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Abstract

Existing work on appointment scheduling assumes
that appointment times cannot be updated once
they have been assigned. However, advances in
communication technology and the adoption of online
(as opposed to in-person) appointments make it possible
for appointments to be flexible. In this paper, we
describe an intra-day dynamic rescheduling model that
adjusts upcoming appointments based on observed
no-shows. We formulate the problem as a Markov
Decision Process in order to compute the optimal
pre-day schedule and the optimal policy to update the
schedule for every scenario of no-shows. We also
propose an alternative formulation based on the idea of
’atomic’ actions that can solve for the optimal policy
more efficiently. Based on a numerical study, we
estimate that using intra-day dynamic rescheduling can
lead to a 5-7% decrease in expected cost when compared
to static scheduling.

1. Introduction

The problem of appointment scheduling has been the
subject of multiple works in the past, starting with the
seminal work of [1]. It involves assigning appointment
times to a set of patients to be served by a doctor over
the course of a day. Existing work on appointment
scheduling has largely focused on the creation of
pre-day schedules that can minimize clinic idling and
patient waiting costs ([2], [3]). However, advances in
communication technology and the adoption of online
(as opposed to in-person) appointments have lead to the
possibility that appointment times given before the start
of the day, can be updated as the day progresses. In this
paper, we describe an intra-day dynamic rescheduling
model that takes into account the state of the system
during the day, to make adjustments to subsequent
appointments. This work is intended to be a first step
in understanding the benefits of rescheduling. There
are further challenges that must be overcome for a

rescheduling policy to be implemented in practice.
We highlight some of these challenges and describe
how they can be addressed by building on our model.
Even though our primary inspiration in developing this
model is its potential use in outpatient clinics, the idea
of intra-day dynamic rescheduling can be applied to
appointment scheduling in professional services outside
healthcare like lawyer’s offices, accountant offices,
barber shops etc.

The central challenge in appointment scheduling is
to mitigate the effect of uncertainty on patients and
providers. There are various sources of uncertainty that
a clinic may need to plan for. Some examples include:
Non-deterministic service duration, tardiness of patients
and doctors, walk-in patients and emergencies. In our
model, we restrict our attention to the uncertainty that
arises from patient no-shows. A common approach to
hedge against the effect of no-shows is to overbook.
Overbooking reduces the probability that the server will
remain idle, but it comes at the cost of increased waiting
time if multiple patients show up in the same time
slot. We compute a rescheduling policy that allows
for the possibility of postponing appointments. Such
a rescheduling policy reduces cost in two ways: (1)
it reduces the expected amount of time patients must
wait at the clinic, and (2) it allows for a greater level
of overbooking without significantly increasing waiting
times. However, these advantages must be evaluated
against the inconvenience cost of patients’ appointment
times being changed. Therefore, in addition to the
cost of waiting, overtime and idling considered by
earlier work, we introduce a cost of rescheduling. We
assume rescheduling cost increases if the update is made
closer to the appointment time and if the appointment is
delayed longer.

We formulate the problem as a Markov Decision
Process. The state of the system is defined by the time
slot, the number of patients waiting and the current
schedule. At the beginning of each time slot, the
appointment times of all subsequent patients may be
postponed. In the case of static scheduling, scheduling
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a patient earlier generally reduces expected cost for the
provider while it increases expected patient costs, but
in the case of dynamic scheduling, there is a secondary
effect to consider: an earlier appointment gives the clinic
information about a no-show earlier in the day. Due
to this “information effect”, optimal dynamic schedules
do not follow some seemingly intuitive characteristics.
For example: (1) it may be optimal to not postpone a
patient’s appointment even if the patient is guaranteed
to have to wait, and (2) it may be optimal to have some
slack in the schedule, i.e., no patient is scheduled in a
certain slot even though patients are scheduled after that
slot.

The optimal rescheduling decision from a given state
must not only consider the no-show behavior of future
patients, but also their appointment times. Having to
account for these upcoming appointment times greatly
increases the size of the state space and therefore, the
computational complexity of the problem. We propose
an alternative, but equivalent formulation based on the
idea of ’atomic’ schedule updates that can solve for
the optimal policy more efficiently. We show that the
problem of finding the optimal schedule update at any
point reduces to finding a sequence of optimal atomic
updates. Solving for the optimal policy using the
alternative formulation is an order of magnitude faster
than using the conventional formulation. However, the
run times for both formulations increase exponentially
with the number of periods. To solve larger problem
instances may require the use of heuristics. We briefly
describe some potential heuristics in section 6.

