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ABSTRACT

With the increase in online information, which are mostly in text document form, there is
a need to organize them so that management and retrieval by search engine become eas-
ier. Manual organization of these documents is very difficult and prone to error. Machine
learning algorithms can be used for classification and then organization because they are
quick, relatively more accurate and less costly. However, documents need to have feature
representations that are suitable for training machine learning algorithms for document
classification.

Machine learning algorithms for document classification use different types of
word weightings as features for representation of documents. In our findings we find the
class document frequency, df ¢, of a word is the most important feature in document classi-
fication. Machine learning algorithms trained with df ¢ of words show similar performance
in terms of correct classification of test documents when compared to more complicated
features. The importance of df ¢ is further verified when simple algorithm Algd, developed
solely on the basis of df c shows performance that compares closely with that of Algt; and
other more complex machine learning algorithms. The importance of high dfc is verified
when Algd, performs comparably with Algf; and other complex algorithms. This also
implies that term frequency does not contribute much to the classification of documents
compared to class document frequency. We also find improved performance when the link
information of documents in a class is used along with the word attributes of the document.
The contribution of term frequency of link and class document frequency of link are are
similar in their classification performance. This shows the importance of class document
frequency as the learned feature that learning algorithms use for effective text categoriza-
tion. We compared the algorithms for showing the importance of df c on the Reuters-21578
text categorization test classification set, Cora data set and Citeseer data set.



Chapter 1

Introduction

With the tremendous increase of online information [17][ 18], most of which are
in text document form, management and retrieval of these documents by internet search en-
gines become unimaginable without good document classification algorithms. Document
classification can be used for spam filtering [27] because most of the spams have text con-
tent. Document classification along with link analysis can be used to extract social network
[28] that can help people with similar interest connect and communicate.

Document classification is the process of assigning text documents to one or more
predefined categories based on their contents. The classification has to be learned from the
available past data set based upon which the decision about the class of new data is made.
Classification can be from a supervised or unsupervised leamning algorithm depending upon
whether or not class labels are available.

Classification from unsupervised learning algorithms occurs without proper class
label. Examples of unsupervised learning algorithms include K-means clustering [9] which
finds clusters into which the data set is partitioned. The clustering is based on the similarity
of data with the cluster centers. Another algorithm includes Principle component analysis
[9] which works by decomposing the given data set into a smaller set of uncorrelated data.
Independent component analysis [9] also decomposes the data into smaller set of data but
under the constraint that the reduced set of data are independent of one another. Gaussian
mixture [9] estimates the number of effective components required to be combined linearly
with different weights to reproduce the data. Then there are graphical methods [9] that try



to estimate the relationship among the data samples in terms of conditional dependencies
among them.

In supervised machine learning the class label of different data samples are al-
ready available and the label of a new test sample is determined based on the already la-
beled data samples. There are different supervised machine learning algorithms: rule based
machine learning, statistical machine learning and ensemble based machine learning. Deci-
sion tree learning [20] is rule based learning. Naive Bayes [5] and support vecter machines
[6] are some examples of statistical machine learning. Bagging and boosting [21]{22] are
examples of ensemble learning. Ensemble leaming atgorithms are meta-learning algo-
rithms that are used to strengthen other weak learning algorithms by combining different
algorithms together.

Supervised machine learning algorithms learn patterns from features in docu-
ments. Different types of features can be used to represent a document as a vector of
features. The feature could mean the presence of a single word, a linguistic phrase or a
complicated syntax template. According to the study conducted by Lewis [4] on the effects
of syntactic phrases in text categorization it was found that a Naive Bayesian classifier
trained only with single word as feature did better than the one trained with noun phrases.
Using syntactic phrases as features did not contribute to the improvement on rule-based
classifiers [3]. It also did not show much improvement on Naive Bayesian and SVM clas-
sifiers [11]. Information retrieval research suggests that words work well as representation
units and that their ordering in a document can be ignored for classification tasks [11]{12].
A document therefore can be considered as a bag of words and defined as a vector of fea-
tures with each component corresponding to a word in the document. Since the features
themselves cannot be directly used by the machine learning algorithms it is necessary to
quantify or assign weights to the features. It is important that the quantified value corre-
sponding to the feature be able to capture as much information as possible regarding the
feature distribution in the document, in the document class and in all the classes. There are
different approaches to assigning weights to these features, [1][2][3]1[41{151(19]. Papers [2]
and [26] assess performance of machine learning algorithms on different types of features
and come to different conclusions as to the best feature suitable for document classification.

