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ABSTPACr

Knowledge of the dynamics of VA mycorrhizal plant systans is 

fundamental to the understanding of the relationships between VA 

mycorrhiza, plants and soil. Pot experiments were conducted to: 1) 

determine early physiological responses to VA mycorrhizal inoculation,

2) measure the acquisition and utilization of water and nutrients, dry 

matter production and assimilate partitioning in nycorrhizal and 
nonnycorrhizal plants, and 3) develop a model of VA nycorrhizal 

influence and its consequences to the physiology and ecology of VA 

nycorrhizal plants.

Leucaena leucocephala seedlings, with and without the VA 

mycorrhizal fungus (Glomus aggregatum), were grown in a Wahiawa soil 

(Tropeptic Eutrustox) with soil P levels ranging frcm 0.005 to 0.429 mg 
of P in 0.01 M CaCl2 extract. Without nycorrhizal infection, 

leucaena plant growth was stunted under lew soil P conditions. Even 
with high P fertilization, the growth of normycorrhizal plants was less 
than the growth of mycorrhizal plants.

Daily pinnule sanpling, pot weighing methods and multiple 

5-day-interval harvests revealed a series of changes in nutrient uptake, 
dry matter production and water transpiration between mycorrhizal and 

nonmycorrhizal plants. The series of changes was as follows: 1) Five 

days after inoculation, plant roots had about 7% mycorrhizal infection.
2) At 10 days, root P concentrations were higher in mycorrhizal plants 

than in nonmycorrhizal plants. By 15 days after inoculation, increases 

in shoot P, K and S concentrations were observed in mycorrhizal plants.



Shoot Mg and Ca concentrations in mycorrhizal plants were greater than 

in noninycorrhizal plants at 20 and 25 days after inoculation, 

respectively. From 10 to 15 days after inoculation, the flux of P into 

nycorrhizal roots was greater than that into nonmycorrhizal roots.

3) Elevated nutrient contents in shoots of mycorrhizal plants was 

followed by superior growth rates. Mycorrhizal plants also allocated 

more assimilate to leaf growth than did nonrrycorrhizal plants.

Increased leaf growth was followed by increased tran^iration. 4)
Leaf area expansion rates and net assimilation rates were greater for 

nycorrhizal plants than for nonmycorrtiizal plants. Greater dry weight 
was observed in mycorrhizal plants, supporting further growth of the 
mycorrhizal roots (positive feedback), and 5) Greatest soil volume was 

explored by the itycorrhizal roots. A scheme to explain these changes is 

pressed and used to describe processes involved in the soil-mycorrhiza- 
plant systCTi.

In contrast, the flux of P into nonmycorrhizal roots decreased 

during the period 10 to 15 days after transplanting. The resulting low 
P content in nonmycorrhizal plants further reduced relative leaf 

expansion rates, net assimilation rates and later reduced relative root 

expansion rates (negative feedback). Nevertheless, when nonmycorrhizal 

plants were subsequently inoculated they eventually attained a similar 

size and weight as mycorrhizal plants. The stunting of nonmycorrhizal 

plants thus appears to be reversible and probably is part of a survival 
strategy which reduces energy use vrtiile retaining the potential for 

mycorrhizal infection.

V
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INTRODUCTION

With diminishing reserves of fertilizer and increasing energy cost, 

there is an urgent need to develop sustainable agriculture which 
requires minimal fertilizer inputs. Such a system might include: 1) 
plant species and cultivars which are able to produce well under low 

nutrient conditions, e.g., legumes for low nitrogen soils; 2) 
fertilizers which can be more efficiently used by plants; and 3) the use 
of vesicular-arbuscular (VA) mycorrhizal symbiosis to increase the 

utilization of both current and residual fertilizer (National Research 

Council, 1983). There are some mycorihiza-dependent legume species, 
such as Leucaena leucocephala (Lam.) de Wit (leucaena). With 

mycorrhizal symbiosis, leucaena plants are efficient in absorbing 

soil P, particularly in high P-fixing tropical soils (Yost and Fox,

1979).
Leucaena is one of the most productive leguminous tree species and 

is widely cultivated in tropical and subtropical regions, including

Hawaii, Australia and Southeast Asia (National Research Council, 1984).
2Annual leaf litter has been as much as 1150 g dry weight m which is 

greater than litter fall in tarperate forests (Miltura et al. 1984).

The plant has also been used for cattle forage, as a shade tree in crop 
fields, or as fuelvrood (Gray, 1968; Hill, 1971; International 

Development Research Center, 1983). Although leucaena plants have few 
root hairs, they are highly mycorrhiza dependent (Yost and Fox, 1979), 
even in high P soils.



An understanding of the physiological events and processes of VA 
irycorrhizal establishment is a prerequisite for manipulating the 

association for the benefit of agriculture. It has been repeatedly 

^own that mycorrhizal plants have superior growth in experiments with a 
range of host plants, VA mycorrhizal fungi or growth conditions.
Although these studies give an indication of the scale of differences 

between plants with or without inoculation, they provide little 
information about the dynamics of mycorrhizal systems where fungi and 

plants interact with each other. Consequently, the sequence of events 

in the host response of mycorrhizal systems is not adequately 
understood.

Differences in nutrient absorption between mycorrhizal and 

nonmycorrhizal leucaena plants is initiated during the first few weeks 
after inoculation (Huang and Fox, 1984). Further iitpacts including dry 
matter production and water relations of leucaena plants also were 
observed by Huang et al. (1985). It is important to identify the 
primary and secondary influences of VA mycorrhizae and understand the 

interdependence of nutrient acquisition, growth and physiological 

aspects of these influences. It is possible by meains of frequent 
harvests to observe the early events of mycorrhizal influence at a time 

when the mycorrhizae are beginning to infect and establish on the 

plant's roots.
In these experiments, we investigated the early physiological 

events of mycorrhizal and nonmycorrhizal Leucaena leucocephala seedlings 
with various phosphorus levels through sequential harvests. The daily



samplings and frequent harvests were conducted during the period which 

corresponded approximately to the time of initiation and development of 

VA nycorrhizal influences on the growth and physiology of seedlings.

The objectives of these studies were 1) to identify and measure early 

physiological responses to n^corrhizal colonization, 2) to measure the 
rates of dry matter production, water and nutrient acquisition and their 

utilization as influenced by n^corrhiza, and 3) to develop a nvodel to 

explain the mycorrhizal influences on plants. These experimental 
results were expected to reveal some of the dynamic mycorrhizal 

influences on plant nutrient acquisition, growth and water relations.

The results of these experiments were expected to be useful in 
assessing agricultural and ecological significance of the soil- 

mycorrhiza-plant system.



LITERATURE REVIEW

The Soil-Root System

A remarkable feature of plants is their ability to utilize primary 

resources; radiation, carbon dioxide, water and essential nutrients fran 

the environment and to synthesize these materials into cellular 
cotiponents or to use them as energy sources. Although mineral nutrients 

make up a ccmparatively small proportion of plant dry matter (about 3%) 

(Epstein, 1972), they are essential for metabolic processes. For 
optimum plant growth, nutrients should be supplied and maintained alxsve 

a certain 'critical' level (Mengel and Kirkby, 1982).

Major factors affecting plant mineral relations include; 1) supply 
of available nutrients, 2) plant requirements for nutrients, 3) nutrient 

movanent from bulk soil to the proximity of plant roots, 4) nutrient 

absorption capacity of root systems and 5) mycorrhizal associations. 
Understanding the influence of these factors on phosphorus (P) nutrition 

is particularly important because P deficiency is a major soil fertility 

prcblem of the tropics (Fox and Searle, 1978). Moreover, mycorrhizae 
play an important role in the availability of this nutrient as indicated 

by numerous publications on this subject (Harley and Smith, 1983).



Soil Factors Affecting Phosphorus Supply

Phosphorus uptake is influenced by soil-solution P concentration 

(Wild, 1966), which is often referred to as the intensity factor of 
nutrient supply. Because P concentration in soil solutions is low, it 

must be continuously renewed (Barber et al. 1962). Otherwise, the P in 
solution would decrease rapidly as soil solution P is absorbed by 

plants. Labile P replenishes soil solution P and is referred to as the 

quantity factor in P nutrition (Wild, 1966).

Both intensity and quantity factors of nutrient supply to roots are 

affected by soil water content (Olsen and Watanabe, 1963; Shapiro et al. 

1960). Water movement toward roots helps renew the depleted supply of P 

near the root surface and affects the soil volume which supplies P to 
plants. Soil water content also influences the cross-sectional area for 

P diffusion to roots.

Attempts have been made to determine the relative importance of 

quantity and intensity factors. For example, adsorption isotherms 

(plots of P sorption vs. P concentration in equilibrated solutions) have 
been used to obtain information about both the quantity and intensity 
aspects of P availability (Beckwith, 1965; Fox and Kamprath, 1970).

Many P sorption curves and critical concentrations of external P 

requirement have been published (Fox et al. 1974; Fox and Searle, 1978, 

Nishimoto et al. 1977; Van der Zaag et al. 1979; Yost and Fox, 1979).

The external P requirement of a crop does not appear to be a single­

value constant that holds true in all conditions, however, it is a



useful indicator of the P nutrition of that crop.

Plant Factors Affecting Phosphorus Demand

Plants and soils dynamically interact, affecting and being affected 

by the other. In order to examine such dynamic relationships, 

information is needed on the nutrient requiranents of plants at 

different stages of growth, and on the size and distribution of the root 

system in the soil.

Williams (1967) discusses the effects of plant characteristics on 

the relative inportance of quantity and intensity factors for immobile 

nutrients such as phosphate. A high P intensity in the soil allows 

rapid P uptake by an expanding root system, and is therefore likely to 
be particularly favorable for early growth of plants, rapidly-growing 

crops and for highly-responsive crops.

Early growth of a plant seems to have a particularly high P 
requirement. Fox et al., (1974) showed that corn required 0.2 mg P 

in soil solution for maximum growth in the early stage, but 0.06 mg P L~^ 
was sufficient to give 95% maximum grain yield. Similarly, the forage 

legume Desmodium aparines required 0.2 mg P L  ̂ for establishment 

but only 0.01 mg P L  ̂for regrowth after the first harvest (Fox et 

al. 1974). Webber and Mattingly (1970) cite exairples where solution P 
concentration correlated well with initial growth, but not with total 
uptake, the latter depending more on quantity. This was also 

demonstrated by Holford and Mattingly (1976).



Rapidly-growing crops or those with a short growing season 

typically have high P requirements. Vegetable crops normally require 

higher P intensity than annual field crops (Nishimoto et al. 1977) and 

annual crops frequently require higher P intensity than perennial crops 

such as trees or permanent pasture (Fox, 1979). A low P intensity is 
more likely to be adequate when extensive root systems supply a slowly- 

grcwing crop. Such a system will deplete more soil volume and allow 
time for P forms of intermediate solubility to be transferred to labile 
forms.

Nutrient Movement from Soil to Root Surface

Nutrient ions vary in mobility in soil medium both because of 

differences in ion mobility and of differences in the soil medium. Bray 

(1954) defined mobility as the 'overall process whereby nutrient ions 

reach sorbing root surfaces, thereby making possible their sorption into 
the plant'. The amount of nutrients in contact with the root is small, 

therefore, 'the significant source of nutrients to the root surface 

comes fran the movement or diffusion into the film of water between the 
root surface and the soil surface'. On one extreme of the mobility 

scale is the nitrate ion, which interacts little or not at all with most 

soil particles and is relatively mobile. At the other end of the scale 

are relatively inniobile (highly soil-reactive) nutrient ions, i.e. P 

and several cations. The significance of the mobility concept to 

nutrient availability is that relatively mobile nutrients are drawn fran



a large volume of soil (termed 'root system sorption zone' by Bray). 

Relatively immobile nutrients are exploited frcm a smaller volume of 

soil adjacent to each root ('root surface sorption zone'). Bray (1954) 

points out that the stage of growth v^en the plant requires the highest 

nutrient concentration would determine the needed soil level of a 
relatively immobile nutrient.

Diffusion and mass flow

Since roots normally absorb water as well as solutes, solutes move 

into the neighborhood of absorbing root surfaces by both diffusion and 

by mass flew (Bouldin, 1961). It is inportant to consider how these two 
processes interact. Quantitative experiments designed to investigate 

the combined processes have been few and difficult to devise.

The importance of mass flow and diffusion in the movement of ions 
in soils was considered by Porter et al., (1960). Barber (1962), 

however, was the first to measure this movement in a soil-plant system 

and to determine the relative contributions of mass flow and diffusion 

to nutrient availability. He suggested that the rate of nutrient supply 
to the root is determined by the sum of the amount of nutrient moving by 

diffusion and the amount supplied by mass flow of the soil solution, 
resulting from transpiration loss, to the plant root. He discussed 

situations in which one or the other mechanism would dominate. In two 

subsequent papers (Barber et al. 1962 and 1963), it was shown that mass 
flow may supply much of the plant's requirement for Ca, Mg and N. Mass 

flow was thought to supply only small amounts of P and K ions because 

relatively low concentrations are present in solution relative to the

8



requirement of the plant. If P in solution is assumed to be 10 viniol L  ̂

and plants transpire 500 g H2O g  ̂dry matter produced, mass flow 
will supply 5 vimol to roots for every g of dry matter produced by 

plants. The P content of most plants is at least 100 pmol g  ̂plant 

dry matter, hence, mass flow would supply only 5% of the needed P and 

diffusion must supply 95% if root interception is neglected. Tinker

(1969) pointed out that the actual mass flow passing across the root 

surface is the water flux to plant roots multiplied by the solution 
concentration which may be different from that deduced in the concepts 
of Barber (1962), viz. as the product of trani^iration and bulk solution 

concentration. Furthermore, Tinker (1969) pointed out that Barber's 
calculations were based on the mean for the growth period of the plant 

and uncertainty arises froti the attenpt to average all processes over a 

vrtiole growing season. As a plant grows, there is a typical exponential 
increase in transpiration (Brewster and Tinker, 1970) causing mass flow 

to be greater in the later growth stage than in young seedling stages. 

Which one is most important— diffusion or mass flow— may change during 

plant developrtient.

Autoradiographic evidence for diffusion
Verification of concentration gradients around roots has cone frcm 

autoradiographs showing depletion or accumulation of radio-labelled 

nutrient elements around individual roots (Barber, 1962). Walker and 
Barber (1961) developed a procedure for using autoradiograprfis to verify 

ion accumulation or depletion around the root. C o m  was grown in soil 

labeled with 8^Rb. Radioactive ®^Rb is a satisfactory replacanent



for K because its properties are similar to those of K. X-ray film 

exposed to soil labeled with ®^Rb showed a concentration gradient 

extending perpendicular to the root. These workers, therefore, 

concluded that K depletion near the c o m  root surface should also occur. 

Autoradiographic evidence for the supply of P by diffusion is also 

available (Lewis and Quirk, 1967; Bhat and Nye, 1973; Owusu-Bennoah and 

Wild, 1979). Autoradiographic and theoretical studies made by Olsen et 

al. (1962) and Nye (1966) indicate that the zone of depletion may have a
diameter of several mm. Phosphate icxis in soil have a lower diffusion

_8 —11 2 “1 coefficient (10 to 10 cm sec ) than other ions. Since diffusion

over long distances is relatively slow, it may limit nutrient uptake 
under most field conditions (Drew and Nye, 1970). In young seedlings 

with small seed nutrient reserves, the balance between nutrient danand 

and supply is crucial. Loughman (1981) reported that P in solution 
could be taken up by a barley seedling root system in seconds. Due to 

the slow rate of diffusion of the P ion to root surfaces (Lewis and 

(Xiirk, 1967), immediate root zone becomes readily depleted of plant- 
available phosphate. When there is no transpiration, nutrients are 
supplied by soil to root by diffusion. When there is transpiration, 

nutrients are supplied by both mass flow and diffusion (Fried and 
Broe^art, 1967). Most autoradiographic results were generally obtained 

at early plant growth stages. If these seedlings tran^ired water 

during the period of exposure to radioactive isotcpes, the auto­
radiographs might indicate the total area of depletion both by mass 

flow and by diffusion, as suggested by Fried and Broeshart (1967).

Autoradiographic results indicate that diffusion occurs over

10
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relatively short distances when the soil solution concentration of an 

ion is very low, such as with P. As mentioned above, the diffusion 

volume must be continuously recharged with the nutrient ions. Recharge 

must ccme fran mechanisms that involve water movement (Bray, 1954).

Soil water movanent not only renews the supply of phosphate ion at the 
root surface, but also controls the soil volume contribution to 

phosphate replenishment (Shapiro et al. 1960). The magnitude of this 

volume depends upon the amount of water movement. Richards and Wadleigh 
(1952) reviewed several experiments v^ere a higher yield was obtained 
with frequent irrigations than with fewer. This increased growth was 

attributed to a larger soil volume that was sampled for the renewal of 
phosphate in the soil solution.

Root Configuration for Nutrient Uptake

The most obvious functions of root systems are the absorption of 
water and nutrients. The effectiveness of a root configuration is 

influenced by the mobility of soil nutrients (Barley, 1970) and the 

porosity of soil structure (Hamblin, 1985). The configuration of the 
root syston (e.g., root diameter, length and distribution) is more 

iirportant for less mobile nutrients such as P than for more mobile 

nutrients such as nitrate (Barley, 1970). According to Nye (1966) the 
most efficient root anatomy appeared to be thin roots covered with root 

hairs, which was inportant in exploring a soil volume (Lewis and Quirk, 

1967). Silberbush and Barber (1983a and 1983b) conducted a sensitivity



analysis for their simulation model of K uptake by soybean in a silt 

loam soil (K is an ion with an intermediate diffusion coefficient, but 

required by plantsin large amounts). Their results indicated that the 

most sensitive parameters are those related to root morphology; root 

growth and root radius. Growth in root length was the most sensitive 
parameter, because both root length and the soil volume explored 

increase with growth. Under most soil conditions, however, because 

continued root grcwth was costly and soil mechanical resistance to root 
growth was quite high, the soil volume that could be explored was 

usually limited (Taylor, 1974).

Although plants may differ in root diameter and root configuration, 
the overall root functions for nutrient uptake could be improved by 

mycorrhizal associations in which the hyphae penetrate the soil for 

distances up to 8 cm (Rhodes and Gerdanann, 1975) rather than the mm or 
fractions of mm penetrated by root hairs. For example, despite a very 

high P requirement, cassava has a coarse, sparsely branched root system 

(Jintakanon et al. 1979). Nevertheless, it grew well in soils of low 
fertility in which P uptake was markedly increased when roots were 
infected by VA mycorrhizal fungi (Yost and Fox, 1979; Van der Zaag, et 

al. 1979). Thus even plants with coarse roots and few root hairs 
have developed an effective absorption mechanism via nycorrhizae for 

relatively immctoile nutrients such as P (Fox, 1981).

Nearly all detailed work on the flow of water to roots has assumed 
that the root was in full contact with homogeneous soil material similar 

in composition to the bulk soil (Barber, 1984). However, soil media are 

heterogeneous cotplexes of mineral and organic particles, water and

12



air. Rcx3ts often entered cracks or other voids in the soil where contact 

with the soil would be inccmplete (Russell, 1973). Tropical soils with 
low-activity clays were generally found to be better aggregated than 

high-activity clays (Uehara and Gillman, 1981). Pore size between 

aggregates usually increases as aggregate size increases, in many highly 
weathered, clayey soils of the Tropics, such as the Wahiawa soil. The 
moisture released from the Wahiawa soil was similar to that of sandy 

soils (Sharma and Uehara, 1968). Tsuji et al. (1975) suggested that 
both micropore (intra-aggregate) and macropore (inter-aggregate) regions 
occurred in the Wahiawa soil.

