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ABSTRACT

The dynamics of most mechanical systems tends to incorporate nonlinear

functions and behaviors to model complex systems. Due to the complexity of

some of these systems, only analytical solutions can be found to model, opti-

mize and control them however the costs of doing so are not always feasible. To

solve these nonlinear systems we usually need to take approximations through

linearization which can lead to a loss of fidelity in modeling systems to accom-

modate the computing power needed to solve them.

This work is the culmination of research and study involving the use of a

data-driven spectral method to generate a linear approximation of nonlinear

systems using Koopman operator theory. The Koopman operator is an infinite

dimensional operator that ‘lifts’ the nonlinear behavior of a system to a higher

dimensional state. In this lifted state, the evolution of these nonlinear dynamics

progresses linearily. This work investigates the use of data driven methods such

as dynamic mode decomposition (DMD), and one of its variants, to find the

Koopman operator of some nonlinear dynamical systems.

In this work we initially go through decomposing the linear dynamics of the

above systems using DMD on two sample systems to verify the efficacy of this

method of finding the Koopman operator before lifting the dynamics. Using

a variant of DMD, extended dynamic mode decomposition, we decompose the

lifted non-linear dynamics of a pendulum and cart-pendulum system to find

the leading Koopman eigenfunctions to approximate a lower, finite-dimensional

representation of the discovered dynamics. We used these methods of recon-

struction on controlled and uncontrolled data of the sample systems to compare

the observed dynamics to evaluate the reconstruction on a wider breadth of be-

haviors a system can produce. Using these reconstructed states analyze the

limitations and discuss possible improvements to these methods of finding the

Koopman operator.
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CHAPTER 1
INTRODUCTION

Advancements in data-driven systems and in computing have given rise to Koopman

operator theory, an alternate view of how to describe dynamical systems. Using the Koopman

operator, we can identity intrinsic states and alternative coordinate systems where non-linear

dynamical systems can appear linear. Obtaining new linear representations of nonlinear

systems can potentially make far reaching changes in how we can model, predict and control

like systems. This chapter provides a brief overview of dynamical systems a brief overview

of the Koopman operator and a literature review of recent works and applications of the

Koopman operator in modeling dynamical systems.

1.1 History of the Koopman Operator

The Koopman operatory originated with the early work by Koopman [1] on the introduction of

an operator that produces a unitary transformation in Hamiltonian dynamical systems. This

lead to further work with spectral theory with John von Neumann in 1932 [2] which further

described a spectrum associated with the operator Koopman discovered the year prior in [1].

This work was then relatively untouched for 70 years as there was no immediate application

of this analytical method of modeling dynamical systems as it would be too difficult to

continue calculations without assistance. In the early 2000’s the Koopman operator saw a

reemergence in the work done by Igor Mezic in [3,4] where he showed how we can can reduce

and reconstruct high dimensional state-spaces from data and use significant eigenvalues of the

Koopman operator to detect and determine trends in the dynamics of data that can appear

chaotic which can be referred to as Koopman modes.

Later, Rowley et al. [5] used the Koopman operator and applied it to complex fluid flow

and showed how capturing relevant structures discretely in a Koopman mode decomposition

(KMD) which showed a data-driven method of showing a connection between measurements

taken of a system and its associated dynamics in the state-space. This work showed that KMD

can be found through dimensional reduction algorithms developed by Schmid et al. [6]. In

[6], Schmid et al. developed a data-driven method of determining the dynamic information

from a flow field past a cylinder to determine the dominant modes to find describe the

dynamics in a process called dynamic mode decomposition. Together, the work by Schmid

[6] and Rowley [5] have developed a close relationship between KMD and DMD and the two

decomposition techniques have become popular in investigating nonlinear flows in particular

1



[7–10] as well as other fields which will be further described in section 1.3.

1.2 Background on Dynamical Systems

This work pertains to the implementation of Koopman operator theory on dynamical systems

to propagate non-linear dynamical equations with a data-driven approximation method. Con-

ventionally, a non-linear dynamical system consists of a set of states and a function or rule that

governs how the states propagate either forward in time or with respect to each other [9,11].

This can be described in a continuous and a discrete method.

For a generic continuous system

d

dt
x(t) = F (x(t), t;µ), (1.1)

x(t) ∈ Rn is the vector holding the states of the dynamical system at time t, n is the number

of states that define the system, µ is a set of parameters for the system dynamics, and F (·)

is the rule describing the evolution of the state in a continuous sense. These continuous-

time dynamics can also be modeled in a respective discrete-time representation where the

system can be evaluated at every finite time interval, ∆t, which can otherwise be viewed as

xk = x(k∆t) with the subscript k.

The evolution of a dynamic system in a discrete-time flow map can be formally portrayed

as:

xk+1 = f(xk), (1.2)

by collecting the states at time tk, k = 1, 2, ...,m, for m time steps, where xk is a n-dimensional

column vector of system states and xk+1 is the states of the system in the time step following

xk [12–14].

These rules governing how the states of the system advance tend to be nonlinear equations

to best simulate most of the systems in practice. An unfortunate quality of nonlinear systems

is that their dynamics are difficult to solve analytically. As a result, modern control practices

tend to turn to approximations in order to produce a high-fidelity controller for the system.

However, if a dynamical system can be expressed with by a linear rule, we can then achieve

more accurate predictions of how a system advances in time. We intend to show this using

the Koopman operator theory.
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1.3 Literature review of the Koopman Operator

In this work we explore the application of the Koopman operator to find finite-dimensional

linear representation of nonlinear dynamical systems. As aforementioned, the Koopman oper-

ator originated with the early work of Koopman with von Neumann in 1932 on the spectrum’s

that the Koopman operator resides in [2].

Brunton et al. explored the relationship between the Koopman operator and explored mul-

tiple observable functions to form a Koopman subspace to develop a Koopman operator [15].

In their work, they showed that the state matrix found by approximating the Koopman oper-

ator for specific systems can be used to generate control laws with linear quadratic regression

(LQR). Further more, Proctor et al. [14] expanded on their previous work on DMD to cre-

ate a DMD method with control to extract low-order control models from higher-dimensional

systems building the base DMD algorithm. This DMD variant with control(DMDc), is demon-

strated to show positive results in the analysis of infections disease data. Proctor et al. [13]

introduced a method of finding the Koopman operator of a system that takes into account

system’s inputs and control (KIC) based on prior work on DMDc. Work has also been done

to improve the accuracy of the Koopman operator by ’lifting’ the states of the system to a

set of observables such that a solution can be found where the data required from DMD is

limited, extending the DMD algorithm (EDMD) [16]. Korda et al. [17] presented the use

of lifting nonlinear dynamics on augmented states with EDMD and explored finding control

laws for systems using model predictive control (MPC). There have also been work done to

optimize the methods in which the lifting of dynamics is done through the optimization of

the dictionary of functions used to lift the state variables through EDMD with dictionary

learning [18].

Applications of the Koopman operator have been explored in the field of robotics, where

the operator is used to develop closed-loop controllers for pendulum systems [19]. Kaiser

et al. [10] explores the application of the Koopman operator theory in generating energy-

based control using a DMD variant with control, extended dynamic mode decomposition

with control, and compared it against another method of finding the Koopman operator called

the Koopman reduced order nonlinear identification and control (KRONIC). Conversely, the

Koopman operator is not a panacea to solving dynamical systems; a recent work by Gonzalez

et al. [20] aimed at demonstrating some of the weakness of the Koopman operator and the

DMD algorithms and provides alternate approaches to reconstruction.

