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Abstract 

 DNA banks are used as storage repositories for genetic diversity of organisms 

ranging from plants to insects to mammals throughout the world. These banks preserve 

the genetic information for organisms of interest, however they also indirectly preserve 

organisms’ associated microbiomes, including fungi associated with plant tissues. Studies 

of fungal biodiversity lag far behind those of macroorganisms, such as plants and 

estimates of global fungal richness are still widely debated. Utilizing previously collected 

specimens to study patterns of fungal diversity could significantly increase our 

understanding of overall patterns of biodiversity from snapshots in time. Here, I 

investigated the fungi inhabiting the phyllosphere among species of the endemic 

Hawaiian plant genus, Clermontia (Campanulaceae). From just 20 DNA bank samples 

collected throughout the main Hawaiian Islands using next generation DNA amplicon 

sequencing, I uncovered approximately 1,780 fungal operational taxonomic units. Using 

these historic samples, I tested the macroecological pattern of decreasing community 

similarity with decreasing geographic proximity. I found a significant distance decay 

pattern among Clermontia associated fungal communities. This study also provides the 

first insights into elucidating patterns of microbial diversity through the use of DNA bank 

repository samples. 
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Chapter 1.  

Introduction 

 Understanding biodiversity is an important goal of biology and ecology. 

This is particularly critical in a changing world with habitat degradation and 

fragmentation, population declines, and species extinctions (Vitousek et al., 1997). Once 

a species becomes extinct, the genetic history resulting from evolution is lost as well 

(Mattick et al., 1992). DNA banks were initially developed to collect genetic material in 

order to create a storage base for evolutionary history, biological diversity, and genomic 

information (Mattick et al., 1992). Throughout the world, samples are collected and 

stored in these banks to document and preserve genetic diversity (Spooner & Ruess, 

2014). For extinct species, DNA bank samples act as storage deposits for their genomes 

(Adams, 1994; Spooner & Ruess, 2014).  

In addition to the importance of DNA bank repositories for archiving target 

organisms’ genetic information, these samples also harbor the microbial diversity 

associated with each accession. These samples represent well-preserved DNA at 

snapshots in time and from specific locations. For example, plant bank samples not only 

preserve the targeted species’ genomic information, but also preserve potentially 

important cryptic symbionts associated with their host, such as fungi known to inhabit the 

plant phyllosphere (Porras-Alfaro & Bayman, 2011; Vorholt, 2012).  

Despite much work on patterns of plant diversity, comparatively little is known 

about the diversity of fungi. Fungi play crucial functions in ecosystems by acting as 

decomposers and nutrient cyclers, important mutualists such as mycorrhizae, and 

pathogens influencing host species populations (Kendrick, 2001; Lips et al., 2006). 
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Globally, <100,000 species of fungi have been described (Blackwell, 2011), which is far 

less than total estimated fungal diversity, and also less than vascular plants, with 

<400,000 species currently described (Royal Botanic Gardens Kew, 2016). Estimates of 

global fungal species richness have increased almost 3-5 fold in the past 20 years, from 

1.5 million (Hawksworth, 1991) to 3.5-6 million species (O’Brien et al., 2005; Taylor et 

al., 2014). These increases in estimates of fungal species richness are due in part to 

advances in direct environmental sequencing and extrapolations based on predictions of 

vascular plant to fungal ratios (O’Brien et al., 2011; Taylor et al., 2014). In order to 

obtain more accurate estimates of true fungal diversity, increased sampling using high 

throughput sequencing of many different types of environments is needed, and DNA 

banks may significantly contribute to filling this knowledge gap. 

Hawai‘i is a biodiversity hotspot, making it an exceptional location to study 

patterns of species diversity (Myers et al., 2000). However, very little is known about 

Hawaiian fungi, their potential rates of endemism, and patterns of biodiversity. A survey 

of mushrooms throughout the Hawaiian Islands conducted in the 90's found 310 species. 

The majority of these taxa were introduced, however 52 were putatively native and 46 of 

these taxa were considered potentially endemic (~86%; Hemmes and Desjardin 2002). 

Similar rates of endemism are found in the Hawaiian flora.  