Large continuous inter-aggregate pores and channels (larger than 50 
urn) strongly influenced soil water raovanent (Beven and Germann, 1982) 
and root growth (Barley and Greacen, 1967). Roots do not normally grow 
into rigid pores narrower than their own diameters (Wiersum, 1957), 
hence nutrients within aggregates may not be directly accessible by 

plant roots. In contrast, the intra-aggregate pores (less than 50 urn) 

because of properties associated with high specific surface area may 
buffer adsorption and desorption of nutrients. The desorption process 

was inportant for plant-P availability (Camargo et al. 1979). However, 

Tisdall and Oades (1979) found that fine external VA nycorrhizal hyphae 
could proliferate between aggregates.

13

Modeling Nutrient Uptake in Plant Roots

Mathanatical models of nutrient uptake by plants are useful for
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investigating the effect^f various soil and plant factors on nutrient 

flux to plant roots. f(^ Js s e n  and Barber (1976) have attenpted to 
develop a model based on theoretical considerations of the processes of 

nutrient uptake by a plant root growing in soil. Their model predicts P 

uptake and plant growth response from independently measured soil and 

plant characteristics. They stated that nutrient absorption by plant 

roots growing in soil depends on three factors:

1) Morphology and rate of growth of the root systsn.
Morphological characteristics may hie described by root radius, root 

length, root surface/shoot weight ratio, and root hair density.

2) Nutrient absorption characteristics of the root systan.
Physiological characteristics strongly affect P uptake. The kinetics of

P uptake can be characterized by the maximum rate of net influx (I ),m3x
the Michaelis-Menten constant (K ), and the minimum concentration inm
solution below which no further new influx occurs (C . ).min

3) The nutrient supply characteristics of the soil. Barber's 

consideration of these soil characteristics was patterned after the work 

of Nye and Marriott (1969).

Barber and his colleagues tested their model under greenhouse and 

field conditions and found that observed uptake was much greater than 
calculated uptake at low P levels (Appendix 1). Differences decreased 

at high P levels, however. In sterilized soils with high available P 

contents, plant P uptake values as predicted by the model agreed with 
observed P uptake, whereas at low P levels predicted P uptake was only 

half of measured uptake.

The results indicated that the parameters and equations of the
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Caassen-Barber model satisfactorily predicted P uptake in experiments 

with sterilized soil if P fertility was high. But if P levels were low 

the model underpredicted P uptake. This discrepancy probably resulted 

frcm not considering the contribution of P by mycorrhizal colonization 

as suggested below.

Barber's model (1984), furthermore, assumes that chemical effects 

of root exudates did not influence nutrient flux, and secondly that 

mycorrhizal effects were minimal. Moghimi et al. (1978), however, 
isolated 2-ketogluconate frcxn the rhizosphere of wheat roots in amounts 

that could solubilize significant amounts of phosphate from hydroxy- 

apatite. It also has been suggested that several plant species are 
obligatorily n^corrhizal in soils with low P (Tinker, 1980).

Inoculation of nycorrhizal fungi in corn (Murdoch et al. 1967) and 

millet (Bagyaraj and Manjunath, 1980) increased plant growth and P 
uptake. Both of these crops were included in Barber's experiments. 
Therefore, in ity opinion, it is probable that Barber's plants were 

mycorrihizal. In some of Barber's experiments, soil solution P was 
approximately 10 to 50 pmol, i.e., about ten- to fifty-fold greater 

than might be expected in fertile natural soils (Clarkson, 1985). In 

such circumstances, plant growth was probably not constrained by P 
supply. Clarkson (1985) also coimented that the predictive power of 

BariDer's models for P uptake deteriorated \4iere nutrient concentrations 

were low. It was under low nutrient conditions that ill-defined factors 
which determined the 'efficiency' of absorption became important. The 

mycorrhizal factor was ignored by Barber and his colleagues.



The Vesicular-Arbuscular Mycorrhizal System

Vesicular-arbuscular rtycorrhizal (VAM) fungi are present in most 

soils throughout the world. VA mycorrhizal fungi form a symbiotic 
relationship with the host plant. The fungi help the host plant absorb 
nutrients, particularly P, while the host plant supplies carbohydrate 

for the fungal grcwth. As a nutrient-uptake mechanism, the VA 

n^corrhizal system consists of three ccnponents: soil, plant, and the VA 
nycorrhizal fungus (Mosse and Hayman, 1980). The extent to v^ich a 

nycorrhizal system increases plant P uptake is determined by 1) the 

plant species, its P requirement and inherent ability to extract soil P,

2) the P content of the soil, 3) the extent of mycorrhizal infection, 

which depends on plant nutrient level and fungal adaptation to soil and 

climate, and 4) the efficiency of the endophyte species.

16

Structure of VA mycorrhizae

VA mycorrhizae that colonize plant roots belong to the family 
Endogonaceae (Gerdamann and Trappe, 1974). The main diagnostic feature 

of VA mycorrhizal fungi is the presence of vesicles and arbuscules in 

the root cortex. The endodermis, stele and root raeristem are not 
invaded. Inter- and intra-cellular hyphae are also present in the 

cortex. The hyphae inside the roots are directly linked to external 
mycelium which spread into the soil. This enlarged zone is referred to



as the 'mycorrhizosphere', as conpared to the rhizosphere surrounding 

plant roots (Plenchette, 1982) (Fig. 1).

A VA mycorrhizal infection usually begins with an appressorium on 

the root surface fran which hyphae penetrate the epidennal cells. The 

hyphae spread inter- and intra-cellularly through the outer cortex vdiere 

they often form coils. In the middle and inner cortex, and to a lesser 
extent in the outer cortex, intercellular hyphae grow parallel with the 

root axis and lateral branches of hyphae penetrate cortical cells 
forming arbuscules. Vesicles develop inter- or intra-cellularly as 

swellings along or at the tips of hyphae. The external it^celia form a 

loose network in the soil around the root. The main network is formed 
fran coarse hypliae 20 to 30 vnn in diameter that are thick-walled. Finer 

thick-walled hyphae branch from these and the ultimate branches are 

thin-walled structures with a diameter of 2-7 )jm (Nicolson, 1967).

17

Function of VA mycorrhizae

Carbon metabolism

Because the fungus requires carbohydrate for its growth from the 
host, the question of carbon supply is important to an overall 

understanding of the VA mycorrhizal symbiosis. In fact, mycorrhizal 

growth responses are strongly influenced by two opposing processes; a 

growth stimulating effect due to enhanced P uptake (Sanders and Tinker, 
1973; Mosse, 1973), and a growth detrimental effect caused by fungal 

drain of host photosynthate (Buwalda and Goh, 1982; Koide, 1985).



A — ZONE OF RHIZOSPHERE P UPTAKE 
B — ZONE OF MYCORRHIZOSPHERE P UPTAKE

Fig. 1. Diagram of the association between vesicular-arbuscular
rtycorrhizal fungus and a plant root in soil (Plenchette, 1982). 00



C-labeled experiments have shown that mycorrhizal inoculation 

increased transport of fixed carbon to the roots of citrus, leek and 

faba bean by about 6, 7 and 10%, respectively, (Koch and Johnson, 1984; 

Snellgrove et al. 1982; Pang and Paul, 1980). However, it is not 

possible to state whether or not this carbon utilization by the fungal 
symbiont is an extra energy cost to the plant. For seme plants, 

iTYCorrhizal symbiosis is an indispensible mechanism to absorb sufficient 

P from the soil (Mosse, 1973) to support growth and physiological 
processes such as photosynthesis (Allen et al. 1981).

Under nonlimiting growing conditions, mycorrhizal plants may 

compensate for this carbohydrate drain. For example, although roots of 
mycorrhizal faba beans had higher respiration rates than nonmycorrhizal 

roots, there was no relative change in plant dry weight (Pang and Paul, 

1980). Photosynthetic rates and fixation rates may increase in 
n^corrhizal plants (Levy and Krikun, 1980; Allen et al. 1981) by as much 

as 8 to 17% (Kucey and Paul, 1982). Higher chlorophyll levels in 

it^corrhizal plants may indicate a greater number of photosynthetic units 
(Allen et al. 1981). Indirect effects of mycorrhizal infection on leaf 
thickness (Krishna et al. 1982) and leaf number (Daft and Okusanya,

1973) may also iiiprove the carbon balance of the host plant.

19
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Nutrient acquisition
In the majority of cases, improved P uptake is the primary cause of 

growth and yield enhancement in VA mycorrhizal plants. Possible models 

of mycorrhizal enhancement of P uptake are summarized as follows;
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1) Physical exploration: VAM hyphae extend beyond the zone of 

depletion around plant roots and decrease the distance that ions must 
move in soil solution to roots (Rhodes and Gerdemann, 1975).

2) Higher nutrient affinity and lower threshold concentration for 

nutrient uptake; Mycorrhizal plants took up P frcm solution faster than 
did nonmycorrhizal plants (Cress et al. 1979; Howeler et al. 1982). It 

had also being suggested that mycorrhizal plants have a lower threshold 

concentration for absorption frcxti solution than nonmycorrhizal plants 
(Mosse, 1973; Howeler et al. 1982).

3) Chonical solubilization; Mycorrhizal plants may produce 

exudates which increase the amount of P available to plants (Tinker, 
1975).

4) Rhizosphere modification; Differences between mycorrhizal and 

normycorrhizal plants in the absorption of anions and cations (Buwalda 
et al. 1983) may lead to differences in rhizosphere pH.

Other nutrients are also absorbed by nycorrhizae. For exaitple, 

sulfate uptake via hyphal translocation to root and increased uptake at 
the root surface has been reported (Gray and Gerdemann, 1969; Cooper and 
Tinker, 1978; Rhodes and Gerdemann, 1978a). Hyphal translocation of 

sulfate is likely to be less important than that of P because sulfate 
has greater mobility in soil. Increased uptake of sulfate by 

irycorrhizal plants has been attributed largely to improved P nutrition 

of mycorrhizal plants (Rhodes and Gerdemann, 1978b). Zinc also moved to 
mycorrhizal roots through hyphae (Cooper and Tinker, 1978). In 

addition, Zn deficiency was associated with high P levels in the soil 

and low mycorrhizal infection levels (Gilmore, 1971; LaRue et al. 1975).
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Rhodes and Gerdanann (1975) showed that high soil P levels reduced 

infection and eliminated both P and Zn translocation in the hyphae. 

This may partially explain the problem of P-induced Zn deficiencies in 
scstie field situations.

Water relations

Mosse and Hayman (1971) observed that mycorrhizal onions did not 
wilt when transplanted, but that nonn^corrhizal plants did.

Subsequently several similar observations (Menge et al. 1978; Janos,

1980) have been made, consistent with the suggestion that mycorrhizal 
fungi may influence the water relations of host plants. Several 

conclusions cam be drawn fran numerous studies in this area;

1) Stonatal physiology is affected by ir^corrhizal infection. 
Decreased stonatal resistances to water and OO2 movement and increased 
transpirational fluxes and rates of photosynthesis have fcieen shown 

(Allen et al. 1981; Johnson et al. 1982). Under well-watered 
conditions, it^corrhizal plants generally had both higher leaf area and 
transpiration rates than nonnycorrtiizal plants. However, Huang et al. 

(1985) found that, during the day, mycorrhizal leucaena plants had more 
rapid stonatal responses to humidity deficits of the air than did 

nonmycorrhizal plants. Such stonatal responses might protect the leaf 

frcm excessively rapid transpiration and tissue desiccation.
2) Greater hydraulic conductivity per unit length of mycorrhizal 

root relative to nonmycorrhizal roots may contribute to better use of 

soil water. Safir et al. (1972) estimated soybean root resistance to



water transport. Water uptake resistance was reduced by about 40% with 

n^corrhizal infection. Greater root hydraulic conductances and higher 
leaf transpiration at lower soil water potentials were observed in 

nycorrhizal clover by Hardie and Leyton (1981). The increased water 

transport in the root corresponded to improved P nutrition to which 

growth was directly correlated. Atkinson and Davidson (1973) similarily 

found that drought tolerance in plants was related to their P status. 

Nelsen and Safir (1982a and 1982b) demonstrated that additions of P 
fertilizer to nomycorrhizal plants essentially eliminated the 
differences in resistance to water transport. Allen (1982) suggested 

that the effect of infection on plant water relations was due to 
increased water uptake by hyphae, but Sanders and Tinker (1973) and 

Cooper and Tinker (1981) showed evidence that hyphal water movement 

could not account for increased water uptake by mycorrhizal plants. An 
indirect mechanisn enabling water uptake by roots of rrycorrhizal plants 

was to prevent the development of significant gaps between the root and 

soil, thereby maintaining liquid continuity across the soil-root 
interface (Reid, 1984). VA n^corrhizal hyphae were shown to bind soil 
particles into water-stable aggregates (Tisdall and Oades, 1979).

Proposed mechanisms of increased carbon, nutrient and water uptake 
by mycorrhizal plants have been discussed above. These interpretations 

reflect the contplex and sometimes paradoxical nature of mycorrhizal 

systems. Some concepts and approaches were described that are needed to 
study iTYCorrhizal systOTS.
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Methods for Studies of Mycorrhizal Systems

The mycorrhizal influence on plant growth and nutrient acquisition 

is dynamic and sequential. The time dimension is, however, largely 

ignored in many rrycorrhizal studies. Some researchers realize that 

instantaneous measurement of growth or one destructive harvest alone is 

unlikely to improve our knowledge of physiological mechanisms which 

affect growth responses and determine yield differences between 
iTYcorrhizal and nonmycorrhizal plants (Attoott and Robson, 1984). 

Sequential harvesting of plants is recommended to allow studying the 

development of mycorrhizae in relation to plant nutrient acquisition, 
growth and physiological responses (Sanders et al. 1983). A series of 

sequential harvests with sanplings both before and after the occurrence 
of growth differences is almost the only way to determine cause and 
effect. One attempt to provide such a continuous and integrated picture 

of the dynamics of mycorrhizal plant growth was reported by Huang and 

Fox (1984) who develop>ed a sairpling technique to assess the 
effectiveness of mycorrhizal association by tracing daily changes in 
pinnule P content between rr^corrhizal and nonnycorrhizal leucaena plants.

Other considerations for evaluating the effect of VAM on plant 
growth include selection of control treatments so that plant growth 

response to added P or seme other growth factor in each experiment is 
examined. This would permit resolution of different degrees of 
mycorrhizal dependency. Moreover, description and analysis of the 
growth of root systans, soil mycelium, host growth, tissue nutrient 
contents, soil measurement and mathematical analysis of data are

23
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essential (Sanders et al. 1983).

Models are valuable tools in a number of disciplines. However, 

modeling of mycorrhizal symbioses is still in its infancy with sane of 

the first efforts reported about ten years ago (Tinker, 1975). Recent 

efforts have focused on the conplex interactions in host/fungus 

physiology in mycorrhizal systems, and have indicated that mycorrhizal 

associations may be described using modeling, or system analysis 

techniques (Sanders et al. 1983). These approaches focused on the 
interaction between the symbionts through nutrient uptake, growth and 

feed-back control.

Mineral Nutrition and Plant Growth

Relations between Plant Growth and Nutrient Acquisition

Mineral nutrient acquisition by plants strongly influences plant 

growth and yield (Mengel and Kirkby, 1982). However, there is no 
unified interpretation of such influences. A cormon approach to the 

interpretation of fertilizer experiments is to fit a mathematical model 

to the observed yields, and then attenpt to relate the parameter 
estimates to environmental measuranents such as soil test values in 

order to provide a basis for prediction on other soils. This has been 

only moderately successful because it over-sinplifies a ccraplex pattern



of nutrient supply, demand and physiological responses of the plants 

(Scaife and Smith, 1973).

Barrow (1977) suggested that a P-deficient plant can be considered 

a 'double-ended feedback' mechanism in which the phosphate supply 

ultimately determines the rate of photosynthesis and vice versa.

Barrcw's (1977) model involved four sets of relationships. In one, the 

rate of uptake is determined both by external nutrient supply and the 

efficiency with which the plant's roots used photosynthate to obtain P; 
in a second P is partitioned between roots, stems and leaves; in a third 

P in the leaves influences the rate of photosynthesis; and in the 

fourth, photosynthate is partitioned between the leaves, stems and 
roots. Scaife (1976) suggested that a dynamic model of plant growth 

(i.e., one incorporating feedback) might be used to predict the 

responses of plant species at each growth stage. This would require 
inserting appropriate parameter values of soil solution concentration, 

specific nutrient uptake rates, and optimal and minimal concentrations 

of the nutrient in the plants. Hence, if we wish to understand and 
predict nutrient influence on plant growth we need a model in which the 
relationships between nutrient acquisition and physiological processes 

of plant growth are represented (Soil nutrient status-plant nutrient 
status-growth rate-yield), instead of siiiply (Soil nutrient status- 

yield) as in the case of typical growth-nutrient equations.
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Plant Response to Nutrient Deficiency

Nutrient absorption is required to maintain plant growth. If 

rate of nutrient uptake is insufficient to maintain maximum relative 
growth rate the plants will be under nutrient deficiency stress 

(Greeraraod, 1976). Plant nutrient deficiency may be accentuated not 

only by a small quantity of available nutrients in a soil but also by 
ineffective processes of nutrient acquisition and utilization frcm 

applied or native sources (Clarkson and Hanson, 1980).

Plants may modify their growth structures and efficiency of 
nutrient acquisition and utilization in order to ccpe with these 

nutrient limitations by altering the following: 1) ion uptake 

efficiency, 2) root/shoot ratio, 3) effective rooted zone explored by 
root hairs, 4) root diameter and branching, 5) mycorrhizal symbioses,

6) rhizosphere chemistry, 7) metabolism, 8) element re-distribution and 

re-utilization in the plant and 9) plant growth rate. These parameters 

are discussed below.

1) Increasing ion uptake efficiency. The rate of ion transport by 

the root (V^,^) and the affinity of transport mechanisms for the ions
lUiaX

they carry (K^) may increase as nutrient deficiency develops in the 

plant (Epstein, 1976). Using flowing nutrient solutions Asher and 
Edwards (1983) showed that optimum plant growth is obtained at very low 

external phosphate concentrations (3-13 pM), despite the high 

concentrations in the plant cell (1-10 itM) (Bieleski, 1973). Loughraan 

(1981), however, indicated that the plant root already had an efficient



biochemical mechanism operating in order to absorb such large quantities 

of phosphate from low concentrations in soil solution. He suggested that 

the entry of P ion into the plant root was largely limited by physical 

rather than metabolic factors, hence there would be little to gain from 

increased biochonical efficiency.