Using parameter estimates from empirical work in
the exiting literature, we conduct a numerical study
to estimate the advantage of rescheduling over a static
scheduling policy. We find that using intra-day dynamic
rescheduling can lead to a 5-7% reduction in expected
cost. Further, we find that this reduction in expected cost
is largely driven by reducing cost in some of the worst
case realizations.

The rest of this paper is structured as follows:
Section 2 gives an overview of related work, Section
3 lays out the setup of our model and expresses the
optimization problem as a Markov Decision Process
(MDP), Section 4 provides a more efficient formulation
of the base MDP from Section 3. It also highlights
the structural differences between optimal static and
dynamic schedules. Section 5 presents a numerical
study that quantifies the advantage and robustness of
rescheduling. Finally, we conclude our findings in
Section 6 and discuss potential future directions for
exploration.

2. Literature

Outpatient appointment scheduling was first studied
by [1]. They proposed a simple heuristic of scheduling
two patients at the beginning of the day with subsequent
patients being spaced by their expected service times.
Since then, the problem has been studied in a lot of
different settings. [4], [5] provide an extensive overview
of this literature. In this paper, we restrict our attention
to the uncertainty resulting from no-shows. Multiple
studies have shown that no-shows have a significant
impact on the operating costs of healthcare systems ([6],
[7], [8], [9] and [10]).

Various approaches have been studied to reduce
no-show rates. Some examples of these approaches
are: using open-access scheduling ([11], [12], [13],
[14]), controlled release of capacity ([15]) and sending
out appointment reminders ([16], [17], [18]). Another
stream of work attempts to hedge against the uncertainty
of no-shows through overbooking. This could mean
allocating less time to each patient ([19]) or scheduling
multiple patients in the same time slot ([2], [3]).

The term “dynamic scheduling” has been applied
to different types of scheduling problems. One is a
form of online scheduling where appointment requests
arrive sequentially and decisions on appointments or
capacity must be made before subsequent requests are
known ([20], [21], [22], [23]). Another form of
dynamic scheduling arises in operating room planning
where the major source of intra-day stochasticity is the
randomness in the demand for inpatient and emergent
procedures. [24] studied the problem of dynamically
sequencing inpatients, outpatients and emergent patients
that are awaiting service at the beginning of each
slot. They also suggest heuristics to compute efficient
schedules for outpatients. Their model was extended
to the case of multiple servers by [25] while [26]
considered add-on patients and different objectives. A
closely related work is one by [27] that considers the
problem of assigning appointment times to customers
during the day, after an earlier ’anchor’ patient has
started service. However, they do not look at the
problem of creating a schedule at the start of the day
and the resulting inconvenience cost of updates.

Existing work on appointment scheduling under
no-shows assumes that schedules are non-adaptive or
static, in the sense that once a patient has been assigned
an appointment time, that time cannot be updated.
The focus of our work is the dynamic rescheduling of
patients. To the best of our knowledge, this is the first
study that models and evaluates an intra-day dynamic
version of the appointment scheduling problem that
allows for appointment times to be updated throughout
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the day as information is revealed.

3. Model

We model a service where N patients are to be
served by a single server. The service duration for all
patients is the same and deterministic. We define this
time duration to be one time slot or period. The patients
can be scheduled over T consecutive time slots. Patients
are punctual. They show up exactly at their appointment
time. However, there is a probability, p, that a patient
will be a no-show. The provider learns whether or not a
patient is a no-show at the patient’s appointment time.

Before the start of the day, each patient must
be given an appointment time. We will call these
appointment times, the pre-day schedule. As the
day progresses, depending on the state of the system,
upcoming appointments can be moved to a later time on
the same day. An appointment may be moved multiple
times during the day. Patients are immediately notified
of changes to their appointment time, and will show up
based on the appointment time assigned to them in the
latest notification they receive.

