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ABSTRACT 
 

With the implementation of mechanistic-empirical pavement design methods, dynamic modulus 

(|E*|) has become the predominant characteristic of Hot Mix Asphalt (HMA) used as the elastic 

modulus in the computation of stresses and strains in pavement structures.  

The predictions of |E*| obtained with the Witczak models currently used in the Mechanistic 

Empirical Pavement Design Guide (MEPDG) do not account for some HMA characteristics such 

as polymer modified binders, fibers, confinement and aging effects related to climatic conditions. 

Therefore, development of models more representative of local materials and conditions are 

desirable.  

In this study, a predictive model for dynamic modulus of HMA was developed taking into 

consideration several HMA characteristics and testing conditions. 6821 observations of 257 mix 

specimens from three different laboratory datasets, two from Hawaii and one from Costa Rica, 

were used to estimate the model parameters. All three data sets contain information about some 

variables in common such as air voids, binder content, and gradation; however, some datasets 

contain mix characteristics and testing conditions not available in other datasets such as 

confinement level, available only in the Hawaiian datasets, and the number of freeze-thaw 

cycles, available only in the Costa Rican dataset. Important characteristics observed from these 

datasets include confinement, number of freeze-thaw cycles, binder modifiers (SBS polymers) 

and mixture additives (e.g. fibers and anti-stripping agents), all of which together with other 

commonly used variables were found to have statistically significant effects. The model was 

developed by using joint estimation and mixed-effects techniques. Joint estimation allowed the 

identification of model parameters available from only some of the databases and the 

determination of bias parameters. It also resulted in more efficient parameter estimates. The 
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mixed-effects approach was used to account for unobserved heterogeneities between samples. 

Using these approaches, together with proper consideration of heteroscedasticity, allowed the 

estimation of a comprehensive statistical predictive model that satisfies closely all the regression 

assumptions and that provides accurate values of |E*| for Hawaiian and Costa Rican conditions 

for any combination of temperature and frequency. These can be used to generate the |E*| inputs 

that the MEPDG needs to compute |E*| master curves.  
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CHAPTER 1: INTRODUCTION AND SUMMARY 

1.1 Introduction 

In 1996, the Joint Technical Committee on Pavements of the American Association of State 

Highway and Transportation Officials (ASHTO) initiated the development of the first 

mechanistic-empirical design guide under the National Cooperative Highway Research Program 

(NCHRP) Project 1-37A: Guide for the Design of New and Rehabilitated Pavement Structures. 

As its name suggests, this guide incorporates both mechanistic and empirical methods. The 

mechanistic approach utilizes analytical calculations to transform pavement influence factors 

(climate and traffic) and its material properties into critical responses (stress, strain). Afterwards 

the empirical approach transforms these responses into predicted observed distresses (permanent 

deformation, fatigue and thermal cracking) and the International Roughness Index (IRI) (Pierce, 

2011) 

Even though mechanistic-empirical methods were described in the late 1940’s as “rational” 

methods (Hveem and Carmany, 1949), the advancement in computer capabilities regarding 

storage and speed, newer technologies for pavement evaluation (for both analysis and testing) as 

well as the creation of the Long Term Pavement Performance (LTPP) database (created to collect 

the performance of pavements in over 2,000 test sections across the United States and Canada), 

made possible the reintroduction and development of these methods. 

The outcome of this effort was an extensive research document and a software that used these 

mechanistic-empirical procedures known as the Mechanistic-Empirical Pavement Design Guide, 

MEPDG (ARA 2004). This software had the advantage of being able to include local climatic 

conditions, the consideration of the stresses and strains produced by each axle load through the 

use of load spectra for each axle configuration developed for local conditions (in contrast to the 

use of Equivalent Single Axle Loads -ESALs- commonly used in empirical methods such as 

AASHTO 93 (AASHTO, 1993) or even in mechanistically based procedures such as the Asphalt 

Institute (Asphalt Institute, 2008), which are based on empirical relations of the effects of 

different load magnitudes developed at the AASHO Road test), and the introduction of a more 

comprehensive set of required inputs for material properties, making it possible to characterize 

materials more accurately than by using the structural layer coefficients alone as used in 
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AASHTO 93 Pavement Design Guide (AASHTO 1993). An illustration of the process followed 

by the MEPDG is shown in Figure 1. 

 

 

Figure 1. Mechanistic-empirical approach for pavement design. 

As can be seen, climate, materials and traffic conditions (influence factors) are introduced in the 

software (represented by the motor in the middle of the picture) with an initial estimated 

pavement structure. The mechanistic portion of the software transforms the input factors into 

strain and stress responses which are used to compute damage accumulation and empirically 

predict the observed distresses. The design procedure is an iterative one, in which the layer 

thicknesses are changed until an adequate pavement structure satisfying distress and roughness 

threshold levels at the end of the design period and at a given reliability level is found.  

Some of the most important advantages of the MEPDG include (Pierce, 2011): 

 Consideration of a broader range of vehicle types, axle loadings and tire pressures 

included for analysis,  

 Inclusion of material properties more directly related to the performance of pavements, 

 Characterization of local materials and climate, 

 Improvement of the characterization of existing pavement layers, and 

 Improvement of the reliability for the prediction of pavement performance. 
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With the implementation of the MEPDG, the dynamic modulus (|E*|) test became the test of 

choice to characterize the stiffness of Hot Mix Asphalt (HMA) in the laboratory. Knowledge of 

the values of |E*| at different frequencies and temperatures became an essential input for the 

mechanistic analysis of pavement structures. Currently, most states have implemented or are in 

the process of calibrating and implementing the MEPDG or other mechanistic-empirical method 

(Pierce et al. 2014).  

The MEPDG is structured into three different levels for its inputs. Level 1 is the most complex 

one and uses parameters directly measured in the laboratory for the characterization of the 

pavement materials. Levels 2 and 3 need less data from the lab and instead use models for the 

prediction of certain material properties. In the case of the dynamic modulus, levels 2 and 3 use 

one of two models known as the Witczak models, developed through NCHRP 1-37A and 

NCHRP 1-40D. Although these models were developed with very extensive databases, 

sometimes their predictions can be imprecise for a given set of materials and climate conditions 

because of differences in aggregate types with different geological characteristics and the use of 

different binder types from different sources. In fact, no data from Hawaii were used for the 

development of these models. Moreover, the use of newer materials and modifiers in the 

preparation of asphalt mixtures is an aspect that is not accounted for in these models and 

therefore, the prediction of the behavior of these materials should be studied on a case by case 

basis.  

Consequently, to obtain more accurate values of dynamic modulus for their use on design 

methods, it is necessary to develop models that are more representative of the conditions of each 

geographical zone. For this purpose, a laboratory analysis should be performed to determine the 

influence on |E*| values of the local material characteristics and testing conditions.  

This project aims at developing a prediction model for dynamic modulus of asphalt mixtures that 

takes into consideration different testing conditions, component materials and mixture 

volumetrics and that provides more accurate values of |E*| throughout the whole range of 

application in the field (i.e., to predict the behavior of asphalt mixtures for any combination of 

temperature and frequency with the use of interpolation models know as master curves). To 

develop the model, |E*| data were collected at the University of Hawaii pavement laboratory 

(two data sets collected at different times) and at the National Laboratory of Materials and 

Structural Models at the University of Costa Rica (one data set). Each of the three data sets 
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contains different characteristics regarding component materials and testing conditions. While all 

data sets used several different mixture modifiers (e.g. binder modifiers, fibers), the data sets 

from the University of Hawaii uses different confinement pressures during testing and the data 

set from Costa Rica includes freeze-thaw conditioning cycles with the objective of capturing the 

influence of moisture damage on the values of |E*|.  

Two statistical approaches are used to develop the model given the characteristics of the data. 

First, the joint estimation technique is used since data from multiple sources are used. This 

technique identifies all explanatory variables that are common for all data sets as well as unique 

variables that have explanatory influence on the model but belong to each data set separately. 

Through this approach a more robust model can be created. This model relates the data sets 

through shared characteristics, but also highlight the important features that are unique for each 

of them. To account for marginal differences between explanatory variables in common between 

the different databases, the joint estimation approach incorporates bias parameters into the 

model. The second technique used for the estimation of the model parameters is the mixed-

effects approach. Mixed-effects are commonly used for grouped data to describe a response 

variable by accounting for the correlation between observations within a group (or experimental 

unit). In the case of the model developed herein, unobserved differences among experimental 

units (asphalt concrete specimens) due to material differences or sample preparation result in 

deviations from an overall mean for all samples. The use of the mixed-effects approach is 

motivated by its capability to account for the variability introduced to the model by unobserved 

heterogeneity within experimental units.   

All samples used for this experiment are representative of common mixtures used in the state of 

Hawaii and Costa Rica, and for this reason it is expected that the model can be easily 

implemented in both places. However, a model developed with these characteristics can also be 

implemented in different regions by adjusting some or all of the model parameters to the 

corresponding local conditions by following a similar approach or by performing smaller scale 

studies to determine adjustment factors. 

1.2 Research Objectives 

The main objective of this study is to estimate a comprehensive predictive model for dynamic 

modulus |E*| accounting for mixture characteristics commonly used in other studies, such as air 

voids, effective binder by volume, and gradation, and for other testing and mixture 
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characteristics such as confinement level, strain level during testing, number of freeze-thaw 

cycles for simulating moisture sensitivity, and use of anti-stripping agents.  

To achieve such ambitious objective, the following two major endeavors were undertaken: 

1) A laboratory dynamic modulus database obtained in in this study was combined with a 

previous one obtained also at the UH pavement laboratory and a third one obtained from 

LanammeUCR in Costa Rica and merged into a single database with the necessary 

characteristics for further analysis.  

2) The statistical approaches of non-linear mixed effects and joint estimation were applied to 

this combined database to create a prediction model for dynamic modulus that can be applied 

in both regions (Hawaii and Costa Rica) for the mechanistic analysis of asphalt pavements.  

The resulting model permits the assessment of issues of interests to local authorities, particularly 

to the Hawaii Department of Transportation Airports Division, such as the comparison of the 

laboratory performance of different mixtures with unmodified and modified binders with and 

without the use of synthetic fibers. The model however, opens the possibilities for further studies 

assessing the effects of factors such as confinement, strain levels, use of anti-stripping agents, 

and moisture sensitivity.   

1.3 Contributions 

The model created under this dissertation is expected to predict the values for dynamic modulus 

of mixtures used in Hawaii and Costa Rica for different mixture characteristics more accurately 

than the Witzack models. This new model could be used as part of the calibration of a 

Mechanistic pavement design method for Hawaii and as part of the mechanistic design methods 

currently being implemented in Costa Rica. 

The use of current methods such as the MEPDG or any other design guide without proper 

calibration can be unreliable for the design of asphalt pavements in Hawaii since they have been 

calibrated for other locations with different materials and weather characteristics. Costa Rica and 

Hawaii share a few similarities, specially related to climatic conditions, which makes highway 

agencies in both places use similar asphalt binders graded using AASHTO methods (AASHTO, 

2016). Similar distresses are also observed in both places mainly due to their large annual 

precipitation. Nevertheless, since not all variables are common to the databases from the two 

locations (e.g., use of confinement level is available for Hawaii but not for Costa Rica whereas 

induced moisture damage is available for Costa Rica but not for Hawaii), there is a need to 
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consider parameters that are unique to each database and to include bias parameters through the 

joint estimation approach mentioned earlier. 

Having the tools to predict the dynamic modulus of asphalt mixtures for these regions will be of 

great use for the prediction of distresses in pavements with mechanistic-empirical methods and 

therefore for the selection of appropriate asphalt layer thicknesses. The importance of more 

accurate tools to predict the dynamic modulus of asphalt materials was noted by Bari, et al. 

(2006), where an evaluation of the first version of the Witczak model was found to predict values 

of dynamic modulus that can vary from the measured values by as much as 6 times. This 

observation led to the development of the modified Witczak model, which was improved with an 

expanded database and a few changes to its parameters. An over or under-prediction of the 

dynamic modulus models by a factor of 6 would determine thicknesses that would either be too 

thin of too thick (respectively). In the first case, an early failure of the pavement would be 

expected due to a thickness incapable of holding the loads that it was designed for. In the second 

case, thicknesses larger than necessary, even when they can hold the traffic loads, will still 

represent an unnecessary over-design implying a very high cost for the local department of 

transportation and therefore to the users who pay for the roads. Additionally, as mentioned by 

Zeiada et al. (2014), “the consequence of mis-predicting the pavement distress is a change in the 

predicted service life”. This in turn could have an impact on Quality Control/Quality Assurance 

analysis when it is included into performance related specifications.  

Therefore, the implementation of more accurate prediction models for dynamic modulus is key 

for a more appropriate asphalt pavement design at all levels. This model can also serve as a 

starting point for similar models that can be used in other states and countries after the 

implementation of any necessary calibration procedures to accommodate the characteristics of 

that location’s own asphalt mixture. 

1.4 Outline of the dissertation 

This dissertation is written in six chapters. Chapters 2 to 6 are organized as follow: 

 Chapter 2 presents the theoretical background for the dynamic modulus test as the test of 

choice for measuring the stiffness of asphalt mixtures. The chapter further explains the 

use of confinement pressure during testing to better replicate field conditions, and the use 

of freezing and thawing cycles to induce a severe moisture damage in the mixture. The 
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final part of this chapter describes some of the most common additives to modify asphalt 

mixtures that were used during the preparation of the samples tested for this experiment.  

 Chapter 3 introduces the statistical approaches that are used to build the prediction model, 

i.e., joint estimation and mixed-effects. Both approaches are used due to their ability 

(mentioned earlier) to estimate a model while accounting for differences in data sets and 

experimental units.  

 Chapter 4 describes the three datasets used to create the model. While the first two 

datasets were produced and gathered in Hawaii, the third dataset was created in Costa 

Rica. The main characteristics of the materials as well as the testing conditions are 

discussed in detail in this chapter. 

 Chapter 5 details the creation of the prediction model from the initial sigmoidal function 

(used to define the relationship between |E*| and the frequency (or time) of loading) and 

through the incorporation of the statistical approaches until the final model was 

determined.  

 Chapter 6 presents the conclusions obtained from this dissertation and some 

recommendations for the application of the model and further research to be performed in 

the subject.  
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CHAPTER 2: BACKGROUND 

This chapter presents a synopsis of the dynamic modulus of asphalt mixtures. Section 2.1 begins 

with the origin of the predictive models that are currently used in the Mechanistic-Empirical 

Pavement Design Guide (MEPDG), and ends with the calculation of master curves from data 

collected in the laboratory. After this, the rest of the sections in the chapter provide a discussion 

about variables included as factors affecting the dynamic modulus of the asphalt mixtures in the 

predictive model developed in this study. Section 2.2 gives an overview of the use of 

confinement pressure in the dynamic modulus test, while Section 2.3 gives the background for 

one of the most recent procedures used to assess the moisture damage in asphalt mixtures. 

Section 2.4 describes the different mixture modifiers that were used in the samples tested (fibers, 

binder modifiers, anti-stripping agents.)  

2.1 Dynamic modulus of asphalt mixtures 

The dynamic modulus (|E*|) measures the stress-strain relationship for an asphalt concrete 

specimen under a continuous haversine load applied at different combinations of temperature and 

frequencies. More specifically, |E*| is defined as  

|𝐸 ∗| =
𝜎0

𝜀0
 (1) 

where σ0 is the peak-to-peak axial stress and ε0 is the peak-to-peak recoverable axial strain. 

Another characteristic of the mixture measured along with |E*| is the phase angle, 𝜑, which is the 

angle needed to be added to the argument of the sine function in the strain sinusoid to simulate 

the empirically observed difference in time between the occurrence of the peak of the stress and 

strains sinusoids. Both |E*| and 𝜑 are used to predict the time dependent behavior of viscoelastic 

materials (Archilla, 2013). |E*| has become one of the most important parameters for measuring 

and comparing the performance characteristics of asphalt mixtures. The MEPDG uses the 

dynamic modulus as the design stiffness parameter in its linear elastic analyses to compute the 

strains used in the different transfer functions to predict damage in pavements. Even though the 

MEPDG is not being used in every state or country, similar design guides are being implemented 

that include dynamic modulus as the parameter of choice for the same purpose mentioned above. 

When information about the dynamic modulus of materials is not available for level 1 input, it is 

estimated through either direct correlation with other material properties, such as the dynamic 
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shear modulus of the asphalt binder (for level 2 only) or with regression equations developed for 

this purpose relating the dynamic modulus to several explanatory variables such as air voids, 

percent passing some sieve sizes, etc. (for both levels 2 and 3). The most commonly used models 

for these estimations are the Witczak models, developed through the National Cooperative 

Highway Research Program (NCHRP) studies 1-37A and 1-40D. The first model version was 

developed by Andrei et al. (1999), using 2750 points from a total of 205 HMA mixtures. This 

model is shown below in equation (2): 

 

𝑙𝑜𝑔10|𝐸
∗| =  −1.25 + 0.029 𝜌200 − 0.0018(𝜌200)

2− 0.0028 𝜌4 − 0.0048𝑉𝑎 −

0.822 (
𝑉𝑏𝑒𝑓𝑓

𝑉𝑏𝑒𝑓𝑓+𝑉𝑎
) +

3.872−0.0021 𝜌4+0.004 𝜌38−0.000017 (𝜌38)
2+0.0055 𝜌34

1+𝑒(−0.6033−0.3133 𝑙𝑜𝑔(𝑓)−0.3935 𝑙𝑜𝑔(𝜂))
  

(2) 

where: 

 |E*| = dynamic modulus of the mix, 105 psi, 

 η  = viscosity of the binder at the desired temperature, 106 Poise, 

 𝑓 = loading frequency, Hz, 

 ρ200 = % aggregate passing #200 (0.075 mm) sieve, 

 ρ4 = cumulative % of aggregates retained on #4 (4.76 mm) sieve, 

 ρ38 = cumulative % of aggregates retained on 3/8 (9.5 mm) sieve, 

 ρ34 = cumulative % of aggregates retained on ¾ (19.5 mm) sieve, 

 Va = air voids, % by volume of the mix, and 

 Vbeff = effective binder content, % by volume. 

 

The binder viscosity used in this model can be obtained by combining information from 

traditional tests such as softening point and penetration, viscosity with tube viscometers 

(absolute viscosity at 140°F (60°C) with the Asphalt Institute or the Cannon-Manning Vacuum 

Viscometers and kinematic viscosity at 275°F (135°C) with the Zeitfuchs® Cross Arm 

viscometer) or with more modern tests, such as the Brookfield viscometer that can provide 

viscosities at a range of temperatures. The second model developed by Bari and Witczak (2006) 

presents a modified version using 7400 data points from 346 mixtures. This model is shown in 

equation (3) 
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𝑙𝑜𝑔10|𝐸
∗| =  −0.349 + 0.754(|𝐺∗|−0.0052) ∗ (6.65− 0.32 𝜌200 + 0.0027(𝜌200)

2 +

0.011 𝜌4 −0.0001𝜌4
2 + 0.006𝜌38 −0.00014𝜌38

2 − 0.08𝑉𝑎 − 1.06 (
𝑉𝑏𝑒𝑓𝑓

𝑉𝑏𝑒𝑓𝑓+𝑉𝑎
)) +

2.56+0.03𝑉𝑎+0.71(
𝑉𝑏𝑒𝑓𝑓

𝑉𝑏𝑒𝑓𝑓+𝑉𝑎
)+0.012 𝜌38−0.0001 𝜌38

2 −0.001 𝜌34

1+𝑒
(−0.7814−0.5785 𝑙𝑜𝑔(|𝐺𝑏

∗ |)+0.8834 𝑙𝑜𝑔(𝛿𝑏))
                                          

(3) 

 

where: 

 |E*| = dynamic modulus of the mix, psi, 

 ρ200 = % aggregate passing #200 (0.075 mm) sieve, 

 ρ4 = cumulative % of aggregates retained on #4 (4.76 mm) sieve, 

 ρ38 = cumulative % of aggregates retained on 3/8 (9.5 mm) sieve, 

 ρ34 = cumulative % of aggregates retained on ¾ (19.5 mm) sieve, 

 Va = air voids, % by volume of the mix, 

 Vbeff = effective binder content, % by volume of the mix 

 |Gb
*|  = dynamic shear modulus of binder, psi, and 

 δb  = phase angle of binder associated with |Gb
*|, degrees.  

 

The |Gb*| and δb values are typically measured at temperatures between 4.4°C and 54.4°C (40°F 

and 130°F) in increments of around 16.6°C (30°F) using a frequency of 1.59Hz (10 rad/s) with 

the use of a Dynamic Shear Rheometer. As it will be explained in more detail later, |Gb*| and δb 

data were not available for all the data sets used for this project and therefore it was not possible 

to include it in the model. Trying to use available conversions (Bari and Witczack, 2006) to 

obtain these data has been found to introduce some error in the prediction since many 

conversions are necessary to predict the required values of |G*| and δb (Archilla, 2010). 

Furthermore, the model has been found to overpredict |E*| even when the |G*| values are directly 

measured with the dynamic shear rheometer (Robbins and Timm, 2011). 

Zeiada et al. (2014) argue that the use of large databases for calibration, such as the ones used for 

these models, can be a shortcoming since “gross trends, such as the effects of temperature, are 

captured, but trends with differences across mix types are not” (pp31). The analysis performed 

by these authors shows that the effects of volumetric changes produce some consistent trends, 

such as the reduction in |E*| with reduction of air voids. However, while the Witczak model 
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predicts that the |E*| values will always decrease with an increase in the asphalt content, their 

laboratory data did not match that trend for most cases. Regarding the aforementioned study, 

there are two observations that are necessary to point out. First, the trend depicted by the 

Witczak model regarding asphalt content is expected and was commonly observed in the 

databases used in this study. Second, the size of the database is not really a problem when trying 

to capture mixture differences. In fact, it is quite the opposite. The more “valid” data in a 

database, the higher are the chances of explaining the effect of different factors. Note the 

emphasis on the word “valid”. One of the potential problems with large databases are their 

higher chances of containing some outliers that may make the explanation of certain effects more 

difficult. Therefore, it is important to carefully analyze the database for the potential presence of 

outliers. Another problem is the use of field cross-sectional data (test results for too many 

different field mixtures with little control of the different factors and without replicates) since in 

this case important effects may be obscured by for example, high correlations between variables, 

errors in measurements, self-selection issues, etc. However, when enough points of similar 

mixtures are included, the trends for a given set of volumetric characteristics might be easier to 

be identified. 

From the evaluation of the predictive characteristics of the Witczak model, Bari et al. (2006), 

determined that |E*| values estimated with the predictive Equation (2) can vary from the 

measured values by as much as 6 times. This study led to the modified Witczak model, shown in 

equation (3), derived with an expanded database to procure the improvement in the prediction of 

|E*| values. The newer model not only includes more data points but also predicts the dynamic 

modulus of asphalt mixtures using a set of parameters slightly different from that used in the first 

model. 

Considering, among other things, the potentially large differences between the |E*| values 

predicted by these models and the actual values, many states and countries have calibrated or are 

in the process of calibrating the procedures to adjust them for the materials and weather 

characteristics of the specific region. The availability of material models that better characterize 

local material performance should result in a more accurate calculation of the pavements’ 

performance period. In this sense, Zeiada et al. (2014) indicate that several models have been 

proposed over the years, each of them requiring different material properties (e.g. volumetrics) as 

inputs and using different approaches such as full regression (Witczak model), 
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micromechanically motivated regression as in the case of the Hirsch model (Christensen et al. 

2003), artificial neural networks (Ceylan et al. 2008, Leiva-Villacorta et al. 2013) and other more 

general regression models (Apeagyei et al. 2012).  

The stiffness of HMA is needed over a range of temperatures and frequencies of loading related 

to the climatic and traffic conditions of the project location; however, in the laboratory the 

measurement of dynamic modulus is performed at only a few combinations of temperature and 

frequency specified in the standard testing procedures (AASHTO 2016). For this reason, it is 

necessary to use an interpolation model that can predict the dynamic modulus values at all 

temperatures and frequencies. This model is known as “master curve” and it has two main 

components: a sigmoidal function that defines the shape of the relation between |E*| and the 

frequency (or time) of loading (Equation (4)), and a second component which defines a shift 

factor that describes the amount of shifting necessary at different temperatures to match the 

curve at a reference temperature (Equation (5)). The shift factor can take several functional 

forms as a function of temperature, T. One example is a quadratic equation as shown in Equation 

(6). These two models can be used simultaneously to describe the behavior of a mixture at all the 

frequencies (times of loading) and temperatures of interest. For example, for a given temperature 

T, the shift factor can be computed with Equation (6). This is then used in Equation (5) together 

with the frequency ƒ to compute a reduced frequency ƒr (a fictitious frequency at the reference 

temperature Tr at which the |E*| is the same as that corresponding to frequency ƒ at temperature 

T). Finally, Equation (4) is used to compute the dynamic modulus at the reduced frequency ƒr, 

corresponding to the actual frequency ƒ and temperature T.  

 

log|𝐸∗| = 𝛿 +
𝛼

1 + 𝑒
𝛽+𝛾(𝑙𝑜𝑔(

1
𝑓𝑟
))

 
(4) 

where, 

 |E*| = dynamic modulus of asphalt mixtures, 

 ƒr = reduced frequency at a reference temperature, 

 δ = minimum value of log |E*|, 

 δ+α = maximum value of log |E*|, 

 β, γ = parameters that describe the shape of the sigmoidal function, 
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𝑎(𝑇) =
𝑓𝑟

𝑓
   𝑜𝑟    𝑙𝑜𝑔 (

1

𝑓𝑟
) = 𝑙𝑜𝑔 (

1

𝑓
) − log(𝑎(𝑇))  (5) 

where, 

 a(T) = shift factor as a function of the temperature, 

 ƒ = frequency at the testing temperature, 

 ƒr = reduced frequency at a temperature of reference, and 

 T = temperature of interest (reference) 

 

As mentioned before, an example of an equation used for computing the shift factor is: 

𝑙𝑜𝑔(𝑎(𝑇)) = 𝐴𝑇2 + 𝐵𝑇 + 𝐶  (6) 

where A, B and C are parameters to be estimated for a given reference temperature T. 

One of the most common machines for collecting |E*| laboratory data and the one used in this 

study, is the Asphalt Mixture Performance Tester (AMPT), shown in Figure 2. To illustrate the 

use of these equations, an example is provided below with laboratory data collected with the 

AMPT.  

 

 

Figure 2. Asphalt Mixture Performance Tester (AMPT) used for dynamic modulus testing 

For the dynamic modulus test, the AMPT applies a sinusoidal (haversine) load at different 

combinations of temperatures and frequencies, and calculates the dynamic modulus as the ratio 

of the peak-to-peak stress applied and the peak-to-peak recoverable axial strain. The stress is 

calculated as the deviator force applied over the cross-sectional area of the cylindrical specimen 
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while the strain is calculated as the average of the three strains measured using three linear 

variable differential transducers (LVDT) placed at 120 degrees of separation around the sample. 

Each LVDT is placed between two points separated vertically 70 mm (2.76in) and the strain on 

each is calculated as the ratio of the deformation of the sample measured axially by each LVDT 

and their initial length (70 mm). At a given temperature, the process is repeated for several load 

frequencies, descending from highest to lowest. The temperatures are varied ascending from 

lowest to highest. 

Two methods for the dynamic modulus testing are available as AASHTO standards. The first 

one, AASHTO T-342 (AASHTO 2016), states that the test should be conducted at -10, 4.4, 21.1, 

37.8 and 54°C (14, 40, 70, 100 and 130°F) while using loading frequencies of 0.1, 0.5, 1.0, 5, 10 

and 25Hz. This protocol is more commonly used when a Universal Testing Machine (UTM) is 

used. The second standard, AASHTO PP-61 (AASHTO 2016), which until now has not changed 

its provisional status (PP: Provisional Practice), is the standard specifically intended for using 

with an AMPT. This standard recommends the use of three different temperatures to test the 

asphalt mixture samples. The low and intermediate temperatures, 4°C (39.2°F) and 20°C (68°F) 

respectively, remain the same for any asphalt grade while the highest testing temperature varies 

depending on the high temperature performance grade (PG) of the asphalt. A temperature of 

40°C (104°F) is recommended as the highest testing temperature for asphalt grades PG64-XX 

and PG70-XX. In the case of a PG76-XX grade, the maximum testing temperature recommended 

is 45°C (113°F). This procedure also recommends using the three frequencies of 10, 1 and 0.1Hz 

for all temperatures with a fourth frequency of 0.01Hz added for the highest testing temperature 

only.  

The first database collected at UH followed the AASHTO T-342 standard regarding testing 

temperatures and frequencies. This means that even when the AMPT was used, most of the 

testing was performed at 4 different temperatures, i.e., 4°C, 21°C, 37°C and 54°C (40°F, 70°F, 

100°F and 130°F). Besides the fact that the AMPT does not have the capability to reach the 

lower temperature of -10°C (14°F), this temperature has normally been excluded from testing in 

more tropical places (such as in Hawaii and Costa Rica) since the behavior of the mixtures at 

those low temperatures is not a concern for these zones. For this data set, however, several 

intermediate temperatures were tested at the time, e.g. 14°C, 34°C, 45° (57°F, 93°F, 113°F), with 

the objective of gathering more information about the available materials. For this same reason, 
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the frequencies used for this data base included, in several cases, more levels than the ones 

requested by the standard (i.e. 0.01, 0.2, 2 and 20Hz were added). 

In the case of the second database collected at UH and the one collected in Costa Rica, both 

followed AASHTO PP-61. Regarding testing temperatures, both data sets were gathered at the 

corresponding temperatures suggested by the standard, i.e. 4°C and 20°C for low and 

intermediate temperatures and two different high temperatures depending on the asphalt grade. A 

temperature of 40°C was used for both base binders in the data sets (PG64-22 for UH and PG70-

22 for CR) while a temperature of 45°C was applied for the polymer modified binders of both 

data sets which are classified as PG76-22.  Regarding the testing frequencies, the database 

gathered in Costa Rica followed the exact recommendation of the standard, using three 

frequencies (10Hz, 1Hz and 0.1Hz) for the low and intermediate temperatures, and four 

frequencies (10Hz, 1Hz, 0.1Hz and 0.01Hz) for the high temperature. In the case of the datasets 

collected at UH for this study, 5 frequencies were used (25Hz, 10Hz, 5Hz, 1Hz and 0.1Hz) for 

the low and intermediate temperatures and a sixth frequency (0.01Hz) was added when testing at 

the highest temperature. 

Error! Reference source not found. shows a typical output from the AMPT after performing d

ynamic modulus testing. As can be seen, there are four sinusoidal signals; three of them belong 

to the LVDTs while the fourth one corresponds to the load applied. 

 

Figure 3. Typical dynamic modulus output from AMPT machine 
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Paying close attention to the two signals at the top, a horizontal shift can be noted between the 

peaks of these two signals. The signal at the very top belongs to the load applied, while the 

second one belongs to one of the LVDT signals, and this shift in time (Δt) is related to the lag in 

the material’s deformation response after a load is applied. This shift in time (Δt) is directly 

related to the phase angle of the material (φ) by the relation Δt=φ/ω, where ω is the angular 

velocity in rad/s. Thus, the phase angle describes the phase lag in radians between the application 

of a load and the material’s response to it. This lag varies between 0 radians (0°) for purely 

elastic materials, where the strain response after an applied stress is instantaneous, and π/2 

radians (90°) for purely viscous materials. For a more in depth explanation about the phase angle 

of asphalt material, the reader is directed to the work of Archilla et al. (2014). 

Once dynamic modulus has been measured for every frequency at each temperature, the 

procedure to find the corresponding master curve is applied. As mentioned before, the master 

curves are interpolation models that can predict the dynamic modulus of a material at any given 

temperature and frequency. The elastic modulus of asphalt concrete increases with the frequency 

of loading but at the same time decreases with an increase in temperature (Figure 4). The 

modulus curves as a function of frequency (inverse of time) change in shape at different 

temperatures. However, the data points tend to form a smooth curve when shifting the data 

points to the left or right a distance that depends on the difference between the actual temperature 

at which the data points were obtained and a reference temperature. This behavior allows for the 

application of the time-temperature superposition principle, which is used to determine 

temperature-dependent mechanical properties of linear viscoelastic materials when properties at 

a reference temperature are known. The principle permits the application of a shift to the curves 

(e.g., Equation 6) to merge them into a single master curve at a reference temperature, which can 

then be used for predicting the behavior at any other temperature and frequency of interest by 

applying the appropriate shift to the frequency based on the temperature of interest.  
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Figure 4. Dynamic modulus as a function of frequency at various temperatures 

Figure 5 shows the application of equations 4 to 6, and the horizontal shift that can be observed 

for the data points, particularly for those at the lowest and highest temperatures for which the 

shifts are more noticeable (there is a small shift also for the points at 20°C since the reference 

temperature used is 21°C) The points obtained at 4°C (39.2°F) experience a shift in the right 

direction, while the points obtained at 45°C (113°F) are shifted to the left. The line that fits the 

points is the master curve of the mixture at a reference temperature of 21°C (68°F) 

 

Figure 5. Master curve of asphalt mixtures 
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The master curves are used as inputs in the MEPDG to determine the behavior of asphalt 

mixtures at different temperatures and frequencies of loading. Other necessary inputs for the 

MEPDG, particularly weather and traffic, help define the conditions under which the materials 

must adequately perform over a design period. The master curves are then used to determine the 

response (in the form of resilient strains) of the mixtures under these conditions of traffic and 

weather. The strains calculated for each combination are translated into distresses that affect the 

pavement’s life. Users of the MEPDG can then find the appropriate pavement structure by 

changing thicknesses until the different distresses do not exceed acceptable thresholds at the end 

of the design period.  

Given the importance of master curves for predicting the performance of asphalt mixtures, it 

becomes necessary to update, calibrate or develop newer models with the capability of predicting 

more accurate values of |E*| for the materials available in a region.  

2.2 Use of confinement for the dynamic modulus test 

Traditionally, dynamic modulus testing has been performed in the laboratory without the 

application of confining pressure. However, in the field, a large proportion of the zone around 

the load is subjected to some level of confinement (i.e., with compressive stresses in all 

directions). Consequently, use of |E*| from confined tests has been reported to simulate field 

conditions more closely (Shenoy and Romero, 2002).  

Several studies have shown that confinement can have an important effect on the measured 

values of dynamic modulus. Pellinen et al. (2002), while studying the trends of |E*| with bulk-

stress (θ) for a given temperature, found that the values of |E*| were directly proportional to the 

level of confinement at medium to high temperatures. These authors found that at higher 

temperatures the effect of asphalt content is reduced and the mix behavior is governed mostly by 

the granular material, which explains why confinement has a larger effect under these conditions.  

Shenoy and Romero (2002) analyzed WestTrack data and showed that the confined |E*| 

correlated better than the unconfined |E*| when compared to field performance at the test track. 