In this paper, a binary 1 for presence and binary 0 for absence of word is the feature value



assigned to represent a document vector so that the sum of these features across all the
documents in a class constitute dfc. Class document frequency, dfc, is used as the feature
for performance assessment of different machine learning algorithms.

The machine learning algorithms used for text categorization are supervised sta-
tistical machine learning algorithms. The performance of Bayesian learning algorithm and
support vector machines is assessed on class document frequency. Based on this perfor-
mance an argument is made that dfc is the feature that the machine learning algorithms
inherently learn that helps in effective classification of the text documents into different
classes.

We developed Algd, based directly on dfc and its performance is found to be
comparable to that of Algt; based on class term frequency and more complex machine
learning algorithms. We also developed another algorithm Algd, in which words with high
class document frequency are made to have more contribution than those with low class
document frequency towards classification of test documents. It is found that this algo-
rithm also performs well compared to Algt; based on class term frequency with high value
and other algorithms. This confirms the importance of high class document frequency.
Based on this, it can be inferred that df ¢ is an important discriminator for document clas-
sification whether using Bayesian learning algorithm or support vector machines. Both of
these methods extract information about df c during training which helps in the effective
classification of documents. It is also shown in this thesis that link information of text doc-
uments, such as conference papers with bibliographic citations, when used along with the
word features of documents enhance the classification performance of algorithms.

In this thesis we developed mathematical representation for document, class and
link of document. We found medification of Naive Bayes and Probabilistic Term Frequency
Inverse Document Frequency algorithms by using class document frequency as feature for
representation of documents in a class in place of term frequency as feature for representa-
tion of documents. We showed the importance of class document frequency with KNN and
SVM algorithms also. We developed algorithms Algd,, Algd,, Algt; and Algt, to show
the importance of class document frequency. We showed that class document frequency
of words along with class document frequency of link of document further enhance the
classification performance of SVM. We conducted several experiments using algorithms



mentioned above on Reuters 21578, Cora and Citeseer data sets respectively and the re-
sults of these experiments showed the importance of class document frequency.

This thesis is organized as follows. Chapter 2 discusses the feature representa-
tion of documents and deals with mathematical representation of documents, of class and
of links of documents. Chapter 3 discusses different machine learning algorithms and how
to use the class document frequency (o train those machine learning algorithms. Chapter
4 discusses the data sets used for simulations, different performance measures for classi-
fication, and the results obtained. Chapter 5 summarizes the thesis and discusses further
research directions.



Chapter 2
Feature Representation

There have been different researches on text document classification seeking to
find the features [1][2][3][4] that would act as effective discriminators contributing to cor-
rect classification of documents to their respective classes. Although different features
such as phrases, complicated syntax template and individual words have been considered
as features for representation of documents, it has been found that words act as reliable de-
scriptors of documents in terms of classification performance. Also the order of occurrence
of words in documents does not much contribute to the classification performance and so
documents can be considered as bags of words.

In text document categorization in our research, words are considered as features
for representation of documents ignoring their order of occurrence in the documents. Ma-
chine learning algorithms for text categorization require numerical representation of these
features for learning and categorization. There are different ways of assigning numerical
values to these features, This section discusses a formal mathematical model for these
representations.

