I

and delineates five regions. It can be seen that in regions II and IV,

d2 C/az 2 is large compared to the other regions. If the condition also

exists that V = 0 (or very nearly so) then a significant error is made in

calculating vertical velocity in these two regions with equation (43) due

to the truncation error given by (47).

Figure 5 is a plot of velocity vectors from a typical waste injection

simulation and shows the region where this effect is significant. Since

the region delineated by Figure 5 is the only area where velocity was sig­

nificantly affected by truncation error, no attempt was made to add the

third-order term 1n equation (47) to equation (43.2) because the error had

little effect on the overall solution.
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Stability and Convergence

The lADI solution to the fluid transport equation is stable if the

maximum residual converges to zero during the iterative process (Peaceman

and Rachford 1955); therefore, the iterative solution is often referred to

as having convergence. This type of convergence should not be confused

with the usual meaning of convergence of a numerical scheme, i.e., that the

numerical solution is convergent if it approaches the analytic solution as

the grid spacing approaches zero. Unless otherwise noted, the term conver­

gence in this report will refer to iterative convergence.

As discussed previously, convergence is more rapidly achieved when a

set of iteration parameters is used. The choice of iteration parameters

for the IADI is discussed in detail by Remson, Hornberger, and Moltz (1971),

and by Trescott, Pinde~ and Larson (1976). A choice of ten iteration param­

eters provided the most rapid convergence for this problem. For the first

time step, approximately 30 iterations were usually necessary because the

"guess" values for pressure were not particularly close to the actual

values. In succeeding time steps, only about four iterations were required

because the "guess" values were taken from the last time step and were

therefore much closer to the new pressure values for that time step.

The time step for the fluid transport equation can be much larger than

the time step for the convective-dispersion equation because changes in

pressure distribution are strictly due to changes in density. Solving the

fluid transport equation at every tenth time step was found to be adequate.

The vertical velocities were much more sensitive to changes 1n salinity

than to changes in pressure. The vertical velocities were therefore updated

at the end of each iteration across a time step and used to solve again the

convective-dispersion equation at that time step until convergence was

achieved. An adequate convergence criterion for the maximum residual for

salinity was found to be O.SL. This figure was used because a change of

less than O.5L salinity does not significantly affect the density and

therefore does not significantly affect the vertical velocity.

For most simulations, rapid changes in salinity near the beginning of

the si.mulation made about six iterations across the time step necessary for

the salinity convergence criterion to be met. As time progressed, fewer

iterations were necessary. There is a trade-off between the size of the

time step and the resultant number of iterations that must be performed to
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achieve convergence across the time step. In practice, it was found that

the optimum time step was one which allowed convergence in two iterations

after about 10% of the total simulation time.

It is also of interest to discuss stability in relation to numerical

overshoot. Previously, the parameter

'V 6tD = Dk
(lix) 2

(26)

was discussed. This parameter must be kept above a certain minimum value

to prevent numerical overshoot. For the nonlinear problem, the analogous

equation to (26) is

(48)

In general, Dij is a function of aL' aT' U, and V. Of these four param­

eters, only aL and aT can be arbitrarily adjusted to eliminate overshoot.

If the dispersivity values that are desired for a particular simulation are

not large enough to prevent overshoot, then ~t must be made larger and/or

6x j must be made smaller. The usual choice would be to enlarge ~t, making

the solution more efficient (larger time steps bring the solution to steady

state with fewer total time steps). However, for a coupled flow problem this

is not necessarily true because a larger time step causes more iteration

across the time step, thus drastically increasing the amount of computer time

necessary to achieve a complete solution at a given time step. In fact, a

time step that is too large causes the ADI solution of the convective­

dispersion equation to become unstable. The other alternative to increase
. 'V

the SIZe of DnL is to decrease 6xj which also greatly increases computation

time by creating more nodes.

For the simulations using sandbox model parameters, aL and aT were

respectively specified as 50 and 10 cm. These were the minimum values for

~t = 180 s (for injection), 6x = 16.7 cm, and ~z = 5 ern. For the steady­

state salt-water intrusion problem, it was possible to use a ~t of 600 s with

the same parameters. The parameters used for the hypothetical field problem

are discussed in a later section.
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Efficiency

The computer code was written using virtual storage coding practices

in keeping with the IBM370j158 OSVS2 machine and operating system on which

this work was done.

For virtual storage s:vstems, most of the computer program and its data

are kept out of main memory on direct-access devices. The program and its

data are "paged in" and "paged out" as needed during execution by the sys­

tem's hardware, even though the programmer may not be aware that this is

being done. It is therefore not necessary to save memory by reading and

writing out arrays onto disk; the system essentially does this on its own.

Many computer programs are specifically written to conserve memory and this

is actually quite inefficient under a virtual programming environment.

RESULTS OF SIMULATIONS
Verification of Numerical Model with

Existing Numerical and Analytic Models

Three solutions discussed previously were chosen for comparison: the

analytic solution to Henry's (1964) problem; Pinder and Cooper's (1970)

numerical solution to the same problem; and Pinder and Gray's (1977) numer­

ical solution to the same problem using the tensor form of the dispersion

coefficient. These results are plotted in Figure 6 as the 50% isochlors.

Present Solution
Pinder ond Groy (1977)
Pinder ond Cooper (1970)
Henry (1964)
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FIGURE 6. COMPARISON OF PREVIOUS AND PRESENT SOLUTIONS
TO SEA-WATER INTRUSION PROBLEM
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The results of the present study are most similar to those of Pinder and

Gray (1977). This is because the present study and Pinder and Gray both

employ a second-rank tensor that is a function of the fluid velocity for

the dispersion coefficient, while the other two studies use a constant

scalar for the dispersion coefficient. The fact that the 50% isochlor from

the present study falls somewhat above that of Pinder and Gray (1977) is

attributed to the increased numerical dispersion inherent in the FDM (pres­

ent study) versus the FEM (Pinder and Gray 1977). Nevertheless, the agree­

ment of the present solution with these past solutions is quite good and

demonstrates that the program correctly solves the governing equations and

boundary conditions for the salt-water intrusion problem. Note that the

coordinates for the present problem have been changed for Figure 6 to con­

form to the coordinate system for the other solutions.

Nomenclature Definition of Three Types of Aquifer Fluids

Although the governing convective-dispersion equations keep track,

i.e., conserve mass, of the solutes themselves, one can make the following

simple assumption for conceptual purposes. The value (T ITo) x 100 at any

node represents the percent of effluent in a water sample collected hypo­

thetically from that node. Similarly, (GIG;;) xlOO represents the percent

of sea water present in the sample. The only other source of fluid is the

freshwater recharge R (or simply, fresh water), coming from the right-hand

side of the model as ambient flow. Therefore, the percent recharge present

at any node can be calculated by the equation:

R = 1 - [(TITo + GIGs)] x 100 . (49)

For conceptual purposes, the following discussion will sometimes refer to

three fluids: fresh water, effluent, and salt or saline water. This is

done merely to facilitate discussion and it is recognized that in actual

fact, there is only one fluid (fresh water) that contains two solutes

(effluent tracer and salinity) as discussed previously.

Summary of Numerical Simulations

Altogether, four simulations were run using geometric and aquifer con­

stants that were identical, except for the dispersivity coefficients, to
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those of the sandbox model. These values are listed in Table 1. The first

TABLE 1. GEOMETRICAL AND AQUIFER CONSTANTS

Longitudinal dispersivity (aL), cm

Transverse dispersivity (aT)' cm

Length (L), cm

Height (H), cm

Intrinsic permeabi1 ity,
x-direction (kx ) , cm 2

Intrinsic permeabi1 ity,
z-direction (k z ), cm 2

Diffusion coefficient x tortuosity
(DdT~'), cm 2 Is

Viscosity (~), g/cm-s

Porosity (n)

Density (fresh water) (po)' g/cm 3

D:c, cm

f::,z, cm

50

10

150

100

9.89xlO- 6

0.01

0.39

0.9983
16

5

simulation was run with a constant head boundary condition on the recharge

(x = L) side of the model. The pressure was calculated by:

z
P (L, z) = Po g HI' + g f peL, z) d z ,

Ii
(SO)

where HI' is the head above sea level on the right-hand (x = L) side of the

model. Because of the constant head boundary condition, this simulation

was called H-l, the H referring to constant head. For reasons that will

be discussed later, it was decided that the H-l run was least similar to

the sandbox model experiments, so the boundary condition on the recharge

ex = L) side was changed to one of constant recharge, or constant flux.

Three simulations were run with constant flux and were called F-l, F-2, and

F-3 (the F referring to flux). The value of the head, HI" in H-l was chosen

to correspond with a typical value from the sandbox model experiments. In

the F-series, the value of the ambient flow was chosen to correspond to a

typical value observed in the sandbox model experiments. Table 2 lists the

parameters varied in the simulations.
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TABLE 2. PARAMETERS VAR lED IN StMULAT tONS

Simu- Position of
Head Above tnjeetionSea Levellation We 11 (XlJ ,ZlJ) at WeI I Rate

(em) (em) (em2 /min)

H- I 83.3, 30.0 2.6 7.43

F-I

F-2

F-3

83.3, 30.0

100.0, 30. a
83.3, 30.0

4.0

4.0

3.5

11.1

10. I

4.7

Ambient
Flow*

(cm/s) (%)

(Constant head
above sea level at
x = L of 1.9 em)

I .54 x 10- 3, 70

1.54 X 10- 3
, 50

I .54 x 10- 3, 50

Ambient
Salinity at

Start of
Injection

(g/Q, or %)

28.0

IJ.2

18.0

17.5

*Speeifie discharge (q) input at right (x = L) boundary and percent of
right boundary over which q is appl ied.

Two different boundary conditions were used (constant head and constant

flux) because it was not at first apparent which of the two would more

closely simulate the conditions observed in the sandbox model experiments.

In the sandbox model experiments, a nearly constant flux (recharge) was

maintained after the start of injection by maintaining a constant head on

the recharge (x = L) side of the sandbox model. The three-dimensional

nature of the sandbox model allowed a nearly constant ambient flow by using

the constant head because the discharge due to the effluent plume was small

compared to the total ambient flow. Therefore, even after injection began,

the ambient flow remained about the same as before injection. However, in

the two-dimensional case of the numerical model, discharge from the effluent

plume represented a significant portion of the total discharge; therefore,

to achieve a constant ambient flow, a constant flux boundary condition was

necessary on the recharge (x = L) side of the aquifer.

Presentation of Results

The results of the simulations are presented in three ways. First, the

fluid flow is shown as fields of velocity vectors, one for each node (Figs.

7 and 8). Second, the salinity and effluent tracer concentrations are shown

in a time-series of plots of salinity and tracer concentrations (Fig. 9).

Lines of equal concentration of salinity (isochlors) and effluent tracer

(isopleths) are plotted as (C/Cs)xlOO and (T/To)xIOO, respectively. Each

plot should be viewed with the same orientation as used in Figure 2, i.e.,
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FIGURE 7. VELOCITY VECTORS FOR STEADY-STATE
SOLUTION OF SALTWATER INTRUSION
PROBLEM FOR H-1 SIMULATION
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with the ocean on the left and the recharge boundary on the right. By

plotting these two sets of data together, one can easily see the effects of

the density-dependent flow, dispersion, and the ambient flow regime. The

third way in which the results are displayed is shown in Figure 10. This

graph (and others like it, shown later) shows the relative proportions of

saline, effluent, and fresh (recharge) water that are leaving (or entering)

the aquifer at the ocean-aquifer interface as a function of depth. In this

graph, the line for salinity is plotted by using (GIGs)XlOO, and the line

for effluent by using [(GIGs) + (TITo)]xlOO. Thus, if one were to extract

a sample of water just as it left the aquifer right near the top of the

aquifer, 18% of the sample would be saline, 67% would be effluent and the

remainder (15%) would be fresh (recharge) water. On the other hand, a sam­

ple extracted near the bottom of the aquifer would be 100% saline because
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salt water is flowing into the bottom 25% of the aquifer (see velocity

vectors, Fig. 8.1). Thus, this type of graph helps in understanding how

the effluent is distributed with depth as it flows into the ocean.

Description of H-l Simulation

The velocity vectors for the steady-state solution to the salt-water

intrusion phase of H-l are displayed in Figure 7 (same right-hand boundary

condition as injection phase of H-l). Note the recirculation effect of

salt-water entering the aquifer on the lower left (ocean side), moving up­

wards, and exiting with the recharge water at high velocities near the top

portion of the exit boundary (upper left-hand side). This same effect has

been reported by Henry (1964), Pinder and Cooper (1970), and Pinder and

Gray (1977). The steady-state solution to the H-l salt-water intrusion

problem provided ambient salinities around the injection well of about 28~

(77% isochlor) so that a strong buoyant force was exerted on the fresh­

water density fluid exiting the well during injection.
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Figure 8.1 is a plot of the steady-state velocity vectors for H-l

(Fig. 8.2 is a similar plot from the F-l simlilation; 8.1 and .2 are plotted

together for purposes of comparison). The injection effects on the velocity

are apparent. Note that as in Figure 7, continuity considerations force the

fluid in the top left area to move faster as it approaches the ocean exit

boundary. The velocity vectors above the well have much stronger vertical

components than do those below the well due to the buoyancy effects.

Because a constant head has been prescribed for the right (x = L) boundary,

the stagnation line for this fLow field is far upstream from the well, and

as Figure 8.1 shows, fluid froil\ the well flows out of the right boundary.

This indicates that the injection well discharge was large relative to the

ambient flow that existed in the intrusion phase of the simulation. Thus,

only a very small amount of ambient flow was necessary to maintain the con­

stant head. For this reason it was felt that a constant flux boundary con­

dition on the right side Ivould more correctly simulate a constant ambient

flow as observed in the sandbox model experiments. A similar constant

ambient flow would also be expected for a field situation.

The migration of salinity and effluent is demonstrated in figure 9.

As the effluent exits the well, it mixes with the denser ambient fluid by

the process of hydrodynamic dispersion. As the 10% isopleth propagates

away from the injection well, it is so Ive11 mixed with the aJnbient fluid

that the buoyant effect is hardly noticeable. After 1 hr, the 50% isopleth

demonstrates very little additional upward movement due to buoyancy but by

3 and 5 hr. it has noticeably migrated more in the vertical direction than

the horizontal. After 10 hr of simulation time, ~ strong positive correla­

tion between the percent of effluent and the amount of buoyant rise is

obvious. As the effluent enters the region of higher velocities (upper

left, Fig. 9), the isopleths propagate faster and disperse more widely (20,

40, 70 hr).

Several important features about this simulation should be emphasized:

1. By comparing Figures 7 and 8.1, it can be seen that the ambient

flow field is reduced to only a small portion of its original

preinjection amount. The injected fluid displaces most of the

ambient flow so that very little ambient flow is necessary to

maintain the same preinjection constant head on the right (x = L)

boundary.



39

2. Because of hydrodynamic dispersion, some of the effluent mixes

well enough with the ambient fluid so that it propagates away

from the well almost equally in all directions, thereby displaying

very little buoyant effect. However, the fluid near the well is

less dense than the surrounding fluid hecause the effluent is more

concentrated near the well. This less dense fluid containing a

high percentage of effluent tends to rise more vertically than

horizontally due to the buoyant force.

3. By looking at Figure 10, it can be seen that most of the effluent

leaves the aquifer near the top, in other words, the effluent

exits near the coast in shallow water, rather than in deeper

water. This is because very little ambient flow is necessary to

maintain constant head on the right (x = L) side of the aquifer.

With very little ambient flow, the effluent tends to rise into

the fresher portion of the aquifer near the top, and this is where

it leaves the aquifer at the ocean-aquifer interface.

Description of F-l Simulation

The initial conditions for the F-l injection simulation were set up

differently than those for H-l. The interface on the right-hand side was

set at the point where the specific discharge went to zero (z/R = 0.35),

thus allowing only fresh water to enter the model (the interface was set at

z/H = 0.5 for the H-l simulation). The result is that the 50% isochlor is

much lower, 1. e. , deeper in the aquifer, in the F-1 simulation and injec-

tion takes place into a much less dense ambient fluid so that the buoyant

force acting on the fluid is much weaker in F-l than in H-l. For F-l, the

ambient salinity at the start of injection was 11.2~ (31% isochlor), while

for H-l the preinjection ambient salinity was 28~ (77% isochlor). The F-l

simulation then corresponds to injection into a brackish, highly dispersed

transition zone. This is the type of ambient fluid present in many of the

coastal caprock sediments into which injection takes place in the Hawaiian

Islands, especially O'ahu and Maui. Figure 11 is a series of plots of

steady-state preinjection isochlors for the H-l, F-l, and F-2 simulations

(F-3 used the same preinjection isochlors for the injection phase initial

conditions as F-2 did).

A plot of steady-state velocity vectors for F-I is shown in Figure 8.2
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(those for H-I are shown in Fig. 8.1 for purposes of comparison). Two

major differences are readily apparent. First, F-I displays an upstream

stagnation line (between cols. 7 and 8) as expected for a case with con­

stant recharge, whereas H-I does not. Second, the difference in buoyant

force is readily apparent between the two because of the difference in

ambient density (the H-I simulation showing much greater buoyant effects

than the F-I simulation).

Figure 12 shows the salinity and tracer concentrations as a function

of time for F-I. On a gross scale, H-I and F-I are quite similar. However,

two distinct diffeTences exist. In H-I, isopleths with concentTations less

than SO% generally show little sign of buoyant rise and those with concen­

trations greater than sag" do. Secondly, because of the constant recharge,
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the effluent in F-I does not have the ability to migrate in concentrated

form nearly as far upward into the freshwater zone as it does in H-I. The

bulk of the effluent migrates toward the ocean sandwiched between the saline

and fresh water.

Several important features should be emphasized about F-l.

1. Owing to the process of hydrodynamic dispersion, the effluent

migrates considerably farther upstream than is indicated by the

stagnation streamline. This can be seen by comparing Figures 8.2

and 12. The upstream stagnation line falls just about 4% of the

aquifer's length to the right of the well in Figure 8.2, while

Figure 12 shows that the 10% isopleth extends more than 3 times

farther upstream at the S:lme depth as the I"e 11. Figure 13 further

illustrates this point. The signifi<;:ance of this result will be

discussed in ~ later section.

2. A critical mixing ratio (CMR) can be defined in terms of a parti­

cular isopleth which displays little or no buoyant effect. Those

isopleths higher in concentration than the OIR do display buoyancy,

while those isopleths lower in concentration than the CMR do not

display ;1 significant buoyant effect. The CMR isopleth is some­

what variable (both from point to point and from time to time)
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because the mixing process is (by definition) gradational due to

hydrodynamic dispersion. The CMR for H-I appears to be about 10%

or less, while for F-l it appears to be approximately 50%. The

variation between the CMRs for the two experiments reflects the

difference in ambient density between the two, as explained

earlier.

3. Figure 14 is constructed in the same way as Figure 10, but for the

F-I simulation. At each point along the outflow face at the ocean,

there is a mixture of all three fluids and each fluid has its

greatest percentage at a specific depth. The ambient flow (fresh­

water recharge) has its greatest percentage at the top of the

aquifer (58%), while at the same point, 39% of the water emanating

into the ocean is effluent and 3% is saline water. The top of the

aquifer corresponds to a shallow, near-shore environment. The
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effluent has its greatest percentage (73%) of the water flowing

into the ocean from the aquifer at a depth of zlR = 0.55. Thus,

in comparing F-I with H-I, it can be seen that the largest percen­

tage of effluent flows out of the aquifer near the middle (in the

vertical cross section) of the aquifer in F-I, in effect "sand­

wiched" between fresher water (from ambient flow) on top and more

saline water below. On the other hand, in H-I there was very

little ambient flow, so the bulk of the effluent flowed into the

ocean near the top of the aquifer, in a shallow, near-shore envi­

ronment.