With the rise in popularity of the Koopman operator there has been many works showing
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its viability in approximating nonlinear dynamical systems with this linear operator since

works by Mezic [3] and Mezic et al. [17]. More recently, Surana [21] and Surana and Ba-

nazuk [22] have explored the use of a Koopman operator and Kalman filter system. As

aforementioned, the properties of the Koopman operator is very attractive when exploring

the usage of Kalman filter; the data-driven aspects of modeling nonlinear dynamics as linear

work in tandem with the restrictions of a conventional Kalman filter. In this work they ex-

plore the lifting of the system dynamics and the observation matrices from data of a given

system. In [22], Surana and Banazuk demonstrate the usage of a Koopman Kalman filter in

a canonical nonlinear dynamical system which instead possess a finite-dimensional Koopman

subspace using conventional methods of approximating the operator with its eigenvalues and

eigenvectors. In [23], Netto and Mili explore the usage of robust generalized maximum likeli-

hood Koopman operator-based Kalman filter to estimate the states of a power generator and

compare their filter against the work of Surana and Banazuk.

In [24] Yeung et al. use deep learning to learn the Koopman operator of nonlinear systems

by optimising how the dictionaries used for EDMD are found and used over the specific

domains. Using these dictionaries the work analyzes and predicts the dynamics of a glycolytic

oscillator several hundred time steps into the future. Other methods of incorporating In [25],

Fonzi et al. developed another variant of DMDc for aeroelastic models for morphing wings

called algebraic dynamic mode decomposition with control (aDMDc). This variation of DMD

takes into account the changing aerostructural dynamics over the body of the airfoils that are

being modeled in the work.

1.4 Koopman Operator on Dynamical Systems

This work is a detailed summary of an exploration on using the Koopman operator to model a

pendulum and cart-pole nonlinear system. In this study we used DMD and EDMD to find the

Koopman eigenvecgtors and eigen modes to reconstruct the original state data and took these

processes The remainder of this work will be presented in three chapters. The first chapter is

a brief background and literature review on dynamical systems and the Koopman operator.

The next chapter, ’Koopman Operator for Modeling and Control,’ we discuss the mathematics

behind the Koopman operator, the DMD algorithm and EDMD algorithms. Following Ch 2,

we discuss the experimental setup and the results from the system reconstructions using DMD

and EDMD along with the effects of variances on the reference data on the reconstruction

4



process in ’Implementation of Koopman Operator on Sample Systems’. Lastly we conclude

with a brief discussion of our results and a set a direction for future work resulting from this

work and the Koopman operator.
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CHAPTER 2
KOOPMAN OPERATOR FOR MODELING

DYNAMICAL SYSTEMS

In this chapter we will discuss the concept and mathematics behind the Koopman operator

and the DMD algorithm. Additionally we will discuss the DMD variant, EDMD, and how it

relates to discovering the Koopman operator from state-space data.

The Koopman operator is an infinite-dimensional operator that evolves the functions that

evolve the state of a dynamical system linearly. In this work, the Koopman operator is

computed using data-driven methods such as the dynamic mode decomposition (DMD) al-

gorithm. DMD uses linear measurements of the states of a dynamical system to find the

dominant modes of the underlying system from data to reconstruct a linear representation of

the evolution of the system.

2.1 Introduction to Koopman Operator

The Koopman operator is a linear but infinite dimensional operator that can be defined for

an autonomous, discrete time, dynamical system. Unlike the function f shown earlier in

(1.2), the Koopman operator advances the measurements of the changes in dynamics over

time [11,13,17].

2.2 Mathematics behind the Koopman Operator

Consider the evolution of a dynamical system xk+1 = f(xk) where the rule f maps the state

space onto itself, i.e., f : Rn → Rn; using Koopman operator theory we define a different

rule, g : Rn → Mny , where ny is the dimension of a nearly infinite column vector defining

the dimension of the observable of x at a given time step. This implies that the Koopman

operator is defined for all observables, meaning that the Koopman operator K is also infinite-

dimensional. We will discuss how we can make this a more reasonable attribute later on in

this discussion. Here, g is a real-valued, scalar, measurement function which is an element of

an infinite-dimensional Hilbert space called an observable. The Koopman operator acts on

this observable such that

Ktg =g ◦ F (x(t)), (2.1)

K∆tg(xk) =g(f(xk)), (2.2)
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in a continuous and discreet represention, respectively. In (2.1), the Koopman operator evolves

the observable with respect to time in the continuous fashion while in (2.2) the Koopman

operator evolves the discrete-time dynamics with respect to ∆t which is the interval between

k and k+1 in time seriesm. More details on the connections between these two representations

can be found in [10,11,13,17,26]. Equations (2.1) and (2.2) allow us to define an analogue for

continuous and discrete-time dynamical systems respectively as the following in a continuously

and discreetly as:

d

dt
g =Kg, (2.3)

g(xk+1) =K∆tg(xk). (2.4)

Figure 2.1: Schematic for illustrating the advancement of a dynamical system as defined by

the Koopman operator on nonlinear dynamical systems from [27]

However as shown in Fig. 2.1, this operator advances the measurement of the change in

dynamics over time [11,13,17]. Reconsidering (1.2) where the rule F maps xk from F : Rn →

Rn, using Koopman operator theory we define a different rule, g where g(xk) maps g : Rn →

Mny where ny is the dimension of the near infinite column vector defining the dimension of

the observable of that time step of x. This implies that the Koopman operator is defined for

all observables meaning that the Koopman Operator K is also infinite-dimensional. We will

discuss how we can make this a more reasonable attribute later on in this discussion. Here g

is a real-valued, scalar, measurement function which is an element of an infinite-dimensional

Hilbert space called an observable. The Koopman operator acts on this observable, g as:

This work explores the application of the Koopman operator on discreet-time dynami-

cal systems. Due to the linear nature of the Koopman operator, we can perform an eigen
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decomposition of K such that

Kφj(xk) = λjφj(xk), (2.5)

where λ and φ are the Koopman eigenvalue and eigenvector describing the evolution of the

Koopman operator. Considering this, the observable, g(x), can be expanded as

g(x) =



g1(x)

g2(x)

...

gi(x)


=

∞∑
j=1

φj(x)vj, (2.6)

where v is a coefficient called the Koopman mode associated with its corresponding Koopman

eigenvector. This allows us to consider Koopman modes as a projection of the observable:

vj =



⟨φj , g1⟩

⟨φj , g2⟩
...

