

PRACTICAL GPS SPOOFING ATTACKS ON CONSUMER DRONES

A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE

UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

ELECTRICAL ENGINEERING

DEC 2020

By

Jianqiu Cao

Thesis Committee:

Yingfei Dong, Chairperson

Galen Sasaki

Yao Zheng

Keywords: Drone, GPS, SDR (Software-defined Radio), ArduPilot

I

We certify that we have read this thesis and that, in our opinion, it is satisfactory in

scope and quality as a thesis for the degree of Master of Science in Electrical

Engineering.

THESIS COMMITTEE

Chairperson

II

Acknowledgement

I would like to thank my advisor, Dr. Yingfei Dong, for his guidance, patience, and help

throughout my research and study at Department of Electrical Engineering, University of Hawai‘i.

I also would like to thank the members of my thesis committee: Dr. Galen Sasaki and Dr. Yao

Zheng. Thanks for your advice and support.

In addition, I would like to thank the students who have collaborated with me in my thesis

research project. They are: Wenxin Chen, Frendy Lio Can, Tomas J. Tigley and Isaac Lee.

Finally, my deep and sincere gratitude to my family for their continuous and unparalleled love,

help and support. I am grateful to my wife and my parents for always being the strong backing.

III

Abstract

While the security of drones and unmanned automatic systems has become increasingly

important, software vulnerabilities have been broadly examined but hardware vulnerabilities on

these systems have not been well investigated. In this project, we utilize the recently popular

software-defined radio cards to investigate vulnerability on these unmanned systems from both

software and hardware aspects, epically focused on the security of civilian GPS receivers on

consumer drones.

We have developed a smart GPS spoofing attack framework on consumer drones, based on

our understanding of the drone control software and the vulnerability of civilian GPS system. We

will first introduce the background and related work on drone control systems and the GPS system;

we will further present the design of our attack framework and our experimental results. Although

simple GPS spoofing has been conducted in various settings, as far as we know, most of them are

brute-force attacks without precise control. In this project, we have developed a practical

framework to achieve better control of drone movement, based on the deep understanding of

consumer drone specific issues. The proposed attack has been very successful in our lab

environments; however, there are many practical challenges in field tests due to the limitation of

the devices, field environments, and other reasons out of our control, e.g., wind speed. We have

conducted many field tests to understand and address the practical limitations and show the

capabilities of the proposed system. We will then present our research results and conclude this

thesis with discussion and future work.

IV

Table of Contents

Acknowledgement ... II

Abstract ... III

List of Tables .. VI

List of Figures ... VII

Chapter 1. Introduction ... 1

Chapter 2. Background and Related work .. 3

2.1. GPS principles .. 3

2.1.1. Positioning Principles: Triangulating .. 3

2.1.2. GPS Signals .. 5

2.1.3. Navigation Message .. 6

2.1.4. Time to First Fix ... 8

2.1.5. NMEA Data Format .. 8

2.2. Literature Review .. 14

2.3. Software and Hardware Platform .. 10

2.3.1. GPS-SDR-SIM .. 10

2.3.2. Software-defined radio (SDR) devices ... 11

2.3.3. Drone and Drone Control Systems ... 11

Chapter 3. Problem Formulation .. 16

3.1. Hardware Platform .. 16

3.2. Attack Model .. 17

3.3. Software Setups .. 19

3.3.1. GPS Signal Generation and Transmission .. 19

3.3.2. Drone Status Data Fetching .. 21

3.4. Evaluation ... 22

Chapter 4. Experiment Design and Results .. 24

4.1. GPS Spoofing attack on a Receiver .. 24

4.1.1. Fixed Position Spoofing .. 24

4.1.2. Moving Position Spoofing .. 27

4.2. GPS Spoofing attack on a Drone .. 29

4.2.1. Experiment Method for Signal and Data Transmission .. 30

4.2.2. Hovering Test Result .. 31

4.2.3. Mission Flying Test Result ... 37

4.2.4. Discussion on Experiment Results .. 41

V

4.3. Additional Work: Using an External Clock on bladeRF .. 43

Chapter 5. Conclusion and Future Work .. 46

References ... 48

VI

List of Tables

Table 1. Description of NMEA GGA message ... 9

Table 2. GPS_RAW_INT (#24) message ... 13

Table 3. GLOBAL_POSITION_INT (#33) message. .. 14

Table 4. List of Satellite PRNs in each scene ... 26

Table 5. Position coordinates .. 27

VII

List of Figures

Figure 1. GPS positioning principle. ... 4

Figure 2. GPS signal coding schemes. .. 5

Figure 3. Navigation message. .. 6

Figure 4. bladeRF 2.0 micro ... 11

Figure 5. Sky Viper Journey GPS drone ... 12

Figure 6. Setup for attacking a GPS receiver .. 16

Figure 7. Setup for attacking a drone .. 17

Figure 8. Drone control loop. .. 18

Figure 9. Hovering attack. .. 18

Figure 10. Mission flying attack ... 19

Figure 11. Flowchart of GPS signal generation and transmission .. 20

Figure 12. GPS Info, initial status after position fixed by real satellites... 24

Figure 13. GPS Info, the status after position fixed by spoofing signal. .. 25

Figure 14. A route around Holmes Hall in Google Maps ... 27

Figure 15. Generate NMEA file in SatGen Trajectory generation. .. 28

Figure 16. GPS route around the Holmes Hall. .. 29

Figure 17. SkyViper drone’s web interface for GPS status .. 30

Figure 18. GPS Trajectory when the drone was sitting on the ground. .. 32

Figure 19. Drone status when the drone was sitting on the ground. ... 33

Figure 20. Illustration of the hovering test .. 34

Figure 21. GPS Trajectory when the drone was hovering .. 35

Figure 22. Drone status when the drone was hovering. .. 36

Figure 23. GPS Trajectory when the drone was flying a mission without spoofing GPS signal 37

Figure 24. GPS Ground Speed when the drone was flying a mission without spoofing GPS signal 38

Figure 25. Illustration of the mission flying test on Google Maps ... 39

Figure 26. GPS Trajectory when the drone was flying a mission ... 40

Figure 27. Drone status when the drone was flying a mission .. 41

Figure 28. bladeRF 2.0 schematics ... 43

Figure 29. Hardware setup for applying an external TCXO ... 44

1

Chapter 1. Introduction

The security of drone and unmanned automatic systems has become increasingly important

as we are having more and more such systems surrounding us in our lives. Traditionally, many

research projects focused on the vulnerability in the software side; very little research has been

conducted in hardware related areas, due to many limitations such as the difficulty to construct

hardware attacks. In this project, we utilize the recently popular Software-defined Radio (SDR)

cards to investigate vulnerability on these unmanned systems from both software and hardware

aspects, epically focused on the security of sensors on these systems.

We have examined sensors on consumer drones including magnetometers, accelerators, and

gyroscopes [14][15][16][17], and found that: while brute-force attacks are fairly easy, precise

control of these sensors remotely requires high-end devices that are hard to access for us. Therefore,

we focused our investigation on civilian Global Position System (GPS) receivers on consumer

drones.

GPS is the most widely used positioning and time synchronization system for many unmanned

auto-controlled systems. Particularly, a GPS device receives signals from the GPS satellite

constellation, and derives fairly precise 3-dimension position, velocity, and high-precision time.

GPS is essential to the navigation of most consumer drones, which use GPS signals to

determine their current positions, navigate themselves to their destinations through a series of

waypoints, and achieve the popular return-home feature. However, the GPS input of a consumer

drone is an obvious vulnerability, as the civilian GPS positioning algorithms are open to the public,

and the civilian GPS signals are unencrypted and authenticated. Furthermore, the satellite signals

are fairly weak such that it can be easily overpowered by stronger local attack signals. The devices

to precisely generate spoofed GPS signals have become fairly easy to access recently. For example,

consumer-grade SDR devices (<$1,000) can be used to transmit forged GPS signals with fake

position or trajectory signals to civilian GPS receivers.

This thesis research focused on the vulnerability of GPS receivers on consumer drones, in

particular, exploiting the weaknesses of GPS navigation and performing smart GPS spoofing

2

attacks on these drones, in order to make malicious drones deviate from their targets. In the

meantime, we will also examine the countermeasures of such GPS attacks.

We have conducted preliminary studies of the feasibility and performance of GPS spoofing

in our lab. We used software to generate spoofing GPS data streams based on the ephemeris data

(obtained from a NASA public web site) and desired positions, and then transmit the data through

our SDR platform to a GPS receiver or a drone for testing. Our results show that the drone can be

easily fooled and accept the fake GPS positions in its readings. Currently, we are investigating the

navigation algorithms on ArduPilot (one of the most popular autopilot systems) for developing

smart GPS attacks when a drone is in operation, such as hovering or in a given mission. Our goal

is to make it deviate from the original destination while not being detected by the control schemes

on the drone.