Comparison of F Series of Simulations

The differences between simulations F-I, -2, and -3 are best seen by

comparing their steady-state distributions of salinity, effluent, and

ambient flow (recharge) at the ocean-aquifer interface (left side of aqui­

fer, x = 0). Figure 15 is a comparison at the ocean-aquifer interface of

the vertical distributions of the three types of waters (saline, effluent,

and ambient flow) for simulations F-l, -2, and -3. From Table 2, two dif­

ferences are apparent between F-l and F-2. In simulation F-2, the injection

well was placed 16.7 cm (20%) farther away from the ocean than in F-l.

This was done to see if placing the well farther away from the ocean would

disperse (or dilute) the effluent more by traveling through a longer path

in the aquifer before reaching the ocean. The highest concentration of

effluent tracer in F-l at the ocean-aquifer interface was 73% (at a height

of zlR = 0.6), that is, 73% of a water sample hypothetically taken at that

depth would be effluent. In F-2, the highest concentration of effluent was

70% (at a height of zlR = 0.5); thus, an increase of 20% of the travel

distance to the ocean produced only a 4.3% decrease in the maximum effluent

concentration entering the ocean from the aquifer.

The other difference between the F-l and F-2 simulations was that in

F-2 the ambient flow was slightly decreased to raise the ambient preinjec­

tion salinity around the well to about half that of sea water (Table 2).

This decrease in ambient flow is reflected in a decreased amount of fresh

water flowing into the ocean and can be seen as a decrease in area of fresh

water from F-I to F-2, as shown in Figure 15. Note that in F-I the leg of
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fresh water extends all the way to the bottom of the aquifer while in F-2

it pinches out at zlR = 0.3. This leg reappears again in F-3, but the area

representing the total amount of fresh water escaping to the sea is the

same in F-2 and F-3 because in F-3, even though the leg is present, it does

not extend to the bottom of the aquifer. The increase in ambient preinjec­

tion salinity concentration from F-l to F-2 causes an increased buoyant

affect that results in increased vertical movement of the more concentrated

effluent in F-2. This increased vertical movement can be observed by com­

paring the isopleth movement of F-l (Fig. 12) to that of F-2 (Fig. 16). In

F-2, the isopleths migrate vertically more than those of F-l.

The differences between F-2 and F-3 were that F-3 had a lower injec­

tion rate (approximately half as much as F-2), and the F-3 injection well

\vas placed at the same point as the F-l injection \vell, i.e., 20% closer to
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the ocean than in F-2. The primary effect of injecting at the significantly

lower rate was to allow salt water intrusion into the lower 5% of the aqui­

fer. This effect for F-3 is seen in Figure 15, where the salt water concen­

tration is 100% in the bottom 5% of the aquifer at the ocean-aquifer inter­

face. The increased salinity concentrations due to salt-water intrusion can

also be seen in the two-dimensional vertical plane in the lower left of each

time-series plot of F-3 in Figure 17.
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Lower Dispersivity, Anisotropy, and
Field-Size Dimension Simulation Results

Attempts to reduce dispersion by decreasing aL and aT values were

unsuccessful. Values lower than those shown in Table I introduced an

unacceptable amount of numerical overshoot. In order to model reduced dis-
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persion (lower values of aL and aT), it would have been necessary to reduce
'\,

6x and 6z, thus keeping the parameter DnL above a critical minimum value

Ceq. [48]) so that numerical overshoot would not occur. However, reducing

the values of 6x and/or 6z increases the number of nodes, which increases

the execution time for the simulation. Attempts to reduce the value of kz
to study anisotropic effects also failed for similar reasons. Reducing kz
had the effect of reducing the vertical velocity (V), which in turn reduced

'\,

DiJ and therefore DnL (eq. [48]), thus, again causing numerical overshoot.

The solution to this problem is the same as outlined above for aL and aT'

to reduce grid spacing, thereby increasing the number of nodes and increas­

ing the cost of the simulation.

Scaling the simulation up to a field-size problem (1 000 m long, 100
'\,

m deep) reduced the size of DnL in all of its parameters. DiJ was reduced

because the velocity was small er, t-.t \vas larger because of the different

time scale, and 6x and t-.z were larger because the length scales were larger,

but the number of nodes remained the same. Just as in the case of reducing
'\,

aL, aT, and kz , the smaller values of DnL caused numerical overshoot, thus

the solution to simulating a field-size problem is to increase the number

of nodes. In order to verify this, the numerical model was run with 1020

nodes (rather than the 210 nodes used for the simulations already discussed)

for a few time steps and the numerical overshoot was observed to be elimi­

nated. Only the lack of additional computer funds prevented the completion

of this simulation. It is proposed that a further study be conducted to

study the effects of lower dispersion, anisotropy, and field-size problems

at a time when more computer funds are available.

COMPARISON OF NUMERICAL SIMULATIONS TO SANDBOX-MODEL EXPERIMENTS
Differences Between Sandbox Model and Numerical Simulation

There are three important differences between the sandbox model and the

numerical model which make it difficult to make meaningful quantitative com­

parisons between the two models. These differences are (1) boundary condi­

tions, (2) geometry (three-dimensional in sandbox, two-dimensional in numer­

ical model), and (3) the relative importance of dispersion in each model.

The first two points will be discussed in this section while the third will

be covered in the following separate section.
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To discuss model geometry and boundary conditions, two terms must

first be defined. A saltwater head refers to the pressure distribution

along the ocean-side boundary in the sandbox model that would occur if the

entire column of water in the sandbox end chamber were salt water. A mixed

saltwater head refers to the pressure distribution that would be exerted

along the ocean-side boundary of the sandbox if there were a layer of fresh

water sitting on top of a layer of salt water in the end chamber. Gecause

fresh water is less dense than salt water, the mixed saltwater head condi­

tion produces pressures at each point in the vertical direction along the

ocean boundary which are smaller than those produced by a saltwater head

(Fig. 18). In the sandbox a mixed salV.later head \vas always present,

whereas in the numerical model a saltwater head was used. In the typical

field situation, the saltwater head is usually present (rather than the

mixed saltwater head) because rerardless of how much fresh water is flowing

into the ocean from the aquifer, the fresh water is continually slvept away

in the ocean. Therefore, the sandbox model would have been a better approx­

imation to the prototype if the ocean-side end chamber had been contjnually

mixed with salt water, thus providing a saltwater head. This w~s a Jiffi­

cult thing to do physically so it was ignored in the sandbox moriel experi­

ments, but it is qui te simple to do mathematically for the bOUilli;Uy condi­

tions of the numerical model (eq. [23]); thus, the numerical mOlicl employs
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a saltwater head and more closely represents the typical prototype situa­

tion.

One of the effects of the difference between using sal twater head

versus mixed saltwater head was that for the saltwater head, it took a corp

respondingly larger head on the recharge boundary (in the numerical model)

to produce the same specific discharge through the numerical model that was

observed for a typical sandbox model experiment with the mixed saltwater

head. For instance, in simulation H-l, a head of 1.9 cm was necessary to

achieve the same specific discharge rate that a head of 0.75 cm produced

in the sandbox model. This value (1. 9 cm) was found by adjusting the value

of the head in the numerical model until the ambient flow agreed with that

1n the sandbox model.

The second important difference between the sandbox model experiments

and the numerical model is that in the sandbox model, injection is a three­

dimensional problem. In the sandbox the injection plwne extends back into

the model and has a finite horizontal width as it enters the ocean. The

numerlcal model is two-dimensional and corresponds to a situation in which

there is an infinite series of closely spaced wells parallel to the ocean.

The wells must be close enough to each other so that their effluent pll@es

coalesce and there is no vari;ltion in effluent concentration in the direc­

tion parallel to the coastline. In reality, there is never an "infinitely

long-strip" of wells, but as long as the total width of the \"ell field,

parallel to the coastline, is large compared to the distance to the ocean,

then a cross section taken near the center of the finite set of wells,

perpendicular to the ocean, will closely resemble a cross section at the

center of a two-dimensional infinite strip.

There is of course the question of how many wells would be necessary

to provide a good approximation to the infinite strip case. Experience

witll comparing the results of a two-dimensional Hele-Shaw model and the

three-dimensional sandbox model, with one well, has shown that even for

just one well, the efflllent plume geometry is similar for the two cases on

a gross scale (Peterson, Williams, and Wheatcraft 1978). Therefore, even

though the sandbox model experiments and the nwnerica1 model employ signi­

ficantly different boundary conditions and flow fields, it is possible to

compare the results of the two on a gross qualitative scale.

The last major difference between the sandbox model and the numerical
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model was that the former modeled water table conditions while the latter

modeled confined conditions--a difference that is negligible because the

primary difference between the water table and confined conditions is the

value of the storage coefficient. The term which includes the storage

coefficient is dropped from the continuity equation in this problem (eq.

[16]) because it is negligible with respect to other terms in the equations;

thus, it is not important whether the aquifer is confined or unconfined.

Determining Relative Importance of Dispersion

Results of the sandbox and Hele-Shaw model studies were quite similar,

thus tempting one to ignore the process of hydrodynamic dispersion in theo­

retical analysis. Yet the results of the present numerical model show that

dispersion significantly alters the general nature and appearance of the

flow field and mixes salt water, effluent, and recharge in considerable

proportions (Figs. 9-12). The values chosen for longitudinal and transverse

dispersivities are much larger than the estimated values for the sandbox

model. Typical values reported in the literature for a sand with grain size

similar to the sandbox range between land 10 cm for longitudinal disper­

sivity, and approximately one order of magnitude lower than that for the

transverse dispersivity. The sand useJ in the sandbox model was well

washed and highly uniform, so it is likely that the dispersivities for the

sandbox fall at the lower end of the above range of estimates. The values

used in the numerical model were respectively 50 and 10 cm for the longI­

tudinal and transverse dispersivities. These were the smallest values that

could be used without causing numerical overshoot.

Because of the difference in dispersion produced by using higher

values of the dispersivity in the numerical model than actually occurred in

the sandbox model, it is of interest to determine what parameters are im­

portant in determining whether the final flow regime will behave more like

a two-phase (immiscible) flow field or more like a dispersive flow field,

(or like a case between the two extremes). To do this, we will examine the

convective-dispersion equation.

For the purposes of this argument, consider the steady-state case and

use a coefficient of dispersion that is a constant. With these assumptions,

the convective-dispersion equation becomes
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The term on the right-hand side of the equation becomes

'l • q C = q • 'l C = U dC + V dC •
'\., '\., dX dZ

Note that the divergence term has been omitted in (52) because

'l • ~ = a .

Therefore, (51) becomes

Dk 'l2 C = UdC + V dC
dX dZ

Introducing the following variables into (54):

x' = x/H

z' = z/H

VI V/Vo

VI VIVo

CI = C/Cs

Q = Vo H

we have

(51)

(52.1, .2)

(53)

(54)

(55.1)

(55.2)

(55.3)

(55.4)

(55.5)

(55.6)

(56)

The "primes" will now be dropped from (56) without any loss in clarity.

The dimensionless number Q/Dk is known as the Peclet number, Pe , which

can be thought of as the ratio of the convective to dispersive forces.

Equation (56) can therefore be written as

= U dC + V dC
dX dZ

(57)

As an approximation, DK can be assumed to take the form,

0< = aL Uo '

and the Peclet number becomes

(58)

(59)
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For the sandbox model, Pe = 1000 (assuming that aL is on the order of

0.1 em for the sandbox model). A value for the Peclet number this large

renders the dispersive flux term of equation (57), the term on the left­

hand side, virtually negligible compared to the convective terms on the

right-hand side of equation (57) and the resulting flow field in the sand­

box model experiments appears to be nearly iruniscible, piston-like flow,

i.e., flow by convection only. In the numerical model, aL was chosen as

50 cm and the resulting value for the Peclet number was on the order of 2,

a SaO-fold increase over the value in the sandbox model itself.

Thus, there is an inverse relationship between the value of the Peclet

number and the importance of dispersion. The larger the Peelet number, the

less important hydrod~lamic dispersion becomes as a transport mechanism.

A typical field case based on values reported for field dispersivity

by other workers (Robertson 1978) might be H = 100 m, aL = 200 m. The

Peclet number would be 0.5 for this case, making dispersion 4 times more

important, as a transport mechanism, than in the numerical model of the

sandbox model experiments, and 2000 times more important than in the sand­

box experiments themselves. Because of the large discrepancy between the

values of the Pee let numbers for the sandbox model and a typical field

situation, the sandbox model appears to be a poor representation of the

relative importance of hydrodynamic dispersion for a typical field situa­

tion.

Similarities Between Sandbox Model and Numerical Simulation

In spite of all the differences between the sandbox model and the

numerical model discussed previously in this chapter, there are some inter­

esting similarities which will be discussed here. Three similarities will

be discussed in this section: (1) effects due to density-difference

between inj ected and ambient fluids, (2) breakthrough curves for effluent

and salinity, and (3) downstream migration of the effluent plume.

The first similarity is illustrated by Figure 19 in which the results

of the two sandbox model experiments are shown next to the results of two

numerical simulations. For the high ambient density--injection in salt or

nearly salt water-a strong vertical migration is seen in the vicinity of

the well for both the sandbox and numerical models. Similarly, for the low

ambjent density, a buoyant migration of effluent is present in both models
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but not nearly as strong as in the case of high ambient density.

Figure 20 illustrates the second similarity. In the sandbox model

experiments, a sharp rise in the salinity, as measured by chlorides, was

noticed in high ambient density experiments just as the effluent front

started to pass by the sample point. For experiments in the transition

zone, low ambient density, the same salinity spike did not occur. This

same phenomenon is observed in the numerical simUlation.

Figure 21 is a plot constructed similar to Figure 15 for an experiment

from the sandbox model (the data are taken from the end chamber of the sand­

box model interface which is analogous to the ocean-aquifer interface dis­

cussed for Fig. IS). It is, in a sense, the limiting effect for the sandbox

model which demonstrates almost no dispersion effects. In Figure 21, almost

all of the fresh water (from the ambient flow) remains unmixed with the
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effluent and salt water, and flows into the ocean from the top portion of the

sandbox model. Similarly, the effluent mixes very little with the fresh water

or the salt W:iter and flows out of the sandbox model "sandwiched" between the

fresh water (ambient flO\~) and the salt water. By comparison, in Figure 15

(for numerical simulations F-l, -2, and -3) the three fluids show much greater

mixing; however, the water in the lower portion of the aquifer is mostly salt

water, in the middle mostly effluent, and in the upper portion mostly fresh

water (ambient flow). Thus the largest portion of the effluent flows out of

the aqui fer "sandwiched" between mostly saltwater and mostly fresh (ambient

flow) water, jn a way very similar to the flow out of the sandbox model.

SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS
Conclusions

The results of the simulations demonstrate several important features

which are summarized below.
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1. The numerical model developed was shown to correctly solve the gov­

erning equations by comparison with other analytic and numerical

models. This verification holds only for the saltwater intrusion

phase, not the waste injection phase. The v,'aste injection phase

uses essentially the same code as the saltwater intrusion phase,

with changes only in the boundary conditions, therefore the accu­

racy of the waste injection phase is reasonably well established

by extension, assuming that the boundary conditions are written

correctly.

2. The limitations of this model are that it was developed as an in­

terpreti ve model for a hypothetical situation to study the effects

shown by various parameters on the process of waste injection; thus

it is an interpretive model, and not a predictive model. The nu­

merical results cannot be applied to a specific field situation

until the numerical model has been calibrated with the field data

so that it reproduces the history of the field data.

3. The results of the numerical simulations have contributed to the

body of knowledge on waste injection. In particular, the simula­

tions indicate that with fairly large dispersivities (similar in

value to those which may occur in the field), at least some of the

effluent mixes well enough with the ambient brackish water that it

no longer has a significant buoyant flow component. This well­

mixed effluent is in low concentrations (less than 50%) and propa­

gates away from the well following the same path as the resident

fluid. However, much of the effluent remains in high concentra­

tions (greater than 50%) and correspondingly low densities, result­

ing in a significw1t buoyant flow component. Thus a strong posi­

tive correlation exists between the percent of effluent in the wa­

ter and the amount of buoyant rise, as displayed by the time-series

plots of salinity and effluent tracer. This result is in contrast

to the sandbox model experiments in which (due to very small dis­

persivities) the effluent did not mix at all with resident fluid

and rose vertically into the freshwater zone above the salt and

brackish water zones.

4. Other parameters varied in the numerical simulations, such as dis­

tance from the injection well to the ocean and injection rate,

showed only small variations in the results (in keeping with the

relatively small variations in the parameters). Moving the injec-
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tion well 20% farther from the ocean reduced, i.e., diluted, the maxi­

mum concentration of the effluent at the coast by about 5%, whereas a

lower injection rate caused the simulation to take longer to go to

steady-state.

Recommendations for Future Research

This investigation has concentrated on developing an interpretative numer­

ical model which simulates waste injection into a density-stratified ground­

water body. Several recommendations are made for future research which would

make use of the basic model developed in this study.

1. It is recommended that a parametric study be undertaken in which se­

lected injection parameters, which are management controllable, be

varied. Based on previous work, there appears to be three parameters

that are of primary importance in determining the effluent and salin­

ity distribution due to the injection in a density-dependent flow re­

gime, such as the typical sea water intruded, coastal caprock aquifer.

The first is the ratio of the injection ratci:o the recharge rate, or

ambient flow field. The second is the ambient Censi ty prior to injec­

tion, which is directly related to the salinity distribution and the

depth of the injection well relative to this distribution. The third

parameter of importance is the horizontal injection well location

relative to the coastline. In a series of numerical simulations,

these three parameters should be systematically varied to determine

their effects on the salinity and effluent distributions in the aqui­

fer, and exiting the aquifer into the ocean.

2. Three additional parameters affect the flow field, but are generally

not thought of as management controllab Ie. These are longitudinal and

transverse dispersivity and anisotrophy. It is suggested that further

simulations be run to study the effects of varying these parameters as

well.