⟨φj , gi⟩


. (2.7)

By combining (2.5) and (2.6), one can show the relationship between the observable, g, and

the Koopman operator, K. However, for all practical proposes, using an infinite-dimensional

vector and operator is not always feasible so an approximation of the Koopman operator, K,

will be typically used and found from collected data on the system. This approximation allows

us to combine the terms in (2.5) and (2.6) to show the relationship between the Koopman

modes in g and the Koopman eigenvalues in K

Kg(xk) = g(f(xk)) =

∞∑
j=1

λjφj(x)vj. (2.8)

This shows that the Koopman operator is an iterative set of triples, λj , φj and vj, all of which

make up the Koopman mode decomposition when we truncate K to some n number of finite

states we will use for an approximated Koopman operator made up of the most dominant

modes in v [10,11,13,17,28, 29],

Kg(xk) ≈ Kg(xk) = g(f(xk)) =

n∑
j=1

λjφj(x)vj. (2.9)
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This changes how the original dynamical system represented by (x, k, f) is transformed

into a new dynamical system defined by (F , k, K). In a graphical sense instead of mapping

a system’s state from x to f(x) in the same plane as if this were a simple linear transforma-

tion, the Koopman operator updates the observables of the original dynamical system which

would take the plane that the original state resides, move it to the new observable plane which

transforms the the observable to a new value and then brings that value to a corresponding

location on the original state plane. The evolution between these observables is the Koopman

operator.

To perform the Koopman analysis of a given system, the Koopman eigenvalues(µk) and eigen-

functions (ψk) which capture the long term dynamics of the observables and the Koopman

modes (νk) which are vectors that allows us to reconstruct the system’s state as a linear

combination of the Koopman eigenfunctions.

2.2.1 Examples of Koopman Embeddings

In this section we will consider a simple example system containing a fixed point and pos-

sessing a closed form solution, as seen in [11,27]:

ẋ1 = µx1 (2.10)

ẋ2 = λ(x2 − x21) (2.11)

In 2.10 we have decoupled state with the absence of x2 thus showing a linear equation. In

2.11 we see a squared term and non linearity. Here we notice that if λ < µ < 0 then x2 will

rapidly approach x21 showing a slow manifold approaching zero in a quadratic fashion with

initial conditions aligning with the manifold and approaching zero showing the stability of

the new system.

We can then augment the state by introducing a new term, an observable, x3 = x2 as a

third state and thus making a linear system. Using the augmented state we can redefine the

system linearly as:

d

dt


y1

y2

y3

 =


µ 0 0

0 λ −λ

0 0 2µ



y1

y2

y3

 , (2.12)
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with the new state space as:


y1

y2

y3

 =


x1

x2

x21

 . (2.13)

Figure 2.2: Three-dimensional Koopman system, linearized from 2.12 with dynamics pro-

jected onto the y1 − y2 plane. In red is the attracting slow manifold constrained by y3 = y12

in blue and the unstable subspace described in 2.12 is the green plane. The trajectories of

the linear Koopman system in y are projected back onto the full nonlinear system states in

x in the y1 − y2 plane in black. In this example µ = −0.5 and λ = −5. Reproduced from

Brunton et al. [27]

By adding y3 = x2 in 2.12 we make 2.11 a linear equation. The third row simply is the

derivative of y3 which is 2ẋ1x1 which in 2.13 is ẋ1 = µx1 therefore making ẏ3 = 2µx21 = 2µy3.

Thus this augmented state space of 2.10 and 2.11 and lifted to a three-dimensional Koopman

observable space in 2.12 shown in Fig.2.2 via a new linear operator.

This does not work in all cases, if we were to take another simple non linear system such
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as:

d

dt
x = x2 →

y1
y2

 =

 x
x2

 . (2.14)

This should be a simple solution as it goes to infinity in a finite time, if we take the derivative

of the second state we end up with:

d

dt
y2 = 2xẋ = 2x3. (2.15)

As we can see x3 is not contained within the original state space so continuing the method

above we will never come to a closed solution and end up with an infinite amount of states

and will need to rely on a Taylor expansion to solve it.

2.3 Dynamic Mode Decomposition

DMD is a data-driven method of exploring the behavior of complex systems. Using mea-

surements from numerical simulations or in experiments, we can attempt to find the most

dominant dynamic characteristics of the system. DMD does this by finding the dynamic

modes or eigen modes and eigenvalues of the proposed system.

DMD acts on the assumption that the state of a system is connected to the next by

xk+1 = Axk, (2.16)

where x(t) ∈ Rn and A ∈ Rn×n and is the matrix describing the evolution of the state in a

continuous-time manner. Simulated or experimental measurements for xk are then collected

at regular time intervals of ∆t to become snapshots to be used in a discrete time system.

These snapshots are collected and stored in sequence like the following:

X =

x1 x2 . . . xm−1

 , (2.17)

X′ =

x2 x3 . . . xm

 , (2.18)
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where X′ is the time-shifted snapshot of matrix X such that

X′ ≈ AX. (2.19)

Mathematically, A is an operator that maps (2.17) onto (2.18) in a manner such that:

AX = argmin
AX

∥X′ −AXX∥ = X′X+. (2.20)

There is no set number of snapshots required for DMD but a sufficiently large number is

needed for the application and is closely related to the approximation of the Koopman oper-

ator. For DMD we are attempting to find the A in (2.19) using the snapshots of the system’s

states. A can be approximated by

A =X′X+, (2.21)

where + is the Moore-Penrose pseudoinverse. Considering that A has a large n that normal

calculation would be a large computational load we can perform singular value decomposition

(SVD) on the snapshots to find the dominant characteristics of the pseudoinverse of X

X ≈ UΣV∗, (2.22)

where U ∈ Rn×r, Σ ∈ Rr×r and V ∈ Rn×r where ∗ denotes the conjugate transpose. r is

the reduced rank of the SVD approximation of X. From SVD we can rearrange the singular

values and the eigenvectors of X with the forward snapshot to A that satisfies (2.19):

A ≈ Ã =X′ṼΣ̃−1Ũ∗, (2.23)

where Ã, Ṽ , Σ̃ and Ũ∗ is an approximation of A, V,Σ and U, seen in (2.22) based on the

truncation rank r.

However, since we primarily care about the r leading eigenvectors and eigenvalues of A,

we can project A onto the modes of U such that:

Ã = U∗X′VΣ−1, (2.24)
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where Ã linear model of the dynamical system such that

x̃k+1 =Ãx̃k. (2.25)

Here x̃ :∈ Rr×1 is also a reduced order of the state x which can be reconstructed by

x̃ : x = Ũx̃. (2.26)

The next step is to find the spectral decomposition of Ã:

ÃW = WΛ, (2.27)

where Λ and W are the corresponding eigenvalues (DMD modes) and eigenvectors of the

full rank system dynamics matrix allowing us to recover the full state system dynamics in a

computationally efficient manner since Ã ∈ Rr×r where r << n. We can now reconstruct

the eigendecomposition in (2.22) for A from W and Λ with the corresponding eigen vectors

given by the columns of Φ such that

Φ =X′VΣ−1W. (2.28)

From Φ we can no reconstruct our approximation of the time dynamics of x(t) by projecting

our approximations into a future solution

x(t) ≈
r∑

k=1

ϕk exp (ωkt)bk = Φ exp (Ωt)b, (2.29)

where bk is the initial amplitude of each DMD mode, ϕ is the columns that make up Φ and

Ω is the diagonal matrix of the eigenvalues ω in ωk = ln (λk)/∆t [9, 11,14,26,30].