2) High root/shoot ratio. Some plants allocate a much greater 

proportion of their assimilate to root growth under low nutrient 

conditions. For example, P deficiency resulted in increased root/shoot 
ratio in sugar beets (Ulrich and Berry, 1961) and in c o m  genotypes 

(Schenk and Barber, 1979a and 1979b). A larger root system should 

explore a greater volume of soil and perhaps tap new sources of 
nutrients. A larger root system, however, v/ill consume a larger 

proportion of nutrient resources within the plant and this may, to 

sane extent, offset the advantage in acquisition (Clarkson, 1981).
3) Increase effective rooted zone by root hairs. Because of an 

obvious effect of increasing root surface area, it has been suggested 

that additional root hairs would contribute substantially to nutrient 
uptake, particularly of nutrients for which access at root surfaces is 
diffusion-limited (Nye, 1977). Evidence for a significant role of root 

hairs in P absorption was given by Lewis and Quirk (1967). Bole (1973) 
found genotypic differences in root hair numbers, but soil P uptake was 

not closely related to those differences. In such conflicting 

instances, Clarkson (1981) suggested that the duration of the experiment 

may be important. With experiments of long duration, four weeks in the 

work of Bole (1973), the geonetrical benefit of the hair may be 

obviated by extensive depletion of the soil.
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4) Change of root diameter and branching. In P-deficient 

conditions, root systems of several plant species were thought to becane 
more finely branched and suitable for physical exploration (Hackett,

1968; Taylor and Goubran, 1976). Considering the low mobility of 

phosphate in soil, this type of response to phosphate stress could be of 

greater practical benefit than alterations in the activity of the P 

transport system in the root. Most root characteristics such as 

relative size, diameter and branching pattern, however, are genetically 
determined. Because roots are unable to readily decrease their 

diameter, root growth was restricted to certain soil pore sizes and 

nutrients within fine aggregates were physically unavailable for plant 
roots (Russell and Goss, 1974).

5) Mycorrhizal symbioses. VA n^corrhizal infection can increase 

the uptake of P to host plants (Mosse, 1973) (See above discussion).
6) Inducing changes in the rhizosphere. Certain plant roots, under 

nutrient deficiency or with nitrogen regimes that included ammonium 

absorption, were able to modify conditions within the rhizosphere by 
changing the jil (Riley and Barber, 1971), releasing chelating or 
reducing substances (Moghimi et al. 1978), releasing acid phosphatase 

(Bieleski, 1971) or by exuding substances beneficial to rhizosphere 
microorganisms (Barber and Martin, 1976). As a consequence, 

mobilization of scxne ions may be enhanced in the rhizosphere.

7) Capacity for normal metabolism at relatively low tissue 
concentration. It has been suggested that even a low tissue 

concentration of P (Whiteaker et al. 1976), N (O'Sullivan et al. 1974) 

or K (Makmur, et al. 1978) was adequate to support normal metabolic
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process. However, an alternative explanation for metabolism at low 

nutrient concentration was that greater re-distribution to terminal 

growing points would maintain required elements at relatively high 

concentrations in the most active regions of growth. Proof that growth 

and metabolism do continue at reduced tissue concentrations must await 

cotparative studies of specific biochenical reactions in which the 

elements participate (Gerloff and Gabelman, 1983).

8) Element re-distribution and re-utilization in plants. Due to 
the high mobility of N, P and K in plants, these nutrients are usually 

re-distributed frcxn senescing plant parts to young tissue which leads 

to an increase of the ratio in bionass production to nutrient content 
(White, 1972).

9) Low plant relative growth rate. Chapin and Bieleski (1982) 

reported that seme plants were tolerant of nutrient stress and their 
growth rates appeared to be genetically or physiologically restricted to 

a low level. This may be a survival strategy in nutrient-poor 

surroundings.

Plant response to nutrient stress, as discussed above, was 

manifested through differences in ion uptake and distribution, 
morphological modification of individual organs, as well as in nutrient 
re-utilization and role in the metabolic processes. It is important to 
identify the mechanism of nutrient acquisition and to understand the 
potential and limitation of that mechanism.
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Mathematical Models in Agricultural Research

Biological systems are highly inter-reactive and developing models 

is one way of sorting out the conplexity and integrating knowledge of 

component behavior. Important attributes of modeling include: 1) helps 

to define and categorize the state of knowledge of the subject; 2) helps 

to locate gaps in knowledge and to make hypotheses explicit, and thus 
helps to set priorities for research; 3) provides a tool to make the 

integrated information operational; 4) establishes an effective link 

between scientists fran adjacent disciplines, between researchers 

studying different levels of biological organization, and between 

fundamental and applied scientists (Penning deVries, 1983).

Static and Dynamic Plant Growth Models

Thomley (1978) suggested that there are two types of plant growth 

models— static and dynamic. A static model, for example, uses a typical 
response function of yield to applied fertilizer, and takes no account 

of the time course of events (such as growth and development) through 

the season, or variable factors such as weather. A dynamic model 
attenpts to describe the growth and development of the plant throughout 

the season.
Regression approaches are usually used in static models, Ijecause of



the simple and straightforward relation between yield and one or more 

environmental variables. However, they are less accurate, and cannot be 
easily generalized a priori to other areas, other crcps or other years. 

For example. Van Keulen et al. (1976) simulated bianass production in 

fertilized pastures with natural rainfall in a dry zone of Israel and 

concluded that 5 out of 13 consecutive years, water was the primary 

limiting factor of plant growth. In the other, wetter years, production 

was determined by soil fertility, vdiich was not related to precipitation 
in the same way. Indeed, a regression technique could not cope with 

such variation and tended to underestimate the catplexity of biological 
and agricultural systans and their environments.

In dynamic models, a system is described by a set of state 

variables (such as the weights or areas of various organs) that are 

updated at each iteration of the model by rate variables (such as the 
flux of carbon in photosynthesis). The calculation of rate variables 

depends upon information frcxn external driving variables (such as 

radiation and air tatperature) and internal auxiliary variables (such as 

the root/shoot ratio) drawn fran the current state of the system (France 

and Thomley, 1984). Penning de Vries (1983) compared various 

approaches for modeling of plant growth and production and concluded 
that dynamic models predict yields frcm defined biological processes 

vrtiile a regression model provides only the yield estimate. However, 

the more accurate the dynamic model, the more data are required. If 
these data are unavailable, the regression model is probably the best 

option.
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Whole Plant Growth Analysis

Quantitative studies of dynamic plant growth are ccramonly based on 
the analysis of sequential harvest data, using polynomial or exponential 

equations to describe changes in plant dry weight or leaf area as a 

direct function of time. The techniques and applications of this type 

of analysis have been reviewed by Hunt (1982). The use of growth 
functions is largely eitpirical; a polynomial can nearly always be found 

to adequately describe a particular set of data (Hughes and Freeman, 

1967); the derived functions may be valid statistically, but 
meaningless biologically (Milthorpe and Moorby, 1979; Causton and Venus,

1981). France and Thomley (1984) suggested that it is preferable to 
try to select or construct a function that has seme biological 

plausibility, and whose parameters may be meaningful— that is, they may 

characterize some underlying physiological or biochemical mechanism.
For example, exponential plant growth in the seedling stages is an 

analogue of autocatalysis in metabolic process (France and Thomley, 
1984).

Whole plant growth analysis has been used for estimating various 

aspects of plant growth and development. For example, relative growth 

rate is defined as the amount of biotiass produced per amount of bicraass 

per unit of time. Other indexes of physiological processes include net 

assimilation rate (the amount of bicmass produced per unit of leaf area 

per unit of time) (Evans, 1972), nutrient flux (the amount of nutrient 

increased per unit of root area per unit of time) (Williams, 1946;
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Brewster and Tinker, 1972) and nitrogen productivity (the amount of 

biomass produced per amount of nitrogen in the bianass and per unit of 
time (Ingestad, 1979).

Functional Approach to Dynamic Plant Systems

Understanding plant life forms on a functional basis requires at 

least a general understanding of the plant carbon, water and nutrient 

relations. Lockhart (1976) suggested that it is feasible to investigate 
the energy and material balances of plants in order to describe and 
interrelate the various plant structure and physiological processes.

Buck and Hillel (1983) pointed out that one may divide the plant into 

functional morphological classes (leaves, stems and roots) and estimate 

the carbon, water and nutrient fluxes into and within each class. The 

advantages of using a 'functional approach' in modeling whole plant 

systens (Bowen and Cartwright, 1977; Locmis et al. 1979; Penning de 

Vries, 1983; France and Thomley, 1984) are summarized as follows:

1) It captures the interdependence of basic plant biophysical 

processes (e.g., transpiration, photosynthesis and water and nutrient 

acquisition). A change in any one factor alters transitions between 

growth states, resulting in changes in the assimilate allocation and 

resource acquisition and utilization of further growth patterns.

2) It considers the partitioning of assimilate to plant growth 
sinks (e.g., roots and leaves). The partitioning of assimilate to plant 

absorption surface (leaves and roots) changes with alterations in
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available water and nutrients and with symbiotic associations.

3) It includes the plant functional surfaces which are useful in 

the estimation of inportant fluxes occurring in the interfacial region 

between soi1-plant and plant-atmosphere.

4) It helps examine and describe how specific physiological 
processes and controls relate to and interact with other plant 
activities. Penning de Vries (1983) have reviewed dynamic models 

involving carbon, water and nutrient balances and morphogenesis at the 
plant-environment level. However, no dynamic model of mycorrhizal 

system which reflects the carbon, water and nutrient relations of the 
symbiosis is known to exist.



MATERIALS AND METHODS 

Plant Inoculation and Growing Conditions

Leucaena leucocephala (Lam.) de Wit var. K-8 (leucaena) was 

grcwn from seed in a greenhouse near Honolulu, Hawaii (21°19* N,
157°58‘ W). Wahiawa soil (Tropeptic Eutrustox) was collected fran the 
Poamoho Experiment Station, College of Tropical Agriculture, Island of 

Oahu, Hawaii. After being crushed and passed through a 2-mm sieve, 1.7 
kg of soil (oven dry weight) was placed into 15-cm diameter plastic 

pots. The pots and soil were fumigated with 652 g methyl bronide and 14 

g chloropicrin m~^ for 2 days, then aerated for 21 days before planting. 

The soil pH was adjusted with CaOO^ to 6.5. Three levels of phosphorus 

were added (as KH2P0^); 14, 135 and 678 mg P per kg of soil. These 

rates of phosphate corresponded approximately to 0.005, 0.080 and 0.140 

mg P l”  ̂of phosphorus in 0.01 M CaCl2 extracts (1 g of oven-dry weight 

soil mixed with 10 ml of extracting solution), respectively. In all 

plantings, basal nutrients were mixed with the soil before it was trans­

ferred to pots. The nutrients were applied to each pot as KNO^f 513 
mg kg“ ;̂ MgS0^.7H20, 577 mg kg"^; ZnS0^.7H20, 32 mg kg"^; CuS0^.5H20,

19 mg kg"^; H^BO^, 13 mg kg"^; (NH^)gMo.^024. 4H2O, 22 mg kg“ .̂
Seeds of leucaena were scarified in concentrated H2S0  ̂for 

10 min, then rinsed four times with tap water and germinated in flats of 

fumigated sand. Five days after germination, six seedlings of leucaena 
were transplanted to each pot. About 500 g of coarse sand was placed on 

top of these pots and the pot were placed on greenhouse benches. The
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moisture content of the soil was maintained near field capacity through

regular watering by weighing. The average gravimetric soil moisture

content was 40%. A strain of Glcannus aggregatum Schenck & Smith onend.

Koske (Appendix 2) (Schenck and Smith, 1982; Koske, 1985) was isolated

fran the Poamoho Experiment Station and maintained in a greenhouse pot

culture. Appendix 3 shows the method followed for the isolation and

examination of VA it^corrhizal fungi from mineral soil (Huang, Yost and

Pinchin, 1985). The spores used in these experiments have been examined

and identified by Dr. N. C. Schenck, University of Florida, Gainesville
and Dr. R. E. Koske, University of Rhode Island, Kingston. Twenty-five

g of inoculum was added as a layer at a d^th of 2 cm to each pot before

transplanting the leucaena seedlings. Control pots received the same
amounts of root and sand from a pot culture of Glottus aggregatum
v4iich had been fumigated. Filtered washings fran both inocula were
added to each pot. These experiments were prepared and conducted during
April and May 1985 (Appendix 4).

Daily solar radiation was measured by a quantum sensor (LI-COR

Model LI-190, Lincoln, NE, USA) and a pyranoneter (LI-COR Model LI-200).
-1  —2The quantum flux density varied fran 500 to 1200 pE s m depending 

on cloud cover. Air temperature was recorded daily at noon and ranged 
from 25 to 32°C. Relative humidity varied frcm 75 to 95 %.
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Main Experiment

E^qperiment I: Daily Pinnule Sampling

The pinnule (Fig. 2) sampling method (Huang and Fox, 1984)

(Appendix 5 and 6) was used to monitor daily changes in P content of 

leucaena in order to assess nycorrhizal effectiveness. The experiment 

was a randomized complete block design with two treatments with or 

without mycorrhizal inoculation and three levels of soil P (described 

above). There were four replicates per treatment. A most recently 

fully-expanded pinnule was sampled daily from each pot beginning 5 days 

after inoculation. Pinnules were weighed after drying at 76°C for 12 h 

and then ashed at 500°C for 3 h in a muffle furnace. Phosphate was 

measured by the method of Murphy and Riley (1962).

Experiment II; Frequent Transpiration Measurement 

and Destructive Plant Harvesting

The experiment consisted of two treatments with or without 

nycorrhizal inoculation, three soil P levels (0.005, 0.080, and 0.140 mg 

P L )̂ and six harvests (5, 10, 15, 20, 25 and 30 days after 

inoculation). There were three replicates per treatment arranged in a 

randomized conplete block design. Four pots were prepared to measure 

the water evaporated from pots without plants. During the experiment.
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NONMYCORRHIZAL

MYCORRHIZAL

PINNULE

Fig. 2. Pinnules and leaves of mycorrhizal and nonmycorrliizal 
Leucaena leucocephala (actual size).



water loss was measured at intervals ranging fran 1 to 4 days, depending 

on the rate of water use. The plants were weighed to 0.1 g on an 

electronic balance (Sartorius Model 6100, New York, USA) generally at 

the same time on each sampling date. The mean daily water transpired 

per pot, E (g day ^), was adjusted for variation in free-water 

evaporation as follows: E = (dW - S)/{dT/D) where dW is the change in 

weight (g) since the previous weighing; S is the mean water loss 

directly fran the soil (g) estimated from four sample pots without 

plants; dT is the time interval in daylight hours; and D is daylength 
(h day”^). Plants from each treatment were harvested destructively 

at each of the 6 intervals after planting.

39

Supplementary Experiment

An attanpt was made to increase soil P sufficiently high in order 

to determine whether nonmycorrhizal leucaena plants could achieve growth 

and nutritional status equivalent to that of VA mycorrhizal plants. In 
this supplementary experiment, phosphorus was added as KH2P0  ̂at 

three levels: 0, 600 and 1800 mg per kg of soil (dry weight basis).
These rates of phosphate corresponded approximately to 0.013, 0.117 and 

0.429 mg P of phosphorus in 0.01 M CaCl2 extracts, respectively. 

After mixing with basal nutrients and P additions, 1.0, 1.3, 1.8 and 3.5 

kg of soils were placed into either 2.0 or 4.0 liter plastic pots. The 

4-liter pots were used for plants grown to 40 days to reduce the effects 

of restricted soil volume. The experiment consisted of two treatments
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(with or without nycorrhizal inoculation), three levels of soil P 

(0.013, 0.117 and 0.429 mg P L~^) and four harvests (12, 24, 32 

and 40 days after inoculation). There were three replicates per 

treatment. The general measuring and harvesting procedures were the 

same as in the main experiments.

Grcwth Measurement and Chemical Analysis

At each harvest, leaf area of all plants in each pot were measured 

by a LI-COR leaf area meter Model LI-3100 (Lincoln, ME, USA). Leaves 
which had senesced during the experiment were not included in the 

measurement and were retrieved frcm the pot surface as close as possible 

to thie time of abscission. Following harvesting, oven-dry weights and 
phosphorus content of the leaves were determined. Fresh and dry weights 

of leaves, stans and root dry weights were recorded. Length of feeder 

root was estimated by the modified line intersect method (Tennant,
1975). Preliminary tests using fine wires indicated that this method 
could predict wire lengths within 8% of the actual length. Root 
diameter was measured by averaging diameters of 200 root segments in 
each treatment using a compound microscope with micrometer disc at lOOX- 

200X magnification. Root area (RA) was calculated from RA = 2 X 3.1416 
X rL, where r = average root radius and L = root length. Roots frcm 
each saiiple were cleared and stained by the method of Philips and Hayman

(1970) for measurement of iiYCorrhizal colonization.

Nutrient concentration was determined in ball-milled subsamples of



plant tissue with an X-ray quantometer (Applied Research Laboratory 

Model 72000).
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An Analytical Model for the Dynamic VA Mycorrhizal Systan

SystOTi Structure

A compartment diagram of the soil-mycorrhiza-plant system is shown 

in Fig. 3. This diagram presents a series of external growth factors 
(e.g., water, nutrients, solar radiation), plant biomass (total dry 
weight), and assimilatory structures (leaf and root). The interfaces 
between the plant and atmosphere or the plant and soil were used to 

represent each of the main functional plant components, e.g., leaf area 
was associated with transpiration and photosynthesis and root area was 
associated with water and nutrient acquisition. Other functions 
represented in the diagram include growth (dry matter production), 
structural partition (assimilate allocation to leaf or root), and water 
and nutrient utilization. This model was used to suggest calculations 
and relationships describing the systan.

In the main experiment, the dynamic soil-mycorrhiza-plant system 

was divided into six growth stages, each of five day duration beginning 

5 days after inoculation. Fig. 4 illustrates the state and auxiliary 
variables of growth, water relations and nutrient acquisition of 
leucaena seedlings frcm a single harvest resulting frcm the analytical
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Fig. 3. Diagram of components and fluxes of radiation, carbon 
dioxide, water and nutrients and major physiological 
reactions in the soil-mycorrhiza-plant system.
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State variable; Variable describes plant quantitative characteristic at 
certain time (e.g. root dry weight and shoot dry weight).

Auxiliary variable; Variable derives frcm state variables (e.g. total 
dry weight and root/ shoot dry weight ratio).

Arrows point to auxiliary variables.

Figure 4. Schematic diagram of state and auxiliary variables used to 
quantify dry matter production, transpiration and nutrient 
absorption of Leucaena leucocephala seedlings from a single 
harvest.



model of the systan. Dry matter production, biomass allocation patterns 

and nutrient uptake and utilization efficiency of mycorrhizal and 

nonmycorrhizal plants were compared by mathematical growth analysis 

techniques (Evans, 1972). Abbreviations, definitions and formulas for 

the calculations of rate variables are given in Table 1.

There were 15 rate variables (Table 1) calculated from five 
variables of total dry weight (TEW), leaf area (lA), root area (RA), 

cumulative water transpired (CWT) and nutrient content (M). These 

variables were grouped into three functional parameters of the systan;
1) an assimilate parameter (total dry weight) which was determined by 

the interaction of carbon, water and nutrient metabolism, 2) growth form 

parameters (leaf area and root area) vdiich were determined by morphology 
and configuration, and 3) resource parameters (water and nutrients) 

which were determined by the supply, movement and accessibility to plant 

root and leaf surfaces.
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Assunptions

The following assumptions were used to obtain values of the rate 
variables for these experiments.