3. A final suggestion for future research, to take place after the para­

metric studies recommended above, is to extend the numerical model to

a fully three-dimensional system so that the \'Iidth of the effluent

plume as it enters the ocean can be studied wi til respect to the above­

mentioned parameters.
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A

C

Cs

D
'"
'\.i
D

GLOSSARY OF SYMBOLS

Empirical coefficient used in Eq. (21) to set initial values for
C - A = -23.085

Salinity solute concentration, parts per thousand (dimensionless)

Initial concentration of salinity in effluent, Co = 0 (dimension­
less

Concentration of TDS, standard sea water (35.8%0)

Coefficient of hydrodynamic dispersion, L 2T- 1

Dimensionless dispersion parameter

Coefficient of molecular diffusion for a solute, L2T-1

Coefficient of molecular diffusion for a porous medium, L2T- 1

Constant dispersion coefficient used in stability analysis, L 2T- 1

Coefficient of mechanical dispersion, L 2 T- 1

Analogous to D but replacing Dk with dij, L2 T- 1

Same as previously defined, but using Einstein's summa­
tion-convention notation where i, j = 1, 2

g

H

k
'"
k'

n

n

p

Acceleration of gravity, a vector = k g, positive downward, LT-2

'\.i

Depth of aquifer, L

Head above sea level or right-hand side of model, L

Total height of water at well, L

Intrinsic permeability, a second-rank tensor, L 2

= kz /lln, L 3T m- 1

Intrinsic permeability in x-direction (horizontal), L2

Intrinsic permeability in z-direction (vertical), L2

Porosity (dimensionless)

Unit normal vector

P L -1 T-2ressure, m

Pressure due to weight of a column of saltwater, mL- 1 T- 2
, equal in

height to depth, H, of aquifer



T

T'/;·
"J

t

u

v

x

z
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Integrated fluid injection rate for one cell, m L-3 T- 1

Integrated effluent solute injection rate, m L- 3T- 1

Specific discharge, a vector, LT- 1

Velocity of salinity solute, LT- 1

Effluent tracer velocity, LT-1

Surface, L2

Effluent tracer solute concentration, parts per million (dimen­
sionless)

Tortuosity (dimensionless)

Same as previously defined, but using Einstein's summation conven­
tion notation

Concentration of effluent solute at well (dimensionless)

Time, T

Component of specific discharge in x-direction, LT- 1

Specific discharge entering aquifer on right, x = L, boundary, LT-1

Component of specific discharge in z-direction, LT-1

Volume, L3

Independent space variable in horizontal direction, L

x-coordinate of injection well, L

Independent space variable in vertical direction, L

Point on right boundary below which there is no recharge, L

z-coordinate of injection well, L

Empirical multiplication factor to change salinity to density
(calculated by using regression analysis on a table of values of
density vs. TDS in sea water, from Handbook of Chemistry and
Physics [1972])

Dirac delta function, = I at 0(0, 0) and = 0 elsewhere

Difference operator defined by eq. (43.2)

Vector operator i l + .f..).- + k L (L -1)- ax - ay - az
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e:(V

p

Time step size, t

Grid spacing in x-direction, L

Grid spacing in z-direction, L

Maximum residual error criterion for the iterative solution of the
fluid transport equation

Truncation error

= 0) Truncation error for zero vertical velocity

Fluid density, mL- 3

Density of fresh water, mL- 3 0

Parts per thousand (dimensionless)
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APPENDIX A. ERROR ANALYSIS FOR VERTICAL VELOCITY

The truncation error CET) for the central difference representation of

the first derivative of pressure can be determined by taking forward and

backward the Taylor series expansions of the pressure,

and

'dP
Pi+l,j = Pi,j + (liz) az i,j

(lizi a2p+---- +
2! dZ 2 i,j

(liz)3 a3 P
-3I. "Z3 ,; J"a v, + ••• (A. I)

p. . = p . . _ (liz).aE . . + (!:J.zf ip. _lli.tli
'1..-1,J '1..,J az'1..,J 2! -a;z'1..,j 3! az3 i,j + .••• (A.2)

If (A.2) is subtracted from (A.I), we have higher-order terms neglected

when rearranged as

where
p. . - p. .

oP= '/-+l,J '1..-1 ..7
z 2/1z

Under hydrostatic conditions (where V = 0),

'dP = _ Pg
az '

and the second derivative of (A.4) is

The second derivative of the equation of state (4) is

(A.3.1)

(A.3.2)

(A.4)

(A.S)

(A.6)

Now if (A.6) is substituted into (A.S), and (A.S) in turn into (A.3), the

result is

where

ap _
az - oP + ET '

>~ = g ~z)2 P B a2 C
-1 3! 0 C'dz 2

(A.7.1)

(A. 7 .2)

Thus, ET represents the truncation error (for V = 0) in terms of the second

derivative of the salinity concentration.
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APPENDIX C. FDM COMPUTER PROGRAM

/IPLIMP JOH (3419.45M,25KI,15KL),'STEVE WHEATCRAFT',MSGLFYFL=(l,l)
II EXEC SETUP
IISYSIN DD ~

V=UPCONE, T=X21134,ID=UPCONE,SZ=H,RING
I "..
II EXEC HFORTCG,PARM,COMPlLE='OPT=2',PG=700K
IISYSIN DD ::

IMPLICIT REAL~S(A-H,O-Z)

REAL::S cOO, 21,2), POO, 21, 2)) uOO, 21), VOO<21),
1 ALPHA(21),BETA(21),GAMMA(21),VECKWN(21)
REAL~S CT(10,21),CI(lO,21),PT(lO,21), PI(lO,21)
REAL::S DXXClO, 21), DXZ(lO, 21), DZZOO, 21)
REAL::S ANGLEClO,21),VELOO,2l)
REAL::S UODX(21),UO(21)
REAL~S CZRO(10,21)
REAL::S RHOP( 50)
REAL::S TOO, 21,2)
COMMON RHOZRO,BETAC,CZERO,RKX,RKZ,DELTAX,DELTAZ,RMU,G,TODFLX,

1 TODELZ,DELXSQ,DELZSQ,ALONG,ATRANS,DDT,RKXMU,RKZMU,RKXDXM,
2 A5,TDX,TDZ,TODDT,ALMAT,TAUMAT,A3DDT,A4DDT,
3 RN,ROBAGZ,ETAP,RMU~,NMl,NM2,MMl,K,KPl

COMMON/PI/CSEA,IF
COMMON IP21 RLE~rH,HEIGHT,EPSLON,ACONC,ZZERO,HEAD,UZERO,RECH,EP,

1 DELTAT,N,M,KD,NTS,NPI
COMMON IP31 XL2,ETA,PZROS,PZROF,Bl,B2,TBl, TB2,TBIM, TB2M,

1 B3STAR,B4STAR,B5STAR,EPIM,IRECH
COMMON IP4/ Q, QDX,QDZ,WX,WZ, DXDZ, DZDX,DXDZG, DZG, IWELL,JWELL,
COMMON IP61 RKXDD,RKZDD,DELZ12,MM2
COMMON /P71 IWPl,IWMl,JWPl,JWMl
COMMON /P8/ GDZ2,ROBNDT
COMMON IP9/ RECHED,ROGRHD
COMMON /PIO/ HPM
COMMON IPlll B2GTDZ
COMMON IP12/ RNDDT
COMMON /P131 ITIME
COMMON IP141 EFLUNT
NIPARM = 10
ISTOP = 1
CALL RDCTE
ATR,ANS = 10.ODO
ALONG = 50.0DO
DELTAT = lSO.ODO
REQ-i = O. 5DO
READ( 5, ::) RDUMY, NUCASE
READ(5, ::) RDUMY ,N,t~, K, KPl, KD,NTS,NPI ,NTAPI
READ( 5, ::) RDUMY, MODE
I~D = N
fv1D =M
KDD = KD
CALL CALCK(UODX,UO,MD)

C
C------------ NUCASE=l; T=O, NEW INITIAL CONDITIONS -----------­
C------------ NUCASE=2; T=O, OLD INITIAL CONDITIONS------------
C------------ NUCASE=3; T= LAST TIME STEP ------------

69
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C
GO TO (30740750)7NUCASE

30 CALL INTL(C7P7CI7PI7CT7PT7U7V7DXX,DXZ,DZZ,U07UODX7DZRO,
ND,MD7KDD)

ENDFILE 12
WRITE(6,902)

902 FORMAT(lH1 7T53, 'T=07 NEW INITIAL CONDITIONS')
GO TO 60

40 READ(16) ITS,TIME7C7T7P7CI7PI7CT7PT7U,V7DXX,DXZ7DZZ
REWIND 16
WRITE(6 J903)

903 FORMAT(lHI JT53 7'T=OJ OLD INITIAL CONDITIONS')
GO TO 60

50 READ(ll) ITS7TIMEJC,T,P7CI,PIJCT,PTJU,V,DXX,DXZ,DZZ,CZRO
WRITE(6,904) ITS

904 FORMAT(lHI JT51, 'T=',I47" OLD INITIAL CONDITIONS')
60 CONTINUE

IWELL = 6
JWELL = 7
IF(MODE .GE. 2) C(IWELL7JWELL,KPl) =O.ODO
EPS LNP = O. 00 1DO
RDXDD = RDX/(l2. ODO::DELTAX::RMU)
fVM2 = M-2
RKZDD = RKZ/RMJ
DELZl2 = 12, ODO ::DELTAZ
WELHED = 103.5DO
ZWELL = DELTAZ::CDFLOAT(JWELL-l))
PZERO = RHOZRO::G::(WJ:LHED-ZWELL)
IFCMODE .GE. 2) P(IWELL,JWELL,KP1) = PZERO
IWPI = IWELL+l
IWMI = IWELL-l
JWPI =JWELL+l
JWMI =JWELL-l
GDZ2 = G::DELTAZ/2 . ODO
EFLUNT = 1. aDO
ROBNDT = RN::RHOZRO::BETAC::A5
RECHED = 2. aDO
ROGRHD = RHOZRO::G::RE01F.D
RNDDT = RN::DDT

C
C------------MODE = 1; PRE-INJECTION -----------­
C---··-------- MODE = 2; START INJECTION -----------­
C------------ MODE = 3; INJECTION PHASE -----------­
C

IFCITS .EQ. 0 .AND. MODE .EQ. 1) GO TO 75
GO TO 76

75 CONTINUE
DO 31 J-l,M
C(1,J,KP1) = 35.8DO

31 CONTINUE
C------------ PRESSURE INTEGRATION GOES HERE --------­

CALL INPRESCCJP,1,ND7MD JKDD)
DO 32 J-IJM

32 CC1,J,KP1) =CICIJJ)
76 CONTINUE
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IF (MODE .EQ. 2) GO TO 70
GO TO 71

70 CONTINUE
DO 72 J=I?M
DO 72 I=I?N
CZRO(I?J) = C(I?J?KPl)

72 CONTINUE
TIME = O. ODO
ITS = 0

71 CONTINUE
C
C

B2GTDZ = B2~:G~:TODELZ

WRITE(6) 950)
950 FORMAT(IHl?T55? 'INITIAL CONCENTRATIONS')

CALL PRINT3(C?N?M?KD?DELTAX?DELTAZ)
CALL PRT3DF(P?N?M?KD?DELTAX?DELTAZ)
CALL COMHPM(RHOP.NIPARM)
EPSLON = 0.5DO
NPRESI = 10
KOUNT =0
ITSP1 = ITS + 1
DO 100 ITIME=ITSP1,NTS
WRITE(6?977) ITIME

977 FORMAT(IH) 'K = ',IS)
IF(ITIME .EQ. 1) GO TO 499
IF((ITIME/NPRESI):~PRESI .NE. ITIME) GO TO 501

499 CONTINUE
DO 500 ITER = 1)100
IF(((ITER-1)/NIPARM)~~IPARM .EQ. (ITER-I)) KOUNT = 0
KOUNT = KOUNT + 1
HPM = RHOP(KOUNT)~:(TBl+TB2)

C
C------------START ITERATION ON COLUMNS (I=COLUMNS) FOR PRESSURE-----------­
C

IF = 2
L = N
DO 8 J=I?M
IF(MODE .GE. 2 .AND. J .EQ. JWELL)

. CALL APIWFX(C?P?UODX)ALPHA?BETA?GAMMA?VECKWN?ND?MD?KDD?J?&8)
CALL AIPFLX(C?P?UODX?ALPHA?BETA?GAMMA?VECKWN?ND?MD?KDD,J)
CALL TR Iex; ICI F? L?ALPHA? BETA? GAMMA, VECKWN? P? N? M? KD, J)
CALL STUF21(P?ND?MD,KDD)

C
C------------START ITERATION ON ROWS(J=POWS) FOR PRESSURE-----------­
C

IF = 1
L =M
DO 6 I-2,N
IF(rv'ODE .GE. 2 .AND. I .EQ. IWELL)

.CALL APJWEL(C?P?ALPHA?BETA?GAMMA?VECKWN?ND?MD?KDD?I,&6)
CALL AJPFLX(C,P?UO,UODX,ALPHA?BETA?GAMMA?VECKWN?ND?MD?KDD?I)
CALL TRIDAG(lF,L?ALPHA?BETA?G.AJv'MA?VECKWN?P?N?M?KD?I)

6 CONTINUE
CALL CHKCON(P?EPSLNP?ICON?ND?MD?KDD)
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CALL STUF21(P~ND~MD~KDD)

IF (ICON .EQ. 1) GO TO 501
500 CONTINUE

STOP 500
501 CONTINUE

DO 700 ICOEF=1~100

CALL VELOC(C~P~U~V~N~M~KD)

CALL DIJ(DXX~DXZ~DZZ~U~V~N~M)

C
c------------START ITERATION ON COLUMNS (1= COLUMNS)--------~--­

C
L = NM1
DO 5 J=l~M

IF = 1
IF(MODE .GE. 2 .AND. J .EQ. JWELL)

.CALL AIWELL(C~U~V~DXX~DXZ~DZZ~ALPHA~BETA~GAMMA~VECKWN~CW,ND~MD/KDD

.,J,&5)
CALL ASMBLI(C,U,V,DXX,DXZ,DZZ,ALPHA~BETA,GAMMA,VECKWN~N,M~KD~J)

CALL TRIDGI(IF~L,ALPHA,BETA,GAMMA~VECKWN,C,N,M,KD,J)

5 CONTINUE
CALL STUF21(C,ND,MD,KDD)

C
C------------START ITERATION ON ROWS (J=ROWS)-----------­
C

L =M
DO 4 I=l~NMl

IF = 1
IF(MODE .GE. 2 .AND. I .EQ. IWELL)

.CALL AJWELL(C,U,V,DXX,DXZ,DZZ,ALPHA,BETA,GAMMA,VECKWN,CW,ND,MD~KDD

.~I,&4)

CALL ASMBLJ(C~U~V~DXX,DXZ,DZZ,ALPHA~BETA,GAMMA~VECKWN,N,M,KD,I)

CALL TRIDAG(IF~L,ALPHA,BETA,GAMMA~VECKWN~C~N~M,KD,I)

4 CONTINUE
IF (ICOEF .EQ. 1) GO TO 699

C
C------------ CHECK VALUES OF CONCENTRATION FOR CONVERGENCE -----------­
C

DIF = O.ODO
DO 23 J = I,M
DO 23 I=l,N
DIFNEW = DABS(C(I~J~KP1)-CT(I~J))

IF (DIFNEW .GT. DIF) DIF=DIFNEW
23 CC1'-JTI NUE

WRITE(6,900) DIF
900 FORMAT(lH ,'GREATEST DIFFERENCE IN CC1'-JCENTRATION =' ,D20.10)

IF(DIF .LT. EPSLON) GO TO 701
699 CONTINUE

DO 21 J=l,M
DO 21 I=l,N
CT(I,J) = C(I,J,KP1)
PT(I,J) =P(I,J,KP1)
C(I,J,K) = CI(I,J)

21 CONTINUE
700 CONTINUE

STOP 700



DD DISP=SHP,DSN=T034190.GRADR.DATA
DO DISP=COLD,KEEP),DSN=B.B3419.INJECT.DATA
DO DISP=COLD,KEEP),DSN=B.B3419.INTL.DATA
DD DUMtv1Y
DO DISP=(MOD,KEEP),UNIT=XTRK,VOL=SER=UPCONE.
LABEL=C8,SL),DSN=FLUX3

701 CONTINUE
C
C------------ COMPUTE TRACER EFFLUENT CONCENTRATIONS --------­
C

IF(tv'ODE .GE. 2)
.CALL TRACER (T,U,V,DXX,DXZ,DZZ,ALPHA,BETA,GAMMA,VECKWN,ND,MD,KDD)

TIME = TIME + DELTAT/3600.0DO
IF(CITIME/NPI)~CNPI .EQ. ITIME) GO TO 101
GO TO 98

101 CONTINUE
WRITE(6,919) TIME,ITIME

919 FORMATC1Hl, 'SIMULATION TIME =',F8.2,' HOURS,',' K = ',16)
WRITEC6,90S)

905 FORMATCIHO,T49, 'CONCENTRATIONS AT THE K+l TIME STEP')
CALL PRINT3CC,N,M,KD,DELTAX,DELTAZ)
WRITEC6,991)
CALL PRTDIFCC,CZRO,ND,MD,KDD)
IF(MODE .GE. 2) WRITE(6,930)

930 FORMATCIHl,T56,'TRACER CONCENTRATIONS')
IFCtv'ODE .GE. 2) CALL PRIII..JT3CT,N,M,KD,DELTAX,DELTAZ)
WRITEC6,99l)

991 FORMAT(lHl)
CALL EXHIBCU,V,ANGLE,VEL,N,M)

98 CONTINUE
DO 99 I=I,N
DO 99 J=I,M
CCI,J,K) = CCI,J,KPl)
CI(I,J) = C(I,J,KPl)
P(I,J,K) = PCI,J,KP1)

99 PICI,J) = P(I,J,KPl)
REWIND 11
WRITE(lI) ITIME, TH1E,C, T,P,CI,PI,CT,PT,U,V,DXX,DXZ,DZZ,CZRO
ENDFILE 11
IF(MODE .GE. 2 .AND. (ITIME/NTAPIY~TAPI .EQ. ITIME)

.WRITE(17) ITIME, TIME,C, T,P,CI,PI,CT,PT,U,V,DXX,DXZ,DZZ,CZRO
100 CONTI NUE

STOP
END

IIGO.SYSLIB DD DISP=(OLD,KEEP),DSN=B.B3419.NJECT.FORTSUB.NEW
II DD DSN=SYS1,FORTLBX,DISP=SHR
II DD DSN=SYSl,FORTSUB,DISP=SHR
I IGO. SYS IN DD ~:

'NUCASE' 3
'N,M,K,KP1,KD,NTS,NPI,NiAPI' 10 21 1 2 2 2000 50 10
'MODE' 3
I lGO. FTlOFOO 1
IIGO.FTlIFOOI
lIGO.FTI2FOOI
IIGO.FTl6FOOI
IIGO.FTl7FOOI
II
II
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SUBROUTINE RDCTE
IMPLICIT REAL::S (A-H,O-Z)
COMMON RHOZRO,BETAC,CZERO,RKX,RKZ,DELTAX,DELTAZ,RMU,G,TODELX,

1 TODELZ,DELXSQ,DELZSQ,ALONG,ATRANS,DDT,RKXMU,RKZMU,RKXDXM,
2 A5,TDX,TDZ,TODDT,ALMAT,TAUMAT,A3DDT,A4DDT,
3 RN,ROBAGZ,ETAP,RMUN,NMl,NM2,MMl,K,KPl
COMMON/Pl/CSEA,IF
COMMON /P2/ RLENTH,HEIGHT,EPSLON,ACONC,ZZERO,HEAD,UZERO,RECH,EP,

1 DELTAT,N,M,KD,NTS,NPI
READ(10,901) RLENTH
READ(10,901) HEIGHT
READ(10,901) DELTAT
READ(10,901) EPSLON
READ(10,901) BETAC
READ(10,901) CZERO
READ(10,901) RHOZRO
READ(10,901) CSEA
READClO,90l) RKX
READCl 0,90 l) RKZ
READCl 0,901) RMU
READCl 0,90 1) G
READClO,901) DDT
READ(10,901) ATRANS
READ(10,901) ALONG
READ(10,901) ACONC
READ(10.901) ZZERO
READ(10,901) HEAD
READCl 0,901) RN
READ(10,901) UZERO
READ(10,901) RECH
READClO,90l) EP

901 FORMAT(10X,D20.10)
RETURN
END

SUBROUTINE CALCK(UODX,UO,MD)
IMPLICIT REAL::S(A-H,O-Z)
REAL::8 UO(MD), UODX(MD)
COMMON RHOZRO,BETAC,CZERO,RKX,RKZ,DELTAX,DELTAZ,RMU,G,TODELX,

1 TODELZ,DELX5Q,DELZSQ,ALONG,ATRANS,DDT,RKXMU,RKZMU,RKXDXM,
2 A5,TDX,TDZ,TODDT,ALMAT,TALMAT,A3DDT,A4DDT,
3 RN,ROBAGZ,ETAP,RMUN,NM1,NM2,MM1,K,KP1