An estimated 89% of the Hawaiian vascular plant flora is endemic (Wagner et al., 

1999). The unique Hawaiian flora is threatened by habitat degradation and loss, coupled 

with species invasions, which have led to native species becoming endangered or extinct 

(Morden, Caraway & Motley, 1996). There are currently 1,175 recognized native 

(endemic plus indigenous) Angiosperm species in Hawai‘i (Smithsonian Institution, 
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2017) and 422 of these plants are currently endangered (35.9%; US Fish & Wildlife, 

2015) with 104 taxa extinct or possibly extinct (8.8%; Sakai, Wagner & Mehrhoff, 2002). 

As a result of these extinctions and a strong potential for additional future losses, the 

Hawaiian Plant DNA Library (HPDL) was created to preserve the genetic diversity of the 

Hawaiian flora. This library preserves Hawaiian plant DNA and banks these samples for 

use in future studies of biodiversity (Morden, Caraway & Motley, 1996; Randell & 

Morden, 1999). All wild plant tissues harbor fungi as both endophytes, living in between 

plant cells (Rodriguez et al., 2009) and epiphytes, living on plant surfaces (Santamaría & 

Bayman, 2005) collectively known as phyllosphere fungi (Vacher et al., 2016). These 

communities form diverse assemblages with some studies showing an average of about 

100 species per tree and ranges of about 700-4,000 species of fungi per host (Jumpponen 

& Jones, 2009; Zimmerman & Vitousek, 2012). Thus, the HPDL has also likely and 

coincidentally preserved a substantial portion of the diversity of Hawaiian fungi. 

In this study, I utilize historic DNA bank samples to examine plant-associated 

fungal diversity across space, and validate the use of plant DNA bank samples as a 

resource for elucidating phyllosphere fungal biodiversity. As a model plant system, I 

selected a single endemic Hawaiian plant genus, Clermontia (Campanulaceae), with 

species found across the Hawaiian Islands (Givnish et al., 2009). Using DNA samples of 

eight species within this genus, I sequenced the fungi found in these plants’ 

phyllospheres. I took advantage of the archipelago’s geographic spatial gradient and the 

previously collected samples in the bank to test for decreases in community similarity as 

the distance between communities increases, the classical ecological pattern of distance-

decay of community similarity (Nekola & White, 1999).  
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Materials and Methods 

Samples 
 

Twenty individual Clermontia foliar DNA extracts, representing eight species, 

were selected from the Hawaiian Plant DNA Library (Morden, 2017). These specimens 

were collected across the main Hawaiian Archipelago, from Hawai‘i Island to Kaua‘i 

(Table 1.1). Samples obtained and stored in the DNA Library were collected in the field, 

sealed in bags, and brought back to the lab. Leaves were not disturbed by rinsing prior to 

DNA extraction. Approximately 1.0g of leaf tissue was extracted using a modified CTAB 

method with cesium chloride banding and stored at -20°C (Doyle & Doyle, 1987; 

Morden, Caraway & Motley, 1996). For this study two individual plant DNA extracts of 

each species per location were equally pooled, yielding a total of ten samples from 20 

Clermontia individuals (n = 10), with C. kakeana replicates on three different islands: 

O‘ahu, Moloka‘i, and Maui.  

 

PCR and sequencing 

These pooled extracts were individually prepared for fungal DNA sequencing 

with slight modifications to the Illumina 16S Metagenomic Sequencing Library 

Preparation protocol using a two-step PCR and index attachment (Illumina, 2015). 

Fungal DNA amplicons of the ~250-400-bp targeted nuclear ribosomal Internal 

Transcribed Spacer 1 (ITS1) locus were amplified using ITS1F primers with Illumina 

adapter overhangs (5’Adapter-CTTGGTCATTTAGAGGAAGTAA-3’; Gardes & Bruns, 

1993) and modified ITS2 primers (5’Adapter-GCTGCGTTCTTCATCGATGC-3’; White 
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et al., 1990). The ITS locus is the official fungal DNA barcode (Schoch et al., 2012). 

Amplicons were purified and size-selected using SPRIselect beads (Beckman Coulter, 

Inc.), followed by a second PCR attaching forward and reverse eight-base pair barcoded 

Illumina overhang adapters (i7 and i5; Illumina, 2015). See Supplementary Table 1.2 for 

PCR recipes and thermalcycler parameters. These indexed libraries were bead purified 

and quantified using the Qubit dsDNA HS kit (Life Technologies Inc. Gaithersburg, MD, 

USA). Libraries were then pooled at equimolar concentrations and sent to the Hawai‘i 

Institute for Marine Biology Genetics Core Facility (HIMB) for quality control on the 

Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) and sequencing 

on the Illumina MiSeq platform v.3 paired-end 2x300 (Illumina, San Diego, CA, USA).  