The schedule must assign an appointment time to
each patient, but because patients are homogeneous
(equal no-show probability and service duration) and
all appointment times must correspond to the start of a
time slot, the schedule can be represented as a vector
of length T , where the jth element is the number of
patients scheduled to arrive at the beginning of time slot
j. At the start of each time slot, the state of the system
can be completely represented by the current time slot,
t, the number of patients awaiting service, q, and the
number of patients currently scheduled to arrive at the
start of each slot, x 1. The minimum expected cost
of being in a given state can be written in the form of
a Bellman equation having three components: (1) the
operating costs that will be incurred in the current slot,
(2) the minimum operating cost from the next period
onward if the schedule is optimally updated and (3) the
cost incurred at the end of the planning horizon, T . The
remainder of this section will elaborate on each of these
components in order to lead up to the Bellman equation
(Formulation (DR)).

Any schedule update made at the beginning of slot
t can only affect the cost incurred in slots t + 1
onward. Therefore, the cost incurred during slot t
is only dependent on the current state (t, q, x) and is
independent of the updated schedule. If the clinic has
no patients to serve in the current slot, it incurs a cost
of idling, γI . However, if there are no more patients

1Given q, the schedule up till time t is irrelevant. But for ease of
notation, we use the full schedule, x, in the state definition instead of
truncating the first t elements

scheduled, the clinic can close and does not incur idling
cost. Therefore, the cost of idling is given by: γII(q =
0 ∧ xt+1 + ... + xT > 0), where I(.) is an indicator
function. On the other hand, multiple patients may be
in the system at the start of the current slot. In such
cases, patients will be served in the order in which they
arrive and will need to wait until all patients with earlier
appointment times have been served. Waiting in the
current period incurs a cost of γW per slot per patient
which leads to a total waiting cost of γW (q − 1)+ for
the current slot.

When the schedule is updated, the appointment
times of patients may be postponed by one or more slots.
We model the cost incurred by a patient when a schedule
update at time t postpones the patient’s appointment
from time j to j′ as:

Ut(j, j
′) = γW (uj−t + uj−t+1 + ...+ uj′−t−1) (1)

where u is a vector whose kth element is the update cost
incurred by a patient when their appointment time is k
slots away and is postponed by one slot. Estimating
u is an empirical problem but we conjecture that 1 >
u1 ≥ u2 ≥ ... ≥ uT−1 ≥ 0. This implies that
Ut(j, j

′) satisfies three intuitive properties: (1) 0 ≤
Ut(j, j

′) ≤ (j′− j)γW , i.e., updating an appointment is
inconvenient but the cost of an update never exceeds the
cost of waiting. (2) Ut(j, j′) is increasing and convex in
t, i.e., the longer an update is postponed, the larger the
update cost becomes, and this happens at an increasing
rate. (3)Ut(j, j′) is increasing and concave in j′, i.e., the
update cost increases with the length of the update, but
at a decreasing rate. Further, we define a transformation,
L : ZT+ → ZN+ , which transforms the schedule vector
x, representing the number of patients scheduled in each
slot to an equivalent list of appointments, such thatL(x)i
is the appointment time of the ith patient. The definition
of L is as follows:

L(x)i ≡ min {j : Fj(x) ≥ i} , (2)

where Fj(x) =
∑j
k=1 xk is the number of patients

scheduled to arrive at or before slot j. The total cost
of updating the schedule from x to x′ at time t, is

Rt(x, x′) ≡
N∑
i=1

Ut(L(x)i, L(x′)i); (3)

which adds up the costs of all updated appointments.
Patients that do not show up will not incur a
rescheduling cost. Therefore, the expected cost of
updating the schedule is (1− p)Rt(x, x′).

The clinic must serve all patients that show up. This
might require staying open beyond the planned duration
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of T periods. An additional cost of γO is incurred for
each time slot beyond T during which the clinic remains
open. We assume that patients cannot be scheduled
to arrive beyond period T , however if q > 0 patients
remain in the system at time T + 1, the clinic must
remain open for an additional q periods incurring an
overtime cost of γOq. Additionally, in each of the q
periods, all remaining patients, except the one being
served would have to wait. The total waiting cost
over all q periods would be given by the progression:

γW ((q − 1) + (q − 2) + ..0) = γW
∑(q−1)+
i=0 i.