COMMON/P1/CSEA,IF
COMMON /P2/ RLENTH,HEIGHT,EPSLON,ACONC,ZZERO,HEAD,UZERO,RECH,EP,

1 DELTAT ,N, M, KD,NTS,NPI
COMMON /P3/ XL2,ETA,PZROS,PZROF,B1,B2,TBl, TB2,TBIM,TB2M,

1 B3STAR,B4STAR,B5STAR,EPIM,IRECH
NM1 = N-l
NM2 =N-2
/'1v11 = M-l
DELTAX = RLENTH/DFLOAT(NMl)
DELTAZ = HEIGHT/DFLOAT(MMl)
TODELX = 2. ODO::DELTAX
TODELZ - 2. ODO::DELTAZ
DELZSQ = DELTAZ::DELTAZ



DELXSQ = DELTAX:~DELTAX

RKXMU = RKX/(TODELX::RMU)
RKZMU = RKZ/RMU
RKXDXM = RKX/(DELTAX:~RMU)

AS = 2.0DO/DELTAT
XL = HEIGHT
XL2 = XL/2.0 D 00
ETA = (ZZERO - XL2Y:DATAN(ZZERO-XL2)

$ -0. S::DLOG( 1. 0+(ZZERO-XL2):~:~2)
Z = XL
PZROS= - RHOZRO::G:~((BETAC:~CZERO-l.O):~(Z-ZZERO)

$ -BETAC::(O. S::ACONC:~( (Z-XL2)::DAT.t>N(Z-XL2)
$ -0. S::DLOG( 1. 0+(Z-XL2)::::2)-ETA)+0. S::CSEA
$ ::(Z-ZZERO)))

Z = XL + HEAD
PZROF= - RHOZRO::G::((BETAC:~CZERO-l. O)::(Z-ZZERO)

$ -BETAC::(O. S:~ACONC::((Z-XL2)::DATAN(Z-XL2)
$ -0. S::DLOG( 1. 0+(Z-XL2)::::2)-ETA)+O. S::CSEA
$ ::(Z-ZZERO)))

TOooT = 2. ODO::DDT
AUMAT = ALONG - ATRANS
TALMAT = 2. ODO::ALMAT
A3DDT =TODDT/DELXSQ
A4DDT =TODDT/DELZSQ
B1 = RKX/ (RMU::DE LXSQ)
B2 = RKZ/(RMU::DELZSQ)
TBI = 2. ODO::B1
182 = 2. ODO:~B2
TBIM =-TB1
TB2M = -TB2
B3STAR = RHOZRO::BETAC::RKX/(RMU::TODELX)
B45TAR = RHOZRO::BETAC::RKZ!(RMU::TODELZ)
BSSTAR = -2. ODO::RHOZRO:~BETAC::RKZ::G/RMU
DUODX = - TODELX::RMU::UZERO/RKX
DUO = RMU::UZERO/RKX
IRECH = (l.ODO-RECH)::(M-l)
DO 26 J=I~M

IF(J .LE. IRECH) UODX(J) = O.ODO
I F(J . LE. I RECH) UO(J) = O. ODO
IF(J .GT. IRECH) UODX(J) = DUODX
IF (J .GT. IRECH) UO(J) =DUO

26 CONTINUE
DO 9998 J=l,M

9998 WRITE(6~907) UODX(J)~UO(J)

907 FORMAT(lH ,2(IPD20.10))
EPIM = 1. ODO-EP
RETURN
END

SUBROUTINE INTL(C~P,CI~PIJCT~PT,U~V~DXXJDXZ~DZZ~UO,UODXJ

CZRO,ND~MDJKDD) .
IMPLI CIT REAL::8 (A-H~ O-Z)
REAL:~8 C(ND, MDJ KOO) ~ P(ND,M:>J KOO) ~ U(NDJMD) JV(NDJMD) J UO(MD) J UODX(MD)
REAL::8 CI (NDJMD)~PI(ND~MD)JCT(ND~MD)JPT(NDJMD)

REAL::8 DXX(ND~ MD), DXZ(ND~ MD) ~ DZZ(ND~MD)
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REAL::8 CZRO(ND~MD)

COMMON RHOZRO~BETAC~CZERO~RKX~RKZ~DELTAX~DELTAZ~RMU~G,TODE~~~

1 TODELZ~DELXSQ~DELZSQ~ALONG~ATRANS~DDT~RKXMU~RKZMU,RKXDXM~

2 A5~ TDX~ TDZ~ TODDT~AUMAT~TAUMAT~A3DDT~A4DDT~

3 RN~ROBAGZ~ETAP~RMUN~NM1~NM2~MM1~K~KP1

COMMON/P1/CSEA~IF

COMMON /P2/ RLENTH~HEIGHT~EPSLON~ACONC~ZZERO,HEAD~UZERO~RECH~EP~

1 DELTAT~N~M~KD~NTS~NPI

COMMON /P3/ XL2~ETA~PZROS~PZROF~Bl~B2~TBl~TB2~TB1M~TB2M~

1 B3STAR~B4STAR~B5STAR~EPIM~IRECH

N =ND
M = MD

C
C------------ INITIALIZE CONCENTRATION AND PRESSURE-----------­
C

DO 1 J = I,M
Z = DELTAZ::DFLOAT(J-l)
CDUMY = (ACONC::(DATt>N(Z-XL2))+CSEA)::O. 5
PDUMYS = RHOZRO::G::( (BETAC::CZERO-l. 0) ::( Z-ZZERO)

$ -BETAC::(O. 5::ACONC::((Z-XL2V:DATAN(Z-XL2)
$ -0. 5::DLOG(l. 0+(Z-XL2)::::2)-ETA)+0. 5::CSEA
$ ::(Z-ZZERO)))+PZROS
P(l~J~K) = PDUMYS
P(l~J~KPl) = P(l~J~K)

C(N~J~KP1) = CDUMY
DO 3 I = l~N

cCI ~ J ~ K) = CDUMY
C(I~J~KPl) = C(I,J~K)

P(I,J~K) = PDUMYS
P(I~J~KP1) = P(I~J,K)

uCI ~ J) = UZERO
V(I~J) = UZERO~1.OD-04

3 CONTINUE
1 CONTINUE

DO 2 J = L~M

Z = DELTAZ::DFLOAT(J-l)
P(N~ J ~ K) = RHOZRO::G::((BETAC::CZERO-l. O)::(Z-ZZERO)

$ -BETAC::(O. 5::ACONC::((Z-XL2)::DATt>N(Z-XL2)
$ -0. 5::DLOG( 1. 0+(Z-XL2)::::2)-ETA)+O. 5::CSEA
$ :~Z-ZZERO)))+PZROF

2 P(N~J~KP1) = P(N,J~K)

00 III J=l~M

IF(J .LE. IRECH) C(N~J~K) = CSEA
IF(J .GT. IRECH) C(N~J~K) = O.ODO

III C(N,J,KP1) = C(N,J~K)

DO 20 J=l~M

DO 20 I=l,N
CT(I,J) = C(I,J~K)

PT(I,J) = P(I,J,K)
CI(I,J) = C(I,J,K)

20 PI(I,J) = P(I~J~K)

DO 750 J=l,M
00 750 l=l~N

750 CZRO(l~J) = C(I~J~K)
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CALL DIJ(DXX,DXZ,DZZ,U,V,N,M)
ITS :: a
TIME :: o. aDO
WRITE(I2) ITS,TIME,C,P,CI,PI,CT,PT,U,V,DXX,DXZ,DZZ,CZRO
RETURN
END

SUBROUTINE VELOC(C,P,U,V,N,M,KD)
IMPLICIT REAL::8(A-H,O-Z)
REAL::8 C(N,M, KD), P(N,M, KD), U(N,M), V(N,M)
COMMON RHOZRO,BETAC,CZERO,RKX,RKZ,DELTAX,DELTAZ,RMU,G, TODELX,

1 TODELZ,DELXSQ,DELZSO~ALONG~ATRANS~DDT~RKXMU,RKZMU,RKXDXM,

2 AS, TDX,TDZ, TODDT,ALJv1AT, TALMAT,A3DDT,A4DDT,
3 RN,ROBAGZ,ETAP,RMUN,NMI,NM2,MMI,K,KPI

L :: 2
DO 100 I::2,NMI
IPI :: 1+1
IMI :: I-I
DO 100 J=2,MMI
JPI :: J+I
JMl = J-l
RHO = RHOZRO::(1.0DO+(BETAC::(CO,J, U-CZERO)))
UCI,J) :: -RKXMU::(POPI,J,L)-POMI,J,L))

100 VO,J) = -RKZMU::(((PO,JPl,L)-PO,JMl,L))/TODELZ)+RHO:~G)

DO 200 I=2,NMI
IPI = 1+1
IMI :: I-I
uO, I) = -RKXMU::(P(IPI, 1, U-P(IMI, 1, U)
U(I,M) = -RKXMU~:(POPI,M,L)-P(IMI,M,L))

RHO :: RHOZRO::O. ODO+(BETAC~:(cO, 1, U-CZERO)))
VO, I) = -RKZMU::( ((pCI, 2, U-PO, 1, U) /DELTAZ)+RHO::G)
RHO = RHOZRO::O. ODO+(BETAC~:(CO,M,U-CZERO)))
VO, M) = -RKZMU::( ((p(I ,M, L)-PO, MMl, U) /DELTAZ)+RHO::G)

200 CONTINUE
DO 300 J=2,MMI
dPI = J+l
JMI = J-I
RHO = RHOZRO::(L. ODO+(BETAC:~(CO, J, L)-CZERO)))
VO, J) = -RKZMU::( ((pO, JPl, U-pO, dMl, U )/TODELZ)+RHO::G)
RHO = RHOZRO::O. ODO+(BETAC::( C(N, J, U-CZERO)))
V(N,J) = -RKZMU::(((P(N,JPl, U-P(N,JMI,L))/TODELZ)+RHO:~G)
UO,J) = -RKXDXM:~(pC2,J,L)-PC1,J,K))

U(N,J) :: -RKXDXW:(P(N,J,U-P(NMl,J,U)
300 C(X\JTINUE

UO,I) - -RKXDXM::(pC2, 1, U-pO, 1, U)
UO,M) - -RKXDXM::(P( 2, M, U-PCl,M, L))
U(N,I) - -RKXDXW:(P(N, I, L)-P(NMI, 1, L))
U(N,M) = -RKXDXM:~(P(N,M, L)-P(NMI,M, L))
VO,!) - O.ODO
VCl,M) - O.ODO
V(N,I) - O.ODO
V(N,M) - O.ODO
RETURN
END
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SUBROUTINE INPRES(C.P.I.ND.MD.KDD)
IMPLICIT REAL::8(A-H.0-Z)
REAL::8 C(ND.MD. KDD). P(ND.MD. KDD)
COMMON RHOZRO.BETAC.CZERO.RKX.RKZ.DELTAX.DELTAZ.RMU.G.TODELX.

1 TODELZ.DELXSQ.DELZSQ.ALONG.ATRANS.DDT.RKXMU.RKZMU.RKXDXM.
2 AS, TDX,TDZ,TODDT,ALMAT,TALMAT,A3DDT,A4DDT,
3 RN,ROBAGZ,ETAP,RMUN,NMl,NM2,MMl,K,KPl
COMMON/Pl/CSEA,IF
COMMON /P2/ RLENTH,HEIGHT,EPSLON,ACONC,ZZERO,HEAD,UZERO,RECH,EP,

1 DELTAT,N,M,KD,NTS,NPI
COMMON /P31 XL2,ETA,PZROS,PZROF,Bl,B2,TBl,TB2, TB1M,TB2M,

1 B3STAR,B4STAR,BSSTAR,EP1M,IRECH
COMMON /P41 Q,QDX,QDZ,WX,WZ,DXDZ,DZDX,DXDZG,DZG,IWELL,JWELL
COMMON IPol RKXDD,RKZDD,DELZI2,MM2
COMMON /P7/ IWP1,IWM1,JWP1,JWMl
COMMON /P8/ GDZ2,ROBNDT
COMMON /P9/ RECHED,ROGPHD
RHOM = RHOZRO::O.ODO+(BETAC::(CO,M,KP1)-CZERO)))
DO 10 J=I,MM2
RHOJ = RHOZRO::O. ODO+(BETAC::( cO, J, KP1)-CZERO)))
JP2 = J+2
SUMRHO = O. ODO
DO 20 IALPHA=JP2,M
SUMRHO = SUMRHO + RHOZRO::O.ODO+(BETAC::(CCI,IALPHA,KPl)-CZERO)))

20 CONTINUE
PCI,J,KPl) = GDZ2::(RHOJ + 2.0DO::SUMRHO + RHOM)
IF(I .EQ. N) P(I,J,KP1) = P(I,J,KP1) + ROGRHD

10 CONTINUE
P(l,MM1,KPl) = G::DELTAZ::RHOt'1
IF (I .EQ. N) P(I,MMl,KPl) = P(I,MMl,KPl) + ROGRHD
P(l,M,KPl) = O.ODO
IF(I .EQ. N) P(I,M,KP1) = P(I,M,KPl) + ROGRHD
RETURN
~D

SUBROUTINE AIPRES(C,P,UODX,ALPHA,BETA,GAMMA,VECKWN,ND,MD,KDD,J)
IMPLI CIT REAL::8CA-H,O-Z)
REAL::8 C(ND,MD, KDD), P(ND,MD, KDD), UODX(MD) ,ALPHA(ND), BETA(ND),

1 GAMMA(t\ID), VECKWN(ND)
COMMON RHOZRO,BETAC,CZERO,RKX,RKZ,DELTAX,DELTAZ,RMU,G, TODELX,

1 TODELZ,DELXSQ,DELZSQ,ALONG,ATRANS,DDT,RKXMU,RKZMU,RKXDXM,
2 AS, TDX,TDZ, TODDT,ALMAT, TALMAT,A3DDT,A4DDT,
3 RN,ROBAGZ,ETAP,RMUN,NMl,NM2,MMl,K,KPl
COMMON/Pl/CSEA,IF
COMMON /P21 RLENTH,HEIGHT,EPSLON,ACONC,ZZERO,HEAD,UZERO,RECH,EP,

1 DELTAT,N,M,KD,NTS,NPI
COMMON /P3/ XL2,ETA,PZROS,PZROF,BI,B2, TBI,TB2,TBIM,TB2M

1 B3STAR,84STAR,BSSTAR,EPlM,IRECH
COMMON /P4/ Q,QDX,QDZ,WX,WZ,DXDZ,DZDX,DXDZG,DZG,IWELL,JWELL
COMMON IP8/ GDZ2,ROBNDT
CQl\1MON /PIO/ HPM
COMMON /PIl/ B2GTDZ
JPl - J+I
JMl = J-l
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IF ( J .EQ. 1) GO TO 20
IF ( J .EQ. M) GO TO 30
00 9 I=2,NMI
IPI = 1+1
IMI = I-I
IF(I .EQ. N) IPl=N
RHO = RHOZRO::(l. ODO+(BETAC::(CO, J, KPl)-CZERO)))
CWRTX = (C(IPl,J,KP1)-C(IM1,J,KP1))/TODELX
CWRTZ = (C(I,JPl,KPl)-C(I,JMl,KPl))/TODELZ
B3 = B35TAR::CWRTX/RHO
B4 = B45TAR::CWRTZ/RHO
ALPHA(I) = - (BI-B3)
BETA(I) = -(T81M - HPM)
GAMMA(I) = -(81+B3)
VECKWN( I) = B55TAR::CWRTZ+(B4-B2)::PC!, JMl, K)+(TB2-HPM)::P( I, J, K)

1-(B4+B2Y:PCI, JPl, K)
+ ROBNDT::(CCI, J, KPl)-CO, J, K))

VECKWN(I) = - VECKWN(I)
9 CONTINUE

VECKWN(2) = VECKWN(2)-ALPHA(2)::P(l,J,KPl)
VECKWN(NMl) = VECKWN(NMl) - GAMMA(NMl)::P(N, J, KPl)
RETURN

1 ------------

CONTINUE
00 11 I=2,NMI
IPI = 1+1
IMI = I-I
RHO = RHOZRO::(l.ODO+(BETAC::(CCI,J,KPl)-CZERO)))
CWRTX = (C(IPl,J,KPl)-C(IMl,J,KP1))/TODELX
B3 = B35TAR::CWRTX/RHO
ALPHA(I) = -(BI-B3)
BETA(I) = -(TBIM - HPM)
GAMMA(I) = -(Bl+B3)
VECKWN( I) = RHO::B2GTDZ + TB2::PCI, 2, K) - (TB2-HPM)::PC!, 1, K)

-ROBNDT::(C( I, J, KPl)-C( I, J, K))
C()\JTINUE
VECKWN(2) = VECKWN(2)-ALPHA(2)::PCl, J, KPl)
VECKWN(NMl) = VECKWN(NMl) - GAMMA(NMl)::P(N, J, KPl)
RETURN

11

C
C------------ J -
C

20

CONTINUE
00 13 I=2,NMI
IPI = 1+1
IMI = I-I ,
RHO = RHOZRO::(l. 0DO+( BETAC::( CO, J, KP l)-CZERO)))
CWRTX = (C(IPl,J,KPl)-C(IM1,J,KPl))/TODELX
B3 = B35TAR::CWRTX/RHO
ALPHA(I) = -(BI-B3)
BETA(I) = -(TBIM - HPM)
GAMMA(I) = -(Bl+83)

C
C------------ J
C

30

=M ------------
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13

I

VECKWN(I) = -RHO::B2GTDZ + TB2::P(I-t,J'-'l!'11}K) - (TB2-HPM)::PCI}M}K)
. - ROBl\JDT::(C( I} J} KPl)-CCI} J} K)}

CONTINUE
VECKW\l(2) =VECKW\l(2)-ALPHA(2)::P(l} J} KPl)
VECKv.JN(NMl) = VECKWN(NMl) - G~(NMl)::P(N} J} KPl)
RETURN
END

SUBROUTINE AJPRES(C}p}UO}UODX}ALPHA}BETA}GAMMA}VECKWN}ND}MD}KDD}I)
IMPLICIT REAL~8(A-H}O-Z)

REAL:~8 C(ND} MD} KDD)} P(ND} MD} KDD)} UO(MD)} ALPHA(MD)} BETA(MD)}
1 GAMMA(MD)}VECKWN(MD)}UODX(MD)

COMMON RHOZRO}BETAC}CZERO}RKX}RKZ}DELTAX}DELTAZ}RMU}G}TODELX,
1 TODELZ}DELXSQ}DELZSQ}ALONG}ATRN~S}DDT}RKXMU}RKZMU}RKXDXM,

2 AS} TDX} TDZ} TODDT}ALMAT} TALMAT}A3DDT}A4DDT}
3 RN}ROBAGZ}ETAP,RMUN}NMl}NM2}MMl}K,KPl

COMMQN/Pl/CSEA}IF
COMMON /P2/ RLENTH}HEIGHT}EPSLON}ACONC}ZZERO}HEAD}UZERO}REOH}EP}

1 DELTAT}N}M,KD}NTS,NPI
COMMON /P3/ XL2}ETA}PZROS}PZROF}Bl}B2}TBl, TB2}TBIM,TB2M}

1 B3STAR}B4STAR}BSSTAR}EPIM}IRECH
COMMa~ /P4/ Q, QDX}QDZ,WX}WZ,DXDZ} DZDX, DXDZG} DZG} IWELL,JWELL
COMMON /P8/ GDZ2}ROBNDT
COM'1ON /PIO/HPM
COMMON /Pll/ B2GTDZ
IPI = 1+1
IMI = I-I
00 7 J=2}MMI
JPI =J+l
JMl = J-l
RHO =RHOZRO::(l.ODO+(BETAC::(C(I,J}KPl)-CZERO)))
CWRTX = (C(IPl,J}KPl)-C(IMl}J}KPl))/TODELX
CWRTZ = (C(I}JPl,KPl)-C(IjJMI}KPI))/TODELZ
B3 = B3STAR::CWRTX/RHO
B4 =B4STAR::CWRTZ/RHO
ALPHA(J) = -(B2-B4)
BETA(J) = -(TB2M = HPM)
GAMMA(J) = -(B2+B4)
VECKV-iN(J) = B5STAR::CWRTZ+(B3-Bl)::P( IMI, J} K) + (TB I-HPM)::pCI j J) K)