 

Bioinformatics  

De-multiplexed fastq files were obtained from the sequencing facility from the ten 

Clermontia plant bank samples. Raw sequencing data was deposited to the National 

Center for Biotechnology Information Sequence Read Archive (NCBI SRA) under 

BioProject PRJNA379349. These paired-end reads were merged with the Illumina 

Paired-End reAd mergeR (PEAR), keeping reads with a minimum assembly length of 

250-bp, average quality threshold of 15 and above, and discarding all reads with any 

uncalled bases (Zhang et al., 2014). Further quality control was carried out using the 

FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/), using the fastq_quality_filter 

command (Hannon Lab, 2016), where all reads with any base pairs containing a quality 

score below 15 were discarded (Hannon Lab, 2016). Potential chimeras were removed in 

vsearch (Rognes et al., 2016) using the uchime_ref command (Edgar et al., 2011), which 
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referenced the User-friendly Nordic ITS Ectomycorrhiza (UNITE) database, accessed on 

11.03.2015 (Kõljalg et al., 2013). Operational Taxonomic Units (OTUs) were clustered 

using the open-reference method (Navas-Molina et al., 2013) in QIIME (Caporaso et al., 

2010). Briefly, reads were matched to reference OTUs in the UNITE dynamic database 

(ver7) (Kõljalg et al., 2010) with added Clermontia outgroups, then remaining reads that 

failed to match were subsampled as seeds for three subsequent rounds of de novo OTU-

picking. The most abundant sequence for each OTU was chosen as a representative 

sequence. Singleton reads were removed in QIIME prior to OTU table generation and 

taxonomy was assigned against the UNITE database with the Basic Local Alignment 

(BLAST) algorithm. 

 

Statistics 

All statistical analyses were conducted in R version 3.3.0 (R Core Team, 2017). 

The OTU table from QIIME was imported into R with the package biomformat 

(McMurdie & Paulson, 2016). OTUs that mapped to plant taxonomies or those that had 

no BLAST hit were removed from the OTU matrix and all OTUs with greater than ten 

reads were kept for analyses. Samples were rarefied to 16,546 reads, the minimum 

sample depth. Rarefaction, species accumulation curves were generated using the vegan 

package for all samples, individual samples, and samples pooled by island (Oksanen et 

al., 2017). Because observed species richness often under estimates true species richness 

(Hughes et al., 2001), asymptotic extrapolations of species richness and diversity for all 

samples and separately for species were estimated based on the first three Hill numbers 

using the iNEXT package for raw incidence data (Hsieh, Ma & Chao, 2016). These are 
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namely species richness, the exponential of Shannon entropy, and the inverse Simpson 

concentration, represented by q = 0, 1, 2, respectively (Chao et al., 2014). Hill numbers 

offer numerous advantages over other diversity indices, such as uniting species diversity 

and similarity, obeying the replication principle of species assemblages, and they are 

expressed in units of effective number of species (Chao et al., 2014). Two sets of Hill 

number diversity values were generated based on individual samples and individual 

species. A Venn Diagram was generated to visualize overlapping taxa between islands 

using the VennDiagram package (Chen, 2016). To better visualize taxonomic abundances, 

a heat tree was created for each OTU at all taxonomic assignments in the metacoder 

package (Foster, 2016).  

 

Distance matrices 

To investigate ecological patterns, I accounted for variables that may be 

influencing the fungal communities found in these banked samples. These factors were 

temporal and physical distances between sample collections, as well as fungal community 

dissimilarity. Pairwise distance matrices were calculated for physical distance in 

kilometers using the geosphere package (Hijmans, 2016), time between sample 

collections in days, and Bray-Curtis community dissimilarity using the vegan package 

(Oksanen et al., 2017). A partial mantel test for physical distance and community 

dissimilarity, while controlling for temporal distances between each sample, was run with 

10,000 permutations (Oksanen et al., 2017).  
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Results 

Sequencing 

A total of 4,312,473 sequence reads were obtained from the plant DNA library 

samples. Of these, 3,571,252 paired-end reads (82.8%) were successfully assembled and 

further quality control removed low quality reads, keeping 2,680,945 reads (75.1%). 