Let W = {wi,ws,... wy} be the set of N words constituting the vocabulary set. Let
D = {d;,dy,... dp} be the set of P documents such that

dp = {w1(p) wa(p) . .. W) (P)}, wm(p) €W, 1 <m < [d(p)] (2.0.1)

where |d(p)| is the cardinality of d,. Each document belongs to a particular class. A class
can be represented as a set of documents. Let C = {¢;, ¢3,... ¢} be the set of classes such
that

¢; = {d1(§) d2(3) . .. dic;i(N)}, dp(§) €D, 1 € p < gy (2.0.2)

6



where |c;| is the cardinality of ¢;.
Documents can be represented as NV dimensional vectors of features with numerical values

assigned to them. A document d,,1 < p < P can be represented as a binary vector,
ab(p)=[100...... 1]7, (2.0.3)
of binary values if the features are assigned with binary values i.e.
zhiip)=T(wi€dp), 1<i<N,1<p<P (2.04)

where T is the transpose of the vector. The indicator function I(z) = 1 if z is true else
I(z) = 0. If the first element of the vector zb(p) is 1 this means that the first word w, from
the vocabulary set W is present in the document. If the second element of vector zb is 0
this means that the second word w; from the vocabulary set W is absent in the document.

A document, d,, can be represented as a vector,

zt(p) = [tfi(p) tfa(p) ...... tfn ()7, (2.0.5)

of term frequency if the features are assigned with term frequency values i.e.

|a{p)]
zti(p) = tfi(p) = 3 H(wi(p) = wi), 1<i<N. (2.0.6)

=1

Term frequency, tfi(p} € [0,tfmaz), of a word in a document is the number of times it
occurs in the document. ¢ f,,.. is the the maximum number of times that a word can occur
in a document. If the first element of the vector xt(p) is t f; (p} this means that the document,
dy, contains the first word wy from the vocabulary set W and there are ¢ f; number of such
words in the document. Similarly the document, d, contains ¢ f; number of second word

wy from the vocabulary set W, A document, dy,, 1 < p < P, is represented as a vector,

zd(p) = [tfidfi(p) tfidfa(p) ...... tfidfn(2)]", (2.0.7)

of term frequency inverse document frequency if the features are assigned with term fre-
quency inverse document frequency values. Term frequency inverse document frequency,
tfidfi(p) € [0,tfidfmaz), is the product of ¢ f;(p) and inverse document frequency, idf;, of



the word w; € W. tfidfmas is the maximum value that any ¢ fidf;(p) can take. Inverse

document frequency, idf;, of a word is given by

wdf; = tog(% (2.0.8)

Document frequency, df;, is the number of the documents containing the word w; i.e.

P
dfi=) I(wiedy), 1<i<N,1<p<P (209
=1
Therefore [5]
zdi(p) = tfidfi(p) = tfi(p) » idf;. (2.0.10)

A class ¢; can also be represented as a vector, zcd(7), of class docurnent frequency, df ¢;(7) €
[0, lesl],
zed(j) = [dfer(j) dfea(s) - dfen(G)Td € 11,] (2.0.11)

such that o
i
zedi(j) = dfei(j) = 3 I(wi € d(j), 1€ i< N, (2.0.12)
=1
Here the first element of vector zed(j) is dfci(j) meaning that the class ¢; contains the
first word w; € W and dfc; number of documents in the class contain the word w, and
similarly for the other elements.
Class c; can be represented as a vector,

zct(4) = [tfa(d) tfeld) ...... tfen())T. 7€ 1,4, (2.0.13)

of class term frequency, £fc;(j) € [0,tfcnez|. Here tfemq, is the maximum number of
times that any word w; € W can occur in class c; and class term frequency is given by

eyl

zeti(j) = tfei(j) = 2 tfi(p), 1S i< N. (2.0.14)
p=1

The first element of vector zct; is ¢ fc;(j} meaning that the class ¢; contains the first word
w; € W and there are total of ¢ fc; number of the first word in the class c; and similarly for
the other elements of the vector xct(j).



In case the documents are linked, such as conference papers with bibliographic citations,
link pattern can be captured by introducing link features. Link features of a document d €
D can be modeled as the class distribution of the documents d,() the given document cites
to and is cited by. The link features corresponding to the class distribution of documents
that the given document cites to is given by

1(d)aite = [loley, d) lolea,d) ... ... loles, d)]F (2.0.15)

where
Jesl

lofes,d) = 3 I{d = dp()). (2.0.16)
p=1

I{d — dy(j)) = 1if the given document d cites the document d,(j) otherwise I{d —
dp(7)) = 0. The link features corresponding to the class distribution of documents that the
given document is cited by is given by
U)citea = [Li(e1, d) Uiea, d) . ... ey, d))" 2.0.17
where
|CJ|

Ulcj,d) =) I{d «— dp(3)). (2.0.18)
p=1

I{d « dy(j)) = 1 if the given document d is cited by the document d,(j) otherwise
I{d « dp(5)) = 0.