We can now write down the Bellman equation
for the cost incurred starting from any given state as
follows:

Vt(q, x) = γW (q − 1)+ + γII(q = 0 ∧
T∑

j=t+1

xj > 0)

+ min
x′∈At(x)

[
(1− p)Rt(x, x′)

+ E
X′

t+1

Vt+1((q − 1)+ +X ′t+1, x
′)

]

VT+1(q, x) = γW

(q−1)+∑
i=0

i+ γOq

(DR)

where,

At(x) =
{

x′|F (x′) ≤ F (x) ∧
T∑
j=1

x′j = N

∧ x′j = xj∀j ≤ t
}
,

(4)

is the set of all valid schedule updates at time t when
the current schedule is x, and X ′t+1 is the number of
patients that show up in slot t+1. We assume that patient
no-shows are independent of each other. Therefore, the
expectation of Vt+1((q − 1)+ +X ′t+1, x′) over X ′t+1 is

given by
∑x′

t+1

i=0 b(i, x′t+1, 1− p)Vt+1((q− 1)+ + i, x′),
where b(k, n, p) is the probability mass function of the
binomial distribution for k successes over n trials with
success probability p.

Formulation (DR) can be used to find the optimal
policy, π∗, such that if the current state is (t, q, x),
updating to schedule π∗(t, q, x) has the lowest expected
cost. To compute the pre-day schedule, i.e., the schedule

at the start of the day before any information on
patient no-show is revealed, we search over all feasible
schedules. The pre-day schedule is the first time that
patients are allotted appointment times and therefore,
there are no immediate schedule update costs associated
with it. However, just like an intra-day schedule
update, the initial appointment times must account for
rescheduling costs that will be incurred later in the day.
The cost incurred by a pre-day schedule, x, is TC(x) =
EX1

V1(X1, x). The optimal pre-day schedule (a) is:

a = argmin
{
TC(x) :

∑T
j=1 xj = N

}
.

Table 1. Summary of model notation

t Current time slot
q Number of patients awaiting service at

the beginning of slot ’t’
x Number of patients scheduled to arrive

at the start of each time slot

N Total number of patients
T Total number of slots
p Probability of a patient being a

no-show

γI Unit cost of server idling
γW Unit cost of patient waiting (can be

normalized to 1)
γO Unit cost of operating in overtime
uk Cost of postponing an appointment that

is k slots away, by one slot

b(k, n, p) Probability mass function of the
binomial distribution

F (x) Number of patients scheduled to arrive
by the start of each time slot

L(x) Appointment time of the ith patient
under schedule x

Ut(j, j
′) The cost of moving an appointment

from slot j to j′ when t slots have
elapsed

Rt(x, x′) Function for cost of updating the
schedule from x to x′ at time t

Vt(q, x) The minimum expected cost incurred
from the beginning of slot t till the end
of the day when the current state is
(t, q, x)

TC(x) Cost incurred when the pre-day
schedule is x

a The optimal pre-day schedule
π∗ The optimal dynamic policy
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4. Structural properties and solution
methodology

As with most dynamic programs, the formulation
specified in (DR) presents computational challenges.
The time taken to compute the optimal policy can be
quite large even for a standard problem size with T =
8 slots (column (DR) in Table 2). Finding structural
properties of the optimal policy can help reduce the
space of feasible schedules while also providing insight
for the creation of heuristics. Unfortunately, as noted in
the following observations, the optimal dynamic policy
does not exhibit some seemingly intuitive properties that
have been shown to hold for static schedules (see [13]).

Observation 1 The optimal dynamic policy can leave
slack in the schedule, i.e. π∗j (t, q, x) = 0 6=⇒
π∗j′(t, q, x) = 0,∀j′ > j.

Observation 2 Even if the server is guaranteed to be
busy during a slot when a patient is scheduled to arrive,
the optimal dynamic schedule does not necessarily push
that patient to a later time, i.e. the following condition
is not necessarily true: π∗t+q−1(t, q, x) = 0.

Observation 3 Even though the dynamic scheduling
policy can only move patients to a later time, it is
possible that the optimal pre-day dynamic schedule
brings in at least one patient later in the day than the
optimal static schedule, i.e., the following may be true
: F (π∗(t, q, x)) < F (π∗s (t, q, x)), where π∗s is the
optimal solution to the static problem.