I -(BI+B3)::pCI PI, J) K)
+ ROBNDT::(cCIjJ,KPI)-CCI}J}K))

VECKv.JN(J) = - VECKWN(J)
CONTINUE
BETA(l) = -(TB2M - HPM)
GAMMA(l) = TB2M
RHO = RHOZRO::(l.ODO+(BETAC::(C(J} I} KPl)-CZERO)))
CWRTX =(C(IPI,l,KPl)-C(IMl}l}KPI))/TODELX
B3 = B3STAR:~CWRTX/RHO

VECKWN(l) = (-Bl+B3)::pCIMl}1}K) + (TBI-HPM)::P(I}I}K)
- (Bl+B3Y:P(IPI}ljK) - RHO::B2GTDZ

VECKv.JN(I) = -VECKV-iN(l)
ALPHA(M) = TB2M
BETA(M) = -(TB2M - HPM)
RHO = RHOZRO::(l.ODO+(BETAC::(CCI}M,KPl)-CZERO)))
CWRTX = (C(IPl}MjKPl)-C(IMl}M,KPl))!TODELX



B3 = B3STARz:CWRTX/RHO
VECK'tIN(M) = (-Bl+B3)z:P(IMl,M,K) + (TB1-HPM)z:P(I,M,K)

- (Bl+B3)::P( IPl,M,K) + RHOz'B2GTDZ
VECKWN(M) = - VECK'tIN(M)
RETURN
END

SUBROUTINE APIWEL(C,P,UODX,ALPHA,BETA,GAMMA,VECKWN,
1 ND, MD, KDD, J, Z:)

IMPLICIT REAL~S(A-H,O-Z)

REAL::S C(ND,MD, KDD), P(ND,MD, KDD) ,UODX(tv1D) ,ALPHA(ND) ,BETA(ND),
1 GAMMA(ND),VECKWN(ND)

COMMON RHOZRO,BETAC,CZERO,RKX,RKZ,DELTAX,DELTAZ,RMU,G,TODELX,
1 TODELZ,DELXSQ,DELZSQ,ALONG,ATRANS,DDT,RKXMU,RKZMU,RKXDXM,
2 A5,TDX,TDZ, TODDT,ALMAT, TALMAT,A3DDT,A4DDT,
3 RN,ROBAGZ,ETAP,RMUN,NMl,NM2,MMl,K,KPI

COMMON/Pl/CSEA,IF
COMMON /P2/ RLENTH,HEIGHT,EPSLON,ACONC,ZZERO,HEAD,UZERO,RECH,EP,

1 DELTAT,N,M,KD,NTS,NPI
COMMON /P3/ XL2,ETA,PZROS,PZROF,Bl,B2,TBl,TB2,TBIM,TB2M,

1 B3STAR,B4STAR,B5STAR,EPIM,IRECH
COMMON /P4/ Q,QDX,QDZ,WX,WZ,DXDZ,DZDX,DXDZG,DZG,IWELL,JWELL
COMMON /P6/ RKXDD,RKZDD,DELZI2,MM2
COMMON /P7/ IWP1,IWMl,JWPl,JWMI
COMMON /PS/ GDZ2,ROBNDT
COMMON /PI0/ HPM
JPl = J+l
JMl = J-l
DO 9 1=2,IWM1
IPI - 1+1
IMI = I-I
RHO = RHOZRoz:(I.ODO+(BETAC::(C(I,J,KP1)-CZERO)))
CWRTX = (C(IPl,J,KP1)-C(IMl,J,KPl))/TODELX
CWRTZ = (C(I,JPl,KPl)-C(I,JMl,KPl))/TODELZ
B3 = B35TAR::CWRTX/RHO
B4 = B4STARz:CWRTZ/RHO
ALPHA(I) = -(BI-83)
BETA(I) = -(T81M - HPM)
GAMMA(I) = -(Bl+B3)
VECKWN( I) = B55TAR::CWRTZ+(B4-B2)z:P( I, JMl, K)+(TB2-HPM)z:P( I, J, K)

1 -(B4+B2)z:PCI,JPl,K)
+ ROBNDT::( c(I , J, KP l)-CCI, J, K))

VECK'tIN(I) = - VECKWN(I)
9 CONTINUE

VECK'tIN(2) - VECKWN(2) - ALPHA(2)z:P( 1, J, KPl)
VECKWN(IWMl) = VECKWN(IWMl) - GAMMA(IWMl)z:P(IWELL,JWELL,KPl)
CALL TRIDGI(2,IWMI,ALPHA,BETA,GAMMA,VECKWN,P,ND,MD,KDD,J)
00 10 I=IWPl,NMI
IPI - 1+1
IMI = I-I
RHO = RHOZRO::(l.ODO+(BETAC::(C(I,J,KPl)-CZERO)))
CW~TX = (C(IPl,J,KPl)-C(IMl,J,KPl))/TODELX
CWRTZ = (C(I,JPl,KPl)-C(I,JMl,KPl))/TODELZ
83 - 83STARz:CWRTX/RHO
B4 = 845TAR::CWRTZ/RHO
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10

II

ALPHA( I) = -(B1-B3)
BETA(I) = -(TB1M - HPM)
GAMMA(I) = -(B1+B3)
VECKWN( I) = B5STAR~~CWRTZ+(B4-B2)~:P( I, JMl, K)+(TB2-HPM)~~pCI,J, K)

1 -(B4-B2):~PCI,JPl,K)

+ ROBNDT~(C(I,J,KPl)-C(I,J,K))

VECKWN(I) = - VECKWN(I)
CONTINUE
VECKWNCIwPl) = VECKWNCIWPl) - ALPHACIwPl)~:PCIWELL,JWELL,KPl)

VECKWN(t'-IMl) = VECKWN(NMl) - GAJvV'1L\(NMl)~:P(N, JWELL, KPl)
CALL TRIDGI(IWPl,NMl,ALPHA,BETA,GAMMA,VECKWN,P,ND,MD,KDO,J)
RETURN 1
END

SUBROUTINE APJWEL(C, P, ALPHA, BETA, GAJ'vVvlA, VECKWN,ND,MD,KDD, I, ~~)

IMPLI CIT REAL~:8(A-H, O-Z)
REAL~:8 C(ND, MD, KDD), P(ND,MD, KDD) ,ALPHA(MD), BETA(MD), GAMMA(MD),

1 VECKWN(MD)
COMMON RHOZRO,BETAC,CZERO,RKX,RKZ,DELTAX,DELTAZ,RMU,G,TODELX,

1 TODELZ,DELXSQ,DELZSQ,ALONG,ATRANS,DDT,RKXMU,RKZMU,RKXDXM,
2 A5,TDX,TDZ,TODDT,ALMAT,TALMAT,A3DDT,A4DDT,
3 RN,ROBAGZ,ETAP,RMUN,NMl,NM2,MMl,K,KPl
COMMON/Pl/CSEA,IF
COMMON /P2/ RLENTH,HEIGHT,EPSLON,ACONC,ZZERO,HEAD,UZERO,RECH,EP,

1 DELTAT,N,M,KD,NTS,NPI
COMMON /P3/ XL2,ETA,PZROS,PZROF,Bl,B2,TBl,TB2,TBlM, TB2M,

1 B3STAR,B4STAR,85STAR,EPIM,IRECH
COMMON /P4/ Q,QDX,QDZ,WX,WZ,DXDZ,DZDX,DXDZG,DZG,IWELL,JWELL
COMMON /P6/ RKXDD,RKZDD,DELZ12,MM2
COfvYvlON /P7/ IWPl,IWMl,JWPl,JWHl
COMMON /P8/ GDZ2,ROBNDT
COMMON /PI0/ HPM
COMMON /Pll/ B2GTDZ
IPI = 1+1
IMI = I-I
00 7 J=2,JWMl
JPl = J+l
JMl = J-l
RHO = RHOZRO::(l. ODO+(BETAC:~(CCI, J, KPl)-CZERO)))
CWRTX = (C(IPl,J,KPl)-C(IMl,J,KPl))/TODELX
CWRTZ = (C(I,JPl,KPl)-C(I,JMl,KPl))/TODELZ
B3 = B3STAR::CWRTX/RHO
B4 = B4STAR::CWRTZ!RHO
ALPHA(J) = -(B2-B4)
BETA(J) = -CTB2M - HPM)
GAMMA(J) = -(B2+B4)
VECKWN(J) = B5STAR~:CWRTZ + (B3-Bl)::P(IMl,J,K)

+ (TBI-HPM)::P(I,J,K) - (Bl+B3)~:PCIPl,J,K)

+ ROBNDT::( cCI, J, KP l)-cCI, J, K))
VECKWN(J) = - VECKWN(J)
CONTINUE
BETA(l) = -(TB2M - HPM)
GAMMA( I) = - TB2
RHO = RHOZRO::O. ODO+(BETAC:~(C( I, 1,KPl)-CZERO)))



CWRTX = (C(lPI~1~KP1)-C(IMI~I~KPI))/TODELX

B3 = B3STAR;~CWRTX/RHO

VECKv.JN( I) = (-BI+B3):~PCIMl~ l~ K) + (TBI-HPtvO:~PCI ~ l~ K)
- (BI+B3)::PCIPI~ I~K) - PJ-fO;~B2GTDZ

VECKWN(I) = -VECKWN(I)
VECKWN(JWMl) = VECKWN(JWMI) - G#fv1A(JWMI):~pCI ~ JWELL~ KPl)
CALL TRIDAG(I.JWMI~ALPHA~BETA~GAMMA~VECKWN~P~ND~MD~KDD~I)

00 8 J=JWPI~Mv11

JPI = J+I
JMI = J-I
RHO = RHOZRO::( 1.0 DO+( BETAC:~( C( I ~ J ~ KP I )-CZERO)))
CWRTX = (C(IPI~J~KPI)-C(IMI~J~KPI))/TODELX

CWRTZ = (CCI ~ JPI~ KPI)-CCI ~ JMI~ KPI))/TODELZ
B3 = B3STAR;~CWRTX/RHO

B4 = B4STAR;~CWRTZ/RHO

ALPHA(J) = -(B2-B4)
BETA(J) = -(TB2M - HPM)
GAMMA(J) = -(B2+B4)
VECKWN(J) = B5STAR:~CWRTZ + (B3-BI);~PCIMI~J~K)

+ (TBI-HPM)~P(I~J~K) - (BI+B3)~P(IPI~J~K)

+ ROBNDT:~(CCI ~ J ~ KP I)-CO ~ J ~ K))
VECKWN(J) = - VECKWN(J)

8 Ca-JTINUE
VECKWN(JWPl) = VECKWN(JWPI) -ALP;1i\(JWPI);:p( IWELL~ JWELL~ KPl)
ALPHA(M) =TB2M
BETA(M) =-(TB2M - HPM)
RHO = RHOZRO;:( 1. ODO+(BETAC;:(cCI ~M~ KPl)-CZERO)))
CWRTX = (C(IP1/M~KPI)-C(IMI~M~KPI))/TODELX

B3 = B3STAR;:CWRTX/RHO
VECKv.N(M) = (-BI+B3);~pCIMI ~M~ K) + (TBI-HPM);~P( 1~M~ K)

- (B1+B3)::P( IPI~M~ K) + RHO:~B2GTDZ

VECKWN(M) = - VECKWN(M)
CALL TRIDAG(JWP1,M/ALPHA~BETA/GAMMA,VECKWN~P~ND~MD~KDD~I)

RETURN I
END

SUBROUTINE AJPFLX(C~P~UO~UODX~ALPHA~BETA~GAMMA~VECKWN~ND~MD~KDD~I)

IMPLICIT REALX8(A-H~O-Z)

REAL;~8 C(ND~MD, KDD), P(ND~ MD, KDD) I UO(MD) ~ALPHA(MD) I BETA(MD),
I GAMMA(MD)~VECKWN(MD)~UODX(MD)

COMMON RHOZRO,BETAC~CZERO~RKX,RKZ/DELTAX~DELTAZ,RMU~G~TODELX~

I TODELZ~DELXSQ~DELZSQ~ALONG~ATRANS~DDT~RKXMU~RKZMU~RKXDXM~

2 A5,TDX , TDZ~TODDT,ALMAT/TALMAT,A3DDT~A4DDT~
3 RN ~ ROBAGZ~ ETAP ~ RMUI\J ~ Nfv11 ~ NM2 ~ ~'tvll ~ K~ KP I
COMMON/PI/CSEA~IF

COMMON /P2/ RLENTH~HEIGHT~EPSLON~ACONC~ZZERO~HEAD~UZERO~RECH~EP~

1 DELTAT~N~M,KD~NTS,NPI

COMMON /P3/ XL2~ETA~PZROS,PZROF~BI~B2~TBI~TB2~TBIM~TB2M~

I B3STAR,B4STAR~B5STAR~EPIM~IRECH

COMMON /P4/ Q~QDX/QDZ~WX~WZ~DXDZ/DZDX~DXDZG,DZG/IWELL,JWELl

COMMON /P8/ GDZ2,ROBNDT
COMMON /PIO/ HPM
COMMON /P11/B2GTDZ
IPI = 1+1
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1Ml = I-I
TOX = TOOELX
IF(I .EQ. N) IPI = N
IF(I .EQ. N) TDX - DELTAX
DO 7 J=2,/Y'MI
JPl = J+l
JMl = J-l
RHO - RHOZRO~~(l.ODO+(BETAC~~(CCI,J,KP1)-CZERO)))

CWRTX = (C(IPl,J,KPl)-C(IMl,J,KPl))/TDX
CWRTZ = (C(I,JPl,KPl)-C(I,JMl,KPl))/TODELZ
B3 = B3STAR~~CWRTX/RHO

B4 = B4STAR:~CWRTZ/RHO

ALPHA(J) = -(B2-B4)
BETA(J) = -(TB2M - HPM)
GAMMA(J) = -(B2+B4)
IFCI .EQ. N) VECKWN(J) = B5STAR~~CWRTZ - TBl~:P(NMl,J,K)

+ (TBI-HPM)~:P(N, J, K) - (Bl+B3Y:UODX(J)
IF(I .EQ. N) GO TO 6
VECKWN(J) = B5STAR~~CWRTZ+(B3-Bl)~~pCIMl,J,K) + (TBI-HPM)::P(I,J,K)

1 -(Bl+B3)~:pCI PI, J, K)
+ ROBNOT~:(C(I,J,KP1)-C(1,J,K))

6 VECKWN(J) = -VECKWN(J)
7 CONTINUE

BETA(I) = -(TB2M - HPM)
GJ'IM1'1A( 1) = TB2M
RHO = RHOZRO::(l.ODO+(BETAC~:(CO, I,KPl)-CZERO)))
CWRTX = (C(IPl,l,KPl)-C(IMl,I,KPl))/TDX
B3 = B3STAR::CWRTX/RHO
IFCI . EQ. N) VECKWN(l) = -TBl:~P(NMl, I,K) + (TBI-HPM)~:P(N, I,K)

- (Bl+B3)::UODX( 1) - RHO::B2GTDZ
1F(I .EQ. N) GO TO 8
VECKWN( 1) = (-Bl+B3)::pCIMl, 1, K) + (TBI-HPM)~~PCI, 1, K)

- (Bl+B3):~P(IPl,l,K) - RHO~~B2GTDZ

8 VECKWN(I) = - VECKWN(l)
ALPHA(M) = TB2M
BETA(M) = -(TB2M - HPM)
RHO = RHOZRo:~Cl. ODO+(BETAC~~( cO ,M, KP1)-CZERO)))
CWRTX= (C(1Pl,M,KPl)-C(IMl,M,KPl))/TDX
B3 = B35TAR:~CWRTX/RHO
IF(I .EQ. N) VECKWN(M) = -TBl~:P(NMl,M,K) + (TBI-HPMY:P(N,M,K)

- (Bl+B3)::UODX(M) + RHO~:B2GTDZ

IF(I .EQ. N) GO TO 9
VECKWN(M) = (-Bl+B3)~:pCIMl,M,K) + TBI-HPM)::PCI,M,K)

- (Bl+B3):~P(IPl,M,K) + RHO~:B2GTDZ

9 VECKWN(M) = - VECKWN(M)
RETURN
END

SUBROUTINE APIWFX(C,P,UODX,ALPHA,BETA,GAMMA,VECKWN,
1 NO, MD, KDD, J , ~:)

IMPLl CIT REAL::8(A-H,0-Z)
REAL~:8 C(ND, MD, KDD), P(ND,MD, KDD), UOOX(MD), ALPHA(NO), BETA(NO),

1 GAMMA(ND),VECKWN(ND)
COMMON RHOZRO,BETAC,CZERO,RKX,RKZ,DELTAX,OELTAZ,RMU,G,TOOELX,



1 TODELZ,DELX5Q,DELZ5Q,ALONG,ATRAN5,DDT,RKXMU,RKZMU,RKXDXM,
2 A5,TDX,TDZ,TODDT,ALMAT,TALMAT,A3DDT,A4DDT,
3 RN,ROBAGZ,ETAP,RMUN,NMl,NM2,MMl,K,KPl

COMMON/Pl/C5EA,IF
COMMON /P2/ RLENTH,HEIGHT,EP5LON,ACONC,ZZERO,HEAD,UZERO,RECH,EP,

1 DELTAT,N,M,KD,NT5,NPI
COMMON /P3/ XL2,ETA,PZROS,PZROF,Bl,B2,TBl,TB2,TBIM,TB2M,

1 B35TAR,B45TAR,B55TAR,EPIM,IRECH
COMMON /P4/ Q,QDX,QDZ,WX,WZ,DXDZ,DZDX,DXDZG,DZG,IWELL,JWELL
COMMON /Po/ RKXDD,RKZDD,DELZI2,MM2
COMMON /P7/ IWPl,IWMl,JWPl,JWMl
COMMON /PS/ GDZ2,ROBNDT
COMMON /PI0/ HPM
JPl = J+l
IMI = J-l
TDX = TODELX
DO 9 1=2, IWMI
IPI = 1+1
IMI = I-I
RHO = RHOZRO::(l. ODO+(BETAC::( C( I, J, KP l)-CZERO)))
CWRTX = (C(IPl,J,KPl)-C(IMl,J,KPl))/TODELX
CWRTZ = (C(I,JPl,KPl)-C(I,JMl,KPl))/TODELZ
B3 = B35TAR::CWRTX/RHO
B4 = B45TAR::CWRTZIRHO
ALPHA(I) = -(BI-B3)
BETA(I) = -(TBIM - HPM)
GAMMA(I) = -(Bl+B3)
VECKW1'J( I) = B55TAR::CWRTZ+(B4-B2)::P( 1, JMl, K)+(TB2-HPMV:P( 1, J, K)

1 -(B4+B2)::PCI,JPl,::)
+ ROBNDT~(C(I,J,KPl)-C(I,J,K))

