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Abstract 
Health information technologies have greatly 

facilitated sharing of personal health data for 
secondary use, which is critical to medical and health 
research. However, there is a growing concern about 
privacy due to data sharing and publishing. Medical 
and health data typically contain unstructured text 
documents, such as clinical narratives, pathology 
reports, and discharge summaries. This study concerns 
privacy-preserving extraction, summary, and release of 
information from medical documents. Existing studies 
on privacy-preserving data mining and publishing 
focus mostly on structured data. We propose a novel 
approach to enable privacy-preserving extract, 
summarize, query and report patients’ demographic, 
health and medical information from medical 
documents. The extracted data is represented in a 
semi-structured, set-valued data format, which can be 
stored in a health information system for query and 
analysis. The privacy preserving mechanism is based 
on the cutting-edge idea of differential privacy, which 
offers rigorous privacy guarantee. 
 
 
1. Introduction 
 

Medical documents and other unstructured data, 
such as clinical narratives and discharge summaries, 
are essential for documenting interactions between 
patients and healthcare providers. These clinical and 
medical texts are typically embedded in an electronic 
medical records (EMR) system. They contain rich 
information useful for improving clinical decision 
support and for medical and healthcare research 
[13][20]. Traditionally, extraction of information from 
clinical text into a form suitable for analysis and 
research is done manually by domain specialists. In 
recent years, there have been significant developments 
in using natural language processing (NLP) techniques 
for information extraction from medical documents 
[19][23]. 

In order to make patient data available for research 
and analysis, it is vital to ensure that patient privacy is 

appropriately protected. To this end, the Health 
Insurance Portability and Accountability Act (HIPAA) 
[5][6] has established a set of privacy rules. The HIPA 
Safe Harbor rule specifies 18 categories of explicitly or 
potentially identifying attributes – called Protected 
Health Information (PHI) – that must be removed or 
altered before the health data is released to a third 
party. However, a strict implementation of the Safe 
Harbor rule may be inadequate for protecting privacy 
or preserving data utility. Studies have shown that the 
Safe Harbor rule lacks the flexibility to adequately 
meet the diverse needs of data users; it can be under-
protective in some cases and over-protective in others 
[18][25]. Recognizing this limitation, HIPAA also 
provides guidelines that enable a statistical assessment 
of privacy disclosure risk in order to determine if the 
data is appropriate for release. This study focuses on 
this aspect of the HIPAA principle. 

Along the line of the statistical approach, there is a 
large body of research on privacy-preserving data 
sharing and publishing, most of which focus on 
structured data [1][11]. Privacy models such as k-
anonymity [24], l-diversity [17], t-closeness [14], 
differential privacy [8][9], and clustering-based 
anonymization approaches [15][16] have been 
proposed to formalize privacy protection requirements. 
Various methods and algorithms have been developed 
to anonymize structured data to satisfy the 
requirements in the aforementioned privacy models 
[1][11]. 

In spite of this richness of research in data privacy, 
its application in medical domains lags behind in some 
aspects. Medical data typically contain text documents. 
In such cases, identity information is embedded in the 
textual contents, where anonymization techniques 
designed for structured data are not readily applicable. 
Thus, the majority of privacy research in sharing and 
releasing information in medical documents has 
followed the Safe Harbor rule directly, focusing on the 
automatic detection of PHI attributes in the documents 
[18][21][25]. The identified PHI values are then simply 
removed from or encrypted in the released text. Studies 
have shown that such simple de-identification 
strategies lack the flexibility to adequately meet the 
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diverse needs of data users; they can be under-
protective (i.e., not satisfying privacy requirements) in 
some cases and over-protective (i.e., resulting in poor 
data utility) in others [18][25]. There is a lack of 
research on how to provide adequate information for 
identified PHI in a privacy-preserving manner (other 
than simple removal) and how to cope with non-PHI 
but potentially identifying information to improve 
privacy protection and data utility. 

In this paper, we study privacy issues related to 
releasing summary and query information from patient 
medical documents. We propose a novel approach to 
extract and release patients’ demographic, health and 
medical data from clinical text. The extracted data is 
represented in a semi-structured, set-valued data 
format, which is then used for privacy-preserving 
query and analysis. Our privacy mechanism is 
designed based on the differential privacy framework. 