2.4 Finding the Koopman Operator with Dynamic Mode

Decomposition: Extended DMD

Extended DMD (EDMD) is almost the same algorithm as the standard DMD one, however

the method of which we deploy EDMD is by using the observables of the system to create

a dictionary to pass through the normal DMD algorithm. By performing regression on this

new augmented vector containing linear and non-linear measurements we can make a different
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approximation of the original system dynamics. This augmented vector is constructed in the

following manner:

y = ΘT (x) =



θ1(x)

θ2(x)

...

θp(x)


. (2.30)

where p is the rank of the augmented state such that p >> n. Here Θ is the collection of

measurements of the system possibly containing the original state of the system, x, as well as

nonlinear measurements. Once y is found, two data matrices are created in the same manner

seen above in the DMD algorithm (2.17)(2.18).

Y =

y1 y2 . . . ym−1

 , (2.31)

Y′ =

y2 y3 . . . ym

 , (2.32)

From here a best-fit linear operator AY is found that maps a set of snapshots of (2.30)

developed in the same manner as (2.17) and (2.18)

AY = argmin
AY

∥Y′ −AYY∥ = Y′Y+ (2.33)

This regression can than be written in terms of the original data matrices ΘT (x)

AY = argmin
AY

∥∥ΘT(x′)−AYΘT(x)
∥∥ = ΘT(x′)(ΘT(x))+. (2.34)

AX is then the basis upon which we can derive the Koopman operator. However, Θ may

not necessarily span the same subspace as the Koopman operator and may consist of dif-

ferent eigenvalues and eigenvectors of the Koopman operator when is why verification and

re-validation techniques need to be used to show that the EDMD model is properly fit to the

actual system.
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2.4.1 Choice of Dictionary

As mentioned previously, we augment the state space of a system when determining the

Koopman operator using EDMD. We discussed one method of augmenting the system by

taking the Jacobian of the original space in section 2.1.1 and how this method of lifting the

state space is not always applicable. For systems with out a closed solution, other dictionaries

can be used to find a more appropriate solution. A dictionary in this application is a specific

method which we use to augment a state space to cause the eigen values and eigen modes of

the state space to form a closed form solution. These dictionaries are usually system specific

[10,16,19,23] as seen in these works however there are several generic ones that we will discuss

here.

In [10]and [19] the authors explored lifiting a duffing oscillator and a cart-pendulum like

system using a combination of polynomial and Fourier basis’ as there dictionaries. In [19]

when searching for optimal control, they lifted the control data with the state-space to further

the lifting process and found that low orders had marginal affects on the reconstruction of

the state data before EDMD could no longer capture and reconstruct the original dynamics.

Traditionally a polynomial basis function lifts the original state space as:

yi(x) = xαi
1 x

βi

2 ...x
δi
n , (2.35)

where α, β, δ are non negative integers corresponding to the order in which the polynomial

basis is performed and i is the ith state of the original system. For a Fourier basis lifting

function, in this work we will be using:

yi(x) =
∏
xi

∏
kj

cos (kjxi) sin (kjxi), (2.36)

where kj i s the jth basis order such that Σjkj < Q where Q is the largest basis degree in the

set.

In [16], Williams et al. describe thee other simple lifting functions that have shown to

be successful in finding the Koopman operator through EDMD in other systems. These

dictionaries are lifting using Hermite polynomials, radial basis functions and discontinuous

spectral elements. Using Hermite polynomials as a lifting function works best for states are

are defined on Rn when the data is normally distributed (not in a stochastic sense). This is

very similar to the polynomial basis function described above. Using a radial basis function is

best used for problems defined on irregular domains such as problems with complex geometries
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and mesh grids can be difficult to compute. Lastly, using discontinuous spectral elements are

best used for problems where blocks of data can be isolated and lifted individually using their

own basis functions, essentially decoupled.

2.4.2 Limitations Koopman Operator and DMD

There are several weaknesses with the Koopman operator as it is not a solution to every

dynamical system. The first major weakness of the Koopman operator especially with respect

to DMD, is the need for sufficient data. This sufficiency is both dependent on states sampled

if the system in question has coupled states which are of importance to us, and in terms of

time steps as we increase the number of snapshots when performing DMD we get a clearer

image of the underlying dynamics [9, 11].

Another principle weakness of the Koopman operator is that it is system specific and

depending on which method you use to identify the Koopman operator from data you will

be limited to a set course of dynamics that the system would expect to experience. Another

way to state this is that the Koopman operator for one set of maneuvers is not guaranteed

to work on another set of maneuvers of the same dynamical system. Other weaknesses of the

Koopman operator is that the Koopman modes may not exist or be insignificant at all times

in a given span. Likewise it is also possible that a single Koopman mode may be associated

with multiple Koopman eigen values as we will show later in this work [6, 9, 11].

Additionally, there is a need for clarity in the observations taken when forming the Koop-

man operator from data. As discussed in [22, 23] the need to filter the data used may be

required to find the Koopman operator of the underlying system. Additionally since the Koop-

man operator is derived form the eigenfunctions and eigen modes of the system, noisy data

can cause DMD to find dominate modes in the data where there are peaks in the measurement

noise.

2.5 Methodology

2.5.1 Approximating Koopman Eigenfunctions from Data

Beginning with the observable matrices in (2.30), the Koopman eigenfunction can be approx-

imated as

φ(x) ≈
p∑

k=1

θk(x)ξk = Θ(x)ξ, (2.37)
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where by using (2.30), we can find



λφ(x1)

λφ(x2)

...

λφ(xm)


=



φ(x2)

φ(x3)

...

φ(xm+1)


. (2.38)

We start seeing a connection between the Koopman operator and the process we followed to

approximate a linear evolution seen in DMD. We can expand (2.37) as

[λΘ(X)−Θ(X′)]ξ = 0. (2.39)

Afterwards, we reduce (2.39) using a best least-squares fit to get

λξ = Θ(X)+Θ(X′)ξ. (2.40)

Now we can compare (2.34) and (2.40); (2.34) is the transpose of the latter so that the left

eigenvectors are now the right eigenvectors. Comparing to (2.21) we can use the eigenvectors

ξ of Θ+Θ′ to find the coefficients of the eigenfunction φ(x) that represents the basis of Θ(x).

We now can confirm that the predicted eigenfunctions behave linearly by comparing them to

the predicted dynamics in (2.38). We do this to determine if the regression done in (2.40)

yields proper eigenvalues and eigenvectors that span the Koopman invariant subspace for the

system [16].
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CHAPTER 3
IMPLEMENTATION OF KOOPMAN OPERATOR ON

SAMPLE SYSTEMS

In this chapter we will discus the two systems we used DMD and EDMD to find the

Koopman operator for and how we generated the data and the boundaries in which we

analyzed the effectiveness these algorithms had at finding a usable Koopman Operator. In

this section we will be using data sets from a controlled and uncontrolled pendulum and cart-

pole system and change the sampling rate and sample duration in which we used to calculate

the respective Koopman operators. Additionally we tested the fidelity of the reconstructions of

EDMD through a combination of polynomial and Fourier basis functions and the effectiveness

each had in reconstructing the data. Lastly we explored the effects of truncation when

reconstructing the EDMD data and the accuracy of these reconstructions.

3.1 Sample Systems

The classical systems that were used in this work to approximate the Koopman operator are

the inverted pendulum and cart pole system. These systems are used due to their periodic

and transient behaviors and dynamics are well known. The pendulum is a good candidate

system since it has a periodic behavior which can be easily captured through DMD/EDMD.