VECKWN(I) = - VECKWN(I)
9 CONTINUE

VECKWN(2) = VECKWN(2) - ALPHA(2V:P(l,J,KPl)
VECKWNCIWMl) = VECKW1'JCIwMl) - G,L\M'V1ACIWMl)::P( nvELL, JWELL, KPl)
CALL TRIDG1(2, lWMl ,ALPHA, BETA,GAMMA,VECKWN,P,ND,MD,KDD,J)
DO 10 I=IWPl,N
IPI = 1+1
IMI = I-I
IFCI .EQ. N) IPI = N
IF(1 .EQ. N) TDX = DELTAX
RHO = RHOZRO::O.ODO+(BETAC::(C(I,J,KPl)-CZERO)))
CWRTX = (C(IPl,J,KPl)-C(IMl,J,KPl))/TDX
CWRTZ = (C(I,JPl,KPl)-C(I,JMl,KPl))/TODELZ
B3 = B3STAR::CWRTX/RHO
B4 = 645TM::CWRTZIRHO
ALPHA(I) = -(BI-B3)
BETA(I) = -(TBIM - HPM)
GAMMA(I) = -(Bl+B3)
VECKWN( I) = B55TAR::CWRTZ+(B4-B2)::P( I, JMl, K)+(TB2-HPM)::P(I, J, K)

1 -(B4+B2)::PCI,JPl,K)
+ ROBNDT::( C( I, J, KPl)-C( I, J, K))

VECKWN(I) = - VECKWN(I)
10 CONTINUE

VECKWN( IWPl) = VECKWN(IWPl) = ALPHACIwpl)::P(IWELL,JWELL, KPl)
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ALPHA(N) =TBIM
VECKWN(N) = VECKWN(N) + (Bl+B3)::UODX(J)
CALL TRIDGI(IWP17N7ALPHA7BETA7GAMMA7VECKWN7P7ND7MD,KDD7J)
RETURN 1
END

SUBROUTINE AIPFLX(C7P,UODX7ALPHA,BETA7GAMMA7VECKWN7ND7MD7KDD7J)
IMPLICIT REAL::8(A-H70-Z)
REAL::8 C(ND7MD7KDD) 7P(ND, MD, KDD), UODX(MD) 7ALPHA(ND) 7BETA(ND) 7

1 GAMMA(ND)7VECKWN(ND)
COMMON RHOZRO,BETAC7CZERO,RKX,RKZ7DELTAX7DELTAZ7RMU7G7TODELX7

I TODELZ,DELXSQ,DELZSQ,ALONG,ATRANS,DDT7RKXMU,RKZMU7RKXDXM,
2 A5 7TDX7TDZ,TODDT,ALMAT,TALMAT,A3DDT7A4DDT7
3 RN, ROBAGZ, ETAP,RMUN,NM1 7NM2 7MM1 7K7KP1

COMMON/P1/CSEA7IF
COMMON /P2/ RLENTH,HEIGHT,EP5LON7ACONC7ZZER07HEAD,UZERO,RECH7EP,

1 DELTAT,N,M,KD7NT5,NPI
COMMON fP3/ XL27ETA,PZROS,PZROF,B17B27TB17TB27TBIM7TB2M,

1 B35TAR,B4STAR,B55TAR7EPIM7IRECH
COMMON fP4/ Q7QDX,QDZ 7WX,WZ7DXDZ,DZDX7DXDZG7DZG,IWELL,JWELL
COMMON fP8/ GDZ2,ROBNDT
COMMON fP10/ HPM
COMMON fPl1/ B2GTDZ
JPl = J+1
JM1 = J-l
TDX = TODELX
IF ( J .EQ. 1) GO TO 20
IF ( J .EQ. M) GO TO 30
DO 9 I=2,N
IPI = 1+1
IM1 = I-I
IF(I .EQ. N) IPl=N
IF(I .EQ. N) TDX = DELTAX
RHO = RHOZRO::(l.ODO+(BETAC::(C(I,J7KP1)-CZERO)))
CWRTX = (C(IPl,J,KP1)-C(IM1,J,KP1))/TDX
CWRTZ = (C(J,LIPl,KP1)-C(I,JMI 7KP1))!TODELZ
B3 = B35TAR::CWRTX/RHO
B4 = B45TAR::CWRTZ/RHO
ALPHA(I) = - (B1-B3)
BETA(I) = -(TB1M - HPM)
GAMMA(I) = -(B1+B3)
VECKWN( I) = B55TAR::CWRTZ+(B4-B2)::P( I, JM1, K)+(TB2-HPM)::P( I, J 7K)

1 =(B4+B2)::P( r, JP1, K)
+ ROBNDr:(C(I,J,KP1)-C(I,J 7K)

VECKWN(I) = - VECKWN(I)
9 CONTINUE

VECKWN(2) - VECKWN(2)-ALPHA(2Y:P(l7 J 7KPl)
ALPHA(N) = TB 1M
VECKWN(N) = VECKWN(N) + (B l+B 3Y:UODX(J)
RETURN

C
C------------ J - ] ------------
C

20 CONTINUE
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00 11 I=2 .. N
IPI = 1+1
IMI = 1-1
IF(I .EQ. N) IPI =N
IF(I .EQ. N) TDX = DELTAX
RHO =RHOZRO::(l.ODO+(SETAC::(CCI .. J .. KPl)-CZERO)))
CWRTX =(C(IPl .. J,KPl)-C(IMl .. J .. KPl))/TDX
B3 = B3STAR::CWRTX/RHO
ALPHA(I) =-(B1-B3)
SETA(I) = -(TBIM =HPM)
GAMMA(I) =-(Bl+S3)
VECKv.N(I) = RHO::B2GTDZ + TB2::pCI .. 2.. K) - CTB2-HPM)::PCI .. l

t
K)

- ROBNDT~(C(I,J,KPl)-C(I,J,K))

11 CONTINUE
VECKWN(2) = VECKWN(2)-ALPHA(2)::P( I, J .. KPl)
ALPHA(N) =TBIM
VECKWN(N) = VECKWN(N) + (Bl+B3)::UODX(J)
RETURN

J =M ------------

CONTINUE
DO 13 I=2 .. N
IPI = 1+1
IMI = I-I
IFCI .EQ. N) IPI = N
IF(I .EQ. N) TDX =DELTAX
RHO = RI-JOZRO::( 1. ODO+(SETAC::( cCI .. J .. KPl)-CZERO)))
CWRTX =(C(IP1,J,KP1)-C(IM1 .. J .. KP1))/TDX
B3 = B3STAR::CWRTX/RHO
ALPHA(I) = -(B1-B3)
BETA(I) = -(TB1M - HPM)
GAMMA(I) = -(B1+B3)
VECKWN(I) = -RHO::B2GTDZ + TB2::PCI,MM1 .. K) - (TB2-HPM)::pCI .. M.. K)

- ROBNDT~(C(I,J,KP1)-C(I,J .. K))
CONTINUE
VE CKWN(2) = VECKWNC2 )-ALPHA( 2) ::p(l, J, KPl)
ALPHA(N) =TB1M
VECKWN(N) = VECKWN(N) + (Bl+S3)::UODX(J)
RETURN
END

13

C
C------------
C

30

SUBROUTINE ASMBLI(C.. U.. V.. DXX,DXZ,DZZ .. ALPHA.. BETA,GAMMA.. VECKv.N,
1 N,M, KD, J)

IrvlPLI CIT REAL::8(A-H .. O-Z)
REAL::8 C(N,M, KD) .. U(N,M) .. V(N, M) .. ALPHA(N) .. BETA(N) .. GAMMA(N), VECKWN(N)
REAL::8 DXX(N, M), DXZ(N.. M), DZZ(N,M)
COMMON RHOZRO.. BETAC,CZERO,RKX,RKZ .. DELTAX.. DELTAZ.. RMU,G,TODELX ..

1 TODELZ,DELXSQ,DELZSQ.. ALONG,ATRANS .. DDT,RKXMU,RKZMU.. RKXDXM..
2 A5 .. TDX,TDZ,TODDT,ALMAT .. TALMAT .. A3DDT,A4DDT,
3 RN,ROBAGZ,ETAP.. RMUN,NMl .. NM2 .. MMl .. K,KPI

COMMON/P1/CSEA,IF
COMMON /P12/ RNDDT
CSEA = 35.8
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JP1 = J+l
JM1 = J-1
00 100 I=1~NM1

UD = UCI~J)

VD = V(I~J)

CALL ACOEF(DXX~DXZ~DZZ~A1~A2,A3~A4~UD~VD,N~M~I~J)

ALPHA(I) = -(Al+A3)
BETA( 1) = A5+2. ODO;:A3
GAJv'i'Vl.(I) = A1-A3
IF(J .EQ. 1) VECKWN(1) = (A5-A4);:cCI~1~K) + A4;:cCI~2~K)

IF (J .EQ. M) VECKWN(I) = 2.0DO;:A4;:CCI~MMl~K)

+ (A5-2.0DO;:A4);:CCI~M~K)

IF ( J .EQ. 1 .OR. J .EQ. M) GO TO 100
VECKWN( 1) = (A2+A4);:cCI ~ JM1 ~ K1+(A5-2. ODO;:A4);:cCI ~ J~ K)

1 +(A4-A2)~C(I~JP1~K)

100 CONTI NUE
UD = UCl,J)
IF (UD .GT. O.ODO) GO TO 10
VD = VCl~J)

CALL ACOEF(DXX~DXZ~DZZ~A1~A2~A3~A4~UD~VD~N~M~1~J)

IF(UD .GT. O.ODO) GO TO 10
TOA3 = 2. ODO;:A3
BETA(l) = AS + TOA3
GAMMA(l) = -TOA3
GO TO 20

10 CONTINUE
IF = 2
C(1~J~KP1) = CSEA
VECKWN(2) = VECKWN(2) = ALPHA(2);:CSEA

20 CONTINUE
VECKWN(NMl) = VECKWN(NM1) -GAfv1MA(NMl);:C(N~ J ~ KPl)
RETURN
END

SUBROUTINE ASMBLJ(C~U~V~DXX~DXZ~DZZ~ALPHA~BETA~GAMMA~VECKWN~

1 N~ M~ KD~ 1)
IMPLI CIT REAL;:8(A-H~ O-Z)
REAL;:8 C(N~ M~ KD) ~ U(N~ M) ~ V(N~M) ~ ALPHA(M) ~ BETA(M) ~

1 GAMMA(M)~VECKWN(M)

REAL;:8 DXX(N~ M) ~ DXZ(N,M) ~ DZZ(N~ M)
COMMON RHOZRO~BETAC~CZERO~RKX,RKZ,DELTAX~DELTAZ~RMU~G~TODELX~

1 TODELZ~DELXSQ~DELZSQ~ALONG~ATRANS~DDT~RKXMU~RKZMU~RKXDXM~

2 A5~TDX~ TDZ~ TODDT~ALMAT~TALMAT~A3DDT~A4DDT~

3 RI\J~ ROBAGZ~ ETAP ~ RMUN, NMl ~ NM2~ fvVv\1~ K~ KP 1
COMMON/P1/CSEA~IF

COMMON /P12/RNDDT
IPI = 1+1
IMl = I-I
IFCI . EQ. 1) GO TO 500
DO 100 J=2~Mv11

UD = UCI~J)

VD = VCI~J)

CALL ACOEF(DXX~DXZ~DZZ~Al~A2~A3~A4~UD~VD~N~M~I~J)

ALPHA(J) =-(A2+A4)



BETA(J) = AS + 2.0DO:~A4

GAMMA(J) = A2 - A4
VECK~(J) = (Al+A3)::CCIMl, J, K)+(AS-2. ODO::A3)::CCI, d, K)

1 +(A3-Al)~C(IPl,J,K)

100 CONTINUE
UD = UCI,1)
VD = V( 1,1)
CALL ACOEF(DXX,DXZ,DZZ,Al,A2,A3,A4,UD,VD,N,M,I,1)
BETA( 1) = AS + 2. ODO::A4
GAMMA(1) = -2.0DO::A4
VECKWN( 1) = (Al+A3)::C( IMl, 1, K)+(AS-2. ODO:~A3)::CO,1, K)

1 +(A3-A1):~CCIpl, I,K)
UD = UCI,M)
VD = VCI,M)
CALL ACOEF(DXX,DXZ,DZZ,Al,A2,A3,A4,UD,VD,N,M,I,M)
ALPHA(M) = -2. ODO::A4
BETA(M) = 2. ODO::A4 + AS
VECKWN(M) = (Al+A3)::C( IMl, M, K)+(AS-2. ODO::A3)::C( I,M, K)

1 +(A3-Al)::cCIpl,M,K)
RETURN

500 CONTINUE
00 200 J=2,W"11
UD = UCI,J)
IF(UD .GT. O.ODO) IF = J+l
VD = VCI,J)
CALL ACOEF (DXX,DXZ,DZZ,Al,A2,A3,A4,UD,VD,N,M,I,J)
ALPHA(J) = -(A2+A4)
BETA(J) = AS + 2. ODO::A4
GAMMA(J) =A2 - A4
TOA3 = 2. ODO::A3
VECKWN(J) = (AS-TOA3)::cCl,J,Kl + T0A3::cC2,J,K)

200 C(X\JTINUE
IF (IF .GT. 1) GO TO 10
UD = uCI,1)
VD = V( 1,1)
CALL ACOEF(DXX,DXZ,DZZ,Al,A2,A3,A4,UD,VD,N,M,I,I)
TOA3 = 2. ODO::A3
BETA( 1) = AT + 2. ODO::A4
GA.M"1A.( 1) =-2• 0DO ::A4
VECKWN(D = (A5-TOA3Y:cCl,I,K) + TOA3::cC2,I,K)
TO TO 20

10 CONTINUE
VECKWN( I F) = VECKWN( I F) - ALPHA( I F):~CSEA
IFMl = IF-l
DO 30 J=I,IFMl
C(I,J,KPl) = CSEA

30 CONTINUE
20 CONTINUE

UD = UCI,M)
VD = vO ,M)
CALL ACOEF(DXX, DXZ, DZZ,Al,A2,A3,A4,UD,VD,N,M, I,M)
TOA3 = 2. ODO::A3
ALPHA(M) = -2. ODO::A4
BETA(M) = AS + 2.0DO::A4
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VECKWN(M) = (A5-TOA3):~cC1,M, K) + TOA3:~C(2,M, K)
IF(U(l,M) .GT. O.ODO)

VECKWN(M) = (Al+A3):'CSEA+(A5-TOA3):'C( 1, M, K)+(A3-Al):'C(2, M, K)
RETURN
END

SUBROUTINE AIWELL(C,U,V,DXX,DXZ,DZZ,ALPHA,BETA,GAMMA,VECKWN,
1 ND,tvV,KDD,J,::)

IMPLICIT REAL:'8(A-H,0-Z)
REAL:'8 C(ND ,MD, KDD) ,U(ND, MD), V(ND, MD), DXX(ND, MD), DXZ(ND,MD),

1 DZZ(ND,MD),ALPHA(MD),BETA(MD),GAMMA(MD),VECKWN(MD)
COMMON RHOZRO,BETAC,CZERO,RKX,RKZ,DELTAX,DELTAZ,RMU,G,TODELX,

1 TODELZ,DELXSQ,DELZSQ,ALONG,ATRANS,DDT,RKXMU,RKZMU,RKXDXM,
2 A5,TDX,TDZ,TODDT,ALMAT,TALMAT,A3DDT,A4DDT,
3 ~~,ROBAGZ,ETAP,RMUN,NMl,NM2,MMl,K,KPl

COMMON/Pl/CSEA,IF
COMMON /P2/ RLENTH,HEIGHT}EPSLON}ACONC}ZZERO,HEAD,UZERO,RECH,EP,

1 DELTAT,N,M,KD,NTS,NPI
COMMON /P3/ XL2,ETA,PZROS,PZROF,B1,B2,TB1,TB2,TB1M,TB2M,

1 B3STAR,B4STAR,B5STAR,EP1M,IRECH
COMMON /P4/ Q,QDX,QDZ,WX,WZ, DXDZ, DZDX,DXDZG, DZG, IWELL,JWELL
COMMON /P7/ IWP1,IWM1,JWP1,JWM1
COMMON /P12/ RNDDT
JP1 = J+1
JM1 = J-l
DO 100 1=2, IWM1
UD = UCI,J)
VD = vCI, J)
CALL ACOEFCDXX,DXZ,DZZ,A1,A2,A3,A4,UD,VD,N}M,I,J)
ALPHACI) = -(A1+A3)
BETAC 1) = A5+2. ODO::A3
GAMMA( 1) = AI-A3
VECKWN( 1) = CA2+A4Y:C( I, JMl, K)+(A5-2. ODO:'A4)::cCI, J} K)

1 +CA4-A2)::CCI,JP1,K)
100 CONTINUE

UD = UCl,J)
IF (UD .GT. O.ODO) GO TO 10
VD = vCl, J)
CALL ACOEFCDXX,DXZ,DZZ,A1,A2,A3,A4,UD,VD,N,M,1,J)
TOA3 = 2. ODO::A3
BETA(1) =A5 + TOA3
G.AJv1tvV\(l) = -TOA3
IF = 1
TO TO 20

10 CONTINUE
IF = 2
C(1,J}KP1) = CSEA
VECKWN(2) = VECKWN(2) = ALPHA(2):'CSEA

20 CONTINUE
VECKWNCIwMl) = VECKWN( IWMl) - GAMMACI wMl):'cCI WELL, JWELL,KPl)
CALL TRIDGICIF,IWM1,ALPHA,BETA,GAMMA,VECKWN,C,ND,MD,KDD}J)
DO 101 I=rWP1,NMI
UD = UCI,J)
VD = VCI,J)



CALL ACOEF(DXXJDXZJDZZJA1JA2JA3JA4JUDJVDJNJMJIJJ)
ALPHA(I) = -(A1+A3)
BETA(O = AS+2.0DO::A3
GAMfv1A(I) = A1-A3
VECKWN( I) = (A2+A4)::cCI J JM1 JK)+(A5-2. ODO::A4)::cCI J J JK)

1 +(A4-A2)::cCI J JPI JK)
101 CONT INUE

VECKWN( IWP1) = VECKWN( IWPI) - ALPHA( IWPl)::C( IWELLJJWELLJKPl)
VECKWN(NM1) = VECKWN(NMl) -G~(NMl)::C(NJJJKPl)

CALL TRIDGI(IWP1JNM1JALPHAJBETAJGAMMAJVECKWNJCJNDJMDJKDDJJ)
RETURN 1
END

SUBROUTINE AJWELL(CJUJVJDXXJDXZJDZZJALPHAJBETAJGAMMAJVECKWNJ
1 NDJMDJKDDJ I J ::)

IMPLI CIT REAL::8(A-HJO-Z)
REAL::8 C(ND J MD J KDD) J U(NDJMD) J V(NDJMD) J DXX(ND J MD ) J DXZ(ND J MD) J

1 DZZ(NDJMD)JALPHA(MD)JBETA(MD)JGAMMA(MD)JVECKWN(MD)
COMMON RHOZROJBETACJCZERO,RKXJRKZ,DELTAXJDELTAZJRMU,GJTODELXJ

1 TODELZJDELXSQJDELZSQJALONGJATRANSJDDTJRKXMUJRKZMUJRKXDXMJ
2 A5JTDXJTDZ JTODDTJALMAT JTALMATJA3DDTJA4DDTJ
3 RNJROBAGZJETAPJRMUNJNM1,NM2JMM1JKJKP1