The main contributions of this research are: (1) We 
examine a problem that has not been formally studied 
in the literature, which is releasing PHI related 
summary information and search query results from 
medical documents. Existing privacy-preserving 
techniques for releasing structured data or PHI-
removed data are not readily applicable to the problem. 
(2) We propose a novel approach to release patients’ 
demographic and health information from medical 
documents. The privacy preserving mechanism is 
based on the leading-edge idea of differential privacy, 
which offers rigorous privacy guarantee. (3) We 
conduct an experimental study that demonstrates the 
effectiveness of the proposed approach. 

This paper is organized as follows. We review 
related work in data privacy and health informatics in 
Section 2. We then demonstrate in Section 3 the 
privacy and data quality problem with the current Safe 
Harbor practice, using an illustrative example. In 
Section 4, we present the proposed approach for 
summarizing medical documents and releasing search 
query results with privacy guarantee. In Section 5, the 
results of an experimental study are provided. We 
conclude our paper and provide future research 
directions in Section 6. 
 
2. Related Work 
 

In analyzing privacy disclosure risk, the literature 
typically recognizes two types of disclosure [7]: (a) 
identity disclosure (or re-identification), which occurs 
when an adversary is able to match a record in a de-
identified dataset to an actual individual; and (b) 
attribute disclosure, which occurs when an adversary 
is able to predict the sensitive value(s) of an individual 
record, with or without knowing the identity of the 

individual. Related to the two types of disclosures, the 
attributes of data on individuals can be classified into 
three types. We discuss them in the context of medical 
and health data, with respect to the HIPAA-defined 
PHI categories, as listed in Figure 1 (from pp. 82818-
82819 in [5]). 

 
1. Names 
2. Locations: All geographic subdivisions smaller 

than a state, including street address, city, 
county, precinct, zip code, and their equivalent 
geocodes, except for the initial 3 digits of a zip 
code if the correspond area contains more than 
20,000 people. 

3. Dates: (i) All elements of dates (except year) for 
dates directly related to an individual, including 
birth date, admission date, discharge date, date 
of death. (ii) All ages over 89 and all elements 
of dates (including year) indicating such an age. 

4. Telephone numbers 
5. Fax numbers 
6. E-mail addresses 
7. Social security numbers 
8. Medical record numbers 
9. Health plan beneficiary numbers 

10. Account numbers 
11. Certificate/license numbers 
12. Vehicle identifiers and serial numbers, including 

license plate numbers 
13. Device identifiers and serial numbers 
14. Web Universal Resource Locators (URLs) 
15. Internet Protocol (IP) address numbers 
16. Biometric identifiers, including finger and voice 

prints 
17. Full face photographic images and any 

comparable images 
18. Any other unique identifying number, 

characteristic, or code 
Figure 1. Protected Health Information (PHI) 

Defined by HIPAA 
 

The first type is explicit identifier (EID), which are 
PHI attributes that can be used to directly identify an 
individual, such as name, phone number and email 
address. It is clear from Figure 1 that all PHI categories 
are EIDs except category 2 (locations) and category 3 
(dates). HIPAA requires that EIDs be removed or 
encrypted in the released data. The second type is 
quasi-identifier (QID), which do not explicitly reveal 
identities but may be linked to external data sources to 
eventually identify an individual. QIDs include some 
PHI attributes such as date of birth, admission date, 
and zip code; they also include some non-PHI 
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attributes such as age, gender and race. Sweeney [24] 
found out that 87% of the population in the US can be 
uniquely identified with three QID attributes – gender, 
date of birth, and 5-digit zip code – which are 
accessible from voter registration records available to 
the public. The third type is sensitive attributes (SAs), 
which contain private information that an individual 
typically does not want disclosed, such as sexual 
orientation and personal financial information. In the 
context of health and medical data, SAs are health and 
medical information (HMI) such as symptoms, test 
results, diagnoses, diseases, medications and 
procedures. None of the items listed in Figure 1 is 
HMI. That is, HIPAA does not provide guidelines on 
how to protect SA/HMI information; instead, the basic 
idea of HIPAA Safe Harbor rule is to protect privacy 
by preventing identity disclosure. 

