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ZEROS OF THE MODULAR PARAMETRIZATION OF

RATIONAL ELLIPTIC CURVES

LISA KODGIS

Abstract. Some Rational elliptic curves whose modular parametrization is

given by an Eichler integral were considered. The points, other than cusps,
that map to zero under modular parametrization were studied computationally.

Surprisingly, these zeros appear to be CM-points.

This paper is organized under the following section headings:

1. Introduction
1. Background Information

2.1 Elliptic Curves
2.2 Cusp Forms
2.3 The Main Theorem
2.4 A Question about the Map φ

3. The Experiment
4. Results
4. Conclusions
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1. Introduction

This exposition explains a numerical experiment, which involved finding zeros
of Eichler integrals. The background will provide definitions and basic information
about cusp forms and elliptic curves, and how the Eichler integral is a well-defined
map between a modular curve and an elliptic curve. Then, we address the question
of which points under this map are zeros on the elliptic curve with a computational
experiment.

2. Background Information

2.1. Elliptic Curves. The first collection of objects of interest in this paper will
be rational elliptic curves. We will follow the description given in [2]. For ai ∈ Q,
these coefficients come from the following projective curve

(1) E : F (X,Y, Z) = Y 2Z + a1XY Z + a3Y Z
2 −X3 − a2X

2Z − a4XZ
2 − a6Z

3.

The projective cubic E is an elliptic curve if its discriminant ∆(E) is non-zero. In
order to define the quantity ∆(E), put

b2 = a2
1 + 4a2

b4 = a1a3 + 2a4

b6 = a2
3 + 4a6

b8 = b2a6 − a1a3a4 + a2a
2
3 − a2

4

and let

∆(E) = −b22b8 − 8b34 − 27b26 + 9b2b4b6.

For a field k the set of k-points of E is

E(k) = {(x : y : z) ∈ P2(k)|F (x, y, z) = 0}.

In particular, for a prime p, and k = Fp = Z/pZ, we see that set E(Fp) is finite, and
we denote its cardinality by #E(Fp). The condition ∆(E) 6= 0 becomes ∆(E) 6≡
0 mod p. We thus call the prime p good if p - ∆(E), and bad if p|∆(E). There are
obviously only finitely many bad primes for a given elliptic curve E. The property
of a prime p to be good for E translates into the fact that the reduction of the
elliptic curve modulo p is an elliptic curve over the finite field Fp. For bad primes,
we call the reduction degenerate.

Note that the cardinality of a projective line over Fp is p+1, and, for good primes
p, consider the difference

a(p) := p+ 1−#E(Fp).

We expand this definition of a(p) for primes p to a(n) for integers n ≥ 1 by the
requirement that the Dirichlet series LE(s) :=

∑
a(n)n−s (which is called the L-

function of the elliptic curve E) has the following Euler product decomposition

LE(s) =

∞∑
n=1

a(n)

ns
=

∏
p-∆(E)

1

1− a(p)p−s + p1−s

∏
p|∆(E)

1

1− a(p)p−s
,

where, for bad primes p, a(p) takes the value of either ±1 or 0, which depends on
certain properties of the reduction E(Fp).
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2.2. Cusp Forms. Now we change our focus to begin to define the other main
object of cusp forms. First, let us consider the following special linear group

SL2(Z) =

{(
a b
c d

)
|a, b, c, d ∈ Z and ad− bc = 1

}
,

where the operation is matrix multiplication. The group SL2(Z) acts on the upper-
half (complex) plane, H = {τ |τ ∈ C and Im(τ) > 0} in the following way, for

γ =

(
a b
c d

)
∈ SL2(Z) and τ ∈ H, we have

γτ =

(
a b
c d

)
τ =

aτ + b

cτ + d
.

We will be interested in subgroups of SL2(Z) of the form

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z)|c ≡ 0(mod N)

}
.

The group Γ0(N) acts on the set H∗ := H ∪Q ∪ {∞}.
Now let f : H→ C be a holomorphic function that transforms under the action

of Γ0(N) in the following way

(2) f(γτ) = f

(
aτ + b

cτ + d

)
= (cτ + d)2f(τ) for all γ =

(
a b
c d

)
∈ Γ0(N).

Since

(
1 1
0 1

)
∈ Γ0(N) for every N , the condition (2) implies, in particular,

that f must be periodic, and, therefore, has a Fourier expansion

f(q) =
∑
n

c(n)qn where q = e2πiτ .