1) Mathematical analyses of growth were based on a siitple 

exponential growth equation. This approach assumes that the growth 
rate of a plant was related to its mass, which is generally true for 

young seedlings (Evans, 1972).
2) Nutrient absorption and water transpiration were assumed to be
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Table 1. Definitions, units, and mathanatical relationships of rate 
variables used in these studies.

Calculations require data from at least two harvests over a time 
interval, dT = length of harvest interval (days), TDWl and TDW2 = total 
plant dry weight between the intervals, respectively. lA, RA, CWT and M 
are the leaf area, root area, cumulative water transpired and tissue 
nutrient content, respectively., then;
1. Relative trani^iration rate = (In CWT2 - In CWri)/(CWT2 - CWTl)

X dr, (mg/g/day).
2. Relative growth rate = (In TEW2 - In TDW1)/(TDW2 - TDWl)

X dr, (mg/g/day).
3. Relative leaf area expansion rate = (In LA2 - In LA1)/(LA2 - LAI)

2 2X dr, (cm /on /day).
4. Relative root area expansion rate = (In RA2 - In RA1)/(RA2 - RAl)

2 2X dr, (cm /cm /day).
5. Relative nutrient accumulation rate = (In M2 - In Ml)/(M2 - Ml)

X dr, ()jmol/mol/day).
6. Water flux to root = (CWT2 - CWTl) X (In RA2 - In RA1)/(RA2 - RAl)

2X dr, (pg/cm /day).
7. Water flux to leaf = (CWT2 - CWTl) X (In LA2 - In LAI)/

(LA2 - LAI) X dr, (pg/cmVday).
8. Nutrient flux to root = (M2 - Ml) X (In RA2 - In RA1)/(RA2 - RAl)

2X dr, (nmol/cm /day).
9. Net assimilation rate= (TDW2 - TEWl) X (In LA2 - In IA1)/(LA2 - LAI)

2X dr, (mg/cm /day).
10. Unit root rate = (TDfrJ2 - TDWl) X (In RA2 - In RA1)/(RA2 - RAl) X dT,

2(mg/cm /day).
11. Conponent leaf production rate = (LA2 - LAI) X (In TDW2 - In TDWl)/

(TDW2 - TDWl) X dr, (cmVmg/day).
12. Conponent root production rate = (RA2 - RAl) X (In TDW2 - In TDWl)/

(TDW2 - TDWl) X dr, (cm^mg/day).
13. Water utilization rate = (TDW2 - TDWl) X (In CWT2 - In CWTl)/

(CWT2 - cwri) X dr, (pg/g/day).
14. Nutrient utilization rate = (TDW2 - TDWl) X (In M2 - In Ml)/

(M2 - Ml) X dr, (g/mol/day).
15. Nutrient mass flow rate = (M2 - Ml) X (In CWT2 - In CWTl)/

(CWT2 -CWri) X dr, (nmol/g/day).



uniformly distributed over the entire root or leaf surface.

3) Changes in the water-storage capacity of plant tissue were 

assumed to be small compared with the rate of water transpiration 

by plants. Total water uptake by all roots should therefore 

equal cumulative water transpired. In these experiments, frequent 

weighing (usually at one to two day intervals) should have minimized 

the bias in calculating the amounts of water transpired.
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Statistical Analysis

Analysis of variance procedures were used to estimate statistical 

significance of inoculation treatments at each harvest date. All data 
were analyzed by Statistical Analysis System procedures (SAS Institute, 
Inc., 1985) and significance was tested with F and Duncan's tests.
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Effects of Mycorrhizal Inoculation and P Fertilization

on Plant Dry Weight

Statistically significant data for plant dry weight from the main 

(Table 2) and supplanentary experiments (Table 3) are provided. 

Mycorrhiza X P fertilization interactions and P fertilization treatments 
were generally not significant. For this reason, nycorrhizal treatment 

means were used by combining different P fertilization treatments within 

each ii^corrhizal inoculation treatment of the main and sufplarentary 

e)q)eriments.

Daily Change in Pinnule P Status

Differences-in pinnule P content between mycorrhizal and 

nonmycorrhizal plants were divided into three major phases (Fig. 5). 

During phase one, 1 to 10 days after inoculation, differences in pinnule 
P contents were minor. An initial decline in the P contents of pinnules 

of both mycorriiizal and nonirycorrhizal plants probably resulted fran a 

decrease in P supply to the pinnules as seed P reserve were used.
During p^ase two, 11 to 24 days after inoculation, pinnule P 

contents of mycorrhizal plants were much greater than than that of
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Table 2. Statistical significance of effects of P fertilization and 
mycorrhizal inoculation on total dry weight of Leucaena 
leucocephala seedlings (main experiment).

Days after inoculation

Solu|ion
Treatment 5 10 15 20 25 30

mg L ^ ----------------------------------g  .

Total dry weight

0.005 Mycorrhizal
Nonmycorrzal

0.26
0.26

0.47
0.52

0.83
0.73

1.29
1.10

1.74
1.28

4.25
1.51

0.080 Mycorrhizal
Nonmycorrzal

0.25
0.25

0.41
0.40

0.66
0.66

1.05
1.17

1.71
1.45

3.61
1.82

0.140 Mycorrhizal
Nonmycorrzal

0.26
0.23

0.46
0.53

0.76
0.75

1.13
1.30

2.31
1.60

3.86
2.55

Mycorrhizal NS NS NS * ** **

Soil P NS * ** NS * *

Mycorrhizal X Soil P NS NS NS NS NS NS

# Extracted by 0.01 M CaCl2 solution.
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Table 3. Statistical significance of effects of P fertilization and 
n^corrhizal inoculation on total dry weight of Leucaena 
leucocephala seedlings (supplanentary experiment).

Solu|ion
Treatment

Days after inoculation

12 24 32 40

luy J-i cI ---------
Total dry weight

0.013 Mycorrhizal 0.46 1.11 2.43 6.84
Nomtycorrzal 0.40 1.01 1.44 1.39

0.117 Mycorrtiizal 0.51 1.57 4.54 10.36
Nonrrycorrzal 0.43 1.46 2.88 5.47

0.429 Mycorrhizal 0.53 2.26 5.44 12.24
Nonmycorrzal 0.50 2.00 4.10 9.74

Mycorrhizal ** * ** **

Soil P ** ** ** **

Mycorrtiizal X Soil P NS NS NS -k

# Extracted by 0.01 M CaCl2 solution.
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DAYS AFTER INOCULAT ION

Fig. 5. Time course of change in pinnule P content of
mycorrhizal and nonmyccorhizal Leucaena leucocephala
seedlings.



noranycorrhizal plants. In nonmycorrhizal plants, there were snail 

increases in pinnule P content during the first two days of this phase, 

then P concentration gradually dro^jed (Fig. 6). The decrease in 

pinnule P concentration in nonitycorrhizal plants was ccmparable to that 

observed in phase one. Pinnule dry weight (Fig. 7) of nonnycorrhizal 

plants however, increased slightly during phase two.

By 12 days after inoculation differences were distinctly evident 

between pinnule P contents of mycorrhizal and nonmycorrhizal plants 

(Fig. 5). Pinnule-P content of mycorrhizal plants increased from 1.7 to 

6.2 pg then gradually declined until the beginning of phase 3 (25 to 30 

days after inoculation). Five pulses in pinnule-P concentration (Fig.

6) were observed at: 12, 15, 18, 21 and 24 days after inoculation.

These pulses occurred approximately 1 to 2 days before peaks in pinnule 

dry weight (Fig. 7). The increases in dry weight were ctoserved 15, 17, 

19, 22 and 25 days after inoculation. This sequential pattern was 
probably due to absorption, growth and dilution effects.

Following maximum P accumulation in the pinnule at the end of 

phase two, growth of the pinnule tended to decrease P concentration 

even though P content of pinnules has continued to increase. There 

were also more pinnules, but of smaller sizes, which may have been 

responsible for decreased P contents per pinnule. Nevertheless, pinnule 

P concentrations (Fig. 6) remained between 0.14 and 0.16%, which was 

about double the P concentrations in pinnules of nonirycorrhizal plants 

(0.06 to 0.08%). By the end of phase three, the average pinnule dry 

weight of nonmycorrhizal plants (1.7 mg) had declined to almost half 
that of mycorrhizal plants (3.2 mg) (Fig. 7).
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DAYS AFTER IN O C U LA T IO N

Fig. 6. Time course of change in pinnule P concentration of
mycorrhizal and nonmycorrhizal Leucaena leucocephala
seedlings.
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Fig. 7. Time course of change in pinnule dry weight of
mycorhizal and nonmycorrhizal Leucaena leucoceT^iala
seedlings.



Results from the supplementary experiment were similar to the main 

experiment except for higher P fertilization treatments and larger pot 

size. These modifications were made in an attaint to obtain similar 

growth in nonmycorrhizal treatments as in mycorrhizal ones. As shown in 

Figures 8, 9 and 10, differences in pinnule P contents between 

mycorrhizal and nonmycorrhizal plants were greatest in plants grown at 

the low soil P level whereas these differences decreased with increasing 

P applications. However, the nonitycorrhizal leucaena seedlings did not 

have as high a pinnule P content as the nycorrhizal plants at the 

highest soil P level (0.429 mg P L in solution, equilibrated with 

0.01 M CaCl2 solution). The minimum pinnule P content of 

nonnycorrhizal plants was about 0.7 pg per pinnule (Fig. 8) which was 
identical to the result of a previous experiment (Appendix 6).
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Daily Changes in Transpiration

Water transpired by nycorrhizal and nonmycorrhizal plants as a 

function of time is shown in Fig. 11. As plant growth progressed, an 

oscillating pattern of increasing transpiration was ctoserved in both 

mycorrhizal and nonmycorrhizal plants. Daily transpiration appeared to 

have responded to environmental variables such as solar radiation 

(Appendix 7). In general, transpiration increased with increasing leaf 

area. By the sixth measurement (11-14 days after inoculation), 

transpiration by nycorrhizal plants was significantly greater than that 

of nonmycorrhizal plants (I5D 5% = 2.0 g of water tran^ired).
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DAYS AFTER INOCULATION

Fig. 8. Time course of change in pinnule P content of
mycorrhizal and nonmycorhizal Leucaena leucocephala

seedlings grown in soil with 0.013 mg P L
(supplementary experiment).

-1
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DAYS AFTER INOCULATION

Fig. 9. Time course of change in pinnule P content of
mycorrhizal and nonmycorhizal Leucaena leucocephala
seedlings grcwn in soil with 0.117 mg P L 
(supplementary experiment).

-1
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DAYS AFTER INO CULAT IO N

Fig. 10. Time course of change in pinnule P content of
mycorrhizal cind nonmycorhizal Leucaena leucocephala

seedlings grown in soil with 0.429 mg P L
(supplementary experiment).

-1
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DAYS AFTER INO CULAT IO N

Fig. 11. Time course of transpiration of mycorrhizal and
normycorrhizal Leucaena leucocephala seedlings.



Transpiration varied more during cloudy days than during sunny days 

(Fig. 11). The coefficients of variation at the 7th, 10th and 14th 

measurements (15, 21 to 22 and 28 to 29 days after inoculation, 

respectively) were higher than those taken before or after the low 

transpiration days (Appendix 8). Evidently stcxnatal conductance, leaf 

orientation or other plant factors within treatments responded 

differently to environmental variation.

In the supplementary experiment, itycorrhiza and high levels of P 

also led to increased transpiration of leucaena seedlings (Figures 12,
13 and 14). Daily transpiration was significantly higher in mycorrhizal 

plants. Low soil P levels (0.013 mg P L  ̂ in solution) led to the 

greatest difference in transpiration between mycorrhizal and 

nomrycorrhizal plants (Fig. 12). Under high soil P levels (0.429 mg P 

l”  ̂ in soil solution), n^corrhizal plants still transpired more water 
than nonmycorrhizal plants over the growth period (Fig. 14), and they 
responded to environmental fluctuation at approximately the same time 

but in greater magnitude.
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Nutrient Acquisition

Changes in nutrient concentrations, nutrient contents and nutrient 

content ratios over time of mycorrhizal and nonn^corrhizal plants are 

given in Tables 4, 5 and 6, respectively.
Concentrations in leaves of most nutrients decreased during 5 to 10 

days after inoculation (Table 4). At the 10th day after inoculation.
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DAYS AFTER INO CULAT IO N

Fig. 12. Time course of change in transpiration of mycorrhizal 
and nonnycorhizal Leucaena leucocephala seedlings
grcwn in soil with 0.013 mg P L  ̂ (supplementary
experiment).
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DAYS AFTER IN O C U LAT IO N

Fig. 13. Time course of change in transpiration of nycorrhizal 
and nonmycorhizal Leucaena leucocephala seedlings

grown in soil with 0.117 mg P L
experiment).

-1 (supplementary
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MYCOR.

DAYS AFTER INOCULATION

Fig. 14. Time course of change in transpiration of mycorrhizal 
and nonrrycorhizal Leucaena leucocephala seedlings

grown in soil with 0.429 mg P L
experiment).

-1 (supplCT\entary
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Table 4. Effect of mycorrhizal inoculation on tissue nutrient 
concentration in Leucaena leucocephala seedlings.

Treatment

Days after inoculation

5 10 15 20 25 30

Q.% ~

Root P concentration
Mycorrhizal 0.36 a* 0.23 a 0.19 a 0.23 a 0.25 a 0.26 a
Nonmycorrhizal 0.39 a 0.17 b 0.14 b 0.15 b 0.09 b 0.08 b

Shoot P concentratic*!
Mycorrhizal 0.33 a 0.25 a 0.23 a 0.25 a 0.32 a 0.30 a
Nonitycorrhizal 0.35 a 0.25 a 0.18 b 0.18 b 0.12 b 0.11 b

Shoot K concentration
Mycorrhizal 2.21 a 2.81 a 3.45 a 3.46 a 3.79 a 3.37 a
Noniiycorrh i zal 2.21 a 3.19 a 3.10 b 3.04 b 2.59 b 2.35 b

Shoot S concentration
Mycorrhizal 0.63 a 0.49 a 0.40 a 0.35 a 0.35 a 0.25 a
Nonmycorrhizal 0.61 a 0.45 a 0.36 b 0.31 b 0.27 b 0.24 b

Shoot Ca concentration
Mycorrhizal 1.22 a 1.54 a 1.54 a 1.47 a 1.49 a 1.27 a
Nonitycorrhi zal 1.24 a 1.51 a 1.51 a 1.43 a 1.38 b 1.29 a

Shoot Mg concentration
Mycorrhizal 0.47 a 0.51 a 0.43 a 0.41 a 0.38 a 0.36 a
Nonnycorrhi zal 0.47 a 0.47 a 0.42 a 0.38 b 0.35 b 0.32 b

# Means in the same columns within harvests followed by the same letter
are not significantly different at the 5% level.
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Table 5. Effect of nycorrhizal inoculation on tissue nutrient content 
and P translocation in Leucaena leucocephala seedlings.

Treatment

Days after inoculation

5 10 15 20 25 30

jjmol----

Root P content
Mycorrhizal 5.5 a* 10.9 a 15.8 a 25.1 a 47.8 a 113.4 a
Noniiycorrhizal 5.8 a 8.1 b 10.4 b 19.4 b 16.6 b 21.1 b

Shoot P content
Mycorrhizal 22.3 a 24.1 a 36.6 a 64.8 a 141.6 a 248.9 a
Nonmycorrhizal 22.7 a 26.4 a 27.6 b 44.6 b 35.9 b 45.7 b

Shoot K content
Mycorrhizal 117 a 215 b 437 a 725 a 1317 a 2214 a
Nonnycorrhizal 113 a 272 a 386 b 606 b 596 b 731 b

Shoot S content

Mycorrhizal 41 a 45 a 61 a 89 a 148 a 200 a
Nonnycorrhizal 38 a 46 a 54 b 76 b 76 b 90 b

Shoot Ca content
Mycorrhizal 63 a 113 a 189 a 298 a 499 a 814 a
Nonmycorrhizal 62 a 126 a 182 a 279 a 308 b 388 b

Shoot Mg content
Mycorrhizal 40 a 62 a 87 a 135 a 211 a 381 a
Nomtycorrhizal 39 a 63 a 80 b 123 b 129 b 158 b

P translocation = (shoot P content/total P content) :4 100%
Mycorrhizal 80 a 69 b 70 b 71 a 75 a 69 a
Nonmycorrhi zal 80 a 77 a 73 a 70 a 68 b 68 a

# Means in the same columns within harvests followed by the same letter
are not significantly different at the 5% level.
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Table 6. Effect of itycorrhizal inoculation on shoot nutrient content 
ratio in Leucaena leucocephala seedlings.

Days after inoculation

Treatment Nutrient 5 10 15 20 25 30

Shoot nutrient content ratio^ (K = 100)

K 100 100 100 100 100 100
Ca 54 53 43 41 38 37

Mycorrhizal Mg 34 29 20 19 16 17
S 35 21 14 12 11 9
P 19 11 8 9 11 11

Shoot nutrient content ratio* (K = 100)
K 100 100 100 100 100 100

Non- Ca 55 46 47 46 52 53
itycorrhizal Mg 34 23 21 20 22 22

S 34 17 14 13 13 14
P 20 10 7 7 6 6

# Numbers indicate the ishoot nutrient content ratios relative to K
within each growth period and it^corrhizal treatment.



root P concentrations in mycorrhizal plants (0.23%) were significantly

higher than in nonn^corrtiizal plants (0.17%). This increase

corresponded to approximately 17% iiycorrhizal infection. Differences in

shoot P, K, and S concentrations were significant five days later.

These differences continued throughout the experiment. Shoot Mg and Ca

concentrations differed significantly 20 to 25 days after inoculation.

Root and shoot P concentrations in nonmycorrhizal plants declined

continuously. For example, 30 days after inoculation root and shoot P

of mycorrhizal plants were about 0.26 and 0.30%, respectively. In

nonmycorrhizal plants these were 0.08 and 0.11%, respectively. Changes
in total P contents (mg/pot) of mycorrhizal and nonttycorrhizal plants

(plotted in a log scale) as a function of time are presented in Fig. 15.

P content of itycorrhizal plants increased in a linear fashion dog^
**

total P content = -3.34 + 0.11 day, r = 0.98 ). In contrast,
nonmycorrhizal plants slowly accumulated P (log^ total P content = -2.99

•kit

+ 0.05 day, r = 0.84 ) fron the soil. As foliar abscission occurred

from 21 to 23 days after inoculation, there was a slight decline in P 

content in nomt^corrhizal plants by the 25th day after inoculation (Fig. 

15).
The ratio of shoot P to total P content (Table 5) in mycorrhizal 

plants was significantly lower than that in nonmycorrhizal plants for 
harvests at 10 and 15 days after inoculation but was higher than 

nonmycorrhizal plants at 25 days inoculation.
Shoot nutrient contents relative to K in leucaena seedlings were 

calculated for each harvests (Table 6). At 5 days after inoculation, 

there was no difference in these nutrient ratios between ir^corrhizal and

66
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DAYS AFTER INO CULAT IO N

Fig. 15. Time course of total P content of mycorrhizal and
nonnycorrhizal Leucaena leucocephala seedlings.



nomt^corrhizal plants. After that, these nutrient/K ratios changed 

every 10 days. Ratios of shoot Ca, Mg and S to K in mycorrhizal plants 

were lower towards the end of experiment. However, the ratio of shoot P 

content to K content in mycorrhizal plants was nearly constant (between 

9 to 11%). In contrast, 10 days after inoculation the ratio of shoot P 

content to K content in nonmycorrhizal plants at began to decrease to 

approximately 6 to 7%. The P/K ratio of nonmycorrhizal plants was 

especially low and high in other nutrient/K ratios as conpared to values 
in n^corrhizal plants, probably indicating P deficiency in 
nonmycorrhizal seedlings. Although we have shown that approximately 10 

days after inoculation P accumulation first appeared in nycorrhizal 

roots. It is not definitely clear vrtiich element limits growth. We have 

assumed that it was P that was limited nonmycorrhizal plant growth.