Most of data privacy studies assume that data is 
stored in well-defined relational databases. A major 
line of research has focused on devising principles to 
establish the requirements of privacy protection and to 
form criteria for assessing privacy risks. A well-known 
principle is k-anonymity [24], which requires that each 
individual record in a dataset should be 
indistinguishable from at least k – 1 other records with 
respect to the QID attribute values. The k-anonymity 
approach focuses on re-identification risk only and 
does not consider attribute-disclosure risk. To address 
attribute disclosure, a privacy principle called l-
diversity has been proposed [17]. The l-diversity 
principle requires that an SA attribute should include at 
least l well-represented values in the k-anonymized 
data. Another privacy principle, called t-closeness [14], 
addresses the issue by further considering the overall 
distribution of the SA values. It requires that, for each 
group, the distance between the distributions of the SA 
values in the group and the overall distribution of the 
SA values cannot be larger than a threshold value t. 
The l-diversity and t-closeness principles typically 
assume that there is a single SA attribute or several 
pre-defined SA attributes, which is not a realistic 
scenario for text data. Medical text documents 
typically have a large number of unstructured (not pre-
defined) SA/HMI attributes. It is essentially impossible 
to apply the idea of l-diversity or t-closeness for 
medical document data. 

The k-anonymity, l-diversity and t-closeness 
approaches all depend on some assumptions about the 
adversary’s auxiliary information regarding individual 
targets. When the assumptions do not hold, these 
approaches may not work well [9]. To overcome this 
limitation, Dwork [8][9] introduces the notion of 
differential privacy. Intuitively, differential privacy 
ensures that the released information about a dataset is 
essentially the same whether or not an individual’s data 

was included in the dataset. In other words, there is 
virtually no additional privacy disclosure risk if the 
individual opts in to the dataset. Differential privacy is 
defined independent of any auxiliary information 
assumption. Thus, it provides the most rigorous 
privacy guarantee among existing approaches. On the 
other hand, differential privacy requirements often 
result in significant information loss in the released 
data, which limits its applicability. A recent survey 
found that application of differential privacy to the 
medical and health domain remains an unexplored 
research area [4]. 

Unlike privacy research in the structured data, 
where numerous techniques have been proposed and 
developed, privacy protection approaches for sharing 
information in medical documents have mainly based 
on the Safe Harbor principle, focusing on the detection 
and removal of PHI items from the documents. 
Meystre et al. [18] and Uzuner et al. [25] have 
reviewed more than a dozen state-of-the-art techniques 
in the field, all of which follow the Safe Harbor 
approach and none takes statistical approach that is 
common in the privacy research for structured data. 

Thus, there is a lack of interaction between the 
study in de-identification for medical documents and 
that in anonymization for structured data. To integrate 
these two research streams, existing de-identification 
techniques need to be extended beyond the HIPAA-
defined PHI fields. On the other hand, anonymization 
techniques designed for structured data, such as 
differential privacy, need to be adapted to take 
advantage of the rich sematic information embedded in 
the textual contents. 
 
3. Privacy and Data Utility Problem with 
Medical Documents 
 

Given a collection of patient medical documents, 
our first task is to extract relevant data elements and 
assign them to the three categories described earlier: 
EID, QID and HMI. This task involves information 
extraction and classification. There exist many NLP 
techniques in medical and health informatics to 
perform this task [19]. We adopt some existing 
techniques, to be described later, for this task. After 
information extraction and classification, EID data will 
be removed or encrypted, following the HIPAA rule. 
The QID and HMI data will be stored in a semi-
structured scheme for query and analysis. In this 
scheme, QID will be stored in a standard table, one 
record for each document. HMI will be stored in a set-
valued format, where each set of terms and values that 
appear in a document is listed together and associated 
with the QID values of the same document. Such a 
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scheme is supported by many health information 
systems that enable the use of EMR data for decision 
support and health and medical research, such as the 
i2b2 system [20] and the Vanderbilt research data 
warehouse system [3]. Our work examines privacy 
protection issues related to the search and release of 
information from this scheme. 
 
1.  Visited on 4/5/2009. Male, 24 year old. Feeling 

sore throat, fever, headache, fatigue… 

2.  Mr. Brown’s daughter is 9 year old. Visited on 
4/13/2009…Having runny nose, sore throat, 
fever, headache… 

3.  Admitted on 4-21-2009, patient is a 9 year old 
female. Having runny nose, sore throat, diarrhea, 
fever. 

4.  Amy is 17 year old. Having fever, joint pain, 
nausea, sore throat…Visited 5/14/2009. 

5.  Admitted on 6/7/2009, the 88 year old man is 
complaining chills, body pain, sore throat, fatigue, 
fever… 

Figure 2. An illustrative example of five 
clinical notes 

 
 