These authors determined that for this laboratory-field comparison, the coefficient of 

determination R2 improved from 0.42 using unconfined |E*| to 0.62 with data obtained with 138 

kPa (20 psi) confinement and to 0.89 with data for 207 kPa (30 psi) confinement. Shenoy and 

Romero recommended that an optimum confinement level needs to be found to obtain the best 

possible correlation. 
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A challenge for performing confined testing in the laboratory is the additional amount of 

time required. If testing is performed at several confining pressures, then clearly more time is 

required for performing the additional frequency sweeps at each temperature and confining 

pressure combination. In addition, a longer stabilization time is required at each temperature to 

minimize the effect of the bulk strains induced by confinement. To reduce the testing time, Sotil 

et al. (2004) proposed a procedure to determine confined master curves from unconfined data 

and data at only two confined conditions. More recently, Lacroix et al. (2011), proposed a 

procedure based on rigorous theoretical considerations to estimate confined |E*| from unconfined 

|E*| measurements at the regular testing temperatures and from measurements of |E*| obtained 

with at least three different confinement levels at only 54°C (129.2°F). This type of estimation, 

however, attempts to predict values of confined |E*| at other temperatures and frequencies based 

solely on assumptions of the behavior of the mixture by using models that do not require any 

input regarding material characteristics or volumetrics, giving as a result estimations with large 

errors on the predicted values (close to 20% for that particular study). A few studies (Kim et al. 

2009, Zhao et al. 2012) have also concentrated on the development of constitutive relationships 

to account for the effects of confinement. 

Zeiada et al. (2011) performed a study on 26 asphalt mixtures where the effect of 

confinement is determined in detail for dense, open graded and gap graded mixtures. Their 

results showed the importance of using confinement, especially for gap and open graded 

mixtures, where the effect is more noticeable for all combinations of frequency and temperature. 

For the specific case of dense graded mixtures, the study shows that the biggest influence of 

confinement is given at high temperatures and low frequencies, while the differences at low and 

intermediate temperatures are not statistically significant. Additionally, these authors suggested 

the use of 138 kPa (20 psi) as an optimum confinement level, since after this level, the increases 

on the values of |E*| were not statistically significant.  

In the laboratory, the AASHTO TP 79 standard (2016) for dynamic modulus testing using the 

AMPT machine, includes the guidelines to perform the experiment with the use of confinement 

pressure. The level of confinement applied in the lab depends on the capacity of the equipment 

used. Maximum levels of up to 500 kPa (72.5 psi) have been used with servo hydraulic loading 

frames and triaxial cells. When using the AMPT, as in this study, the maximum value used has 

been reduced by half since the AMPT has a 250kPa confining pressure limit. 
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For this experiment, the second data set from UH was tested specifically with the intention of 

determining the influence of confining pressure on the dynamic modulus of the asphalt mixture. 

Four levels of confinement were chosen, 0 kPa, 69 kPa, 138 kPa and 207 kPa (0 psi, 10 psi, 20 

psi and 30 psi respectively). The first data set from UH included some testing with confining 

pressure, particularly for three types of mixtures where a confinement of 100 kPa (14.5 psi) was 

used. However, the use of confinement was not the focus of the study when that first data base 

was developed. The inclusion of confinement is an important and novel characteristic of the 

model developed in this thesis. To date, there appears to be no models for predicting |E*| that 

account for this effect. Chapter 3 will discuss the statistical tools used to take advantage of the 

gathered laboratory data to incorporate the effects of confinement on the prediction of |E*| values 

through the developed model. 

2.3 Induced moisture damage during dynamic modulus testing 

Moisture damage consists of a loss of strength and durability in asphalt mixtures associated with 

the effects of moisture (Little and Jones IV, 2003). This damage can be due to a loss of adhesion 

between the asphalt binder and the aggregates or a loss of cohesion and stiffness of the binder or 

the mastic which makes them even more susceptible to moisture (Kim and Lutif, 2006).  

One of the most common distresses found in asphalt pavements, namely stripping, is described 

as a loss of integrity of the hot mix asphalt (HMA) which occurs as a result of moisture damage 

in the mixture.  

Stripping can begin from either the top or the bottom of the HMA layer, depending on where the 

mixture is exposed to moisture. Water runoff on the road surface might generate the distress at 

the top of the pavement while capillary action from the water table or seepage from surrounding 

areas would develop a distress that expands from the bottom. When stripping is detected at the 

top of the HMA layer, it can take different forms such as rutting, shoving or even fatigue or 

longitudinal cracking (Rae Hunter and Ksaibati, 2002). When the distress initiates at the surface 

and makes its way to the bottom it is called raveling. In extreme cases, if the pavement surface is 

not treated at an appropriate time, disintegration of the surface may occur. 

There are several tests that can be used to determine the moisture susceptibility of asphalt 

mixtures:  

 ASTM D4867, Effect of Moisture on Asphalt Concrete Paving Mixtures,  
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 AASHTO T165 (or ASTM D1075), Effect of Water on Compressive Strength of 

Compacted Bituminous Mixtures,  

 AASHTO T324, Hamburg Wheel-Track Testing of Compacted Hot Mix Asphalt, and 

 AASHTO T283, Resistance of Compacted Bituminous Mixture to Moisture Induced 

Damage.  

AASHTO T283 is the one that is most commonly used. To induce moisture damage on the 

asphalt specimens many of these standards rely on conditioning the sample in water baths before 

or during testing. However, a study conducted by Epps et al. (2000) for the National Cooperative 

Highway Research Program (NCHRP) determined that the use of a freeze-thaw cycle normally 

decreases the tensile strength of the asphalt samples when compared with samples that are only 

soaked in water. The study of Epps et al. did not find statistically significant differences for most 

of their comparisons between samples tested with and without freeze-thaw cycles. However, 

when using aggregates considered water-sensitive, the difference in tensile strength between 

conditioned and unconditioned samples was statistically significant when one freeze-thaw cycle 

was applied. Thus, their study recommended the use of the freeze-thaw cycle proposed by the 

AASHTO T283 testing method. The use of one cycle during testing was therefore included to 

induce more severe moisture damage in asphalt mixtures, independently of the exposure of a 

geographical zone to natural freezing-thawing conditions. 

In both Hawaii and Costa Rica there is no exposure to natural freeze-thaw conditions.  

Nevertheless, the annual average rainfall is very high, with an average of 2200 mm (86.8 in) for 

Honolulu, Oahu (Giambelluca et al. 2013) as an example for Hawaiian conditions and 2926 mm 

(115.2 in) as an average for all Costa Rica (World Bank, 2016). As a comparison, the annual 

average precipitation for the whole United States is recorded as 715 mm (28.1 in) (World Bank, 

2016). Due to this large amount of precipitation, it is only natural that the roads in both places 

can suffer constant damage from moisture on their roads.  

Measuring the moisture susceptibility of asphalt mixtures thus needs a reliable test to prevent all 

the distresses associated with moisture damage. Even though Superpave® adopted AASHTO 

T283 for this purpose, several agencies in the United States have reported problems with this test 

when trying to correlate the laboratory results with field observations (Solaimanian et al. 2003). 

Experiences from Costa Rica have found that the test can often give false positives or negatives 

when predicting moisture susceptibility, thus being unable to accurately identify the mixtures 
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that will perform poorly in the field (Vargas-Nordcbeck et al. 2016). Two limitations have been 

pointed out by these studies: a) the conditioning procedure does not include dynamic loading 

which is what actually happens in the field and b) it determines if moisture damage will occur in 

the field based on a measurement of strength, which is a parameter that is not directly used in 

pavement design. 

For this reason, several studies (Solaimanian et al. 2006 and 2006, Nadkarni, et al. 2009, Vargas-

Nordcbeck et al. 2016) have suggested the use of the dynamic modulus to measure the 

susceptibility of asphalt mixtures to moisture damage. This has the advantage that the dynamic 

modulus test is an important parameter used directly in mechanistic-empirical pavement design 

procedures. Furthermore, provided the permanent deformations in the test are limited, the use of 

the same specimen before and after conditioning eliminates the variability among specimens as a 

factor.  

An experiment conducted by National Laboratory of Materials and Structural Models 

(LanammeUCR), measured the dynamic modulus of mixtures before and after being conditioned 

to determine a procedure that could more accurately predict the moisture susceptibility of 

mixtures in Costa Rica. Since the use of water bath conditioning had shown to not be a good 

indicator of the moisture susceptibility of mixtures, a more severe approach was followed by 

applying 1, 3 and 6 freeze-thaw cycles to the mixtures. Their data are used in this document and 

the effect of freeze-thaw cycles on the dynamic modulus master curves is one of the variables 

included in the prediction model developed in this study. 

2.4 Asphalt mixtures’ modifiers 

Material modification encompasses a large variety of methods to improve the performance 

characteristics of the original material. In construction, these modifications can be seen in a large 

range of materials given that the common objective is to upgrade the quality and behavioral 

characteristics of the products to meet newer demands. In the case of asphalt mixtures, several 

factors have contributed to the use of modifiers. Some of the factors worth mentioning are 

(Kluttz, 2012): a) accommodating an increased demand in traffic, which include heavier loads 

and bigger volumes, b) satisfying the requirements for Superpave® specifications, and c) 

economic issues related to higher paving costs, which translates into thinner pavements that need 

to last longer to delay maintenance.  
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Although the need for modifiers has long been recognized in the paving industry, the current 

models used in the MEPDG for the design of pavements do not have the capacity to directly 

include among its inputs the characteristics of modified mixtures or binders. The only available 

possibility for level 1 design is to include the laboratory measured values of |E*| of the modified 

material or the values of |G*| of the binder at level 2. Therefore, newer models that include the 

expected characteristics and behavior of these materials directly as inputs are needed. 

The modifiers that were used for the improvement of the mixtures tested for this research project 

are discussed in the following sub-sections. 

2.4.1 Fibers 

Fibers are typically used in asphalt mixtures to improve their performance against permanent 

deformation and fatigue cracking. Several studies (Bueno et al. 2003, Lee et al. 2005, Kaloush et 

al. 2010, Bennert 2012) have tested the effects of adding different types of fibers to mixtures and 

evaluated their performance against unmodified mixtures.  

Since for this study synthetic polyolefin/aramid fibers are used to evaluate their effect on the 

mixtures, the following discussion concentrates on this type of fibers. As reported by McDaniel 

(2015), to date, the literature regarding the effect of this type of fibers on |E*| is mixed. Kaloush 

et al. (2010) report significant increases in both dynamic modulus and other performance 

characteristics. These Arizona State University (ASU) researchers found that the |E*| of mixes 

modified with synthetic fibers were significantly higher than those of a control mix. At 37.8°C 

(100°F) and 10Hz, they reported that the modulus of the fiber modified mix was 83% higher than 

the modulus of the control mix. ASU has conducted several more investigations showing similar 

results. Gibson and Li (2015) found that a synthetic fiber mix was sometimes softer and 

sometimes stiffer than the control mix depending on mixture volumetrics, a result that these 

authors considered sensible because the small strains in the |E*| test do not significantly mobilize 

tension in the fibers.  

On the other hand, according to McDaniel (2015), Bennert reports surprisingly lower dynamic 

moduli at high temperatures of a plant produced mix with polyolefin/aramid fibers with respect 

to the mix without fibers. Nevertheless, McDaniel (2015) also indicates that in that study some 

contamination of the unmodified binder with a polymer modified binder was suspected. 

McDaniel (2015) also reports that in another study by Bennert, dynamic modulus test results of 

two similar plant-produced mixtures with and without fibers showed similar values at all 
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frequencies but that the mix with fibers had slightly better permanent deformation resistance. 

While two other studies by Bennert (2012) found some detrimental effects of the fibers under 

certain testing procedures, they also show little to no improvement on the dynamic modulus of 

the mixtures tested.  

The effect of the addition of fibers was included in one out of the three datasets used for the 

creation of the predictive model. This factor is considered in the model to predict the behavior of 

the master curve. 

2.4.2 Styrene-Butadiene-Styrene Polymer  

Polymer modification is one of the most common procedures performed in the asphalt industry 

to improve the behavior of asphalt mixtures. Some of the benefits of the polymer modified 

asphalts (PMA) include improved rutting resistance, less thermal cracking (induced by low 

temperatures), improved durability and in some cases even an improvement in stripping 

resistance (Walker 2014). 

Even though polymers cover a wide range of modifiers, elastomers (rubbers and elastics) and 

plastomers (plastics) are the most commonly used (Walker 2014). Two of the most popular 

elastomers used in the industry are the styrene-butadiene-styrene (SBS) and styrene-butadiene-

rubber (SBR). These modifiers are included in the mix to reduce rutting and improve fatigue and 

thermal cracking resistance (Bahia et al. 2001). Of particular interest is the use of SBS, which 

was a polymer employed in the three studies used for this research. This elastomer can be added 

to the mixture in different percentages, depending on the desired performance of the mixture.  

The benefits of using polymer modified binders have been documented widely. The Asphalt 

Institute (AI) quantified the effects of polymer-modified asphalt for reducing pavement 

distresses (Von Quintus et al. 2003) and determined that in average PMA mixtures can provide 

an average of 2 to 10 years increase in service life for asphalt pavements. For Hawaii, Archilla 

(2010) developed a model from unconfined dynamic modulus tests that showed that the dynamic 

modulus values of polymer modified mixtures were higher than those of the unmodified 

mixtures at low reduced frequencies.   

However, a big problem regarding modified asphalts remains unsolved. Results from the 

NCHRP Project 09-10 on Superpave protocols for modified binders show that the simplifying 

assumptions from the Superpave specification AASHTO MP1 (currently AASHTO M320): 

Standard Specifications for Performance Graded Asphalt Binder (AASHTO 2016), limits its 
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applicability to the greater part of modified binders analyzed under that study (Bahia et al. 2001). 

This means that the current AASHTO method is not capable of correctly characterizing the 

performance of modified binders. Consequently, its effect on the mixture is underestimated 

(Bahia et al. 2001). The issue can later be transferred into the MEPDG for levels 2 and 3, where 

limited inputs about the binder are required. Particularly for level 3, where default values are 

used for binder inputs, the advantages of using modified binders is then lost. In this sense, the 

use of either level 2 or 3 of the MEPDG limits the ability to accurately predict the distresses in 

pavements when these types of modified binders are used. As mentioned before, only level 1 of 

the design guide can capture the advantages of modified mixtures by using laboratory measured 

data. Including the results of dynamic modulus of mixtures with polymer modified binders in the 

prediction model developed herein overcomes this limitation. 

2.4.3 Elvaloy®Ret 

Elvaloy®Ret is the commercial name for a reactive elastomeric terpolymer (RET) that is used to 

chemically modify asphalt binders. One of the advantages of Elvaloy®Ret is that, unlike most 

other plastomers and elastomers that are mixed into the asphalt but remain as two separate 

phases (binder/modifier), this product contains an ingredient that chemically reacts with the 

asphalt forming a stable, resilient and elastically improved binder (Tarefder and Arifuzzman 

2011). Just like in the case of SBS, Elvaloy®Ret can be mixed in different percentages 

depending on the desired performance, with a range from 0.7% to 2.0% being the 

recommendation by the manufacturer. However, no more than 2.5% shall be added since the 

asphalt may gel (Panabaker 2009). The process to modify the asphalt binder with Elvaloy®Ret 

can take up to 18 hours and for this reason the use of a small percentage of poly-phosphoric acid 

(PPA), typically ranging from 0.2 to 0.3% of the binder weight, is recommended as a catalyst to 

reduce the reaction time to close to 1 hour (Panabaker 2009). 

Research related to the use of this modifier is also extensive, with some sources claiming a 

reduction in moisture susceptibility, fatigue cracking and rutting of the mixtures (Kanabar 2010, 

Tarefder and Arifuzzman 2011, Panabaker 2009). Experiments carried out at UH Manoa 

(Archilla 2010) found an improvement in the mixture performance by the use of Elvaloy®Ret. 
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2.4.4 Lime 

Lime is the first of two anti-stripping agents that were used in the mixtures from Costa Rica. The 

benefits of lime can be found widely in the literature and it is one of the most common anti-

stripping additives used in the US. From a total of 44 states that experience severe moisture 

damage on their pavements, 29% of them exclusively use lime as their additive while 15% use 

either lime or any other liquid agent (Hicks et al. 2003). 

Lime improves the binder-aggregate adhesion by reacting chemically with the carboxylic acids 

in the asphalt and forming insoluble salts that are absorbed at the aggregate surface, which 

improves the adhesive compatibility between both materials (Little and Jones IV 2003).  

A study by Sebaaly (2006) demonstrated that lime not only has a good ability to control water 

sensitivity but also has the capability to: 

 act as a mineral filler, which stiffens the asphalt binder,  

 improve the mixture resistance to fracture growth by improving the fracture toughness at 

low temperatures,  

 act as an anti-oxidant, and  

 react with clay fines to improve moisture stability and durability. 

Moreover, this study determined that lime treatment of asphalt mixtures can increase pavement 

life by an average of 3 years, which represents an increase of 38% from the expected pavement 

life (Sebaaly, 2006). 

Due to its well-known properties, lime was included in the treatment of the Costa Rican mixtures 

to evaluate its behavior when cycles of freezing and thawing were applied.  

2.4.5 Magnabond 

Magnabond is a liquid anti-stripping agent. Most of these modifiers, as in this case, are chemical 

compounds that contain amines (Rae Hunter and Ksaibati, 2002). These agents work by reducing 

the surface tension between the aggregates and the binder and therefore promoting an increased 

adhesion of the two materials. This product was used as an alternative for preventing moisture 

damage in the mixtures from Costa Rica. 

2.4.6 Sasobit 

Sasobit is an organic paraffin wax that can reduce the viscosity of the binder at mixing and 

compacting temperatures. These types of additives are known as asphalt flow improvers (Cooper 
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2009, Kridan et al. 2011), and are used, among other products and techniques, to create warm 

mix asphalt (WMA).  

The WMA technology has been gaining popularity in the last decade due to the benefit of 

reduced greenhouse gas emissions and energy consumption during production and paving 

operations (Jamshidi et al. 2012, Bonaquist 2011). Also, with a reduction of approximately 50°F 

with respect to the temperatures used for producing conventional HMA mixtures, WMA presents 

health benefits by reducing the exposure of workers to asphalt fumes as well as benefits for the 

mixture by reducing binder aging and potentially improving the pavement performance 

(Bonaquist 2011). Sasobit is the most common wax that has been used in most WMA projects in 

the United States, typically at a rate of 1.5% by weight of binder, either added to the binder or 

directly to the mixture (Qin et al. 2015).  

Two of the specimens tested in the older UH study were from field collected samples of a 

mixture that contained Sasobit.  
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CHAPTER 3: STATISTICAL APPROACH 

This chapter presents the two statistical approaches utilized in the estimation of the parameters of 

the predictive model. As will be explained in detail in chapter 5, the model was developed using 

the simplest form of the sigmoidal function (presented in chapter 2) as a starting point, and then a 

non-linear least squares analysis was used to expand the model by including several parameters 

that characterized the mixtures tested. To integrate the three data sets collected, two different 

approaches were used to address the potential differences due to material changes, testing 

conditions, sample conditioning and even sample to sample variations. Section 3.1 introduces the 

joint estimation approach, while Section 3.2 presents the mixed effects approach. Both 

approaches will be explained herein in one of their simplest forms and their application will be 

discussed in chapter 5.   

3.1 Joint estimation approach 

The joint estimation approach is useful when data from multiple sources are used since it 

identifies the explanatory variables that are common in all databases and the unique variables for 

every database that have an explanatory influence on the model (Archilla et al., 2007). This 

estimation approach has been used by Morikawa et al. (1999) for travel demand modeling and by 

Archilla (2000), Archilla and Madanat (2001) and Prozzi and Madanat (2004) for pavement 

deterioration models. 

To explain this approach, two different database sources named A and B can be considered. It is 

then assumed that both databases contain the dependent variable |E*| (which is the variable of 

interest for this project), and several explanatory variables such as mixture composition, 

volumetrics, etc. To avoid confusion with the conditional symbol, in the equations that follow 

|E*| is simply denoted as E*. A model for each of these databases can then be specified as 

follows: 

𝐸(𝐸∗𝐴|𝒙𝐴 , 𝒘) = 𝑔𝐴(𝜷𝐴, 𝒙𝐴, 𝜶,𝒘)  (7) 

𝐸(𝐸∗𝐵|𝒙𝐵, 𝒛) = 𝑔𝐵(𝜷𝐵 , 𝒙𝐵, 𝜸, 𝒛)  (8) 

where, 

 E(E*|·) = conditional expectation function of |E*| with a functional form g(·), 

 E*A = dynamic modulus for model A, 

E*B = dynamic modulus for model B, 
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 xA, xB = vector of explanatory variables shared by both models, 

 βA, βB = vectors of model parameters related to xA and xB respectively,  

 w = vector of explanatory variables unique to model A, 

 z = vector of explanatory variables unique to model B, 

 α = vector of model parameters related to w, and 

γ = vector of model parameters related to z,  

 

Depending of the explanatory variables, three scenarios are possible. In the first scenario, all the 

explanatory variables for both databases are common and both databases can be combined into a 

single model under the assumption that there is a single underlying data generation process 

common for both data bases. In this case, the model parameters α and γ and the associated 

variables z and w would not exist. This scenario would be ideal since it results in having more 

information for developing a single model. A second scenario would represent the opposite 

situation where two completely different models can be developed from the databases since no 

common explanatory variables exist. In this case βA, βB, xA and xB do not exist since there is 

nothing in common between the models. In contrast with the first scenario, nothing is gained by 

the combined use of the two databases. The third scenario is recognized as a more common 

situation, where both databases share some explanatory variables but also have some variables 

that are unique to each source. In this case, some of the estimated parameters are common to 

both databases and others are unique to one or the other database. The potential advantages of 

this scenario are that it allows the identification of explanatory variables, which may not be 

available in some databases and it permits determination of bias parameters to account for the 

different marginal effects estimated for explanatory variables in common between databases 

(Archilla, 2007). In terms of the models shown above, the set of common parameters may be 

different, that is βA≠ βB, therefore the relationship between the ith element of the set of 

parameters of each model can be expressed as βA
i= βB

i + δi, where δi is a bias parameter. This 

feature is called bias correction and is one of the main advantages of the use of joint estimation 

(Archilla 2000, Prozzi 2004). Two other advantages are: identification and statistical efficiency. 

Identification relates to the complementary characteristics of the data sources. For example, one 

data source may contain explanatory variables not available in the other, thus allowing the 

identification of the effects of these variables from this single data source. Statistical efficiency is 
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achieved when a parameter estimate common to all data sources is determined using all available 

data. Because of the larger sample size, this results in lower variance of the parameter estimate.  

The motivation for using joint estimation in this study is the use of different materials, additives 

and testing conditions in the three available data sets.  

3.2 Non-linear mixed effects approach 

The non-linear mixed-effects approach is used with grouped data (e.g. repeated measures, 

blocked design, and multilevel data) to describe a response variable as a function of covariates 

considering the correlation between observations in each group (Pinheiro and Bates, 2000). A 

mixed-model can be defined as a statistical model which contains both fixed effects and random 

effects as described shortly. This type of model is useful when several measurements, such as the 

dynamic modulus values, are made on the same statistical units, such as the cylindrical asphalt 

samples mixed, compacted and trimmed from different sources for this experiment. Fixed effects 

are the parameters which can be associated to the entire population or at least with certain 

repeatable levels of experimental factors (Pinheiro and Bates, 2000). These parameters define a 

systematic function of the mean response of all samples, which includes an error ε describing the 

intra-individual variation, allowing for the possibility of heterogeneous within-individual 

variance as well as within-individual correlation (Davidian and Giltinan, 1995). 

On the other hand, random effects are associated with individual experimental units which are 

drawn at random from an entire population (Pinheiro and Bates, 2000). The differences among 

experimental units represent a deviation from an overall mean. The inter-individual variation 

defined by the random effects can be due to variation in testing procedures (Davidian and 

Giltinan, 1995). 

The difference between a fixed-effects model and a random-effects model alone relies on 

whether it is desired to make inferences about the particular levels of the classification factor 

defined in the experiment or to make inference about the experimental units from which the 

levels are drawn respectively (Pinheiro and Bates, 2000).   

The idea of a mixed-effects model is therefore to combine both types of effects within one 

model, with fixed effects parameters explaining the behavior of the population means between a 

given set of treatments (intra-individual variation) and the random effects representing the 

variability among testing units (inter-individual variation). 
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A simple model is used to illustrate the mixed-effects framework. Consider a dependent variable 

y modeled as a simple linear function of a covariate x as follows: 

 

𝑦𝑖𝑗 =  𝛽1𝑖 + 𝛽2𝑖 𝑥𝑖𝑗 + 𝜖𝑖𝑗  ,    with      𝛽1𝑖 = (𝛽1̅ + 𝑏1𝑖)    𝑎𝑛𝑑    𝛽2𝑖 = 𝛽2̅ + 𝑏2𝑖  (9) 

where, 

  yij = is the jth observation of the dependent variable for the experimental unit i,  

𝛽1̅, 𝛽2̅ = are the fixed-effects parameters related to the entire population, 

b1i, b2i = are random-effects parameters associated with unit i; for unit i these represent 

deviations from the population parameters 𝛽1̅ and 𝛽2̅, respectively, and 

εij = is the error term for observation j on unit i; it is normally assumed as being 

distributed N(0, σ2), where σ2 is the variance of εij. It is also commonly assumed 

that these errors are independent and they have constant variance (all these 

hypotheses need to be corrected if not satisfied).  

When the variations from sample to sample (i.e., the 𝑏1𝑖’s and 𝑏2𝑖’s) are not accounted during 

model estimation, the random effects 𝑏1𝑖 and 𝑏2𝑖 end up being absorbed by the error term εij, 

which are then necessarily correlated for the observations of each unit. This violates one of the 

assumptions of the classical regression model and thus makes any hypothesis tests on the 

parameter estimates unreliable. These random effects are the results of unobserved differences 

from sample to sample. Even though the procedures to create an asphalt mixture and prepare a 

sample in the laboratory are standardized by the American Association of Highway and 

Transportation Officials (AASHTO) methods and other standards, it is still expected that 

variability in the materials, compaction level, material proportioning, etc. from specimen to 

specimen can affect similarly all the measurements of each specimen. In other words, all the 

observations for a specimen will tend to differ from the population model in a way that cannot be 

simply accounted for by an error term with zero mean because, for a given sample, most 

observations may be on one side or the other of the population model. Similarly, multi-laboratory 

precision can influence the measurement of the values of dynamic modulus for different samples. 

The use of the mixed-effects approach for the creation of the prediction model described for this 

project is motivated by its ability to account for the variability due to unobserved heterogeneity 

of different experimental units. The mixed-effects approach represents a compromise between 

two extremes: a) ignoring the unobserved heterogeneity (which may lead to a violation of the 
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assumptions of the classical regression model), and b) computing separate parameter estimates 

for each unit, which is not practical unless the interest is in predicting the behavior of just those 

units. In this compromise the unobserved heterogeneity is accounted for through a few variance 

parameters of the bi’s random effects. In the context of the previous example, the approach 

provides estimates of the population parameters 𝛽1̅ and 𝛽2̅, the variances and covariance of the 

random effects b1i and b2i (several assumptions can be made about the appropriate structure of 

the covariance matrix), the variance of the error term εij, and any other parameters that may be 

needed to correct for heteroscedasticity and correlation. The approach provides a neat evaluation 

of population parameters and the information about the variability of the random effects can be 

useful for reliability studies. 

As will be explained in more detail in chapter 5, the joint estimation approach was first used for 

the creation of the model until a good fit was found. At this point, the examination of the model 

was switched from a nonlinear least squares analysis to the nonlinear mixed-effects analysis 

approach to look for further improvement by including the associated random effects, which in 

turn allows a better characterization of the statistical significance of individual parameter 

estimates because the regression assumptions are satisfied much more closely. All statistical 

analyses were performed with the use of the free software environment R for Windows.  
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CHAPTER 4: DATA SOURCES 

For the creation of the predictive model, three data sets were gathered with different 

characteristics not only in origin and materials but also in testing conditions. The consideration 

of some of these characteristics are what make this model distinctive from other predictive 

models. This chapter provides a detailed description of each of these data sets and their specific 

features included in the model. Two of the data sets were obtained at the University of Hawaii, 

Manoa for two different projects, while the third set was collected at the National Laboratory of 

Materials and Structural Models of the University of Costa Rica (LanammeUCR). Sections 4.1 

and 4.2 cover the data sets collected at UH Manoa, while Section 4.3 describes the data set 

collected at LanammeUCR. Section 4.4 describes the quality control performed before creating 

the database. Section 4.5 presents the model’s a priori expectations. 

4.1 University of Hawaii first data set 

The first data set collected at the University of Hawaii, herein called UHO (with the O meaning 

“old”, since it was gathered first), collects the results of 77 laboratory-mixed, laboratory-

compacted specimens plus 3 specimens of field mixtures compacted in the laboratory. Regarding 

the first 77 specimens, these were prepared using two different gradations and three binder types 

while also varying the binder content and mixture air voids. The materials allowed for different 

binder content/air voids combinations with actual air voids varying from 2.1% up to 10.4% and 

binder contents of 5.2%, 5.7%, and 6.2% for gradation A and 4.8%, 5.3%, and 5.8% for 

gradation B. 

The aggregates used for the laboratory mixed specimens are classified as a basaltic limestone 

from the Makakilo quarry on Oahu. The gradations used for this data set are shown in Figure 6 in 

a 0.45-power chart. From the two gradations shown, Gradation B was selected at the time for 

being representative of the gradation used in actual pavement jobs while Gradation A was 

selected as a variation from Gradation B that could potentially result from changes in stockpiles 

and/or aggregate feeding procedures at the plant. Both gradations met the Superpave gradation 

specifications for 12.5 mm Nominal Maximum Aggregate Size (NMAS). It must be noted that 

many State Mix Type 4 gradations used in Hawaii fall between both these curves. 
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Figure 6. Gradation curves for the UHO data set 

The asphalt binders used to prepare the specimens were a virgin (unmodified) PG64-16 and two 

polymer modified binders. The PG64-16 binder was the one used at the time in Hawaii for most 

paving jobs. From the modified binders, one was an SBS modified PG-70-22, commercially 

available at the time, whereas the second one was obtained by laboratory modification of the 

PG64-16 binder with a reactive elastomeric terpolymer (RET) sold under the commercial name 

Elvaloy®Ret. As explained before, to accelerate the reaction of the product with the binder, a 

small percentage (0.3% by weight of binder) of poly-phosphoric acid (PPA) was used when 

mixing the Elvaloy®Ret with the binder. This binder was labeled as PG70-XX disregarding the 

lower temperature bound due to the lack of equipment to perform the testing in the University of 

Hawaii (UH) pavement laboratory. 

In addition to varying the air voids to try to reflect potential field conditions, in that study the 

optimum binder contents for both gradations were determined following the Superpave mix 

design procedure. These optimum values were used together with binder contents 0.5% above 
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and below them. Further analysis from quality assurance records on Oahu, showed the air voids 

range to be representative of the range found in the field for Type 4 and Superpave 12.5mm 

mixtures.  

From the 3 field mixtures included in this data set, two specimens correspond to a State Mix 

Type 4 collected from a rehabilitation project on Farrington Highway on Oahu. This mix is a 

warm mix asphalt (WMA) prepared by using the organic paraffin wax Sasobit in a mixture of a 

PG64-16 binder with Makakilo quarry aggregates. The last specimen compacted was a 12.5 mm 

NMAS Superpave mix collected from the asphalt plant, made with the PG64-16 binder and a 

combination of aggregates from the Kapaa quarry on Oahu (coarse aggregate retained in the 4.75 

mm sieve) and the Ameron quarry (fine aggregate passing the 4.75 mm sieve) in Maui. A 

summary of all these specimens is presented in Table 1 below. 

 

Table 1. Characteristics of UHO data set specimens. 
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ADM003B 5.7 2.696 2.497 7.40 17.2 57.0 

ADM003C 5.7 2.696 2.514 6.80 16.6 59.0 

ADM004 5.7 2.696 2.425 10.1 19.6 48.5 

ADM004B 5.7 2.696 2.446 9.30 18.9 50.8 

ADM005 5.7 2.696 2.446 9.30 18.9 50.8 

ADM006 5.7 2.696 2.581 4.30 14.4 70.1 

ADM007 6.2 2.673 2.600 2.70 14.2 81.0 

ADM008 6.2 2.673 2.614 2.20 13.8 84.1 

ADM025 5.2 2.720 2.518 7.40 16.0 53.8 

ADM026 5.2 2.720 2.519 7.40 16.0 53.8 

ADM027 5.2 2.720 2.472 9.10 17.6 48.3 

ADM028 5.2 2.720 2.463 9.40 17.9 47.5 
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Table 1(Cont’d). Characteristics of UHO data set specimens. 

Aggreg. 
Gradation 

Binder  
Grade 

Specimen 
ID 

Pb Gmm Gmb AV VMA VFA Additive 
Test  

Condition 
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ADM009 5.7 2.692 2.612 3.00 13.4 77.6 
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) ADM010 5.7 2.692 2.604 3.30 13.6 75.7 

ADM011 5.7 2.692 2.492 7.40 17.3 57.2 

ADM012 5.7 2.692 2.500 7.10 17.1 58.5 

ADM013 5.7 2.692 2.432 9.70 19.3 49.7 

ADM014 5.7 2.692 2.430 9.70 19.4 50.0 

ADM015 5.2 2.716 2.519 7.30 16.0 54.4 

ADM016 5.2 2.716 2.525 7.00 15.8 55.7 

ADM017 6.2 2.669 2.482 7.00 18.1 61.3 

ADM018 6.2 2.669 2.516 5.70 17.0 66.5 
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ADM019 5.7 2.670 2.597 2.70 13.9 80.6 

S
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ADM020 5.7 2.670 2.607 2.40 13.5 82.2 

ADM021 5.7 2.670 2.486 6.90 17.5 60.6 

ADM022 5.7 2.670 2.485 6.90 17.6 60.8 

ADM023 5.7 2.670 2.427 9.10 19.5 53.3 

ADM024 5.7 2.670 2.415 9.60 19.9 51.8 
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e
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BDM001B 5.3 2.695 2.632 2.30 12.5 81.6 
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11CH53 5.3 2.695 2.627 2.50 12.7 80.3 

BDM002 5.3 2.695 2.542 5.70 15.5 63.2 

BDM002B 5.3 2.695 2.552 5.30 15.2 65.1 

BDM002C 5.3 2.695 2.556 5.20 15.1 65.6 

BDM003 5.3 2.695 2.557 5.10 15.0 66.0 

BDM004 5.3 2.695 2.437 9.60 19.0 49.5 

BDM005 5.3 2.695 2.423 10.1 19.5 48.2 

BDM006 5.3 2.695 2.599 3.60 13.6 73.5 

BDM007 5.8 2.672 2.597 2.80 14.2 80.3 

BDM007B 5.8 2.672 2.616 2.10 13.5 84.4 

BDM008 5.8 2.672 2.607 2.40 13.8 82.6 

BDM009 4.8 2.718 2.505 7.80 16.3 52.2 

BDM010 4.8 2.718 2.507 7.80 16.3 52.2 

BDM011 5.8 2.672 2.408 9.90 20.4 51.5 

BDM011B 5.8 2.672 2.524 5.50 16.6 66.9 

BDM012 5.8 2.672 2.414 9.70 20.2 52.0 

BDM012B 5.8 2.672 2.509 6.10 17.1 64.3 

BDM013 5.3 2.695 2.440 9.50 18.9 49.7 

BDM013B 4.8 2.719 2.445 10.1 18.3 44.8 

BDM014 5.3 2.695 2.445 9.30 18.8 50.5 

BDM014B 4.8 2.719 2.442 10.2 18.4 44.6 
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Table 1(Cont’d). Characteristics of UHO data set specimens. 