These observations seem counter-intuitive if
evaluated on the basis of direct idling and waiting
costs. However, there is a parallel trade-off from
two secondary effects of rescheduling that must be
considered. Observation 1 and Observation 2 arise
from the information effect, where bringing patients
in earlier (even if it increases waiting costs) gives the
provider more information on no-shows, therefore
allowing better schedule adjustments for future slots.
On the other hand, rescheduling can only be effective
if there are patients with appointments far enough into
the future such that their appointments can be moved
without incurring high rescheduling costs. Therefore,
in some scenarios where the static schedule places most
of the patients in the earlier slots of the day (when no
show rate and idling cost are high), the pre-day dynamic
schedule places a relatively larger number of patients in
later slots.

In the absence of any strong structural properties,
the state space of the formulation (DR) cannot be
reduced. However, note that solving for the optimal
policy involves, for each state, a minimization over
each schedule in the feasible set of schedule updates.

As seen in Equation 4, the number of elements in
the action set grows combinatorially in the number of
patients and time slots. We now provide an equivalent
formulation of the base dynamic program defined in
the previous section, where, for each state, a maximum
of T actions need to be evaluated. We label this
formulation (DRE). The (DRE) formulation computes
the same optimal policy and expected cost as the (DR)
formulation (Proposition 1) while significantly reducing
the computation time.

Ṽt(q, x) = min

{
γW (q − 1)+

+ γII(q = 0 ∧
T∑

j=t+1

xj > 0)

+ E
Xt+1

Ṽt+1((q − 1)+ +Xt+1, x),

min
t<t′<T∧xt′>0

[
Ṽt((q, ψ(x, t′))

+ (1− p)ut′−t
]}

ṼT+1(q, x) = γW

(q−1)+∑
i=0

i+ γOq

(DRE)

where,

ψ(x, t′)j =


xj − 1 if j = t′

xj + 1 if j = t′ + 1

xj otherwise

is an ’atomic update’ that moves one patient from slot t′

to slot t′ + 1.
Complete proofs of Proposition 1 and Lemma 1

have been omitted for the sake of brevity, but the
following is an intuitive explanation to show how the
(DR) and (DRE) formulations are equivalent. Given a
state (t, q, x), let x∗ = π∗(t, q, x) be the optimal updated
schedule. Lemma 1 shows that there must exist a
sequence of atomic updates that takes the schedule from
x to x∗, and that each of these sequences must have the
same rescheduling cost, Rt(x, x∗). From state (t, q, x),
the cost of making an atomic update at slot t′ would be
Vt(q, ψ(x, t′)) + (1− p)ut′−t. Proposition 1 shows that
if t′ is recursively chosen in a greedy way, i.e., t′ =
argmint<t′<T∧xt′>0[Ṽt((q, ψ(x, t′)) + (1 − p)ut′−t],
then the sequence of atomic updates generated would
eventually lead to the schedule becoming x∗.
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To further clarify the equivalence between the (DR)
and (DRE) formulations, there are a couple of points
to be noted: (1) Even though the (DRE) formulation is
restricted to making atomic updates to the schedule, it
recursively makes multiple atomic updates at the start of
the same time slot. Therefore, it still achieves the same
schedule updates in each slot as the (DR), and (2) Even
though the updated schedule is computed one atomic
update at a time, when implemented in a real system,
updates to patients will only be sent out once the entire
sequence, and therefore x∗ has been computed. In other
words, the (DRE) formulation would be identical to the
(DR) formulation as seen by the patients and providers
because only the final updated schedule will be used to
send out notifications while the underlying sequence of
atomic updates remains internal to the model.

Lemma 1 Given the current schedule, x, for every
feasible schedule update x′:

a There exists a sequence of time slots
{
t̃k
}K
k=1

and

corresponding sequence of schedules
{

x̃k
}K
k=1

,

such that x̃1 = x, x̃k = ψ(x̃k−1, t̃k−1), and
x̃K = x′.

b For every sequence,
{
t̃k
}K
k=1

, that satisfies the

above condition,
∑K
k=1 ut̃k−t = Rt(x, x′).2

Proposition 1 The optimization problem as formulated
in (DRE) is equivalent to the formulation in (DR).
Ṽt(q, x) = Vt(q, x) for all states (t, q, x).