No. Visit 
Month 

Visit 
Year Age Gender Zip 

Code HMI 

1 April 2009 24 Male 12301 

sore throat, 
fever, 
headache, 
fatigue 

2 April 2009 9 Female 12301 

runny nose, 
sore throat, 
fever, 
headache 

3 April 2009 9 Female 12301 

runny nose, 
sore throat, 
diarrhea, 
fever 

4 May 2009 17 Female 12302 

fever, 
joint pain, 
nausea, sore 
throat 

5 June 2009 88 Male 12302 

chills, 
body pain, 
sore throat, 
fatigue, fever 

Figure 3. Information extracted from the 
example clinical notes 

 
To describe the idea of our approach, consider a set 

of five patient clinical notes shown in Figure 2, taken 
from a hypothetical community hospital. Figure 3 

illustrates the scheme that contains extracted QID and 
HMI values. The first five columns follow a relational 
database table format (where the additional Zip Code 
data is obtained from the patient registration). The last 
column contains a set of HMI terms/values. To comply 
with the Safe Harbor rule, the hospital can only release 
the data in Visit Year, Age, Gender and the first three 
digits of Zip Code, as well as the HMI values. 
However, this Safe-Harbor-based release can be over-
protective. For example, because only the visit year 
can be released, the important “season” information is 
lost, which could be crucial for detecting an epidemic 
disease outbreak. For the same reason, releasing the 3-
digit zip code (e.g., 123**), instead of the 5-digit zip 
code, also causes significant information loss. On the 
other hand, the Safe-Harbor-based release may be 
inadequate for privacy protection. For example, it may 
not be difficult to identify the 88-year-old man (No. 5) 
in the region who has been hospitalized in 2009, using 
publically available data. 

The proposed mechanism releases information as 
an output response to a search query using HMI terms. 
We focus on count query using HMI search terms in 
this early stage of our study. Even for the count query 
output only, our approach can provide much more 
useful information than the Safe Harbor rule. For 
example, using the HMI search terms {sore throat, 
fever}, the output can show a count for the following 
conditions: 

Visit Month = ‘April’, 
Visit Year = 2009, 
Age = 9, 
Gender = ‘Female’, 
Zip Code = 12301, 
HMI = {sore throat, fever}. 

Since there are two matching records in the example 
set, the perturbed count will be 2 plus a noise (which 
will be discussed in the next section). Without loss of 
clarity, we write the above conditions as: 

<April, 2009, 9, F, 12301, {sore throat, fever}> 

We can also query with slightly different conditions, 
<April, 2009, 12301, {sore throat, fever}>, which has 
three matching records; so the perturbed count will be 
3+noise. Moreover, we can also get a perturbed count 
for <April~June, 2009, 1230*, {sore throat, fever}>, 
which will be 5+noise. These outputs provide useful 
information about a flu-like disease that may be 
spreading in the area during the period (assuming 
many similar records are found in the entire patient 
database). Note that it is also possible for the proposed 
mechanism to output the perturbed count for the 
records with QID values matching those of record #5 
(even though the match is unique), but the noise for the 
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count is likely to be very large compared to the original 
count. 
 
 
4. Differentially Private Data Release 
 

Our proposed method for adding noise is based on 
the notion of differential privacy [8][9], which is 
defined bellow: 

Definition 1. Given any two datasets 1D  and 2D  
that differ in only one record, a perturbation 
mechanism M provides e-differential privacy if for any 
set of possible outputs S of M (i.e., )(MRangeS ⊆ ), 

 ])(Pr[])(Pr[ 21 SDMeSDM ∈×≤∈ e .     (1) 

The parameter e represents disclosure risk, which is 
usually controlled to be small so that εε  is close to 
one. As such, differential privacy guarantees, in a 
probabilistic sense, that the outputs will be essentially 
the same with or without any specific individual’s 
participation. This property has a very appealing 
implication. For example, if the dataset were to be used 
by a healthcare provider to analyze the demographics 
of its patient population, then the presence or absence 
of a patient’s record in the dataset will not significantly 
change the results of the analysis. In this sense, the 
participating patient’s demographic information is well 
hidden. 

For a frequency query (e.g., query for count or 
histogram), there is a straightforward way to construct 
a perturbation mechanism that satisfies e-differential 
privacy. The mechanism is based on the notion of 
sensitivity defined below [8]: 

Definition 2. For a function f over dataset D with 
numeric output, the sensitivity of f is 

 
121,

)()(max
21

DfDff
DD

−=D             (2) 

for all 1D , 2D  differing in at most one record. 