We impose some extra requirements that f is holomorphic, and approach zero at
every cusp, which are elements of the set Q ∪ {∞}. At the cusp of infinity this
condition translates to the requirement that the coefficients c(n) vanish for n ≤ 0.
We refer to the holomorphic functions which satisfy the transformation law (2) and
this extra requirement at cusps as cusp forms of weight 2 and level N and we denote
the linear space of these functions by S2(N).

The L-series of a cusp form is significantly easier to find compared to an elliptic
curve, for a cusp form f(z) =

∑∞
n=1 c(n)qn, the L-series is simply

Lf (s) =

∞∑
n=1

c(n)n−s

for s ∈ C.
Clearly, if f ∈ S2(N), then f ∈ S2(MN) for any positive integer M . A cusp form

f ∈ S2(N) is called new if its level is exact, namely f 6∈ S2(N/M) for all integers
M ≥ 2. A cusp form f ∈ S2(N) is called a primitive Hecke eigenform if it is new,
c(1) = 1 (normalized), and its L-series has an Euler product decomposition

Lf (s) =

∞∑
n=1

c(n)

ns
=
∏
p|N

1

1− c(p)p−s
∏
p-N

1

1− c(p)p−s + p1−s .

The finite dimensional linear space (over C) S2(N) has a basis which consists of
normalized Hecke eigenforms.
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2.3. The Main Theorem. The connection between the L-series of modular forms
and elliptic curves was explored as early as the 1950s when Yutaka Taniyama con-
jectured that the L-series of elliptic curve over Q coincides with the L series of a
weight 2 normalized newform for Γ0(N). One implication of this conjecture was
proven in the 1960s by Martin Eichler and Goro Shimura.

Theorem 2.1 (Eichler-Shimura Congruence Relation). Let f =
∑∞
n=1 a(n)qn ∈

S2(N) be primitive Hecke eigenform. If a(n) ∈ Z, then there exists a rational
elliptic curve E such that LE(s) = Lf (s).

The level N of the form f in the theorem becomes the conductor of the elliptic
curve E, which may be calculated as the product of certain powers of bad primes.
Conversely, Andrew Wiles’ famous theorem (which implies Fermat’s Last Theorem)
tells us that every rational elliptic curve can be produced from a primitive weight
two Hecke eigenform in this way.

The difficult part of the Eichler-Shimura Congruence Relation theorem is the
coincidence of L-series, while the elliptic curve associated with a primitive Hecke
eigenform f by the theory of Eichler and Shimura can be constructed quite explicitly
as follows. This procedure is known as modular parametrization.

We will follow [4]. Begin with the Eichler integral,

φ(τ) = 2πi

∫ i∞

τ

f(τ ′) dτ ′ = −
∞∑
n=1

a(n)

n
qn

The derivative of the Eichler integral is φ′ = −2πifdz, where f =
∑∞
n=1 a(n)qn ∈

S2(N).

For γτ , τ ∈ H let us consider the difference d
dτ (φ(γτ) − φ(τ)). By modularity,

f
(
aτ+b
cτ+d

)
= (cτ + d)2f(τ) and by the quotient rule,

(
aτ+b
cτ+d

)′
= 1

(cτ+d)2 , the differ-

ence is then −2πi
(

(cτ + d)2f(τ) 1
(cτ+d)2 − f(τ)

)
= 0.

Since this difference is zero, we see that C(γ) := φ(γτ) − φ(τ) is a constant for
all γ ∈ Γ0(N). We thus obtain a map C : Γ0(N) → C. This map becomes a
group homomorphism if C is considered as an additive group, and easily follows
from C(γ) =

∫ τ
γτ
f(τ ′) dτ ′.

Since C : Γ0(N)→ C is a group homomorphism, its image is a subgroup in C.
It is known that this is a rank two discrete subgroup, and therefore can be realized
as a lattice Λ.

The quotient C/Λ is thus a smooth projective curve of genus one, therefore an
elliptic curve, and we know that is specifically the rational elliptic curve describe in
Eichler-Shimura and that if we let

g2 = 60
∑

ω∈Λ, ω 6=0

1

ω4
, and g3 = 140

∑
ω∈Λ, ω 6=0

1

ω6
.