Data in Table 7, which is calculated using the nutrient concept of 

Greenwood (1976), demonstrates that nonrtycorrhizal plants had higher 
nutrient stress factor for P than for other nutrients. P deficiency was 

probably the most limiting factor in slowing nonir^corrhizal plant 

growth.
Content of P, K, S, Ca and Mg in relation to cumulative water 

transpired during 30 days are plotted in Fig. 16 to 20. As indicated 
in Fig. 16, there were marked differences in total P content as well as 
cumulative water transpired between ir^corrhizal and nonitycorrhizal 

plants. Both mycorrhizal and nonmycorrhizal plants displayed S-shaped 

response curves. As shown in Fig. 16, an estimate of initial 

differences between mycorrhizal and nonmycorrhizal of plants was 400 g 
of water transpired per pot and which occurred about 10 days after

68
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Table 7. Linear regression coefficients for relative tissue nutrient
contents and relative total dry weight for mycorrhizal and 
nonmycorrhizal, and nutrient stress factor of nonirycorrhizal 
Leucaena leucocephala seedlings.

Nutrient Treatment Intercept (a)^ Slope (b) r

Nutrient stress 
factortt of 

nonnt/corrhizal 
seedlings

Total Mycorrhizal -2.33 1.03
**

0.99
P Nonmycorrhizal 6.73 0.25

**
0.88 §0.76

Shoot Mycorrhizal 0.51 1.03
**

0.99
K Nonmycorrhizal 4.43 0.62 **

0.96 0.40

Shoot Mycorrhizal 16.02 0.90
**

0.95

S Nonmycorrhizal 16.19 0.60
**

0.98 0.33

Shoot Mycorrhizal 4.54 0.99
**

0.99

Ca Nonn^corrhi zal 4.28 0.91
**

0.99 0.09

Shoot Mycorrhizal 5.38 0.96
**

0.98

Mg Nonmycorriiizal 7.64 0.71
**

0.98 0.26

# Relative tissue nutrient content (Y) = 100% X (the tissue
nutrient content of each seedling between harvests/the highest 
tissue nutrient content of a seedling between harvests).

## Relative total dry weight (X) = 100% X (the total dry weight of 
each seedling between harvests/the highest dry weight of a 
seedling between harvests).

t Y = b + a X.
tt Nutrient stress factor of nonmycorrhizal plant = ”

^ o n n ^ c o r .  ^ ̂ ^ y c o r .   ̂*

§ For example, P stress factor of nonmycorrhizal plant = ((1.03 - 
0.25)/1.03) = 0.76.

** Significantly different at 0.01 level.
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CUMULATIVE W ATER  TRANSPIRED ( g )

Fig. 16. Total P content as a function of cumulative water
transpired by mycorrhizal and nonrrycorrhizal
Leucaena leucocephala seedlings.
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CUMULATIVE W ATER  TRANSPIRED ( g )

Fig. 17. Shoot K content as a function of cumulative water
transpired by nycorrhizal and nonnycorrhizal
Leucaena leucocephala seedlings.
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Fig. 18.
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CUMULATIVE W A TER  TRANSPIRED ( g )

Shoot S content as a function of cumulative water
transpired by mycorrhizal and nonmycorrhizal
Leucaena leucocephala seedlings.
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CUMULATIVE W ATER  TRANSPIRED ( g )

Fig- 19. Shoot Ca content as a function of cumulative water
transpired by mycorrhizal and nonmycorrhizal
Leucaena leucocephala seedlings.
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Fig. 20. Shcot Mg content as a function of cumulative water
transpired by mycorrhizal and nonmycorrhizal
Leucaena leucocephala seedlings.



inoculation. Plots of K (Fig. 17) and S content (Fig. 13) also showed 

an S-shaped pattern. The initial lag phase of K and S contents was not 

as apparent as that of P, however. In contrast to total P content, 
plots of shoot Ca and Mg contents against cumulative water transpired 

were linear (Figs 19 and 20) and the slopes of those curves were similar 

regardless itycorriiizal status.
The relationship between total P content and root area of 

rrycorrhizal and normycorrhizal plants is plotted in Fig. 21. In 
nonnycorriiizal plants, total P content and root area were not closely 

related. In contrast, total P contents in nycorrhizal plants were 

closely correlated with root area. P concentration in normycorrhizal 
plant roots was low (Table 4) which might have limited root absorptive 

ability. Slopes of total P content plotted vs. the product of root area 

and root P concentration were similar (Fig. 22).
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Growth and Assimilate Partitioning

Differences in growth and assimilate partitioning between 

nycorrhizal and nonnycorrhizal plants are summarized in Table 8. By 15 
days after inoculation, leaf area of nycorrhizal plants was 

significantly greater than that of nonnycorrhizal plants vdiile shoot dry 

weight significantly differed at 25 days after inoculation (Table 8). 
Root dry weights of nonnycorrhizal plants, however, were greater than 

those of mycorrhizal plants at 20 days after inoculation but with no 

differences apparent at 25 days. The general trends observed in



76

3 6 0 -

3 3 0 -

3 0 0 -

390-

270-
o 
E3.—  240H
UJ
Ou

<HO

2 1 0 -

180 --

150 -

120 -

9 0 -

60^

3 0 -

0-t " I .......................... I .............................I ...................... I "  ’    I "

100 200  300  400  500

ROOT AREA (c m 2 )

600 700

Fig. 21. Total P content as a function of root area of
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seedlings.
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Fig. 22. Total P content as a function of the product of root
area and root P concentration of mycorrhizal and
nonmycorrhizal Leucaena leucocephala seedlings.
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Table 8. Effect of mycorrhizal inoculation on root infection, dry weight 
of shoots and roots, area of leaf and roots in Leucaena 
leucocephala seedlings.

Treatment

Days after inoculation

5 10 15 20 25 30

Mycorrhizal infection (%)
Mycorrhizal 6.9 a^ 17.3 a 22.6 a 28.0 a 41.0 a 47.1 a
Nonmycorrh i zal 0 b O b  O b  O b 0 b 0 b

Shoot dry weight (g)

Mycorrhizal 0.21 a 0.30 a 0.50 a 0.82 a 1.35 a 2.57 a
Nonmycorrh i zal 0.20 a 0.33 a 0.49 a 0.78 a 0.89 b 1.21 b

Root dry weight (g)

Mycorrhizal 0.05 a 0.15 a 0.25 a 0.34 b 0.58 a 1.33 a
Nonray corrti i zal 0.05 a 0.15 a 0.23 a 0.41 a 0.55 a 0.76 b

2Leaf area (cm )

Mycorrhizal 31 a 60 a 109 a 193 a 274 a 480 a
Nonmycorrhizal 30 a 68 a 98 b 168 b 146 b 177 b

2Root area (cm )
Mycorrhizal 49 a 67 a 114 a 190 a 346 a 590 a
Nonmycorrh i zal 48 a 66 a 108 a 211 a 336 a 399 b

# Means of each variable in the same columns within harvests followed by 
the same letter are not significantly different at the 5% level.



increasing total dry weight of mycorrhizal and nonn^corrhizal plants 

were shewn by the ejqxsnential pattern (Fig. 23). There were no 

differences between nycorrhizal and ncsTmycorrhizal plants in total dry 

weight during 5 to 20 days after inoculation. Data from subsequent 

harvests (25 and 30 days), however, reflect enhanced accumulation of P 

in mycorrhizal plants.

Root weight to shoot weight ratio (Fig. 24) and root area to leaf 

area ratio (Fig. 25) varied with hairvests according to the different 

patterns of assimilate partitioning between rtycorrhizal and 

nonmycorrhizal plants. At 10 days after inoculation, mycorrtiizal plants 

had a higher ratio of root area to leaf area than the nonmycorrhizal 

plants, however by 20 days after inoculaticsi the relation reversed.

Nonnycorrhizal plants began abscising leaves after 21 to 24 days 

resulting in temporarily reduced leaf area at the harvest made 25 days 

after inoculation. P content of abscised leaves was very low (ca. 0.3 

)jg P per pinnule) compared with the content of attached pinnule (ca. 1.5 

pg), suggesting that approximate 80% of the leaf P was translocated 

before leaf abscission.

Estimated total root area per pot was of the same order of 
magnitude as the leaf area per pot (Table 8). Mycorrhizal plants had a 

significantly lower ratio of root area to leaf area than nonmycorrhizal 
plants. From day 15 to day 20, nonrtycorrhizal plants apparently 

increased root area in response to P deficiency (Table 8) while P 

concentration in nonmycorrhizal roots dropped frcm 0.15 to 0.09% (Table

4).
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Fig. 23* Time course of total dry weight of mycorrhizal and
nonnycorrhizal Leucaena leucocephala seedlings,
seedlings.
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DAYS AFTER INOCULATION

Fig. 24. Time course of root dry weight/shoot dry weight of
nycorrhizal and nonn^corrhizal Leucaena leucocephala
seedlings.
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DAYS AFTER INOCULATION

Fig. 25. Time course of root area/leaf area of mycorrhizal and
nonmycorrhizal Leucaena leucocephala seedlings.
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Water Relations and Leaf Morphology

Water transpiration and leaf measurements are listed in Table 9. 

Beginning 15 days after inoculation, the amount and rate of 
transpiration in mycorrhizal plants was higher than in nonmycorrhizal 

plants whereas the cumulative water transpiration was significantly 

different only at 20 days after inoculation. Significant differences in 
leaf moisture content (leaf fresh weight/leaf dry weight) during the 15 

to 25 days interval and specific leaf area (leaf area/leaf dry weight) 

during the 15 to 30 days interval were observed between mycorrhizal and 
nonmycorrhizal plants. After a drastic increase in cumulative 

transpiration, mycorrhizal plants transpired about 120 g of water per 

pot per day (as much as 50% of the available water) at 30 days after 
inoculation. The additional water transpired by mycorrhizal plants 

probably resulted in increased water stress. This was apparent from 

the reduced leaf moisture content at the 30 days harvest.
Correlations between total dry weight, leaf area, root area and 

cuimulative water transpiration are shown in Table 10. These four 

variables were closely related. Coefficients of correlation were 
smaller, probably because of the rapid response of leaf area to P 

stress.

Table 11 summarizes the significant differences between mycorrhizal 

and nonmycorrhizal plants; growth, water transpiration and nutrient 

acquisition of each harvest. These parameters were used to evaluate the 

mycorrhizal effects on early physiological events in leucaena seedlings.
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Table 9. Effect of mycorrhizal inoculation on daily water transpired, 
cumulative water transpired, transpiration rate, water use 
efficiency, leaf moisture content and specific leaf area of 
Leucaena leucocephala seedlings.

Treatment

Days after inoculation

c 10 15 20 25 30

Daily water transpired (g)
Mycorrhizal 23.6 a# 29.0 a 31.0 a 50.5 a 73.6 a 120.5 a
Nonnycorrhizal 22.8 a 28.7 a 27.6 b 38.3 b 30.8 b 40.2 b

Cumulative water transpired (g)

Mycorrhizal 103 a 286 a 432 a 624 a 972 a 1561 a
Nonmycorrhizal 91 a 314 a 401 a 506 b 744 b 935 b

-2 -1Transpiration rate (g m sec )

Mycorrhizal 0.28 a 0.12 a 0.06 a 0.06 a 0.06 a 0.06 a
Nonmycorrhizal 0.18 a 0.11 a 0.04 b 0.05 a 0.05 b 0.07 a

Water use efficiency (g kg ■1)
Mycorrhizal 2.56 a 1.59 a 1.76 a 1.88 b 1.97 a 2.50 a
Nonmycorrhizal 2.73 a 1.55 a 1.79 a 2.36 a 1.94 a 2.08 b

Leaf moisture content
Mycorrhizal 4.13 a 4.49 a 4.67 a 4.92 a 5.11 a 4.51 a
Nonit^corrhi zal 4.03 a 4.63 a 4.34 b 4.42 b 4.68 b 4.51 a

Specific leaf area (cm^ mg'■')
Mycorrhizal 2.28 a 3.22 a 3.26 a 3.42 a 2.92 a 2.80 a
Nonmycorrhizal 2.75 a 3.25 a 2.97 b 3.02 b 2.42 b 2.23 b

# Means of each variable in the same column within each harvest date
followed by the same letter are not significantly different at the 5%
level. Coiparisons are valid only within each harvest.
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Table 10. Correlation coefficients between total dry weight, cumulative 
water trani^ired, leaf area, root area of mycorrhizal and 
nonmycorrhizal Leucaena leucocephala seedlings.

Parameters Mycorrhizal Nonnycorrhizal

**

r -------------

**Total dry weight vs. Cumulative water transpired 0.99 0.97

** **Total dry weight vs. Leaf area 0.99 0.89

** **Total dry weight vs. Root area 0.99 0.98

** **Cumulative water transpired vs. Leaf area 0.98 0.82

** ■k*Cumulative water transpired vs. Root area 0.99 0.98

** **Leaf area vs. Root area 0.98 0.79

** Significantly different at 0.01 level.
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Table 11. The sequence of nutrient concentration and growth events
following mycorrtiizal inoculation of Leucaena leucocephala 
seedlings.

Plant
parameters

Days
after

inoculation

Ccmparisons between 
n^corrhizal (M) and 

nonmycorrhizal (N) plants

Pinnule P concentration 
Pinnule P content 
Pinnule dry weight

Root P concentration 
Shoot P concentration 
Shoot K concentration 
Shoot S concentration 
Shoot Mg concentration 
Shoot Ca concentration

Root/shoot ratio 
(dry weight basis)
Root/leaf ratio 
(area basis)
Leaf area 
Root area 
Root dry weight

Shoot dry weight 
Total dry weight

Daily water transpired 
Transpiration rate 
Leaf moisture content 
Specific leaf area 
Cumulative water transpired 
Water use efficiency

12 M >

i#
M > N
M < N
M > N

10 M > N
15 M > N
15 M > N
15 M > N
20 M > N
25 M > N
10## M > N
20
10**
20**

M < N
M > N
M < N

^^##
^°##20

M > N
M > N
M < N
M > N

25 M > N
25 M > N

11-14 M > N
15 M > N
15 M > N
15 M > N
2°##2o!;
30**

M > N
M < N
M > N

#

# Result either M > N or M < N was significantly different at the 5% 
level.

## Indicate two or three alternate differences between mycorrhizal and
nonitycorrhizal treatments.



Differences in state variables (cf. Fig. 4), except for pennule dry 

weight, root area and root dry weight, were statistically significant 

between nycorrhizal and nonitycorrhizal plants. Once the difference 

appeared it remained consistent during subsequent harvests.
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Rates of Physiological Processes

Relative growth rates, relative leaf area and root area expansion 

rates, and relative water transpiraticai rates are presented in Table 12. 
Mycorrhizal plants had a nearly constant relative growth rate during the 

growth period, indicative of exponential growth (Fig. 21).

During the first harvest interval (5 to 10 days after inoculation), 
nonmycorrhizal plants showed significantly greater relative growth rate, 

relative leaf area expansion rate (Table 12), net assimilation rate and 

unit root area rate and canponent leaf production rate (Table 13) than 

that of mycorrhizal plants.
During the second harvest interval (10 to 15 days after 

inoculation), however, mycorrhizal plants showed a significantly higher 
relative leaf area expansion rate (Table 12) and canponent leaf 

production rate (Table 13) than nonn^corrhizal plants. These results 

were paralleled by significantly different P accumulation rate (Table 
14), P flux to roots (Table 15) and P mass flow rate (defined as the 
changes of P content per unit of time per unit of cumulative water 

transpired) (Table 16). These data are consistent with enhanced P
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Table 12. Effects of nycorrhizal inoculation on relative growth rate,
relative transpiration rate, relative leaf area expansion rate 
and relative root area expansion rate of Leucaena 
leucocephala seedlings.

Harvest interval, days after inoculation

Treatment 5-10 10-15 15-20 20-25 25-30

Relative growth rate (mg g~^day
Mycorrhizal
Nonmycorrhizal

11 b* 
13 a

10 a 
8 a

9 a 
10 a

10 a 
4 b

14
6
a
b

Relative transpiration rate (mg g ^day
Mycorrhizal
Nonmycorrhizal

21 b 
25 a

8 a 
5 a

7 a 
4 b

9 a 
7 a

9
4
a
b

Relative leaf area expansion 2 -2 -1 rate (cm cm day )
Mycorrhizal
Nonmycorrhizal

0.013 b 
0.016 a

0.012 a 
0.007 b

0.011 a 
0.011 a

0.006 a 
-0.003 b

0.012
0.003

a
b

Relative root area expansion 2 -2 —1 rate (cm cm day )
Mycorrhizal 
Nonny corrh i zal

0.006 a 
0.006 a

0.011 a 
0.010 a

0.010 b 
0.013 a

0.012 a 
0.009 b

0.011
0.003

a
b

# Means of each variable in the same columns within harvests followed by 
the same letter are not significantly different at the 5% level.
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Table 13. Effects of nycorrhizal inoculation on net assimilation rate, 
unit root rate, ccnponent leaf production rate, and conponent 
root production rate of Leucaena leucocephala seedlings.

Treatment

Harvest interval, days after inoculation

5-10 10-15 15-20 20-25 25-30

Net assimilation rate —2 —1(mg cm day )
Mycorrhizal 0.86 b* 0.75 a 0.56 a 0.64 a 1.12 a
Nonmycorrhizal 1.01 a 0.58 a 0.73 a 0.32 b 0.60 b

Unit root rate (mg cm" day” )̂
Mycorrhizal 0.67 b 0.69 a 0.55 a 0.58 a 0.87 a
Nonrtycorrhi zal 0.84 a 0.55 a 0.61 a 0.19 b 0.27 b

Ccrponent leaf production rate (cm^ mg ^ day
Mycorrhizal 1.93 b 1.94 a 2.44 a 0.85 a 1.27 a
Noniiy corrh i zal 2.65 a 1.03 b 1.69 a 0.96 a 0.31 b

Ccnponent root production rate 2 -1(cm mg day“ )̂
Mycorrhizal 0.73 a 1.79 a 1.93 a 2.63 b 1.32 a
Nomtycorriiizal 0.80 a 2.01 a 2.94 a 5.39 a 0.45 b

# Means of each variable in the same columns within harvests followed by 
the same letter are not significantly different at the 5% level.
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Table 14. Effects of mycorrhizal inoculation on relative nutrient 
accumulation rates of Leucaena leucocephala seedlings.