This feature representation corresponds to the term frequency of the link in that it provides
with the number of class documents that the given document cites to or is cited by. The
link features can also be modeled in terms of presence or absence of class of documents
that the given document cites to or is cited by. The binary link features defined above for

the class of documents that the given document cites to is given by
tb(d)eite = [Ibo(e1, d) bo(ca,d) ... ... Ibo(cs, d)]” (2.0.19)
where
tho(c;. d) = I{lo(e;,d) > 0), H(z>0)=1:if >0 else I{zx>0)=0. (2.020)

The binary link features corresponding to the class of documents that the given document
is cited by is given by

16(d)cieq = [Ibr(c3,d) tby(ca,d). .. ... by (cy, d)]T (2.0.21)

9



where
br(c; d) = I{li(ejd) > 0), I(z>0)=14if >0 else I{x>0)=0 (2022

'This feature representation corresponds to the class document frequency of the link in that
it provides with the number of documents in a class that cite to or are cited by documents

from certain class.

10



Chapter 3

Machine Learning Algorithms

3.1 Bayesian Learning

For a statistical experiment ¢ which has § as the set of possible outcomes with
{er,e2.-..-. cs} as the partition of S. Let Pr(d), d C S be the probability distribution
defined on all events in S. Then for the event c; and d in S,

Pr(d|c;)Pr(c;) .

Prid)  ’
Pr(d) > 0, Pr(c;) is the prior probability, Pr(d|c;) is the likelihood probability and
Pr(c;|d) is the posterior probability [25]. Also from the law of total probability

Pr(c;d) = =1,2,...J. @G.LY)

Pr{d) = zJ: Pr(d|c;)Pr(c;). (3.1.2)

i=1

Here the denominator is the normalizing factor, Then

Pr{c;|d) o< Pr(dlc;)Pr(c;) 7=1,2,...J (3.1.3)
or
Pr(cj|d} « L{c;ld)Pr(c;) 3=1,2,...J (3.14)
where
L{c;ld) o Pr(d|e;) (3.1.5)

is the likelthood function. Therefore the posterior probability is proportional to the product
of likelihoed function and the prior. The likelihood funtion is based upon the observed data

11



whereas the prior is based upon the previous knowledge about the probability distribution.
This is how Bayesian learning uses probability to measure the uncertainty about posterior
predictions.

Bayesian learning is important in that it helps measure the uncertainty of predic-
tions, suggests ways to adapt to the characteristics of the data such as smoothness, degree
of relevancy etc. Since the posterior predicted distribution depends upon the prior distribu-
tion, the proper prior distribution representing uncertainty as to the relevancy of available
data, smoothness function and noise level need to be considered very carefully,

3.1.1 Naive Bayes (NB)

This algorithm assumes & probabilistic model for the generation of text and makes
a simplifying assumption of word independence in documents [29]. In this model there are
total of J classes and each class is represented as vector, zct(j), of class term frequency
tfci(4). The test document d’ which is a set of words &' = {w},w)... wy } is repre-
sented as vector zt(d') of term frequency ¢ f;(d'). |d’| is the cardinality of d'. The decision,
Hyp(d'), on a test document d’ as the class it belongs to is given by

Hyp(d) =228 Pr(c;|d) (3.1.6)

where the function “7¢™* f (x) returns that value of x for which f(z) has maximum value.