Then the quantities g2 and g3 are rational numbers, and the equation of a rational
elliptic curve

y2 = 4x3 − g2x− g3

which can be transformed by a standard variable change procedure to a minimal
equation of the form (1).
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2.4. A question about the map φ. The map φ constructed in the previous
section is known as modular parametrization. Namely, φ is a map from H∗ to C/Λ
which factors through the action of Γ0(N) on H∗. Indeed, if τ1 = γ(τ2), then the
difference between their images φ(τ1)−φ(τ2) ∈ Λ. We therefore have a well-defined,
holomorphic map

φ : H∗/Γ0(N)→ C/Λ
from a modular curve, H∗/Γ0(N), to an elliptic curve. The importance and funda-
mental nature of this map attracted lots of attention to it. However, not too much
is known. It is known that the map surjects (is a covering). In general, φ is not
an isomorphism. In order to show that, it suffices to observe that while the genus
of E = C/Λ is one, the genus of H∗/Γ0(N) grows with N roughly as N/12, and
is equal to one only for finitely many values of N . Thus the degree of the map
degφ > 1 for almost all N . (There is no standard formula to calculate degφ since
the genus of the target is one. However the degree was calculated by Zagier [4] in
the case when N is a prime, and this calculation has been expanded to the general
case by Cremona [1].) Several authors have addressed the question about where
on the modular curve under the map φ are the ramification points. No definite
results are obtained, but it is observed by Oda [3] that in many cases ramification
happens when the point is a CM-point. A point τ in the upper half plane is called
a CM-point if there exist integers a,b, and c with a 6= 0 such that aτ2 + bτ + c = 0.
We address a simpler question here. The map φ is set up so that φ(i∞) = 0. It
may also happen that other cusps map to the points in Λ. (It is known that cusps
always map to division points, that is for every cusp c there is an integer Mc such
that Mcφ(c) ∈ Λ.) Still, since degφ may be quite large, there may be points τ ∈ H
in the interior of the upper half-plane such that φ(τ) ∈ Λ. The question about these
points reduces to solving the equation

φ(τ) = 0

for τ .

3. The Experiment

The computation was performed using gp [5]. Zeros of each Eichler integral were
found by approximating the infinite sum as a polynomial.

φ =

k∑
n=1

c(n)

n
qn

where q = e2πiτ . Curves were chosen for which the degree of the Eichler integral was
known to be greater than 1. We will explain the code in terms of a particular elliptic
curve y2 + xy = x3 − x2 − 10x − 12, which is represented as [1,−1, 0,−10,−12].
First we test to find possible roots

\p 400

lim = 400;

E = [1,−1, 0,−10,−12];
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E = ellinit(E, flag = 0);

Ef = sum(n = 1, lim, ellak(E,n)/n ∗ qˆn);

z = polroots(Ef);

for(i = 1, length(z), N = norm(z[i]); if(N < .9, print(i, ”...”, N)));

The first line in the code set the decimal precision to 400 digits. The second line
is our parameter for the degree of the polynomial, which was done uniformly at 400
for all elliptic curves tested. The line E = [1,−1, 0,−10,−12]; is where we specify
the elliptic curve. In the next line E = ellinit(E, flag = 0); gives the elliptic curve
its structure.

We approximate the Eichler integral as polynomial of degree lim in the line
Ef = sum(n = 1, lim, ellak(E,n)/n ∗ qn);, where the function ellak(E,n) com-
putes coefficients of the L-series for the elliptic curve. This sum is in terms of
q = e2πiτ . Then z = polroots(Ef); calculates the roots of this polynomial.

The last step of the code is a for loop that assigns a number to each root of
this polynomial and if the norm, the complex modulus, of this root is less than the
value of 0.9, then it prints the enumeration, and the norm. As we want the sum
to converge, the norm must be less than 1, and sufficiently far from 1 for faster
convergence, so the value 0.9 was chosen.

For this particular example, [1,−1, 0,−10,−12], where the second series of ”. . .”
signifies that we cut off our decimals at 20 digits from the original 400, we get the
following information.

2...0.E − 809

79...0.72069902083393305312 . . .

80...0.72069902083393305312 . . .

The degree of this map is known to be 5, one of the roots must and does have
norm of 0, this is the cusp ∞. We also see that we have two possible roots of the
same norm. Each z[i] is the ith root, expressed in terms of q, so we find the complex
number τ in the following way

tau = log(z[79])/(2 ∗ Pi ∗ I)

This gives the result, displaying only 20 of the 400 digits.

0.12500000000000000000 . . .+ 0.02606430175713434533 . . . ∗ I
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For this particular example, it appears that the real part is 1
8 . We then try to

determine is if the imaginary part is rational as well by considering it as a continued
fraction. Let us recall that a continued fraction is a fraction of the form

a0 + 1
a1+ 1

a2+ 1
a3+ 1

a4+···

where the ai ∈ Z. In order for a continued fraction to represent a rational number,
the above representation must stop at some point.