We have conducted both lab and field tests to show the effectiveness of the proposed

framework. Our experimental results have shown both advantages and limitations of the proposed

approach. The main contributions of this project are:

• Developing a GPS spoofing framework to attack civilian GPS receivers on drones and

other systems.

• Conducting many lab and field tests to examine the effectiveness of the proposed

system.

• Compiling many practical experiences through field tests, which are critical to future

research in this direction.

3

Chapter 2. Background and Related work

2.1. GPS principles

The Global Positioning System (GPS) provides users with positioning, navigation, and timing

(PNT) services, and it consists of three segments: the space segment, the control segment, and the

user segment. The U.S. Air Force develops, maintains, and operates the space segment (i.e., 24

satellites) and the control segments (a set of ground monitoring and control stations). The ground

stations monitor the status of satellites, adjust their positions and times, and share their data with

users for better use of the system. The satellites broadcast one-way signals of the current GPS

satellite position and time for receivers to perform position triangulation and time synchronization.

The user segments are GPS receivers that help users find their global positions and synchronize

times [1].

In the following, we will first introduce the GPS triangulating method, and then discuss the

basic concepts related GPS signals, GPS message frames, GPS device starting processing, and one

of the most commonly used GPS message formats.

2.1.1. Positioning Principles: Triangulating

A full constellation of 24 GPS satellites in orbit is providing position, velocity, and time

services to users. When a receiver can receive signals from at least 4 satellites, it can find out its

3D position on the global and the accurate time based on satellite position data and GPS time using

trigonometry principles [2].

4

Figure 1. GPS positioning principle.

Figure 1 shows the basic setup using GPS signals to determine a receiver’s global position

and the GPS time. Suppose we have three satellites (Satellite 1, 2, and 3) in the constellation

broadcasting their coordinates (x1, y1, z1), (x2, y2, z2), (x3, y3, z3) with timestamps, and we have

also measured the durations (τ1, τ2, τ3) between when a broadcasting signal is sent from a satellite

and when it is received by the receiver equipment, we can then "triangulate" the receiver's

coordinates (x, y, z) by the following equations:

√(x − xi)2 + (y − yi)2 + (z − zi)2 = cτi,  i ∈ {1,  2,  3}，

where c is the velocity of electromagnet wave, and 𝑐𝜏𝑖 are the range from the satellites to the

receiver.

However, the problem is more complex in practice. The satellites have precise atomic clocks

on board, but the receiver does not, which means the local receiver's clock and the satellite clock

are usually not synchronized. So, the measured durations τ1, τ2, and τ3 are not precisely the true

5

transmission durations; rather, the true transmission durations should be Δ𝑡𝑖 + τ𝑖, 𝑖 ∈ {1, 2, 3},

where Δ𝑡𝑖 is the time difference between the local clock and the satellite clock. The revised

equations are as below:

√(x − xi)2 + (y − yi)2 + (z − zi)2 = c(Δti + 𝜏𝑖),  i ∈  {1, 2, 3}.

We call c(Δti + τi) "pseudorange".

As the satellite clocks are well synchronized, we can assume that Δt1 = Δt2 = Δt3 = Δt. If

we receive the data from a 4th satellite, we can then add the 4th equation to the equation set, which

becomes:

√(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2 + (𝑧 − 𝑧𝑖)2 = 𝑐(Δt  + 𝜏𝑖),  𝑖 ∈  {1, 2, 3, 4}.

So, we can solve the four unknowns (x, y, z and Δ𝑡) based on the four equations. Note that

not only the receiver's position (x, y, z) can be solved, but also the local clock can be synchronized

to the GPS time in this procedure.

2.1.2. GPS Signals

GPS signals are broadcasted on two L-band carrier frequencies, which are shown in Figure 2.

Figure 2. GPS signal coding schemes [4].

6

The L1 band (1575.42 MHz) carries Civil Coarse/Acquisition (C/A) Code (not encrypted),

Navigation/System message and Military Precision (P(Y)) code (encrypted), while the L2 band

(1227.6 MHz) carries Military code (encrypted). In this research, we exploit only the civilian

signals on L1 band.

Based on the C/A code, a receiver calculates the time difference and the pseudo range between

the satellite and itself [3]. A C/A code is a type of Pseudorandom Noise (PRN) code. Each satellite

uses a unique PRN code, which does not correlate with any other satellite's PRN codes. The PRN

codes are highly orthogonal to one another. The receiver generates a replica C/A code and shifts

it in time until it lines up with the incoming signal from a satellite. The C/A code is used to (1)

Identify the ranging code that a satellite uses, and (2) Make a pseudorange measurement (ρ), which

is defined in the above.

2.1.3. Navigation Message

Figure 3. Navigation message [5].

7

The navigation message conveys information of three types [6][7] (See Figure 3):

• The GPS date and time and the satellite's status. (subframe 1).

• The ephemeris (subframe 2-3): precise orbital information for the transmitting satellite.

o Obtain satellite coordinates.

o EACH satellite broadcasts ONLY its own ephemeris data [7], which is valid for only

30 minutes to four hours [33].

• The almanac (subframe 4-5): status and low-resolution orbital information for every

satellite.

o Determine correct nearby satellites upon power-up.

o Predictions on ionospheric conditions that could change the time of flight for a

signal traveling from space to Earth.

o Each satellite broadcasts almanac data for ALL satellites [7], which is valid with

little dilution of precision for up to two weeks [33].

The navigation message conveys GPS date and time, ephemeris, and almanac data, which can

be used for satellite searching and determining satellite positions [6][7].

We can obtain the broadcast GPS ephemeris data from the NASA web site to construct fake

GPS signals. NASA provides broadcast GPS navigation data in addition to observation GPS data

at receivers. The NASA CDDIS creates daily broadcast ephemeris files transmitted by the GPS

ground control stations. These files contain the unique GPS satellite ephemeris messages for each

day. A similar file is created at the start of the UTC day and updated on an hourly basis from the

hourly broadcast navigation files. We can download a single file each day or hour, which contains

all broadcast ephemeris messages required for post-processing [29].

The daily GPS broadcast ephemeris file is a merge of the individual site navigation files into

one, non-redundant file that can be utilized by users instead of the many individual navigation files

[29].

8

2.1.4. Time to First Fix

Time to first fix (TTFF) is a measure of the time required for a GPS navigation device to

acquire satellite signals and navigation data, and calculate a position solution (called a fix) [34][35].

TTFF varies in the following three different scenarios:

Cold start: if a receiver has no previous almanac or ephemeris data, or the almanac data has

become invalid due to position changes or loss of accurate time, it will have to perform a cold start,

a.k.a., a factory start. In this process, the receiver must search for all the satellites. When it does

finally manage to acquire the signal from one, it can use it to obtain an almanac. The period needed

to receive the full almanac information is about 12.5 minutes.

Warm start: If a receiver has some leftover almanac, time and position data from its previous

observations, it can begin its search with a warm start, a.k.a., a normal start. The receiver can

estimate the ranges to satellites and restrict its search for satellites to those likely overhead to

collect their ephemeris data. The time to first fix (TTFF) [35] can be as short as 30 seconds with a

warm start.

Hot start: A receiver that has a current almanac, a current ephemeris, time and position can

have a hot start. A hot start can take from 0.5 to 20 seconds.

Many receivers can use as many as twelve channels to track satellite signals simultaneously.

2.1.5. NMEA Data Format

NMEA is an acronym for the National Marine Electronics Association [36], which provides

but is not limited in GPS times and positions. NMEA is a standard data format supported by all

GPS manufacturers, much like ASCII is the standard for digital computer characters in the

computer world.

A NMEA data file consists of multiple NMEA messages. There are many different types of

NMEA messages with different capabilities. $GPGGA is a frequently used type of NMEA

message, which was output from an RTK GPS receiver we used for testing. The following line is

an example of NMEA $GPGGA message:

9

All NMEA messages start with the $ character, and each data field is separated by a comma.

Table 1 describes the meaning of each field in the NMEA GGA message above.

Table 1. Description of NMEA GGA message [37].