The cart-pole system builds onto the pendulum by including an additional degree of freedom

to the system, horizontal movement on a rail. In this work, we looked at both these systems

with the swinging mass in the inverted position and undamped.
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3.1.1 Defining the Inverted Pendulum

(a)Figure 3.1: Classical inverted pendulum system with mass m = 1.0 kg and arm length of L

= 2.0 m. In this model the mass is free to swing about the pivot 360 degrees and will be

treated as an undamped system.

For this work the first system we looked at is a simple pendulum in an inverted position as

seen in Fig. 3.1. The dynamics we used for this work are [12]:

ẋ =

ẋ1

ẋ2

 =
d

dt

θ
θ̇

 =

 θ̇

g
L sin θ

+

 0

1
mL2

u, (3.1)

where the mass at the end of the pendulum, m is 1.0 kg for all simulations and has an

a massless, rigid arm with length L = 2.0 m. In all simulations in this work, g is the

gravitational acceleration with an assumed value of 9.81 m/s2. This pendulum is free to

rotate 360 degrees and has a frictionless pivot.

For all pendulum simulation setups, we will start with an initial state of [π/4, 0] unless

otherwise stated, and in the controlled examples we attempted to right the pendulum mass to

a terminal state of [0, 0]. For this sample system and for the cart-pole system we will be using

a linear quadratic regulator (LQR) to determine the optimal gain to stabilize the systems

to their final states. In this simulation we only controlled the θ̇ term with a performance

index of [0, 10] and a control cost of 10 for our optimal gain found through using LQR. When

calculating the LQR gain for this system we used the following models for the linearized
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Apend and Bpend matrices:

Apend =

 0 1

−L/g 0

 (3.2)

Bpend =

0
1

 . (3.3)

3.1.2 Defining the Cart-Pole

The second system that we will analyze in this work is the classical cart-pole system. The

nonlinear dynamics we used for this work are given as [11]:

ẋ =



ẋ1

ẋ2

ẋ3

ẋ4


=

d

dt



x

ẋ

θ

θ̇


=



ẋ

−m2L2g cos θ sin θ +mL2(mLθ̇2 sin θ +mL2u

mL2(M +m(1− cos θ2)

θ̇

(M +m)mgL sin θ −ml cos θ(mLθ̇2 sin θ) +ml cos θu

mL2(M +m(1− cos θ2)
.


(3.4)

where x is the position of the cart on the track, ẋ is the velocity of the cart down the track, θ

is the angle of the weighted mass arm from the center of the cart and θ̇ is the rotational rate

of the arm. M is the cart mass where in this simulation is 5 kg, m is the pendulum mass

(m = 1.0 kg), L is the arm pendulum arm length (L = 2 m). As aforementioned, this system

will be treated as undamped and frictionless about the track the cart is resting on and about

the pivot arm which is allowed to rotation about its pivot 360 degrees as seen in Fig. 3.2.
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(b)Figure 3.2: Classical cart pole system with pendulum mass m = 1.0 kg, cart mass M = 5.0

Kg, and arm length L = 2 m. Like the pendulum system in Fig. 3.1, the end mass is free

to swing about the pivot 360 degrees and both the cart and arm pivot are friction-less and

undamped.

For respective simulations, this system started with an initial state of [−1, 0, π, 0] and

when controlled, attempted to right the cart-pole system after a brief translation to [1, 0, π, 0].

Similar to the previous system, the controlled data will be generated using LQR to determine

an optimal gain with a performance index of [5, 10, 0, 5] and a control cost of 10. When

calculating the optimal gain using LQR we used the following models for the linearized Acart

and Bcart matrices:

Acart =



0 1 0 0

0 −1/M gm/M 0

0 0 0 1

0 −1/(ML) −g(M +m)/(ML) 0


(3.5)

Bcart =



0

1/M

0

1/(ML)


. (3.6)
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3.2 Discovering the Koopman Operator for a Pendulum

System

3.2.1 Koopman Reconstruction of a Pendulum using DMD
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Figure 3.3: DMD performed on an uncontrolled pendulum system over a period of 30 seconds

and at a 100 Hz sampling rate and the reconstruction error associated with each state.

In Fig. 3.3 we took the nonlinear states of an uncontrolled pendulum system over a span of 30

seconds and a 100 Hz sampling rate with the initial conditions described in subsection 3.1.1

and using the method described in section 2.3 to find the Koopman operator and reconstruct

the system from the data. This full state reconstruction a high fidelity reconstruction of the

original state data with low error showing the strengths of DMD on dynamical systems with

cyclic behavior.
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Figure 3.4: DMD performed on a pendulum system with with a LQR controlled data over a

period of 30 seconds and at a 100 Hz sampling rate and the reconstruction error associated

with each state.

In Fig. 3.4 we took the numerical solution to the nonlinear states of a pendulum system

with the same boundary conditions as above that is stabilized in the upright position with a

LQR controller. While there are higher peaks in the error for the controlled data we can still

recreate a high fidelity full state reconstruction using DMD. The cyclic inherent behavior of

the pendulum system is still observed and pronounced in this reconstruction towards the end

of the simulation duration but still remains faithful to the original data set.

3.2.2 Koopman Reconstruction of a Pendulum using EDMD

Additionally, we explored different, low order combinations using polynomial and Fourier

series basis’. In this study we limited the lifting function combinations to a second order

polynomial basis, a second order polynomial basis with a first order Fourier series basis, a

first order Fourier series basis alone, and a second order Fourier basis. We can see here

that the reconstruction using the Fourier series as a lifting function yields the highest fidelity

models for the uncontrolled pendulum simulation data as seen in Fig. 3.5.
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Figure 3.5: State error for four combinations of lifting for EDMD on the pendulum system

on the uncontrolled data set.

In Fig. 3.6 we tested the four different lifting function combination on the controlled

pendulum data. The reconstruction of the controlled states shows a similar difference in

reconstruction accuracy as seen in Fig. 3.5 though the reconstructions have noticeable differ-

ences in their accuracy. While the Fourier series combinations have lower errors, the second

order Fourier basis noticeably has the lowest reconstruction error. The EDMD reconstruc-

tions show a persisting periodic behavior in the reconstruction that is not present in the

reference data showing how DMD/EDMD maintains the initial dynamics of the reference

data throughout the reconstruction of the state data.
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Figure 3.6: State error for four combinations of lifting for EDMD on the pendulum system

on the controlled data set.
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3.3 Discovering the Koopman Operator for a Cart-Pole

System

3.3.1 Koopman Reconstruction of a cart-pole using DMD
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Figure 3.7: DMD performed on a cart-pole system with uncontrolled data over a period of

30 seconds and a 1 ms sampling rate.

In Fig. 3.7 we took the nonlinear states of a cart-pole system over a span of 30 seconds and a

100 Hz sampling rate with the initial conditions described in subsection 3.1.2 and using the

method described in section 2.3 to find the Koopman operator and reconstruct the system

from the data. Unlike the pendulum model, the uncontrolled data set was not accurately

captured or reconstructed using DMD. This is likely due to the change in the system dynamics

when the pendulum mass falls below the cart track. While the θ state can be corrected to

fall within a 0 to 2π range, the reconstructed dynamics do not improve. Additionally due to

the non-periodic behavior seen in the two transient states of the cart pole in this simulation

the eigen modes found in DMD appear to be significantly damped during the reconstruction.
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Figure 3.8: DMD performed on a cart-pole system with with a LQR controlled data over a

period of 30 seconds and a 1 ms sampling rate.