In gp, the function contfrac considers the argument as a continued fraction in
this form, and returns [a0, a1, a2, a3, . . .], where the length of the output depends
on the nature of the number and set precision. For contfrac(1/8) we get [0, 8] as
expected.

We use the code contfrac(imag(tau)), which (again we cut off) returns

[0, 38, 2, 1, 2, 1, 2, 76, 2, 1, 2, 1, 2, 76, 2, 1, 2, 1, 2, 76, 2, 1, 2, 1, 2, 76, 2, 4, 2, 1, 1, 1, . . .]

From this representation (including the omitted part) we do not see a reason
why this would be a rational number, but we do notice something else, particularly
a pattern. This pattern suggests that this number is quadratic.

As it is likely a quadratic we then consider the continued fraction of the square
of this number, contfrac(imag(tau)2), which gives

[0, 1472, 125250061933692041598551736, 1, 2, . . .].

The large third number suggests that this is rational and so we convert this to
a fraction by using contfracpnqn([0, 1472, 125250061933692041598551736]), which
gives 1

1472 , and as we took the square initially, we see that the imaginary part is

likely
√

1
1472 .

As for the other possible root with the same norm, we resolve it into its real and
imaginary components to get

−0.12500000000000000000 . . .+ 0.02606430175713434533 . . . ∗ I,

so the other possible root is the same, but with negative real part.

Now that we have two possible roots, let us see if it is likely that the series con-
verges at these points. We test this with the following sequence of code

E = [1,−1, 0,−10,−12];

E = ellinit(E, flag = 0);

Ef = sum(n = 1, 1000, ellak(E,n)/n ∗ exp(2 ∗n ∗Pi ∗ I ∗ (1/8 + I/sqrt(1472))))

Which gives a value that is approximately zero, −8.49 . . . E−74−2.95 . . . E−74∗I,
and finally around 10000 terms, it is −1.62 . . . E−405 + 6.08 . . . E−406 ∗ I, which is
beyond our precision. Indeed, the Eichler integral converges rapidly.
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4. Results

Below is a table summarizing zeros that were found of the 269 Eichler integrals
examined. The first column is the conductor of the elliptic curve and level of the
cusp form, the second column is the elliptic curve, the third column lists the degree
of the map, which gives an upper bound on number of zeros, and the last column
lists the zeros found. Note that if φ(q) = 0, then φ(q̄) = 0. Thus, since q = e2πiτ ,
the τ -roots of φ come in pairs τ = ±a+ bi. Also, this method found the cusp ∞ as
root for all of the 269 curves, but this method excludes considering the other cusps
Q because their norm is 1. We list below the zeros that have positive real part and
are in H.

Conductor Elliptic Curve Degree Roots

46 [1,-1,0,-10,-12] 5 1
8 + i

8
√

23

63 [1,-1,0,9,0] 4 17
42 + i

42
√

3

67 [0,1,1,-12,-21] 5 1
2 + i

2
√

67

75 [0,-1,1,-8,-7] 6 1
2 + i

10
√

3

85 [1,1,0,-8,-13] 4 26
85 + 2i

85

99 [1,-1,0,-15,8] 12 7
18 + i

18
√

11

99 [0,0,1,-3,-5] 6 1
2 + i

6
√

11

106 [1,0,0,1,1] 6 23
53 + i

53

106 [1,1,0,-27,-67] 10 1
6 + i

6
√

53

109 [1,-1,0,-8,-7] 4 43
109 + 2i

109

110 [1,1,1,10,-45] 20 13
30 + i

30
√

11

115 [0,0,1,7,-11] 10 1
2 + i

2
√

115

116 [0,1,0,-4,4] 8 17
116 + i

116 , 41
116 + i

116

118 [1,1,1,-4,-5] 6 18
59 + i

59
√

2

118 [1,1,0,56,-192] 38 1
6 + i

6
√

59

121 [1,1,1,-30,-76] 6 3
14 + i

√
3

154

121 [1,1,0,-2,-7] 6 38
121 + 2i

√
2

121

121 [0,-1,1,-40,-221] 24 1
2 + i

22

123 [0,1,1,-10,10] 20 1
6 + i

6
√

41

126 [1,-1,0,-36,-176] 32 1
8 + i

24
√

7

135 [0,0,1,-27,-115] 36 1
2 + i

6
√

15

139 [1,1,0,-3,-4] 6 39
139 + 2i

√
2

139

141 [0,1,1,-12,2] 28 1
6 + i

6
√

47

141 [0,1,1,-26,-61 12 1
2 + i

2
√

141

142 [1,-1,1,-12,15] 36 1
2 + i

2
√

71

142 [1,-1,0,-1,-3] 9 1
8 + i

8
√

71

147 [0,1,1,-114,473] 42 1
2 + i

14
√

3

147 [0,-1,1,-2,-1] 6 1
2 + i

14
√

3

150 [1,1,1,37,281] 48 4
9 + i

45
√

2

153 [1,-1,0,-6,-1] 8 7
17 + i

51

153 [0,0,1,-27,-61] 24 1
2 + i

6
√

17
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Conductor Elliptic Curve Degree Roots