Field Description Value Interpretation

0 Message ID $GPGGA GPS Time, position, and

fix related data

1 UTC of position fix 181908.00 18:19:08

2 Latitude in the DDMM.MMMMM format 3404.7041778 34°04.7041778'

3 Direction of latitude: N: North, S: South N North

4 Longitude in the DDDMM.MMMMM format 07044.3966270 070°44.3966270'

5 Direction of longitude: E: East, W: West W West

6

GPS Quality indicator:

0: Fix not valid

1: GPS fix

2: Differential GPS fix, OmniSTAR VBS

4: Real-Time Kinematic, fixed integers

5: Real-Time Kinematic, float integers,

OmniSTAR XP/HP or Location RTK

4
Real-Time Kinematic,

fixed integers

7
Number of satellites in use, range from 00

through to 24+
13

8 HDOP (horizontal dilution of precision) 1.0

9
Orthometric height (MSL reference), e.g. altitude

of the antenna
495.144

10
Unit of measure for orthometric height (eg.

Meters or Feet)
M Meter

11 Geoid separation 29.200

12 Unit of geoid separation (eg. Meters or Feet) M Meter

13
Age of differential GPS data record, Type 1 or

Type 9 (if any)
1.0

14 Reference station ID, range 0000-4095 (if any) 0000

15 The checksum data *40

$GPGGA,181908.00,3404.7041778,N,07044.3966270,W,4,13,1.00,495.144,M,

29.200,M,0.10,0000,*40

10

There are also alternative and companion NMEA messages that provide similar or additional

information, such as $GPGLL, $GPRMC, $GPGSA, $GPGSV, $GPVTG, $GPGST [38][39][40].

$GPGSA: Overall Satellite data which includes GPS DOP and active satellites (i.e., the

numbers of the satellites being used in the current solution).

$GPGSV: Detailed Satellite data which includes the number of satellites in view, the PRN

numbers, elevations, azimuths, and SNR values. The receiver might be able to find based on its

viewing mask and almanac data.

$GPRMC: Position, velocity, and time.

In the thesis research, we utilize NMEA data to record the GPS information from the GPS

receiver, and to generate spoofed GPS positions for our attack tests.

2.2. Software and Hardware Platform

In this section, we introduce the software and hardware we used for our GPS attack framework.

2.2.1. GPS-SDR-SIM

The broad availability of SDR cards has made signal-level attacks much easier, cheaper, and

practical. We can use the open-source GPS simulator GPS-SDR-SIM [18] to generate GPS

baseband signal data streams, which can be converted to RF signals using software-defined radio

(SDR) platforms. We can specify the GPS satellite constellation through a GPS broadcast

ephemeris file and specified a fixed location or a trajectory using forged coordinates.

We can use the following command line to generate a GPS data stream with a fixed location:

We can use the following command line to generate a GPS data stream with a dynamic

trajectory where “holmes.txt” file holds the dynamic trajectory:

gps-sdr-sim -e brdc3240.20n -l 21.28,-157.81,100 -o gpssim.bin -t

2020/11/19,07:58:56

gps-sdr-sim -e brdc3240.20n -g holmes.txt -o gpssim.bin -t

2020/11/19,07:58:56

11

2.2.2. Software-defined radio (SDR) devices

In an SDR system, we use software to emulate various communication components (such as

mixers, filters, amplifiers, modulators, demodulators, and detectors), which are used to be

implemented in hardware [12].

There are many hardware solutions for SDR, such as bladeRF, HackRF, and USRP systems.

In the experiments of this project, we use bladeRF [10] 2.0 shown in Figure 4 as a GPS signal

transmitter.

Figure 4. bladeRF 2.0 micro.

2.2.3. Drone and Drone Control Systems

ArduPilot [20] is an open source, unmanned vehicle Autopilot Software Suite, and ArduPilot

Copter is specially designed for controlling copters. An autopilot controller adopts PID control to

uses a control feedback mechanism to dynamically adjust control inputs according to the

differences between outputs and setpoints [13][21].

12

The SkyViper Journey [22] is light-weighted drones which use ArduPilot as flight control

software and features a GPS module for position control. The drone is also equipped with a

MAVLink interface for the communication with ground control stations. Figure 5 shows the drone

and the controller. We use this consumer-grade drone as an attack victim for our testing.

Figure 5. Sky Viper Journey GPS drone.

MAVLink is a lightweight messaging protocol for ground control stations to communicate with

drones. It facilitates us to read drone status and send control massages [23]. MAVLink provides a

default common message set, which can be used for either reading a drone’s internal status or

controlling a drone’s flying mission. For example, message GPS_RAW_INT provides the status

from a GPS receiver, such as the received global position and ground speed. Message

GLOBAL_POSITION_INT includes the information from the fusion of GPS and inertial sensor.

We used those two messages in our experiments to read a drone’s position and velocity information.

The details are shown in Table 2 and Table 3.

13

Table 2. GPS_RAW_INT (#24) message [24].

Field Name Type Units Description

time_usec uint64_t us Timestamp (UNIX Epoch time or time since system

boot). The receiving end can infer timestamp format

(since 1.1.1970 or since system boot) by checking for

the magnitude of the number.

fix_type uint8_t

GPS fix type.

lat int32_t degE7 Latitude (WGS84, EGM96 ellipsoid)

lon int32_t degE7 Longitude (WGS84, EGM96 ellipsoid)

alt int32_t mm Altitude (MSL). Positive for up. Note that virtually

all GPS modules provide the MSL altitude in addition

to the WGS84 altitude.

eph uint16_t

GPS HDOP horizontal dilution of position (unitless).

If unknown, set to: UINT16_MAX

epv uint16_t

GPS VDOP vertical dilution of position (unitless). If

unknown, set to: UINT16_MAX

vel uint16_t cm/s GPS ground speed. If unknown, set to:

UINT16_MAX

cog uint16_t cdeg Course over ground (NOT heading, but direction of

movement) in degrees * 100, 0.0..359.99 degrees. If

unknown, set to: UINT16_MAX

satellites_visible uint8_t

Number of satellites visible. If unknown, set to 255

alt_ellipsoid int32_t mm Altitude (above WGS84, EGM96 ellipsoid). Positive

for up.

h_acc uint32_t mm Position uncertainty.

v_acc uint32_t mm Altitude uncertainty.

vel_acc uint32_t mm Speed uncertainty.

hdg_acc uint32_t degE5 Heading / track uncertainty

yaw uint16_t cdeg Yaw in earth frame from north. Use 0 if this GPS

does not provide yaw. Use 65535 if this GPS is

configured to provide yaw and is currently unable to

provide it. Use 36000 for north.

14

Table 3. GLOBAL_POSITION_INT (#33) message [24].

Field Name Type Units Description

time_boot_ms uint32_t ms Timestamp (time since system boot).

lat int32_t degE7 Latitude, expressed

lon int32_t degE7 Longitude, expressed

alt int32_t mm Altitude (MSL). Note that virtually all GPS

modules provide both WGS84 and MSL.

relative_alt int32_t mm Altitude above ground

vx int16_t cm/s Ground X Speed (Latitude, positive north)

vy int16_t cm/s Ground Y Speed (Longitude, positive east)

vz int16_t cm/s Ground Z Speed (Altitude, positive down)

hdg uint16_t cdeg Vehicle heading (yaw angle), 0.0..359.99 degrees.

If unknown, set to: UINT16_MAX

Pymavlink is a Python library for handling MAVLink protocol streams and log files. This

allows for the creation of simple scripts to analyze telemetry logs from autopilots such as ArduPilot

which use the MAVLink protocol [25][26].

Also, MAVLink provides various messages for concrete flight mission controls, e.g.

MAV_CMD_NAV_WAYPOINT, MAV_CMD_NAV_TAKEOFF, MAV_CMD_NAV_LAND

and MISSION_ITEM_INT. However, we used an upper-level API DroneKit for flight control as

it has more simple and friendly interfaces. DroneKit-Python allows developers to create apps that

run on an onboard companion computer and communicate with the ArduPilot flight controller

using a low-latency link. The API communicates with vehicles over MAVLink. It provides

programmatic access to a connected vehicle’s telemetry, state and parameter information, and

enables both mission management and direct control over vehicle movement and operations [27].

2.3. Literature Review

Several successful GPS spoofing attacks have been demonstrated in simulation or in the real

world.

15

In [2], the authors used an open source project GPS-SDR-SIM [8] to generate GPS data stream

with fake positions and transmit them through HackRF [9] and BladeRF [10] SDR platforms. They

spoofed the signals to a cell phone and a smart watch, and shifted their GPS locations from Beijing,

China to a static location in Nagoya, Japan.

In the paper [11], the researchers proposed an attack that manipulates road navigation system

and implement a portable spoofer (based on HackRF) to divert a vehicle to a different destination

in the physical world.

In the paper [12], the authors investigated the requirements for successful GPS spoofing attacks

on individuals and groups of victims with civilian or military GPS receivers. The paper shows that

the attacker is restricted to only few transmission locations when spoofing a group of receivers

while preserving their constellations.