After referencing UNITE, 121,618 (4.5%) chimeric sequences were removed, leaving a 

total of 2,559,327 high-quality reads. Taxonomic assignment yielded a total of 1,648,971 

fungal reads that were binned into 2,944 fungal OTUs for use in downstream analyses. 

 

Fungal diversity and host associations 

Each Clermontia DNA bank sample used in this study contained fungal DNA. In 

total, I found 2,944 fungal phyllosphere OTUs associated with the ten Clermontia DNA 

bank samples. After removing OTUs with less than 10 reads and rarefying to the sample 

with the minimum number of reads, 1,164 OTUs (39.5%) were removed leaving a total 

of 1,780 fungal OTUs. The observed species accumulation curve for all ten samples did 

not reach an asymptote, suggesting there is potentially far more fungal diversity to 

uncover with increased sampling (Figure 1.7). Based on our ten samples the iNEXT 

extrapolation curves suggest fungal richness based on the Hill number q = 0 (Chao 

richness) will saturate around 3,947 OTUs which would require at least 50 samples.  

Similarly fungal diversity based on q =1 (exponential Shannon entropy) was estimated to 

saturate at around 2,750, and diversity based on q = 2 (inverse Simpson concentration) 

was estimated to saturate at about 1,591 (Figure 1.4). Observed richness per sample 

ranged from 108 to 682 fungal OTUs with an average of 295 OTUs per sample (± 54.69 
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standard error). Sequencing depth for each sample was sufficient to capture most fungal 

richness; all samples except for C. fauriei from Kaua‘i (K1) saturated their rarefaction 

curve (Figure 1.9).   

I investigated patterns of fungal diversity at the phyla and ordinal levels. Overall, 

the majority of fungi in the subkingdom Dikarya dominated all of the phyllosphere 

samples, with phylum Ascomycota being most abundant, followed by Basidiomycota 

(Figures 1.1 & 1.2). Fungi belonging to the phylum Chytridiomycota and Zygomycota 

were also present in lower abundances. Additional OTUs mapped to kingdom Fungi but 

could not be identified further (Unidentified; Figure 1.1). The top ten most abundant 

orders were Capnodiales, Chaetothyriales, Exobasidiales, Peltigerales, Pertusariales, 

Pleosporales, Tremellales, Ustilaginales, and two unknown orders (Figure 1.2). The 

abundances of each OTU and taxonomic assignments are shown as a heat tree in Figure 

1.3. 

Average OTU richness by island was 507.6 (± 128.458 standard error). O‘ahu had 

the highest richness, followed successively by Hawai‘i, Maui, Moloka‘i, and Kaua‘i 

again had the lowest richness (Figure 1.10). This pattern was also apparent with the 

number of OTUs (Figure 1.5). Twenty OTUs were found on all of the five islands (Figure 

1.5).  

 

Physical distance decay 

 Clermontia DNA bank extracts used in this study spanned across the main 

Hawaiian Islands. The nearest samples were collected <1km apart from a single site in 

Kohala, Hawai‘i Island, and the furthest distance was 524.78km from Kohala, Hawai‘i 
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Island to the Alaka‘i Swamp, Kaua‘i. Over this spatial range, while taking into account 

time (number of days) between sample collections, the fungal phyllosphere communities 

exhibit a significant decrease in community similarity across increasing geographic 

distance (Figure 1.6, Partial Mantel test: r = 0.423, p = 0.005).  

 

Discussion and conclusions 

In this study, I investigated the diversity of phyllosphere fungi associated with 

Clermontia spp. that were collected across the Hawaiian Islands and stored as DNA bank 

samples. I found that these specimens harbored a considerable diversity of fungi. After 

quality control, I found 1,780 fungal OTUs from just ten samples, representing 20 

Clermontia individuals and eight species. Fungal richness ranged from 108 to 686 OTUs 

per plant sample. Despite high sequencing depth, the species accumulation curve for all 

samples did not saturate, indicating this sequencing effort likely underestimated true 

Clermontia phyllosphere fungal diversity. This novel use of DNA bank samples revealed 

substantial undiscovered fungal biodiversity stored in plant samples. These results 

provide further evidence of microbes making up the “unseen majority” of biodiversity 

(Whitman, Coleman & Wiebe, 1998), as a single macroorganism associates with a 

multitude of microorganisms both within and on their surfaces (Turner, James & Poole, 

2013). 