158 [1,-1,1,-9,9] 32 1
2 + i

2
√

79

158 [1,1,1,1,1] 6 47
158 + i

√
3

158

163 [0,0,1,-2,1] 6 46
163 + i

√
3

163

170 [1,-1,0,-10,-10] 20 1
5 + i

5
√

34

171 [0,0,1,177,1035] 96 1
2 + i

6
√

19

171 [0,0,1,-21,-41] 32 1
2 + i

6
√

19
, 1

5 + i
15
√

19

174 [1,1,1,-5,-7] 10 13
29 + i

29
√

6

174 [1,0,1,0,-2] 52 1
8 + i

8
√

87

174 [1,1,0,-56,-192] 8 1
8 + i

8
√

87

175 [0,-1,1,2,-2] 8 1
14 + i

√
3

70

175 [0,1,1,42,-131] 40 1
2 + i

10
√

7

178 [1,0,0,6,-28] 32 34
89 + i

89

178 [1,1,0,-44,80] 28 1
6 + i

6
√

89

179 [0,0,1,-1,-1] 9 72
179 + i

√
7

179 , 1
6 + i

6
√

179
, 1

2 + i
2
√

179

182 [1,-1,1,3,-5] 36 5
21 + i

21
√

26
, 2

7 + i
7
√

26

184 [0,0,0,-55,-157] 24 1
5 + i

10
√

46
, 3

10 + i
10
√

46

185 [0,-1,1,-5,6] 8 14
37 + i

37
√

10

185 [1,0,1,-4,-3] 6 86
185 + 2i

185

186 [1,0,1,-17,-28] 28 9
62 + i

√
5

62
√

3

187 [0,0,1,7,1] 30 1
2 + i

2
√

187

189 [0,0,1,-6,3] 12 5
14 + i

42
√

3

189 [0,0,1,-27,-7] 36 1
2 + i

6
√

21

190 [1,-1,1,-48,147] 88 1
2 + i

2
√

95

194 [1,-1,1,-3,-1] 14 31
194 + 3i

194 , ±71
194 + i

√
3

194

195 [0,1,1,0,-1] 12 1
2 + i

2
√

195

195 [0,1,1,-66,-349] 84 1
2 + i

2
√

195

195 [0,-1,1,-190,1101] 84 1
2 + i

2
√

195

197 [0,0,1,-5,4] 10 24
197 + i

√
15

197

5. Conclusions

1. The most surprising fact is that in many cases the zeros of φ turn out to be
at CM-points. In fact, in most of the cases when our numerical experiments do not
confirm that, we can find a reasonable explanation why the code is inadequate to
these cases. For instance, for the curve [0, 0, 1,−1, 0] of conductor N = 37, one can
prove that no zeroes in H, the interior of the upper half-plane, occur. In another
case of the curve [1, 0, 1,−7705, 1226492] of conductor N = 174 the degree of the
modular parametrization is 1540; there is probably a zero of a multiplicity too big
to retrieve it with our experiments.

Our experiments thus suggest a question quite similar to that suggested in Oda’s
survey [3] whether the zeros of φ in the interior of H are always at CM-points.
(Oda asks the same question about the zeros of φ′, the derivative of φ.) Additional
computations suggest that the CM-points found here are not ramification points.
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2. One can see by inspection of the above table that the zeros of φ are tightly
related with the conductor N of the elliptic curve. Since the conductor was not
directly involved into our experiments, this observation may be taken as an indirect
confirmation of the correctness of our data. At the same time one can try to make
this relation with the conductor quite precise. Specifically, let τ be a CM-point such
that φ(τ) = 0, and let N (τ) = ττ ∈ Q be its Galois norm. Within the range of our
experiments we observe that the denominator of the rational number NN (τ) has
no prime factors other than 2 and 3:

NN (τ) ∈ Zp for p > 3.

Note that the numerator of NN (τ) is never divisible by N within the range of our
calculations. We would like to conjecture that this is always the case.
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