Focused on drone countermeasures, Wenxin Chen et al. proposed False Data Injection (FDI)

attacks on the EKF position estimator and ArduPilot drone controller to compromise drone

position, altitude, and flight paths [13][14][15][16][17]. In the paper [13], drone positions are

manipulated by injecting carefully-built GPS positions to affect drone flight paths;

countermeasures to these attacks have also been discussed. They also investigated the attacks on

drone altitude control in [15]. The weakness of drone state estimation was explored in [16]. The

effect of FDI attacks on drone state estimation and control was first proposed in [17].

16

Chapter 3. Problem Formulation

As we have identified the GPS input as a low-level vulnerability that has not been properly

address in practice, we aim at designing a concrete platform to investigate such an issue. In this

platform, we need to figure out how to generate fake GPS signals, and how to deliver the fake

signals to a drone, such that we can investigate various attacks and potential countermeasures.

3.1. Hardware Platform

In the thesis research, we generated forged GPS positions and transmitted the signal to the

drone, to make it deviate from the original destination while not being detected by the normal

control schemes on the drone.

Before attacking the drone, however, we conducted a preliminary attack test on a GPS receiver

to validate the feasibility of our GPS attack framework. The hardware setup for the test is shown

in Figure 6. A GPS receiver first locked to real GPS satellites and showing its real position. Next

we obtained broadcast ephemeris (BRDC) data from the NASA CDDIS website [29], generated

bitstream of spoofing GPS positions using GPS-SDR-SIM [18], and transmitted the signal through

bladeRF [10]. Then the spoofing signal took over the signal from the satellites at a GPS receiver

such that the reading of the receiver shows the forged position. The experiment results are given

in Section 4.1.

Figure 6. Setup for attacking a GPS receiver

17

After our attacking method was validated, we conducted GPS spoofing tests to a drone. The

setup is shown in Figure 7. We used two computers in the tests: one as an attacker to generate

spoofing GPS signal and transmit it to the drone, and another as an observer to read and record the

drone’s status. The attacker also acted as a controller, which sent control commands to launch the

drone or to let it fly a mission. The two computers were connected to the drone via Wi-Fi network

using the MAVLink protocol [23] for data communication. The drone originally locked to real GPS

satellites and after the spoofing signal took over the GPS fix, we could manipulate the drone’s

flying path by sending elaborately generated GPS position trajectories.

Figure 7. Setup for attacking a drone

3.2. Attack Model

ArduPilot utilizes the data fusion from different types of sensors, including standard IMUs

(accelerometers, gyroscopes, and magnetometers in some cases), GPS, and barometers, to estimate

the drone’s position and minimize estimation errors. Extended Kalman Filter (EKF), the most

commonly used state estimation methods, is implemented to provide more accurate position

estimations.

18

The control loop in a drone is illustrated in Figure 8, which is a real-time automatic control

without manual inputs. Specifically, the system first performs state estimation based on sensor

measurements. Then according to the current state estimation, the autopilot controller takes control

actions to automatically adjust drone movements. Given the autocontrol actions, the actuators take

corresponding adjustments.

Figure 8. Drone control loop.

To achieve our attack goals, we transmit fake GPS positions to deceive the GPS receiver on

the drone, and then the forged sensor readings compromise the position estimation. Furthermore,

ArduPilot regulates the actuators based on the compromised positions to move the drone to the

compromised direction or destination.

We will conduct the GPS spoofing attacks in the following two scenarios, which are shown in

Figure 9 and Figure 10.

Figure 9. Hovering attack.

In Figure 9, when the drone is hovering at a fixed point, we shift GPS positions gradually a

location a few meters away from the origin point. Based on the drone position control

algorithms, the drone will find the drift of its position and will move to the opposite direction to

maintain its location “unchanged”. If we keep feeding the spoofed GPS position, the drone will

keep moving to the opposite direction. We noticed that ArduPilot has a has a GPS failsafe

mechanism [45] to detect abnormal GPS position changes, so we limit the shift speed of the GPS

position to avoid being detected.

19

Figure 10. Mission flying attack.

Figure 10 is a simplified illustration of the attack on a drone flying a mission from source point

A to destination point B at the same altitude. The original mission track is from source point A to

destination point B. We send spoofing GPS positions during the mission with the East direction

unchanged but shift the position to the South at a fixed rate. In every control cycle, the drone

discovers its deviation from the original track and move to the North for correction. By this

attacking approach, we are able to bend the drone’s flying track and direct it to a compromised

destination C [13].

3.3. Software Setups

In this section, we introduce the software setups for GPS signal generation and transmission,

and a Python script for fetching drone status.

3.3.1. GPS Signal Generation and Transmission

Figure 11 illustrates the flow of generating and transmitting the spoofing GPS signal in our

research project.

20

Figure 11. Flowchart of GPS signal generation and transmission.

The process is as follows:

• Download the most recent ephemeris data in a BRDC file (the daily broadcast ephemeris

file) from CDDIS using the following command:

, or download the file manually from the archive

https://cddis.nasa.gov/archive/gnss/data/daily/

This file is a merge of the individual site navigation files into one, non-redundant file that can

be utilized by users instead of the many individual navigation files. The daily file created at a

location in Germany each day contains unique navigation messages from sites in Europe.

The combined broadcast ephemeris file is generated on an hourly basis from all hourly

navigation files archived at the CDDIS. The hourly navigation file contains all broadcast messages

with the TOE of the day that are available when the file is created at the top of the hour. The file

is updated each hour with new navigation messages [29].

• Extract the brdc file from the compressed file:

• Generate bitstream with a fixed position at the current time using GPS-SDR-SIM, e.g.,

the following command generates a GPS bitstream for a point at Honolulu (latitude =

21.28N, longitude = 157.81W, height = 100m).

wget --no-check-certificate

"ftps://gdc.cddis.eosdis.nasa.gov/gnss/data/daily/$(date -u

+%Y)/brdc/brdc$(date -u +%j0.%g)n.gz"

uncompress brdc$(date -u +%j0.%g)n.gz

./gps-sdr-sim -e brdc$(date -u +%j0.%g)n -l 21.296965,-

157.815687,100 -d 60 -b 16 -o gpssim.bin -t $(date -u +%Y/%m/%d,+%X)

https://cddis.nasa.gov/archive/gnss/data/daily/

21

Also, we can generate bitstream with a trajectory of moving positions specified in a

NMEA file, e.g., holmes.txt, using the following command:

• Transmit the bitstream through bladeRF.

The content of bladerf2.0.script is

3.3.2. Drone Status Data Fetching

We use the Python library Pymavlink to access a drone’s status, such as position and velocity

information from the GPS raw input or the fused data from the EKF, through MAVLink protocol

on a UDP port. The following Python code gets a set of data points: time, GPS fix type, EKF status

and GPS position from the drone, and saves it into a CSV file. In addition, we can use Matplotlib

[30] in Python to visualize data in various types of charts. The data graphs in Section 4.2 are all

obtained by using Pymavlink and Matplotlib libraries.

./gps-sdr-sim -e brdc$(date -u +%j)0.$(date -u +%g)n -g holmes.txt -

o gpssim.bin -t $(date -u +%Y/%m/%d,+%X)

bladeRF-cli -s bladerf2.0.script

set frequency tx 1575.42M

set samplerate 2.6M

set bandwidth 2.5M

set gain tx 56

set biastee tx on

tx config file=gpssim.bin format=bin

tx start

tx wait

22

3.4. Evaluation

We need to evaluation our GPS spoofing attack framework in two aspects: the correctness of

GPS signal transmission and the effectiveness of the attack strategy.

Correctness of GPS signal transmission: The prerequisite of the successful attack is that the

GPS positions received by a GPS receiver are not deviated from the original positions over a

threshold. For a GPS receiver, we are able to read the received GPS positions from NMEA

$GPGGA messages, and calculate the error from the latitude and longitude coordinates to verify

the accuracy. For a drone, we can read its GPS positions from GPS_RAW_INT messages via

MAVLink, and compare them to the original positions.