Aggreg. 
Gradation 

Binder  
Grade 

Specimen 
ID 

Pb Gmm Gmb AV VMA VFA Additive 
Test  

Condition 
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BDM015 5.8 2.661 2.383 10.4 21.2 50.9 
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BDM015B 5.8 2.661 2.522 5.20 16.6 68.7 

BDM016 5.8 2.661 2.484 6.70 17.9 62.6 

BDM017 5.3 2.684 2.449 8.80 18.6 52.7 

BDM018 5.3 2.684 2.473 7.90 17.8 55.6 

BDM019 4.8 2.707 2.512 7.20 16.1 55.3 

BDM020 4.8 2.707 2.523 6.80 15.7 56.7 

BDM021 4.8 2.707 2.473 8.60 17.4 50.6 

BDM022 4.8 2.707 2.482 8.30 17.1 51.5 

BDM023 5.3 2.684 2.538 5.40 15.7 65.6 

BDM024 5.3 2.684 2.537 5.50 15.7 65.0 

BDM025 5.3 2.684 2.627 2.10 12.7 83.5 

BDM026 5.8 2.661 2.603 2.20 14.0 84.3 

BDM027 5.3 2.684 2.618 2.50 13.0 80.8 

11EL53 5.3 2.684 2.623 2.30 12.8 82.0 

BDM028 5.8 2.661 2.601 2.30 14.0 83.6 
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 BDM029 4.8 2.712 2.575 5.10 14.0 63.6 

S
B

S
 

N
o

n
e
 BDM030 5.3 2.688 2.549 5.20 15.3 66.0 

BDM031 4.8 2.712 2.487 8.30 16.9 50.9 

BDM033 5.8 2.665 2.610 2.10 13.7 84.7 

BDM035 5.8 2.665 2.503 6.10 17.3 64.7 
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FARE41 5.9 2.476 2.455 0.90 13.3 93.2 
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FARE51 5.9 2.476 2.420 2.30 14.6 84.3 
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GL1S71 5.2 2.587 2.436 5.80 16.7 65.3 
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N
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n
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As explained before, this first data set includes mixtures with several modifiers (i.e., SBS, 

Elvaloy®Ret, and Sasobit), each of them influencing the behavior of the mixtures in different 

ways. Changes in dynamic modulus due to the addition of these binder modifiers are not being 

quantified with the use of the current models of the MEPDG at levels 2 and 3. Therefore, the 
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introduction of newer models to account for this behavior is needed due to the increasing 

demand of modified mixtures for different projects around the world. 

A second characteristic of this data set that is not commonly taken into consideration is the 

inclusion of a confining pressure, which as mentioned before, has the objective of simulating 

field conditions closely. One confinement level of 100 kPa (14.5 psi) was used for a few 

specimens in this data base, particularly for specimens of the ADM mixture with a PG64-16 

binder, the ADM mixture with a PG70-XX binder, and the BDM mixture with a PG64-16 binder. 

While one other specimen (BDM01) was tested with confining pressures of 50 kPa, 100 kPa, 150 

kPa and 200 kPa (7.25 psi, 14.5 psi, 21.75 psi and 29 psi respectively), it was determined that the 

measurement of the dynamic modulus for these conditions was probably not carried out properly, 

since this was the first attempt at using confining pressure during dynamic modulus tests at UH. 

Careful observation of the data points confirmed that the values obtained did not aligned with 

expected results and therefore these were subtracted from the data set. 

This first data set contains 2974 valid points (i.e., points satisfying normal quality control 

standards such as the load standard error, the deformation uniformity and others statistics 

required by the AASHTO standards for data quality during dynamic modulus testing.)  

4.2 University of Hawaii second data set  

The second data set collected at the University of Hawaii consists of 42 laboratory-mixed, 

laboratory-compacted specimens prepared for a project on the performance of mixtures for the 

Honolulu International Airport. This data set was called UHN, with the N meaning “new”, due 

its recent collection. The 42 specimens were prepared by following a Marshall mix design 

specifically used at the airport and provided by one of the contractors on Oahu. However, to 

compare the performance of different mixtures, in addition to the unmodified binder, an SBS 

modified asphalt and synthetic fibers were included, allowing for 4 different combinations, i.e. 

virgin asphalt (HMA), virgin asphalt with fibers (FHMA), polymer modified asphalt (PMA) and 

polymer modified asphalt with fibers (FPMA). Each set of specimens was compacted at three 

target air void levels (4%, 7% and 9%). 

The gradation used for this data set is shown in Figure 7 in a 0.45-power chart. The aggregates 

for these mixtures are basaltic aggregates from the Kapaa quarry in Oahu. As mentioned before, 

this is a gradation specifically built for the airport with 100% new aggregates. Although the 

mixtures typically used on the island of Oahu include a percentage of recycled asphalt pavements 
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(RAP), its use is not allowed for airport pavements in the state of Hawaii. This mixture meets 

most of the Superpave gradation specifications for a 12.5mm (1/2 in) NMAS. Strictly speaking, 

its gradation does not meet the requirement of 90% for the 12.5 mm (1/2 in) sieve; however, it is 

extremely close to the lower bound with a value of 89.9%. While it also meets the gradation 

requirements for a 19 mm (3/4 in) NMAS, it was felt that it is more representative of a 12.5 mm 

(1/2 in) NMAS mix. 

 

 

Figure 7. Gradation curves for the UHN data set 

For these mixtures, the asphalt binders used were a virgin (unmodified) PG64-22 and an SBS 

polymer modified PG76-22. The virgin asphalt was imported from Venezuela and was the one 

being used for everyday jobs in the island until recently. On the other hand, the modified binder 

is a commercially available binder, modified from the PG64-22 with an SBS at a percentage not 

disclosed by the producer. The fibers used for this project are a combination of polyolefin and 
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aramid fibers mixed at a rate equivalent to 1 pound/ton of mix (0.5 g/kg). The fibers were 

introduced to the mixture per the manufacturer’s specifications during the mixing procedure. 

According to the Marshall mix design provided, the optimum asphalt binder content for these 

mixtures was 6.1% by total weight of mix (TWM). Three specimens for each of the four mixture 

combinations were compacted at a target of 4%, 7% and 9% air voids, except for the case of the 

HMA and FHMA mixtures at 7% air voids, where six specimens were compacted. By testing six 

specimens instead of three, the coefficient of variation for the mean of the measured dynamic 

modulus is reduced from 7.5% to 5.3% (AASHTO R62, 2016). The reason behind this decision 

was to verify the results from the first set of three specimens since these were contrary to a priori 

expectations (i.e., it was noted that the addition of fibers tended to result in lower dynamic 

moduli). A summary of the characteristics of the UHN specimens is shown in Table 2. 

 

Table 2. Characteristics of UHN data set specimens. 

Aggreg. 
Gradation 

Binder  
Grade 

Specimen ID Pb Gmm Gmb AV VMA VFA Additive 
Test  

Condit. 
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HMA-S1-4AV 6.1 2.491 2.388 4.13 15.0 72.5 
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2
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) HMA-S2-4AV 6.1 2.491 2.402 3.57 14.5 75.4 

HMA-S3-4AV 6.1 2.491 2.403 3.53 14.5 75.6 

HMA-S1-7AV 6.1 2.491 2.320 6.86 17.5 60.7 

HMA-S2-7AV 6.1 2.491 2.324 6.70 17.3 61.3 

HMA-S3-7AV 6.1 2.491 2.311 7.23 17.8 59.3 

HMA-S4-7AV 6.1 2.491 2.315 7.07 17.6 59.9 

HMA-S5-7AV 6.1 2.491 2.313 7.16 17.7 59.6 

HMA-S6-7AV 6.1 2.491 2.321 6.82 17.4 60.8 

HMA-S1-9AV 6.1 2.491 2.273 8.75 19.1 54.2 

HMA-S2-9AV 6.1 2.491 2.270 8.87 19.2 53.9 

HMA-S3-9AV 6.1 2.491 2.261 9.23 19.6 52.8 
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FHMA-S1-4AV 6.1 2.491 2.388 4.13 15.0 72.5 
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) FHMA-S2-4AV 6.1 2.491 2.386 4.22 15.1 72.1 

FHMA-S3-4AV 6.1 2.491 2.395 3.85 14.8 73.9 

FHMA-S1-7AV 6.1 2.491 2.305 7.47 18.0 58.5 

FHMA-S2-7AV 6.1 2.491 2.307 7.39 17.9 58.8 

FHMA-S3-7AV 6.1 2.491 2.304 7.51 18.0 58.3 

FHMA-S4-7AV 6.1 2.491 2.307 7.39 17.9 58.8 

FHMA-S5-7AV 6.1 2.491 2.304 7.51 18.0 58.3 

FHMA-S6-7AV 6.1 2.491 2.302 7.59 18.1 58.1 

FHMA-S1-9AV 6.1 2.491 2.258 9.35 19.7 52.4 

FHMA-S2-9AV 6.1 2.491 2.256 9.43 19.7 52.2 

FHMA-S3-9AV 6.1 2.491 2.255 9.47 19.8 52.1 
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Table 2 (Cont’d). Characteristics of UHN data set specimens. 

Aggreg. 
Gradation 

Binder  
Grade 

Specimen ID Pb Gmm Gmb AV VMA VFA Additive 
Test  

Condit. 
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PMA-S2-4AV 6.1 2.489 2.385 4.18 15.1 72.4 

PMA-S3-4AV 6.1 2.489 2.400 3.58 14.6 75.5 

PMA-S1-7AV 6.1 2.489 2.318 6.87 17.5 60.8 

PMA-S2-7AV 6.1 2.489 2.313 7.07 17.7 60.1 

PMA-S3-7AV 6.1 2.489 2.313 7.07 17.7 60.1 

PMA-S1-9AV 6.1 2.489 2.265 9.00 19.4 53.6 

PMA-S2-9AV 6.1 2.489 2.277 8.52 19.0 55.1 

PMA-S3-9AV 6.1 2.489 2.276 8.56 19.0 55.0 

S
P

 1
2
.5

m
m

 

G
s
e

: 
2

.7
4

1
 

P
G

7
6

-2
2
 

G
b

: 
1

.0
2
6
 

FPMA-S1-4AV 6.1 2.489 2.403 3.46 14.5 76.2 
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FPMA-S2-4AV 6.1 2.489 2.402 3.50 14.5 76.0 

FPMA-S3-4AV 6.1 2.489 2.400 3.58 14.6 75.5 

FPMA-S1-7AV 6.1 2.489 2.319 6.83 17.5 60.9 

FPMA-S2-7AV 6.1 2.489 2.311 7.15 17.8 59.8 

FPMA-S3-7AV 6.1 2.489 2.321 6.75 17.4 61.2 

FPMA-S1-9AV 6.1 2.489 2.277 8.52 19.0 55.1 

FPMA-S2-9AV 6.1 2.489 2.274 8.64 19.1 54.7 

FPMA-S3-9AV 6.1 2.489 2.272 8.72 19.2 54.5 

 

Three different characteristics of this data set are important for estimation of the predictive 

dynamic modulus model. A first characteristic is the use of a modified asphalt. As discussed in 

the previous section, the first data set (UHO) also included a modified asphalt and so does the 

third data set discussed later. However, as explained before, the modification of asphalt binders 

can be done in many ways with several different modifiers and therefore, each modified binder 

can (and most likely will) perform in a slightly different way even if the different modified 

binders have the same binder grade. Thus, inclusion of different modified binders can help to 

identify the potential differences between different modifiers and/or binders used in different 

places or in each place over time. Although, this puts some burden on the user to select the most 

representative binder parameters for a given binder grade (from those estimated from a model 

using several binders with the same grade but accounting for their differences in performance), it 

is at least a conscious decision based on something readily available such as the binder grade and 

often the binder source that may result in similar results to those obtained with models that 

include a binder characteristic such as viscosity, which is not obtained at temperatures 

representative of service conditions, or more advanced binder characteristics such as dynamic 

shear modulus and phase angle, which are usually obtained or available for a single frequency 
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and at one (or a few) temperatures. At this point it is important to remember that the high 

temperature of the two modified asphalt binders in the two UH studies is 76°C even though 

different modifiers and procedures were used to achieve this grade. In other words, the binder 

grade alone may not be enough to capture the binder effects. For example, even if the same base 

asphalt, say a PG64-22, is modified with different products such as SBS and Elvaloy®Ret to 

reach two binders with a final grade of PG76-22, the true grades may be a PG78-22 in one case 

and a PG80-22 for the other. Since neither of these meet the minimum requirements for a PG82-

22 binder, they will both be classified as PG76-22. It is important to note that even if the true 

grade were the same, the different modifiers may perform slightly different. 

Another example relevant for the UHN data set and the data set from Costa Rica described later, 

is the modification of two different base asphalt binders such as a PG64-22 and a PG70-22 with 

two different percentages of the same modifier to reach a classification of PG76-22. In fact, this 

was the case for this study since for the UHN data set, a PG64-22 base was used while in Costa 

Rica (the third data set) a PG70-22 base was used, with both asphalts achieving a PG76-22 grade 

by using adequate percentages of the SBS modifier. 

A second characteristic of this data set that was considered in the predictive model is the use of 

synthetic fibers. The use of fibers was one of the required options to be evaluated for their use at 

the Honolulu airport and therefore they were combined with both the virgin and the modified 

asphalt mixtures. For this experiment, it was noted that the use of the polyolefin and aramid 

fibers resulted in general in a slight reduction of the dynamic modulus values. This result will be 

discussed during the description of the model development. 

The third and final characteristic of this data set that is included in the model is the use of 

confinement pressure. The difference from these results and the ones included in the UHO data 

set is that for the UHN experiment, four confinement levels were used, i.e. 0 kPa (no 

confinement), 69 kPa, 138 kPa and 207 kPa (0 psi, 10psi, 20 psi and 30 psi). Also, the use of 

confinement pressure was part of the experimental plan for this specific data set, and therefore 

the same confinement levels were used for all specimens in the set instead of just a few samples 

like in the case of the UHO data set. The inclusion of four levels of confinement for all 

specimens, temperatures and frequencies, expanded the results to a point where specific trends 

could be identified and therefore included in the predictive model. 

This second data set contains 2430 valid points. 
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4.3 Costa Rican Data Set 

The third data set used for this project was collected in Costa Rica by the National Laboratory of 

Materials and Structural Models (LanammeUCR), which is a research institution that belongs to 

the University of Costa Rica. This data set (referred to as CR herein) was collected for a study to 

determine the behavior of asphalt mixtures when moisture damage was induced. In this case, 12 

Superpave mix designs were performed while using two different aggregate gradations (6 

mixture designs per aggregate gradation). Twelve specimens per design were mixed and 

compacted in the laboratory, for a total of 144 asphalt specimens with target air voids of 7%. 

However, for the 9.5NMAS-HMA-LIME group, one specimen was not tested, therefore data was 

collected for 143 specimens. 

Regarding the aggregates for this data set, these are igneous rocks taken from a quarry in 

Guapiles, in the northeast part of Costa Rica, province of Limon. This aggregate source is known 

to show moisture related deterioration in the field (Nordbeck et al. 2016), which made it ideal for 

their study. The two aggregate gradations used in this project are shown in Figure 8 in a 0.45-

power chart. As shown in the figure, these two gradations have different nominal maximum 

aggregate sizes (NMAS): 9.5 mm (3/8 in) and 12.5 mm (1/2 in). Both gradations meet the 

Superpave gradation specifications for each NMAS size (though as shown in Figure 8, the 

9.5mm NMAS crosses the line joining two of the control points) and were chosen as 

representative of the combinations commonly used in Costa Rica for everyday paving jobs. 

The asphalt binders used in the LanammeUCR study are a virgin PG70-22 (used as base), and 

another SBS polymer modified PG76-22, modified with 2% SBS by mass of binder. The base 

asphalt is imported to Costa Rica from the United States and it is used for all regular paving jobs 

in the country. On the other hand, the modified binder was produced at LanammeUCR to carry 

out their experiment. The optimum asphalt binder content for these mixtures vary from 5.9% to 

7% by total weight of mixture while the air voids vary from 5.65% to 7.93%. 
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Figure 8. Gradation curves for the CR data set 

The experiment carried out by LanammeUCR included for some specimens, the use of a 

commercial liquid anti-stripping (LAS) agent at a rate of 0.5% by total weight of binder, and for 

others, the use of hydrated lime at a rate of 1% by total weight of aggregate (hydrated lime is 

also used to mitigate asphalt stripping). These agents in combination with the two binder grades 

give a total of 6 mixtures, including a control mix for each of the aggregate sizes. From the 12 

specimens compacted for each mixture, 9 specimens were exposed to different freezing and 

thawing (F-T) cycles, i.e. 1 cycle, 3 cycles and 6 cycles (3 specimens per number of cycles), to 

induce moisture damage in the mixtures (the remaining 3 specimens were used as a control for 

each mixture type). As explained before, the use of a water bath to condition the specimens had 

been shown to be a poor indicator of the susceptibility of the mixtures and therefore a more 

severe approach was used in this experiment.  

A summary of the characteristics for this last data set is shown in Table 3. 
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Table 3. Characteristics of CR data set specimens. 

Aggreg. 
Gradation 

Binder  
Grade 

Specimen ID Pb Gmm Gmb AV VMA VFA Additive 
Test  

Condition 

9
.5

 N
M

A
S

 

G
s
e

: 
2

.6
9

1
 

P
G

7
0

-2
2
 

G
b

:1
.0

2
5
 

HMA-S1 6.5 2.434 2.275 6.53 17.9 63.6 

N
o

n
e
 

F
re

e
ze

-T
h

a
w

 C
y
c
le

s
 

(0
-1

-3
-6

) 
 

HMA-S2 6.5 2.434 2.276 6.48 17.9 63.8 

HMA-S3 6.5 2.434 2.268 6.82 18.2 62.5 

HMA-S4 6.5 2.434 2.261 7.09 18.4 61.5 

HMA-S5 6.5 2.434 2.273 6.59 18.0 63.3 

HMAS6 6.5 2.434 2.280 6.31 17.7 64.4 

HMA-S7 6.5 2.434 2.252 7.47 18.8 60.2 

HMA-S8 6.5 2.434 2.273 6.60 18.0 63.3 

HMA-S9 6.5 2.434 2.275 6.53 17.9 63.6 

HMA-S10 6.5 2.434 2.284 6.17 17.6 65.0 

HMA-S12 6.5 2.434 2.263 7.02 18.4 61.8 

HMA-S13 6.5 2.434 2.271 6.72 18.1 62.9 

9
.5

 N
M

A
S

 

G
s
e

: 
2

.6
9

1
 

P
G

7
0

-2
2
 

G
b

:1
.0

2
5
 

L-HMA-S7 6.7 2.427 2.274 6.31 18.2 65.3 

L
im

e
 

F
re

e
ze

-T
h

a
w

 C
y
c
le

s
 

(0
-1

-3
-6

) 
 

L-HMA-S8 6.7 2.427 2.268 6.54 18.4 64.4 

L-HMA-S9 6.7 2.427 2.269 6.50 18.3 64.5 

L-HMA-S10 6.7 2.427 2.266 6.62 18.4 64.1 

L-HMA-S11 6.7 2.427 2.270 6.44 18.3 64.8 

L-HMA-S12 6.7 2.427 2.263 6.76 18.6 63.6 

L-HMA-S13 6.7 2.427 2.235 7.91 19.6 59.6 

L-HMA-S14 6.7 2.427 2.245 7.47 19.2 61.1 

L-HMA-S15 6.7 2.427 2.237 7.82 19.5 59.9 

L-HMA-S16 6.7 2.427 2.255 7.07 18.8 62.5 

L-HMA-S17 6.7 2.427 2.252 7.17 18.9 62.1 

9
.5

 N
M

A
S

 

G
s
e

: 
2

.7
0

5
 

P
G

7
0

-2
2
 

G
b

:1
.0

2
5
 

MB-HMA-S3 6.5 2.445 2.251 7.93 18.8 57.9 

M
a

g
n

a
b

o
n

d
 

F
re

e
ze

-T
h

a
w

 C
y
c
le

s
 

(0
-1

-3
-6

) 
 

MB-HMA-S5 6.5 2.445 2.259 7.59 18.5 59.0 

MB-HMA-S7 6.5 2.445 2.254 7.82 18.7 58.2 

MB-HMA-S8 6.5 2.445 2.255 7.77 18.7 58.4 

MB-HMA-S9 6.5 2.445 2.265 7.36 18.3 59.8 

MB-HMA-S13 6.5 2.445 2.277 6.84 17.9 61.7 

MB-HMA-S14 6.5 2.445 2.272 7.08 18.1 60.8 

MB-HMA-S15 6.5 2.445 2.275 6.95 18.0 61.3 

MB-HMA-S16 6.5 2.445 2.277 6.84 17.9 61.7 

MB-HMA-S17 6.5 2.445 2.273 7.03 18.0 61.0 

MB-HMA-S18 6.5 2.445 2.285 6.55 17.6 62.8 

MB-HMA-S19 6.5 2.445 2.284 6.58 17.6 62.7 
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Table 3 (Cont’d). Characteristics of UCR data set specimens. 

Aggreg. 
Gradation 

Binder  
Grade 

Specimen ID Pb Gmm Gmb AV VMA VFA Additive 
Test  

Condition 

9
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 N
M

A
S

 

G
s
e
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2

.7
0

9
 

P
G
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6

-2
2
 

G
b

:1
.0

2
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PMA-S1 6.5 2.447 2.273 7.12 18.0 60.5 

S
B

S
 

F
re

e
ze

-T
h

a
w

 C
y
c
le

s
 

(0
-1

-3
-6

) 
 

PMA-S3 6.5 2.447 2.266 7.40 18.3 59.5 

PMA-S4 6.5 2.447 2.268 7.33 18.2 59.7 

PMA-S5 6.5 2.447 2.258 7.72 18.5 58.3 

PMA-S6 6.5 2.447 2.268 7.32 18.2 59.7 

PMA-S7 6.5 2.447 2.273 7.11 18.0 60.5 

PMA-S8 6.5 2.447 2.271 7.21 18.1 60.1 

PMA-S9 6.5 2.447 2.270 7.26 18.1 60.0 

PMA-S10 6.5 2.447 2.270 7.23 18.1 60.1 

PMA-S11 6.5 2.447 2.270 7.23 18.1 60.1 

PMA-S12 6.5 2.447 2.262 7.58 18.4 58.8 

PMA-S13 6.5 2.447 2.277 6.95 17.9 61.1 

9
.5

 N
M

A
S

 

G
s
e

: 
2

.6
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P
G

7
6

-2
2
 

G
b
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.0

2
4
 

L-PMA-S4 6.6 2.425 2.250 7.23 18.9 61.8 

S
B

S
 +

 L
im

e
 

F
re

e
ze

-T
h

a
w

 C
y
c
le

s
 

(0
-1

-3
-6

) 
 

L-PMAS5 6.6 2.425 2.252 7.14 18.8 62.1 

L-PMA-S6 6.6 2.425 2.264 6.65 18.4 63.9 

L-PMA-S7 6.6 2.425 2.258 6.89 18.6 63.0 

L-PMA-S8 6.6 2.425 2.251 7.17 18.9 62.0 

L-PMA-S9 6.6 2.425 2.259 6.85 18.6 63.2 

L-PMA-S10 6.6 2.425 2.249 7.26 19.0 61.7 

L-PMA-S11 6.6 2.425 2.251 7.20 18.9 61.9 

L-PMA-S12 6.6 2.425 2.253 7.12 18.8 62.2 

L-PMA-S13 6.6 2.425 2.254 7.05 18.8 62.4 

L-PMA-S14 6.6 2.425 2.252 7.15 18.9 62.1 

L-PMA-S15 6.6 2.425 2.253 7.12 18.8 62.2 

9
.5

 N
M

A
S

 

G
s
e

: 
2

.7
0

4
 

P
G

7
6

-2
2
 

G
b

:1
.0

2
4
 

MB-PMA-S7 6.3 2.451 2.280 7.00 17.6 60.2 

S
B

S
 +

 M
a
g

n
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o
n

d
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re

e
ze

-T
h

a
w

 C
y
c
le

s
 

(0
-1

-3
-6

) 
 

MB-PMA-S8 6.3 2.451 2.288 6.66 17.3 61.5 

MB-PMA-S9 6.3 2.451 2.279 7.02 17.6 60.1 

MB-PMA-S10 6.3 2.451 2.287 6.70 17.3 61.4 

MB-PMA-S11 6.3 2.451 2.281 6.96 17.6 60.4 

MB-PMA-S12 6.3 2.451 2.284 6.84 17.5 60.8 

MB-PMA-S13 6.3 2.451 2.281 6.96 17.6 60.4 

MB-PMA-S14 6.3 2.451 2.287 6.71 17.3 61.3 

MB-PMA-S15 6.3 2.451 2.292 6.50 17.2 62.1 

MB-PMA-S16 6.3 2.451 2.283 6.85 17.5 60.8 

MB-PMA-S17 6.3 2.451 2.287 6.68 17.3 61.4 

MB-PMA-S18 6.3 2.451 2.280 7.00 17.6 60.2 
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Table 3 (Cont’d). Characteristics of UCR data set specimens. 

Aggreg. 
Gradation 

Binder  
Grade 

Specimen ID Pb Gmm Gmb AV VMA VFA Additive 
Test  

Condition 

1
2

.5
 N

M
A

S
 

G
s
e

: 
2

.7
1

2
 

P
G

7
0

-2
2
 

G
b

:1
.0

2
5
 

HMA-S1 7 2.432 2.240 7.90 18.9 58.3 

N
o

n
e
 

F
re

e
ze

-T
h

a
w

 C
y
c
le

s
 

(0
-1

-3
-6

) 
 

HMA-S2 7 2.432 2.257 7.18 18.3 60.8 

HMA-S3 7 2.432 2.244 7.72 18.8 58.9 

HMA-S5 7 2.432 2.242 7.81 18.9 58.6 

HMA-S6 7 2.432 2.262 7.01 18.2 61.4 

HMA-S7 7 2.432 2.250 7.47 18.6 59.8 

HMA-S8 7 2.432 2.266 6.81 18.0 62.2 

HMA-S9 7 2.432 2.240 7.91 19.0 58.3 

HMA-S10 7 2.432 2.259 7.11 18.3 61.1 

HMA-S14 7 2.432 2.270 6.65 17.9 62.7 

HMA-S15 7 2.432 2.274 6.48 17.7 63.4 

HMA-S16 7 2.432 2.263 6.95 18.1 61.6 

1
2

.5
 N

M
A

S
 

G
s
e

:2
.6

8
9
 

P
G

7
0

-2
2
 

G
b
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2
5
 

L-HMA-S4 6 2.451 2.282 6.88 16.5 58.4 

L
im

e
 

F
re

e
ze

-T
h

a
w

 C
y
c
le

s
 

(0
-1

-3
-6

) 
 

L-HMA-S5 6 2.451 2.284 6.80 16.5 58.7 

L-HMA-S6 6 2.451 2.291 6.50 16.2 59.9 

L-HMA-S7 6 2.451 2.290 6.56 16.3 59.6 

L-HMA-S8 6 2.451 2.279 7.01 16.7 57.9 

L-HMA-S9 6 2.451 2.291 6.50 16.2 59.9 

L-HMA-S10 6 2.451 2.302 6.07 15.8 61.6 

L-HMA-S11 6 2.451 2.312 5.65 15.4 63.4 

L-HMA-S12 6 2.451 2.297 6.27 16.0 60.8 

L-HMA-S13 6 2.451 2.297 6.25 16.0 60.9 

L-HMA-S14 6 2.451 2.293 6.41 16.1 60.2 

L-HMA-S15 6 2.451 2.301 6.09 15.8 61.5 

1
2
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 N

M
A

S
 

G
s
e
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2
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G
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2
5
 

MB-HMA-S3 6.5 2.444 2.258 7.61 17.8 57.3 

M
a

g
n

a
b

o
n

d
 

F
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e
ze

-T
h

a
w

 C
y
c
le

s
 

(0
-1

-3
-6

) 
 

MB-HMA-S4 6.5 2.444 2.278 6.80 17.1 60.3 

MB-HMA-S5 6.5 2.444 2.264 7.36 17.6 58.2 

MB-HMA-S6 6.5 2.444 2.272 7.07 17.4 59.3 

MB-HMA-S7 6.5 2.444 2.255 7.73 17.9 56.9 

MB-HMA-S8 6.5 2.444 2.263 7.42 17.7 58.0 

MB-HMA-S9 6.5 2.444 2.281 6.68 17.0 60.7 

MB-HMA-S10 6.5 2.444 2.281 6.68 17.0 60.8 

MB-HMA-S11 6.5 2.444 2.280 6.71 17.0 60.6 

MB-HMA-S12 6.5 2.444 2.273 7.03 17.3 59.4 

MB-HMA-S13 6.5 2.444 2.282 6.63 17.0 60.9 

MB-HMA-S14 6.5 2.444 2.291 6.28 16.7 62.3 
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Table 3 (Cont’d). Characteristics of UCR data set specimens. 

Aggreg. 
Gradation 

Binder  
Grade 

Specimen ID Pb Gmm Gmb AV VMA VFA Additive 
Test  

Condition 

1
2

.5
 N

M
A

S
 

G
s
e

: 
2

.7
0

3
 

P
G

7
6

-2
2
 

G
b

:1
.0

2
4
 

PMA-S4 6.5 2.443 2.251 7.87 18.1 56.5 

S
B

S
 

F
re

e
ze

-T
h

a
w

 C
y
c
le

s
 

(0
-1

-3
-6

) 
 

PMA-S5 6.5 2.443 2.261 7.46 17.7 58.0 

PMA-S6 6.5 2.443 2.266 7.27 17.6 58.6 

PMA-S7 6.5 2.443 2.261 7.45 17.7 58.0 

PMA-S8 6.5 2.443 2.250 7.90 18.1 56.5 

PMA-S9 6.5 2.443 2.265 7.28 17.6 58.6 

PMA-S10 6.5 2.443 2.259 7.52 17.8 57.7 

PMA-S11 6.5 2.443 2.256 7.68 17.9 57.2 

PMA-S12 6.5 2.443 2.266 7.27 17.6 58.6 

PMA-S13 6.5 2.443 2.257 7.62 17.9 57.4 

PMA-S14 6.5 2.443 2.249 7.93 18.2 56.3 

PMA-S15 6.5 2.443 2.254 7.73 18.0 57.0 

1
2

.5
 N

M
A

S
 

G
s
e

: 
2

.6
9

2
 

P
G

7
6

-2
2
 

G
b
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.0

2
4
 

L-PMA-S4 6.3 2.442 2.283 6.52 16.8 61.2 

S
B

S
 +

 L
im

e
 

F
re

e
ze

-T
h

a
w

 C
y
c
le

s
 

(0
-1

-3
-6

) 
 

L-PMA-S5 6.3 2.442 2.270 7.04 17.2 59.2 

L-PMA-S6 6.3 2.442 2.270 7.05 17.3 59.1 

L-PMA-S7 6.3 2.442 2.276 6.80 17.0 60.1 

L-PMA-S8 6.3 2.442 2.268 7.10 17.3 58.9 

L-PMA-S9 6.3 2.442 2.263 7.31 17.5 58.2 

L-PMA-S11 6.3 2.442 2.289 6.24 16.5 62.2 

L-PMA-S12 6.3 2.442 2.290 6.24 16.5 62.3 

L-PMA-S13 6.3 2.442 2.293 6.09 16.4 62.9 

L-PMA-S14 6.3 2.442 2.286 6.38 16.7 61.7 

L-PMA-S15 6.3 2.442 2.292 6.12 16.4 62.7 

L-PMA-S16 6.3 2.442 2.282 6.54 16.8 61.0 
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S
 

G
s
e
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2
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2
4
 

MB-PMA-S4 5.9 2.467 2.302 6.66 15.7 57.6 
S

B
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 M
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re

e
ze

-T
h

a
w

 C
y
c
le

s
 

(0
-1

-3
-6

) 
 

MB-PMA-S5 5.9 2.467 2.308 6.44 15.5 58.5 

MB-PMA-S6 5.9 2.467 2.305 6.55 15.6 58.0 

MB-PMA-S7 5.9 2.467 2.297 6.89 15.9 56.7 

MB-PMA-S8 5.9 2.467 2.306 6.50 15.6 58.2 

MB-PMA-S9 5.9 2.467 2.298 6.84 15.9 56.9 

MB-PMA-S10 5.9 2.467 2.293 7.05 16.1 56.1 

MB-PMA-S11 5.9 2.467 2.300 6.74 15.8 57.3 

MB-PMA-S12 5.9 2.467 2.291 7.11 16.1 55.9 

MB-PMA-S13 5.9 2.467 2.287 7.28 16.3 55.2 

MB-PMA-S14 5.9 2.467 2.300 6.77 15.8 57.2 

MB-PMA-S15 5.9 2.467 2.295 6.98 16.0 56.4 

 

In addition to the use of modified binders, as in the other two data sets; the data set from Costa 

Rica has the peculiarity of including freezing and thawing (F-T) cycles and anti-stripping agents. 

The effect of the F-T cycles as well as the counter-effect of the anti-stripping agents is expected 

to be identified from this data set in the predictive model. The use of F-T cycles is detrimental 
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for the mixture and is used as a surrogate to estimate potential moisture damage in the field. 

Similarly, the consideration of the anti-stripping agents in the model can also be used to predict 

their performance benefits when moisture exposure is expected. In fact, these benefits may be 

observed even without the use of F-T cycles. These characteristics, besides not being included 

currently in the dynamic modulus predictive model used by the MEPDG, can also help to 

estimate the potential for damage accumulation over time in zones where high amounts of rain or 

any other water exposure is expected during the pavement design life. It is important to note that 

for such use of the model, further research is needed to correlate different F-C cycles to levels of 

moisture damage exposure in the field. In other words, at this point, a model estimated with these 

data can only quantify the effects of F-T cycles but without further research it is not yet possible 

to predict how the modulus would change with moisture exposure in the field.   

This third data set completes the entire data base with an additional 1417 valid points. 

4.4 Quality control of the data 

All data used for developing the model was subjected to a very strict quality control process to 

make sure that it complied with the data quality statistics requirements from the AASHTO 

standard (AASHTO 2016). Since the AMPT (Figure 2) was used for testing of all samples in the 

three data sources, the requirements given by AASHTO TP79 (developed specifically for tests 

with this machine) were used. Four limits are set in this standard method: a) a load standard error 

of less than 10%, b) a deformation standard error of less than 10%, c) a deformation uniformity 

of less than 30% and d) a phase uniformity of less than 3°. Additionally, the peak to peak strain 

should be kept between 75 and 125 microstrains for an unconfined test and between 85 and 115 

microstrains for a confined test. These statistics are included among the outputs of the software 

for each measurement of |E*|. 