Table 2 shows a comparison of the run time for
the (DR) and (DRE) formulations. The experiments
are conducted using a 3 GHz Intel i7 processor. Our
dynamic program is implemented in Python 3.8. It
can be seen that for realistic problem sizes (T = 8),
the (DRE) is about a 100 times faster than the (DR)
formulation, and can solve problem instances up to
T = 11 time slots under the specified time limit of
300 seconds. However, the runtime of both formulations
increases exponentially with problem size.

5. Numerical Study

In this section, we study how each model parameter
affects the cost incurred when using dynamic scheduling
as opposed to a static schedule. As an intermediate
between the two extremes of dynamic and static
scheduling, we also define a myopic schedule, where
the optimal rescheduling decision in any given state is
made under the assumption that there will be no more

2All proofs in this paper are available upon request.

T N (DR) Runtime (DRE) Runtime
5 6 0.05 0.01
5 8 0.31 0.03
5 9 0.78 0.05
6 8 1.11 0.07
6 9 3.33 0.12
8 9 27.94 0.45
8 10 119.56 1.09
9 10 293.69 1.95
9 11 >300 5.02
9 12 >300 12.14
10 11 >300 9.77
10 13 >300 120.80
11 12 >300 127.76
11 13 >300 >300

Table 2. Comparison of time (in seconds) required

to solve for the optimal policy and pre-day schedule

using the (DR) and (DRE)) formulations. Only

instances where the solution was computed within

300 seconds were recorded.

rescheduling. Clearly, the cost under myopic scheduling
may be higher than that under dynamic scheduling, but
the computation time for myopic schedules is much
lower.

To calibrate baseline values for our model
parameters, we start by normalizing the cost of waiting
(γW ) to one. For the cost of idling and overtime,
we use from ([5]) empirical estimates of the relative
cost of idling and overtime for outpatient clinics. The
probability of no-show varies widely even within the
context of outpatient appointments. [5] and [28] report
that no-show rates may vary between 0% and 80%
across clinics and estimate the average no-show rate to
be 38% and 31% respectively. Therefore, we set our
baseline no-show rate to an intermediate value of 0.35.
To calibrate the cost of rescheduling (u), we set it to be
exponentially decaying with respect to how far out the
appointment time is from the current time (uk = e−δk).
This reflects the notion that for an appointment that
is further out (larger k), the inconvenience cost of
moving the appointment decreases at a lower rate.
The decay parameter (δ) reflects the level of patient
flexibility with a higher value of δ implying that it
is cheaper to reschedule patients. Figure 1 shows a
plot of the baseline chosen for the rescheduling cost
(uk = e−0.231k) along with two alternatives: a linear
functional form to capture a constant rate of decrease
in the cost of rescheduling and a ’shifted’ exponential
for scenarios where rescheduling within a certain time
of the appointment must not be allowed. For all three
choices, the value of δ is chosen by setting the cost of
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Figure 1. Choices of functional forms used to

calibrate the rescheduling cost(u). uk = e−0.231k was

chosen as the baseline.

rescheduling an appointment that is three hours away
(u3) to be 50% of the waiting cost (shown by the dotted
blue lines). Table 3 summarizes the baseline values
used for all model parameters.

Table 3. Baseline values of parameters used in

numerical analysis. (Based on estimates in [1]Rust et

al. (1995) and [2]Cayirli et al. (2006)).

Waiting cost(γW ) = 1 (Normalized)
Idling cost(γI ) = 10[2]

Overtime cost(γO) = 1.5γ
[2]
I

Pr. no-show(p) = 0.35[1][2]

Rescheduling cost(uk) = e−δk

Patient Flexibility(δ) = 0.231

Figure 2 shows the expected cost of the static,
myopic and dynamic scheduling policies with respect
to the patient flexibility parameter (δ). Under the
static schedule, there is no rescheduling, and the
optimal static schedule remains the same irrespective of
changes in patient flexibility. However, as rescheduling
becomes less expensive, the myopic and dynamic
policies perform better with the myopic policy capturing
a significant part of the cost reduction. The breakdown
of the expected cost incurred by the dynamic policy in
Figure 3 shows that along with a decrease in expected
cost, higher values of patient flexibility also significantly
change the cost composition. When patients are
inflexible (δ = 0), the cost breakdown is identical to
that from static scheduling. As δ increases, patient
waiting costs decrease as appointments that are likely
to be delayed are moved to later times. A portion
of this waiting cost reduction though is incurred as

Figure 2. Expected cost of the static, myopic and

dynamic policies.