Effectiveness of the attack strategy: For the GPS spoofing attack on a drone, to verify that

the victim drone is flying to our expected compromised destination, it is difficult to read the

import csv

from pymavlink import mavutil

import keyboard

the_connection = mavutil.mavlink_connection('0.0.0.0:14550')

csv_filename = 'drone_status.csv'

with open(csv_filename, 'w', newline='') as csvfile:

 csvwriter = csv.writer(csvfile)

 field = ['time', 'fix_type', 'EKF_status','lat', 'lon', 'alt']

 csvwriter.writerow(field)

 print(field)

 while not keyboard.is_pressed('c'):

 the_connection.wait_heartbeat()

 time_usec = the_connection.messages['GPS_RAW_INT'].time_usec # time

since system boot in us

 fix_type = the_connection.messages['GPS_RAW_INT'].fix_type # 1: No

fix, 3: 3D fix

 ekf_status = the_connection.messages['EKF_STATUS_REPORT'].flags

 lat = the_connection.messages['GPS_RAW_INT'].lat # degE7

 lon = the_connection.messages['GPS_RAW_INT'].lon

 alt = the_connection.messages['GPS_RAW_INT'].alt # mm

 time_s = time_usec / 1000000

 lat_deg = lat / 10000000

 lon_deg = lon / 10000000

 alt_deg = alt / 1000

 row = [time_s, fix_type, ekf_status, lat_deg, lon_deg, alt_deg]

 csvwriter.writerow(row);

 print(row)

23

drone’s real positions directly from the MAVLink messages at the moment. We decided to observe

the drone’s movement by eyes, record the key points, and reconstruct the flying path afterwards,

and compare it to the drone’s original track and the trajectory of spoofing GPS signal. For example,

we made the original track to the East and we observed the flight path deviated to the Northeast in

our tests, when we applied the position shifts to the South.

24

Chapter 4. Experiment Design and Results

We have transmitted the forged GPS signal to a GPS receiver to verify the feasibility of the

GPS spoofing attacks in our lab, and we have further attacked the GPS receivers on a consumer

drone in our lab and controlled fields.

4.1. GPS Spoofing attack on a Receiver

In this section, we describe the processes and the results of two GPS spoofing attack

experiments on a GPS receiver: fixed position spoofing and moving position spoofing.

4.1.1. Fixed Position Spoofing

We used a BU-353S4 GPS receiver [31] and GPS Info tool [32] (as shown in Figure 12) to

display GPS information including latitude, longitude, time, satellite number, signal strength, etc.

Figure 12. GPS Info, initial status after position fixed by real satellites.

25

We generated and transmitted the spoofing signal as follows, and the details are described in

Section 3.3.1:

• Download the most recent ephemeris data in a brdc file from CIDDS.

• Extract the brdc file from the compressed file.

• Use GPS-SDR-SIM to generate bitstream at the current time with a fixed position, e.g., a

point at Honolulu (latitude = 21.28296965N, longitude = 157.815687W, height = 100m).

• Transmit the bitstream through bladeRF.

First the GPS receiver had a 3D fix to real satellites and showed its real position. Then after

starting the transmission, as the fake spoofing satellite signals were significantly stronger than the

real ones, they dominated the GPS channels, and the receiver could be deceived to the new location

within 20 seconds. The results are shown in Figure 13.

.

Figure 13. GPS Info, the status after position fixed by spoofing signal.

26

The corresponding NMEA messages are:

From the obtained data, we show in Table 4 the list of satellites in different scenes: bitstream

data generated by gps-sdr-sim; position fixed with real satellites; position fixed with spoofed

satellites.

Table 4. List of Satellite PRNs in each scene.

Scene 5 7 12 13 14 15 17 19 23 24 25 26 28 30 32 42 48 57

Bitstream ● ● ● ● ● ● ● ● ● ● ●

Real

satellites
 ○ ○ ● ● ● ○ ○ ● ● ○ ○

○

Spoofed

satellites
◎ ◎ ◎ ● ● ● ● ◎ ● ● ● ○

(● = satellites both in view and in use, ◎ = satellites in view with valid SNRs but not in use; ○ =

satellites in view without valid SNRs and not in use)

As we generated GPS bitstream using the most recent ephemeris data and the current time, the

PRNs of valid satellites in the bitstream and real satellites are nearly the same.

Therefore, as the ephemeris, satellite PRNs and time in the spoofing signal are consistent with

the real GPS signal, we can fool the receiver with a fake position near the real position in a short

time when the receiver has already got a position fix, similarly to a "hot start".

As to the GPS positions in each scene, Table 5 shows that the 2D distance between the real

position and the specified spoofing position is 21.45, and the error between the transmitted and

received spoofing positions is 1.35m.

$GPGGA,020024.000,2117.8170,N,15748.9419,W,1,07,1.2,80.7,M,4.6,M,,0000*42

$GPGSA,M,3,28,17,14,19,15,30,24,,,,,,3.2,1.2,3.0*3F

$GPGSV,3,1,12,28,47,030,48,17,40,115,50,14,38,032,47,19,34,144,47*7D

$GPGSV,3,2,12,15,27,321,47,30,24,059,46,24,10,290,43,05,00,000,48*70

$GPGSV,3,3,12,12,75,267,43,13,32,330,50,23,23,125,30,48,50,125,*73

$GPRMC,020024.000,A,2117.8170,N,15748.9419,W,0.78,228.56,181220,,,A*75

$GPGGA,020025.000,2117.8172,N,15748.9420,W,1,07,1.2,80.5,M,4.6,M,,0000*49

$GPGSA,M,3,28,17,14,19,15,30,24,,,,,,3.2,1.2,3.0*3F

$GPRMC,020025.000,A,2117.8172,N,15748.9420,W,0.36,228.56,181220,,,A*76

$GPGGA,020026.000,2117.8174,N,15748.9420,W,1,07,1.2,81.6,M,4.6,M,,0000*4E

$GPGSA,M,3,28,17,14,19,15,30,24,,,,,,3.2,1.2,3.0*3F

$GPRMC,020026.000,A,2117.8174,N,15748.9420,W,0.39,228.56,181220,,,A*7C

27

Table 5. Position coordinates.

Scene Coordinates (Lat, Lon, Height) 2D distance from the spoofed position

Bitstream 21°17.8174'N, 157°48.9412'W, 100 -

Real satellites 21°17.8172'N, 157°48.9288'W, 56.5 21.45m

Spoofed satellites 21°17.8174'N, 157°48.9420'W, 80.5 1.35m

4.1.2. Moving Position Spoofing

We could also generate locations in a moving trajectory and let the receiver virtually move on

the trajectory through the following steps:

• Draw a route in Google Maps, which is shown in Figure 14, and save it as a KML file

used to display geographic data in an Earth browser (such as Google Earth). It uses a tag-

based structure with nested elements and attributes and is based on the XML standard.

Figure 14. A route around Holmes Hall in Google Maps

28

• Convert it into an NMEA file through SatGen Trajectory generation. The software

interface is shown in Figure 15, where we set the maximum speed to 20 km/s and the

output rate to 10 Hz.

Figure 15. Generate NMEA file in SatGen Trajectory generation.

 (Note the Y-axis label is m/s)

29

• Generate the bitstream using gps-sdr-sim.

• Transmit the bitstream through bladeRF. The script is the same as the one in the fixed-

position test.

We plotted the transmitted and received GPS routes, as shown in Figure 16. Also, we calculated

the maximum position deviation in X-Y coordinate and height, which are 7.7m and 35.9m,

respectively.

Figure 16. GPS route around the Holmes Hall.

4.2. GPS Spoofing attack on a Drone

We have carried out the spoofing attack when the drone was flying outdoors in the following

two scenarios shown in Figure 9 and Figure 10 from Section 3.2:

a. When the drone was hovering at a fixed point, we sent GPS positions which were gradually

shifting to a location a few meters away from the origin point in longitude and latitude. (We do

not change the altitude.) Based on the drone position control algorithms, the drone should be

drifting to the opposite direction to maintain its location “unchanged”. Figure 9 illustrates this

scenario.

30

b. When the drone was flying a mission from a source point A to a destination point B, we

sent spoofing locations to deviate it from the actual flight path. Figure 10 shows this scenario.

For safety reasons, we always attach a string on the small drone to avoid accidents.

4.2.1. Experiment Method for Signal and Data Transmission

The signal and data transmission for the spoofing attacks was done in a similar procedure to

spoof the GPS receiver: we first generated and transmitted data streams, and then observed the

GPS information on the drone.

We used a python script to read the GPS status from the MAVLink interface on the drone,

which is described in Section 3.3.2. The script obtained the GPS status on the drone including

latitude, longitude, fix type, position accuracy, velocity accuracy, and other data. In the meantime,

SkyViper Journey provides a web interface, shown in Figure 17, for monitoring system status

including GPS information in real time.

Figure 17. SkyViper drone’s web interface for GPS status.

31

4.2.2. Hovering Test Result

First, we did a spoofing test when the drone was sitting on the ground to verify the

effectiveness of the attack approach. (We conducted this test many times to ensure we obtained

the results not affected by external factors such as strong wind.)