Moreover, the data sources were also manually checked for inconsistencies. This means that they 

were examined to guarantee that the values followed a logical order in their magnitude according 

to their temperature and confinement level.  

The total initial number of data points for each data source were as follows: 3392 points for 

UHO, 2506 points for UHN and 1430 points for CR. In the case of the UHO data set, close to a 

third of the data points subtracted (around 130 points) corresponded to values of |E*| with a 

confinement different from 100 kPa, which was the only confinement level other than zero 

considered from this data set. Another full sample was excluded from this data set since its 
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values were much higher than the rest of the samples with similar volumetric characteristics and 

the same materials. It was also the first sample tested in all the UHO data set. This sample was 

tested at 5 different confinement levels (0, 50, 100, 150, 200kPa) and therefore its exclusion 

eliminated close to 100 data points. Another two samples were excluded from this data set since 

they were field mixtures from the H3 freeway in Oahu that performed very poorly. The last 

portion of the data excluded from this data set were values of |E*| at intermediate and high 

temperatures that were higher than other values tested at lower temperatures. It is believed that in 

these cases, the temperature conditioning time was not appropriate and the samples were tested 

when the sample was not at the target temperature even though the machine indicated otherwise. 

From this data set, no values were excluded due to the quality statistics set by the AASHTO 

standards since this data set (without confinement) was used for a previous study (Archilla, 

2010) and those were excluded at that time. In total 418 points were excluded from this data set. 

In the case of the UHN data set, 26 values were excluded for not complying with the quality 

statistics defined by AASHTO TP79. Another 55 values were excluded due to inconsistencies in 

their magnitude for different confinements. These situations were observed only for the highest 

testing temperature. A typical inconsistency found is, for example, a value of |E*| for a frequency 

of 0.1Hz or 0.01Hz and a confinement level of 138kPa (20 psi) that was lower than the 

corresponding value for a confinement level of 69kPa (10 psi) or higher than the corresponding 

value for a confinement of 207kPa (30 psi). Before eliminating the point, all other values at 

different frequencies were compared with their counterparts for other confinement levels to make 

sure that the extracted value had in fact a magnitude problem. A total of 76 values were excluded 

from this second data set. 

Finally, for the CR data set a total of 13 points were excluded. All 13 points corresponded to 

values that did not meet the quality statistics defined by the AASHTO TP79 standard. 

4.5 A priori expectations of the potential effects of different factors 

The following chapter explains in detail the development of the predictive |E*| model, its 

rationale, and the reasonableness of the model parameter estimates. Thus, it is convenient at this 

point to discuss a priori expectations of the effects that different factors may have on the 

predicted |E*| values. Most of these expectations are based on simple observations on how 

certain modifiers or testing conditions may affect the performance of the mix. However, some 
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others, particularly the effects of confinement, are based on previous research and deserve more 

explanation.     

A summary of prior observations and a priori expectations for the use of confinement, freeze-

thaw cycles and the different additives used in the different data sets is shown next: 

 Use of confinement pressure: The results from the experiment with the use of 

confinement were analyzed and presented elsewhere (Corrales-Azofeifa and Archilla, 

2016). In general, it was noted that the effect of confinement is quite complex since it has 

a large influence in the values of |E*| at high testing temperatures but its effect is 

insignificant for the lower temperatures. Furthermore, the effects at high temperatures are 

dependent on both binder type and air voids as well as their interaction. As expected, |E*| 

values increase with the level of confinement at high temperatures. However, they do not 

increase linearly with confinement level since they typically increase at a decreasing rate. 

At low air voids levels and high temperatures, increments in confinement level result in 

significant increments of |E*|. However, the increments were higher for mixes with 

modified binders than for mixes with unmodified binders. Furthermore, for unmodified 

mixes the effects of confinement were significantly reduced at 7% air voids at high 

temperatures and virtually disappear at 9% air voids. On the other hand, for modified 

mixes, although the effects at higher air voids (7% and 9%) were reduced compared to 

those at 4% air voids they were still substantial. In other words, the reduction of the 

sensitivity to confinement level at high temperatures with air voids is much higher for 

unmodified than for unmodified mixes.  

 Use of freeze-thaw cycles: The conditioning of samples with freeze-thaw cycles is 

performed to induce damage to the asphalt mixtures. Consequently, it was expected that 

their use will decrease the values of |E*|. The experiments performed in Costa Rica 

utilized 1, 3 and 6 freeze-thaw cycles. The a-priori expectation was that the damage on 

the samples would increase with an increase in the number of cycles. However, there was 

no a priori expectation whether the damage would increase linearly as the number of 

cycles increase or whether it would increase at a decreasing rate, at an increasing rate, at 

a variable rate. The results obtained from the Costa Rica experiments with the F-T cycles 

suggests that the increments do not increase linearly with the number of cycles.   
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 Use of fibers: The use of fibers as an additive is typically performed in engineering to 

increase the resistance of mixtures to tensile stresses, as with concrete mixtures. 

Therefore, it was reasonable to expect that their use in asphalt mixtures would also 

improve the dynamic modulus. However, it is important to realize that the axial 

deformations during dynamic modulus testing are so small that are probably not enough 

to mobilize the fibers in the mix. This may explain why different studies have found 

contradicting results. It may well be that the effects are mixture dependent. A priori, it 

was expected that the use of fibers would result in either an increase in the values of |E*| 

or in the worst case, given the small proportion used in the mix, that the use of fibers 

would not provide any advantage given the small loads used for dynamic modulus 

testing. As discussed later, the testing results in this study were opposite to these a priori 

expectations. 

 Use of SBS modifier: The SBS modifier is typically used to reduce rutting (among other 

things) in asphalt materials (Bahia et al. 2001). The use of this elastomer has typically 

been proven to improve the elastic behavior of asphalt mixtures. Therefore, it was 

expected that the use of this product, which is included in all three data sets, would 

increase the values of |E*|. The improvement on these values would most likely depend 

on the amount of polymer included in the mixture. Since these percentages are only 

known for the data set from Costa Rica, a prediction cannot be done in this sense.  

 Use of Elvaloy®Ret: The use of Elvaloy®Ret has also been proven to reduce rutting in 

asphalt materials (Kanabar 2010). More importantly, as part of the analysis for the 

previous UH study with the same data set, it was shown increase the dynamic modulus of 

the mixtures at high temperatures and low frequencies and slightly decrease it at low 

temperatures and high frequencies. Therefore, the expected effect of this polymer was 

already known prior to this study. 

 Use of Sasobit: The use of this organic paraffin wax is intended to reduce the viscosity of 

the binder at mixing and compacting temperatures to create warm mixtures. However, 

there is no clear expected influence of this product on the values of |E*|. It could be 

reasoned that by reducing the mixing and compaction temperatures less aging would be 

induced to the mixture and therefore there would be an improvement in its behavior. The 
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older data set from UH includes two samples of this mixture, which may not be enough 

to explain a distinctive behavior. 

 Use of anti-stripping agents: Two anti-stripping agents are used in the Costa Rica 

database, i.e., lime and Magnabond. Both additives have the main objective of preventing 

and reducing moisture damage in asphalt mixtures. In the case of lime, it has been found 

to stiffen the asphalt binder (Sebaaly, 2006), which may be observed as an increase in the 

values of |E*|. Even though there was not an a priori expectation for the use of these 

agents when no moisture damage is induced, it was expected that their use would help 

increase the values of |E*| when the mixtures are subjected to freeze-thaw cycles in 

comparison with the case where no anti-stripping agent is used. 
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CHAPTER 5: DEVELOPMENT AND ANALYSIS OF THE MODEL 

This chapter presents the process for the development and analysis of the dynamic modulus 

predictive model. Each of the sections in this chapter discusses a step in the evolution of the 

model. Section 5.1 discusses the creation of the data base from the three data sets. An 

explanation of the rationale behind the creation of the initial model is presented in Section 5.2. 

Later, Section 5.3 and Section 5.4 deal with the use of the joint estimation and the mixed-effects 

approaches for estimation of the model parameters. Section 5.5 presents the evaluation of the 

model capability to predict the effects of several variables included in the data sets (e.g. air 

voids, confinement levels, freeze thaw cycles, and various mixture modifiers). 

 

5.1 Creation of the data base 

All the experimental data gathered at UH and LanammeUCR consists of values of |E*| collected 

for each of the tested specimens at various temperatures and frequencies. This means that for 

each specimen tested, several points were included in the different data sets depending on the 

testing conditions utilized. Table 4 presents a summary of the data available for each data set 

collected. 

Table 4. Summary of data available for the three data sets 

Source 
Total 

Specimens 

Frequency  

(Hz) 

Temperature 

(°C) 

Total 

Data 

Points 

Data Set 

Features 

UHO 80 

25, 20, 10, 5, 2, 

1, 0.5, 0.2, 0.1, 

0.01 

4.4, 10, 14, 21.1, 

34, 37.8, 45, 54 
2974 

Mix modifiers 

(some 

confinement) 

UHN 42 
25, 10, 5, 1, 0.1, 

0.01 
4, 20, 40, 45 2430 

Mix modifiers and 

confinement 

CR 144 10, 1, 0.1, 0.01 4, 20, 40, 45 1417 
Mix modifiers and 

F-T Cycles 
Note: Not every combination of frequency and temperature was evaluated for a given specimen in the UHO dataset. 

The UHO study was started with provisional standards, which led to some experimentation for selecting adequate 

temperature-frequency combinations.  

At this point, it is useful to remember that when both UH data sets were collected, a variation of 

the AASHTO T-342 and AASHTO PP-61 standards were used regarding the temperatures and 

frequencies utilized during the testing procedures. In the case of the UHO data set, the testing 

procedures followed more closely the AASHTO T-342 standard (AASHTO 2016) where 
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temperatures of -10, 4.4, 21.1, 37.8 and 54°C (14, 40, 70, 100, and 130°F) are required with 

frequency levels of 0.1, 0.5, 1.0, 5, 10 and 25 Hz. The purpose of selecting additional 

temperature and frequency combinations beyond those required in the standard was to obtain a 

better definition of the shape of the master curve for each specimen, though it is now known that 

using fewer points would have been acceptable. For the UHN data set, the testing protocol 

followed a modified version of the AASHTO PP-61 standard (AASHTO 2016). In this case, the 

required temperatures were followed accordingly but the frequencies of 5 Hz and 25 Hz were 

added to the standard recommended frequencies of 0.1, 1 and 10 Hz for the two lower 

temperatures (4 and 20°C) and of 0.01, 0.1, 1 and 10 Hz for the higher testing temperature (either 

40°C or 45°C depending on the asphalt grade tested). Regarding the data set collected at 

LanammeUCR, the laboratory protocol followed the AASHTO PP-61 standard to the letter.  

To create the data base for the development of the model, each of the values of |E*| (for every 

combination of temperature and frequency) had to be associated with variables that describe the 

characteristics of each specimen and its testing conditions. All these variables were initially 

selected based on their possibility of having an influence on the |E*| values.  

The first set of variables includes the volumetric and material characteristics of each tested 

specimen. These are the type of variables found in the Witczak predictive models and they 

describe the composition of the mixture at the intra-individual level, i.e. characteristics of the 

asphalt mixture formula (e.g. aggregate gradation and binder characteristics), and at the within-

individual level, i.e. characteristics of the asphalt specimen tested (e.g., air voids and Vbeff). The 

second set of variables is related to features of each data set that are accounted for in this specific 

model. These variables take into consideration the use of freeze-thaw cycles, confinement, fibers 

and all other mixture modifiers tested across the data sets. These are the variables included in the 

model with the joint estimation approach. A summary of all the initial variables considered is 

shown in Table 5. It is important to clarify that the variables related to the asphalt mixture vary 

from one mix type to the next but remain the same for all samples of a particular mixture. 

Similarly, all variables related to the specimen vary from one sample to the next but they are 

constant for all |E*| points of a specific sample. 
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Table 5. Variables initially considered for developing the model 

 Variables 

Related to 

Asphalt Mixture 

- Bulk Specific Gravity of Aggregates (Gsb) 

- Percentage of Binder (Pb) 

- Maximum Theoretical Specific Gravity (Gmm) 

- Specific Gravity of Binder (Gb) 

- Effective Specific Gravity of Aggregates (Gse)  

- Cumulative % of aggregate retained on ¾” sieve (ρ3/4) 

- Cumulative % of aggregate retained on 3/8” sieve (ρ3/8) 

- Cumulative % of aggregate retained on #4 sieve (ρ4) 

- % of aggregate passing #200 sieve (ρ200) 

Related to 

Specimens 

- Percentage Binder Absorbed (Pba) 

- Percentage Binder Effective (Pbeff) 

- Bulk Specific Gravity of Mixture Sample (Gmb) 

- Air Voids (Va) 

- Voids in the Mineral Aggregate (VMA) 

- Voids Filled with Asphalt (VFA) 

- Effective Volume of Binder (Vbeff) 

- Strains 

Related to 

Data Set Features 

- Asphalt Type  

    + UHO:                  + UHN                 + CR  

          *PG64-16             *PG64-22             *PG70-22 

          *PG70-22             *PG76-22             *PG76-22             

          *PG70-XX 

          *Warm Mix 

- Fibers (UHN) 

- Anti-stripping agents (CR) 

      + Lime                 +Magnabond 

- Freeze-Thaw cycles (CR) 

      + 1 Cycle             + 3 Cycles            + 6 Cycles 

- Confinement (UHN 

      + 69 kPa (UHN)           +100kPa (UHO)               

      +138kPa (UHN)           +207kPa (UHN) 

These variables are either shared by the data sets (mixture and specimen related variables) or 

belong exclusively to one of them (data set features). Consequently, joint estimation (Section 

5.3) is used for the creation of the initial model since it can identify statistical significant 

explanatory variables for the model from these two groups of variables. In this case, the third 

scenario discussed earlier in chapter 3 is applicable, where all data sets share explanatory 

variables (e.g. air voids, effective binder content by volume, and gradation characteristics) while 

there are other variables that are unique to each data set (e.g., confinement, F-T cycles, and 

binder type). The three advantages for the use of joint estimation in this model are in more detail: 
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 Bias correction: This allows the determination of bias parameters to account for marginal 

effects estimated for parts of the model that are common among the data sets. These 

marginal effects are a result of small differences on the data sets related to sample 

preparation (batching, mixing, and compaction) or testing procedures within laboratory 

(as in the case of UHO and UHN) or among laboratories (when the CR data set is 

included). 

 Identification: This allows the consideration of characteristics that are not observed in all 

data sets and the estimation of related parameters using the entire database. Variables 

such as confinement can be included in this way and later used to predict its effect on the 

dynamic modulus for the other data sets. 

 Statistical efficiency: This results in parameter estimates with lower variance since all 

available data from the three data sets are used. For example, the effect of air voids can 

be similar for all data sets and therefore one parameter can predict the effect of this 

variable in the model by incorporating all air void data from all data sets. 

Another factor accounted for in the analysis of the data is the fact that several dynamic modulus 

(|E*|) measurements are determined at different temperatures and frequencies for each specimen. 

Unobserved factors tend to affect similarly all the observations of a specimen, which leads to 

correlations of the error terms. These unobserved heterogeneities are ignored in classical 

regression analysis but can have substantial influence in the reliability of the hypothesis tests 

performed when evaluating the statistical significance of the model parameters. Therefore, in this 

study, the mixed-effects approach is used to estimate the model parameters accounting for 

unobserved heterogeneities.  

The three data sets were combined into a single comma delimited file (.csv) with 6821 records 

for all temperature-frequency combinations. In addition to |E*|, each record contains the 

associated values for each of the variables shown in Table 5 arranged in columns.  The open 

source software R for statistical analysis was utilized for the development of the model.  

5.2 Conception of the initial model    

As previously mentioned, the Witczak models developed in the NCHRP 1-37A and the NCHRP 

1-40D studies allow the prediction of |E*| values for their use in mechanistic-empirical analysis 

at design levels 2 and 3. Both models were created by using the sigmoidal function shown in 
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Equation (4) but changing each of the parameters into more elaborate functions of the 

characteristics of each mix. To make this clearer, take as an example Equation (2) and Equation 

(4) rewritten below.  

𝑙𝑜𝑔10|𝐸
∗| = 

 −1.25 + 0.029 𝜌200 − 0.0018(𝜌200)
2− 0.0028 𝜌4 − 0.0048𝑉𝑎 − 0.822 (

𝑉𝑏𝑒𝑓𝑓

𝑉𝑏𝑒𝑓𝑓+𝑉𝑎
) +

3.872−0.0021 𝜌4+0.004 𝜌38−0.000017 (𝜌38)
2+0.0055 𝜌34

1+𝑒(−0.6033−0.3133 𝑙𝑜𝑔(𝑓)−0.3935 𝑙𝑜𝑔(𝜂))
   (2 revisited) 

 

log|𝐸∗| = 𝛿 +
𝛼

1+𝑒𝛽+𝛾(𝑙𝑜𝑔(1/𝑓𝑟))
   (4 revisited) 

A close examination of these two equations indicates that the second line of Equation (2) is 

equivalent to δ in Equation (4), that the numerator in the third line of Equation (2) corresponds to 

the value of α in Equation (4) and that the exponent of e in both equations is equivalent. This last 

comparison is less obvious, however the term used in Equation (2) is also a shift factor but 

modeled as a function of temperature through the binder viscosity (η). The MEPDG accounts for 

the stiffening of the mix over time by modeling the changes in the estimated binder viscosity 

when using the NCHRP 1-37A model (Archilla et al. 2014). The shift factor used in this 

approach uses Equation (10) shown below. 

log(𝑎(𝑇)) = 𝑐 (log𝜂 − log 𝜂𝑇𝑅 ) (10) 

where 

 a(T) =  shift factor as a function of the temperature 

η =  binder viscosity, cP (centipoises) 

 𝜂𝑇𝑅   =  binder viscosity at reference temperature, centipoise (cP) 

 c =  model parameter estimated simultaneously with α, β, γ, and δ of Equation 

(4) for given values of |E*| and viscosity data. 

When comparing this shift factor with the one shown in Equation (6), it appears that the use of 

Equation (10) requires two fewer parameters. However, to predict the binder viscosity as a 
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function of temperature, the MEPDG includes the following additional two-parameter equation 

(Equation 11). 

log 𝑙𝑜𝑔 𝜂 = 𝐴 + 𝑉𝑇𝑆 log𝑇𝑅   (11) 

where 

 η =  binder viscosity, cP 

 TR =  temperature, Rankine (temp°F + 459.67) 

 A = regression intercept and 

 VTS = regression slope of viscosity temperature susceptibility 

The parameters A and VTS are estimated by the MEPDG after the required input data for binder 

characterization are used at levels 1 and 2. For level 3, the guide provides the values based on the 

binder grade. The advantage of using a model that requires the binder viscosity is that binder 

aging, and therefore, mixture aging can be considered directly in the model. 

The use of binder characteristics to accommodate for aging effects could be an improvement for 

the model presented herein. However, a broader data base that includes a wider range of asphalt 

binders would be necessary to be able to capture the influence of these characteristics in the |E*| 

values. Additionally, laboratory measurements of viscosity values would also be necessary for all 

binders included in the model. While some measurements were available for the UHO and CR 

databases, it was not possible to measure all necessary values for the UHN database. 

Furthermore, the use of the model adopted by project NCHRP 1-40D (Equation 3) requires 

values for the dynamic shear modulus of the binder (|G*|) and its associated phase angle (δb) at 

several frequencies. Values of both |G*| and δb were available at a single frequency of 1.59 Hz 

(10 rad/s) for some of the binders. Thus, to obtain the necessary values at other frequencies, it 

would have been necessary to use the two values at this single frequency to calculate the 

parameters A and VTS and then use these estimated parameters to compute the necessary values 

of |G*| and δb at other frequencies. Since estimated values always contains some errors and the 

data was not available for all binders, using |G*| and δb was not an option for this study. 

The model developed in this study was also derived using the sigmoidal equation (Equation (4)) 

as a starting point together with the shift factor specified in Equation (6). Two important changes 
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were made to the function to accommodate for certain desirable characteristics. The first change 

is related to the main sigmoidal equation while the second is related to a factor added to the model 

to account for the use of confinement. Before discussing these in detail, it is necessary to remember 

how the model parameters are related to features of the sigmoid. As described in Equation (4), the 

parameter δ is the minimum value of log|E*|, δ+α is the maximum possible value of log|E*|, and 

the parameters β and γ describe the shape of the sigmoidal function.     

The first change introduced to the sigmoidal function is illustrated in Figure 9 where the 

maximum value of the dynamic modulus |E*| is changed for convenience from 10δ+α to 10ρ (i.e. 

ρ=δ+α). The procedure to derive the new equation is shown in detail in Equation (12).  

 

Figure 9. Parameter change in the |E*| sigmoidal function 

 

Given that  log|𝐸∗| = 𝛿 +
𝛼

1+𝑒𝛽+𝛾(𝑙𝑜𝑔(1/𝑓𝑟))
     𝑎𝑛𝑑    𝜌 = 𝛿 + 𝛼  therefore, 

log|𝐸∗| =  𝛿 +
𝜌 − 𝛿

1 + 𝑒𝛽+𝛾(𝑙𝑜𝑔(1/𝑓𝑟))
=  
𝛿(1 + 𝑒𝛽+𝛾(𝑙𝑜𝑔(1/𝑓𝑟))) + 𝜌 − 𝛿

1 + 𝑒𝛽+𝛾(𝑙𝑜𝑔(1/𝑓𝑟))
=
𝜌 + 𝛿(𝑒𝛽+𝛾(𝑙𝑜𝑔(1/𝑓𝑟)))

1 + 𝑒𝛽+𝛾(𝑙𝑜𝑔(1/𝑓𝑟))
 

              =  
𝜌 + (𝜌 − 𝛼)(𝑒𝛽+𝛾(𝑙𝑜𝑔(1/𝑓𝑟)))

1 + 𝑒𝛽+𝛾(𝑙𝑜𝑔(1/𝑓𝑟))
=
𝜌 + 𝜌(𝑒𝛽+𝛾(𝑙𝑜𝑔(1/𝑓𝑟))) − 𝛼(𝑒𝛽+𝛾(𝑙𝑜𝑔(1/𝑓𝑟)))

1 + 𝑒𝛽+𝛾(𝑙𝑜𝑔(1/𝑓𝑟))
 

              =
𝜌(1 + 𝑒𝛽+𝛾(𝑙𝑜𝑔(1/𝑓𝑟))) − 𝛼(𝑒𝛽+𝛾(𝑙𝑜𝑔(1/𝑓𝑟)))

1 + 𝑒𝛽+𝛾(𝑙𝑜𝑔(1/𝑓𝑟))
= 𝜌 − 𝛼

(𝑒𝛽+𝛾(𝑙𝑜𝑔(1/𝑓𝑟)))

1 + 𝑒𝛽+𝛾(𝑙𝑜𝑔(1/𝑓𝑟))
 

log|𝐸∗| = 𝜌 −
𝛼

1 + 𝑒
−(𝛽+𝛾(𝑙𝑜𝑔(1/𝑓𝑟)))

  (12) 
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Notice that Equations (4) and (12) represent the exact same curve when instead of 𝛿 the model 

contains the parameter 𝜌 = 𝛿 + 𝛼 and the other three parameters (𝛼, 𝛽, and 𝛾) are the same. 

However, for the reasons discussed next, Equation (12) is much more convenient for the 

development of the model in this study. Equation (4) is suitable for modeling the minimum value 

of |E*| for high temperatures and low frequencies (through the parameter δ) and the increase in 

modulus from this minimum for other temperature-frequency combinations (through the parameter 

α). On the other hand, Equation (12) allows for the direct modeling of the maximum of |E*| for 

low temperatures and high frequencies (through the parameter  𝜌) and the reduction of the modulus 

for other temperature-frequency combinations (through the parameter 𝛼). Typically, the variability 

of the log(|E*|) is much higher for low values of |E*| than for higher values. Thus, it is more 

convenient to model the maximum of the function and how it is affected by some relevant 

covariates directly and then model the drop from the maximum to the minimum though another 

function of relevant covariates. As indicated before, usually the drop in log(|E*|) (or 𝛼) has higher 

variability than the maximum (or 𝜌) and 𝜌 and 𝛼 are not necessarily highly correlated. On the other 

hand, if Equation (4) was used, the variability of both 𝛿 and 𝛼 would be high and negatively 

correlated which would result in a value of 𝜌 with relatively lower variability. Thus, with the use 

of Equation (4) the identification of factors affecting the model parameters becomes more difficult. 

This is the main reason why Equation (12) is used here for the development of the predictive 

model. 

Equation (12) is the simplest equation that was used as a starting point for the predictive model 

together with a quadratic shift factor, repeated here for convenience. 

 

 𝑙𝑜𝑔(𝑎(𝑇)) = 𝐴𝑇2 + 𝐵𝑇 + 𝐶      (6 Revisited) 

where, 

𝑎(𝑇) =
𝑓𝑟

𝑓
   𝑜𝑟    𝑙𝑜𝑔 (

1

𝑓𝑟
) = 𝑙𝑜𝑔 (

1

𝑓
) − log(𝑎(𝑇))    (5 Revisited) 

As previously mentioned, the open source statiscal software R was used for estimaing the 

parameters of the model. With this initial model a first run was carried out as a starting point 

before adding any other explanatory variables. Figure 10 shows the outcome of this run 

performed by using the Non-linear Least-Squares (NLS) routine from R, while Figure 11 shows 

the same result in logarithmic scale as predicted by the model.  
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Figure 10. Observed versus predicted values of |E*| for the initial model 

 
Figure 11. Observed versus predicted values of log|E*| for the initial model 

Notice that for this initial model, the use of 6 parameters (ρ, α, β, γ, A and B) is not enough to 

accurately predict the values of |E*| and capture the different characteristics of each of the data 

bases. It can be seen in both figures that the values for the UHO dataset seem more uniformly 

distributed in the vertical axis in comparison with the values for the UHN and CR datasets, 

where horizontal lines of data points are more evident. It is important to note that there is good 
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justification for these differences. They are related to fact that temperature and frequency are the 

only explanatory variables of the estimated model. The UHO data set shown in Table 4, was 

collected at many more temperatures and frequencies than the other two data sets. Thus, one can 

expect that there will be a larger density of predicted values. Second, even though the UHO data 

set was not measured for different testing conditions (such as different confining pressures or 

freeze-thaw cycles), it still has 3 different binders, one level of confining pressure for a few 

samples, and a large variability in the sample air voids. For this reason, for all temperatures and 

frequencies, very diverse values of |E*| can be seen, helping to show this apparent greater 

dispersion of data points. On the other hand, for the case of the CR and UHN data sets, these 

were measured at the same 4 temperatures with a slight variation between data sets in the 

frequencies utilized. In both cases, around half of the values are on each side of the line of 

equality for each temperature-frequency combination (represented by sets of points aligned 

horizontally). This means that the model is trying to predict the average value of all measured 

data for a given frequency-temperature combination since no other difference is made among the 

data points. Figure 12 illustrates this result more clearly. As an example, in the case of the CR 

data set, samples were conditioned with 1, 3 or 6 cycles of freezing and thawing (F-T), which 

increasingly reduces the values of |E*| for all conditioned samples. Additionally, this data set has 

12 different mixtures (Table 3). This means that for a given temperature and frequency 

combination, values of |E*| are gathered for 12 different mixtures and 4 different F-T 

conditioning levels (0, 1, 3 and 6 cycles), resulting in 48 different values of |E*|. Since three 

samples were tested for repeatability, a total of 144 points with varying F-T cycles, anti-stripping 

agents, air voids and other characteristics are being predicted as if they were the same since at 

this point there are no other variables in the model that can capture these differences.    
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Figure 12. Predicted versus observed values of log|E*| (by data set) for the initial model 

Figure 12 makes it easier to recognize that the point alignment patterns are also present in the 

UHO data base. This is the reason why the better dispersion of the data for the UHO data set was 

referred as only apparent. Notice that in this particular figure the axes have been inverted  

showing the points aligned vertically instead of horizontally as was the case in Figure 11. It is 

easier to see in this figure that the CR data set has a total of 14 levels (the 8 th and 9th levels, 

counted from left to righ, are almost superimposed), since there are 14 combinations of 

temperatures and frequencies (or equivalently 14 different reduced frequencies), corresponding 

to the frequencies of 10Hz, 1Hz and 0.1Hz at temperatures of  4°C and 20°C and to frequencies 

of 10Hz, 1Hz, 0.1Hz and 0.01Hz at the  40°C and 45°C temperatures. The UHN data set presents 

a similar scenario. In the case of UHO, this is not evident anymore. The number of combinations 

of temperature and frequency for this last data set is large enough to make the distribution of 

points look almost as one uniform cloud.  

As expected, the inclusion of other expanatory variables related to the different characteristics of 

the samples and data sets is needed to capture these differences and be able to predict the |E*| 

values more accurately than with model 1. 

Most of the additional explanatory variables will be introduced as linear terms affecting each of 

the six parameters in model 1 (i.e. α, β, γ, ρ, A and B). However, confinement level presents a 
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unique challenge since it varies substantially with frequency and temperature combinations (it 

has practically no effect at low temperature/high frequencies but the modulus can double with 

increases in confinement at high temperature/low frequencies). With this in mind, the second 

change to the base model is the addition of a factor with a functional form developed specifically 

to account for the effects of confinement and the different sensitivity to air voids observed in 

unmodifieed and modified mixes. At this point, it is convenient to remember that in the test, the 

maximum principal stress σ1 (the vertical stress) is related to the minor principal stress or 

confining stress σ3 and the deviatoric stress σd by σ1 = σ3 + σd.  

The functional form of the confinement factor αcf (α confinement factor) that is added as a 

mutiplicative factor to α in Equation (12) is shown in Equation (13). Since αcf decreases with 3, 

it makes the numerator of the term subtracting  (i.e., αcf·α), and hence the whole term 

subtracting , smaller for higher confinement levels. For convenience, it is assumed that the 

confinement factor is defined by a sigmoidal function with a value of 1 when the confinement 

level used is σ3 = 0 as shown in Figure 13.  

 

 

Figure 13. Graphical explanation of factor αcf 

The reason for choosing a sigmoidal function instead of another function with a maximum of 1 is 

to allow for the potential inclusion of conditions that make the modulus even lower than the 

unconfined modulus (which would imply values of α that are larger than that correponding to the 

unconfined conditions or αcf>1). For example, preliminary results of |E*| testing in tension at the 

UH pavement laboratory as well as other studies indicate that at temperatures of 40°C and 

frequencies of 0.1 Hz and 0.01 Hz the modulus can be as low as one half or one third that for the 
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unconfined conditions, thus requiring an alpha factor αcf greater than 1. (Note that it is not yet 

clear what would be the best definition of the function for tensile conditions, which is beyond the 

scope of this thesis). 

As indicated before, a sigmoidal function is considered as a starting point:  

𝛼𝑐𝑓 = 𝜌𝑐𝑜𝑛𝑓 −
𝛼𝑐𝑜𝑛𝑓

1 + 𝑒(𝛽𝑐𝑜𝑛𝑓+𝛾𝑐𝑜𝑛𝑓∗𝜎3)
 (13) 

Similar to the sigmoidal function that represents the variation of |E*| with reduced frequency, 

equation (13) above gives the variation of αcf with 𝜎3. In equation (13), 𝜌𝑐𝑜𝑛𝑓, 𝛼𝑐𝑜𝑛𝑓, 𝛽𝑐𝑜𝑛𝑓, and 

𝛾𝑐𝑜𝑛𝑓 are the model parameters.  

Given the imposition that for 𝜎3  = 0 the factor αcf must equal 1, then 

  

1 = 𝜌
𝑐𝑜𝑛𝑓

−
𝛼𝑐𝑜𝑛𝑓

1 + 𝑒(𝛽𝑐𝑜𝑛𝑓+𝛾𝑐𝑜𝑛𝑓∗0)
 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝜌

𝑐𝑜𝑛𝑓
= 1 + 

𝛼𝑐𝑜𝑛𝑓

1 + 𝑒(𝛽𝑐𝑜𝑛𝑓)
 

Therefore, equation (13), can be simplified to 

𝛼𝑐𝑓 = (1 + 
𝛼𝑐𝑜𝑛𝑓

1 + 𝑒(𝛽𝑐𝑜𝑛𝑓)
)−

𝛼𝑐𝑜𝑛𝑓

1 + 𝑒(𝛽𝑐𝑜𝑛𝑓+𝛾𝑐𝑜𝑛𝑓∗𝜎3)
 (14) 

To simplify this equation further and avoid over specification of the |E*| model, the parameter 

βconf was set to zero. Note that contrary to what is shown in Equation (12), no negative sign was 

included in the exponent of e. Thus, the parameter γconf in equation (14) should be negative for 

this equation to represent the effects of confinement shown in Figure 13.  

To understand the use of Equation (14) imagine that the confinement pressure (σ3) is zero. In this 

case, the first term in parentheses is 1 + 0.5 and the second term is 0.5, thus giving (1 + 0.5) – 0.5 

= 1. Therefore, there is no change in the general factor α of the main Equation (12) when the 

confinement level is σ3=0.  

When confinement is greater than zero, the following analysis applies. For simplification 

purposes call the exponent (γconf σ3) simply x and remember that γconf is negative. For negative 

values of the exponent x, ex varies between 0 and 1. The larger the value of confinement, the 

more negative is the exponent x, and therefore ex is a smaller value (closer to 0). Having a 
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smaller denominator as the confinement increases, results in a larger value for the subtracting 

factor in Equation (14) (i.e. αconf/(1+e(γc*σ3)) ). This in turn results in a smaller value for the 

parameter αcf. Therefore, the larger the confinement pressure, the smaller the value of αcf. Since 

αcf is included as a multiplication factor to the overall α factor in Equation (12), the higher the 

confinement, the smaller is the overall α factor (since α·αcf is smaller). Consequently, the 

predicted values of |E*| at high temperatures/low frequencies are higher as the confinement 

pressure increases (since a smaller α is subtracted from ρ). This is reflected in an overall shift of 

the master curve upwards, which is the typical behavior observed with confinement in laboratory 

tests. This behavior will be illustrated later during the analysis of the final model. 

Through the incorporation of this second change to Equation (12), a more involved equation was 

created to account for the effects of confinement in the |E*| values of the mixtures. 

log|𝐸∗| = 𝜌 −

𝛼 [(1 + 
𝛼𝑐𝑜𝑛𝑓
1 + 𝑒(0)

)  − 
𝛼𝑐𝑜𝑛𝑓

1 + 𝑒(𝛾𝑐𝑜𝑛𝑓∗𝜎3)
]

1 + 𝑒
−(𝛽+𝛾(𝑙𝑜𝑔

1
𝑓𝑟
))

 (15) 

As shown later, the term α also contains a term related to confinement. The reason for this is that 

although the term αcf is capable of producing the expected drop with confiment level, it is also 

used to capture the different sensititivity to air voids for mixes prepared with unmodified and 

modified binders by incorporating dummy variables for the type of binder in αcf. However, it will 

also be seen that the estimated factor αcf tends to be lower for higher air voids, which by itself 

would produced unreasonable results. Hence, there is a need to account for the effect of 

confinment in  as well to counteract this issue. As will be shown, this combination of factors 

produces results that match extremelly well the trends observed with the combination of 

confinement, air voids, and binder type.   