This study highlights a new and underutilized function of biological collections, 

as well as gives insights into regional fungal diversity patterns. Previous estimates of total 

regional fungal richness have been based off of plant to fungi ratios ranging from 1:6 

(Hawksworth, 1991) to 1:17 (Taylor et al., 2014). Our data supplement these studies 
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using environmental NGS data. If it is assumed that the diversity of phyllosphere fungi 

associated with Clermontia species is representative of the native Hawaiian flora, I would 

estimate based on Chao1 richness (q = 0) extrapolations (determined by species; Figure 

1.8) that the entire Hawaiian flora (c. 1,000 species) harbors about 4,000 fungi. This 

results in an approximate 1:4 plant to fungi species ratio. However, this is likely an 

underestimate based on a single genus and just considering phyllosphere fungi, is likely 

an underestimate of total fungal biodiversity due to niche partitioning among fungal 

species and guilds (Hibbett, Gilbert & Donoghue, 2000).  

In addition to the study of microbial diversity, questions regarding microbial 

biogeography, host specificity, and the effects of global change on microbial communities 

could be addressed with DNA banks. For example, I was able to confirm the distance 

decay of microbial community similarity from DNA bank samples collected across the 

Hawaiian Islands. This finding is similar to other microbial systems where significant 

distance decay patterns were found in endophytic (Vaz et al., 2014) and ectomyorrhizal 

fungal communities (Bahram et al., 2013), as well as bacteria and archaea (Barreto et al., 

2014). Although our samples were not collected in the same year or season, time was not 

a significant predictor of community composition. However, in addition to geography, 

taking into account host genotype, specificity, and differences in environmental factors 

may potentially explain more of the variation in the fungal communities (Hoffman & 

Arnold, 2008). 

In agreement with other phyllosphere studies, the majority of fungal taxa were 

identified as belonging to the subkingdom Dikarya, with the majority of fungi in phylum 

Ascomycota followed by Basidiomycota (Rodriguez et al., 2008). It is not surprising that 
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I found so many unknown fungal taxa (45.16% of total OTUs at the family level) 

including 28 OTUs unable to be placed at the phylum level. The plant samples from this 

study represent an endemic Hawaiian genus whose microbial associates are previously 

unstudied, and possibly associate with undescribed fungi endemic to Hawai‘i. However, 

this degree of unassigned fungal OTUs is not unique to our system and highlights our 

limited current knowledge of fungal diversity (Nilsson et al., 2016). For example, recent 

discoveries using environmental DNA sequencing have reshaped the fungal tree of life, 

uncovering a new fungal Phylum, the Cryptomycota (Jones et al., 2011). This stresses the 

need for further investigations of fungal biodiversity, their cryptic nature and diverse 

functions make for intriguing new discoveries that have the potential to change 

evolutionary and ecological theories based primarily on macroorganisms.  

 With the recent advent of next generation sequencing (NGS) techniques genomic 

investigations of non-model organisms have become readily accessible (da Fonseca et al., 

2016). However, there are important caveats to consider when using these methods and 

analyses. For example, working with environmental samples poses the challenging 

prospect of encountering hyperdiverse microbial communities such as the fungi found in 

this and other studies of plant phyllosphere fungi (Arnold, 2007; Arnold & Lutzoni, 

2007). As seen in this NGS study, thousands of fungi can be associated with a small 

number of plant leaf samples. While uncovering this diversity is a goal of some microbial 

ecologists, for researchers using NGS techniques and focused on the host organism (in 

this case plants), microbial symbionts may interfere with downstream analyses and 

results. Microbial taxa associated with macroorganismns should be taken into account 

when using NGS methods such as RAD seq, RNA seq, targeted sequencing, among other 
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techniques (da Fonseca et al., 2016). 

Most DNA bank samples likely harbor unintended microbial communities 

associated with each target individual from a specific location at distinct snapshots in 

time. While DNA banks are a common genetic biodiversity repository (Seberg et al., 

2016), to the best of our knowledge this is the first study where they were used to 

investigate genetic material other than that of the target organism. By using these 

archived samples I was able to rapidly recover previously undocumented microbial 

diversity. The abundance of DNA bank samples stored throughout the world represent a 

large proportion of the globes extant and extinct biological diversity. This storage 

provides the opportunity for microbes associated with these organisms to be easily 

investigated without the associated costs of sample collection. This may be important for 

conservation efforts, giving insight into potentially important symbionts (van der 

Heijden, Bardgett & Straalen, 2008; Busby et al., 2016). For those species that go extinct, 

their genomes are preserved in DNA banks along with their corresponding microbial 

symbionts. These associated microbes can be used to better understand the ecology of 

these organisms and possibly identify coevolutionary patterns. Overall, this study 

highlights the potential use of DNA bank samples for the study of global biodiversity. 