In Fig. 3.8 we took the numerical solution to the nonlinear states of a cart-pole system

with the same boundary conditions as above that is stabilized in the upright position, 1 m to

the right of the initial position with a LQR controller. While less accurate than the pendulum

model, the controlled data appears to be captured in three of the four states using EDMD.

The θ state appears to be missed and some of the initial control peaks appear to be missed

in the data reconstruction. This may be due to the lack of a periodic behavior that would

be seen in the x and ẋ states of the cart pendulum system and the Koopman eigenfucntions

and modes cannot discern between the still periodic nature of the θ and θ̇ states with the

aforementioned ones.
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3.3.2 Koopman Reconstruction of a cart-pole using EDMD
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Figure 3.9: DMD performed on a cart-pole system with uncontrolled data over a period of

30 seconds and a 1 ms sampling rate.

In Fig. 3.9 we found the Koopman operator for the reference uncontrolled cart-pole data

lifted with a second order polynomial basis function. Like the DMD reconstruction, the

EDMD reconstruction fails to capture the dominant modes in the system dynamics of the

uncontrolled system and like the DMD reconstruction, there was no noticeable improvement

when the range of the θ term is restricted within the 0 to 2π range. A point of note is that

the cart-pole EDMD reconstruction show in this figure does not capture any of the transient

dynamics of the system.
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Figure 3.10: DMD performed on a cart-pole system with with a LQR controlled data over a

period of 30 seconds and a 1ms sampling rate.

In Fig. 3.10 we found the Koopman operator for the reference controlled cart-pole data

lifted with a second order polynomial basis function. Here we can see that there is a superior

reconstruction of the controlled state compared to the DMD reconstruction. We can also see

a small spike in the error for the EDMD reconstruction at the local maxima and minima

which means that the magnitudes of the Koopman modes of the data are not properly being

captured and may need to to have a shallower control input to more accurately capture the

underlying dynamics of the controlled system.

29



0 5 10 15 20 25 30
0

0.5

1
10-4

2nd Order Polynomial
2nd Order Polynomial + 1st Order Fourier
1st Order Fourier
2nd Order Fourier

0 5 10 15 20 25 30
0

2

4

6
10-5

2nd Order Polynomial
2nd Order Polynomial + 1st Order Fourier
1st Order Fourier
2nd Order Fourier

0 5 10 15 20 25 30
0

0.5

1
10-5

2nd Order Polynomial
2nd Order Polynomial + 1st Order Fourier
1st Order Fourier
2nd Order Fourier

0 5 10 15 20 25 30
0

1

2

3
10-5

2nd Order Polynomial
2nd Order Polynomial + 1st Order Fourier
1st Order Fourier
2nd Order Fourier

Figure 3.11: Four combinations of lifting for EDMD on the cart-pole system on the controlled

data set.

In Fig. 3.11 we tested the four different lifting function combination on the controlled

cart-pole data. We will only report on the controlled data set since as seen in the previous

two subsections, the uncontrolled cart-pole data cannot be captured through DMD or EDMD.

We can see here that unlike in the pendulum setup, the Fourier series is not noticeably more

accurate with the second order Fourier basis being wildly less accurate showing stronger

periodic behaviors not present in the initial data.

3.4 Effects of Truncation on EDMD Approximated Sys-

tems

In this section we will discuss the results of restricting the Koopman reconstruction of the

two sample systems to the same number of states as the original system data set. This will

be how we will truncate the the lifted states and if we were given the infinite dimensional

data set that was part of the original theory behind the Koopman operator, this would be

one of the ways we can bring it down to a finite number of states. As described in Section

2.3, equation 2.23 of the DMD decomposition and reconstruction process (this also applies

to EDMD), the r term can be reduced to some smaller value relating to the total number of
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states that will be present in the eigen reconstruction. In [10,14] the authors truncated their

system dynamics by the magnitude of their singular values found in the SVD process and in

[25] the authors truncated their singular values using the optimal hard threshold algorithm

described in [31]. While the rank that we will be truncating our approximated Koopman

operator to is mathematically arbitrary, the novelty is to explore the incurred error and the

effects it has on reconstruction.

3.4.1 Effects of Truncation on EDMD Reconstructed Pendulum Setup

In the previous subsections we discussed a full state reconstruction of the reference data we

used in both the DMD and EDMD process. Since the ultimate goal of a Koopman approxi-

mation is to reduce the interdenominational Koopman subspace down to a finite number of

dimensions we then truncated the lifted data down to the same number of states as the initial

pendulum system.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Second order Polynomial
Second Order Polynomial, Second Order Fourier
First Order Fourier
Second Order Fourier

0 5 10 15 20 25 30
0

0.5

1

1.5

2

Second order Polynomial
Second Order Polynomial, First Order Fourier
First Order Fourier
Second Order Fourier

Figure 3.12: State error for four combinations of lifting for EDMD on the pendulum system

on the uncontrolled data set. This reconstruction was limited to a two state solution using

EDMD.
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Figure 3.13: State error for four combinations of lifting for EDMD on the pendulum system

on the controlled data set. This reconstruction was limited to a two state solution using

EDMD.

We can see that there are significant differences between the truncated and full state

reconstructions in Figs. 3.12 and 3.13. While the full state has more accurate reconstructions

of the reference data lifted with a Fourier basis we can see the opposite is true for the

truncated reconstruction. In Fig. 3.12 we can see that there were significant reconstruction

errors with the uncontrolled θ̇ state data, predominantly within the first order Fourier basis.

This error is also more pronounced in the other Fourier combinations showing that the Fourier

basis provides stronger modes at higher dimensions than in the original data set and the

reconstructed data using the second order polynomial lift. Additionally, due to the way

the Fourier basis function would augment the original state space, when truncating down

to a lower state it is possible that this process may inadvertently have removed a specific

augmented state that is strongly coupled to the original states of the system and removing

this state This is seen in the lower error of the polynomial and Fourier basis lift having less

error than the data lifted solely through a Fourier basis.
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3.4.2 Effects of Truncation on EDMD Reconstructed Cart-pole Setup
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Figure 3.14: State error for four combinations of lifting for EDMD on the cart-pole system on

the controlled data set. This reconstruction was limited to a four state solution using EDMD.

In Fig. 3.14 we tested the four different lifting function combination on the controlled cart-pole

data using a truncated rank from EDMD. In these simulations we truncated the same lifted

data in subsection 3.3.2 down to four states in the Koopman reconstruction. We can see here

that the reconstructed data is far less varied than that of the full state EDMD reconstruction,

most notably that the second order Fourier basis lift is less periodic in the reconstruction of the

data. We can also see considerable losses in the first three state’s reconstruction showing that

all the dictionaries used to lift the original state space spread the dynamics more dominantly

among the augmented states showing what appear to be transient, unbounded errors over

a longer time span. Despite this, the truncated state has significantly more error than the

full state reconstruction, in the ẋ state’s case there are over three orders of magnitude of

difference in the reconstruction.