Figure 3. Breakdown of expected cost incurred by

dynamic policy. Cost of idling and overtime is

combined into ’provider cost’ for ease of exposition.

rescheduling cost. As δ increases further, the optimal
pre-day schedule changes to bring patients in earlier.
Therefore, the ’provider cost’ (sum of provider idling
and overtime cost) decreases while patient waiting costs
go up.

Another perspective to understand what drives the
reduction in expected cost when rescheduling, is to look
at the cumulative distribution of the cost incurred under
each policy (Figure 4). The cost incurred by the dynamic
and myopic policies does not stochastically dominate
the cost incurred by the static policy. However, it can
be seen that the dynamic and myopic policies are better
at reducing cost at the tail end of the cost distribution,
i.e., they provide the largest gains in some of the worst
scenarios. In the example plotted in Figure 4, the costs
for the optimal static and dynamic policies are almost
equal, upto the 60th percentile. But the 80th percentile
of the cost of the optimal static policy is 26.0, as opposed
to 23.3 for the optimal dynamic policy (a reduction of
10.4%).

As pointed out earlier, the probability of no-show
and the costs of idling and overtime can vary
significantly across clinics. Figure 5 plots the
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Figure 4. Cumulative distribution of the cost

incurred by the static, myopic and dynamic policies.

Rescheduling policies are better at cutting cost at the

tail end of the cost distribution.

percentage reduction in expected cost that is achieved
through rescheduling (as compared to using static
scheduling) when the probability of no-show and cost of
idling are changed. Baseline values for both parameters
are highlighted by the dotted blue line. It can be seen
that the reduction in expected cost is robust to small
deviations in the parameter values away around their
baseline. Note that in contrast to Figure 2, we now plot
the percentage reduction in cost instead of the absolute
cost because unlike patient flexibility, the probability of
no-show and cost of idling also affect the cost of the
static policy. This also explains why the plots in Figure
5 are not smooth.

6. Conclusion

Outpatient appointments have conventionally been
treated as a one-time contract between a patient and
the provider. In this work, we introduced the idea
of intra-day rescheduling where the initial appointment
time assigned to patients may be updated based on the
state of the system during the day. We find that the
ability to update appointment times can help reduce both
patient and provider costs.

This work is an important first step in understanding
the benefits of rescheduling, albeit in a simplified
setting. Implementing a rescheduling policy in the real
world will require work that helps account for various
factors that we have not considered here. For example:
there may be clinical restrictions on which appointments
can or cannot be moved. With such a mix of flexible and
inflexible appointments, it would be important to find
the optimal slots for inflexible appointments in addition
to finding the optimal scheduling policy. A relatively
easier relaxation is to allow for stochastic (but discrete)
service times.

Figure 5. Sensitivity of the cost savings from

rescheduling to model parameters (as measured by

percentage cost reduction relative to static

scheduling). The dotted blue lines represent the

baseline values of p = 0.35 and γI = 10. The plots

show that cost savings from rescheduling are robust

to changes in these model parameters.

Another direction to explore is to augment the
state space to distinguish between patients that have
been rescheduled from the ones that have not. This
enables the model to: (1) restrict patients from
being rescheduled multiple times, and (2) account
for the effect of rescheduling on patients’ no-show
probabilities. Quantifying the effect of rescheduling
on no-show probability could be done using estimation
techniques similar to those used by earlier work on
individualized no-show prediction ([29], [30]).

We model the inconvenience associated with
changing appointment times through the cost of
rescheduling. Even though an exponentially decreasing
function seems to be a reasonable choice for calibrating
the cost of rescheduling, further empirical work to
estimate rescheduling cost would be very beneficial in
improving the quality of the optimal dynamic policy.

As shown by Table 2, there are significant
computational challenges in being able to solve for
the optimal rescheduling policy as the problem sizes
get larger. It may be possible to solve the problem
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more efficiently by exploiting structural properties of
the optimal policy. The existence of such structural
properties remains an open question. Another approach
is to explore the use of heuristics that can reduce
either the state space or the number of actions. Some
examples of promising heuristic are: (1) not allowing
slack within the schedule, (2) restricting the number
of patients rescheduled at each decision epoch, and (3)
rescheduling once every k > 1 slots.
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