In the first 80 seconds, the spoofing GPS position stayed at the origin position to allow the

drone to get fixed to the attack signal. Then, we sent the GPS positions shifted 5 meters to the west

of the origin position in 5 seconds and stay there for 60 seconds. The shift velocity of 1m/s is low

enough to avoid being detected by ArduPilot. Figure 18 and Figure 19 (a)-(d) show the results. In

Figure 18, the purple points show the original spoofing signal we sent and the blue points are the

spoofing signal that the drone received. We can see that there were offsets (mostly in Y-axis) from

the original spoofing positions transmitted to the positions that the drone received. However, the

offsets were constant and less than 1 meter, which means the spoofing signals that the drone

received were within the civilian GPS accuracy (< 10 feet) and acceptable.

Figure 19 (a) shows the fix type and EKF status; Figure 19 (b) shows the position and speed

error. At the very beginning of the spoofing GPS signal transmission period and after the

transmission was just finished, due to the unstable GPS signal, the fix type was “no fix”, the EKF

status was bad, and the position and speed errors were fluctuating. During most of the transmission

period the signal was good enough and the position error was lower than 5 meters. Also, in Figure

19 (c) and Figure 19 (d) we can see the ground speed was 1m/s for 5 seconds in the middle, and

the course changed to around 270 degrees. Such results correspond to the position movement in

the spoofing signal.

32

Figure 18. GPS Trajectory when the drone was sitting on the ground.

(a) Fix type and EKF Status

33

(b) Position and Velocity Error

(c) GPS Ground Speed

(d) GPS Course

Figure 19. Drone status when the drone was sitting on the ground.

34

Then we conducted a test with a spoofing GPS signal with a 15-meter position shift (shown

in Figure 20) and launched the drone 70 second after the start of the GPS transmission when the

GPS fix was stable. (Again, we repeated this test many times to deal with uncontrollable external

factors.)

Figure 20. Illustration of the hovering test

The results are shown in Figure 21 and Figure 22, and they look similar to the stationary test

above. After the GPS positions started to move to the West, although it is not able to show the

drone’s actual displacement from the status readings, we did observe that the drone flew to the east

fast trying to compensate the offset of the GPS position (shown in Figure 20).

35

Figure 21. GPS Trajectory when the drone was hovering

(a) Fix type and EKF Status

36

(b) Position and Velocity Error

(c) GPS Ground Speed

(d) GPS Course

Figure 22. Drone status when the drone was hovering.

37

4.2.3. Mission Flying Test Result

Before we conducted the GPS attack, we first sent a flying mission to the drone to test its

behavior under the guidance of read GPS signal navigation. The mission was flying to the

destination 30 meters away to the East at the speed of 1m/s. The drone’s GPS trajectory and GPS

ground speed are shown in Figure 23 and Figure 24, respectively. From the time of 37s to 80s, the

drone was flying to the East. We observed that the true ground speed could not always 1m/s and

the average ground speed was approximately 0.7m/s. Currently we cannot location the cause of

the inaccurate speed as there were many internal and external factors. Nevertheless, we know that

we need to adjust the speed of the GPS spoofing signal to make it as close to the drone’s speed as

possible.

Figure 23. GPS Trajectory when the drone was flying a mission without spoofing GPS

signal.

38

Figure 24. GPS Ground Speed when the drone was flying a mission without spoofing GPS

signal.

The mission flying test is similar to the previous hovering test except for the GPS trajectory

and the drone’s mission. We first started the transmission of spoofing GPS signal with a fixed

position, after the drone got a stable 3D fix, then launched the drone and sent a mission through

DroneKit. The spoofing GPS positions started to move by following up the drone’s movement at

the same speed.

Figure 25 illustrates the test plan. The mission directed the drone to a destination 30 meters

away eastward at the speed of 1m/s, but the actual ground speed was approximately 0.7m/s. We

generated a spoofing GPS trajectory as follows: It begun to move to the Southeast at the Eastward

speed component of 0.7m/s and southward speed component of 1m/s. Five seconds later, it bended

to the East with the 0.7m/s Eastward speed unchanged. The total Eastward displacement of the

GPS positions is 30 meters. As a result, the spoofing positions followed the drone’s track in the

East direction but shifted 5 meters to the South. Therefore, instead of flying to the East, the drone

was expected to fly to the Northeast to compensate the northward GPS position drift.

39

Figure 25. Illustration of the mission flying test on Google Maps

40

Figure 26. GPS Trajectory when the drone was flying a mission

(a) GPS Ground Speed

41

(b) GPS Course

Figure 27. Drone status when the drone was flying a mission

Figure 26 and Figure 27 show the test results. In Figure 26, the GPS positions that the drone

received (the blue points) is not perfectly consistent with the original GPS positions we sent (the

purple line) but still acceptable with the maxim error of approximately 4 meters. From Figure 27

(a) we can see that around the time of 125s, the GPS ground speed, which was approximately 1.2

m/s, corresponds to the segment moving southeast in Figure 26, and the zigzag ground speed at

around 0.7m/s from the time of 130s to 165s corresponds to the segment moving east. Also Figure

27 (b) shows that the course of 150° at around 125s implies the Southeast movement, and that the

course of approximately 90° corresponds the East movement. The drone’s actual track was heading

to the Northeast, which is consistent with the orange track in Figure 25.

4.2.4. Discussion on Experiment Results

We have succeeded several times for each GPS spoofing attack in a relatively long range (≥

30m).

However, the success rate is relatively low. There were frequent problems that the drone could

not get stable 3D fix with accurate positions, or it did not fly to our expected destination. We

figured out multiple obstacles as follows:

1. GPS signal generation and transmission

Our GPS signal generation depends on the ephemeris data in the BRDC file downloaded from

the NASA CDDIS database. This data from real satellites is only considered valid for about 30

42

minutes and is broadcast by each satellite every 30 seconds [7]. The file is updated every 20 – 30

minutes. However, the BRDC file is not always applicable for our test. For example, from 2:00

pm to 3:25 pm HST (12:00 am to 1:20 am UTC) and from 4:00 pm to 4:25 pm HST (2:00 pm to

2:25 pm), there is no updated file available for GPS signal generation at the current time. As

another example, from 5:00 pm to 5:15 pm HST (3:00 pm to 3:15 pm UTC), there are only 4

satellites in the generated GPS bitstream while a drone GPS receiver usually requires locking to

least 6 satellites. It may lead to low GPS position accuracy and is not sufficient for ArduPilot to

take off. In short, there are some specific time slots when we are able to conduct successful GPS

spoofing attack.

It is reported that some of the bladeRFs have the issue of low on-board clock stability, which

may result in failures in GPS applications. A solution of using an external high accuracy clock is

given in Section 4.3. Another solution may be using a more precise device, such as high-end USRP

devices.

2. Attacking a moving drone

The synchronization between the drone’s movement and the GPS signal its received is critical

to the success of the proposed attack. If the GPS positions exceed or lag behind the drone's

expected movement significantly, the drone would deviate in an unexpected direction. For

example, in this test, the GPS positions were always to the east of the drone’s expected positions,

so the drone tried to shift westward for compensation.

The influencing factors include:

1) Timing. The start time of GPS signal transmission and the take-off time of the drone varied

a little every time. The difference may be up to a few seconds, which is much larger the

interval of GPS updates (0.1 second).

2) Velocity control. In our mission fly test, although the speed was set to 1m/s from a

DroneKit command, the speed was not stable, and the average speed was around 0.7m/s.

It may be due to the accuracy of the drone motors, the accuracy of the control board, or

the wind speed.

3) Wind. We cannot control wind speed and directions. The wind may affect the drone’s

velocity and direction control because the testing drone is very small.

43

4.3. Additional Work: Using an External Clock on bladeRF

Some bladeRF 2.0s are suffered from insufficient clock stability for GPS applications, which

results in failed our GPS spoofing experiments. In this section, we introduce a solution to improve

clock stability performance with the use of an external high precision clock source.

We purchased a 10MHz TCXO (Temperature Compensated Crystal Oscillator) [41] and

applied it to the bladeRF. We connect the TXCO's clock output to the REF_IN connector (J95) on

the bladeRF, so that bladeRF can tame the onboard VCTCXO (Voltage Controlled Temperature

Compensated Crystal Oscillator) to output a precise 38.4MHz clock with the external 10MHz

clock and a PLL. More principle details are discussed in the forum thread [42] and the FAQ .

The block diagram of bladeRF 2.0 from the schematic [44] is shown in Figure 28.

Figure 28. bladeRF 2.0 schematics.

Hardware setup

As the TCXO PCB has only pin headers for clock output and powering, we need to make

some wires for connections. I reformed an SMA to UFL coaxial cable by replacing the SMA

connector by jumper pin headers, with the shielding layer as the GND and the core as the CLK. I

connected the TXCO's clock output to the REF_IN connector (J95) on the bladeRF by this cable.

https://www.amazon.com/Precision-External-PPM0-1-HackRF-Application/dp/B07NXSFFLB/
https://nuand.com/forums/viewtopic.php?t=4984
https://www.nuand.com/frequently-asked-questions/#How_do_I_use_a_10_MHz_reference

44

Also, I soldered a wire to the anode of one of the LEDs on the bladeRF as a 3.3V power and

connected it to the TCXO PCB. The hardware setup is shown in Figure 29.