In other words, the sensitivity is the maximum 
change in the value of f when any single record of D 
changes. To add noise for a numeric output, it is 
convenient to use a Laplace distribution. The Laplace 
distribution with a scale parameter σ, )(σLaplace , has 

a density function of σσσ /||)2/1()|( xexp −= . With 
this distribution, we have the following result [9]: 

Result 1. For a numeric function f, a perturbation 
mechanism that adds noise with a )/( εfLaplacε ∆  

distribution to the output satisfies e-differential 
privacy. 

To be rigorous, for an integer-valued output, a 
geometric distribution (instead of the Laplace) should 
be used for perturbation [12], but this subtle difference 
is not considered important in the literature. When f 
represents a count query, sensitivity 1=∆f  since the 
count can differ at most by one due to the addition or 
removal of one record. Therefore, for a count query f, 
the perturbation mechanism 

 )/1()()( εLaplacεDfDM +=             (3) 

provides e-differential privacy. 
Given a set of medical documents, our approach 

first extracts EID-, QID-, and HMI-related terms. 
There is no existing information extraction system that 
can effectively extract all these terms. We have 
adapted two open-source systems to perform this task: 
the Stat De-id system [26] and the cTAKES system 
[23]. Stat De-id treats capturing EID and QID terms as 
a multi-class classification task and uses a support 
vector machine (SVM) technique to classify a term as 
an EID or QID category. The cTAKES system is a 
natural language processing system specialized in 
medical text domain. It combines rule-based and 
machine learning techniques aiming at information 
extraction from medical documents. 

We do not use these two systems directly to extract 
EID, QID, and HMI terms. Instead, we took the basic 
classifier components from the two systems to build a 
set of independent base classifiers (e.g., rule-based 
classifier, SVM-based classifier, conditional random 
field (CRF)-based classifier, etc.). These base 
classifiers classify the terms in medical documents into 
one of the four categories: EID, QID, HMI, or 
OTHER. The results of the base classifiers are then fed 
into an ensemble classifier to produce the final 
combined result. For example, in the combined result 
for record 2 in Figure 2, “Mr. Brown” will be classified 
as an EID. Similarly, “9 year old” and “daughter” 
(which implies female) will be recognized as QIDs. 
Words such as “sore throat,” “fever,” and “fatigue,” 
will be classified as HMI. 

When there are conflicts between base classifiers, 
the ensemble classifier resolves the conflicts based on 
privacy priority. For example, an EID causes direct 
disclosure of an individual’s identity and thus has the 
highest privacy priority among the four categories. If a 
term is recognized as an EID by any classifier, it will 
be classified as an EID and removed from the text, 
even though it is recognized as a QID or HMI by all 
the other classifiers. As an example, if a base classifier 
recognizes “White” as an EID (patient name) and the 
other base classifiers consider it as a QID (race), 
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“White” will be classified as an EID and removed from 
the anonymized text. This enables maximum protection 
for the EID attributes. Similarly, if a term is classified 
as a QID by one classifier but as an HMI by the other 
classifiers, it will be classified as a QID because a QID 
value is subject to change (e.g., zip code 123**) while 
an HMI value will remain unchanged in the 
anonymized text. 

After extraction, EID values are removed or 
encrypted. The QID and HMI data are populated into a 
scheme exemplified in Figure 3. Each row in the 
scheme can be viewed as a transaction in the context of 
association rule mining, and each value or term can be 
viewed as an item. Therefore, the Apriori algorithm [2] 
can be applied to find frequent itemsets. The minimum 
support count for the frequent itemsets (i.e., the 
number of transactions containing the itemsets) can be 
considered as a privacy parameter (in addition to e). 
This parameter can be controlled by the data owner but 
unknown to the data user. It can be set to a relatively 
small value because the count will be perturbed before 
it is released. 
 
 
1. For a set of medical documents, extract EID, QID 

and HMI terms and values. 

2. Remove or encrypt EID values. Load QID and HMI 
values into a table D where the HMI field allows a 
set of multiple terms or values. 

3. Run the Apriori algorithm on D to find all frequent 
itemsets that contain at least an HMI value. 

4. For a count query f(D) involving a set of HMI value, 
obtain the count result from the output of Step 3. 
Perturb the result using Equation (3). 