It is also possible to show the log(1/𝑓r) in a more general form as a function of the log(1/𝑓) and 

the shift factor log(a(T)) shown in Equation (6). At the reference temperature, the shift factor has 

a value of 0 since no shifting is necessary. Choosing 21.1°C (70°F) as the reference temperature 

and solving Equation (6) allows for the determination of C in terms of the other two parameters 

A and B. After applying these changes to Equation (15), it was possible to obtain the following 

equation.  
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log|𝐸∗| = 𝜌 −

𝛼 ∗ [(1 + 
𝛼𝑐𝑜𝑛𝑓
1 + 𝑒(0)

)  − 
𝛼𝑐𝑜𝑛𝑓

1 + 𝑒(𝛾𝑐𝑜𝑛𝑓∗𝜎3)
]

1 + 𝑒
−(𝛽+𝛾(𝑙𝑜𝑔(

1
𝑓)−(𝐴∗𝑇

2+𝐵∗𝑇−(𝐴∗(21.1)2+𝐵∗(21.1)))

 (16) 

This equation is the base of the final model obtained for predicting the |E*| values of asphalt 

mixtures, since all terms (ρ, α, β, γ, A and B) will be presented as combinations of several 

characteristics of the different mixtures included in the complete data base. All the variables 

shown previously in Table 5, were included progressively within the different terms and 

hypothesis tests were performed at each stage to define which variables were statistically 

significant for the prediction of the |E*| values. As an example, the parameters ρAV (parameter 

for ρ related to air voids), αAV (parameter for α related to air voids) and so on, were included to 

evaluate the effect of the air voids in the model.  

The inclusion of all explanatory variables that were common for all data bases was performed 

together with the inclusion of the explanatory variables related to only one of the data bases 

using the joint estimation approach explained next. 

5.3 Joint estimation 

The joint estimation approach was used to assess two situations. First, to be able to incorporate 

bias parameters to account for the overall bias of either the UHO or CR datasets with respect to 

the UHN dataset, and second, to allow for the incorporation of the explanatory variables that are 

unique to each data set and identification of their effects. In both cases the approach followed 

was the same and consisted in the inclusion of several dummy variables in the model. 

Dummy variables are used in regression analysis as a way to assign two or more distinct values 

to an independent variable (Pyndyck and Rubinfeld, 1991). By taking a value of 1, if a given 

effect is present in the model or a value of 0 if the effect is absent, dummy variables can divide 

one population into several subgroups and measure the differences among them (Ben-Akiva and 

Lerman, 1985). If a dummy variable is associated with a given characteristic or condition within 

the entire data base, this characteristic is only included in the prediction of the value of |E*| for 

the mixtures that possess this feature. As an example, several dummy variables were associated 

with the use of the different asphalt binder grades. In particular, the variable DPG76CR is 

associated with the use of the PG76-22 binder in the CR data set. This dummy variable 
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multiplies the parameters αPG76CR and ρPG76CR associated with the use of this binder and takes a 

value of 1 when it is necessary to predict the |E*| value of mixtures using this binder and 0 if not.  

5.3.1. Intermediate Non-Linear Regression Model 

The use of the dummy variables gives the model the necessary flexibility to accommodate for the 

different aspects that need to be captured. To illustrate this statement, the observed vs. predicted 

values for an intermediate model without the introduction of any bias parameters are shown in 

Figure 14. This figure is the equivalent of Figure 11 for the initial model. 

 

Figure 14. Observed versus predicted values of log|E*| for model-9 

The results for this model are shown because it illustrates the effects of including some dummy 

variables and the factor αcf in its simplest form (as shown in Equation (14)) to consider the effect 

of confinement. Table 6 shows the parameters and the implicitly affected variables used in this 

preliminary model. All factors have as a minimum a constant parameter. 
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Table 6. Parameters included in model 9 for each factor 

 Factor ρ Factor α Factors β, γ, A, B 

Parameter Variable affected Parameter Variable affected Param. Var.Affec 

ρC 

ρAV 

ρVb 

ρR38 

ρR4 

ρPG64UHO 

ρElv 

ρPG76CR 

ρPG70UHO 

ρPG70CR 

1 

Air voids 

Eff. Binder Vol. 

Retained in 3/8” sieve 

Retained in No.4 sieve 

PG64-16 UHO binder 

Elvaloy modif. binder 

PG76-22 CR binder 

PG70-22 UHO binder 

PG70-22 CR binder 

αC 

αAV 

αVb 

αPG64UHO 

αPG76UHN 

αElv 

αPG76CR 

αPG70UHO 

αPG70CR 

αcf_αconf 

αcf_γConf 

1 

Air voids 

Eff. Binder Vol. 

PG64-16 UHO binder 

PG76-22 UHN binder 

Elvaloy modif. binder 

PG76-22 CR binder 

PG70-22 UHO binder 

PG70-22 CR binder 

Confinement (14) 

Confinement (14) 

βC 

γC 

AC 

BC 

1 

1 

1 

1 

As an example, the factor ρ is a summation of the multiplication of each of the factor’s 

parameters with the corresponding variable, as shown next: 

𝜌 = 𝜌𝐶 + 𝜌𝐴𝑉 ∙ 𝐴𝑉 + 𝜌𝑉𝑏 ∙ 𝑉𝑏𝑒𝑓𝑓 + 𝜌𝑅38 ∙ 𝑅38 + 𝜌𝐴𝑉 ∙ 𝑅4 + 𝜌𝑃𝐺64𝑈𝐻𝑂 ∙ 𝐷𝑃𝐺64𝑈𝐻𝑂 + 𝜌𝐸𝑙𝑣 ∙

𝐷𝐸𝑙𝑣  + 𝜌𝑃𝐺76𝐶𝑅 ∙ 𝐷𝑃𝐺76𝐶𝑅 + 𝜌𝑃𝐺70𝑈𝐻𝑂 ∙ 𝐷𝑃𝐺70𝑈𝐻𝑂  + 𝜌𝑃𝐺70𝐶𝑅 ∙ 𝐷𝑃𝐺70𝐶𝑅  

Note that the constant can be interpreted as another parameter multiplying a variable that is 

always 1. 

As can be seen in Table 6, at this stage, there are no variables related to the parameters β, γ, A 

and B other than a constant for each of them (hence the sub-index C for the corresponding 

parameters). However, in the case of ρ and α, besides the constant for each term (ρC, αC), there 

are several terms related to the mixture characteristics. Specifically, the variables for air voids 

(ρAV, αAV) and effective binder content by volume (ρVb, αVb) appear in both terms, while 

variables for the percentages of aggregate retained in the 3/8” and number 4 sieve sizes are only 

included in the ρ factor (ρR38, ρR4). Most parameters related to gradation were later eliminated 

from the model due to near multi-collinearity problems as explained later when presenting the 

final model. 
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In the case of asphalt type, it is expected that binders that come from different sources or that 

were produced at different times can have slight differences in their behavior even if they have 

the same grade. For example, although there are two binders classified as PG76-22 and two 

classified as PG70-22, it is expected that their performance would not be identical. Therefore, to 

account for the effect of a particular binder on each of the model terms (, , , etc.), the dummy 

variable associated with that binder was multiplied by a parameter specific to that binder for the 

specific term considered. For example, for model 9 described in Table 6, when predicting the 

|E*| value of a mixture from the CR data set with a PG76-22 binder, the only binder-related ρ 

that stays in the model is ρPG76CR and the only binder related α included is αPG76CR. The dummy 

variable for the PG76-22 binder from CR, which multiplies the parameter ρPG76CR, takes on a 

value of 1 whereas the dummy variables for all other binders take on a value of 0. This approach 

allows the model to capture the differences in the major model terms (, , , etc.) caused by 

different binders. Of course, to avoid over specification (multi-collinearity) of the model, the 

dummy for one of the asphalt binders needs to be excluded. In this case, the dummy of the 

PG64-22 binder from the UHN study was used as the reference binder and therefore its dummy 

was excluded from the model. Thus, the parameter for a specific binder such as ρPG76CR for the 

PG76-22 in the CR study represents the increase in ρ relative to the ρ corresponding to the 

PG64-22 binder from the UHN study with all else equal. It is important to note here that the 

above interpretation needs to be changed slightly when bias parameters for each term are 

included for a given database. The discussion of this issue is postponed until bias parameters are 

considered. 

In addition to the variables considered in  and , this intermediate model 9 had two statistically 

significant parameters related to the effect of confinement in the term αcf, named herein αcf_αconf 

and αcf_γconf. However, other than this term αcf, the model is still a relatively simple extension of 

the sigmoidal model of equation (12). 

Returning to Figure 14, it is evident that including just a few key variables related to volumetrics, 

gradation and binder type greatly improves the fit of the model in comparison with a more 

general version like model 1 previously shown. 
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Figure 15 below shows the predicted versus observed values of log(|E*|) for model 9 for each of 

the three data sets analyzed. Again it is clear that the inclusion of variables for the parameters ρ, 

α, and αcf improve the fit of the model with respect to the more general model.  

 

Figure 15. Predicted versus observed values of log|E*| (by data set) for the initial model 

It is interesting to note that for the UHN data set, the line patterns previously observed are not 

noticeable anymore. The fact that this model includes, in addition to the aforementioned 

characteristics, the αcf factor related to the confinement level helps in reducing the variability. A 

second point of interest from this figure is that the line patterns are still somehow visible for the 

CR data set. This is due to the inexistence of some of the most important variables that describe 

this data set, such as the inclusion of F-T cycles or the use of anti-stripping agents. A more 

uniform distribution of the data along the measured range will be presented for the last model 

obtained after the use of the joint estimation approach only.  

5.3.2. Final Non-Linear Regression Model with Bias Parameters 

After including all variables that were thought to have an influence in the prediction of the |E*| 

values for the complete database and discarding all variables that were found not to have 

statistical significance with a 10% significance level, the last model which uses joint estimation 

was obtained. It is important to clarify that the final model still needs the consideration of the 

mixed-effects approach. Also, it must be noted that the results presented below include some 
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parameters that are not statistically significantly different from zero. These parameters were left 

in this intermediate model either for discussion purposes about some bias parameters or because 

the model contained higher other terms of the variable related to the specific parameter.  

A total of 105 individual parameters obtained using the nonlinear least squares (NLS) routine are 

included in this model. The lists of all parameters together with its estimated values, standard 

errors, t-statistics, and p-values from the statistical analysis are presented in Table 7 through 

Table 12. The parameters were separated by each of the main terms (ρ, α, β, γ, A and B) for 

practical reasons. Notice that the final number of parameters varies for each of the data sources 

since either some of them do not belong to the specific source or they are included only in one 

source as bias parameters.  

The UHN data set was selected as the base case for data sets. In other words, bias parameters 

were used for the other data sources to account for potential differences in response between the 

data sources. Bias parameters for the constants in the terms and some other parameters (e.g., 

ρAV2_UHO and ρStr_CR) were considered. All variations from the base characteristics were included 

in the model using dummy variables. The reason why bias parameters were not included for most 

characteristics in a data source is that the effects of those characteristics from the specific data 

source are like those of the base case. Thus, based on statistical significance, the effect can be 

accounted for by a single parameter. In fact, as discussed later when the final model is estimated 

with mixed-effects, except for the constant terms no other bias parameters are found to be 

statistically significantly different from zero.  

A final observation about the tables is that the first column for parameter number combines the 

base parameter with the bias parameter when applicable. This reduces the number of parameters 

for a specific data source to 75 as shown below.  

The introduction of bias parameters for the terms ρ, α, β, γ, A and B requires a re-interpretation 

of the meaning in this study of some binder parameters. Recall that the bias parameters are 

intended to capture unobserved differences between seemingly identical samples from two 

different sources and that the binder parameters (with the dummy variables defined in this study) 

are intended to capture the difference in behavior arising from the use of a binder different from 

the base binder (the PG64-22 of the UHN study). Unfortunately, there is no PG64-22 binder in 

either the CR or UHO data sets. For the CR data set the closest binder is a PG70-22, which is a 
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high temperature grade higher than that in the UHN study. Thus, the inclusion of bias parameters 

for the CR data set together with dummies for the two binders resulted in over-specified models 

(that is, in models where both the bias parameter and some binder parameters competed to 

capture the same binder effect, in addition to other unobserved differences). Similar issues were 

found with the UHO data set. Furthermore, with the consideration of bias parameters, the lowest 

graded binders in each of the non-base data sets (PG70-22 in the CR data set and PG64-16 in the 

UHO data set) were generally not statistically significant anymore. Thus, a decision had to be 

made about whether bias parameters should be included for the non-base data sets or whether 

binder dummies should be used for all asphalt binders in the terms of the |E*| equation (of 

course, if statistical significant results were found and excluding the PG64-22 base binder of 

UHN). In this study, preference was given to the use of bias parameters since this accounts not 

only for differences in binder effects but also for any other unobserved differences between data 

sets. Thus, in the final model presented below, a base binder was considered for each data set: 

the PG64-22 in the UHN data set, the PG64-16 in the UHO data set, and the PG70-22 in the CR 

data set. No dummy variables were included for these binders. Instead, only dummy variables for 

other binders were considered. Now since the bias parameters are also capturing the differences 

between the bases binders, for a given data set, the interpretation of the parameter multiplying 

the dummy for a binder needs to be re-interpreted as the increase or decrease in the term if the 

binder corresponding to the dummy variable is used instead of the base binder for the data set.  

For all the parameters included in Table 7 through Table 12 shown next, most of the sub-indices 

are self-explanatory. However, to avoid confusion, Table 13 presents a summary of all of them.  

 
Table 7. Parameters of the model included in the ρ factor (NLS model) 

Param. 

No. 
Parameter 

Parameter 

Estimate 

Standard 

Error 
t value p value Included in 

1 ρC 4.3633 0.0952 45.852 <0.0001 All 
 ρCR 0.4210 0.1355 3.107 0.00190 CR 

2 ρVb -0.0433 0.0026 -16.411 <0.0001 All 

3 ρAV 0.0058 0.0037 1.574 0.11543 All 

4 ρAV2 -0.0026 0.0004 -7.160 <0.0001 All 
 ρAV2_UHO -0.0007 0.0002 -2.870 0.00412 UHO 

5 ρR38 -0.0175 0.0036 -4.794 <0.0001 All 

6 ρR4 0.0231 0.0035 6.595 <0.0001 All 
 ρR4_CR -0.0074 0.0013 -5.879 <0.0001 CR 
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Table 7 (Cont’d). Parameters of the model included in the ρ factor (NLS model). 

Param. 

No. 
Parameter 

Parameter 

Estimate 

Standard 

Error 
t value p value Included in 

7 ρStr -0.0007 0.0001 -5.153 <0.0001 All 
 ρStr_CR -0.0029 0.0011 -2.700 0.00695 CR 

8 ρElv -0.0388 0.0068 -5.721 <0.0001 UHO 

9 ρPG76CR 0.1506 0.0112 13.484 <0.0001 CR 

10 ρFib -0.0015 0.0009 -1.723 0.08484 UHN 

11 ρLime 0.0543 0.0030 18.228 <0.0001 CR 

12 ρMB 0.0193 0.0028 6.796 <0.0001 CR 

13 ρD1C -0.0627 0.0094 -6.705 <0.0001 CR 

14 ρD3C -0.0780 0.0091 -8.560 <0.0001 CR 

15 ρD6C -0.0783 0.0093 -8.449 <0.0001 CR 

 
Table 8. Parameters of the model included in the α factor (NLS model). 

Param. 

No. 
Parameter 

Parameter 

Estimate 

Standard 

Error 
t value p value Included in 

16 αFib 0.0159 0.0038 4.232 <0.0001 UHN 

17 αcf_α -0.8501 0.2003 -4.244 <0.0001 UHN/UHO 

18 αcf_αPG76 2.8005 0.2346 11.935 <0.0001 UHN/UHO 

19 αcf_αAV 0.0531 0.0090 5.909 <0.0001 UHN/UHO 

20 αcf_αAV_PG76 -0.0957 0.0118 -8.139 <0.0001 UHN/UHO 

21 αcf_γ -0.0084 0.0008 -10.166 <0.0001 UHN/UHO 

22 αC -44.7812 16.9822 -2.636 0.00838 All 
 αUHO 39.7408 16.9705 2.341 0.01922 UHO 
 αCR 38.1560 17.0404 2.239 0.02518 CR 

23 αAV 10.1825 1.3885 7.333 <0.0001 All 
 αAV_CR -9.4740 1.4251 -6.647 <0.0001 CR 
 αAV_UHO -9.6382 1.3890 -6.938 <0.0001 UHO 

24 αAV2 -0.1084 0.0129 -8.431 <0.0001 All 
 αAV2_CR 0.0539 0.0243 2.215 0.02676 CR 
 αAV2_UHO 0.0926 0.0128 7.209 <0.0001 UHO 

25 αVb 3.6453 1.4919 2.443 0.01458 All 
 αVb_CR -3.7062 1.4990 -2.472 0.01344 CR 
 αVb_UHO -3.5135 1.4919 -2.355 0.01855 UHO 

26 αAV*Vb -0.8225 0.1150 -7.153 <0.0001 All 
 αAV*Vb_CR 0.8254 0.1170 7.054 <0.0001 CR 
 αAV*Vb_UHO 0.7955 0.1150 6.915 <0.0001 UHO 

27 αStr -0.0078 0.0006 -13.031 <0.0001 All 
 αStr_CR 0.0092 0.0033 2.805 0.00505 CR 
 αStr_UHO 0.0048 0.0006 7.971 <0.0001 UHO 
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Table 8 (Cont’d). Parameters of the model included in the α factor (NLS model). 

Param. 

No. 
Parameter 

Parameter 

Estimate 

Standard 

Error 
t value p value Included in 

28 αPG76UHN -0.3780 0.1027 -3.682 0.00023 UHN 

29 αElv -1.1113 0.0327 -33.975 <0.0001 UHO 

30 αPG70UHO -0.8293 0.0644 -12.880 <0.0001 UHO 

31 αR38 -0.3006 0.0190 -15.847 <0.0001 All 

32 αR4 0.2841 0.0177 16.036 <0.0001 All 

33 αConf -0.0062 0.0011 -5.720 <0.0001 UHN/UHO 
 αConf_PG76 0.0128 0.0015 8.463 <0.0001  

34 αConf2 1.00E-05 2.54E-06 3.937 <0.0001 UHN/UHO 
 αConf2_PG76 3.26E-05 9.41E-06 3.461 0.00054  

35 αD1C -0.3011 0.0320 -9.408 <0.0001 CR 

36 αD3C -0.3349 0.0307 -10.905 <0.0001 CR 

37 αD6C -0.3139 0.0320 -9.811 <0.0001 CR 

 

Table 9. Parameters of the model included in the β factor (NLS model) 

Param. 

No. 
Parameter 

Parameter 

Estimate 

Standard 

Error 
t value p value Included in 

38 βC -2.5564 0.1840 -13.896 <0.0001 All 
 βUHO 1.8391 0.2382 7.722 <0.0001 UHO 

39 βP200 0.2576 0.0334 7.719 <0.0001 All 
 βP200_CR -0.0561 0.0254 -2.207 0.02728 CR 
 βP200_UHO -0.3433 0.0393 -8.740 <0.0001 UHO 

40 βPG76UHN 0.1391 0.0216 6.428 <0.0001 UHN 

41 βElv 0.4114 0.0224 18.329 <0.0001 UHO 

42 βPG76CR 0.0679 0.0184 3.685 0.00023 CR 

43 βPG70UHO 0.5628 0.0305 18.471 <0.0001 UHO 

44 βLime -0.1606 0.0159 -10.126 <0.0001 CR 

45 βMB -0.0828 0.0147 -5.637 <0.0001 CR 

46 βD1C -0.1453 0.0244 -5.968 <0.0001 CR 

47 βD3C -0.1692 0.0244 -6.941 <0.0001 CR 

48 βD6C -0.1904 0.0239 -7.965 <0.0001 CR 

49 βConf -3.89E-04 6.85E-05 -5.670 <0.0001 UHN/UHO 
 βConf_PG76UHN -5.29E-04 1.25E-04 -4.235 <0.0001 UHN 

50 βAV -0.0499 0.0059 -8.422 <0.0001 All 
 βAV_CR 0.0648 0.0194 3.340 0.00084 CR 
 βAV_UHO 0.0373 0.0065 5.727 <0.0001 UHO 
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Table 10. Parameters of the model included in the γ factor (NLS model) 

Param. 

No. 
Parameter 

Parameter 

Estimate 

Standard 

Error 
t value p value Included in 

51 γC 0.1764 0.0199 8.882 <0.0001 All 
 γUHO -0.1365 0.0174 -7.838 <0.0001 UHO 
 γCR -0.1898 0.0271 -7.004 <0.0001 CR 

52 γP200 0.0542 0.0032 17.132 <0.0001 All 

53 γPG76CR -0.0440 0.0035 -12.500 <0.0001 CR 

54 γPG70UHO 0.0239 0.0115 2.079 0.03760 UHO 

55 γLime -0.0413 0.0073 -5.635 <0.0001 CR 

56 γD1C 0.4827 0.0684 7.060 <0.0001 CR 

57 γD3C 0.5642 0.0727 7.759 <0.0001 CR 

58 γD6C 0.5324 0.0717 7.422 <0.0001 CR 

59 γCon_PG76UHN 2.19E-04 7.99E-05 2.743 0.00609 UHN 

60 γAV -0.0073 0.0023 -3.212 0.00132 All 
 γAV_CR 0.0131 0.0036 3.668 0.00025 CR 

 γAV_UHO 0.0134 0.0023 5.755 <0.0001 UHO 

 

 
Table 11. Parameters of the model included in the A factor (NLS model) 

Param. 

No. 
Parameter 

Parameter 

Estimate 

Standard 

Error 
t value p value Included in 

61 AC 1.91E-03 6.41E-05 29.742 <0.0001 All 

62 AVb -1.22E-04 5.71E-06 -21.433 <0.0001 All 

63 APG76CR -4.46E-04 3.62E-05 -12.315 <0.0001 CR 

64 APG70UHO -3.07E-04 7.70E-05 -3.987 <0.0001 UHO 

65 AWMA 2.47E-04 5.18E-05 4.760 <0.0001 UHO 

66 AConf 0.0019 0.0004 4.478 <0.0001 UHN/UHO 

67 AMB 0.7370 0.0895 8.236 <0.0001 CR 

68 AD1C 0.1252 0.0433 2.894 0.00382 CR 

69 AD3C 0.0828 0.0445 1.857 0.06325 CR 

70 AD6C 0.0898 0.0435 2.063 0.03913 CR 
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Table 12. Parameters of the model included in the B factor (NLS model) 

Param. 

No. 
Parameter 

Parameter 

Estimate 

Standard 

Error 
t value p value Included in 

71 BC -0.1562 0.0017 -93.656 <0.0001 All 
 BCR -0.0080 0.0021 -3.773 0.00016 CR 
 BUHO -0.0050 0.0011 -4.786 <0.0001 UHO 

72 BPG76CR 0.0291 0.0031 9.425 <0.0001 CR 

73 BPG70UHO 0.0245 0.0051 4.796 <0.0001 UHO 

74 BConf 2.52E-04 9.61E-05 2.616 0.00891 UHN/UHO 

75 BMB 0.1422 0.0198 7.168 <0.0001 CR 

 

Table 13. List of sub-indices used for the parameter description 

Sub index Meaning Sub index Meaning Sub index Meaning 

C Constant Vb Eff. Binder Vol. PGXX Asphalt grade 

CR Costa Rica Vb2 (Eff. Binder Vol.)2 Elv Elvaloy®Ret 

UHO UHO Conf Confinement Lime Lime 

AV Air Voids Conf2 (Confinement)2 MB Magnabond 

AV2 (Air Voids)2 R38 Retained in 3/8” sieve D1C 1 F-T cycles 

Str Strains R4 Retained in No.4 sieve D3C 3 F-T cycles 

Fib Fibers P200 Passing No. 200 D6C 6 F-T cycles 

In the previous model, there are combinations of sub-indices that indicate the interaction of two 

or more characteristics. This is the case for example of αPG76UHN, where the sub-indices express 

that the α is included for the case of the PG76-22 from the UHN data set. In the case where it 

only reads PG76, this means that the parameter applies for all binders in all data sets that possess 

that asphalt grade. As an example, one of the most complex indices included in the model is 

αcf_αAV_PG76. The initial αcf means that this parameter belongs to the confinement factor 

described in Equation (14), while the αAV_PG76 points at the specific parameter of this equation. 

Finally, AV and PG76 indicate that the parameter multiplies the interaction of air voids with a 

PG76-22 binder dummy. That is, it accounts for the effects of air voids in the parameter α of the 

factor αcf but only for PG76-22 binders.      
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The model is presented below as a single equation but it could be re-written for each data set 

considering only the parameters related to the specific set. However, since this model is intended 

to be used as a prediction model for any mixture with similar characteristics, it is presented as a 

single equation with the use of several dummy variables (Di). As explained before, these will 

take a value of 1 when a given characteristic is included in the model or 0 otherwise. Given that 

each of the terms ρ, α, β, γ, A and B is a long combination of several characteristics of the 

mixture, writing the model in one piece was not possible, and therefore, after revisiting Equation 

16, each of the terms is written below as a combination of all statistically significant variables. In 

addition to the variables presented in Table 7 through Table 12, the dummy variables (Di) and 

other properties of the mixtures included in the model are as follows.  

In the case of the dummy variables, all of them have identical sub-indices similar to the ones 

shown in Table 13. All other variables related with mixture characteristics that are included in 

the model are as follows. 

o AV: Air voids (by volume of the mix) (%), 

o Vbeff:  Effective binder content (by volume of the mix) (%), 

o Ret3/8:  Cumulative percent of aggregate (by weight) retained on the 3/8” sieve (%), 

o Ret4: Cumulative percent of aggregate (by weight) retained on the No. 4 sieve (%), 

o P200:  Percent of aggregate (by weight) passing through the No.200 sieve (%), 

o μs:  microStrain measured during |E*| testing at the particular temperature/frequency 

combination (μs), 

o σ3:  Confinement pressure applied to the sample during testing (%)  
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0 

log|𝐸∗| = 𝜌 −
𝛼∗𝛼𝑐𝑓

1+𝑒
−(𝛽+𝛾(𝑙𝑜𝑔(

1
𝑓
)−(𝐴∗𝑇2+𝐵∗𝑇−(𝐴∗(21.1)2+𝐵∗(21.1)))

  where,         (16 Revisited) 

𝜌 = [(𝜌𝐶 + 𝜌𝐶𝑅𝐷𝐶𝑅 + 𝜌𝑉𝑏𝑉𝑏𝑒𝑓𝑓 + 𝜌𝐴𝑉𝐴𝑉 + (𝜌𝐴𝑉2 + 𝜌𝐴𝑉2𝑈𝐻𝑂𝐷𝑈𝐻𝑂)𝐴𝑉
2 + 𝜌𝑅38𝑅𝑒𝑡3/8 + (𝜌𝑅4 + 𝜌𝑅4𝐶𝑅𝐷𝐶𝑅)𝑅𝑒𝑡4 + (𝜌𝑆𝑡𝑟 + 𝜌𝑆𝑡𝑟𝐶𝑅𝐷𝐶𝑅)𝜇𝑠 +

𝜌𝐸𝑙𝑣𝐷𝐸𝑙𝑣 + 𝜌𝑃𝐺76𝐶𝑅𝐷𝑃𝐺76𝐶𝑅) ∗ (1 + 𝜌𝐹𝑖𝑏𝐷𝐹𝑖𝑏) ∗ (1 + 𝜌𝐿𝑖𝑚𝑒𝐷𝐿𝑖𝑚𝑒 + 𝜌𝑀𝐵𝐷𝑀𝐵) ∗ (1 + 𝜌𝐷1𝐶𝐷𝐷1𝐶 + 𝜌𝐷3𝐶𝐷𝐷3𝐶 + 𝜌𝐷6𝐶𝐷𝐷6𝐶)]   

(17) 

[αcf] =    (1 + 𝛼𝐹𝑖𝑏𝐷𝐹𝑖𝑏) ∗ [(1 − 𝐷𝐶𝑜𝑛𝑓 + 𝐷𝐶𝑜𝑛𝑓) {(1 +
𝛼𝑐𝑓_𝛼+𝛼𝑐𝑓_𝛼𝑃𝐺76(𝐷𝑃𝐺76𝑈𝐻𝑁+𝐷𝐸𝑙𝑣)+(𝛼𝑐𝑓_𝛼𝐴𝑉+𝛼𝑐𝑓_𝛼𝐴𝑉𝑃𝐺76

(𝐷𝑃𝐺76𝑈𝐻𝑁+𝐷𝐸𝑙𝑣))𝐴𝑉

1+𝑒0
)−

𝛼𝑐𝑓_𝛼+𝛼𝑐𝑓_𝛼𝑃𝐺76(𝐷𝑃𝐺76𝑈𝐻𝑁+𝐷𝐸𝑙𝑣)+(𝛼𝑐𝑓_𝛼𝐴𝑉+𝛼𝑐𝑓_𝛼𝐴𝑉𝑃𝐺76
(𝐷𝑃𝐺76𝑈𝐻𝑁+𝐷𝐸𝑙𝑣))∗𝐴𝑉

1+𝑒
𝛼𝑐𝑓_𝛾𝜎3 }]   

(18) 

α = [(𝛼𝐶 + 𝛼𝐶𝑅𝐷𝐶𝑅 + 𝛼𝑈𝐻𝑂𝐷𝑈𝐻𝑂 + (𝛼𝐴𝑉 + 𝛼𝐴𝑉_𝐶𝑅𝐷𝐶𝑅 + 𝛼𝐴𝑉_𝑈𝐻𝑂𝐷𝑈𝐻𝑂)𝐴𝑉 + (𝛼𝐴𝑉2 + 𝛼𝐴𝑉2_𝐶𝑅𝐷𝐶𝑅 + 𝛼𝐴𝑉2_𝑈𝐻𝑂𝐷𝑈𝐻𝑂)𝐴𝑉
2 +

(𝛼𝑉𝑏 + 𝛼𝑉𝑏_𝐶𝑅𝐷𝐶𝑅 + 𝛼𝑉𝑏_𝑈𝐻𝑂𝐷𝑈𝐻𝑂)𝑉𝑏𝑒𝑓𝑓 + (𝛼𝐴𝑉𝑉𝑏 + 𝛼𝐴𝑉𝑉𝑏_𝐶𝑅𝐷𝐶𝑅 +𝛼𝐴𝑉𝑉𝑏_𝑈𝐻𝑂𝐷𝑈𝐻𝑂)𝐴𝑉 ∙ 𝑉𝑏𝑒𝑓𝑓 + (𝛼𝑆𝑡𝑟 + 𝛼𝑆𝑡𝑟_𝐶𝑅𝐷𝐶𝑅 + 𝛼𝑆𝑡𝑟_𝑈𝐻𝑂𝐷𝑈𝐻𝑂)𝜇𝑠 +

𝛼𝑃𝐺76𝑈𝐻𝑁𝐷𝑃𝐺76𝑈𝐻𝑁 + 𝛼𝐸𝑙𝑣𝐷𝐸𝑙𝑣 + 𝛼𝑃𝐺70𝑈𝐻𝑂𝐷𝑃𝐺70𝑈𝐻𝑂 + 𝛼𝑅38𝑅𝑒𝑡3/8 + 𝛼𝑅4𝑅𝑒𝑡4 + 𝛼𝐶𝑜𝑛𝑓𝜎3 + 𝛼𝐶𝑜𝑛𝑓2𝜎3
2 + 𝛼𝐶𝑜𝑛𝑓_𝑃𝐺76(𝐷𝑃𝐺76𝑈𝐻𝑁 + 𝐷𝐸𝑙𝑣)𝜎3 +

𝛼𝐶𝑜𝑛𝑓2_𝑃𝐺76(𝐷𝑃𝐺76𝑈𝐻𝑁 + 𝐷𝐸𝑙𝑣)𝜎3
2) ∗ (1 + 𝛼𝐷1𝐶𝐷𝐷1𝐶 + 𝛼𝐷3𝐶𝐷𝐷3𝐶 + 𝛼𝐷6𝐶𝐷𝐷6𝐶)]  

(19) 

𝛽 = (𝛽𝐶 + 𝛽𝑈𝐻𝑂𝐷𝑈𝐻𝑂 + (𝛽𝐴𝑉 + 𝛽𝐴𝑉_𝐶𝑅𝐷𝐶𝑅 +𝛽𝐴𝑉_𝑈𝐻𝑂𝐷𝑈𝐻𝑂)𝐴𝑉 + (𝛽𝑃200 + 𝛽𝑃200_𝐶𝑅𝐷𝐶𝑅 + 𝛽𝑃200_𝑈𝐻𝑂𝐷𝑈𝐻𝑂)𝑃200+

𝛽𝑃𝐺76𝑈𝐻𝑁𝐷𝑃𝐺76𝑈𝐻𝑁 +𝛽𝐸𝑙𝑣𝐷𝐸𝑙𝑣 + 𝛽𝑃𝐺76𝐶𝑅𝐷𝑃𝐺76𝐶𝑅 + 𝛽𝑃𝐺70𝑈𝐻𝑂𝐷𝑃𝐺70𝑈𝐻𝑂) ∗ (1 + 𝛽𝐿𝑖𝑚𝑒𝐷𝐿𝑖𝑚𝑒 +𝛽𝑀𝐵𝐷𝑀𝐵) ∗ (1 + 𝛽𝐷1𝐶𝐷𝐷1𝐶 +

𝛽𝐷3𝐶𝐷𝐷3𝐶 +𝛽𝐷6𝐶𝐷𝐷6𝐶) ∗ (1 + 𝛽𝐶𝑜𝑛𝑓  𝜎3 +𝛽𝐶𝑜𝑛𝑓_𝑃𝐺76𝑈𝐻𝑁𝐷𝑃𝐺76𝑈𝐻𝑁  𝜎3)   

(20) 

𝛾 = (𝛾𝐶 + 𝛾𝑈𝐻𝑂𝐷𝑈𝐻𝑂 + 𝛾𝐶𝑅𝐷𝐶𝑅 + (𝛾𝐴𝑉 +𝛾𝐴𝑉_𝐶𝑅𝐷𝐶𝑅 + 𝛾𝐴𝑉_𝑈𝐻𝑂𝐷𝑈𝐻𝑂)𝐴𝑉 + 𝛾𝑃200𝑃200+ 𝛾𝑃𝐺76𝐶𝑅𝐷𝑃𝐺76𝐶𝑅 + 𝛾𝑃𝐺70𝑈𝐻𝑂𝐷𝑃𝐺70𝑈𝐻𝑂) ∗

(1 + 𝛾𝐿𝑖𝑚𝑒𝐷𝐿𝑖𝑚𝑒) ∗ (1 + 𝛾𝐷1𝐶𝐷𝐷1𝐶 + 𝛾𝐷3𝐶𝐷𝐷3𝐶 +𝛾𝐷6𝐶𝐷𝐷6𝐶) ∗ (1 + 𝛾𝐶𝑜𝑛𝑓_𝑃𝐺76𝑈𝐻𝑁𝐷𝑃𝐺76𝑈𝐻𝑁   𝜎3)   

(21) 

𝐴 = (𝐴𝐶 + 𝐴𝑉𝑏𝑉𝑏𝑒𝑓𝑓 + 𝐴𝑃𝐺76𝐶𝑅𝐷𝑃𝐺76𝐶𝑅 +𝐴𝑃𝐺70𝑈𝐻𝑂𝐷𝑃𝐺70𝑈𝐻𝑂 + 𝐴𝑊𝑀𝐴𝐷𝑊𝑀𝐴) ∗ (1 + 𝐴𝐶𝑜𝑛𝑓𝜎3) ∗ (1 + 𝐴𝑀𝐵𝐷𝑀𝐵) ∗

(1 + 𝐴𝐷1𝐶𝐷𝐷1𝐶 + 𝐴𝐷3𝐶𝐷𝐷3𝐶 +𝐴𝐷6𝐶𝐷𝐷6𝐶)  

(22) 

𝐵 = (𝐵𝐶 +𝐵𝐶𝑅𝐷𝐶𝑅 + 𝐵𝑈𝐻𝑂𝐷𝑈𝐻𝑂 +𝐵𝑃𝐺76𝐶𝑅𝐷𝑃𝐺76𝐶𝑅 +𝐵𝑃𝐺70𝑈𝐻𝑂𝐷𝑃𝐺70𝑈𝐻𝑂) ∗ (1 + 𝐵𝐶𝑜𝑛𝑓   𝜎3) ∗ (1 + 𝐵𝑀𝐵𝐷𝑀𝐵)  (23) 
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The observed vs. predicted plots for this model, obtained using the non-linear least squares 

routine (NLS) in R with the inclusion of the joint estimation approach are shown in Figure 16 in 

regular scale and Figure 17 in a logarithmic scale. 