Figure 29. Hardware setup for applying an external TCXO.

Software usage

To enable the external reference input, issue the following bladeRF-cli command3. The output

shows the internal clock is locked.

The default reference clock frequency is 10MHz. If using other frequencies, set the reference

frequency to, e.g., 20 MHz:

bladeRF> set clock_ref enable

Clock reference: REFIN to ADF4002 (locked)

bladeRF> set refin_freq 20M

REFIN frequency: 20000000 Hz

45

We applied the 10MHz external clock to both the bladeRF xA4 and xA9 we have, and both

of them worked for GPS spoofing. The xA4 didn't work for our test before with the onboard clock.

A script for transmitting GPS bitstream with an external clock is

set clock_ref enable

set frequency tx 1575.42M

set samplerate 2.6M

set bandwidth 2.5M

set gain tx 56

set biastee tx on

tx config file=gpssim.bin format=bin

tx start

tx wait

46

Chapter 5. Conclusion and Future Work

In this thesis, we described GPS positioning principles and data formats, and introduced the

software and hardware platform for GPS spoofing attacks as well as a consumer drone’s control

and communication protocol. Then we proposed a practical GPS spoofing attack framework and

verified it by experiments. Our experimental results show that the drone is vulnerable to such

attacks and it is feasible to make the drone deviate from the original destination.

The countermeasures for the proposed GPS spoofing attack may include:

• Using encrypted military-grade GPS code. Attackers cannot generate such encrypted code

by open-source algorithms, so it will be very challenging to spoof the GPS positions in

such cases.

• GPS failsafe and glitch protection. ArduPilot has a mechanism to recognize glitches and

warn the controller if abnormal GPS changes are detected [45]. However, since the

detection was designed for dealing with random error and not for malicious attacks, if the

spoofing GPS signal shifts slowly enough, the drone is still vulnerable. The protection

algorithm could be improved to detect continuous small shifts such as the proposed attack.

• Track and verify drone motion using wireless localization technologies [48], then the

deviation of drone motion will be detectable.

• Calibration with other navigation methods, such as high-precision inertial navigation,

vision navigation or even manual controls, in case of GPS failures.

Based on our current research, we plan to further investigate the following issues.

• Figure out a way to solve drone’s real positions from inertial sensor measurement readings

from the MAVLink messages. Then, we can easily verify a drone’s real flightpath.

• Exploit the capability of GPS simulator and SDR hardware, and conduct experiments with

real-time generated spoofing positions and more precise synchronization with the drone.

If we are able to calculate the precise attacking positions based on the drone’s current

position in real time, then fine-grained and flexible attacks would be viable. The GPS

simulator software GPS-SDR-SIM and SDR device bladeRF are both open-source. We

47

can examine the designs of them and modify the configuration to generate and transmit

spoofing signals in real time.

• Develop drone tracking techniques to measure the drone’s real-time position and velocity,

so that we can perform the attacks remotely in practice. Some measurement approaches

include using a PTZ-camera [46] and Doppler radar [47]. We will explore drone-focued

measurement methods based on those ideas.

48

References

[1] GPS Overview, https://www.gps.gov/systems/gps/, accessed on 12/17/2020

[2] K. Wang, S. Chen, A. Pan, “Time and Position Spoofing with Open Source Projects”.

[3] James Bao-Yen Tsui, Fundamentals of Global Positioning System Receivers: A Software

Approach, Chapter Five GPS C/A Code Signal

Structure, https://pdfs.semanticscholar.org/d6f5/812c9f91d68862cf3e2a8af6a3f9db14ba2b.pdf?_

ga=2.30629631.1351239999.1579687368-1382589764.1579687368, accessed on 12/17/2020

[4] Peter H. Dana, “Global Positioning System Overview”,

https://foote.geography.uconn.edu/gcraft/notes/gps/gps_f.html, accessed on 12/17/2020

[5] Department of Geography, Penn State, The Navigation Message, https://www.e-

education.psu.edu/geog862/node/1734, accessed on 12/17/2020

[6] Jan Van Sickle, GPS for Land Surveyors 4th Edition

[7] Almanac and Ephemeris Data as used by GPS

receivers, http://gpsinformation.net/main/almanac.txt, accessed on 12/17/2020

[8] Takuji Ebinuma, GPS-SDR-SIM, https://github.com/osqzss/gps-sdr-sim, accessed on

12/17/2020

[9] Great Scott Gadgets, HackRF, https://greatscottgadgets.com/hackrf/, accessed on

12/17/2020

[10] Nuand, BladeRF wiki, https://github.com/nuand/bladeRF/wiki, accessed on 12/17/2020

[11] Kexiong (Curtis) Zeng et al., "All Your GPS Are Belong To Us: Towards Stealthy

Manipulation of Road Navigation Systems".

[12] Nils Ole Tippenhauer et al., “On the Requirements for Successful GPS Spoofing Attacks”

[13] W. Chen, Y. Dong, and Z. Duan. “Manipulating Drone Position Control,” in Proc. of

IEEE CNS 2019 - IEEE Conference on Computer Communications and Network Security.

[14] W. Chen, Z. Duan, and Y. Dong, “Compromising Flight Paths of Autopiloted Drones,” in

Proc. of IEEE International Conference on Unmanned Aircraft Systems (ICUAS), 2019.

[15] W. Chen, Y. Dong, and Z. Duan. “Attacking Altitude Estimation in Drone Navigation,”

INFOCOM workshop WiSARN 2018: Wireless Sensor, Robot and UAV Networks.”, April 2018.

https://www.gps.gov/systems/gps/
https://pdfs.semanticscholar.org/d6f5/812c9f91d68862cf3e2a8af6a3f9db14ba2b.pdf?_ga=2.30629631.1351239999.1579687368-1382589764.1579687368
https://pdfs.semanticscholar.org/d6f5/812c9f91d68862cf3e2a8af6a3f9db14ba2b.pdf?_ga=2.30629631.1351239999.1579687368-1382589764.1579687368
https://foote.geography.uconn.edu/gcraft/notes/gps/gps_f.html
https://www.e-education.psu.edu/geog862/node/1734
https://www.e-education.psu.edu/geog862/node/1734
http://gpsinformation.net/main/almanac.txt
https://github.com/osqzss/gps-sdr-sim
https://greatscottgadgets.com/hackrf/
https://github.com/nuand/bladeRF/wiki

49

[16] W. Chen, Y. Dong, and Z. Duan, “Manipulating Drone Dynamic State Estimation to

Compromise Navigation,” in Proc. of IEEE Conference on Communications and Network

Security (CNS), May, 2018.

[17] W. Chen, Z. Duan, and Y. Dong, “False Data Injection on EKF-Based Navigation

Control,” Invited paper. in Proc. of IEEE International Conference on Unmanned Aircraft

Systems (ICUAS), 2017.

[18] GPS-SDR-SIM, https://github.com/osqzss/gps-sdr-sim, accessed on 12/17/2020

[19] Software Defined Radio: Architectures, Systems and Functions (Markus Dillinger,

Kambiz Madani, Nancy Alonistioti) Page xxxiii (Wiley & Sons, 2003, ISBN 0-470-85164-3)

[20] ArduPilot, https://ardupilot.org/ardupilot/, accessed on 12/17/2020

[21] H. Chao, Y. Cao, and Y. Chen, “Autopilots for small unmanned aerial vehicles: a

survey,” International Journal of Control, Automation and Systems, vol. 8, no. 1, pp. 36–44,

2010.