Using Bayes formula, Pr{c;|d’) can be written as

Pr(c;ld) = P r(d;lf_f()d{;’"("j) G.1.7)
or
1y __Pride)Pr(c;)
Prieid) = & e PridieyPr@y G118

Here, Pr(c;) is the prior probability of occurrence of a document belonging to class c;
and Pr(d’|c;) is the likelihood function that gives probability of observing the document d'

given it belongs to the class ¢; and is given by

Pr(d'|e;) = Pr{{wi(d), wa(d'),...... ywiap(d)}e;). (3.1.9)

12



Finding the joint probability in the above equation is computationally expensive and so
to reduce the computational cost words in d' are assumed to occur independently of one

another so that
[']
Pr(d|c;) = Pr{{wn(d), wa(d'),...... ywiep(d)}e) = HPr(wi(d’)|cj). (3.1.10)
i=1
Substitution of (3.1.10) into (3.1.8) gives

Pr(e;) TTIE} Pr(wy(d)c;)

Pr(cld) = ; (3.1.11)
" Seee Prie) ILE) Pr(wi(@)|e)
Finally, the decision of Naive Bayes algorithm is given by
Pr(c;) I, anew Priw(d)|c;)tHi#®)
=arg1'naz ¥l wi{d)ew 3 J . 1-12
Hns(d) =i& Teee Pr(c) [u,wyew Pr(wi(d')|c)H#) G112
Pr(c;) is estimated as
5= l¢]
Pr(c;) = 5 (3.1.13)

where |c;| is the number of documents belonging to the class c; and P is the total number
of documents. Pr(w;(d')|c;) is estimated as

1+ tfei(s)
N+TX tfefs)’

where ¢fe;(7) is the number of times word w; occurs in class c; and tf;(d') is the total

Pr(wy(d)|e;) = (3.1.14)

number of times word w;(d’) occurs in the test document d'.

The model has to be modified when the class is represented as vector of class document
frequency df c;(j). The test document d’ is now represented as vector zb(d') of binary val-
ues. The decision of modified Naive Bayes, Hpaava(d’) on the test document d' as the
class it belongs to is given by

Pr(e;) Nuw,aew Pr'(wi(d')|c;)

fy _argmazr
Harons(d) =eiéc™ S Pr{c) Huayow PPan(@)I2) G113
Pr'(wi{d')|c;) is estimated as
—— 1 dfec.(4
Pri(wy(d')|e;) = N+;Nf:’;ﬂm, (3.1.16)

13



where dfc;(7) is the number of documents in class c; that contain the word w;(d’). Since
only the presence or absence of words in a document is being considered, the term fre-

quency ¢ f;(d") becomes irrelevant.

3.1.2 Probabilistic Term Frequency Inverse Document Frequency (PrT-
FIDF)

The motivation for this algorithm is Rocchio relevance feedback algorithm using
term frequency inverse document frequency (TFIDF). This algorithm considers generative
model of the text documents and shows how it is related to the Rocchio algorithm. How-
ever, in our research this algorithm has been considered to assess the importance of class
document frequency in terms of performance of this algorithm.

This algorithm considers words as descriptors of documents and assigns different proba-
bilities to different words being considered as descriptors of a document [5]. In Pr'TFIDF,
the words are considered as belonging to a document of certain class unlike N B in which
words are are considered as belonging to a class without regard to the document they are
coming from.

In this mode!l there are a total of J classes and each class is represented as vector of class
term frequency. The test document o’ is represented as vector, zt(d’), of term frequency,

tfi(d'). The decision, Hp,7prpr(d’), on a test document d’ as the class it belongs to is

given by
Hp,ﬂrp[pp(d’) =:;g?u P?"(Cj|d’). (3.1.17)
Pr(cld) = Y. Pr(e;wi(d)|d), (3.1.18)
wi{d’)ew
Pricid)= Y. Pricjlwi(d),d)Pr(wi(d)|d), (3.1.19)
un(d)EW

where the probability of word w;(d’) being a descriptor of the document d’ is given by
Pr(w;(d")|d"). Using the Bayes formula,

Pr(d|c;, wi(d')) Pr(c;|wi(d))

PT‘(Cj"lUi(d')ad’) = Pr(d’lwi(d,))

(3.1.20)

14



Then
Pr(d'|c;, wi(d')) Pr(e;]wi(d)) Pr{wi(d)|d")