  

Figure 16. Observed versus predicted values of |E*| for the last NLS model 

 

Figure 17. Observed versus predicted values of log|E*| for the last NLS model 

When observing these two plots, an improvement in the fit of the model with respect to the 

previously shown figures is noticeable. The addition of statically significant variables that 
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influence the behavior of the mixtures allowed for achieving an improved standard error of the 

estimate (σest), which can be used as an indicator of the goodness of fit for non-linear models. 

The nonlinear least squares (NLS) routine employed to develop this model estimates the model 

parameters by minimizing the sum of squares of the residuals (SSRes). The value of σest is then 

calculated using the SSRes. Smaller values of σest indicate more accurate predictions. In the case 

of the initial model (Model-1) σest=0.191, while in the case of the intermediate model shown 

(model-9) σest=0.0811. Even when this reduction in σest by the addition of a few variables seems 

to be a good improvement, it is necessary to remember that the intermediate model still needed 

several variables to be able to capture the characteristics of all three data sets. The last model for 

the NLS fit illustrated above has an σest=0.0539, which is the minimum value achieved after over 

50 different models were tested. 

Typically, to indicate the goodness of fit of a model, the coefficient of determination (R2) is the 

statistic of choice. However, the use of R2 should be limited to the fitting of linear models for the 

following reasons. In the case of linear models, the sum of the variation of the regression plus the 

variation of the error is equal to the total variation. In other terms, the total sum of squares 

(SSTot) is equal to the sum of the regression sum of squares (SSReg) and the sum of squares of 

residuals (SSRes). R2 is simply the ratio of the regression sum of squares (SSReg) and the total sum 

of squares (SSTot). For linear models, R2 always falls between a value of 0 and 1 which indicates 

the fraction of the variation in the data that is explained by the independent variable in the 

regression equation. In the case of nonlinear models, the sum of SSReg and SSRes is not equal to 

SSTot and R2 can no longer be interpreted as the fraction of the total variation explained by the 

model. Although goodness of fit is important, the satisfaction of the assumptions in which the 

model is based is also of great importance. When the assumptions are not satisfied, statistical 

results such as t-statistic and p-values are unreliable and therefore variables can be kept or 

excluded from the model erroneously.  

The improvement in the goodness of fit is more noticeable in Figure 18, where the predicted 

versus observed values are shown for all data sets separately. Not only is the variation much 

smaller in this case but also there are no traces of the line-patterns shown previously for Model 1 

and Model 9, indicating that the differences within data points are being captured and addressed 

better.  
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Figure 18. Predicted versus observed values of log|E*| (by data set) for the last NLS model 

As discussed before, after the development of the model, it is necessary to verify the assumptions 

on which it was based. This will be discussed in more detail for the final model after the 

consideration of the random effects in the mixed-effects approach. However, three figures are 

shown at this point to show how the main assumptions are assessed. Figure 19 shows the 

standardized residuals, versus the predicted values of |E*| by source. A standardized residual is 

defined as the residual divided by its standard deviation. 

 

Figure 19. Standardized residuals versus predicted values for the NLS fit 
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In the figure, it is clear that the residuals do not have constant variance. Instead, they form a 

conical pattern. Also, there are differences in the range of the residuals, particularly for the UHO 

data set for which there is a wider spread than for the other two data sources. This invalidates 

one of the assumptions of the least-squares regression (i.e., homoscedasticity).  

As illustrated by this figure, each data set appears to have a somewhat different variance that 

decreases differently with the predicted value. This is a classic example of heteroskedasticity. 

Although the parameter estimates are still unbiased, when heteroskedasticity is present but it is 

not accounted for, it produces inefficient parameter estimates (i.e., parameter estimates with 

large variation and unreliable test of hypothesis results). 

Figure 20 presents a normal quantile-quantile plot of the standardized residuals. In this type of 

plot, the residuals should plot as a straight line if they follow the assumed distribution for 

hypothesis testing, which is asymptotically normal in this case (except for the extremes where a 

few outliers always produce some departures from a straight line).  Clearly, the residuals for the 

three data sets depart from a straight line showing that the assumption that they have a normal 

distribution is not met either. Because of this, the statistical results are again unreliable.  

 
Figure 20. Quantile-Quantile plot of the standardized residuals for the NLS fit 

The last plot of this section, Figure 21, shows box and whiskers plots of the residuals of the NLS 

fit for each of the 265 samples tested. Due to the large number of samples it is not possible to 

clearly identify the boxes and whiskers (the boxes are not noticeable but instead they appear as 
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solid lines covering the interquartile range whereas the lengths of the whiskers represent 1.5 

times the corresponding inter-quantile range and appear as dotted lines.) Nevertheless, it is 

simple to identify the black points which represent the median of the |E*| values for every sample 

tested. The hollow dots represent points identified as outliers. It can be seen from this figure that 

the residuals are distributed around the value of 0; however, it can be noted that there are 

differences in the distribution by data source: UHN: samples 1-42, CR: samples 43-186, UHO: 

samples 187-265, separated by horizontal lines. This supports the statement made above about 

each data base having its own variance of the residuals. Also, there are unobserved 

heterogeneities at the sample level that cannot be captured by the parameters currently describing 

the model. Note that the range of residuals for some samples do not even include zero (which 

means that all residuals from those samples are either all positive or all negative, which violates 

the assumption of independence of the error terms). It is vital to understand that the fact that the 

model does not comply with the assumptions on which it is based means the validity of the t-

statistics and p-values and thus of the whole model may be questionable. This is the motivation 

for the use of the mixed-effects approach explained next.  

 
Figure 21. Boxplot of residuals for NLS fit by sample 
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5.4 Incorporation of non-linear mixed-effects 

The mixed effects approach was used in the development of the predictive model to consider the 

correlation between the errors of the observations at the within-individual level (i.e. within 

samples) induced by the random effects. By including random effects, it is possible to identify 

for each tested sample, a deviation from an overall mean, due to unobserved heterogeneities in 

the samples.  

To obtain this final model, the nonlinear mixed effects (NLME) routine available in the software 

R was used. When using this routine, several arguments are required for the desired analysis. The 

initial model used for this approach was the last model shown in the previous section obtained 

through the NLS routine. The model was corrected after the inclusion of the random effects to 

exclude all parameters that became not significant and after the significance of some other 

parameters was re-assessed. Parameters that are not statistically significant after the 

consideration of the random effects were probably capturing variation that was likely due to 

within-sample variability when using the non-linear least squares approach. Several parameters 

were removed from the model as shown later in the discussion. 

From the list of arguments that can be included on the NLME routine, two are of fundamental 

importance to run the routine:  

 Random:  describes in a two-sided formula, the random effects that are desired in the 

model and their corresponding grouping structure.     

 Weights: describes the desired within group heteroscedasticity structure. 

For this model, the random argument selected was a two-sided formula of the form 

krho_C+kalpha_C ~1, which indicates that two random effects are included in the model, one 

for the parameter ρC and a second one for αC. The 1 on the right-hand side of the formula 

indicates that a single effect is included for each parameter. Furthermore, the NLME routine can 

model these random effects with positive-definite matrices (pdMat) with several patterns of 

variance-covariance (Pinheiro and Bates, 2000). For this model, the particular pdMat utilized 

was the pdSymm structure, which defines a general symmetric positive-definite matrix. In terms 

of the random parameters being included, the pdSymm implies a matrix where the diagonal 

shows the variance of each of the random effects and all other i, j positions in the matrix show 

the covariance of the ith and jth random effects. This type of matrix assumes that there may be 

some correlation between the random effects. 
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In the case of the weights, the NLME routine requires the definition of the within group variance 

structure using classes of variance functions (varFunc). From the available varFunc classes, the 

varExp was used for developing the model. VarExp uses an “exponential function of the 

variance covariate”, which allows for an increase or decrease of the model’s variance with 

respect to the variance covariate (Pinheiro and Bates, 2000). The specific structure used for this 

model was varExp (1, form = ~fitted(.)-1|Source); which specifies a variance covariate given by 

the obtained fitted values minus 1 and includes a stratification at the Source level of the data base 

(i.e. UHN, CR, UHO). By including this within group variance at the source level, 

heteroscedasticity is being accounted for in the model. This implies that the dispersion of the 

residuals is different for each source, which in turn allows for an improved distribution of the 

model’s residuals in comparison with the NLS fit. The specific variance structure chosen as well 

as the number of random parameters was the result of experimentation between several variance 

structures (power, exponential, and other combinations) such that a balance could be achieved 

between residuals satisfying the regression assumptions and avoidance of over specification of 

the model. The subtraction of 1 to the fitted values in the variance structure was found to produce 

better results than the default exponential variance structure.  

The final model developed with the NLME routine includes a total of 56 statistically significant 

parameters. A complete list of these is shown next in Table 14 through Table 19. These tables 

present the same information as Table 7 through Table 12, organized also by the different terms 

for practical reasons.  

Each of the tables contains for each parameter its estimate, its standard error and the t-statistic 

and p-values from the statistical analysis. The parameter number from column one combines the 

base parameter with the bias parameters. By counting these combinations as one parameter, the 

model is reduced to 46, compared to the 75 parameters from the NLS fit. It is important to notice 

that the parameters βUHO and γCR included in the tables were not found to be statistically 

significant. These terms were retained at this point for discussion purposes only. The parameter 

will be excluded from the final model presented later. The exclusion of both parameters does not 

affect the significance of any other parameters since in the case of βUHO, its p-values is 0.9904, 

meaning that the parameter is not statistically different from zero while in the case of γCR the p-

values is 0.1126, meaning that it is not statistically significantly different from zero at 10% 

significance level which was set as the limit to include parameters. 
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Table 14. Parameters of the model included in the ρ factor (NLME model) 

Param. 

No. 
Parameter 

Parameter 

Estimate 

Standard 

Error 
t value p value Included in 

1 ρC 4.9040 0.0386 127.055 <0.0001 All 
 ρCR -0.0790 0.0111 -7.137 <0.0001 CR 
 ρUHO 0.0809 8.16E-03 9.915 <0.0001 UHO 

2 ρVb -0.0338 3.09E-03 -10.909 <0.0001 All 

3 ρAV -0.0229 1.51E-03 -15.163 <0.0001 All 

4 ρStr -3.44E-04 5.00E-05 -6.884 <0.0001 All 

5 ρElv -0.0331 8.37E-03 -3.952 <0.0001 UHO 

6 ρPG76CR 0.0433 6.86E-03 6.313 <0.0001 CR 

7 ρLime 0.0260 1.56E-03 16.695 <0.0001 CR 

8 ρMB 0.0112 1.61E-03 6.962 <0.0001 CR 

9 ρD1C -0.0108 2.14E-03 -5.073 <0.0001 CR 

10 ρD3C -0.0199 2.14E-03 -9.301 <0.0001 CR 

11 ρD6C -0.0221 2.31E-03 -9.555 <0.0001 CR 

  

 

Table 15. Parameters of the model included in the α factor (NLME model) 

Param. 

No. 
Parameter 

Parameter 

Estimate 

Standard 

Error 
t value p value Included in 

12 αcf_α 0.3670 0.0919 3.996 <0.0001 UHN/UHO 

13 αcf_αPG76 0.1934 0.0396 4.884 <0.0001 UHN/UHO 

14 αcf_αAV 0.0192 4.54E-03 4.223 <0.0001 UHN/UHO 

15 αcf_αAV_PG76 -0.0119 3.23E-03 -3.671 0.0002 UHN/UHO 

16 αcf _αFib -0.0233 6.85E-03 -3.398 0.0007 UHN 

17 αcf_γ -6.22E-03 3.91E-04 -15.901 <0.0001 UHN/UHO 

18 αC 1.8521 0.1693 10.942 <0.0001 All 

 αCR -0.7498 0.1180 -6.353 <0.0001 CR 

 αUHO 0.3082 0.1198 2.573 0.0101 UHO 

19 αAV 0.2966 0.0170 17.405 <0.0001 All 

20 αPG76UHN -0.7190 0.0900 -7.992 <0.0001 UHN 

21 αElv -1.4970 0.0846 -17.705 <0.0001 UHO 

22 αPG70UHO -0.5199 0.1202 -4.323 <0.0001 UHO 

23 αR4 0.0166 2.54E-03 6.516 <0.0001 All 

24 αConf -8.17E-04 3.70E-04 -2.208 0.0273 UHN/UHO 

25 αFib 0.1291 0.0775 1.665 0.0960 UHN 
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Table 16. Parameters of the model included in the β factor (NLME model) 

Param. 

No. 
Parameter 

Parameter 

Estimate 

Standard 

Error 
t value p value Included in 

26 βC -1.2153 0.0223 -54.414 <0.0001 All 

 βCR 0.4121 0.0233 17.681 <0.0001 CR 

 βUHO -2.47E-04 0.0205 -0.012 0.9904 UHO 

27 βPG76UHN 0.1771 0.0130 13.606 <0.0001 UHN 

28 βElv 0.4477 0.0149 30.067 <0.0001 UHO 

29 βPG70UHO 0.3559 0.0274 12.969 <0.0001 UHO 

30 βD6C -0.0556 0.0129 -4.303 <0.0001 CR 

31 βConf 9.99E-04 6.98E-05 14.318 <0.0001 UHN/UHO 

32 βConf_PG76UHN 1.87E-04 5.82E-05 3.215 0.0013 UHN 

33 βAV -0.0589 2.99E-03 -19.707 <0.0001 All 

 

Table 17. Parameters of the model included in the γ factor (NLME model) 

Param. 

No. 
Parameter 

Parameter 

Estimate 

Standard 

Error 
t value p value Included in 

34 γC 0.4143 0.0165 25.098 <0.0001 All 

 γCR 0.0107 6.71E-03 1.587 0.1126 CR 

 γUHO -0.0379 5.38E-03 -7.047 <0.0001 UHO 

35 γP200 0.0110 2.74E-03 4.021 <0.0001 All 

36 γPG76CR -0.0330 3.80E-03 -8.702 <0.0001 CR 

37 γD1C 0.0293 0.0127 2.309 0.0210 CR 

38 γD3C 0.0298 0.0129 2.312 0.0208 CR 

39 γD6C 0.0458 0.0135 3.381 0.0007 CR 

40 γAV -7.14E-03 6.63E-04 -10.781 <0.0001 All 

41 γFib -0.0112 0.0022 -5.102 <0.0001 UHN 

 
Table 18. Parameters of the model included in the A factor (NLME model) 

Param. 

No. 
Parameter 

Parameter 

Estimate 

Standard 

Error 
t value p value Included in 

42 AC 9.03E-04 4.01E-05 22.555 <0.0001 All 

 ACR -4.54E-05 1.80E-05 -2.519 0.0118 CR 

 AUHO 7.82E-05 1.56E-05 5.020 <0.0001 UHO 

43 AVb -1.74E-05 3.62E-06 -4.798 <0.0001 All 

44 AConf 1.46E-07 3.53E-08 4.148 <0.0001 UHN/UHO 
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Table 19. Parameters of the model included in the B factor (NLME model) 

Param. 

No. 
Parameter 

Parameter 

Estimate 

Standard 

Error 
t value p value Included in 

45 BC -0.1591 5.33E-04 -298.569 <0.0001 All 

 BCR 3.31E-03 9.47E-04 3.497 0.0005 CR 

 BUHO -9.33E-03 8.46E-04 -11.037 <0.0001 UHO 

46 BPG70UHO 8.37E-03 1.02E-03 8.196 <0.0001 UHO 

 

At this point it is convenient to assess the adequacy of the parameters’ sign within the model and 

to the extent possible, the reasonableness of their magnitude. In some cases, a specific sign is 

expected for a parameter given the observed behavior in the laboratory or a priori expectations, 

while in some other cases, further discussion is necessary to determine the specific effects of a 

given parameter. 

5.4.1. Discussion of parameters in ρ 

Since ρ represents the maximum possible value of the log(|E*|), then all positive parameters 

increasing the value of the term ρ increase the values of log(|E*|), and because of the 

monotonicity of the logarithmic function, of |E*| as well. On the other hand, all negative 

parameters reduce the value of ρ and therefore the values of log(|E*|) and |E*|. To show this 

behavior, Figure 22 presents the dynamic modulus master curve corresponding to the 

characteristics of a specimen (taken as a base case) selected from the sample of specimens in this 

study together with the master curves that result from a small change with respect to the base 

case in the value of ρ. As previously mentioned, the master curve predicts the elastic behavior of 

asphalt mixtures for any combination of temperature and frequency. The final model was utilized 

to create these curves by keeping all parameters constant except for ρ and making this factor vary 

around the range of possible predicted values. 
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Figure 22. Effect of factor ρ on the behavior of the master curves 

Analyzing all parameter estimates from Table 14, the estimate of ρC, 4.904, is positive, while the 

estimate of the bias parameter for the Costa Rican data set ρCR has a negative value (-0.0790), 

which means that the maximum values of |E*|, all else being equal, are lower for the CR data set 

in comparison to the other two data sets (see the discussion for  below for further clarification 

about this parameter). The estimate of the UHO bias parameter (0.0809) shows the opposite 

behavior by having a positive value, which means that with all else equal, the |E*| values of 

specimens in this data set are higher than those from the UHN data set with identical 

characteristics. The estimate of the parameter associated with air voids, ρAV, is negative 

(-0.0229), which means that an increase in air voids reduces the maximum value of |E*|. This is 

the exact behavior seen in the laboratory, where mixtures with lower air voids percentages have 

higher values of |E*| for all temperatures and frequencies tested. The estimate of the parameter 

ρVb (-0.0338) related to the effective binder content has a negative sign, which means that an 

increase in the effective binder content results in a reduction of |E*|, all other things being equal. 

This behavior is also expected from the point of view of the mixture composition. Higher asphalt 

contents result in thicker asphalt film thicknesses around the aggregate particles and less stiff 

mixtures because of the lower stiffness of the binder relative to the aggregate. The estimate of 
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the strain parameter, ρStr, is negative (-3.44E-04). This indicates that in general the higher the 

strains the lower are the values of |E*|. This is a very interesting result since the dynamic 

modulus test standards require to keep the strains within a certain range, typically between 75 to 

125 μstrains for unconfined tests (AASHTO, 2016). This is required to keep the material within 

its linear viscoelastic range and to obtain repeatable moduli measurements. However, while 

performing some experiments with dynamic modulus in tension with stress-controlled tests in 

research currently being conducted at the UH Pavement Laboratory, in which the resulting 

strains are not always close to the target strains, it was noticed that the |E*| of a sample could 

vary significantly with variations in the peak-to-peak measured strain. It was also noted, 

particularly for the UHN data set, that there could be variations with strain even within the 

relatively narrow test ranges required in the standards. This was the motivation for considering 

the effect of strain in the model and the results obtained confirm the observation that the strain 

level can affect the measured modulus significantly, even within the ranges specified by the 

standards. While performing the testing for this study, it was generally observed that higher 

measured strains result in lower values of |E*|. Thus, it may be desirable to reduce the peak-to-

peak strain range allowed for testing to reduce the variability in measuring |E*|.   

Parameters ρElv and ρPG76CR are related to the behavior of two specific type of binders. The 

estimate of the first parameter, ρElv, is negative (-0.0331), which means that the maximum value 

of |E*| of mixtures prepared with the PG70-XX from the UHO data set (which was modified 

with Elvaloy®Ret) is reduced relative to the value obtained with the PG64-16 from the UHO 

study (the asphalt binder selected as base). This is consistent with the results of Archilla (2010), 

who found similar results with the UHO data set, and indicates that the ElvaloyRet© modified 

binder may provide some advantages to prevent cracking at low temperatures and high 

frequencies for thick pavement structures (under those conditions, the strain induced by a given 

load is not affected much by the relatively low change in the stiffness of the mix but the 

resistance to cracking can be higher for the lower modulus mixes). In contrast, for mixtures 

prepared with the PG76-22 binder from Costa Rica the corresponding parameter estimate 

(ρPG76CR = 0.0433) is positive, meaning that mixtures prepared with this binder have higher 

maximum values of |E*| than those prepared with the base asphalt PG70-22 of the CR study 

(remember the earlier discussion about excluding dummy variables of a base binder for each data 

set).  
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The parameter estimates for ρD1C, ρD3C and ρD6C also have intuitively correct signs and values 

(-0.0108, -0.0199, and -0.0221, respectively). First, it is observed that all three of them have 

negative signs, meaning that by using F-T cycles, the values of |E*| are reduced.  Second, the 

values become more negative as the F-T cycles increase from 1 to 6, meaning that the |E*| values 

are progressively reduced with an increased number of F-T cycles. However, the reduction is not 

proportional to the number of cycles. For example, increasing the F-T cycles from 0 to 1 results 

in a reduction of ρ of -0.0108, but when the number of cycles increases from 1 to 3 and from 3 to 

6 the resulting reductions are of -0.0091 and -0.0022, respectively. Thus, as the number of cycles 

increases, the reductions in the maximum of log(|E*|) become progressively smaller even when 

the number of cycles increments are increasingly larger. Note that this effect could also have 

been accounted for with a function of the number of cycles (e.g., with a quadratic function that 

has the same number of parameters). Nevertheless, in this study, it was preferred to account for 

this through dummy variables since this permits the identification of the effects of F-T cycles 

without making assumptions about the functional form, which can only be speculated with only 

three levels of F-T cycles.   

The next two parameters, ρLime and ρMB, have both positive signs meaning that the inclusion of 

any of these anti-stripping agents to the mixture increases the |E*| values on samples with no F-T 

cycles. However, from the values of the parameters, it is concluded that the addition of Lime 

(0.0260) result in a bigger increase of log(|E*|) than with the addition of Magnabond (0.0112). 

Also, when considering the use of anti-stripping together with F-T cycles, the net effect with the 

use of lime is an increase of |E*| irrespective to the number of F-T cycles. On the other hand, 

with Magnabond, the net effect is still a modulus reduction with 3 and 6 F-T cycles.  

The last five parameters discussed from the ρ list (i.e. ρLime, ρMB, ρD1C, ρD3C and ρD6C) are 

explanatory variables that are exclusive to the CR data set. However, as mentioned before, by 

including these parameters in the model it is possible to predict the effects on |E*| of a mixture 

from either the UHN or UHO data sets with the inclusion of these characteristics, if the 

assumption of similar mix behavior is accepted.  

5.4.2 Discussion of parameters in α 

Regarding α, it is necessary to remember that its multiplication with αcf of Equation (14) 

represents the reduction from the maximum to the minimum of the value of log |E*| in Equations 

(15) or (16). Therefore, α is mostly responsible for the predicted values in the lower part of the 
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curve. Remember that for very low values of the reduced frequency in Equation (15) for the 

calculation of log(|E*|) the product α· αcf is subtracted from the factor ρ. Consequently, a higher 

α results in a lower minimum value of the predicted log(|E*|) and this, in turn, drags the whole 

curve down (depending on the reduced frequency, the value subtracted from  varies from 0 at 

very high reduced frequencies to α· αcf at very low reduced frequencies). Likewise, a lower α 

results in a smaller reduction in the values of |E*| and on curves with higher minimum values of 

|E*|. This is the behavior shown in Figure 23. From this figure, it is evident that the greater 

impact of α is on the lower part of the curve. 

 

Figure 23. Effect of factor α on the behavior of the master curves 

By analyzing each of the parameters related to the prediction of α, it is seen that the constant αC 

has a positive value of 1.8521, which is as expected since a positive value needs to be subtracted 

from ρ to reduce the values of |E*|. As in the case for ρ, the bias parameters for this factor also 

have opposite signs for the CR and UHO datasets. The bias parameter for CR (-0.7498) is 

negative, which implies a reduction in the value of α relative to that for UHN and therefore an 

increase of the minimum value of |E*|, with all else equal. Recall that the estimate of the bias 

parameter ρCR was also negative (-0.0790), implying a smaller maximum value of |E*| when all 

else is equal. Thus, when both results are put together it can be concluded that for the Costa 
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Rican dataset the difference (max |E*| - min |E*|), all else equal, is smaller than those observed in 

the UH studies. This is not surprising considering that the base asphalt binder in the Costa Rican 

study is a PG70-22 as opposed to the PG64-22 used as base in the UHN study. Thus, not all else 

can be made equal in the two datasets since the two binders differ by a full grade and thus the 

bias parameter captures in big part the difference between base binders (the “all else equal” must 

be taken as with all the model inputs equal in this case).  

The UHO bias parameter for  (0.3082) is positive. Therefore, the minimum value of |E*| is 

smaller than that corresponding value for UHN, with all the other input variables equal. Note that 

in this case the difference (max |E*| - min |E*|) is larger than for UHN, but not as dramatic as the 

difference for the Costa Rican data set. This is also likely due to differences in the binders. 

Although the binders in the UHN and UHO studies have the same maximum grade (PG64), the 

sources were most likely different.  

The estimate for αAV (0.2966) is positive. Consequently, higher air voids in the mixture lead to 

higher estimates of α and therefore to larger estimated reductions in the values of |E*|. This is 

consistent with the laboratory results in this study and elsewhere, where it is commonly seen that 

the mixtures with low air voids perform better in dynamic modulus testing than mixtures with 

high air voids. Recall also that the estimate of parameter AV (-0.0229) also meant that higher air 

voids reduce the maximum |E*| values. Thus, higher air voids appear to have a compounding 

effect of lowering the maximum value |E*| and making the reduction from that maximum with 

reduced frequency also larger.  

The α factor contains three statistically significant parameter estimates related to binder type: 

αPG76UHN, αElv and αPG70UHO with values of -0.7190, -1.4970, and -0.5199, respectively. All three 

of them have a negative sign. This means that the use of any of these binders makes α smaller 

and the minimum value of |E*| larger relative to the values for the base binder of the 

corresponding data set. This is again a very reasonable result since all these binders are modified 

binders. Both the PG76-22 from the UHN data set and the PG70-22 from the UHO data set were 

modified with an SBS polymer while the PG70-XX from the UHO data set was modified with 

Elvaloy®Ret (hence its sub index). Therefore, it is expected that their minimum values are still 

higher than for the corresponding base binders (PG64-16 for UHO and PG64-22 for UHN). It is 

interesting however, that the effect of the PG76-22 from Costa Rica was not found to be 

statistically significant since it was also modified with an SBS polymer. It also interesting that 
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the estimate for αPG70UHO of -0.5199 is of the same order as the estimate of the bias parameter for 

Costa Rica, αCR, of -0.7498. In a sense, both parameters capture the differences in α caused by 

using a PG70-22 instead of the PG64-22 of the UHN study. Considering that αCR may also be 

capturing other differences such as gradation, compaction method, mixing procedures, density 

measurements, etc., the differences between the two parameters appear reasonable. 

The only statistically significant gradation related parameter in α is αR4, which is the parameter 

for the percentage of material retained on the No.4 sieve size. The estimated value for this 

parameter is 0.0166. As discussed earlier, the inclusion of parameters related to gradation is 

commonly seen in predictive models such as the Witczak prediction models shown in Chapter 2. 

Thus, the a priori expectation was that the parameters related to several of the gradation variables 

should be statistically significantly different from zero. However, it is important to realize that 

despite the large amount of information from the three data sets available for this study, there are 

basically 5 different gradations (two for UHO, one for UHN, and two for CR) plus a few more 

from the few field collected mixes. Furthermore, the percent passing a given sieve size is 

typically highly correlated to the percent passing other sieve sizes. Thus, the combination of little 

variation of the gradations in each data set with high correlation between the variables 

representing the gradations makes it difficult to identify several gradation related parameters for 

the three databases combined and virtually impossible for each database individually. Indeed, 

initial attempts at identifying parameters for each database using mixed-effects were fruitless 

because the model was over specified. Attempts were also made to include other gradation 

parameters common to the three data sets. For example, in attempts with models with three 

gradation parameters related to the percent retained in the 3/8” sieve size, the percent retained in 

the No. 4 sieve size, and the percentage passing the No. 200 sieve size (P200), it was found that 

the parameter for the P200 was not statistically significant and that the parameters corresponding 

to the other two variables were statistically significant but had almost identical values with 

opposite signs. An analysis of the variance-covariance matrix of the parameter estimates 

indicated that these were highly negatively correlated (~ -0.99). Consequently, even though 

apparently statistically significant results for additional parameters were obtained in some 

situations, engineering judgment had to be used to eliminate some of these parameters to avoid 

over specification of the model. When parameters related to the material retained in the 3/8” 

sieve size or No. 4 sieve size were found significant within one of the major parts of the model 
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(, , , etc.), the one related to the No.4 sieve size was retained while the one related to the 3/8” 

sieve size was eliminated. The reasoning behind this is that the number No. 4 sieve size is 

commonly utilized as the separation between the coarse and fine material, and therefore it could 

be used as an indication of the effects of coarser or finer gradations in the values of |E*| of a 

mixture. As expected, very little degradation was noted in the predictive ability of the model 

when the parameters related to the retained in the 3/8” sieve size were eliminated.   

The next statistically significant parameter in α is αConf, which multiplies the confinement 

utilized during testing of the samples (in kPa). The estimated value of this parameter (-8.17E-04) 

has an expected negative sign. That is, higher confinement levels make α smaller and the 

minimum of |E*| larger.  However, this parameter captures only a small but statistical significant 

part of the confinement effect that is proportional to the confinement level. As discussed at the 

end of chapter 4, a previous study based on the UHN data (Corrales-Azofeifa and Archilla, 2016) 

noted that there is a complex interaction of the confinement level, air voids, and asphalt type. 

Specifically, it was noted that for the polymer modified mixes, the benefits of higher confining 

stresses were observed for all levels of air voids. Although the benefits at the higher air voids 

were smaller, they were still substantial. On the other hand, for the unmodified mixes, large 

benefits observed at 4% air voids decreased slightly at 7% and virtually disappeared at 9%. As 

the air voids level was increased, not only the dynamic modulus decreased but so did the effect 

of confinement level. Consistent with the findings from other studies, it was also found that 

increasing the confining level increased the dynamic modulus. However, it did so at a decreasing 

rate. Based on the above observations, it is clear that a single linear term in confinement cannot 

capture the effects observed in that study. For this reason, the second multiplicative factor (αcf) 

was added to the model to capture these effects more closely.  

Finally, the last statistically significant parameter in α is αFib, which is related to the use of fibers 

in the mixture. The value of this parameter is 0.1291. It was noted in the laboratory that the 

addition of synthetic polyolefin/aramid fibers resulted in a consistent reduction of the |E*| values 

for all conditions tested. The reduction was observed regardless of the binder used to prepare the 

mix. This is consistent with the sign of this last parameter which increases the value of α, 

creating a reduction in the values of |E*|.  
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The second multiplicative part of α is termed αcf. This factor was shown in Equation (14) and a 

brief explanation of its rationale was provided therein. However, a plot of the variation of αcf 

with confinement level (Figure 24) is used to illustrate its role in accounting for confinement.  

  

 

Figure 24. Effect of αcf with varying confinement level  

(a)Effect of acf alone (b) Effect of acf on minimum value of |E*|(10(ρ-α·αcf))  

Notice that figure (24a) shows realizations of the curve shown in Figure 13 based on the 

estimated parameters and different binder types and air voids levels. Clearly, an increase of the 

confinement level reduces αcf and thus the term αcf·α, which implies a smaller maximum drop of 
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|E*| with reduced frequency for higher confinement levels. With no confinement, αcf takes a 

maximum value of 1 (i.e., in this situation, αcf has no effect on the overall values of |E*|) and 

decreases non-linearly with confining stress.  

The more general effects of other parameters in the αcf factor are not as obvious and therefore it 

is necessary to remember that from Equation (14), when βconf =0 (as assumed in this study to 

avoid over specification of the model), the equation can be rewritten as  

𝛼𝑐𝑓 = (1 + 
𝛼𝑐𝑜𝑛𝑓
2
)−

𝛼𝑐𝑜𝑛𝑓

1 + 𝑒
(𝛾𝑐𝑜𝑛𝑓 𝜎3)

= 1− 𝛼𝑐𝑜𝑛𝑓(
1

1 + 𝑒
(𝛾𝑐𝑜𝑛𝑓  𝜎3)

− 
1

2
) (24) 

 

It is easy to see that for any given confinement level utilized, the term in parenthesis on the right 

side of the equal sign in Equation (24) is greater than zero since the denominator that includes σ3 

is smaller than 2, e.g. for σ3=138kPa (20psi) the term 1 + 𝑒(𝛾𝑐𝑜𝑛𝑓 𝜎3)= 1.42. Thus, larger 

positive values of 𝛼𝑐𝑜𝑛𝑓 result in smaller αcf values and, therefore, larger minimum values of |E*|.    

Based on this analysis, it is now easier to explain the reasonableness of the results of the 

parameters in αcf in Table 15. The first and easier parameter to explain is αcf_γ, whose estimate is 

as expected negative (-6.22E-03). Thus, the model does indeed predict a decrease of αcf and an 

increase of |E*| with increasing confinement levels. 