Treatment

Harvest interval, days after inoculation

5-10 10-15 15-20 20-25 25-30

Total P accumulation rate

Mycorrhizal 4.5 a# 8.0 a 10.7 a 14.7 a 13.4 a
Nonmycorrhizal 3.7 a 2.1 b 10.0 a -4.2 b 4.3 b

Shoot K accumulation rate

Mycorrhizal 11.5 b 14.6 a 10.0 a 11.7 a 10.9 a
Nonmycorrhizal 17.3 a 7.1 a 9.0 a -0.6 b 3.4 b

Shoot S accumulation rate
Mycorrhizal 4.1 a 6.2 a 7.5 a 9.9 a 6.4 a
Nonnycorrhizal 1.8 a 3.0 b 6.9 a -0.3 b 3.0 b

Shoot Ca accumulation rate
Mycorrtiizal 11.7 b 10.2 a 9.1 a 10.1 a 10.0 a
Nonnycorrhizal 13.9 a 7.6 b 8.5 a 1.8 b 4.0 b

Shoot Mg accumulation rate
Mycorrhizal 8.9 a 6.6 a 8.9a 8.7a 12.0 a
Nonny corrh i zal 9.7 a 4.6 a 8.5 a  0.8b 3.4 b

# Means of each variable in the same column followed by the same letter
are not significantly different at the 5% level. Corparisons are
valid only within each harvest interval.
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Table 15. Effects of mycorrhizal inoculation on nutrient fluxes to roots 
of Leucaena leucocephala seedlings.

Treatment

Harvest interval, days after inoculation

5-10 10-15 15-20 20-25 25-30

-2 ■1

Total P flux

Mycorrhizal 25 a* 40 a 50 a 75 a 77 a
Nonity CO rrh i zal 22 a 9 b 34 a -9 b 8 b

Shoot K flux
Mycorrhizal 335 b 504 a 386 a 448 a 399 a
Nonmycorrh izal 563 a 269 b 287 a -11 b 70 b

Shoot S flux

Mycorrhizal 13 a 37 a 38 a 45 a 24 a
Nonitycorrhizal 30 a 18 b 29 a -1 b 7 b

Shoot Ca flux

Mycorrhizal 176 b 171 a 147 a 153 a 139 a
Nonmycorrhizal 226 a 135 a 125 a 21 b 42 b

Shoot Mg flux

Mycorrhizal 79 a 55 a 65 a 57 a 75 a
Nonnycorrhizal 88 a 39 a 55 a 4 b 15 b

# Means of each variable in the same column followed by the same letter
are not significantly different at the 5% level. Conparisons are
valid only within each harvest interval.
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Table 16. Effects of mycorrhizal inoculation on nutrient mass flow rates 
of Leucaena leucocephala seedlings.

Treatment

Harvest interval, days after inoculation

5-10 10-15 15-20 20-25 25-30

Total P mass flow rate
Mycorrtiizal 8 a# 10 a 14 a 25 a 28 a
Noniiycorrhizal 7 a 2 b 12 a -5 b 3 b

Shoot K mass flow rate
Mycorrhizal 107 b 128 a 110 a 148 a 147 a
Nonmycorrhizal 175 a 66 b 98 a - 7 b 29 b

Shoot S mass flow rate
Mycorrhizal 9 a 9 a  11 a 15 a 9 a
Nonmycorrhi zal 4 a 4 b  10 a - l b 3 b

Shoot Ca mass flow rate

Mycorrhizal 57 a 44 a 42 a 50 a 51 a
Nonrty cor rh i zal 70 a 32 a 43 a 9 b 18 b

Shoot Mg mass flow rate
Mycorrhizal 25 a 14 a 19 a 19 a 28 a
Nonmycorrhizal 27 a 9 a 19 a 2 b 6 b

# Means of each variable in the same column followed by the same letter
are not significantly different at the 5% level. Ccxiparisons are
valid only within each harvest interval.



concentrations of roots (10 days after inoculation) and shoots (15 days 

after inoculation) (Table 4). Increased P accumulation rate and P flux 

to roots were evident in mycorrhizal plants. Similarly, mycorrhizal 

plants demonstrated increased nutrient accumulation rates for S and Ca 

(Table 14) and increased nutrient flux and nutrient mass flow rates for 

K and S (Tables 15 and 16, respectively).

During the third harvest interval (15 to 20 days after 

inoculation), a sudden increase in relative root area expansion rate in 

nonmycorrhizal plants was observed (Table 12). During this period there 
were no differences between mycorrhizal and nonmycorrhizal plants in 

nutrient accumulation rates (Table 14) and fluxes to root (Table 15). 

Before and after this period, however, P accumulation rates and fluxes 
in mycorrhizal plants were greater than nonmycorrhizal plants. Although 

nutrient accumulation rates were not different during this period, 

nonmycorrhizal plants showed significantly higher specific utilization 
rates for all nutrients (Table 17) than mycorrhizal plants for all 

nutrients.
During the fourth and fifth harvest intervals (20 to 30 days after 

inoculation), nonmycorrhizal plants shed leaves prematurely and growth 
slowed. The component root production rates (Table 13), nutrient 

accumulation rates (Table 14), nutrient fluxes (Table 15) and nutrient 

mass flow rates (Table 16) for all nutrients of nonmycorrhizal plants 

were significantly lower than those of mycorrhizal plants. There was 

no difference in specific utilization rate of P between mycorrhizal and 

nonmycorrhizal plants (Table 17), but other nutrients differed at 

certain harvest intervals.
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Table 17. Effects of mycorrhizal inoculation on nutrient utilization 
rates of Leucaena leucocephala seedlings.

Treatment

Harvest interval, days after inoculation

5-10 10-15 15-20 20-25 25-30

J iilU X  u a y
Total P utilization rate

Mycorrhizal 1221 b* 1448 a 1189 b 1106 a 1556 a
Nonnycorrhizal 1497 a 1312 a 1945 a 907 a 1604 a

Shoot K utilization rate
Mycorrhizal 236 a 199 a 144 b 150 a 237 a
Nonmycorrhizal 260 a 146 a 195 a 85 b 145 b

Shoot S utilization rate
Mycorrhizal 90 a 117 a 110 b 128 a 235 a
Nonmycorrhi zal 113 a 94 a 147 a 66 b 117 b

Shoot Ca utilization rate
Mycorrhizal 443 a 411 a 341 b 379 a 629 a
Nonn^corrhizal 521 a 311 a 415 a 172 b 277 b

Shoot Mg utilization rate
Mycorrh izal 75 b 82 a 74 b 87 a 140 a
Nonmy corrh i zal 94 a 66 a 95 a 40 b 67 b

# Means of each variable in the same column followed by the same letter
are not significantly different at the 5% level. Comparisons are
valid only within each harvest interval.



Table 18 shows that, during the first harvest interval (5 to 10 

days after inoculation), water flux to leaves of nonmycorrhizal plants 

was significantly greater than that of mycorrhizal plants. However, 

during the third (15 to 20 days after inoculation) and fifth (25 to 30 

days after inoculation) harvest intervals water fluxes in nonmycorrhizal 

plants were lower than in mycorrhizal plants.

Water flux to leaves of mycorrhizal plants was almost constant 

during the third, fourth and fifth harvest intervals and approximately 

100, 40 and 160%, higher than in nonrrycorrhizal plants, respectively 
(Table 18). Water flux to the roots of iiycorrhizal plants was higher 

tlian flux to nonnycorrhizal plants only during the third harvest 
interval. While the growth of nonmycorrhizal plants was stunted during 
the last two harvests, the specific utilization rate of water in 

nonn^corrhizal plants was significantly lower than that of mycorrhizal 

plants (Table 18). The calculated transpiration flux based on leaf area 
was nearly the same as water flux based on root area.

Table 19 summarizes the cotparisons of rate variables hietween 

mycorrhizal and nonmycorrhizal leucaena seedlings in different 
development phases, including the initial phase, represented by harvest 

at 5 and 10 days, the transitional phase (after intervals of 10 to 20 

days) and the quasi-steady state phase (after intervals of 20 to 30 
days).
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Table 18. Effects of itiycorrhizal inoculation on water flux to root, 
water flux to leaf, and water utilization rate of Leucaena 
leucocephala seedlings.

Treatment

Harvest interval, days after inoculation

5-10 10-15 15-20 20-25 25-30

Water flux to root (pg -2 -1 cm day )
Mycorrhizal 0.84 a* 0.35a 0.26 a 0.31 a 0.23 a
Nonit^cor rh izal 0.97 a 0.22 a 0.16 b 0.30 a 0.23 a

Water flux to leaf (pg cm ^ day

Mycorrhizal 0.66 b 0.33 a 0.26 a 0.26 a 0.26 a
Nonmycorrhizal 0.80 a 0.21 a 0.13 b 0.18 b 0.10 b

Water utilization rate (pg g“  ̂day“ )̂

Mycorrhizal 91 a 78 a 72 a 75 a 131 a
Nonn^corrhizal 114 a 65 a 79 a 44 b 54 b

# Means of each variable in the same columns within harvests followed by 
the same letter are not significantly different at the 5% level.
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Table 19. Comparison of rate variables between mycorrhizal and

nonmycorrhizal Leucaena leucocephala seedlings in different 
development phases.

Development phases
Initial Transitional Quasi-steady
phase phase phase

Rate variable (5-10 DAI^) (10-20 DAI) (20-30 DAI)

Relative water M < N^^ M > N M > N
transpiration rate

Relative growth rate M < N M > N M > N
Relative leaf area M < N M > N M > N
expansion rate

Relative root area M = N M < N M > N
expansion rate

Relative nutrient P M = N M > N M > N
accunulation rate K M < N M = N M > N

S M = N M > N M > N
Ca M < N M > N M > N
Mg M = N M = N M > N

Water flux to root M = N M > N M > N
Water flux to leaf M = N M > N M = N
Nutrient flux P M = N M > N M > N

to root K M < N M > N M > N
S M = N M > N M > N
Ca M < N M = N M > N
Mg M = N M = N M > N

Nutrient mass ? M = N M > N M > N
flow rate K M < N M > N M > N

S M = N M > N M > N
Ca M = N M = N M > N
Mg M = N M = N M > N

Net assimilation rata M < N M = N M > N
Unit root rate M < N M = N M > N
Conponent leaf area M < N M > N M > N
production root area M = N M < N M > N
rate

Utilization M = N M = N M > N
rate for water

Utilization P M < N M < N M = N
rate for nutrients K M = N M < N M > N

S M = N M < N M > N
Ca M = N M < N M > N
Mg M < N M = N M > N

## Result either M > N or M < N was significantly different at the 5% 
level.
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DISCUSSION

Early Events in the VA Mycorrhiza-Leucaena Syntoiosis

To help us understand early events and succeeding responses in 

Leucaena leucocephala-Glonms aqqreqatum syntoiosis, a series of 

sequential measurements were made. A pinnule sarrpling method was used 
to monitor daily changes in P content and pot weighing methods were used 

to measure transpiration. In addition to these daily measurements, 

sequential destructive harvests were made in order to measure 

morphological and physiological changes in host plants.

Ten days after inoculation, an infection rating of approximately 

17% was observed in mycorrhizal plants (Table 8), and root P 
concentrations were also greater at this time (Table 4). Two days later 

(12 days after inoculation) mycorrhizal plants ccntained higher pinnule 

P contents (Fig. 5) than nonmycorrhizal plants. These results indicated 

that during this time Glomus aqqreqatum germinated, infected the roots, 
developed external iiycelium in the soil and transported P to plant roots 

vhich was then translocated to the shoots. Mycorrhiza formation in 
these circumstances was probably similar to that described by Brundrett 

et al., (1985). They estimated that at least one day was required for 

hyphae to contact the root and pjenetrate it, two to three days to 
develop arbuscules and three to four days to form vesicles. In our 

study, large amounts of inoculum (about 25 g j)er pot) were placed 

directly beneath the leucaena transplants in order to provide near



optimal conditions for colonization. Abbott and Robson (1982) suggested 

that rapid colonization in the early stages of plant growth is required 

for good host plant response to mycorrhizae.
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Mycorrhizal Influences on Root/Shoot Ratio

Although mycorrhizal symbioses can be parasitic (Bethlenfalvay 
et al. 1983; Buwalda and Goh, 1982; Koide, 1985), no significant 

depression in host dry weight was observed during the ir^corrhizal 

establishment (Table 8). Nevertheless, mycorrhizal plants showed a 
lower rate of leaf ejq>ansion during the 10 to 15 days harvest interval 

(Table 12) and displayed a higher root to shoot ratio at 15 days after 

inoculation (Fig. 25). Other studies of mycorrhizal symbioses suggested 
that in early growth stages mycorrhizal plants allocate significantly 

more assimilate to roots than to shoots ccnpared to nonn^corrhizal 

plants do (Snellgrove et al. 1982). This was apparent in this study 

by 15 days after inoculation. However, this temporary parasitic phase 
was soon shifted to a symbiotic phase, apparently after the additional P 
taken up by mycorrtiiza resulted in greater assimilation, thus 
conpensating for the carbon cost of nycorrhiza. The following 

discussion will further consider how mycorrhizal leucaena plants grew 

larger and absorbed higher nutrient contents than nonmycorrhizal plants 
during early seedling grcwth.



Mycorrhizal Influences on Nutrient Absorption

Dynamic changes in pinnule P contents (Fig. 5), pinnule P 

concentration (Fig. 6) and pinnule dry weight (Fig. 7) of leucaena 

plants with or without mycorrhizal inoculation were apparent, pinnule P 

contait increased only 2 days after root P concentration increased, 

which occurred 10 days after inoculation. The repeated observations 

provided by daily pinnule sampling clearly danonstrated mycorrhizal 
effects on P absorption. Responses of individual plants to treatments 

can be measured through time, thus reducing the size and variability of 

experiments.
Plant nutrient status was also measured by sequential destructive 

harvests. During the first stage of mycorrhizal infection (10 days 

after inoculation), only root P concentration was enhanced (Table 4). 
Wieser et al., (1986) observed that mycorrhizal roots contained higher 

concentrations of adenine nucleotides than nonmycorrhizal roots under 

conditions of P-starvation and even after P-fertilizaticxi. With an 

increase in the contents of central metabolites such as ATP, ADP and 

AMP, an increase in metabolic activity should also be expected. In 

Fig. 22, plots of total P content vs. (root area x root P concentration) 
for mycorrhizal and nonmycorrhizal plants were coincident. This may 

indicate that both mycorrhizal and nonmycorrhizal plants have the same 

absorption capacity per unit root area at a given root P concentration. 

Several studies have indicated that the relationship between the rate of 

uptake of P and its internal concentration is controlled by the 

concentration of P in the roots (Anghinoni and Barber, 1980; Lefebvre
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and Glass, 1982; Cumbus and Nye, 1985). Root P concentration, although 

rarely determined in mycorrhizal studies, may be a major factor 

controlling root absorbing power and also may serve as the an early 
indicator of growth and nutritional improvements resulting fran a VA 

rtYcorrhizal symbiosis.

Mycorrhizal plants contained greater shoot P, K, Mg and S contents 

than nonit^corrhizal plants 15 days after inoculation. By 20 days after 

inoculation, ir^corrhizal plants showed higher levels of all measured 
variables than did nonmycorrhizal plants (Table 5). Secondary 
mycorrhizal effects have been demonstrated in several studies showing 

that mycorrhizal plants not only displayed higher P uptake, but also 
increased absorption of other nutrients (Mosse, 1973; Powell, 1975). 

Rhodes and Gerdemann (1978a) suggested that n^corrhizal hyphae could 

absorb and translocate S in much the same manner as P. A similar 
enhancement of K uptake by mycorriiiza has been observed by Powell 
(1975). There is as yet no experimental basis for postulating direct 

involvement of the fungus in absorption and translocation of K. It is 

unlikely that absorption of Ca and Mg would depend on along itYcorrhizal 

hyphae because Ca and Mg in the soil solution are more mctoile than P 
(Barber, 1984). Moreover, Ca is apparently much less mobile than P in 

iTYcorrhizal hyphae (Rhodes and Gerdemann, 1978c). Most of the methods 
involve a diffusion-limited uptake process. Barber (1962) suggested 

that when nutrient concentrations in soil solutions were high, as was 
the case with Ca and Mg in these experiments, mass flow would be 

doninant and could explain the linear correlation of Ca (Fig. 19) and Mg 

(Fig. 20) uptake with cumulative water transpired.
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Greater P, K and S fluxes into itycorrhizal roots were observed 

during the 10 to 15 days harvest interval. Subsequently, fluxes of all 

nutrients into mycorrhizal roots, including Ca and Mg, were greater than 
into nonmycorrhizal roots during the 20 to 30 days harvest interval. It 

has been suggested (Smith, 1982) that plants with greater transpiration 

and greater water flux to roots, as seen in n^corrhizal plants in these 

studies, may increase water movement from the unrooted zones to rooted 

zones. This effectively increases the soil volume accessible to plant 

roots and expands the labile pool which replenishes nutrients such as Ca 

and Mg (Shapiro et al. 1960).
Movement of water through the soil may increase nutrient desorption 

frcm the solid phase. The general indication is that for water flow 
velocity less than 0.2 an/day the contribution of hydrodynamic 

dispersion to nutrient movement will be small (Nielsen and Biggar, 1961 

and 1962). The flow velocity to mycorrhizal leucaena roots was about
0.63 cm/day 30 days after inoculation (Table 20), \4iich was higher than 

that of nonmycorrhizal plants (0.31 oti/day) and also higher than the 

suggested critical flow rate given above. If only a fraction of the 

roots were 'active' in water uptake or in 'contact' with the soil water 

film (20 to 50%), then mass flow would have moved more nutrients to the 

plant than would diffusion. A speculative theory may be given as 

follows; a pulse of water transpiration and carbon assimilation is 

triggered by an input of phosphate by mycorrhizal roots while water flow 

through the soi1-plant-atmosphere continuum induces water movement in 

adjacent soil, carrying additional nutrient to the roots/hyphae.
Nutrient movement in the soil thus influenced plant growth and it, in
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Table 20. Effect of itycorrhizal inoculation on water flow velocity at 
the root surface of mycorrhizal and nonmycorrhizal Leucaena 
leucocephala seedings.

Days after inoculation

Treatment 5 10 15 20 25 30

Mycorrhizal

Nonirycorrhizal
1.53 a* 
1.51 a

Water flow velocity (cm day 

1.35 a 0.84 a 0.82 a 0.65 a 

1.37 a 0.80 a 0.56 b 0.28 b
0.63 a 
0.31 b

# Means of each variable in the same columns within harvests
followed by the same letter are not significantly different 
at the 5% level.



turn, is influenced by plant growth. This suggests a shift in dcxninance 

from diffusion to mass flow of ions by water movement as a result of 

increased plant transpiration. In this manner, mycorrhizae may be seen 

as a catalyst, whereby infection helps plants cross a threshold and 

initiates a positive feedback mechanism of nutrient absorption, growth 

and water relations of young seedlings.
Conparing the above sequential differences between mycorrhizal and 

nonitycorrhizal plants, it would not be expected that mycorrhiza can 

directly cause all these events, however. Fitter (1985 and 1986) 
proposed that n^corrhizal infection is likely to be benefical only at 
times when phosphate supply is particularly limiting, especially under 
drought conditions and possibly also at seedling establishment. He did 
not explain why P absorption is most critical in the seedling stage. 

Further experiments are necessary to clarify the speculation that the 
it^corrhizal contribution to nutrient absorption is more important in 
young seedlings than at later growth stages.
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Mycorrhizal Influences on Grcwth and Transpiration

By 15 days after inoculation, nycorrhizal plants displayed greater 

leaf area (Table 8), higher specific leaf area (ratio of leaf area to 

leaf dry weight) and higher transpiration rate than norraycorrhizal 
plants (Table 9). Mycorrhizal infection increased specific leaf area in 

leek (Snellgrove et al. 1982) and soybean (Harris et al. 1985). A 
higher specific leaf area enabled plants to achieve a higher rate of



cartxin fixation from a given amount of leaf biomass (Allen et al. 1981). 