Pr{c;ld’) = 3.1.21
r{c;ld’) w‘(gew Pr(d'|wi(d)) ( )
Here assumption is made that
Pr(d'|wi(d")) = Pr(d|c;, wi(d)). (3.1.22)
Then
Pricldy= Y. Pr(c;jlwi(d))Pr(wi(d’)|d). (3.1.23)
w (d')EW
Using the Bayes formula
o _ Pr(wi(d')|c;) Pr(c;)
Prieledd)) = & brw@@ Prie) (3124
Then
ar Pr{c;) Pr(wi(d')|c;)
Hp, d) =573 2 2. Pr{w;(d)|d'). 3.1.25
P TFIDF( ) s&C w, (d)EW Zc’EC PT(C’)PT(ws(d')IC’) T(w ( )I ) ( )
Here Pr{c;) is estimated by
Pr(c;) = %i (3.1.26)

where |c;| is the number of documents belonging to the class c; and P is the total number
of documents. Pr(w;(d’)|c;) is estimated by

Pr{wi(d')|c;) = |01de Pr(w(d')|d,) (3.1.27)
pEey
where
Pr(wdd)ldy) = E;% 3.128

Here ¢ f;(p) is the number of times word w;{d’) occurs in document d,,.

The model has to be modified when the class is represented as vector of class document
frequency. Then the test document d’ is represented as vector, zb(d’), of binary values. The
decision of modified PrTFIDF, Hjsoap-pr(d'), on the test document as the class it belongs
to is given by

argmaz Z PT(CJ') Pr'(wi(d')lcj)

Hbteaper () =cié w, Yoce Pr(c)Pri(uw(d)|c)’ G-1.29)

(dew
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Pr(c;) is estimated as before. Pr'(w;(d’)|c;) is estimated as

Priwi(d)lc;) = %‘ (3.1.30)
Here df¢;(7) is the number of documents in the class ¢; containing the word w;(d") that
occurs in document d’. Also, since only the presence of word in the document is being
considered, Pr(w;(d")|d’) is replaced with indicator fucntion, J(u;(d’) € d'), representing

d’ in terms of presence or absence of words w;(d’).

3.2 Support Vector Machines (SVM)

SVM is a maximum margin classifier that maximizes the minimum distance of
the decision hyperplane from the positive and negative examples [6][9][10][30]. in this
model there are 2 classes, class 1 constituting positive examples labeled as ¢, = +1 and
class 2 constituting negative examples labeled as ¢, = —1. The training document d, € D
is represented as vector, z(p) of some features of that document and the test document
d' is represented as vector x(d’) of similar features of corresponding test document. The

decision, Hgyar(d'), on a test document d’ as the class it belongs to is given by
Hgym(d) = sign(wTz(d') + b). (3.2.1)

If the decision is +1 the test document belongs to class 1 otherwise it belongs to class 2.
SVM is based on the Structural Risk Minimization principle.

3.2.1 Structural Risk Minimization

While minimizing risk during machine learning it is desired to learn parameters
w such that the expected value of risk,

R(w) = f L(t, f(z,w))dF(z, 1) (322)

is minimized. Here ¢ is the correct output or label associated with the vector z, F(xz,t)
is the probability measure defined on X x 7 and L(¢, f(z,w)) is the loss function. Loss
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functions are different depending upon the type of learning being done. For regression

learning a risk function is the quadratic loss function

R(w) = [ (t = flz,w)*dF(z,1), (3.2.3)
for classification learning a risk function is probability of error

R(w) = / 1(f(z, w) # t)dF(z,1). (3.24)

Since the probability measure F'(x,t) is unknown, risk is minimized according to the in-

ductive principle and so the empirical risk for regression learning is

K
Remplw) = %kgl(tk ~ flzmw))?, (3.25)

and the empirical risk for classification learning is

K
Rm(w) = %kgl I(f(xk,w) 7& tk). (3.2.6)

Here empirical risk for classification will be considered as we are dealing with classifica-
tion problem. Empirical risk is a function of training error which is the number of error
made by the learning algorithm on training samples. Generalization error is defined as the
number of errors made by the learning algorithm on unseen test examples. Assumption is
made that both the training and test examples come from the same probability distribution.
Then Structural risk minimization (SRM), which is an inductive principle, simultaneously
minimizes the empirical risk and capacity or Vapnik Chervonenkis (VC) dimension of the
learning algorithms [23][30]. So if a set of approximating functions