The estimate of parameter αcf_α is positive (0.3670), which as expected, indicates that αcf is 

smaller than 1 for any confinement level above zero (with smaller values as σ3 increases). The 

parameter αcf_αPG76 affects both the PG76-22 and the Elvaloy®Ret modified asphalts from the 

UHN and UHO data sets, respectively. Its parameter estimate (0.1934) is again positive, which 

results in even larger values of 𝛼𝑐𝑜𝑛𝑓, and thus in even smaller values of αcf and correspondingly 

larger values of |E*| with all else equal. This is consistent with the observations of the previous 

study (Corrales-Azofeifa and Archilla, 2016), where larger benefits of confinement were 

observed for the mixes with modified binders.   

In the case of the parameters related to air voids, αcf_αAV and αcf_αAV_PG76, the estimate of the 

first one is positive (0.0192) and the estimate of the second is negative (-0.0119) (Note also, that 

their sum, which determines the effect for modified binders, is positive). In the first case, an 

increment in the air voids content will create a smaller value of αcf and therefore a larger value of 

|E*|. It may be tempting to conclude that this is not reasonable behavior since it is typically 
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observed that higher air voids lead to lower |E*|, but it must be remembered that αcf is intended 

to capture the complex interaction of air voids, asphalt type, and confinement (not just air voids) 

and that  and  also contain terms related to air voids. What the above results are indicating is 

that the variation of αcf with confinement is smaller for mixes with higher air voids regardless of 

the type of binder as indicated by the positive parameters for both unmodified and modified 

mixes (αcf_αAV> 0 and αcf_αAV – αcf_αAV_PG76 > 0, respectively) but that mixes with modified 

binders are less sensitive to air voids (less variation with confinement level) than the mixes with 

unmodified binders since αcf_αAV >> αcf_αAV – αcf_αAV_PG76, which is exactly the behavior 

illustrated in Figure (24a) where the curves for modified binders for varying air voids are closer 

than the ones for unmodified binders. The effect depicted in figure (24b) is one that was also 

noted in the previous study (Corrales-Azofeifa and Archilla, 2016), where the minimum values 

of |E*| depend highly on the confinement level, with higher values of |E*| as the confinement 

level increases. Also, the combined effect of ρ and α·αcf define higher values of the minimum 

|E*| for modified binders and smaller differences on the |E*| values as the air voids increase. 

The last parameter included in the αcf factor is the αcf_αFib. The negative sign of this parameter 

estimate (-0.0233) indicates that when using fibers the minimum value of |E*| is reduced in 

confined tests. This is the same effect discussed before for the αFib, which in this case means that 

the use of fibers reduces the values of |E*| even more relative to a mix without fibers when 

confinement is used, offsetting in part some of the benefits of confinement.  

5.4.3 Discussion of parameters in β and γ 

The beta and gamma parameters are more difficult to interpret since they define mostly the shape 

of the curve. Also, both parameters are within the exponent of e in the denominator of Equation 

(16), which makes their effect less obvious. However, by making plots of their variation along 

their range of possible values, it is possible to illustrate their effect on |E*|. Figure 25 and Figure 

26 show the effect of the variation of both parameters on the master curves.  

From Figure 25, it is seen that smaller values of the factor β shift the curve to the left (remember 

that  determines the maximum of |E*| and that  –  determines the minimum of |E*| and that 

these are unaffected by a change in ). In effect, this means that smaller values of β increase the 

values of |E*| across all frequencies. However, the increment is not uniform as it varies from zero 

at reduced frequencies approaching zero, it reaches a maximum at some intermediate reduced 
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frequency, and it returns to zero as the reduced frequency tends to infinity (this is not obvious 

from Figure 25 since only a practical range of reduced frequencies are shown). Conversely, 

higher values of β result in smaller values of |E*| (again, the reduction is not uniform with 

reduced frequency).    

The estimate of parameter βC (Table 16) is -1.2153, which does not have a particular 

interpretation. Based on the previous analysis, for a given reduced frequency, a positive 

parameter estimate (other than the estimate of the constant) results in a lower estimated value of 

|E*| (relative to the value estimated with only βC) whereas a negative parameter estimate results 

in a larger prediction of |E*|.     

The estimates of the bias parameters for the factor β are βCR = 0.4121 and βUHO = 2.47E-04. Their 

magnitudes differ significantly, which is not entirely surprising since the base binder in the UHO 

and UHN studies have the same high temperature grade (PG64) (the low temperature grade has 

little relevance for Hawaii’s climate); hence the low value of the bias parameter for UHO, which 

indicates that the difference in β for specimens of equal characteristics in the UHN and UHO 

data sets is very small and not statistically significantly different from zero as evidenced by its 

very large p-value = 0.9904 (a discussion for the other non-statistically significant parameter γCR 

will follow shortly). The fact that most bias parameters are statistically significant means that in 

general all three data sets have statistically significant differences in the shape of the master 

curves. The reason why these parameters were not deleted from the table was to be able to show 

which of the bias parameters were significant. On the other hand, as discussed before for  and 

, the larger and statistically significantly different from zero value of βCR may be capturing the 

fact that a PG70-22 is the base binder in the CR data set. This estimate implies that the predicted 

values of |E*| are lower for a specimen in the CR data set than the predicted values for a 

specimen with all else equal in the UHN data set. This discussion illustrates the difficulty in 

assessing the reasonableness of the parameter estimates in a non-linear model. So far, the bias 

parameters for the CR data set tend to decrease , increase , and increase . The final effect 

(which also depends on the bias parameters for A and B), is the result of all these changes 

simultaneously. 
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Figure 25. Effect of factor β on the behavior of the master curves 

Continuing with the analysis of the parameters affecting β, once again, three parameters related 

to the same three binders analyzed before are statistically significantly different from zero. All 

three parameters, βPG76UHN, βElv and βPG70UHO, have positive signs which means that using any of 

these binders will reduce the values of |E*| non-uniformly over the practical range of reduced 

frequencies. Again, it is important to remember that when any of these binders are utilized then 

most of the other terms of the sigmoidal function (, , , A, and B) will move at the same time, 

thus changing the overall shape and level of the sigmoidal function. A decrease in β is more 

related to how the curve makes a transition from the maximum to the minimum value, thus 

compensating at intermediate reduced frequencies some of the changes at the maximum and 

minimum values. This is also the case for the parameter estimates of βConf = 9.99E-04, 

βConf_PG76UHN = 1.87E-04, which are both related to the confinement level and are both positive. 

In contrast, the estimates of βD6C = -0.0556 and βAV = -0.0589 are both negative. Thus, it is 

apparent that changes that tend to make a mixture stiffer at intermediate reduced frequencies 

(such as using modified binders and applying confinement with and without modified binders) 

tend to increase  whereas changes that tend to make a mixture less stiff at intermediate reduced 

frequencies (such as the application of many F-T cycles and high air voids) have the opposite 
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effect and tend to decrease it. It is important to emphasize that the resulting effects on |E*| need 

be analyzed together with the effects of the same variable in the other parameters. The different 

effects work together to change the shape and level of the master curve. 

 

 

Figure 26. Effect of factor γ on the behavior of the master curves 

The effect of γ is as complex as that of β. As seen in Figure 26, a positive change in the value of 

γ with all the other terms fixed (, , , A, and B) makes the values of |E*| decrease for high 

reduced frequencies and increase for low reduced frequencies. Of course, the opposite happens 

for a decrease in . Consequently, as seen in the figure, γ affects the maximum slope of the 

master curve at intermediate temperatures. The estimate of the constant γC = 0.4143 is positive, 

which as in the case of C, does not have an interpretation other than together with other 

parameters it helps defining the shape of the curve. The estimates of the bias parameters for γ, 

γCR = 0.0107 and γUHO = -0.0379, have opposite signs. In this case, the magnitudes of the bias 

parameters are of the same order which means that both parameters recognize a difference from 

the base case (PG64-22 from UHN). While the bias parameter for CR increases the value of γ, 

the one for UHO decreases it. This is considered quite reasonable since it means that a master 

curve for a mix with the base binder from CR (PG70-22) has a lower maximum slope than one 
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prepared with the base binder from UHN (a PG64-22) (assuming that a big component of the 

bias factor in this case is related to the differences in binders. Of course, other factors may be 

playing a role as well.) In other words, it is reasonable to expect a smaller slope for binders with 

higher grades that are typically less temperature/frequency susceptible (and hence less reduced 

frequency susceptible). However, γCR is the second bias parameter that was eliminated from the 

model since in this case it was not statistically significantly different from zero at 10% 

significance level (p-value =0.1126). On the other hand, a mix with the UHO PG64-16 has a 

larger slope than a mix with the PG64-22 in the UHN study. In this case, the high temperature 

grade between the two binders is the same. Although the low temperature grade is not quite 

relevant for Hawaii’s environmental conditions, in general, a higher low temperature grade is 

indicative of a lower quality, more temperature susceptible binder (higher maximum slope). 

Therefore, the above result (smaller γ and higher slope of the curve for UHO than for UHN) once 

again coincides with a priori expectations.  

One parameter related to gradation is statistically significant in γ, γP200, which is related to the 

percentage of material passing the No. 200 sieve size. Its estimate, 0.0110, is positive which 

implies that higher P200 values (within the range of values in this study) result in lower 

maximum slopes. This appears to capture the asphalt mastic stiffening effect that results from 

higher P200 values.  

The only parameter related to binder type in , γPG76CR, appears with a negative sign (its estimate 

is -0.0330). This would indicate a higher maximum slope in comparison to the base binder 

PG64-22 and also that the modified binder of the CR data set has the opposite effect than its base 

binder (PG70-22). It is interesting to see also that only the modified binder from Costa Rica 

appears in  while only the modified binders from UHO and UHN appear in . Apparently, their 

effects can only be captured in one or the other term. 

The estimates of the three parameters related to freeze-thaw cycles, γD1C = 0.0293, γD3C = 0.0298, 

γD6C = 0.0458, are all positive, indicating that F-T cycles reduce the maximum slope of the 

master curves or, in other words, flatten the master curves. Recall that statistically significant 

effects of F-T cycles were also found in  and that they tended to lower the whole master curve. 

Thus, with lower maximum values of |E*| one would expect the curves to be flatter as well. 

Finally, it is seen that the estimates increase monotonically with the number of cycles though the 

increments are much larger from 0 to 1 cycles (0.0293) and from 3 to 6 cycles (0.0160) than 
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from 1 to 3 cycles (0.0005), which implies a substantially nonlinear effect in which the first cycle 

has a substantial effect in flattening the curve, the following 2 cycles have little effect, and then 

the effects increase once again with more cycles. However, a more complete study with more 

F-T cycle levels would be needed to verify if this is the case. The important point is that the 

parameter estimation results in this study appear to be reasonable.  

The last two statistically significant parameters in γ are γAV, which is related to air voids and γFib, 

related to the use of fibers in the mixture. Both estimates are negative, γAV = -7.29E-03 and 

γFib = -0.0112, which implies steeper master curves or curves with a more sudden drop with 

reduced frequency. This again appears intuitively correct in both cases. In the first case (for γAV) 

at low temperatures/high frequencies, the binder is quite stiff and collaborates significantly with 

the aggregate structure to determine the stiffness of the mix (though with higher air voids, the 

stiffness is still reduced as seen in the discussion of ). On the other hand, at high temperatures 

and low frequencies, the stiffness of the mix approaches that of aggregate. Air voids affect what 

happens under the above conditions and those effects were already discussed in , , and . 

Now, with higher air voids, the aggregate structure can become more unstable under loading 

when the temperature is risen and one would expect that with lower aggregate interlock the drop 

in the stiffness can be more sudden, which is consistent with the negative sign of the parameter 

estimate. In the case of γFib, the negative sign means that the addition of fibers also creates a 

more sudden transition from the high to lower frequencies, which is also consistent with the 

effect of fibers observed in the α factor according to which the addition of fibers lowers the 

minimum values of |E*|. Therefore, the transition needs to have a higher maximum slope 

5.4.4 Discussion of parameters in A and B 

To conclude the analysis of the model parameters, Figure 27 and Figure 28 are included to show 

the effect of the variation in A and B on the logarithm of the shift factor. Both plots show similar 

behavior. 
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Figure 27. Effect of factor A on the log of the shift factor a(T). 

 

In general, parameters that increase the value of A (which is the parameter affecting the square 

of temperature in the log(a(T) equation) result in less shifting, while parameters that decrease the 

value of A result in larger changes in the log of the shift factors, thus expanding the range of 

reduced frequencies in both directions for a given experiment. 

As shown in Figure 28, parameter B, which is the parameter of the linear term in the log(a(T)) 

equation, has the opposite effect (i.e., larger B values lead to more shifting and vice-versa.)  

As with other terms, the estimates of the constants (AC = 9.03E-04 and BC = -0.1591) do not 

have a direct interpretation other than that they yield reasonable values when they are modified 

with other terms such as bias factors and terms accounting for air voids and confinement. 

However, it is important to note that the estimate of BC, which may be modified only by bias 

factors or the dummy for the PG70-22 binder from UHO, compares quite well with typical 

values of this parameter.     

Both estimates of the bias parameters for the CR data set (ACR = -4.54E-05 and BCR = 3.31E-03), 

indicate that the master curves of the CR data set require more shifting with respect to the UHN 

curves, while the opposite is true for the master curves of UHO (AUHO = 7.82E-05 and BUHO = -

9.33E-03).  
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Air voids and confinement also appear to have a statistically significant effect on the shift factor 

through the A term but in opposite directions. Their parameter estimates are AVb = -1.74E-05 and 

AConf = 1.46E-07. Thus, higher air voids appear to lead to more shifting while higher 

confinement appear to result in less shifting.  

Finally, an effect of the PG70-22 binder in the UHO data set was detected in B. The parameter 

estimate is BPG70UHO = 8.37E-03, which indicates that mixes prepared with this binder require (all 

other things equal) slightly less shifting. 

   

Figure 28. Effect of factor B on the log of the shift factor a(T). 

5.4.5 Final statistical assessment of the model 

The model discussed in the previous sections was modified slightly by excluding βUHO and γCR 

since these are not statistically significant. Remember that this final model has the same structure 

as the NLS fitted model since it was developed using precisely the final model specification 

estimated with the NLS routine while using the joint estimation approach to pool the information 

from the different data sets and the mixed-effects approach to account for unobserved 

heterogeneity. The same explanation that was given to understand the NLS fitted model also 

applies in this case. All sub-indices are identical for all parameters and the dummy variables (Di) 

were used to include both bias parameters and explanatory variables that are unique for one of 

the data sets (i.e. UHN, CR, UHO).   
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log|𝐸∗| = 𝜌 −
𝛼 𝛼𝑐𝑓

1+𝑒
−(𝛽+𝛾(𝑙𝑜𝑔(

1
𝑓
)−(𝐴 𝑇2+𝐵 𝑇−(𝐴 (21.1)2+𝐵 (21.1)))

  where,       (16 Revisited) 

𝜌 = [(𝜌𝐶 +𝜌𝐶𝑅  𝐷𝐶𝑅 +𝜌𝑈𝐻𝑂 𝐷𝑈𝐻𝑂 +𝜌𝑉𝑏 𝑉𝑏𝑒𝑓𝑓 +𝜌𝐴𝑉 𝐴𝑉 + 𝜌𝑆𝑡𝑟  𝜇𝑠 + 𝜌𝐸𝑙𝑣 𝐷𝐸𝑙𝑣 +𝜌𝑃𝐺76𝐶𝑅  𝐷𝑃𝐺76𝐶𝑅) (1 + 𝜌𝐿𝑖𝑚𝑒  𝐷𝐿𝑖𝑚𝑒 +

𝜌𝑀𝐵  𝐷𝑀𝐵) (1 + 𝜌𝐷1𝐶 𝐷𝐷1𝐶 + 𝜌𝐷3𝐶 𝐷𝐷3𝐶 +𝜌𝐷6𝐶 𝐷𝐷6𝐶)]   
(25) 

αcf       = [(1+
𝛼𝑐𝑓_𝛼+𝛼𝑐𝑓_𝛼𝑃𝐺76(𝐷𝑃𝐺76𝑈𝐻𝑁+𝐷𝐸𝑙𝑣)+𝛼𝑐𝑓_𝛼𝐹𝑖𝑏𝐷𝐹𝑖𝑏+(𝛼𝑐𝑓_𝛼𝐴𝑉+𝛼𝑐𝑓_𝛼𝐴𝑉𝑃𝐺76

(𝐷𝑃𝐺76𝑈𝐻𝑁+𝐷𝐸𝑙𝑣))𝐴𝑉

1+𝑒0
)−

𝛼𝑐𝑓_𝛼+𝛼𝑐𝑓_𝛼𝑃𝐺76(𝐷𝑃𝐺76𝑈𝐻𝑁+𝐷𝐸𝑙𝑣)+𝛼𝑐𝑓_𝛼𝐹𝑖𝑏𝐷𝐹𝑖𝑏+(𝛼𝑐𝑓_𝛼𝐴𝑉+𝛼𝑐𝑓_𝛼𝐴𝑉𝑃𝐺76
(𝐷𝑃𝐺76𝑈𝐻𝑁+𝐷𝐸𝑙𝑣))𝐴𝑉

1+𝑒
𝛼𝑐𝑓_𝛾∗𝜎3 ]  

(26) 

 α = (𝛼𝐶 + 𝛼𝐶𝑅  𝐷𝐶𝑅 + 𝛼𝑈𝐻𝑂  𝐷𝑈𝐻𝑂 + 𝛼𝐴𝑉  𝐴𝑉 + 𝛼𝑃𝐺76𝑈𝐻𝑁 𝐷𝑃𝐺76𝑈𝐻𝑁 + 𝛼𝐸𝑙𝑣  𝐷𝐸𝑙𝑣 + 𝛼𝑃𝐺70𝑈𝐻𝑂  𝐷𝑃𝐺70𝑈𝐻𝑂 + 𝛼𝑅4 𝑅𝑒𝑡4 + 𝛼𝐶𝑜𝑛𝑓  𝜎3 + 𝛼𝐹𝑖𝑏  𝐷𝐹𝑖𝑏)  (27) 

𝛽 =  (𝛽𝐶 +𝛽𝐶𝑅  𝐷𝐶𝑅 +𝛽𝐴𝑉 𝐴𝑉 + 𝛽𝑃𝐺76𝑈𝐻𝑁  𝐷𝑃𝐺76𝑈𝐻𝑁 + 𝛽𝐸𝑙𝑣 𝐷𝐸𝑙𝑣 +𝛽𝑃𝐺70𝑈𝐻𝑂  𝐷𝑃𝐺70𝑈𝐻𝑂 + 𝛽𝐶𝑜𝑛𝑓  𝜎3 +

𝛽𝐶𝑜𝑛𝑓𝑃𝐺76𝑈𝐻𝑁  𝜎3 𝐷𝑃𝐺76𝑈𝐻𝑁) (1 + 𝛽𝐷6𝐶 𝐷𝐷6𝐶)  
(28) 

𝛾 = (𝛾𝐶 + 𝛾𝑈𝐻𝑂 𝐷𝑈𝐻𝑂 + 𝛾𝑃200 𝑃200 + 𝛾𝐴𝑉  𝐴𝑉 + 𝛾𝑃𝐺76𝐶𝑅  𝐷𝑃𝐺76𝐶𝑅 +𝛾𝐹𝑖𝑏 𝐷𝐹𝑖𝑏) (1 + 𝛾𝐷1𝐶 𝐷𝐷1𝐶 +𝛾𝐷3𝐶  𝐷𝐷3𝐶 + 𝛾𝐷6𝐶 𝐷𝐷6𝐶)  (29) 

𝐴 = (𝐴𝐶 + 𝐴𝐶𝑅 𝐷𝐶𝑅 + 𝐴𝑈𝐻𝑂 𝐷𝑈𝐻𝑂 + 𝐴𝑉𝑏 𝑉𝑏𝑒𝑓𝑓 + 𝐴𝐶𝑜𝑛𝑓 𝜎3)  (30) 

𝐵 = (𝐵𝐶 +𝐵𝐶𝑅  𝐷𝐶𝑅 +𝐵𝑈𝐻𝑂 𝐷𝑈𝐻𝑂 + 𝐵𝑃𝐺70𝑈𝐻𝑂 𝐷𝑃𝐺70𝑈𝐻𝑂)  (31) 
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The exclusion of parameters βUHO and γCR from the model produced negligible changes in the 

values of the other parameter estimates. Analysis of variance performed between the model 

shown in the previous section and the one without these two parameters gives a p-value=0.8833 

which in this case means that the models are not statistically significantly different and thus the 

exclusion of those bias parameters did not have any major effect in the model (more correctly, 

the hypothesis that both parameters are jointly equal to zero cannot be rejected). Furthermore, 

there are no changes in the significance of the other parameters. Table 20 through Table 25 show 

the final parameter estimates after excluding these two non-statistically significant parameters. 

These are the final parameter estimates that should be use to perform estimations with the model.  

Table 20. Parameters of the model included in the ρ factor (NLME final) 

Param. 

No. 
Parameter 

Parameter 

Estimate 

Standard 

Error 
t value p value Included in 

1 ρC 4.9058 0.0387 126.911 <0.0001 All 
 ρCR -0.0691 9.27E-03 -7.460 <0.0001 CR 
 ρUHO 0.0814 8.02E-03 10.146 <0.0001 UHO 

2 ρVb -0.0339 3.10E-03 -10.938 <0.0001 All 

3 ρAV -0.0230 1.51E-03 -15.191 <0.0001 All 

4 ρStr -3.55E-04 4.96E-05 -7.143 <0.0001 All 

5 ρElv -0.0331 8.39E-03 -3.951 <0.0001 UHO 

6 ρPG76CR 0.0426 6.81E-03 6.248 <0.0001 CR 

7 ρLime 0.0259 1.55E-03 16.708 <0.0001 CR 

8 ρMB 0.0112 1.61E-03 6.956 <0.0001 CR 

9 ρD1C -0.0117 2.07E-03 -5.681 <0.0001 CR 

10 ρD3C -0.0208 2.07E-03 -10.034 <0.0001 CR 

11 ρD6C -0.0228 2.27E-03 -10.043 <0.0001 CR 

Table 21. Parameters of the model included in the α factor (NLME final) 

Param. 

No. 
Parameter 

Parameter 

Estimate 

Standard 

Error 
t value p value Included in 

12 αcf_α 0.3643 0.0919 3.964 <0.0001 UHN/UHO 

13 αcf_αPG76 0.1925 0.0389 4.945 <0.0001 UHN/UHO 

14 αcf_αAV 0.0192 4.46E-03 4.309 <0.0001 UHN/UHO 

15 αcf_αAV_PG76 -0.0119 3.23E-03 -3.679 0.0002 UHN/UHO 

16 αcf _αFib -0.0232 6.85E-03 -3.387 0.0007 UHN 

17 αcf_γ -6.24E-03 3.95E-04 -15.803 <0.0001 UHN/UHO 

18 αC 1.8413 0.1567 11.749 <0.0001 All 

 αCR -0.6594 0.0977 -6.751 <0.0001 CR 

 αUHO 0.3089 0.0820 3.769 0.0002 UHO 
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Table 21 (cont’d). Parameters of the model included in the α factor (NLME final) 

Param. 

No. 
Parameter 

Parameter 

Estimate 

Standard 

Error 
t value p value Included in 

19 αAV 0.2934 0.0164 17.870 <0.0001 All 

20 αPG76UHN -0.7133 0.0860 -8.291 <0.0001 UHN 

21 αElv -1.4846 0.0784 -18.946 <0.0001 UHO 

22 αPG70UHO -0.5114 0.1178 -4.342 <0.0001 UHO 

23 αR4 0.0167 2.54E-03 6.591 <0.0001 All 

24 αConf -8.29E-04 3.66E-04 -2.266 0.0235 UHN/UHO 

25 αFib 0.1298 0.0773 1.680 0.0931 UHN 

 

Table 22. Parameters of the model included in the β factor (NLME final) 

Param. 

No. 
Parameter 

Parameter 

Estimate 

Standard 

Error 
t value p value Included in 

26 βC -1.2145 0.0186 -65.282 <0.0001 All 

 βCR 0.3931 0.0179 21.965 <0.0001 CR 

27 βPG76UHN 0.1764 0.0116 15.231 <0.0001 UHN 

28 βElv 0.4459 0.0137 32.615 <0.0001 UHO 

29 βPG70UHO 0.3547 0.0271 13.086 <0.0001 UHO 

30 βD6C -0.0554 0.0127 -4.367 <0.0001 CR 

31 βConf 1.00E-03 6.61E-05 15.166 <0.0001 UHN/UHO 

32 βConf_PG76UHN 1.86E-04 5.69E-05 3.268 0.0011 UHN 

33 βAV -0.0583 2.92E-03 -19.972 <0.0001 All 

 

Table 23. Parameters of the model included in the γ factor (NLME final) 

Param. 

No. 
Parameter 

Parameter 

Estimate 

Standard 

Error 
t value p value Included in 

34 γC 0.4177 0.0162 25.844 <0.0001 All 

 γUHO -0.0386 4.82E-03 -8.013 <0.0001 UHO 

35 γP200 0.0107 2.71E-03 3.943 <0.0001 All 

36 γPG76CR -0.0316 3.55E-03 -8.887 <0.0001 CR 

37 γD1C 0.0381 0.0116 3.281 0.0010 CR 

38 γD3C 0.0386 0.0118 3.263 0.0011 CR 

39 γD6C 0.0544 0.0125 4.340 <0.0001 CR 

40 γAV -7.09E-03 6.62E-04 -10.711 <0.0001 All 

41 γFib -0.0118 2.17E-03 -5.458 <0.0001 UHN 
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Table 24. Parameters of the model included in the A factor (NLME final) 

Param. 

No. 
Parameter 

Parameter 

Estimate 

Standard 

Error 
t value p value Included in 

42 AC 9.06E-04 4.00E-05 22.657 <0.0001 All 

 ACR -4.62E-05 1.80E-05 -2.563 0.0104 CR 

 AUHO 7.60E-05 1.51E-05 5.039 <0.0001 UHO 

43 AVb -1.76E-05 3.62E-06 -4.858 <0.0001 All 

44 AConf 1.44E-07 3.47E-08 4.137 <0.0001 UHN/UHO 

 

Table 25. Parameters of the model included in the B factor (NLME final) 

Param. 

No. 
Parameter 

Parameter 

Estimate 

Standard 

Error 
t value p value Included in 

45 BC -0.1591 5.32E-04 -299.122 <0.0001 All 

 BCR 3.03E-03 9.30E-04 3.259 0.0011 CR 

 BUHO -9.32E-03 8.26E-04 -11.281 <0.0001 UHO 

46 BPG70UHO 8.38E-03 1.02E-03 8.193 <0.0001 UHO 

 

To illustrate the overall adequacy of the model with the final parameter estimates shown in the 

previous tables, the following analysis is performed. 

When using the NLME routine, it is possible to show the results for all levels of nesting utilized 

in the model. In this case, a default level of 1 will show the within-group fitted values, i.e. with 

the inclusion of random effects, while a level of 0 will show the population fitted values, i.e. 

taking into account only the fixed effects.  

To illustrate the differences between models with and without random effects, both plots for 

levels 0 and 1 are shown below. Figure 29 and Figure 30 show the |E*| values in a regular scale, 

while Figure 31 and Figure 32 show the plots in logarithmic scale. 
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Figure 29. Observed versus predicted values of |E*| for the NLME model (level 0) 

  

Figure 30. Observed versus predicted values of |E*| for the NLME model (level 1) 
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Figure 31. Observed versus predicted values of log|E*| for the NLME model (level 0) 

  

 

 

Figure 32. Observed versus predicted values of log|E*| for the NLME model (level 1) 
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From these plots, it is seen that the model that includes mixed-effects explains the data much 

better than the model with only fixed effects. This is to be expected since the predictions with the 

random effects from the mixed-effects approach essentially correspond to a model with two 

more parameters that are specific for each specimen (one for  and one for , in this study). 

However, the purpose of using mixed-effects for estimation is not to obtain a better fit than with 

a non-linear least squares regression model but to satisfy the assumptions in which the model is 

based, which as discussed before simply it could not be achieved with non-linear least squares 

regression. This is of fundamental importance for the validity of all statistical significance tests. 

Note that the predictions with fix-effects produce lower fits than those with non-linear least 

squares regression since the latter specifically minimizes the sum of square residuals and 

therefore no other approach would do better than this.  

It is also important to note that the random effects are a byproduct of the estimation approach but 

that they are not used to estimate the fix-effects of the model. The only additional parameters 

used during estimation are the parameters of the variance-covariance matrix of the random 

effects (which, allowing for random effects only in  and are just three parameters including 

two for the variance of each random effect and one for the covariance of the two) and the 

heteroscedasticity parameters in the stratified variance of the error terms.  

The estimated standard deviation of the random effects for C is 0.03369 with an approximate 

95% confidence interval of (0.03066,0.03703), which shows the parameter to be statistically 

different from zero at a 5% significance level. This estimate is small compared to the estimate of 

C of 4.9058. On the other hand, as expected, the estimated standard deviation of the random 

effects of C of 0.27244 is much higher both in absolute terms and relative to the parameter 

estimate of C of 1.8413. Its estimated 95% confidence interval is (0.24586, 0.30190), which 

also indicates the estimated standard deviation of the random effects of C is statistically 

different from zero at a 5% significance level.  This is again not surprising since several factors 

make the measurements with conditions leading to low |E*| values more difficult. For example, 

the applied loads are much smaller compared to the load cell capacity and therefore the 

measurements are more prone to have relatively larger errors. 

Finally, the estimate of the correlation between the random effects of C and C is 0.4205 with a 

95% confidence interval of (0.2962,0.5308), which again shows that this estimate is statistically 
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significantly different from zero. This indicates that these random effects are moderately and 

positively correlated.    

Thus, the superiority of the mixed-effects model is not judged based on the fits but instead is 

judged with anova and likelihood tests. A summary of the results of these tests is shown on Table 

26. It is important to remember that the use the joint estimation approach was necessary to merge 

the three data sets gathered for this project, however, the model needed to be improved to satisfy 

the assumptions on which it was based.  

Table 26. Results of anova and likelihood ratio tests 

 Model df AIC BIC logLik Test L.Ratio p-value 

NLME fit 1 63 -31907.0 -31476.9 16016.49  

NLS fit 2 106 -20393.8 -19670.0 10302.88 1vs2 11427.2 <.0001 

 

The table shows the values of the Akaike Information Criterion (AIC) (-2logLik + 2npar) and the 

Bayesian Information Criterion (BIC) (-2logLik + nparlog(N)) which measure the relative quality 

of statistical models. logLik is the model log likelihood function, npar is the number of model 

parameters, and N is the number of observations. These two criteria help discerning whether it is 

worthwhile or not to add a certain number of parameters to improve a model’s fit. In general, 

models with lower values (algebraically) of AIC and BIC are preferred. Therefore, based on the 

AIC and BIC criteria, it is concluded that the NLME fit is superior than the NLS fit. The same 

conclusion is reached using the log-likelihood ratio test. The small p-value of less than 0.0001 

for this test indicates that the model with the substantially larger log likelihood value (the model 

estimated with NLME) should be preferred to the model estimated with NLS, thus confirming 

the results of the other two criteria.  

Figure 33 and Figure 34 show the predicted versus observed values of |E*| by data source in 

regular scale, for levels 0 and 1 respectively. Figure 35 and Figure 36 show the same information 

but in logarithmic scale. From these plots, it is seen that the model fit the data from all three 

sources well and that there are no big deviations from the 45° equality line. 
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Figure 33. Predicted versus observed values of |E*| (by data set) NLME model level=0 

  

 
Figure 34. Observed versus observed values of |E*| (by data set) NLME model level=1 
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Figure 35. Observed versus observed values of log|E*| (by data set) NLME model level=0 

 

 
Figure 36. Observed versus observed values of log|E*| (by data set) NLME model level=1 

The next step in the analysis is to assess the assumption of the within-group errors. Recall that an 

exponential structure was used to model variability of the standard deviation of the residuals with 

the fitted value. Specifically, the following form available in R was used: varExp (1, form = 

~fitted(.)-1|Source); which specifies a variance covariate given by the obtained fitted values 
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minus 1 and includes a stratification at the source level of the data base (i.e., UHN, CR, UHO). 

Using this model, the estimate of the standard error of the residuals is 0.3313, which corresponds 

to situations in which the estimated value of log(|E*|) -1 = 0. The 95% confidence interval for 

this estimate is (0.3028, 0.3625). The estimated parameters of the exponential function 

accounting for heteroscedasticity are -1.2644, -1.2000, and -1.0640 for the UHN, CR, and UHO 

strata, respectively. The corresponding 95% confidence intervals are (-1.3034, -1.2255) for 

UHN, (-1.2410, -1.1589) for CR, and (-1.1005, -1.0275) for UHO. Once again, these indicate 

that all these parameters are statistically significantly different from zero. 

Figure 37 shows the corresponding estimated variation of the residuals with the fitted value of 

the log(|E*|) estimated as 𝜎𝜀
2𝑒
(𝜆𝑖(log (|𝐸∗|)̂ −1))

, where 𝜎𝜀
2 = 0.33132 and where 𝜆𝑖  equals the 

heteroscedasticity parameter estimate for data source 𝑖 (i.e, -1.2644, -1.2000, and -1.0640 for 

UHN, CR, and UHO, respectively.) This is consistent with previous graphs that show the highest 

variability for UHO, the lowest for UHN, and intermediate variability for CR. The figure also 

illustrates that the actual variability of the residuals is in general much lower than the value 0.33, 

varying from about 0.2 for the lowest fitted values in the database (which are typically prone to 

contain significant errors), to about 0.1 for fitted values of 2, and to values of about 0.005 for 

fitted values of about 4.5. 

 

Figure 37. Variation of the estimated standard error of the residuals with fitted values 
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Figure 38 shows the standardized residuals versus fitted values for each data source. This figure 

confirms that the variance assumptions are approximately correct since the standardized 

residuals are approximately uniformly distributed around zero (zero population mean) and show 

relatively constant variation with the fitted values (except for a slight increase for the CR data 

set, no other noticeable trends or patterns are seen in the residuals). Furthermore, their variability 

is similar for all data sources (the number of standardize residuals outside the range of -2 to 2 is 

around 5%). All these observations support the assumption of independence of the error terms 

for all three data sets and indicates that the variance function selected produces acceptable 

corrections for heteroscedasticity. As indicated above, a slight increasing variation pattern is 

noted for the CR data set, which indicates that the correction for heteroscedasticity is slightly 

higher than desired for this data set. Nevertheless, the impression of an increasing pattern is 

mostly driven by about 10 to 20 of the 1417 residuals in the CR data set. Consequently, it was 

considered that further improvements were not needed. 