In contrast, nonmycorrhizal plants exhibited lower leaf P concentration 

than mycorrhizal plants which (Table 4) could be responsible for 

lowering net assimilation rate in the leaf (Table 13).

An increase in water transpiration of mycorrhizal plants (Table 9 

and Fig. 11) was observed 15 days after inoculation, following 
increased P concentration in plant roots. Increased water transport 

from root to leaf and frcm leaf to the atmosphere probably were 

secondary effects of inproved nutritional (P) status (Safir et al.

1972; Levy and Krikun, 1980). As shown in Table 8, the leaf area of 

nycorrhizal plants was of the same order of magnitude as the root area 

and the calculated water flux per unit leaf area approximated water flux 

per unit root area (Table 18).
After the onset of differences in root P concentration, differences 

were observed in leaf area, shoot dry weight, transpiration rate, 

specific leaf area, root dry weight and root area between mycorrhizal 

and nonmycorrhizal plants (Table 11). This sequence suggests that 

inproved P nutrition airplifies other physiological functions of the 
plant such as inproved growth and water relations. These results are 
similar to those obtained by Atkinson and Davison (1971, 1972 and 1973) 

who showed that P deficiency reduced not only plant growth, but also 

decreased leaf water content and stomatal conductance.

After inoculation, water use efficiency of mycorrhizal plants 

increased more (frcm 1.58 to 2.50 g of total dry weight/kg of water 
transpired) than that of nonn^corrhizal plants (frcm 1.55 to 2.08). The 
increased water use efficiency reflected the inproved growth of
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mycorrhizal plants. In contrast, nonmycorrhizal plants continued to 

transpire even though growth was stunted.

Increased leaf area and transpiration generally brought an increase 

in net assimilation rate (Table 13) and thus increased dry matter 

production (Table 8). As the water requirement of mycorrhizal plants 

increases, there may be more abrupt daily changes in water potential of 

nycorriiizal plants than of nonmycorrhizal plants with less leaf area 

(Huang et al. 1985). In this study, greater root surface of mycorrhizal 

plants prc±)ably led to more water extraction (Table 9). As growth 
progressed and plants became larger soil moisture was depleted more 

rapidly, leading to decreased plant leaf water content and lower 
transpiration rates per unit leaf area (Table 9). Although pots were 
watered daily to near field capacity, 30 days after inoculation 
nycorrhizal plants transpired approximately 120 g of water per day per 
pot (one-half of the available water). Water supply can be particularly 
limiting in pot conditions when plants have been growing for a long 

time. In such experiments it is necessary to frequently monitor plant 

water content to ensure that only treatment factors are the dominant 

growth effects (deVries, 1980).
Thus far, the role of nycorrhizal associations in iitproving the 

nutrition of irycorrhizal plants in the early stages of the symbiosis has 

been discussed. Responses displayed in the greenhouse were also 

dDserved in the field (unpublished data) in which mycorrhizal plants 

were 4 times as tall (210 vs. 53 cm) and showed nearly 80 times as much 

Stan dry weight (361.2 vs. 4.6 g) as nonmycorrhizal plants after 190 
days of growth (Appendix 9).
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A Proposed Schone For Sequential Mycorrhizal Influence on 

Nutrient Uptake, Plant Growth and Water Relations

The dramatically iitproved growth of mycorrhizal plants may be 

regarded as a ccnsequence of sequential events influenced by mycorrhizal 
colonization. Each event was seen as a function of preceding events.

By comparing the time-course of these experimental results (Table 11 and 

19), it is possible through the phasic changes (Table 19) to point out 
the primary and secondary mycorrhizal influences. A flow diagram for a 

mycorrhizal plant model of nutrient uptake, plant growth and water 

relations is proposed (Fig. 26). Possible explanations of sequential 

mycorrhizal influences are as follows;

1) After colOTiization by the fungus, mycorrhizal plants showed 

greater root P concentration (day 10), pinnule P content (day 12) and 

shoot P concentration (day 15) than nonmycorrhizal plants. All of 

these differences in P status could be attributed to increased P flux 

into mycorrhizal roots 10 to 15 days after inoculation. Increased P 

uptake is probably the major influence of the mycorrhiza on host plant 

physiology (Rhodes and Gerdemann, 1980).

2) With enhanced P status, mycorrhizal plants shewed greater leaf 

area (day 15), transpiration rate per unit leaf area (day 15) and 

cumulative water transpired (day 20) than nonmycorrhizal plants.

Enhanced P nutrition appears to increase transpiration (Atkinson and 

Davidson, 1973) and root conductivity to water (Radin and Eidenbock,

1984). The close relationship between P status and water relations in
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plants probably explains many of the reported benefits of mycorrhizae 

on host plant water uptake, translocation and trani^iration (Levy and 

Krikun, 1980; Nelsen and Safir, 1982a and 1982b).

3) Under well-watered conditions, nycorrhizal plants displayed 

greater leaf area for photosynthesis and also developed higher net 

assimilation rates than those of nonmycorrhizal plants. An increased 

assimilation rate of VA mycorrhizal host plants can lead to condensation 

for the increased energy and carbon demands of iDoth the fungi and the 

roots (Kucey and Paul, 1982; Snellgrove et al. 1982). Having greater 
net assimilation rates, nycorrhizal plants can allocate more assimilates 

for greater root growth. This would provide more absorbing area for 
further nutrient and water absorption. Thus responses of mycorrhizal 
plants to increased nutrient absorption, transpiration and dry matter 

production can be visualized as a positive feedback process (Fig. 26).
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Possible Mechanisms of Nutrient Uptake by Mycorrhiza

For all soil P levels (0.005 to 0.429 mg P L  ̂ in solution), 

nycorrhizal plants usually showed higher plant dry weights (Table 2 and 
Table 3) and total P contents than ncanraycorrhizal plants (Table 5). In 

this section discussion will focus on why mycorrhizal plants were able 

to grow so much better than nonnycorrhizal plants even in high-soil P.



Physical Dimensions of Mycorrhizal Hyphae vs. Plant Roots

It is generally believed that mycorrhizal plants derive P frcm the 

same chemical pools as uninoculated plants (Tinker, 1980). The uptake 

of less mobile nutrients through extensive exploration of soil volumes 

by extramatrical mycorrhizal hyphae is an important role of mycorrhiza 

(Harley and Smith, 1983). Fine, long mycorrhizal hyphae, such as 

observed in these experiments (Fig. 27), can accumulate more P and S 
than the host roots (Rhodes and Gerdemann, 1975, 1978a and 1978b). One 

reason is that the small diameter of hyphae is associated with greater 

surface area per unit weight than can be attained by coarse roots. 
Assuming equal specific gravity, 1 mg of hyphae of 5 urn diameter has the 

same length as 6000 mg of leucaena root of 390 pm diameter.

In addition, mycorrhizal hyphae would be expected to permit higher 
radial conductance than can be attained by coarse roots (Fowkers and 

Landsberg, 1981). A sensitivity analysis for P uptake conducted by 

Silberbush and Barber (1983a and 1983b) indicated that, with fixed root 
biomass and soil volume, altering root radius produoed a greater effect 
on P absorption than known variations in physiological characteristics 

of the roots. Root radius effects on nutrient uptake have also been 
analyzed with a diffusion model (Bouldin, 1961). He suggested that 

nutrient flux per unit of root surface area may increase tenfold as the 

radius is decreased frcm 500 pm to 7.5 pm. The difference in root 

radius of leucaena (195 pm) and mycorrhizal hyphae (1 to 5 pm) may also 

lead to large increases in nutrient flux. The data showed that the P 
flux into mycorrhizal roots was 4 to 10 times greater than the flux into
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Fig. 27. Magnified view of mycorrhizal Leucaena leucocephala 
roots in potted Wahiawa soil.



noniiYcorrhizal roots (Table 15). Based on these results we believe that 

leucaena seedlings responded strongly to mycorrhizal infection because 

of low rooting intensity and low production of root hairs, even though 

their root diameters are smaller than that of 'magnolioid' roots 

(Baylis, 1975).
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Configuration of VA mycorrhizal Root System in the Soil

It is interesting to examine geanetrical properties of soil pores, 

leucaena roots and mycorrhizal hyphae. Evidence frcm water release 
curves of the Wahiawa soil used in these experiments indicated the 

presence of both intra^aggregate micropores and inter-aggregate 

macropores (Sharma and Uehara, 1968). The diameter of intra-aggregate 

micropores (2-10 pni) of Wahiawa soil (Tsuji et al. 1975) 

approximates the diameter of mycorrtiizal hyphae (2 to 20 pm) but was 

much smaller than the diameter of leucaena roots (100 to 600 pm, with an 

average of 390 pm). Wiersum (1957, 1961 and 1962) reported effects of 
soil physical properties on plant growth and nutrient uptake. He 

observed that plants absorbed less P when their roots grew in soils with 
large clods. Olsen and Watanabe (1963) pointed out that if two soils 

have the same 'available P' soil test values, the amount of P taken up 

by growing plants is less on the coarser-textured soil. These 
considerations suggested that hyphae have access to micropores not 

accessible to leucaena roots.

The small distance P diffuses and the inaccessible intra-aggregate



micrcpores render soil P relatively unavailable for leucaena roots in

contrast with mycorrhizal hyphae which in this soil were several cm

long, thin and highly branched with loops (Fig. 27). Fowkers and

Landsberg (1981) discussed contradictory requirements for absorption

(small diameters and long lengths) and for conducting (coarse diameter

and short lengths) within the root system. Mycorrtiizal hyphae, with a

smaller diameter and an improved branching configuration, apparently

overcame the impeded diffusion of sane nutrients, particularly P, to

the roots and fulfilled the nutrient absorption function. Greater
branching of mycorrhizal hyphae provides a good configuration for

accessing less-mobile nutrients. With their anall diameter, mycorrhizal

hyphae should be able to contact water films in intra-aggregate

micrcpores which supply P fran the solid phase. While speculative, this

could explain the higher flux of P to mycorrhizal roots than to
—2 —1nonmycorrhizal roots (0.040 vs. 0.009 )jinol P cm day , respectively) 

(Table 15).
Soil aggregate size and its potential influence on nutrient supply 

and movement and root accessibility in a soil-plant system is summarized 
in Table 21. In contrast to rapid water movement in the inter-aggregate 
macropores, the high water retention and high specific surface area in 

the intra-aggregate micropores may act as an important site for P 
supply.

The earliest fossil VA mycorrhizae are associated with primitive 

plants from the Rhynie chert, approximately 370 million years old 

(Pirozynski and Malloch, 1975). These were morphologically similar to 

modem VA mycorrhizae (Nicolson, 1975). The evidence for mycorrhizae
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Table 21. Soil aggregate size and potential influence on nutrient 
supply, nutrient movement and root accessibility in a 
soil-plant system.

Intra-aggregate micropores Inter-aggregate macrcpores

Average pore 
size;

2 to 10 )jm 10 to 500 pm

Possible 
role in 
nutrient 
supply:

higher specific 
surface area
longer water 
retention time

lower specific 
surface area
shorter water 
retention time

higher P concentration 
in soil solution

lower P concentration 
in soil solution

Possible 
role in 
nutrient 
movement;

higher matric potential 

smaller pore diameter 

lower pore water velocity

lower matric potential 

larger pore diameter 

higher pore water velocity

Pores more 
easily 
accessed 
by;

VA mycorrhizal hyphae 
(2 to 20 pm diamter, 
average 8 pm)

leucaena root
(50 to 600 pm diameter,
average 390 pm)



was reviewed by Pirozynski and Malloch (1975) who concluded that 

available soil P and other nutrients might have been deficient in the 

earliest terrestrial environment, so that the intervention of the fungi 

was important to the success of terrestrial plants. Selective pressure 

towards an efficient root system probably favored the symbiosis of 

plant root and mycorrhizal hyphae. The ccxnbined structures allow 

greater exploitation of soil resources and also serve to improve both 

absorption and conduction of nutrient and water.

This discussion, however, does not exclude the possibility that 

mycorrhizae have a greater ability to absorb P at very low external 

concentrations than roots of many higher plants as suggested by Mosse 

(1973), Cress et al., (1979) and Howeler et al., (1982). Further 
investigations are needed to determine whether greater ability to 

absorb P is due to iitproved geonetry and configuration or due to 

improved physiological efficiency.
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Response of Nonmycorrhizal Plants to Phosphorus Stress

As reviewed earlier, plants usually make several compensatory 

adjustments to P stress such as increased ion uptake efficiency at the 

root surface, increased P solubility in the rhizosphere due to increased 

root exudates, reduced root diameter, increased root growth relative to 

top growth, reduced nutrient requirements as a result of lower relative 

growth rates, and more efficient P utilization by enhanced P re-



distribution within the plant. It is useful to explore how these 

responses to P stress help plants tolerate adverse conditions.

It has been amply demonstrated in solution cultures that low plant 

nutrient status can increase short-term P flux into plant roots 

(Epstein, 1976). However, if the major limiting step for P acquisition 

is not root function per se, increased P absorption capacity at root 
surfaces is of limited value in overcoming slow P diffusioi through the 

soil (Nye, 1977). Several reports have shown that plant roots can 

excrete organic acids in the rhizosphere leading to increased nutrient 
availability (Jungk and Caassen, 1986; Marschner et al. 1986). It has 
been speculated that the quantity of organic acids exuded by plant roots 
is high enough to render soil P more soluble (Nye, 1968). However, the 

low P status and stunted growth of nonmycorrhizal leucaena plants 

observed in these experiments demonstrated that, if present, this 

mechanism did not supply sufficient P frcm the soil. Further study is 
necessary to quantify the influence of root exudates on nutrient 

availability in the rhizosphere.

Root diameter, as discussed above, is important for the exploration 

and absorption of less-mobile nutrients. This root characteristic, 
however, is to^a large degree genetically controlled (Russell, 1977).

In spite of large responses to mycorrhizal infection and to P 
fertilization, no differences in average leucaena root diameters were 

detected either among mycorrhizal inoculation or P fertilization 

treatments.
It is well documented that a reduction in nutrient supply during 

plant growth can limit leaf growth and increase root growth (Brouwer,
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1962a and 1962b). Indeed increased rcxDt growth rate in nonmycorrhizal 

plants during the 15 to 20 days harvest interval (Table 12). Twenty 

days after inoculation, root dry weights of nonmycorrhizal plants were 

greater than those of nycorrhizal plants (Table 8). Greater root growth 

appeared to sharply increase P absorption (Fig. 15). This was 

accatpanied by an increase in P accumulation rate during the 15 to 20 

days harvest interval (Table 14). This rapid increase was short-lived, 

however, with net P absorption approaching zero and P content remaining 

nearly constant after 20 days (Fig. 15). In these studies, even 
enhanced root growth of nonitycorrhizal leucaena was still insufficient 

to counteract low P uptake. It is probable that during the early growth 

period (10 to 15 days) P ions around growing roots had decreased 
sufficiently to limit P flux into nonitycorrhizal roots (Table 15). The 

increased growth of coarse roots was apparently inadequate to maintain 

the necessary P flux for continued growth (Robinson and Rorison, 1983).
In these experiments, plant growth was restricted by pots. In 

field conditions, however, unimpeded root growth of nonmycorrhizal 

plants may increase chances for mycorrhizal infection by exploring 

larger soil volumes.
After day 25, the P concentrations in nonmycorrhizal roots and 

shoots declined to 0.09 and 0.12%, respectively. Typical synptans of P 
deficiency, leaf shedding (Table 8) and slow root area expansion rate 

(Table 12), became apparent in nonmycorrhizal plants. Negative 

feedback, i.e., decreased nutrient absorption because of decreased 

growth, is frequently observed when plants are under severe P stress 

(Chapin, 1980). Reduced plant growth rate, however, is presumably
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advantageous for plants because it minimizes nutrient requirement and 

prevent^ exhaustion of internal nutrient reserves (Chapin and Bieleski, 

1982).
Even though noniiycorrhizal plant growth was stunted during 20 to 30 

days, both mycorrhizal and nonmycorrhizal plants utilized P with nearly 

equal efficiency (Table 17), whereas the specific utilization rate of 

other nutrients was lower in nonmycorrhizal than mycorrhizal plants. 

Phosphorus concentrations were lower in old, senesced leaves than in 

young nonit^corrhizal leaves. Enhanced translocation of P from mature to 

young leaves may serve as one of the mechanisms for increasing 

efficiency for P utilization, as suggested by Greenway and Gunn (1966) 

and Clarkson et al., (1982).
When seed reserves were depleted, growth of nonmycorrhizal leucaena 

plants was retard|. In spite of various changes in root physiological 
and morphological characteristics, nutrient acquisition was quite 

limited. Nevertheless, Huang and Fox (1984) noticed that v4ien 

nonmycorrhizal plants were later inoculated they eventually attained 

similar plant size and weight as mycorrhizal plants (Appendix 6). The 

stunting of nonmycorrhizal plants appeared to be reversible and probably 
is a survival strategy which reduces energy use while retaining the 
potential for mycorrhizal infection.
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Water Use Strategy in Leucaena and Its Ecological Significance

Fran previous discussions, it is apparent that irycorrhizal 

association permits increased P uptake, enabling leucaena plants to grow 
well. It is interesting to know how improved P nutrition affects other 

ecophysiological characteristics in leucaena which, in turn, affect 

growth and adaptation of leucaena in semi-arid regions.
In these studies, nonmycorrhizal and mycorrhizal plants were 

dramatically different in water relations. Root surface area of 

nonmycorrtiizal plants was limited (Table 8), water transpiration, 
specific leaf area, leaf moisture content were low (Table 9) and 

shedding of leaves and leaflet folding increased (Huang et al. 1985). 

Stonatal closure, as shown by reduced water flux through the leaf (Table 
18), is iirportant to conserve water and avoid severe water stress. 

However, it may also reduce photosynthesis.

In contrast, it^corrhizal plants had greater root area (Table 8), 
higher specific leaf area (Table 9), and displayed more rapid stonatal 
adjustment to ambient humidity than nonnycorrhizal plants (Huang et al.

1985). Those plants would transpire more water (Table 9) and grow 
larger than nonnycorrhizal plants (Table 8). Although mycorrhizal 

plants depleted soil water more quickly than nonitycorrhizal plants in 

these studies and in other pot experiments (Levy et al. 1983), the 
water supply in natural habitats may not be as limiting as for potted 

soil.
It has been suggested that plants with higher potential



transpiration rates can deplete soil water quickly and thus gain a 

conpetitive advantage in field conditions, especially in the soni-arid 

regions (Hill, 1971; Mikura et al. 1984). The high tran^iration rate 

of leucaena plants may result in higher carbon gain v4iich would further 

enhance shoot and root growth for more nutrient acquisition and carbon 

assimilation (Huang et al. 1985). Besides leucaena plants, other 

"water-spending" plant species have been observed in natural ecosystems 

(Bunce et al. 1977; Fischer and Turner, 1978). Many crop plants appear 
to behave in this way (Ritchie, 1973 and 1974). Moreover, high water 

use probably stimulates soil water movement and nutrient in the soil 

solution from unrooted zones to rooted zones, vdiich may effectively 

enlarge the soil volume accessible to plant roots (Smith, 1982). The 
ecophysiological consequences of increased soil volume have been 

suggested by Sarmiento et al., (1985). They pointed out that the 
adaptive strategy of woody species in savannas was to maintain a high 
water flux as long as possible, as a way of simultaneously improving 

nutrient acquisition and maintaining a favorable carbon gain.