Si={fz,w)weW}, 1=12,....L (3.2.7)
is given by the nested structure
S1C8C8...C8... (3.2.8)
with the increasing VC dimensiocn given by
hi<hy<hs...< ... (3.2.9)
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where h; is the capacity or the complexity of the /** approximating function. Then SRM
provides a formal way of finding a model such that it has optimal complexity and minimum
empirical risk. This is as shown in the figure above. According to this principle the acutal

risk is given by

2 -
R(t) < Rong() + ‘/hlog( et 1) —log]

where P is the number of training samples for which R.mp(w) is determined, & is the ca-

(3.2.10)

pacity of the learning algorithm. The inequality holds with confidence of at least 1 — 5. The
actual risk is bounded by sum of the empirical risk and confidence interval. As shown in
the figure the training error decreases monotonically for a fixed number of samples as the
VC dimension and hence the confidence interval increases. The generalization error goes
through a minimum in this process. Before the generalization error reaches the minimum,
the capacity of approximating function is too small to capture all the details of training
samples and after the generalization error reaches the minimum the capacity of the ap-
proximating function is large than required to capture the details of training samples. This
shows a tradeoff between the training error and the complexity of approximating function.
Therefore there is a need for regularization of the capacity of the approximation function.
The minimum of generalization error corresponds to the condition in which the capacity
is optimally regularized in the sense that it has enough complexity in order to capture the
details of the training samples to ensure minimum possible empirical risk and yet is simple
enough to generalize on the unseen test samples to ensure minimum generalization error.
The hyperplanes corresponding to SVM that separate the data samples with max-
imum margin fulfil this requirement in that they minimize the empirical error and at the

same time have optimal complexity by having only a few support vectors on the margin.

3.2.2 SVM with No Class Overlap

For the case in which the data are separable
wiz(p)+b>1, ift,=1 321D

wlz(p)+b< ~1, if t, = -1 (3.2.12)
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Figure 3.2: Maximum margin classifier without class overlap

These can be combined into one condition
to(wTz(p) +b) 2 1 (3.2.13)

Here the equalities are satisfied for the examples lying on the hyperplane on the margin.
All the other examples lie on the other side of the hyperplane. It can be shown that the
distance between hyperplanes or the margin is

2

= 3.2.14
Tl G219

which means that maximizing the margin is the same as minimizing ||w/||. This is equivalent
to minimizing ||w||? which is equivalent to solving a quadratic programming (QP) problem

and is given by
ar; ﬂl
oo gl (3.2.15)
subject to to(wTz(p) +b) > 1, t, € {+1,-1}. (3.2.16)

This constrained optimization problem can be solved by introducing Lagrange multipliers
ap 2 0, with one multiplier o, for each of the constraints

to(wTz(p) +b) > 1, forpe {l1... P} (3.2.17)
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giving the Lagrangian function

P
L(w,b,0) = llu?l| - 3= oplty(u”a(p) + )~ 1}
=

Minimizing the Lagrangian with respect to w and b gives
P
w= z apt,z(p)
p=1

and P
D gty =0,
=1

The duel representation of this problem is to maximize the function

. P 12 P
Lio) =3 oy - 2 Y 2 oplptptn TpTp
p=1 p=1pl=1

P
subjectto ap 20, p=1,... P, Za,,tp = 0.
p=1

(3.2.18)

(3.2.19)

(3.2.20)

(3.2.21)

(3.2.22)

Here the non zero Lagrangian multiplier a, corresponds to those document vectors that

are on the margin and are called Support Vectors represented by zs(p). Once w has been

found, & can be found using b = ¢, — wTzs(p).

3.23 SVM with Class Overlap

For the case in which the data are not entirely separable

wiz(@)+b21-§&, ifty=1

wiz(p) +b< —(1-6&), if tp =1

These can be combined into one condition

(W (p) +8) 2 1 - &
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Figure 3.3: Maximum margin classifier with class overlap
Here the the slack variables £, = 0 for those samples that are on or inside the correct
margin, 0 < &, < 1 for those samples that lie inside the margin but on the correct side of the
decision boundary and £, > 1 for those samples that lie on the wrong side of the decision
boundary, This way the hard margin has been transformed into soft margin through slack
variables by allowing some examples to be misclassified. So the optimization problem now
is that of maximizing the margin but by penalizing the outliers and so the corresponding
QP is given by
1 P
arg Jnn §1|w2|| +CY 6, 620 (3.2.26)
=1
subject to to(wiz(p) +b) > 1 ~ &, t, € {+1,-1}. (3.2.27)