COMMON/P1/CSEAJ IF
COMMON /P2/ RLENTHJHEIGHTJEPSLONJACONCJZZEROJHEADJUZEROJRECHJEPJ

1 DELTATJNJMJKDJNTSJNPI
COMMON /P3/ XL2JETAJPZROSJPZROFJB1JB2JTB1JTB2JTB1MJ TB2MJ

1 B3STAR,B4STARJ B5STARJEP1MJ IRECH
COMMON /P4/ QJQDXJQDZJWXJWZJDXDZJDZDXJDXDZGJDZGJIWELLJJWELL
COMMON /P7/ IWP1 J IWMIJJWPl JJWM1
IPI = 1+1
IM1 = I-I
00 100 J=2 JJWM1
UD = UCIJJ)
VD = VCIJJ)
CALL ACOEF(DXXJDXZJDZZJA1JA2JA3JA4,UDJVDJNJMJIJJ)
ALPHA(J) = -(A2+A4)
BETA(J) = A5 + 2. ODO::A4
GAMMA(J) = A2 - A4
VECKWN(J) = (Al+A3)::cCIM1 JJJ K)+(A5-2. ODO::A3)::cCI J J J K)

1 +(A3-A1)::CCIpI JJ JK)
100 C()\JT INUE

UD = uCI J I)
VD =vCI J 1)
CALL ACOEF(DXXJDXZJDZZJA1JA2JA3JA4JUDJVDJNJMJIJl)
BETA(1) = AS + 2.0DO::A4
GAMvlA( 1) = -2. ODO::A4
VECKWN(l) = (Al+A3)::CCIMl J 1JK)+(AS-2.0DO::A3Y:cCI J 1JK)

1 +(A3-Al)~C(IP1JlJK)

VECKWN(JWM1) = VECKWN(JWMl) - GAMMA(WMl)::CCIWELLJJWELL, KPl)
CALL TRIDAG(l JJWM1JALPHAJBETAJGAMMAJVECKWNJC,NDJMDJK-D,I)
DO 101 J=JWP1 JMM1
UD = uCI JJ)
VD = V(IJJ)
CALL ACOEF(DXXJDXZJDZZ,A1JA2JA3JA4JUDJVDJNJMJI,J)
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ALPHA(J) = -(Al+A4)
BETA(J) = A5 + 2. ODO~'A4
GAMMA(J) = A2 - A4
VECKWN(J) = (Al+A3)~'C( IMl, J, K)+(A5-2. ODO~'A3)::C(I, J, K)

1 +(A3-AI)~'CCIpl,J,K)

10 1 CONT INUE
VECKWN(JWPI) = VECKWN(JWPI) - ALPHA(JWPI)::cCIwELL, JWELL,KPI)
UD = U( I,M)
VD = VCI,M)
CALL ACOEF(DXX,DXZ,DZZ,Al,A2,A3,A4,UD,VD,N,M,I,M)
ALPHA(M) = -2. ODO:'A4
BETA(M) = 2.0DO~:A4 + A5
VECKWN(M) = (Al+A3)~'C( IMl, M, K)+(A5-2. ODO::A3)::C( I,M, K)

1 +(A3-Al)~C(IPl,M,K)

CALL TRIDAG(JWPl,M,ALPHA,BETA,GAMMA,VECKWN,C,ND,MD,KDD,I)
RETURN 1
END

SUBROUTINE TRACAI(C,U,V,DXX,DXZ,DZZ,ALPHA,BETA,GAMMA,VECKWN,
1 N,M,KD,J)

IMPLI CIT REAL~'8(A-H,O-Z)
REAL~:8 C(N,M, KD), U(N,M), yeN, M), ALPHA(N), BETA(N), GAMMA(N), VECKWN(N)
REAL~:8 DXX(N, M), DXZ(N,M), DZZ(N, M)
COMMON RHOZRO,BETAC,CZERO,RKX,RKZ,DELTAX,DELTAZ,RMU,G,TODELX,

1 TODELZ,DELXSQ,DELZSQ,ALONG,ATRANS,DDT,RKXMU,RKZMU,RKXDXM,
2 A5,TDX,TDZ, TODDT,ALMAT, TALMAT,A3DDT,A4DDT,
3 RN,ROBAGZ,ETAP,RMUN,NM1,NM2,MM1,K,KP1

COMMON/P1/CSEA,IF
COMMON /P12/ RNDDT
dP1 = J+1
JM1 = J-l
00 100 I=1,NM1
UD = uCI,J)
VD = VCI,J)
CALL ACOEF(DXX,DXZ,DZZ,Al,A2,A3,A4,UD,VD,N,M,I,J)
ALPHA(I) = -(A1+A3)
BETA( 1) = A5+2. ODO~:A3
GAfvMA( 1) = A2-A3
IF(J .EO. 1) VECKWN(I) = (A5=A4)::C(I,1,K) + A4~:cCI,2,K)

IF (J .EQ. M) VECKWN(I) = 2.0DO~:A4~'CCI,Mvll,K)

+ (A5-2. ODO~:A4)~:C(I,M, K)
IF ( J .EQ. 1 .OR. J .EQ. M) GO TO 100
VECKWN(n = (Al+A4)~:cCI,JMl,K) + (A5-2.0DO~'A4)~:cCI,J,K)

1 +(A4-A2)~C(I,JP1,K)

100 CONTINUE
UD = u(I, J)
IF (UD .GT. 0.000) GO TO 10
VD = V(I,J)
CALL ACOEF(DXX,DXZ,DZZ,A1,A2,A3,A4,UD,VD,N,M,1,d)
TOA3 = 2. ODO::A3
BETA(l) = A5 + TOA3
GAfvVvtA(l) = -TOA3
GO TO 20

10 CONTINUE



IF =2
C(lJJJKP1) = 0.000

20 CONTINUE
VECKW'J(NMl) = VECKWN(NM1) -GIIJv1MA(NM1) ::C(NJJ JKP1)
RETURN
END

SUBROUTINE TRACAJ(CJUJVJDXXJDXZJDZZJALPHAJBETAJGAMMAJVECKWNJ
1 NJMJKDJ 1)

IMPLI CIT REAL::8(A-HJ0-Z)
REAL::8 C(N JMJKD) JU(N JM) , V(N, M) JALPHA(M) JBETA(M) J

1 GAMMA(M)JVECKWN(M)
REAL::8 DXXCNJM) JDXZCNJM) JDZZ(NJM)
COMMON RHOZROJBETACJCZEROJRKX,RKZJDELTAX,DELTAZ,RMUJGJTODELXJ

1 TODELZJDELXSQ,DELZSQJALONG,ATRANSJDDTJRKXMU,RKZMUJRKXDXM,
2 As J TDX,TDZJTODDTJALMAT,TALMATJA3DDT,A4DDTJ
3 RNJROBAGZJETAPJRMUN,NM1JNM2JMMIJKJKPI

COMMQN/P1/CSEAJ IF
COMMON /P12/ RNDDT
IP1 = 1+1
IMI = I-I
IFCI .EQ. 1) GO TO 500
DO 100 J=2 JMtv11
UD =UCIJJ)
VD = VCIJJ)
CALL ACOEF(DXXJDXZJDZZJA1JA2JA3JA4JUDJVDJNJMJIJJ)
ALPHA(J) = -(A2+A4)
BETACJ) = AS + 2. ODO::A4
GAMMA(J) =A2 - A4
VECKWNCJ) = (Al+A3)::cCIMl JJ, K)+(AS-2. OOO::A3)::cCI JJ, K)

1 +CA3-Al)::cCIPI JJ JK)
100 CONTINUE

UD = uCI J 1)
VD = vCI J 1)
CALL ACOEFCDXX,DXZJDZZJAl,A2JA3JA4JUD,VD,NJM,IJl)
BETA(l) = AS + 2. ODO::A4
GNv'MAC 1) = -2. ODO::A4
VECKWN(l) = (Al+A3)::cCIMl J 1JK)+CAS-2. oDO::A3 )::cC IJ IJ K)

1 +CA3-Al)::CCIPl,l JK)
UD = UCIJM)
VD = vCI JM)
CALL ACOEFCDXXJDXZ,DZZJA1JA2,A3JA4JUD,VD,NJMJIJM)
ALPHACM) = -2. ODO::A4
BETACM) = 2.0DO::A4 + AS
VECKWNCM) = (A1+A3)::CC IMI JM, K)+(A5-2. OOO::A3)::C( 1JM, K)

1 +CA3-Al)~CCIPl,M,K)

RETURN
500 CONTI NUE

DO 200 J=2 JfvMl
UD = UCIJJ)
IF(UD .GT. 0.000) IF = J+l
VD = VCI,J)
CALL ACOEFCDXXJDXZ,DZZJAIJA2JA3JA4JUD,VDJNJMJIJJ)
ALPHACJ) = -(A2+A4)
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BETA(J) = AS + 2. ODO:'A4
GAMMA(J) = A2 - A4
TOA3 = 2.000:'A3
VECKWN(J) = (AS-TOA3):'cCl,J,K) + TOA3:'cC2,J,K)

200 CONTI NUE
IF (IF .GT. 1) GO TO 10
UD = U(I,I)
VD = VO,1)
CALL ACOEF(DXX,DXZ,DZZ,Al,A2,A3,A4,UD,VD,N,M,I,I)
TOA3 = 2. ODO:'A3
BETA( 1) = AS + 2. ODO::A4
GAfvY'1.L\( 1) = - 2.0 DO :'A4
VECKWN(1) = (A5-TOA3Y:C(l,I,K) + TOA3::CC2,1,K)
GO TO 20

10 CONTINUE
IFMl = IF-l
DO 30 J=l,IFMl
C(I,J,KPl) = O.ODO

30 CONTINUE
20 CONTINUE

UD = U(I,M)
VD = vO ,M)
CALL ACOEF(DXX,DXZ,DZZ,A1,A2,A3,A4,UD,VD,N,M,I,M)
TOA3 = 2. ODO:'A3
ALPHA(M) = -2. ODO::A4
BETA(M) = AS + 2. ODO:'A4
VECKWN(M) = (A5-TOA3):'C(l,M,K) + TOA3::cC2,M,K)
RETURN
END

SUBROUTINE TAIWEL(C,U,V,DXX,DXZ,DZZ,ALPHA,BETA,GAMMA,VECKWN,
1 ND, Jv1D, KDD, J, ::)

IMPLI CIT REAL::8(A-H,0-Z)
REAL:'8 C(ND, MD, KDD), U(ND,MD), V(ND,MD), DXX(ND, MD), DXZ(ND,MD),

1 DZZ(ND,MD),ALPHA(MD),BETA(MD),GAMMA(MD),VECKWN(MD)
COMMON RHOZRO,BETAC,CZERO,RKX,RKZ,DELTAX,DELTAZ,RMU,G,TODELX,

1 TODELZ,DELXSQ,DELZSQ,ALONG,ATRANS,DDT,RKXMU,RKZMU,RKXDXM,
2 AS, TDX,TDZ, TODDT,ALMAT,TALMAT,A3DDT,A4DDT,
3 RN, ROBAGZ, ETAP, RMUN,NMl,NM2,MMl, K,KPI

COMMON/Pl/CSEA, IF
COMMa~ /P2/ RLENTH,HEIGHT,EPSLON,ACONC,ZZERO,HEAD,UZERO,RECH,EP,

1 DELTAT,N,M,KD,NTS,NPI
COMMON /P3/ XL2,ETA,PZROS,PZROF,B1,B2,TBl,TB2,TB1M,TB2M,

1 B3STAR,B4STAR,B5STAR,EP1M,IRECH
COMMON /P4/ Q, QDX,QDZ,WX,WZ,DXDZ, DZDX,DXDZG, DZG, IWELL,JWELL
COMMON /P7/ IWP1,IWM1,JWPl,JWMl
COMMON /P12/ RNDDT
JP1 = J+1
JMl =J-1
00 100 I=2, IWM1
UD = uO, J)
VD =V(I,J)
CALL ACOEF(DXX,DXZ,DZZ,A1,A2,A3,A4,UD,VD,N,M,I,J)
ALPHA(I) = -(A1+A3)



BETA( 1) = A5+2. ODO::M
GAMMA(l) = A1-A3
VECKWf\l( 1) = (A2+A4)::C(K.. JM1 .. K)+(A5-2. aDO::A4)::cCI .. J .. K)

1 +(A4-A2)::cCI .. JPl .. K)
100 CONT INUE

UD =U(l.. J)
IF (UD .GT. O.ODO) GO TO 10
VD = vCl .. J)
CALL ACOEF(OXX.. DXZ .. DZZ.. Al .. A2 .. A3 .. A4.. UD.. VD.. N.. M.. l .. J)
TOA3 = 2. OOO::A3
BETA(l) = A5 + TOA3
GNIMA(l) = -TOA3
IF = 1
GO TO 20

10 COI'ITINUE
IF =2
C(l .. J .. KPl) = O.ODO

20 CONTINUE
VECKWl'JCIwMl) = VECKWN(IWMl) - GAfv1MA.(IWMl)::C(IWELL.. JWELL.. KPl)
CALL TRIDGI(IF.. IWMl .. ALPHA.. BETA.. GAMMA.. VECKWl'J .. C.. ND .. MD.. KDD .. J)
DO 101 I=IWP1 .. NMl
UD = U(I .. J)
VO = V(I .. J)
CALL ACOEF(DXX .. DXZ .. DZZ .. Al .. A2 .. A3 .. A4.. UD,VD,N.. M,I,J)
ALPHA(I) = -(Al+A3)
BETA(!) = A5+2.0DO::A3
GAMMA(I) = AI-A3
VECKWl'J( 1) = (A2+A4)::C( I, JMl, K)+(A5-2. ODO::A4)::C( I .. J .. K)

1 +(A4-A2)::C(I .. JPl,K)
10 1 C(NTI NUE

VECKWl'J( IWPl) = VECKWl'J(IWPl) - ALPHA(IWPl)::C(IWELL, JWELL.. KPl)
VECKWN(NMl) = VECKWl'J(NMl) -GAMMA(NMl)::C(N, J .. KPl)
CALL TRIDGI(IWPl,NMl,ALPHA.. BETA,GAMMA,VECKWN.. C,ND,MD,KDD.. J)
RETURN 1
END

SUBROUTINE TAJWELCC.. U.. V,DXX,DXZ .. DZZ,ALPHA.. BETA,GAMMA,VECKWN,
1 ND,MO,KDD,I .. ::)

IMPLICIT REAL::8(A-H .. 0-Z)
REAL::8 C(ND, MO, KDD) .. U(ND,MD), V(ND,MD), DXX(ND,MD) ,DXZ(ND,MD) ..

1 DZZCND.MO).ALPHA(MD).BETA(MD).GAMMA(MD).VECKWN(MD)
COMMON RHOZRO.BETAC.CZERO.RKX.RKZ.DELTAX.DELTAZ.RMU.G.TODELX.

1 TODELZ.DELXSO.DFLZSO.ALONG.ATRANS.DDT.RKXMU.RKZMU.RKXDXM.
2 A5.TDX.TDZ.TODDT.ALMAT.TALMAT.A3DDT.A4DDT.
3 RN,ROBAGZ .. ETAP.. RMUN,NMl .. NM2,MMl,K,KPl

COMMON/P1/CSEA,IF
COMMON /P2/ RLENTH .. HEIGHT .. EPSLON.. ACONC .. ZZERO,HEAD,UZERO,RECH.. EP,

1 DELTAT.. I"J .. M,KD,NTS .. NPI
COMMON /P3/ XL2 .. ETA.. PZROS .. PZROF,B1 .. B2 .. TBl,TB2 .. TB1M.. TB2M,

1 B3STAR.. B4STAR .. B5STAR.. EP1M,IRECH
COMMON /P4/ Q, QDX,QDZ,WX,WZ .. DXDZ .. DZDX, DXDZG.. DZG.. IWELL,JWELL
COMMON /P7/ IWPl,IWMl .. JWP1 .. JWMl
IPI = 1+1
IMI =1-1
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00 100 J=2~JWM1

UD = uCI~ J)
VD = VCI~J)

CALL ACOEF(DXX,DXZ~DZZ~A1~A2~A3~A4~UD~VD~N~M~I~J)

ALPHA(J) = -(A2+A4)
BETA(J) = A5 + 2. ODO~~A4
GAMMA(J) = A2 - A4
VECKWN(J) = (A1+A3)~~cCIM1~ J ~ K)+(A5-2. ODO:~A3):~cCI~ J~ K)

1 +(A3-A1)::cCIPl~J~K)

100 CONTINUE
UD = uCI~ 1)
VD = vCI~ 1)
CALL ACOEF(DXX~DXZ~DZZ~A1~A2~A3~A4~UD~VD~N~M~I~1)

BETA(l) = A5 + 2. ODO~:A4
G,liJvVV1A(l) = -2. ODO~~A4
VECKWN( 1) = (A1+A3)~~C( IM1~ l~ K)+(A5-2. ODO~~A3):~C( I ~ l~ K)

1 +(A3-A1Y:cCIPl~ l~K)

VECKWN(JWMl) = VECKWN(JWMl) - GAMMA(JWMl):~CCIWELL~ JWELL~ KPl)
CALL TRIDAG(l.JWMl~ALPHA~BETA~GAMMA~VECKWN~C~ND~MD~KDD~I)

DO 101 J=JWPl~MM1

UD = uCI ~ J)
VD = V(I~J)

CALL ACOEF(DXX~DXZ~DZZ~A1~A2~A3~A4~UD~VD~N~M~I~J)

ALPHA(J) =-(A2+A4)
BETA(J) = A5 + 2. ODO~:A4
GAMMA(J) =A2 + A4
VECKWN(J) = (Al+A3)~:C( IMl~ J~ K)+(A5-2. ODO:~A3Y:C( I ~ J~ K)

1 +(A3-AIY:CCIp1~J~K)

101 CONTINUE
VECKWN(JWPl) =VECKWN(JWPl) - ALPHA(JWPl)~~CCIWELL~ JWELL~ KPl)
UD - UCI~M)

VD = V( I~M)
CALL ACOEF(DXX~DXZ~DZZ~A1~A2~A3~A4~UD~VD~N~M~I~M)
ALPHA(M) = -2. ODO~:A4
BETA(M) = 2.0DO~:A4 + A5
VECKWN(M) = (Al+A3Y:cCI Ml~ M~ K)+(A5-2~ ODO~:A3 )~~CCI ~ M~ K)

1 +(A3-Al)::CCIPl~M~K)

CALL TRIDAG(JWPl~M~ALPHA~BETA~GAMMA~VECKWN~C~ND~MD~KDD~I)

RETURN 1
END

SUBROUTINE TRACER (C~U~V~DXX~DXZ~DZZ~ALPHA~BETA~GAMMA~VECKWN~

ND~MD~KDD)

IMPLICIT REAL::S (A-H~O-Z)

REAL~:S C(ND~ MD~ KDD) ~U(ND~ MD) ~ V(ND~MD) ~ DXX(ND~t'1D) ~ DXZ(ND~MD),

DZZ(ND~MD)~ALPHA(MD)~BETA(MD)~GAMMA(MD)~VECKWN(MD)

COMMON RHOZRO~BETAC~CZERO~RKX~RKZ~DELTAX~DELTAZ~RMU,G~TODELX~

1 TODELZ~DELXSQ~DELZSQ~ALONG~ATRANS~DDT~RKXMU~RKZMU~RKXDXM~

2 A5~TDX~TDZ~TODDT~ALMAT~TALMAT~A3DDT~A4DDT~

3 RN~ROBAGZ~ETAP,RMUN,NMl~NM2~MM1~K~KP1

COMMON/P1/CSEA.IF
COMMON /P21 RLENTH~HEIGHT,EPSLON;ACONC,ZZERO,HEAD,UZERO,RECH,EP,

1 DELTAT~N~M~KD~NTS~NPI

COMMON /P3/ XL2~ETA~PZROS~PZROF~Bl~B2,TB1~TB2~TB1M~TB2M,



1 B3STAR,B4STAR,B5STAR,EPlM,IRECH
COMMON /P4/ Q,QDX,QDZ,WX,WZ,DXDZ, DZDX, DXDZG, DZG, IWELL,JWELL
COMMON /P6/ RKXDD,RKZDD,DELZ12,MM2
COMMON /P7/ IWP1,IWMl,JWP1,JWMG
COMMON /P8/ GDZ2,ROBNDT
COMMON /P9/ REQ-iED, ROGRHD
COMMON /P10/ HPM
COMMON /Pl1/ B2GTDZ
COMMON /P12/ RNDDT
COMMON /P13/ ITIME
COMMON /P14/ EFLUNT
IF (ITIME .EQ. 1) GO TO 1000
CONTINUE1001