3.4.3 Analysis of Behavior on EDMD Truncation

As seen in Fig. 3.12 we can begin to see the effects of dropping dominant modes in the

Koopman reconstruction. In the θ̇ error plot in this figure we can see the effects of what

appear to be three unbounded errors relating to the lifting with the Fourier basis dictionary.
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This was expected due to the removal of an arbitrary amount of less dominant modes that

most likely corresponded to a set of dynamics that was expressed in following modes after

the truncation cutoff. Due to the loss of these dynamics in the reconstruction, growing errors

in the linearization prevailed during the reconstruction process. In Fig. 3.13 we can see some

smaller errors forming at the end of the data set but if we were to continue plotting over a

longer time span we would see that these errors appear to be bounded. This observation leads

to believe that the dropped eigen mode describes the dynamics of a periodic nature that were

brought about by either the initial dynamics in the normal state space or as a byproduct of

the choice of lifting functions used. These are important factors to consider when choosing

how to choose an r when truncating during the Koopman reconstruction as when using these

derived linear models for control application a periodic, bounded error may be neglected while

an unbounded error can cause the reconstruction error and is a point of future analysis.

3.5 Effects of Variance in Data Collection

We also explored the effects of variance of the data used to find the Koopman operator in

the two systems discussed above. In a practical application of the Koopman operator to

model and eventually control a mechanical system an abundance of clean, high resolution

data may not be available in all situations. To meet this challenge we Incorporated three

variances to the data when running the simulations of the two pendulum systems. In this

section we will discuss the results of increasing and decreasing the resolution via the sampling

rate, decreasing the quantity of data by reducing the observation window down to 1 second in

set intervals to see how the data is captured given less of a window and lastly incorporating

some noise into the reference data and comparing its reconstruction.

In this section we will only be showing the results of EDMD using a second order poly-

nomial basis lift on a pendulum system. This setup was chosen since it had an accurate

reconstruction model but also had some noise to enhance the visibility of incurred errors from

that variances in the simulation.

3.5.1 Sampling Rate

In this section we altered the sampling rate for a second order polynomial basis lifted pendu-

lum data with a full state reconstruction. In Fig. 3.15 and 3.16 we tested with an increased

sampling rate of 1000 Hz over the same duration as Fig. 3.5. In Fig. 3.17 and 3.18 we tested

with a decreased sampling rate of 10 Hz where we have little to no difference in the recon-
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struction error of the system. In Fig. 3.21 and 3.22 while we see a significant change in the

shape of the reference and reconstruction data we do not see any significant changes in the

reconstruction of the stated data and the drifts caused by numerical errors is also correctly

captured.

We can see in these variations that the reconstruction is quite accurate for both the

controlled and uncontrolled data. We can also see that the tapering of the controlled data

being cut off in Fig. 3.28 has almost not effect in the accuracy of the reconstruction of the

state.
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Figure 3.15: EDMD performed on a pendulum system with an uncontrolled data lifted by a

second-order polynomial basis over a period of 30 seconds and at a 1000 Hz sampling rate.
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Figure 3.16: EDMD performed on a pendulum system with with a LQR controlled data

set lifted by a second-order polynomial basis over a period of 30 seconds and at a 1000 Hz

sampling rate.
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Figure 3.17: EDMD performed on a pendulum system with an uncontrolled data set lifted

by a second-order polynomial basis over a period of 30 seconds and a 10 Hz sampling rate.
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Figure 3.18: EDMD performed on a pendulum system with with a LQR controlled data set

lifted by a second-order polynomial basis over a period of 30 seconds and a 10 Hz sampling

rate.
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Figure 3.19: EDMD performed on a pendulum system with an uncontrolled data set lifted

by a second-order polynomial basis over a period of 30 seconds and a 1 Hz sampling rate.
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Figure 3.20: EDMD performed on a pendulum system with with a LQR controlled data set

lifted by a second-order polynomial basis over a period of 30 seconds and a 1 Hz sampling

rate.

3.5.2 Duration

In this section we decreased the window of the reference data to 1 second, 3 seconds, 10 and

15 second windows at 100 Hz on the pendulum system to show how the system behaviors are

captured. We can see in these variations that the reconstruction is quite accurate for both

the controlled and uncontrolled data. We can also see that the tapering of the controlled

data being cut off in Fig. 3.28 has almost no effect in the accuracy of the reconstruction of

the state.

Looking at the shape of the error we can see that the reconstruction of the smaller data

samples that the error shapes have roughly the same behavior as when you compare Fig 3.22 to

Fig 3.28 the leading maxima and minima are roughly the same showing that the reconstruction

errors are mostly associated with the data itself rather than the duration of the sample set.
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Figure 3.21: EDMD performed on a pendulum system with with an uncontrolled data set

lifted by a second-order polynomial basis over a period of 1 second and a 100 Hz sampling

rate.
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Figure 3.22: EDMD performed on a pendulum system with with a LQR controlled data set

lifted by a second-order polynomial basis over a period of 1 second and a 100 Hz sampling

rate.
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Figure 3.23: EDMD performed on a pendulum system with with an uncontrolled data set

lifted by a second-order polynomial basis over a period of 3 seconds and a 100 Hz sampling

rate.
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Figure 3.24: EDMD performed on a pendulum system with with a LQR controlled data set

lifted by a second-order polynomial basis over a period of 3 seconds and a 100 Hz sampling

rate.
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Figure 3.25: EDMD performed on a pendulum system with with an uncontrolled data set

lifted by a second-order polynomial basis over a period of 10 seconds and a 100 Hz sampling

rate.
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Figure 3.26: EDMD performed on a pendulum system with with a LQR controlled data set

lifted by a second-order polynomial basis over a period of 10 seconds and a 100 Hz sampling

rate.
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Figure 3.27: EDMD performed on a pendulum system with with an uncontrolled data set

lifted by a second-order polynomial basis over a period of 15 seconds and a 100 Hz sampling

rate.
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Figure 3.28: EDMD performed on a pendulum system with with a LQR controlled data set

lifted by a second-order polynomial basis over a period of 15 seconds and a 100 Hz sampling

rate.
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3.5.3 Noisy

In this section we injected some nose into the reference data.
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Figure 3.29: Noise sample of uncontrolled inverted pendulum over a period of 30 seconds at

a 1 millisecond sampling rate. Plot (a) and (d) have a noise magnitude standard deviation

of 0.001, plot (b) and (e) have a noise magnitude standard deviation of 0.01 and plot (c) and

(f) have a noise magnitude standard deviation of 0.05
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Figure 3.30: Noise sample of controlled inverted pendulum over a period of 30 seconds at a

1 millisecond sampling rate. Plot (a) and (d) have a noise magnitude standard deviation of

0.001, plot (b) and (e) have a noise magnitude standard deviation of 0.01 and plot (c) and

(f) have a noise magnitude standard deviation of 0.05

We can see in Fig. 3.29 and 3.30 that in our analysis we used three different sets of noise on

the pendulum system that alter the shape of the original data set. This noise was normally

distributed before EDMD with standard deviations of 0.001, 0.01 and 0.05 to each state.