This study also demonstrated the benefits of in-depth sample sequencing to uncover the 

majority of fungal diversity found in each plant bank sample. With DNA bank samples 

stored throughout the world, already collected, processed, and extracted, they harbor the 

potential for new and exciting investigations.  
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Table 1.2. PCR volumes and thermal cycler settings for each amplicon library of the first 
amplicon PCR and second index PCR. 
 
  Amplicon PCR   Index PCR 
Reagent Concentration Volume/rxn   Volume/rxn 
DNA Full 1.0 

 
1.0 

H2O - 10.3 
 

23.0 
Q5 Mastermix 2x 12.5 

 
25.0 

Forward 
Primer 10µM 0.6 

 
0.5 

Reverse 
Primer 10µM 0.6 

 
0.5 

  PCR Volume 25.0 
 

50.0 
  Temperature (°C) Time (seconds) Time (seconds) 
Initial 
Denature 98 120 

 
120 

Denature 98 10 
 

15 
Annealing 51/54 10 

 
15 

Extension 72 15 
 

25 
Final 
Extension 72 120 

 
120 

  PCR Cycles 22 
 

22 
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Figure 1.1. Relative abundances of fungal phyla for each Clermontia spp. DNA bank 
sample. 
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Figure 1.2. Relative abundances of the top 10 most abundant fungal orders for each 
Clermontia spp. DNA bank sample. All other orders are filled with grayscale. 
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Figure 1.3. Heat tree for all fungal OTUs and higher taxonomy in the Clermontia 
phyllosphere. Size and color of nodes, from grey to orange, as well as edge widths are 
correlated with the abundance of each taxonomic assignment in the phyllosphere. 
 



 
 

27  

 
Figure 1.4. Sample interpolation (solid lines) and extrapolation (dashed lines) curves for 
all ten Clermontia plant bank samples using the rarefied OTU matrix. Three different 
diversity estimators were used (Chao1 richness, exponential of Shannon entropy, and 
inverse Simpson concentration indices) and are shown by the different colors with 95% 
confidence intervals shown by shading. Shapes represent observed plant bank sample 
diversity calculations. 
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Figure 1.5. Venn Diagram displaying the number of overlapping fungal OTUs shared 
between Clermontia samples from each of the five main Hawaiian Islands. The number 
of OTUs unique to each island lie on the outermost portion of each ellipse. Color 
corresponding islands are shown next to each ellipse and the Hawaiian island chain is 
shown in the lower right hand corner. 
 
 
 



 
 

29  

 
Figure 1.6. Pair-wise Bray-Curtis fungal community dissimilarity plotted against 
corresponding pair-wise physical distances for each Clermontia plant bank sample 
spanning the main Hawaiian Islands. A regression line was fit to the data, shown in blue, 
with 95% confidence intervals shown in grey. (Partial Mantel test: r = 0.424, p = 0.005, 
accounting for time in days). 
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Figure 1.7. Fungal OTU accumulation curve for all Clermontia plant bank phyllosphere 
samples using the rarefied OTU matrix with 95% confidence intervals shown in grey. 
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Figure 1.8. Species interpolation (solid lines) and extrapolation (dashed lines) curves for 
the eight Clermontia species sampled from the plant DNA bank using the rarefied OTU 
matrix. Three different diversity estimators were used (Chao1 richness, exponential of 
Shannon entropy, and inverse Simpson concentration indices) and are shown by the 
different colors with 95% confidence intervals shown by shading. Shapes represent 
observed plant bank species diversity calculations. 
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Figure 1.9. Rarefaction curves for each Clermontia plant bank sample (non-rarefied), 
fungal OTU accumulation over the corresponding number of DNA sequence reads, colors 
display the different Clermontia species. 
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Figure 1.10. Rarefaction curves for Clermontia plant bank samples pooled by island 
(non-rarefied), fungal OTU accumulation with the associated number of DNA sequence. 
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