 

Figure 4. Computational Procedure 
 

The entire computational procedure for our 
proposed approach is summarized in Figure 4. In terms 
of computational complexity, Steps 1, 2 and 3 can be 
preprocessed, so the real time computation for a query 
is very fast. Also, the Step 3 computation is faster than 
that of the classical Apriori algorithm because the 
itemset not containing any HMI term can be removed 
immediately at each Apriori iteration. So, the 
computation is efficient even if it is necessary to re-run 
Step 3 (due to, for example, a change in the support 
parameter). 
 
5. Experimental Evaluation 
 

To evaluate the proposed approach and compare it 
with the Safe Harbor approach, we have conducted an 
experimental study using real patient document data. 

The Informatics for Integrated Biology and the 
Bedside (i2b2) project has obtained multiple sets of 
medical documents from healthcare organizations and 
made them available for research 
(https://www.i2b2.org/NLP/DataSets). We used four of 
the datasets for the experiment, all of which are 
medical discharge summaries. The first set is related to 
a clinical-text de-identification challenge competition. 
The second set was initially used for evaluating 
document classification techniques. The third set was 
used for extraction of medication information from 
clinical text. The fourth set was used for a challenge 
competition to extract medical concepts, assertions and 
relations. Because all of the datasets are medical 
discharge summaries, the elements of information 
contained in different datasets are similar, most 
including patient name, admission and discharge date, 
age, gender, hospital, symptoms, test result, diagnoses, 
diseases, medications, and so on. Thus, we merged the 
four sets into a single set, resulting in 2,867 text 
records. After extracting the QID and HMI values from 
the text, we found that there were very few zip code 
and/or location values in the data that we could use for 
the experiment. Therefore, we focused on the query 
results involving the visit year and month data, which 
appear in nearly all records. Recall that the Safe 
Harbor rule prohibits releasing patient visit month data. 

The privacy protection level is naturally measured 
by the parameter e. Clearly, the smaller the e value, the 
better the privacy protection the mechanism offers. In 
terms of data utility, since the count query result can be 
regarded as an itemset count, we use an itemset-related 
measure in the literature [10][22], called relative error, 
which is defined as 

 ∑
∈

−
=

Ii i

ii

n
nn

I

~

||
1Error  Relative ,            (4) 

where I represents the set of all frequent itemsets with 
support count larger than the specified threshold value; 

in  and in~  are respectively the original and perturbed 
count of the ith frequent itemset. Since an itemset must 
contain at least an HMI item, the relative error 
measures the error rate for the results of the queries 
having at least an HMI term while satisfying the 
minimum support count requirement. 

We set parameter e to five different values: 0.1, 0.2, 
0.3, 0.4, and 0.5, which are in general more 
conservative (i.e., with stronger privacy protections) 
than commonly used e values in differential privacy 
research. To evaluate the performance at different 
frequency levels, we set minimum support count to 
five values: 10, 20, 30, 40, and 50. The results of the 
perturbation algorithm vary slightly with different 
random number seeds. Therefore, for each scenario the 
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algorithm was run five times, each run using a different 
seed. The average results are reported. 

The results of the experiment are shown in Figure 
5. It is observed that the error rate decreases as the 
privacy risk (e) increases, which is expected. 
Furthermore, the error rate decreases as the support 
count increases. This also makes sense because the 
frequency count for the selected itemsets (the 
denominator in Equation 4) becomes larger when the 
support is increased. The added Laplace noise, 
however, is independent of the support. When e is 
small, its value is approximately the odds that the 
output results will be different due to the addition or 
removal of any record (e.g., when 1.0=ε , the odds is 
about 105.011.0 =−e ). Note that the results are based 
on the queries that allow releasing visit month data, 
which is prohibited in the HIPAA Safe Harbor rule. 
Therefore, the proposed approach provides an 
additional option to Safe Harbor for data release, based 
on well-grounded assessment of disclosure risk. If the 
data include other HIPAA-restricted QIDs such as zip 
code, location, and date of birth, similar analyses can 
be performed based on our approach. 
 