Below a the lowest noise applied there was no noticeable difference in the reconstruction error

and above a noise standard deviation of 0.05 the uncontrolled data reconstruction would level

to the origin faster as would the controlled data providing similar if not worse reconstruction

of the reference state data.

Looking at figures 3.31 through 3.36 we can see that there is a loss in capturing the

dynamics immediately with the 0.001 noise injection where the dynamics appear to decay to

the origin as we increase the magnitude of the noise on the system. This shows how the noise

can drastically affect the eigenvectors of the system dynamics and the representation of the

periodic behavior of the pendulum system. It is of interest to note that the despite each state

receiving different noise inputs within and between tests that the shapes of the reconstructed

systems follow the same pattern.
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Figure 3.31: EDMD performed on a pendulum system with with uncontrolled data lifted by

a second-order polynomial basis over a period of 30 seconds and a 100 Hz sampling rate with

simulated noise with a standard deviation of 0.001 of each respective state.
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Figure 3.32: EDMD performed on a pendulum system with with a LQR controlled data set

lifted by a second-order polynomial basis over a period of 30 seconds and a 100 Hz sampling

rate with simulated noise with a standard deviation of 0.001 of each respective state.
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Figure 3.33: EDMD performed on a pendulum system with with uncontrolled data lifted by

a second-order polynomial basis over a period of 30 seconds and a 100 Hz sampling rate with

simulated noise with a standard deviation of 0.01 of each respective state .
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Figure 3.34: EDMD performed on a pendulum system with with a LQR controlled data set

lifted by a second-order polynomial basis over a period of 30 seconds and a 100 Hz sampling

rate with simulated noise with a standard deviation of 0.01 of each respective state.
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Figure 3.35: EDMD performed on a pendulum system with with uncontrolled data lifted by

a second-order polynomial basis over a period of 30 seconds and a 100 Hz sampling rate with

simulated noise with a standard deviation of 0.05 of each respective state .
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Figure 3.36: EDMD performed on a pendulum system with with a LQR controlled data set

lifted by a second-order polynomial basis over a period of 30 seconds and a 100 Hz sampling

rate with simulated noise with a standard deviation of 0.05 of each respective state.
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CHAPTER 4
CONCLUSION

In this work we evaluated the ability to use Koopman operator theory to recreate models of a

simple, pendulum and cart-pole system from varying qualities and quantities of data. Using

the data driven method of dynamic mode decomposition and its higher dimensional variant,

extended dynamic mode decomposition, we evaluated the fidelity of the models created from

these algorithms for creating a linear dynamical system. Our findings looked into how the

spread of data, quantity and the quality of the data affects the modeling process and how it

affects two similar dynamical systems with differing degrees of freedom.

4.1 Evaluation of Koopman Reconstruction

4.1.1 Inverted Pendulum

We were able to find the Koopman operator for the inverted pendulum system using DMD

and EDMD under several variations. We captured the data and produced several high fidelity

models using the Koopman operator using both controlled and uncontrolled data from this

system. This study showed a robustness in the strength of EDMD when exploring variances

in the resolution, length and clarity of the data sets that were used to find the Koopman

operators of this system. We found that for a sufficient duration the sampling rate in which

the data is collected does not significantly alter the reconstruction of the system dynamics

using the Koopman operator as long as the sampling rate is constant. Additionally, we found

that the duration in which data was collected also did not significantly affect the fidelity of

the Koopman reconstruction however these smaller sample sets will probably not be sufficient

to model the systems at times significantly outside the range of the shorter sample sets.

When we applied noise to the reference data to learn the Koopman operator of the system

we found that noise with a standard deviation greater than 0.001 of each individual state

caused a decay to be captured in the uncontrolled data. In the controlled data we can see

that as we increase the amount of noise on the system the reconstruction creates a dampening

effect in the reconstruction. While our results show a similar decay to zero in the controlled

state, if the goal we were using LQR to stabilize the system to was a larger or smaller value,

the reconstruction would be attracted to that respective value.

The EDMD reconstructions agreed with previous works on this algorithm for finding the
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Koopman operator. We can see improved fidelity in the model as we increase the original

state space for the Koopman reconstruction with a stronger model when using a Fourier basis

function to lift the reference data. When we begin truncating the lifted state to smaller ranks

of SVD in the EDMD algorithm we noticed that there is sometimes important data lost in

the reconstruction leading to weaker models in systems lifted using a Fourier basis function.

More accurate, truncated EDMD reconstructions can be achieved by using the magnitude of

the Koopman eigenvalues instead of the desired number of states should be considered.

4.1.2 Cart-Pole

In this work we put the cart-pole system through the same testing parameters as the simple

pendulum. For the uncontrolled data sets both DMD and EDMD were unable to correctly

capture the dynamics of the system. While this initially appears to be a result of the bounds of

the data used in DMD, looking further into the matter showed that this was not a contributing

factor to the algorithm’s inability to correctly capture the system dynamics. As described in

[9], sharp transient dynamics may not be successfully captured in the eigen decomposition of

the data leading to a low fidelity reconstruction if at all. For the controlled data we can see

more promising results however this initial spikes due to the control input causes some loss

in the reconstruction which is not dependent on the initial magnitude of the change. When

we evaluated the aforementioned parameters we tested for the simple pendulum system, the

DMD and EDMD algorithms for finding the Koopman operator for this system showed similar

variances with the changes.

4.2 Future Work

Future work on the usage of the Koopman operator on like systems introduced in this work

includes evaluation of different methods of lifting the system dynamics. Further exploration

is required of the effects of truncation when approximating the Koopman operator through

EDMD as well as the method of which is chosen to truncate the states. Fourier series approx-

imation through Direct Fourier Transforms and other polynomial approximations through

Hermite polynomials and using the Jacobian are the next target of investigation. Addition-

ally other data driven methods of evaluating the Koopman operator are being explored for the

mentioned systems using methods such as Koopman reduced order nonlinear identification

and control and Sparse identification of nonlinear dynamics (SINDy). In parallel, methods

of using the approximated linear dynamics in other applications that rely on linear systems
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will be looked into such as implementation with Kalman filters and other Bayesian filtering

methods. Alternate perspectives are being considered on how to generate a control matrix

from data, current prospects include the DMD variant for control among others. Once linear

control matrices for the Koopman defined system can be found, As with the original motiva-

tion behind this work, once alternative methods of finding the Koopman operator have been

explored we will use this theory to generated models and controls for quadcopter systems.

4.2.1 Submitted Work

In the process of producing this work three conference papers were submitted. The first

paper discussed the process in which we generated data and used DMD and EDMD to find

the Koopman operator as described in Chapter 3 and compared the accuracy of four different

lifitng functions that were also described in the aformentioned section. [32]

In parallel to this work on the Koopman operator, two additional works has been produced

and submitted regarding other aspects of guidence, navigation and control. In S. Shriwastav

et al., [33] where trajectories were planned by visiting specific nodes to map a flow field using

compressed sensing algorithms. Once these trajectories were found they were performed by

nano-quadcopters in the RAN lab for experimental validation. In [34], Snyder et al., developed

a set of algorithms for a unmanned aerial vehicle to explore a map while trying to explore as

many high value areas as possible while maintaining enough power to return to the vehicle’s

starting point. All three of these works have been submitted to their respictive conferences

and are awaiting review and publication.
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