 

Figure 38. Standardized residuals versus predicted values for the NLMEfit 

Figure 39, 40 and 41 address the normality of the error term with quantile-quantile plots of the 

standardized errors for each data set. In this type of plot, the points for normally distributed 

errors align themselves in a straight line. From these figures, it is seen that the normality 

assumption is acceptable since only some deviations from normality are seen at the extremes of 

the curve (a normal occurrence with outliers, particularly for such large data sets).  For the CR 
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data set, the residuals within two standard deviations form a remarkably linear pattern, which 

indicates that the model manages to capture the behavior of this data source quite well. For the 

other two sources, a very slight curvature is still present though it is acceptable. In any case, the 

normality assumption is much more closely satisfied than for the non-linear least squares fits, 

thus providing more validity to all the hypothesis tests about parameter estimates. 

 

Figure 39. Quantile-Quantile plot of the residuals for UHO source with an NLME fit 

 

Figure 40. Quantile-Quantile plot of the residuals for UHN source with an NLME fit 
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Figure 41. Quantile-Quantile plot of the residuals for CR source with an NLME fit 

In regards to the assumptions for the errors, one last figure is included to show their variability 

for individual samples. Figure 42 shows the sample residuals for each of the samples tested. The 

improvements in comparison to the NLS fit is noticeable. By allowing for random effects in the 

model, it was possible to capture the deviations from the overall mean and thus better model the 

data generation process. By comparing this figure with Figure 21, it is possible to observe that 

the differences in the distribution of the errors from source to source were significantly reduced 

and that the random effects could capture unobserved heterogeneities between specimens and 

eliminate them from the error term. 
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Figure 42. Boxplot of residuals for NLME fit by sample 

 

Finally, Figure 43 shows a quantile-quantile plot of the random effects. It can be noted that 

except for a few outliers, in general the distributions have straight patterns. Therefore, the 

assumption of the normality of the random effects made for model estimation is also empirically 

verified.   
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Figure 43. Quantile-Quantile distribution of the random effects 

As seen above, the model is satisfactory from a statistical point view. The next section evaluates 

its capabilities to fit the data and capture all the different characteristics that were included from 

the different sources from an engineering point of view.  

5.5 Evaluation of the final model 

This last section deals with the assessment of the model in terms of its reasonableness to account 

for several characteristics. Several figures are presented showing how the model approaches the 

laboratory measured values. Other plots are shown to illustrate the sensitivity of the model 

predictions when certain variables are varied. In most cases, when presenting each of the groups 

of plots, the first sample in the data base that contains the desired characteristic was chosen. This 

means that for example, in the first sub-section for the prediction of dynamic modulus with 

varying air voids, the first sample with 4% air voids, 7% air voids and 9% air voids were taken 

from the UHN data set. This was done to avoid a possible bias due to a preference to present the 

best results. Continuing with this example, when presenting the capabilities of the model to 

predict master curves for different air void levels, one or more samples are chosen from the first 

block of plots to show these capabilities.  
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The plots that show how the model approaches the laboratory measured values have 3 sets of 

data. First, points are included to show the laboratory measured values and then two lines are 

included to show the predictive characteristics of the model at two different levels. Level 0 

shows the population fitted values, meaning that the model uses only fixed effects for prediction 

(this is how the model will most often be used in practice). This level is shown with long-dashed 

(green) lines. On the other hand, level 1 shows the within-group fitted values, meaning that 

random effects are included in the model. This level is shown with a dotted (red) line.  

5.5.1 Prediction of dynamic modulus with varying air voids 

To show the capability of the model to capture the effect of air voids, samples with virgin 

asphalts were chosen from all three data sets. The reasoning behind this is that these are the 

“simpler” samples in any of the data sets, meaning that no other characteristics such as 

modifiers, confinement level, etc., are included and therefore the model does not need to capture 

them. The first group of plots shown belongs to the UHN data set. As explained before, the first 

sample in the data set with 4% air voids (UH-HMA-S1-4AV) was chosen for the characteristics 

used as input to the model together with the characteristics of the first sample with 7% air voids 

(UH-HMA-S1-7AV) and the characteristics of the first sample with 9% air voids (UH-HMA-S1-

9AV). The sample S2 with 7% air voids was picked at random to complete a set of 4 plots since 

no more air void levels are included in the UHN data set.  

The results are shown in Figure 44 and indicate that the predictions at both levels are quite 

accurate. The title of each plot includes the air void level of the sample along with the number 

appearing before AV. 
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Figure 44. Model capability to capture air void effects for UHN data set 

In the case of the CR data set only one level of 7% air voids was targeted and for this reason 

Figure 45 shows only two plots. Both plots belong to samples mixed with a PG70-22, the base 

asphalt used in Costa Rica, but they have different gradations. The one on the left-hand side has 

a 9.5 mm nominal maximum aggregate size (NMAS) gradation while the one on the right-hand 

side has a 12.5 NMAS gradation. 

  
Figure 45. Model capability to capture air void effects for CR data set 
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The two samples chosen are also the first sample of every set (notice the S1 in the sample name). 

The figure shows that the model can also capture the shape of the master curves of basic CR 

mixtures with 7% air voids.  

Since the UHO data set has the wider range of air voids, 4 different air void levels were chosen 

to show the model capability to capture those differences. From the available range of air voids 

for the base binder type (PG64-16), the lowest (2.1%) and highest (10.2%) air void levels were 

chosen together with two other samples with more typical air void levels (~4% and ~7%). In 

Figure 46, the top left sample, BDM007B, has the lowest percentage of air voids, while the 

bottom right sample, BDM014B, has the highest percentage. From the other two, ADM006 on 

the top right-hand side has 4.3% air voids, and the bottom left sample, ADM003C has 6.8% air 

voids.  

 

  

  
Figure 46. Model capability to capture air void effects for UHO data set 
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Independently of the variability on the air void level, Figure 46 shows that the model is capable 

of capturing the effects of all these air void levels quite accurately, even without the 

consideration of the random effects. 

Four samples were chosen at random to further analyze the capability of the model to 

differentiate master curves by changes in air void levels. Two were selected from the UHN data 

set (UH-HMA-S1-4AV and UH-PMA-S3-4AV), one from the CR data set (UCR-9.5NMAS-

HMA-7AV-S4) and one from the UHO data set (ADM006) to predict the master curves, when 

all other characteristics are fixed and only the air void percentage varies for three levels, i.e. 4%, 

7% and 9%. Figure 47 shows the results obtained.  

 

  

  
Figure 47. Variation of master curve with 3 levels of air voids  

From this figure, it is possible to conclude that the model is capable not only of capturing the 

trends but also differentiate them in the right order noticed in the laboratory, with higher air 

voids having lower values of |E*| for all temperatures and frequencies tested but with the 

difference growing for low reduced frequencies. 
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5.5.2 Prediction of dynamic modulus with varying confinement levels 

Regarding the capabilities of the model to capture the effect of confinement, a similar analysis 

was performed for samples with base binder type and different confinement levels. Figure 48 

shows the result of this analysis. Note that again the first sample from the UHN data set was used 

(UH-HMA-S1-4AV). With this sample, three levels of confinement are used, 69kPa, 138kPa, 

and 207kPa (10psi, 20psi, and 30psi respectively). A confinement of 0kPa is not shown in the 

figure since it was illustrated by default in other figures shown before. However, it will be 

illustrated in the next figure for comparison purposes. The top left plot shows the results for a 

confinement pressure of 69kPa, the top right corresponds to a confinement of 138kPa, and the 

plot at the bottom left-hand side corresponds to a confinement of 207kPa. The fourth plot shown 

at the bottom right-hand side corresponds to the first sample from the UHO data set that includes 

confinement. The only positive confinement available and shown for the UHO data set is 100kPa 

(14.5psi). 

 

   

  
Figure 48. Model capability to capture the effect of confinement 
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The plots in this figure show that the model is also capable of accurately capturing the effects of 

confinement at all levels, even if the differences are small as it seems to be for this case. Another 

way to verify this capability is by drawing the master curves when all variables are kept constant 

and only the confinement level is varied. This is shown in Figure 49 for a sample chosen from 

the UHN data set with the five levels of confinement. This particular sample was not chosen at 

random. A sample with modified binder was selected to illustrate the larger effect of 

confinement seen in these samples. This figure confirms the capability of the model to 

differentiate among levels of confinement since the predicted behavior is similar to that observed 

in the lab (i.e., no differences at large reduced frequencies but important differences at low 

reduced frequencies, with higher levels of confinement leading to higher values of |E*|) . Notice 

that for this figure the vertical axis shows the values of |E*|. 

 

  
Figure 49. Variation of dynamic modulus with 5 levels of confinement 

5.5.3 Prediction of dynamic modulus with varying freeze-thaw cycles 

The next characteristic analyzed is the use of freeze-thaw (F-T) cycles. This is a feature of the 

model that was extracted from the CR data set. As a reminder, three levels of F-T cycles were 

included, i.e. 1 F-T, 3 F-T and 6 F-T cycles. To illustrate the model capability to identify the 
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differences among F-T cycles, four samples were taken from the data base with these 

characteristics. Contrary to the inclusion of confinement, where one sample was used for all 

confinement levels, in the case of F-T cycles, samples were conditioned for only one of this 

number of cycles and discarded after testing. Therefore, the first sample from the data base that 

has a given number of F-T is not S1. Also, there was no particular order in the number of F-T 

cycles applied to the samples, so it is not possible to say that for all of the 12 mixtures tested, 

sample 3, for example, was conditioned with 1, 3 or 6 F-T cycles.  

The above explanation is offered to justify the sample number for each of the plots shown in 

Figure 50. To select these samples, the exact same approach was used, were from the 

12.5NMAS-HMA-7AV set of samples, the first one to have 0, 1, 3 or 6 F-T cycles was chosen. 

The order followed in Figure 50 is as follows. At the top, on the left-hand side the plot 

corresponds to a sample with no F-T cycles (S3), and on the right-hand side the sample has 1 F-T 

cycle (S14). At the bottom, on the left-hand side, a sample with 3 F-T cycles is shown (S5), 

while on the right-hand side the sample has 6 F-T cycles (S8). 

  

  
Figure 50. Model capability to capture the effect of freeze-thaw cycles 
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As seen in Figure 50, the model is able to predict the reductions in the |E*| values with 

increments on the number of F-T cycles applied to the samples. To compare the differences in 

the master curve with different number of F-T cycles, Figure 51 shows the first sample from the 

previous figure (UCR-12.5NMAS-HMA-7AV-S3) with all levels of F-T cycles. Even when this 

sample was tested with no F-T cycles, the model is able to predict the behavior of the curve for 

all other F-T cycles levels. Notice that as expected, the model is able to show that the values of 

|E*| are reduced when F-T cycles are increased. It is also interesting to see that, consistent with 

the discussion of the parameter estimates, the curves for 1 and 3 cycles are relatively closer to 

each other than to the other two curves.  

 
Figure 51. Variation of dynamic modulus with 4 levels of freeze-thaw cycles 

5.5.4 Prediction of dynamic modulus with varying mixture modifiers 
 

This last section presents the capabilities of the model to predict the effects of modifiers in the 

asphalt mixtures. Recall from chapter 2 that the following list of modifiers are found in the three 

data sets: 

 Fibers: For the UHN data set. 

 Styrene-Butadiene-Styrene (SBS): Found in all three data sets.  

 Elvaloy®Ret: For the UHO data set (PG70-XX). 
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 Sasobit: For the UHO data set (Warm Mix). 

 Lime: Anti-stripping or the CR data set. 

 Magnabond: Anti-stripping or the CR data set. 

With all these products in mind, a similar analysis is presented to illustrate how the model 

approaches the laboratory data points and how it can differentiate the effects of one product over 

the other.  First, the effect of the fibers is analyzed, followed by the effect of binder modifiers 

and finishing with the effect of anti-stripping agents used to counteract the effect of the F-T 

cycles previously analyzed. 

Regarding the use of fibers, it is necessary to remember that after using the mixed-effects 

approach it was determined that the effect of fibers was significant in the factors α and γ. 

Particularly for the α factor, the effect of fibers was statistically significant in both the main α 

and the factor αcf related to the sensitivity to the confinement with air voids and binder type. The 

model could capture that for both terms the addition of fibers produces a decrease in |E*| values, 

particularly for lower reduced frequencies and higher temperatures. To show this combined 

effect, the first specimens with fibers mixed with virgin (F-HMA) and modified (F-PMA) 

binders are shown in Figure 52 with and without the use of confinement. 

 
Figure 52. Model capability to capture the effect of polyolefin/aramid fibers 
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The plots on the top correspond to the mixtures with virgin binder and fibers (F-HMA) without 

confinement (left-hand side) and with a confinement of 207kPa (30psi – right hand side). The 

two plots in the bottom show the mixtures with modified binder and fibers (F-PMA) also for a no 

confinement condition (left-hand side) and with a confinement of 207kPa (right-hand side). All 

plots show that both levels of the model (level 1 and level 0), with and without the consideration 

of random effects can accurately capture the effects of the combined interaction of fibers and 

confinement.  

Figure 53 shows the difference in master curves with and without fibers. To create this plot, a 

sample of a mixture prepared with virgin binder (PG64-22) and fibers (F-HMA) at 7% air voids 

was used while introducing changes in its characteristics by using the model. This means that by 

changing some of the dummy variables, the sample was also modeled as a mix with virgin binder 

with no fibers (DFib=0), as mix with a polymer modified binder with fibers (DPG76UHN=1, 

DPG64UHN=0 and DFib=1), and as a mix with polymer modified binder without fibers (DPG76UHN=1, 

DPG64UHN=0 and DFib=0). Each sample was additionally modeled without any confinement and 

with a confinement level of 207kPa (30psi). The idea of this plot is to test the capability of the 

model to capture the differences in master curves with and without fibers but also with different 

confinement levels since, as mentioned before, the effect of fibers is also included in the factor 

αcf.  Note that this plot shows the values of |E*| instead of the log(|E*|) on the vertical axis. The 

figure reflects the behavior observed at the laboratory, where the addition of fibers lowers the 

values of |E*|. The behavior is more noticeable at lower reduced frequencies. The curves with 

fibers are shown as continuous lines and the curves of the sample with the same characteristics 

but without fibers are shown as non-continuous lines on top of these. The lowest (blue) curves 

show the virgin asphalt sample with and without the use of fibers and no confinement. The next 

two (green) curves from bottom to top show the virgin asphalt sample with and without fibers 

with a confinement of 207kPa. The next two (red) curves show a polymer modified sample with 

and without fibers and no confinement, and the top two (purple) curves show a polymer modified 

sample with and without fibers with a confinement of 207kPa.  
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Figure 53. Variation of master curves with and without the use of fibers 

Regarding asphalt binder modifiers, the same type of analysis was performed for the three 

products found in the data base (i.e. SBS, Elvaloy®Ret and Sasobit). Each of the modifiers is 

presented separately to illustrate the capability of the model to capture the specific effects.  

In the case of the SBS, 4 plots are shown in Figure 54. Since this modifier was used in all three 

sources, a plot from the UHN data set is shown on the top left-hand side (UH-PMA-S1-7AV) 

while a plot from the UHO data set is shown on the top right-hand side (ADM019). Two plots 

from the CR data set are shown in the lower part. From the CR data set, the plot on the left-hand 

side has a 9.5NMAS gradation and the one on the right-hand side has a 12.5NMAS gradation.  
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Figure 54. Model capability to capture the effect of the SBS binder modifier 

It is clear from this figure that the model is capable of predicting the effect of each of the binders. 

It is important to remember that even though all these binders were modified with the same 

polymer, each binder was modified with different percentages, and therefore the model needed to 

capture the differences between the different binders. This was the reason to include each binder 

type with a dummy variable in several of the model factors instead of a single variable for all 

binders modified with SBS.  

For the binder with Elvaloy®Ret, which was a PG64-16 binder modified with 1.0% by weight of 

binder of Elvaloy®Ret at the UH pavements laboratory, the grade of the asphalt was not fully 

determined (hence the denomination PG70-XX). Since the behavior of the mixtures prepared 

with this binder was substantially different from the others, dummy variables were included to 

capture its effect. Figure 55 below shows the model predictions for a couple of specimens with 

this binder. The two plots selected correspond to the first sample from the UHO data set with a 

type A gradation (ADM009) and a type B gradation (BDM015). By looking at these two plots, 
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an important observation is made.  The model with fixed effects alone manages to capture the 

tendency of the curve; however, its predictions are not as good for these two examples.  

  

Figure 55. Model capability to capture the effect the of Elvaloy binder modifier 

In this regard, it is important to point out that overpredictions for a sample tend to be 

compensated by under predictions for other samples. Seeing these plots side by side one can 

notice that on the left-hand side the model with fixed effects is over-predicting the values of |E*| 

while on the right-hand side, the model is under-predicting these values. This means that the 

model with fixed-effects might sometimes over-predict and some other times under-predict but 

on average the model captures the behavior of the particular feature. A problem would be if the 

model only manages to either under-predict or over-predict the values every time in which case it 

would be desirable to review the model to verify that there are no important variables missing. 

This tendency of the model with only fixed effects is observed for other characteristics of the 

samples (see Figures 44, 46, 50 as examples). A full set of plots is offered in the appendix of this 

document for further review. This particular observation was made at this point, due to the more 

obvious pattern seen for these two plots. 

For the last binder additive, Sasobit, it is shown in Figure 56 that even when the model with 

random effects can capture the behavior of the values of |E*|, the model with fixed effects only is 

not able to accurately predict this behavior. This was expected since neither the NLS nor the 

NLME fitted models were able to identify variables related to this binder type (introduced as 

WMA for Warm Mix Asphalt). In the case of the NLS model only one variable related to the 

factor A, included in the shift factor was significant but was later excluded when the mixed-

effects approach was used since it became not significant. This means that no statistically 
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significant difference between this type of mixture and a mixture with a base binder type 

PG64-22 was identified even though it is visually evident that the differences are substantial and 

that Archilla (2010) had identified significant parameters related to this mix. The reason for this 

lies in the competing needs for identification of the bias parameters, the random effects variance-

covariance parameters, and other model parameters and that only two samples are available with 

these characteristics. Consequently, there is not enough information to capture a significant 

difference of the factor since the parameters considered for this additive competed with the two 

random effects and the bias parameters for statistical significance. It is important to note that in 

the Archilla (2010) study no bias parameters were estimated and a single random effect was 

used, which explains why significant results were obtain in that study with practically the same 

UHO data set. Since this is a sample size problem, it could be solved with additional samples 

prepared with Sasobit. However, the two samples where created with mix from a field project 

and therefore it was not possible to create additional replicates.  

  

Figure 56. Model capability to capture the effect of the Sasobit binder modifier 

A last plot with the effects of all binder modifiers is shown as mentioned before. This plot was 

made using the characteristics for one sample from UHN data set (UH-PMA-S1-4AV) assuming 

that everything but the binder type was constant for the sample. By switching the values of the 

dummy variables, from 1 to 0 for the original binder type of the sample and from 0 to 1 for the 

desired binder type it is easy for the model to add or delete the associated parameters and 

calculate the |E*| values for each case. Figure 57 shows these curves. From this figure, it is 

observed that all three SBS modified binders from the UHN (PG76-22UHN), the CR (PG76-

22CR) and the UHO data set (PG70-22UHO) behave quite similar for high and intermediate 



 

138 
 

 

reduced frequencies, while for lower reduced frequencies the model can capture some 

differences. The SBS modified from UHO seems to produce the higher modulus, followed by the 

one from UHN, while the SBS modified from CR, seems to produce the lowest values of |E*|.  It 

is also observed that the binder that seems to perform the best is the Elvaloy®Ret modified 

binder from the UHO data set. The last curve in the figure is that of a PG64-22UHN binder 

which is used as comparison since the model was developed with this binder as a base. The 

mixtures with Sasobit (Warm Mix) was not included for the reasons discussed above. 

 

Figure 57. Variation of master curves for all modified binders in the data base 

The last characteristic to verify for the predictive capabilities of the model is the use of anti-

stripping agents. For each of the two agents utilized i.e. lime and Magnabond, two plots are 

shown to see how the model approaches the observed data points.  

Starting with lime, two plots are shown here for both gradations used in the CR data set. The 

sample on the left-hand side was the first sample found in the data set that uses lime with a 

9.5NMAS gradation, while the sample on the right-hand side is also the first sample for a 

12.5NMAS gradation. None of these samples include F-T cycles so that the ability of the model 

to capture the lime effects alone is evaluated. As shown in Figure 58, the model approaches the 
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values accurately, particularly in the case of the 9.5NMAS gradation sample. In the other case, 

the model with random effects captures both the values and tendency of the curve, while the 

model with fixed effects only, slightly over predicts the values but still manages to follow the 

tendency quite well.    

  

Figure 58. Model capability to capture the effect of the anti-stripping agent Lime 

For the case of Magnabond, the plots shown in Figure 59 show again the first samples for a 

9.5NMAS gradation (left-hand side) and a 12.5NMAS gradation (right-hand side) that were 

found in the data base. Again, for these samples, no F-T cycles are included to verify the 

capacity of the model to capture the effect of Magnabond alone.  

  

Figure 59. Model capability to capture the effect of anti-stripping Magnabond 

In this particular example, the model with and without random effects manages to predict the 

tendency and values of the curve more accurately than the examples used for the lime. This is not 

necessarily the case for all samples as can be seen in the appendix. The over and under predicting 
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tendency of the model with no random effects is seen in this example also, with the model 

slightly under-predicting the lower part of the curve on the left-hand side and slightly over 

predicting the values of |E*| on the right-hand side. Nevertheless, it is important to point out that 

the predictions are in general quite accurate. 

Figure 60 shows the effect of using lime (long dashes (green) line) and Magnabond (short dashes 

(blue) line) on the master curve of a sample. This sample was mixed originally with lime (as can 

be seen in the L of the name). Dummy variables were changed to reflect the use of Magnabond 

and also a master curve when no anti-stripping agent is used (continuous (purple) line). The 

general tendency is that the use of Lime is superior at improving the values of |E*| for all 

samples tested. Also, the use of both anti-stripping agents increase the values of |E*| even when 

no moisture damage is induced to the sample 

 

Figure 60. Variation of master curves for the use of different anti-stripping agents 

Before finalizing this chapter, two more plots are shown to test the capabilities of the model to 

combine some features. This was shown earlier in Figure 52 for a combination of fibers and 
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confinement, however to include another example, combinations of anti-stripping agents and F-T 

cycles were selected to show how the model captures the two effects at once. 

Figure 61 shows on the right left-hand side a plot for a sample with Magnabond and 3 F-T cycles 

(Sample 14). It is seen that both levels of the model are able to capture both effects with 

accuracy, even though the model with fixed effects only, is slightly over predicting the values, 

but follows perfectly the tendency of the curve.  

Furthermore, on the right hand side, three effects are captured by the model, that is, the effect of 

Lime, 6 F-T cycles and additionally the use of a polymer modified binder (PMA sample 10). The 

model again is able to capture all these effects accurately with a slight under-prediction from the 

model with fixed effects only. 

  

Figure 61.Combined effect of anti-stripping agents and FT Cycle on master curves 

Even with some under or over predictions for the model with no random effects, the fit of the 

model is considered of high-quality. With the inclusion of the random effects, it was shown that 

the model is capable of capturing the effects of all features included in the data base on the shape 

of the master curves with very high precision, though it is important to emphasize that the main 

goal of the consideration random effects is to obtain more reliable statistical results (specifically, 

testing the statistical significance of the model parameters and thus more closely capturing the 

marginal effects of the different factors without spurious results). 

After performing this analysis of the capabilities of the model a final section of conclusions and 

recommendations will summarize the usefulness and contributions from this project, while 

opening the possibilities for further research and potential improvements.  
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

This dissertation presented a predictive model for dynamic modulus of asphalt mixtures that 

considers several additives and non-conventional testing characteristics such as confinement and 

freeze-thaw cycles. The model was created based on three different data sets, two of them 

collected at the University of Hawaii, Manoa and the last one collected at the National 

Laboratory of Materials and Structural Models of the University of Costa Rica (LanammeUCR). 

Because of variability from specimen to specimen, the model was developed to account for 

unobserved heterogeneities at the specimen level and differences in the data bases. The most 

important conclusions derived from the development of the model are as follows: 

 The model includes among its required inputs common mixture characteristics e.g. air 

voids, gradation-related variables, and effective binder content, which can be found in 

other models such as the Witczak model. However, the model also includes several other 

inputs that capture the effects of some other testing and conditioning characteristics that 

are not found in other models such as confinement levels, freeze thaw cycles, and strains. 

 The effect on dynamic modulus of all the characteristics included in the model are: 

o In general, the two binder modifiers, i.e. Styrene-Butadiene-Styrene (SBS) and 

Elvaloy®Ret, were found to significantly increase the performance of the 

mixtures. The mixtures containing Elvaloy®Ret were found to perform better 

overall, while the model captured an improved behavior for all three mixtures 

modified with SBS (i.e., PG76-22UHN, PG76-22CR and PG70-22 UHO) when 

compared to the base binder case. In the case of a third additive, Sasobit, which is 

the wax used to produce warm mix asphalt, no statistically significant differences 

were found with the mixed-effects approach due to insufficient number of 

specimens and data points, even when there was an obvious positive effect at high 

temperature/low frequencies. 

o The use of the anti-stripping agents, lime and Magnabond, was found to increase 

the values of |E*| in general and to reduce the moisture damage of the samples 

with freezing and thawing conditions. Lime was found to provide a higher 

increase in the |E*| values than Magnabond. 
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o The effects of freezing and thawing cycles were accurately captured by the model 

as reductions in the values of |E*|. As expected, moisture damage in the mixture 

(reduction of |E*| values) increases with an increased number of freeze-thaw 

cycles. This tendency is however nonlinear. Even though the reduction in 

modulus is monotonic, the magnitude of the predicted reduction is relatively high 

with only 1 cycle, it decreases from 1 to 3 cycles, and increases again from 3 to 6 

cycles. 

o The model was able to capture a reduction in the values of |E*| with the use of 

fibers. This effect was not only captured in the factor α and γ, but also within the 

confinement factor αcf which indicates that when applying confinement, the use of 

fibers will further lower the values of |E*| in comparison with the use of no 

confinement. This is one of the most important results obtained since this means 

that the differences between a mix with and without fibers is statistically 

significant. This further confirms the qualitative assessment found in a previous 

study with the UHN data set (Corrales-Azofeifa and Archilla, 2016) 

o The effect of confinement was also captured by the model through the 

introduction of a factor αcf with a sigmoidal behavior. As mentioned before, 

increments on the confinement level always increase the values of |E*| but they 

are also substantially affected by both air voids and binder type. Mixtures with 

polymer modified binders benefit the most with confinement at all air voids levels 

whereas the benefits for unmodified mixes are realized only for the lower air 

voids (~4%), they are substantially decreased at approximately 7% air voids and 

they virtually disappear at around 9% air voids. The model is able to capture these 

complex interactions. The confinement level factor gives the model the flexibility 

to calculate the effect of any level of confinement desired within the range 

available in the data sets. 

 The model was developed using the joint estimation and the mixed-effects statistical 

approaches. The joint estimation approach was used to estimate a joint model for three 

different data sources. The use of this technique allowed for a gain in efficiency in the 

estimation of model parameters common to different data sets since all available data 

were used to determine their significance, thus achieving a lower variance. A major 
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advantage of developing the model with joint estimation is the consideration of 

explanatory variables that belong to a single source in the model specification. This 

allows for the use of these characteristics for prediction with the other data sets by 

properly accounting during estimation for biases in some of the data sources arising from 

unobserved differences between data sources. These biases, accounted through a set of 

bias parameters, allow for the consideration of the differences in a data set relative to 

another data set. By applying this approach, the use of fibers, different binder modifiers 

(i.e. SBS, Elvaloy®Ret), anti-stripping agents, freeze-thaw cycles and confinement 

pressure were included in the model and their effects were captured accurately. On the 

other hand, the use of the mixed-effects approach allowed for an improvement in the 

efficiency of the parameter estimates through the consideration of random variation for 

some model parameters. For this model, two random effects were included (one for ρC 

and one for αC) together with a symmetric variance-covariance function that allow for 

correlation between them. In addition, the assumption of the within-group variance 

structure as an exponential function was found appropriate to model the 

heteroscedasticity found for the error terms. 

 The model presented is useful for the calculation of |E*| values of mixtures for Hawaii 

and Costa Rica. One of the most important things for the implementation of mechanistic-

empirical methods is the development of material libraries that can be used as input 

without the need for testing. The model presented in this dissertation takes into 

consideration local materials for both Hawaii and Costa Rica and provides several 

advantages over a more generic model like the Witczak model, which was created with 

information and materials from other regions in the continental United States. Therefore, 

this model can be used to develop pseudo level 1 input data as an alternative to the use 

the default MEPDG models for levels 2 and 3. This means that the model can be used to 

generate the |E*| values required at level 1, as if the samples were tested in the laboratory. 

The use of the model presented as pseudo level 1 input would have the advantage of 

providing better prediction of the values of |E*| than the models for levels 2 and 3 and 

therefore improve the design outcome from the MEPDG. The model could also be used 

in a guide created for more tropicalized conditions as are the cases of both Costa Rica and 

Hawaii. 
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 The default models for levels 2 and 3 of the MEPDG have limited capacity to account for 

differences in binders and/or the inclusion of other modifiers such as fibers or anti-

stripping agents. This means that two mixtures with very different characteristics can be 

analyzed by the MEPDG as if there were no important differences among them. 

Therefore, this model comes as an improvement for the prediction of the effects of these 

additives and modifiers while also providing the tools for the development of other 

similar models that consider materials and products from different regions.  

6.2 Model Limitations 

Even though it is believed that the prediction model developed in this study represents an 

improvement from other models that are currently used for design of asphalt pavements, it also 

has some limitations that are important to point out 

 The model includes a total of 46 parameters which can be considered excessive in 

comparison to simpler models such as the Witczak model. However, this is expected 

since there are many characteristics included in this model that are not included in the 

simpler models such as confinement, freeze-thaw cycles and several additives and each 

of these characteristics can typically affect several of the main model factors (, , , , 

A and B). In fact, even with this large number of parameters, the model estimated with 

mixed-effects approach is more parsimonious that the model estimated with non-linear 

least squares that had several more statistically significant parameters (75 in total). 

However, as shown in Chapter 5, the lack of compliance with the regression assumptions 

(something that is rarely seen being checked in the literature) made those tests of 

hypothesis questionable as shown in chapter 5. Despite the large number of parameters, 

creating a program facility with the few needed inputs can make use of this model 

relatively simple. 

 By using the joint estimation approach, it is assumed that the all explanatory variables 

that belong to one data source can be applied to the other data sources. For example, it is 

assumed that the influence of lime captured from the CR data set is the same when lime 

is applied to mixes in the UHN or UHO data sets. These assumptions can be validated by 

performing small scale studies for each case. If the behavior predicted by the model 

deviates too much from the results of the study, some re-calibration may be necessary. 
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 Due to the large variability in materials and additives, the model might not be able to 

include exactly the desired characteristics. For example, when using a PG76-22 from a 

different region than Hawaii or Costa Rica, the effects of this other binder may differ 

from those captured in this study. Nevertheless, the model can still be use to evaluate its 

applicability for this newer material. It is believed that even if the model cannot predict 

the exact influence of the additive or material included, it is capable to at least predict an 

expected trend, which is an advantage over the use of a model that does not include any 

of these characteristics.  

 As with any regression model, it is dangerous to use in extrapolations. Consequently, the 

model should be used for mixes with dense gradations that differ substantially from those 

used in this study or for open graded and gap graded mixes.  

6.3 Recommendations 

The model presented in this study accurately captures the effects of mixture characteristics and 

testing conditions from all data sets. Furthermore, by using joint estimation and mixed-effects, it 

was possible to closely satisfy the regression estimation assumptions. However, additional 

benefits can be realized with additional research efforts. The following are recommendations for 

such studies: 

 The techniques used in this study, joint estimation and mixed-effects, can be used in 

other studies for developing models with similar specifications that account for local 

conditions and/or other material characteristics not considered here.  

 It is recommended to test the capabilities of other binder characteristics, such as 

viscosity and dynamic shear modulus |G*| to accurately capture the binder properties and 

compare these capabilities with the ones shown by the model presented in this 

dissertation. From a more practical point of view, it may be more efficient to relate 

binder performance to a material property such as the dynamic shear modulus than to 

associate the performance to a given grade since variations from region to region and 

even among binder providers are likely to be observed. For example, the PG76-22 from 

UHN and the PG76-22 from CR, were found to have slightly different behaviors and 

therefore a dummy variable had to be added for each of them. Thus, the use of binder 

grades can result in the use of too many dummy variables, potentially affecting the ease 
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of use the model. In the case of this dissertation, the binder data were not available for 

all binders and for this reason the binder effects were included more generally as binder 

grade parameters. 

 The model developed in this study needs validation to test its capabilities to accurately 

predict the values of dynamic modulus for mixtures with similar characteristics. The data 

sets gathered for this project contained two or three replicates (in most cases) for each 

testing condition and therefore it was decided to use all of them for model estimation to 

improve the quality of the parameter estimates instead of putting one replicate aside for 

later validation. It is recommended to perform this verification when additional data 

from Costa Rica and Hawaii becomes available. 

 Although the developed predictive model for |E*| can capture well the effects of freeze-

thaw cycles and anti-stripping agents, to take full advantage of this capability it is 

necessary to relate the number of freeze-thaw cycles to the actual degradation of the 

mixes in the field. 

 Finally, to evaluate the effect of confinement in the state of the stresses and strains in a 

pavement structure (particularly at high temperatures) it is necessary to implement the 

model as a constitutive model in a finite element program. This may be quite challenging 

since the direction of the minor principal stress changes with the position of the element 

in the pavement. Furthermore, since |E*| values in tension are significantly lower than 

the unconfined compressive moduli at high temperatures, the consideration of tensile 

moduli should also be considered in an updated version of this model and in the finite 

element implementation for those conditions.    
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APPENDIX 

This appendix presents the master curves of all 265 samples tested for this study.  All plots are 

presented in the same way as they were presented in Chapter 5, where 3 sets of data are 

provided. The (blue) points show the laboratory measured values. Long-dashed (green) lines 

show the data at level 0 for the population fitted values (i.e. using only fixed effects) which 

illustrates how the model will be used in practice. Lastly, dotted (red) lines are used to show the 

data at level 1 for the within-group fitted values (i.e., including random effects).  

Notice that for the case of the first 42 plots, which illustrate de data of the UNH data set, there 

are 4 red and 4 green lines for each plot and instead of one point at each frequency there are 

normally 4 points also (except for points that were excluded due to quality control). Each of 

these lines represents one confinement level, i.e. 0kPa, 69kPa, 138kPa, and 207kPa (0, 10, 20, 

30psi). The lower line represents the no confinement case and they go up as the confinement 

level increases for both levels (0 and 1) as can be seen from these plots. 

This is also the case for some of the plots of the UHO data set. Particularly for ADM002, 

ADM003, ADM004, ADM005, ADM006, ADM007, ADM009, ADM010, BDM002, BDM003, 

BDM004, BDM005, BDM006, BDM007 for which a confinement level of 100kPa (14.5psi) was 

used.  

In the case of the CR data set, since no confinement testing was used in that particular 

experiment, these only show the two lines for level 0 and level 1 explained before.   
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