[22] Sky Viper support center: https://support.skyrocketon.com/hc/en-

us/categories/115001355028-SkyViper, accessed on 12/17/2020

[23] MAVLink, https://mavlink.io/en/, accessed on 12/17/2020

[24] MAVLINK Common Message Set,

https://mavlink.io/en/messages/common.html#messages, accessed on 12/17/2020

[25] Pymavlink, https://pypi.org/project/pymavlink/, accessed on 12/17/2020

[26] Using Pymavlink Libraries (mavgen), https://mavlink.io/en/mavgen_python/, accessed on

12/17/2020

[27] About DroneKit, https://dronekit-python.readthedocs.io/en/latest/about/overview.html,

accessed on 12/17/2020

[28] NASA, The Crustal Dynamics Data Information System (CDDIS),

https://cddis.nasa.gov/, accessed on 12/17/2020

[29] NASA, Broadcast ephemeris data,

https://cddis.nasa.gov/Data_and_Derived_Products/GNSS/broadcast_ephemeris_data.html,

accessed on 12/17/2020

[30] Matplotlib, https://matplotlib.org/, accessed on 12/17/2020

[31] BU-353S4 GPS receiver, https://www.globalsat.com.tw/en/product-199952/Cable-GPS-

with-USB-interface-SiRF-Star-IV-BU-353S4.html, accessed on 12/17/2020

https://github.com/osqzss/gps-sdr-sim
https://ardupilot.org/ardupilot/
https://www.google.com/url?q=https%3A%2F%2Fsupport.skyrocketon.com%2Fhc%2Fen-us%2Fcategories%2F115001355028-SkyViper&sa=D&sntz=1&usg=AFQjCNGpY4KOVobqFAELuVk-zDeCJU-iTg
https://www.google.com/url?q=https%3A%2F%2Fsupport.skyrocketon.com%2Fhc%2Fen-us%2Fcategories%2F115001355028-SkyViper&sa=D&sntz=1&usg=AFQjCNGpY4KOVobqFAELuVk-zDeCJU-iTg
https://mavlink.io/en/
https://mavlink.io/en/messages/common.html%23messages
https://pypi.org/project/pymavlink/
https://mavlink.io/en/mavgen_python/
https://dronekit-python.readthedocs.io/en/latest/about/overview.html
https://cddis.nasa.gov/
https://cddis.nasa.gov/Data_and_Derived_Products/GNSS/broadcast_ephemeris_data.html
https://matplotlib.org/
https://www.google.com/url?q=https%3A%2F%2Fwww.globalsat.com.tw%2Fen%2Fproduct-199952%2FCable-GPS-with-USB-interface-SiRF-Star-IV-BU-353S4.html&sa=D&sntz=1&usg=AFQjCNH8GqNdTwNs0XTZlwzair25MhEtKg
https://www.google.com/url?q=https%3A%2F%2Fwww.globalsat.com.tw%2Fen%2Fproduct-199952%2FCable-GPS-with-USB-interface-SiRF-Star-IV-BU-353S4.html&sa=D&sntz=1&usg=AFQjCNH8GqNdTwNs0XTZlwzair25MhEtKg

50

[32] BU-353S4 GPS receiver downloads (USB driver and GPS Info tool),

https://www.globalsat.com.tw/style/frame/m5/features.asp?content_set=color_2&lang=2&custo

mer_id=909&name_id=10593, accessed on 12/17/2020

[33] Petovello, Mark (November 2008), "Satellite Almanac Life Expectancy", Inside GNSS:

14–19, available: https://teddriver.net/Papers/novdec08-gnss-sol-v1.pdf, accessed on 12/17/2020

[34] Department of Geography, Penn State, The Almanac, Time to First Fix and Satellite

Health, https://www.e-education.psu.edu/geog862/node/1739, accessed on 12/17/2020

[35] Wikipedia: Time to first fix, https://en.wikipedia.org/wiki/Time_to_first_fix, accessed on

12/17/2020

[36] National Marine Electronics Association, http://www.nmea.org/, accessed on 12/17/2020

[37] NMEA-0183 message: GGA,

https://www.trimble.com/OEM_ReceiverHelp/V4.44/en/NMEA-0183messages_GGA.html,

accessed on 12/17/2020

[38] What Exactly Is GPS NMEA Data?, https://www.gpsworld.com/what-exactly-is-gps-

nmea-data/, accessed on 12/17/2020

[39] NMEA-0183 messages: Overview,

https://www.trimble.com/OEM_ReceiverHelp/V4.44/en/NMEA-

0183messages_MessageOverview.html, accessed on 12/17/2020

[40] NMEA RMC

Message, http://manuals.spectracom.com/VSP/Content/NC_and_SS/Com/Topics/APPENDIX/N

MEA_RMCmess.htm, accessed on 12/17/2020

[41] TCXO Clock, High Precision External TCXO Clock PPM0.1 for HackRF One GPS

Application. https://www.amazon.com/Precision-External-PPM0-1-HackRF-

Application/dp/B07NXSFFLB/, accessed on 12/17/2020

[42] Nuand forum: BladeRF 2.0 frequency stability.

https://nuand.com/forums/viewtopic.php?t=4984, accessed on 12/17/2020

[43] Frequently Asked Questions: How do I use a 10 MHz reference?

https://www.nuand.com/frequently-asked-questions/#How_do_I_use_a_10_MHz_reference

[44] bladerRF micro schematics, https://www.nuand.com/bladeRF-micro.pdf, accessed on

12/17/2020

https://www.globalsat.com.tw/style/frame/m5/features.asp?content_set=color_2&lang=2&customer_id=909&name_id=10593
https://www.globalsat.com.tw/style/frame/m5/features.asp?content_set=color_2&lang=2&customer_id=909&name_id=10593
http://www.google.com/url?q=http%3A%2F%2Fteddriver.net%2FPapers%2Fnovdec08-gnss-sol-v1.pdf&sa=D&sntz=1&usg=AFQjCNFZYGAkSoBuDoO1VHw8oaF91J1bow
https://teddriver.net/Papers/novdec08-gnss-sol-v1.pdf
https://www.e-education.psu.edu/geog862/node/1739
https://en.wikipedia.org/wiki/Time_to_first_fix
http://www.nmea.org/
https://www.trimble.com/OEM_ReceiverHelp/V4.44/en/NMEA-0183messages_GGA.html
https://www.gpsworld.com/what-exactly-is-gps-nmea-data/
https://www.gpsworld.com/what-exactly-is-gps-nmea-data/
https://www.trimble.com/OEM_ReceiverHelp/V4.44/en/NMEA-0183messages_MessageOverview.html
https://www.trimble.com/OEM_ReceiverHelp/V4.44/en/NMEA-0183messages_MessageOverview.html
http://manuals.spectracom.com/VSP/Content/NC_and_SS/Com/Topics/APPENDIX/NMEA_RMCmess.htm
http://manuals.spectracom.com/VSP/Content/NC_and_SS/Com/Topics/APPENDIX/NMEA_RMCmess.htm
https://www.amazon.com/Precision-External-PPM0-1-HackRF-Application/dp/B07NXSFFLB/
https://www.amazon.com/Precision-External-PPM0-1-HackRF-Application/dp/B07NXSFFLB/
https://nuand.com/forums/viewtopic.php?t=4984
https://www.nuand.com/frequently-asked-questions/%23How_do_I_use_a_10_MHz_reference
https://www.nuand.com/bladeRF-micro.pdf

51

[45] GPS Failsafe and Glitch Protection, https://ardupilot.org/copter/docs/gps-failsafe-glitch-

protection.html, accessed on 12/17/2020

[46] J. Park; D. H. Kim; Y. S. Shin; S. Lee, “A comparison of convolutional object detectors

for real-time drone tracking using a PTZ camera”, 2017 17th International Conference on

Control, Automation and Systems (ICCAS)

[47] M. Jian; Z. Lu; V. C. Chen, “Drone detection and tracking based on phase-interferometric

Doppler radar”, 2018 IEEE Radar Conference (RadarConf18)

[48] M. Sun, Y. Man, M. Li, R. Gerdes, “SVM: Secure Vehicle Motion Verification with a

Single Wireless Receiver”

https://ardupilot.org/copter/docs/gps-failsafe-glitch-protection.html
https://ardupilot.org/copter/docs/gps-failsafe-glitch-protection.html

	Acknowledgement
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Chapter 2. Background and Related work
	2.1. GPS principles
	2.1.1. Positioning Principles: Triangulating
	2.1.2. GPS Signals
	2.1.3. Navigation Message
	2.1.4. Time to First Fix
	2.1.5. NMEA Data Format

	2.2. Software and Hardware Platform
	2.2.1. GPS-SDR-SIM
	2.2.2. Software-defined radio (SDR) devices
	2.2.3. Drone and Drone Control Systems

	2.3. Literature Review

	Chapter 3. Problem Formulation
	3.1. Hardware Platform
	3.2. Attack Model
	3.3. Software Setups
	3.3.1. GPS Signal Generation and Transmission
	3.3.2. Drone Status Data Fetching

	3.4. Evaluation

	Chapter 4. Experiment Design and Results
	4.1. GPS Spoofing attack on a Receiver
	4.1.1. Fixed Position Spoofing
	4.1.2. Moving Position Spoofing

	4.2. GPS Spoofing attack on a Drone
	4.2.1. Experiment Method for Signal and Data Transmission
	4.2.2. Hovering Test Result
	4.2.3. Mission Flying Test Result
	4.2.4. Discussion on Experiment Results

	4.3. Additional Work: Using an External Clock on bladeRF

	Chapter 5. Conclusion and Future Work
	Chapter 6.
	References