Privacy 
Parameter 

Support Count 
10 20 30 40 50 

e = 0.5 0.149 0.078 0.056 0.042 0.034 

e = 0.4 0.184 0.096 0.070 0.055 0.046 

e = 0.3 0.246 0.132 0.095 0.074 0.060 

e = 0.2 0.350 0.187 0.131 0.104 0.086 

e = 0.1 0.731 0.394 0.288 0.223 0.177 

Month 
Estimated 0.510 0.433 0.436 0.461 0.436 

Figure 5. Results of Relative Error 
 
Because the problem we study is new to the 

literature, there are no existing techniques that can be 
compared directly. We have assumed a scenario where 
the released output is Safe Harbor compliant (i.e., 
without month), but the data user attempts to estimate 
the month value for the query output with a probability 
proportional to the marginal distribution of the month 
values. The month values in the dataset are distributed 
unevenly, ranging from 4% for the least frequent 
month to 13% for the most frequent month. The error 
results under this Safe Harbor scenario are shown on 
the last row of Figure 5 (labeled “Month Estimated”). 
It is observed that the resulting error rates are in 
general much higher than those from our approach, 
particularly when the count becomes large. Therefore, 
if the month information is important, it is worthwhile 
to consider using the proposed approach. If the dataset 

contains location data such as zip code, the proposed 
approach can also be applied similarly to obtain count 
results for location values at a more detailed level than 
that allowed by Safe Harbor (e.g., 5-digit zip code 
rather than the first 3 digits only). 

Clearly, the proposed approach outperforms the 
HIPA’s Safe Harbor rule in this experimental study. 
Safe Harbor applies the same standard for de-
identifying data, which expectedly causes under-
protection for some data but over-protection for others 
because disclosure risks in different data are different. 
Recognizing this limitation, HIPAA also provides 
guidelines that enable statistical assessment and control 
of privacy disclosure risk. Our work follows this line 
of approach in HIPAA. The proposed approach 
integrates medical informatics techniques with 
differential privacy, a statistical perturbation method.  
This allows the user to have more flexibility in dealing 
with different disclosure scenarios. 
 
6. Conclusion and Future Directions 
 

In this study, we investigate the privacy issues 
related to summary and release of information from 
patient medical documents. We propose a novel 
approach to extract and release patients’ demographic, 
health and medical data from medical documents. Our 
approach is based on the well-grounded notion of 
differential privacy, which offers rigorous privacy 
guarantee. Our experiments show that the proposed 
method outperforms the HIPAA Safe Harbor approach. 
Therefore, the proposed approach may be a promising 
alternative to Safe Harbor for releasing information 
from medical document with appropriate privacy 
protection. 

Due to increasing applications of medical data 
sharing in practice, there is a rising concern that patient 
privacy is being compromised. The proposed approach 
will reduce the disclosure risks of individuals from 
anonymized data, while improving the utility of the 
data. This should alleviate patients’ concerns about 
loss of privacy and confidentiality and increase their 
willingness to participate in research that uses patient 
data. The proposed approach will also reduce 
organizations’ concerns about potential privacy 
violations and enable organizations to safely share and 
publish high-quality data for legitimate research and 
analysis. 

One limitation of this study is that the proposed 
approach was tested on only a relatively small dataset 
for proof of concept. This dataset might not be an ideal 
representation of various patient populations. It will be 
more helpful if some larger datasets are used for 
experimental evaluation. In order to compare the 
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proposed approach with the Safe Harbor approach, the 
PHI values in the original data need to be more 
detailed than those restricted by Safe Harbor (e.g., date 
of birth instead of year of birth, and 5-digit zip code 
instead of 3-digit zip code). Due to data holder’s 
privacy concern, it is very difficult to obtain data with 
more detailed information than that allowed by Safe 
Harbor. Future research will obtain more and larger 
datasets to further validate the proposed approach. 

Another limitation is that the proposed perturbation 
mechanism only applies to query output, not to the 
original data. It is well-known that output perturbation 
is vulnerable to the same repeated query attack because 
in this case the independently added noises will 
eventually be averaged out, revealing the true value of 
the query output. Consequently, protection provided by 
noise perturbation will no longer be effective, causing 
disclosure of individuals’ sensitive information. A 
simple solution to this problem is to limit the number 
of repeated query. Various other methods have also 
been proposed to address this problem, but they all 
cause considerable deterioration in output quality [9]. 
For our problem which deals with unstructured data, 
however, it is possible to add noise in between the text 
input and the query output. For example, the noise 
addition may be performed in the information 
extraction stage. Future research will investigate viable 
approaches along this direction. It is also possible to 
release the extracted data directly in a set-valued 
format using differential privacy, but a fairly large 
amount of noise may be required for such a direct 
release. It appears that a relaxed notion of differential 
privacy may be necessary for this task. 
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