C
C------------START
C

ITERATION ON COLUMNS (1= COLUMNS)------------
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L = NM1
DO 5 J=l,M
IF = 1
IF(J .EQ. JWELL)CALL TAIWEL(C,U,V,DXX,DXZ,DZZ,ALPHA,BETA,

1 GAMMA,VECKWN, CW,ND,MD,KDO,J, &5)
CALL TRACAI(C,U,V,OXX,DXZ,DZZ,ALPHA,BETA,GAMMA,VECKWN,N,M,KD,J)
CALL TRIDGICI F, L,ALPHA, BETA, GAMMA, VECKWN, C,N,M, KD,J)

5 CONTINUE
CALL STUF21(C,ND,MD,KDD)

C
C------------START ITERATION ON ROWS CJ=ROWS)-----------­
C

L = M
00 4 I=1,NM1
IF = 1
IF(I .EQ. IWELL) CALL TAJWELCC,U,V,DXX,DXZ,DZZ,ALPHA,BETA,

1 GAMMA,VECKWN,CW,ND,MD,KOD,I,&4)
CALL TRACAJCC,U,V,DXX,DXZ,DZZ,ALPHA,BETA,GAMMA,VECKWN,N,M,KD,I)
CALL TRIDAG(IF,L,ALPHA,BETA,GAMMA,VECKWN,C,N,M,KO,I)

4 CONTINUE
RETURN

1000 CONTI NUE
DO 300 J=l,M
DO 300 I=l,N
CCI,J,K) = 0.000
CC1,J,KP1) = O.ODO

300 CONTINUE
CCIWELL,JWELL,KP1) = EFLUNT
GO TO 1001
END

SUBROUTINE DIJCDXX,DXZ,DZZ,U,V,N,M)
IMPLI CIT REAL::8CA-H,0-Z)
REAL::8 DXX(N,M), DXZ(N,M), DZZ(N,M), UCN,M), V(N,M)
COMMON RHOZRO,BETAC,CZERO,RKX,RKZ,DELTAX,DELTAZ,RMU,G,TODELX,

1 TODELZ,DELXSQ,OELZSQ,ALONG,ATRANS,ODT,RKXMU,RKZMU,RKXDXM,
2 A5,TDX,TDZ,TODDT,ALMAT,TALMAT,A3DDT,A4DDT,
3 RN,ROBAGZ,ETAP,RMUN,NM1,NM2,MMl,K,KPl

DO 1 J=l,M
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DO 1 I=l,N
UD = U(I, J)
VD = V(I,J)
V/V1AGD = DSQRT(UD~:UD+VD~:VD)

IF(VMAGD .LT. 1.0D-05) DXX(I,J) =DDT
IF(VMAGD .LT. 1.0D-05) DXZ(I,J) =DDT
IF(VMAGD .LT. 1.0D-05) DZZ(I,J) =DDT
IF (V/V1AGD .LT. 1.0D-05) GO TO 1
DXX(I,J) = ATRANS~:VMAGD + (ALMAT~:UD~:UD)/VMAGD + DDT
DXZ(I, J) = (ALMAT~:UD~:VD/V/V1AGD) + DDT
DZZ(I, J) = ATRANS~:vMAGD + (ALMAT::VD~:VD)/VMAGD + DDT

1 CONTINUE
RETURN
END

SUBROUTINE ACOEF(DXX,DXZ,DZZ,A1,A2,A3,A4,UD,VD,N,M,I,J)
IMPLI CI T REAL~:8(A-H, O-Z)
REAL~:8 DXX(N, M), DXZ(N, M), DZZ(N,M)
COMMON RHOZRO,BETAC,CZERO,RKX,RKZ,DELTAX,DELTAZ,RMU,G, TODELX,

1 TODELZ,DELXSQ,DELZSQ,ALONG,ATRANS,DDT,RKXMU,RKZMU,RKXDXM,
2 AS, TDX, TDZ,TODDT,ALMAT,TALMAT,A3DDT,A4DDT,
3 RN, ROOAGZ, ETAP, RMUN,NM1,NM2,MM1,K, KP1

[PI = 1+1
IM1 - I-I
JP1 = J+1
JM1 - J-1
TDZ - TODELZ
IF (J .EQ. 1) JM1 = J
IF (J .EQ. M) JP1 = J
IF (J .EQ. I .OR. J .EQ. M) TDZ = DELTAZ
DXXWRX = (DXX(IP1,J)-DXX(IM1,J))/TODELX
DXZWRX =(DXZ(IP1,J)-DXZ(IM1,J))/TODELX
DXZWRZ = (DXZ(I,JP1)-DXZ(I,JM1))/TDZ
DZZWRZ = (DZZ(I,JP1)-DZZ(I,JM1))/TDZ
Al = (UD-DXXWRX-DXZWRZ)/TODELX
A2 = (VD-DXZWRX-DZZWRZ)/TODELZ
A3 =(DXX(I,J)+DXZ(I,J))/DELXSQ
A4 = (DXZ(I,J)+DZZ(J,J))/DELZSQ
RETURN
END

SUBROUTINE DISP(AB1,AB2,UD,VD,VMAGD)
IMPLI Cl T REAL~:8(A-H, O-Z)
COMMON RHOZRO,BETAC,CZERO,RKX,RKZ,DELTAX,DELTAZ,RMU,G,TODELX,

1 TODELZ,DELXSQ,DELZSQ,ALONG,ATRANS,DDT,RKXMU,RKZMU,RKXDXM,
2 A5,TDX, TDZ,TODDT,ALMAT, TALMAT,A3DDT,A4DDT,
3 RN,ROBAGZ,ETAP,RMUN,NM1,NM2,MMI,K,KP1

DXX = ATRANS::VMft.GD+(ALMAT::UD~:DABS(UD))/VMAGD + DDT
AB1 = RJ\l::DXX/DELTAX
DXZ = ALMAT~:UD~:VD/VMAGD + DDT
AB2 = RN::DXZ/TODELZ
RETURN
END



SUBROUTINE TRIDAG(IF~L,A~B~C~D,V~N~M~KD,I)

IMPLI CIT REAL~~8(A-H~ O-Z)
REAL:~8 A(L), B(L), C( L) ~ D(L) ~ yeN, M~ KD) ~ BETA( 10 1) ~ GNIMA( 10 1)
COMMON RHOZRO~BETAC,CZERO~RKX~RKZ~DELTAX~DELTAZ,RMU~G~TODELX~

1 TODELZ~DELXSQ~DELZSQ~ALONG~ATRANS,DDT~RKXMU,RKZMU~RKXDXM~

2 AS~TDX~ TDZ~ TODDT~ALMAT~TALMAT~A3DDT~A4DDT,

3 RN~ROBAGZ~ETAP~RMUN~NMl~NM2~MMl~K~KPI

BETACI F) = BCI F)
GAMMA(IF) = D(IF)/BETA(IF)
IFPl = IF + 1
00 1 ID=IFPl~ L
BETA(ID) = B(ID)-A(ID)~C(ID-l)/BETA(ID-l)

1 GAtv\"1A( ID) = (DCI D) -A(I D) ~~GftJv1MA(I D-1) ) / BETACI D)
V(I~L,KPl) = GAMMA(L)
LAST = L-IF
00 2 J=I, LAST
JD = L-J

2 v(I ~ JD, KP1) = GAMMA(JD)-C(JD):'V(I ~ (JD+l) ~ KP1)/BETA(JD)
00 3 JP=IF~L

3 WRITE(6~900) JP~BETA(JP)~GAMMA(JP)

900 FORMAT(IH ~IS~SX,2(lPD20.10

RETURN
END

SUBROUTINE TRI DGI CI F~ L~A~ B~ C~ D~ V,N~ M~ KD~ 1)
IMPLI CIT REAL~:8(A-H ~ 0-Z)
REAL::8 A(L) ~ B(L), C(L), D(L), yeN, M~ KD), BETA(lO 1), GJlJ'vVvIA( 10 1)
ca~ON RHOZRO,BETAC~CZERO,RKX~RKZ~DELTAX~DELTAZ~RMU~G~TODELX~

1 TODELZ,DELXSQ,DELZSQ~ALONG,ATRANS,DDT,RKXMU~RKZMU,RKXDXM~

2 AS, TDX, TDZ, TODDT,ALMAT, TALMAT,A3DDT,A4DDT,
3 RN,ROBAGZ,ETAP,RMUN~NMl,NM2,MMl,K,KPl

BETA(IF) = B(IF)
GAMMA(IF) = D(IF)/BETA(IF)
IFPl = IF + 1
00 1 ID= IFPl, L
BETA(ID) = B(ID)-ACID)~:C(ID-l)/BETA(ID-l)

1 GAMMA(ID) = (D(ID)-A(IDY'GAMMACIo-l))/BETA(ID)
V(L,I,KPl) = GAMMA(L)
LAST = L-IF
00 2 J=I,LAST
JD = L-J

2 V(JD, I, KP1) = GNIMA(JD)-C(JDY:V((JD+1), I, KP1)/BETA(JD)
RETURN
END

SUBROUTINE STUF21(W,ND,MD,KDD)
IMPLICIT REAL::8 (A-H~O-Z)

REAL::8 W(ND,MD,KDD)
COMMON /P2/ RLENTH,HEIGHT,EPSLON,ACONC,ZZERO~HEAD,UZERO,RECH,EP,

1 DELTAT~N~M,KD,NTS,NPI

COMMON /P3/ XL2,ETA,PZROS,PZROF,Bl~B2~TBl,TB2,TBIM,TB2M,

1 B3STAR,B4STAR,BSSTAR,EPIM,IREOH
00 10 J=I~MD

00 10 I=l,ND
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W(I~J~I) = W(I~J~2)

10 CONTINUE
RETURN
END

SUBROUTINE CHKCON(W,EPUN,ICON~ND,MD~KDD)

IMPLICIT REAL::8 (A-H,O-Z)
REAL::8 W(ND~MD~ KDD)
ICON = 0
DIF = O.ODO
DO 10 J=I,MD
DO 10 I=I,ND
DIFNEW = DABS(W(I~J~2) = W(I~J~I))

IF (DIFNEW .GT. DIF) DIF=DIFNEW
10 CONTINUE

WRITE(6~900) DIF
900 FORMAT(IH ~ 'GREATEST DIFFERENCE IS' ~IPD20.10)

IF(DIF .LT. EPUN) lCON=l
RETURN
END

SUBROUTINE COMHPM(RHOP,NIPARM)
IMPLICIT REAL::S (A-H~O-Z)

REAL::8 RHOP(N IPARM)
COMMON RHOZRO~BETAC~CZERO,RKX~RKZ~DELTAX~DELTAZ~RMU~G,TODELX~

1 TODELZ~DELXSQ~DELZSQ,ALONG~ATRANS~DDT~RKXMU~RKZMU~RKXDXM~

2 AS, TDX~ TDZ~ TODDT~ALMAT~ TALMAT~A3DDT,A4DDT,

3 RN~ROBAGZ~ETAP~RMUN~NMl~NM2~MMl~K~KPl

COMMON/Pl/CSEA~IF

COMMON /P2/ RLENTH,HEJGHT,EPSLON~ACONC~ZZERO~HEAD~UZERO~RECH~EP~

1 DELTAT,N,M,KD~NTS~NPI

COMMON /P31 XL2~ETA,PZROS,PZROF,Bl~B2,TBl, TB2~TBIM,TB2M,

1 B3STAR,B4STAR~B5STAR,EPIM,IRECH

COMMON /P4/ Q,QDX,QDZ,WX,WZ,DXDZ,DZDX~DXDZG,DZG~lWELL~JWELL

COMMON IP6/ RKXDD~RKZDD~DELZ12,MM2

COMMON /P71 IWPl~IWMl~JWPl,JWMl

COMMON IPS/ GDZ2~ROBNDT

COMMON /P9/ RECHED~ROGRHD

COMMON /PI0/ HPM
PI = 3. 141592654DO
PISQ = PP:PI
RATIOX = (RKZ::DELXSQ)/CRKX::DELZSQ)
RNSQ = DFLOAT(N:i\j)
XPART = PISQ/C(2.0DO::RNSQ)::C1.0DO+RATIOX))
RATIOZ = 1.0DO/RATIOX
RMSQ = DFLOATCM::M)
ZPART = PI SQ I (0. ODO::RMSQ)::( 1. ODO+RATIOZ))
HMIN = DMINI(XPART,ZPART)
HtvV\X = 2. ODO
HINCRM =DEXP(DLOG(HMAX/HMIN)/(NIPARM-l))
RHOPC 1) = HMIN
DO 10 LTIME = 2.NIPARM

10 RHOP(LTIME) = RHOP(LTIME-l):~INCRM

WRJTEC6,900) NIPARM~(RHOP(JDUM),JDUM=l,NIPARM)
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900 FORMAT(IHO~I5~' ITERATION PARAMETERS;'~6(lPDI0.3~'~ ',lX)//~27X,6(1)

.PD10.3))
RETURN
END

SUBROUTINE PRINT2(U,N~M)

IMPLICIT REAL::8(A-H~0-Z)

REAL::8 U(N, M)
ND1 = -9
ND2 = 0
DO 1 ITER=I,7
WRITE(6,990)

990 FORMAT(IHO)
NDI = ND1 + 10
ND2 = ND2 + 10
DO 2 J = l~M

JD = M-J+l
WRITE(6~900) (U(I~JD)~ I=NDl~ND2)

2 CONTINUE
1 CONTINUE

ND2 = ND2 + 1
WRITE(6,990)
DO 3 J=l~M

JD = M-J+l
3 WRITE(6~900)(U(I~JD)~I=ND2~N)

900 FORMAT(IH ~10(2X~Gll.4))

RETURN
END

SUBROUTINE PRINT3(U,N,M,K~DELX,DELZ)

900 FORMAT(IH 1 'Z=',F5.1~10(2X,FI0.3))

SUBROUTINE PRT3DF(U~N~M,K~DELX,DELZ)

IMPLICIT REAL::8(A-H~0-Z)

REAl::8 U(N,M~K)~DINCRMC10)

INTEGER::4 BUFFER( 10)
NROWS = NIlO
NDI = -9
ND2 = 0
D04ICOl=1.10

4 BUFFER(ICOl) = ICOl-I0
DO 1 ITER=l,NROWS
WRITE(6~ 990)
DO 5 ICOl=1,10
BUFFER(ICOl) = BUFFER(ICOl)+10

5 DINCRM(ICOL) = (BUFFER(ICOL)-l) :: DELX
WRITE C6~901)(DINCRMCICOL)~ICOL=I~10)

901 FORMAT(IHO~ 'X= '~10C2X~F8.1~2X))

NDI = NDI + 10
ND2 = ND2 + 10
DO 2 J = I,M
JD = M-J+l
DXZJD = (JD-l)::DELZ
WRITE(6~900) DXZJD~CUCI~JD,K)~I=NDl~ND2)

2 CONTINUE
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1 CONTINUE
WRITE(6,990)

900 FORMAT(IH, 'Z=',F5.1,lO(2X,lPDI0.3))
990 FORMAT( IHO)

RETURN
END

SUBROUTINE PRTDIF(C,CZRO,ND,MD,KDD)
IMPLICIT REAL::8 (A-H,O-Z)
REAL::8 C(ND,tvV, KDD), CZRO(ND,MD)
REAL::4 SCR, RD IF
DIMENSION ICDIF(19),NPRINT(10)
DATA ICDIF!2H-9,2H-8,2H-7,2H-6,2H-5,2H-4,2H-3,2H-2,2H-I,lH 0,

2H 1,2H 2,2H 3,2H 4,2H 5,2H 6,2H 7,2H 8,2H 9/
WRITE(6, 90 1)

901 FORMAT(lH ,T50,'NORMALIZED RELATIVE SALINITY',!!)
DO 10 JDUM = 1, tvV
J = tvV-JDUMt-l
00 20 I=l,ND
CRELTV = (( CCI, J, 2)-CZROCI, J)) /35. 8DO)::9. ODO
IF(CRELTV .GT. 9.0DO) CRELTV = 9.0DO
IF (CRELTV .LT. -9.0DO) CRELTV = -9.0DO
SCR = SNGL(CRELTV)
RDIF = SCR - FLOAT(IFIX(SCR))
IF (RDIF .GE. 0.5) ICR = IFIX(SCR) + 1
IF(RDIF .LT. 0.5 ICR = IFIX(SCR)
NPRINT(I) = ICDIF(JCR + 10)

20 CONTI NUE
WRITE(6,900) NPRINT

10 CONTINUE
900 FORMAT(IHO,TI4,10(A2,7X))

RETURN
END

SUBROUTINE EXHIB(X,Y,ANGLE,VEL,N,M)
C COMPUTES MAGNITUDE AND DIRECTION OF VELOCITY AT Z-POINTS

IMPLICIT REAL::8 (A-H,O-Z)
REAL::8 X(N, M), yeN, M) ,ANGLE(N, M), VEL(N, M)
DIMENSION IPLTl(31),IPLT2(31).IPLT3(31),IPLT4(31),IPLT5(31),

MM(lD
DATA MM/IHO,lHl,lH2,lH3,lH4,lH5,lH6,lH7,lH8,lH9,lH /
PI = 3.141592654
XMAX=-l. E20
00 1 J=l,M
00 1 I=I,N
XBM.= X( I, J)
YBM.= Y(I,J)
IF(XBAR.EQ.O .. AND.YBAR.EQ.O.) GO TO 2

C ANGLE OF ZERO DEGREES POINTED IN J-DIRECTION
ANGLECI , J)=DATAN2(YBAR, XBM.)::180 .!PI
IF(ANGLE(I,J).LT.O.) ANGLE(I,J)=ANGLE(I,J)+360.
VEL( I •J)=DSQRT(YBM.::::2+XBAR::::2)
IF(VEL(I.J).GT.XMAX) XMAX=VEL(I.J)
GO TO 1



2 ANGLECI, J)=O.
VEL( I, J)=O.

1 CONTINUE
XFACT = XMAX/99.
XFACTM = XFACT::864.
PRINT 3, XFACTM

3 FORMAT(lH , 'THE SPECIFIC DISCHARGE IN METERS PER DAY =',lPEIO.3,
.' TIMES THE RELATIVE VALUE SHOWN')
00 4 JDUM=l,M
J = M-JDUM+l
00 5 l=l,N
K=VEL( I, J)::99. /'IJ'I'IV(
KIO=K/IO+l
Kl=K-lO~(K/lO)+l

L=ANGLE( I, J)
LlOO=L/lOO+l
LIO=(L=lOO~(L=lOO))/lO+l

Ll=L-lQ::(L/lO)+ 1
7 IPLTl(I)=MM(KlO)

IPLT2( I)=tIM(KI)
IPLT3(I)=MM(LIOO)
IPLT4(I)=MM(LIO)

5 IPLT5(I)=MM(Ll)
PRINT 8, (IPLTl(I),IPLT2(I),I=1,N)

8 FORMAT(lHO,31((2X,2Al,lX),6X))
4 PRINT 9, (IPLT3(I),IPLT4(I),IPLT5(I),I=1,N)

9 FORMAT(lH ,lX,31((3Al,2X),6X))
RETURN
END

)E
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