In considering successional shrubs, as leucaena, in the semi-arid 

environment, Passioura (1976) suggested that the better strategy for 
plant competition would be to use water faster, perhaps less 

efficiently, grew quickly and form seeds vdiile soil water is available. 

As the soil dries, the plant then must have sane mechanisms for drought 

avoidance to prevent damage fran water deficits. Leucaena adapts well 

to wet-dry climate regions and exhibits such drought avoidance 
characteristics as deep taproot, leaf shedding, leaf folding (Gates, 
1916; National Research Council, 1984) and stonatal closure in response
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to decreases in leaf water potential or increases in the leaf-to-air 

water deficits (Huang et al. 1985).

To understand the physiological and ecological significance of 

nycorrhizal contribution to water relations of plants, it is necessary 

to relate models of nutrients, water and carbon. Such knowledge is 

essential not only to understanding the mycorrhizal systens but also to 

managing our natural ecosystems.
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CONCLUSIONS
122

An understanding of the dynamics of mycorrhizal systems is a 

prerequisite for the manipulation of these beneficial associations for 

agriculture. This thesis describes an effort to identify and integrate 

sane of the important feedback processes involved in nutrient 

acquisition, growth and water relations of mycorrhizal systems. The 

results reported here demonstrate how the concept of feedback helps in 
understanding dynamic processes in nycorrhizal systems involving 

Leucaena leucocephala. In these experiments, daily pinnule saitpling 

and pot weighing were used in order to measure changes in P acquisition 
and transpiration. In addition, destructive harvests at 5-day intervals 

were applied in differentiating primary and secondary differences 

between mycorrhizal and nonmycorrhizal plants.
A sequence of measurements of nycorrhizal and nonmycorrhizal

seedlings permitted a time-course description of critical events in the

soil-mycorrhiza-plant system. First, the onset of nycorrhizal activity
affects root functioning and nutrient uptake. Differences in root P

concentration were cPserved by day 10, and were then followed by

differences in pinnule P content (day 12), shoot P concentration, leaf
area (day 15), cumulative water transpired (day 20), shoot dry weight

(day 25) and then root dry weight (day 30). Based on this sequence, a

model of a soil-n^corrhiza-plant systan and associated effects of
«

mycorrhiza on nutrient uptake, plant growth and water relations is 
proposed (Fig. 27).

We also discussed how nonrayconhizal leucaena seedlings responded



to P stress. Despite greater initial root growth, leucaena roots alone 

could not acquire sufficient P to maintain growth. To cope with low 

nutrient absorption, nonn^corrhizal plants appear to slow their relative 

growth rates and recycle nutrients to new leaves frcxn old leaves before 

they are shed. The outccxne of P deficiency and stunted growth in 

nonmycorrhizal seedlings seems to be a typical sequence of negative 

feedback response: 1) lowered nutrient uptake, 2) reduced carbon 

assimilation rate, 3) decreased rate of root proliferation, and 4) less 

nutrient uptake and stunted growth.
Mycorrtiizal plants absorbed more P frcxn the soil than did 

nonmycorrhizal plants. The following mechanisms are suggested; 1) 

specific surface area (per unit of assimilate) of mycorrhizal rcx3ts is 
increased, 2) fine and long hyphae increase the potential for effective 

physical exploitation of soil pores. Phosphorus may be accjjired frcxn 
such micro-pores even though they are inaccessible to plant roots, and

3) it^corrhizal roots extract P more efficiently bec:ause the threshold 

concentration for uptake is lower than for nonn^corrhizal roots.

To better understand the ccxiplexity of nutrient accjuisition, a 

systematic approach is needed which deals with the physiology of plant 

rcxDts and the soil physical, chemical and biotic factors. A unified 
concept of 'nutrient bioavailability' and methcds to study and 
characterize dynamic soil-mycorrhiza-plant systens shcxild be developed.

A framework to do this is proposed in Fig. 28.

Results frcxn numerous pot and field experiments demonstrate that 

without mycorrhizal associations, leucaena plants are stunted. It is 
now necessary to ask seme fundamental cjuestions. l̂ hat are the major
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p.»-Stability & Resilience of Symbiosis^.

Plant Adaption & Succession VAM Dispersion & Regeneration

PLANT VAM

Carbon Metabolism & Infectivity & Spore Germination &
“Assimilation AllocatioJT’ Effectiveness Hyphae Growth

of VAM

Root Growth & Function

Physiological Factors

VAM Hyphae Grow in Soil

Biotic Factors

Water & Nutrients Water & Nutrients Rhizosphere 
Acquisition & —  Bioavailability Microorganism
Utilization Ni Rhizobium

Physical Factors 
e.g. Soil Structure & 

Water Supply

Chemical Factors 
e.g. Soil Acidity & 

Nutrient Supply

SOIL

Fig. 28. Water and nutrient bioavailability as influenced by 
structural and functional relationships in the 
soil-mycorrhiza-plant system.



critical factors in natural soil environments that limit nutrient 

acquisition and growth? Is the leucaena plant in seme sort of co­

evolution, by v^ich a special obligate symbiotic relationship is 
developed between plants and mycorrhizal fungi? Does a stunted 

nonmycorrhizal plant exhibit 'optimal' survival strategies for 

preventing energy exhaustion while retaining the potential for 

mycorrhizal infection? Obviously, there are numerous problems among 

the enigmatic facets of these associations.
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APPENDICES

Appendix 1. Summary of Barber's experiments to observe and predict 
phosphorus uptake by the plant root growing in soil.

Experi­
mental
no.

Crops
Experi­
mental
condition

P concen­
tration in 
soil solu­
tion ()jm)

Predicted
value/
observed
value

Reference

1 Millet Field 0.65 1/14-25 Adepetu & 
Barber (1978)

2 Millet Field 48.50 1/0.66-1.2 Adepetu & 
Barber (1978)

3 C o m Sterilized
soil

47.6 1/0.97 Schenk & 
Barber (1979b)

4 C o m Sterilized
soil

47.1 1/0.92 Schenk & 
Barber (1979a)

5 C o m Sterilized
soil

7.4 1/0.49 Schenk & 
Barber (1979a)

6 C o m Field 10.6 1/1.49 Schenk & 
Barber (1979b)
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Appendix 2. Vesicular-arbuscular mycorrhiza formed between 
Macroptilium atropurpureum and the fungus 
Glomus aggregatum. Note the sporocarps formed 
in the sand medium.



128

Appendix 3. A method for the isolation and examination of vesicular- 

ariDuscular (VA) mycorrhizal fungi fran mineral soil.

Huang, Ruey-Shyang, R. S. Yost and J. E. Pinchin.

(Published in Nitrogen Fixing Tree Reports 3:62-64. 1985).

A great proportion of nitrogen fixing trees are leguminous and have 
symbiotic associations with both vesicular-arbuscular (VA) mycorrhizae 

and nitrogen-fixing microorganisms. This triple symbiosis has great 

importance in nutrient absorption and in nutrient cycling of forest 
ecosystems.

Symbiotic fungi of VA mycorrhizae. Family of Endogonaceae, have 

never been cultured without the presence of a living host plant. In 
most cases spores collected fran soil are the only basis for 

experimental or taxonomic study. The following method (see below 

flow chart) describes techniques we use to isolate VA mycorrhizal 

spores from soils and is derived fran the 'wet-sieving and decanting' 

and 'sucrose centrifugation' methods.

Phase I: San^ling
1. Scrape the litter frcm the soil surface and collect 500 ml of soil

with plant roots (samples should be fran a relatively homogeneous

area. If the area is highly hetergeneous then subsample from the 
areas of variation. Do not mix across areas of great variation).

2. Crush soil and pass through a 6 mm sieve to ronove large gravel and
debris.



3. Air dry the soil samples (low soil moisture content will prevent 

spore germination and reduce the activity of hyperparasitic 

microorganisms).

4. If soils of different bulk-densities are to be catpared, the 

dry-weight of an equivalent sample should be determined. Espress 
spore abundance on g dry weight basis.

Phase II: Isolation
1. Soak 250 ml of soil in one liter of tap water in a 2-liter container 

for 5-10 min.

2. Suspend the sample by stirring briskly and then allow it to settle 
for 30 sec.

3. Decant the suspension through a 500 ĵm sieve, collecting the liquid 

that passes through.
4. Wash the sieve in a stream of water to ensure that all small 

particles have passed through.

5. Save the sievings as scxne sporocarps may be present.
6. Resuspend sievings in the liquid that passed through the 500 ]Lim 

sieve by stirring and allcw the heavier particles to settle for 15 
sec.

7. Pass the suspension through a sieve fine enough (generally 54 pm) to 

retain the desired spores.

8. Resuspend and thoroughly mix the sievings with a strong stream of 

water and allow suspension to settle for 15 sec.

9. Repeat steps 7-3 four to eight times depending on soil type.

10. Wash the material retained on the sieve to ensure that all colloidal
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material passes through.

11. Transfer the remaining sievings to a beaker.

12. Prepare a large sucrose gradient; a) place 200 ml of 30% (W/V) 

sucrose solution in a one liter beaker; b) layer 600 ml of water 

over the sucrose solution by using a wick to transfer the water fran 

another one liter beaker (keep the supply beaker full during the 

entire process).

13. Gently layer the sievings onto the gradient with a dropper pipette 
and allow them to settle by gravity for 10 min.

14. Retrieve the spores and debris which gather at the sucrose/water 

interface by vacuum aspiration.
15. Pour the retrieved spore suspension through a series of stacked 

sieves (250, 106 and 53 pm) and rinse thoroughly with water.

16. Wash the sievings into separate 500 ml beakers.

Phase III: Separation

1. Place 25 ml of 30% (W/V) sucrose solution in a 50 ml centrifuge 
tube.

2. Gently layer a maximum of 15 ml of the suspension of sievings over 

the sucrose solution using a dropper pipette.

3. Centrifuge for 5 min at 3100 rpm (approx. 1100 XG). Note;

Centrifuge should only be run with an even number of tubes 

positioned opposite each other balanced.
4. Draw the spores off the sucrose/water interface by vacuum 

aspiration.

5. Pour this supernatant (containing spores) onto a fine sieve (53 urn)

130



131

and rinse well with water to remove the sucrose.

6. Transfer the spore suspension to a petri dish.

Phase IV: Examination

1. Soak the spore suspension in 5% (W/V) Na-hexametaphosphate for 10 

min to disperse fine clay particles which may be adhering to the 

spore surface.
2. Carefully remove Na-hexametaphosphate and as much remaining debris 

as possible with a syringe. Add a small amount of water to 

resuspend the spores. Repeat until most of the debris has been 

removed.
3. Pick out a few spores with a modified syringe (be sure the opening 

is large enough to accanodate the size of spore being isolated). 

Place these spores in a drop of lactophenol-trypan blue on a plain 
microscope slide and cover with a cover slip. Save the unstained 

spores.

4. Examine the stained spores at 100X-400X magnification and record 

specific morphological features of the stained spores (e.g., spore 
size, color, spore wall structure, etc.).

5. Group un stained spores with similar morphological characteristics 
by using needles and inoculate for establishing separate pot 

cultures.
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PHASE I: SAMPLING

RECOVERING SPORES

PHASE III: SEPARATION

RINSING SPORES

PHASE IV: EXAMINATION

DRYING AT 
ROOM TEMP.

PREPARING 
DENSITY GRADIENT WET SIEVING

MICROSCOPE SLIDES PREPARATICW

FLOW CHART OF PROCEDURES USED TO OBTAIN SPORES OF VA MYCORRHIZAL FUNGI 

FOR EXAMINATION BY MICROSCOPY,
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AK>endix 4. Stages in preparation and conducting a mycorrhizal 
Leucaena leucocephala experiment

Soil collection, 
sieving & weighing

Measuring soil 
water holding 

capacity

Adjusting soil pH 
and soil P

Soil fxjmigation

Leucaena seeds 
scarification

Mycorrhizal inoculum 
pot culture

Germination

Tran^lanting Inoculation
(5 days after germination)

Sartpling pinnule every day 
Weighing pots (1 to 4 days)

Six harvests (5, 10, 15, 20, 25 & 30 
days after inoculation)
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Appendix 5. Use of single-leaflets to track the effectiveness of 

mycorrhizae associated with Leucaena leucocephala.

Huang, Ruey-Shyang and R. L. Fox.

(Published in Leucaena Researdi Reports 5:79-81. 1984).

Yost and Fox (1979) determined that the phosphorus percentage of 
nonmycorrhizal Leucaena leucocephala (leucaena) plants grown in a 

fumigated, phosphorus-deficient Oxisol was much less than the phosphorus 

percentage of nycorrhizal plants grown in soils that had not been 

fumigated. The influence of itycorrhizae was not replaced conpletely by 

phosphate fertilizer— even by very high phosphate additions that raised 

soil soluticffi concentrations to 1.6 mg P L Such results suggest 
a high dependency of leucaena on itycorrhizae. It is important to 

understand the role of mycorrhizae in the phosphorus econony of leucaena 

during early stages of development because young plants are subjected to 
many hazards; their survival may depend upon good mineral nutrition.

The purpose of this study was to measure, as a function of time, 

the influence of raycorrhiza on phosphorus uptake by leucaena seedlings 
beginning with the earliest fully-expanded leaf. It is hoped that 

techniques we have developed may be used to compare the relative 

efficiency of nycorrhizae (in this case indicated by phosphorus uptake) 
in various soils or rooting media.

Materials and Methods. Four days after germination, three 

seedlings of leucaena (var. K8) were transplanted into 24 cm pots
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containing 5 kg of fumigated soil (Trc^ptic Eutrustox, Wahiawa series). 

The soil pH was 5.9 and sodium bicarbonate extractable P was very low, 
2.0 mg on a dry soil basis. There were three rock phosphate 

treatments, zero, 5 gram and 10 gram per pot of North Carolina phosphate 

rock, but the effects of the phosphate rock could not be detected by the 

leucaena. Therefore data from the three phosphate treatments were 

ccnposited. All treatments were in two replicates. At planting, 

seedlings were either inoculated with VA mycorrhiza fungus 
(Glanus aggregatun), or, in the case of control plants, were treated 
with fumigated inoculum.

Pinnules (leaflets) were ranoved every 12 to 24 hours frcm fully- 
expanded leaves (the nrast recent leaf to attain maximum green color) 

frcm each plant beginning 8 days after germination. This sampling 

continued for 12 days after which sanpling was continued from one plant 
only.

Thirty-eight days after germination the previously non-inoculated, 

non-mycorrhizal plants were inoculated with Glomus aggregatum by 
placing inoculum into small holes in the soil near the plants. Pinnule 

sampling continued until 88 days had elapsed for the early inoculation 

treatment and 98 days for the late inoculation treatment.
Pinnules were dried at 55°C, weighed on an analytical balance, 

placed in either 30 ml pyrex beakeirs or 25 ml pyrex tubes and ashed at 

500°C in a muffle furance for 3 hours. The ash was taken up in dilute 
HCl after which P was determined colormetrically.

Results. Phosphorus uptake patterns of inoculated (iiycorrhizal) 
and non-inoculated (nonmycorrhizal) plants were essentially identical



during the first 12 days following germination (see Appendix 5). In 

both cases P contents of pinnules decreased rapidly with time. After 12 

days pinnules of the nonmycorrhizal plants continued to lose phosphorus. 

This was associated with extreme synptcras of pinnules from the lower 

leaves as the deficiency became more intense. The mean minimum P 

content attained at days 41-42 was 0.84 pg P per pinnule in pinnules 

weighing 1.15 mg each, giving a phosphorus percentage of 0.073 which, we 

assume, represents af^roximately ultimate P depletion. The contrast 

between mycorrhizal plants and normycorrhizal ones is so evident in 

Appendix 5 that ccraments are scarcely required. The curves are based on 

mean values. They do not adequately indicate the rapid increase in P 

contents of individual plants after the mycorrhiza became effective. In 

seme individual cases, P contents of pinnules doubled in 12 hour 

sanpling interval. Phosphorus uptake were noted at intervals of 

approximately 10 days. Surges in root growth and activity. Perhaps 

these observations are related. Plants which were inoculated soon 

after germination, and those inoculated at day 38, attained the same 

level of leaf P, approximately 13 g P per pinnule, 40 days after 
inoculation. Such quantities of P in pinnules of approximately 5 mg 

weight suggests a maximum P percentage of 0.26 above vrtiich this 
particular it^corrhiza was not able to increase P percentage further.

In the case of both early and late inoculated plants the initial 

major peaks in P contents were inroediately followed by a drastic 

decrease in P iptake and percentage. This decrease is so precipitious 

that we do not believe it is caused by exhaustion of the 'available' P 
pool. Instead we believe the evidence supports the concept of control
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mechanism that operates on the effectiveness of the mycorrhizae. The 

results suggest that a new, stable level of 6.5 jug P per pinnule is 

attained. Pinnules of these plants weighed about 3.6 mg, giving a leaf 

P concentration of approximately 0.18%.

Discussion. The 12 leucaena plants used for this study were 

sampled repeatedly (more than 100 times each) without substantial 

damage. This ' ncav-destructive' sampling method permits the same plant 

to be used for other determinations relating mycorrhizal function to 
plant development— for example, studies on water relations 
(Huang et al. 1983). We intend to use this technique to measure the 

relative effectiveness of naturally^occuring mycorrhizal inocula.
The data reported here demonstrate that mycorrhizae will permit 

leucaena to extract phosphorus from soils which are otherwise very 

phosphorus deficient. The data also suggest that mycorrhizae alone 
will not support, for an extended period of time, sufficient phosphorus 

uptake from pots for optimum growth of leucaena. Additional work should 

be done to determine how these results can be applied to field 

conditions.
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DAYS AFTER GERMINATION

Appendix 6. Time course of pinnule P content of nycorrtiizal and 
nonnycorrhizal Leucaena leucocephala seedlings 
frcm the experiment of Huang and Fox (1984).
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DAYS AFTER INOCULATION

Appendix 7. Global radiation recorded at Manoa campus, University 
of Hawaii from April 16 to May 17, 1985.
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Appendix 8. Daily transpiration and associated variance of mycorrhizal 
and nonmycorrhizal Leucaena leucocephala seedlings 
(Main experiment).

Daily transpiration

DAI** 1 3 5 6 9 11 15 16 19 21 23 25 26 28 30
Sample
no. 108 108 108 90 90 72 72 54 54 36 36 36 18 18 18
CV'*' of
mycor- 20 19 20 20 15 14 24 16 20 24 15 14 7 16 6
rhizal
plants (%)

CV of non- 27 24 24 21 19 15 27 12 16 27 19 15 17 22 15
n^corrhizal
plants (%)

# Corresponded to Fig. 11.
## DAI represents days after inoculation, 
t CV respresents coefficient of variance.
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Appendix 9. At 190 days Leucaena leucocephala plants inoculated
with Glomus aggregatum (GA) (left) in fumigated Wahiawa 
soil were an average of 70 times the stem dry weight of 
uninoculated plants (right).
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