This constrained optimization problem can be solved by introducing Lagrange multipliers

ay, 2> 0, with one multiplier ap, for each of the constraints
to(wTz(p) +b) > 1 - &, forpe {1... P} (3.2.28)

giving the Lagrangian function

P P Lid
L{w.b,a) = =[?]| + C Y & — 3 ap{t,(wTz(p) + b) = L+ &} — 3 tpbipe (3:2.29)
2 =1 p=1 p=1
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Minimizing the Lagrangian with respect to w, b and &, gives

P
w=Y_ aptz(n), (3.2.30)
p=1
P
Z apt; =0 (3.2.31)
p=1
and
ap=C — up. (3.2.32)

The duel representation of this problem is to maximize the function

- P 1 P P
L(Q) = Z: ap — 5 z z apapltptplxpxpl (3.2.33)
r=1 p=1pl=1
P
subjectto 0€ ap <C, p=1,... P, ) apt,=0. (3.2.34)
=1

Here the non zero Lagrangian multiplier 0 < o, < C corresponds to those document vec-
tors that are on the margin and are called Support Vectors represented by zs(p). Once w
has been found, b can be found using b = t, — w”zs(p).

3.24 Kernel for SVM

Kernel function [32] measures the similarity among the data samples and is rep-
resented as K (z;,z;) = ¢(xz;)7¢(x;). When the data samples are not linearly separable
then kernels can be incorporated into SVM by transforming the data samples z into high
dimensional feature space ¢(z) to make the data samples linearly separable in the high
dimensional feature space. Although the data samples are transformed into a high dimen-
sional feature space ¢(x) yet because of the kernel functions the computation is done in
the low dimensional feature space z without having to know the transformation ¢(x). This
significantly reduces the computational cost for training. kernel function can be easily
incorporated in (3.2.33) as

. P 1P P
Lia)=) o,— 3 33 apoptpta K(zp, 251) (3.2.35)
p=1 p=1pl=1
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P
subjectto0< a, £C, p=1,... P, Y oty = 0. (3.2.36)
p=1
Some of the important kernel functions are:

Linear kernel function K(z,y) = 27y, (3.2.37)

Polynomial kernel function K (z,y) = (z7y + 1)7, (3.2.38)
Gaussian kernel function K(z,y) = e:l:p(—‘%u:r. -y, (3.2.39)
Sigmoidal kernel function tanh(ez"y — b) for some a and b. (3.2.40)

For training SVM, training documents, d, € D, are represented as vectors, zt(p),
of term frequency, ¢ f;(p), and vectors, zb(p), of binary values, xb;(p), respectively. When
SVM is used to classify documents that have link information also [16], vectors correspond-
ing to the documents are augmented with link information by concatenating the link vector
with the document vector. When the term frequency of links as in (2.0.15) and (2.0.17) are
considered as features to form the link vector, the augmented training document vector is
given by

zbo(p) = [zb(@); Udpleises Udp)eised: (3.2.41)

When the class document frequency of links as in (2.0.19) and (2.0.21) are considerd as
features for the link vector, the augmented training document vector is given by

zbb(p) = [zb(p); 1b(dp)eite: 1b{dp)cited) (3.2.42)
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which is then used to train the SVM, The corresponding augmented test document vectors
for the above two cases are respectively given by

zbe(d) = [zb{d); U{d)cire; U Veited] (3.2.43)

zhb(d') = [zb(d'); IB(d)cites (6(d)cited] (3.2.44)

which are used to test the performance of SVM. Linear kernel has been used for training of
SVM [33] because the data are sparse.

3.3 K Nearest Neighbor (KNN)

In this algorithm, X' nearest documents in training set to the test document is
found and the class with the maximum number of the nearest neighbor documents is as-
signed to the test document [8]. Here each document d, € D is represented as vector,
zt(p), of term frequency, ¢ f;(p). There are total of J classes. The test document d' is rep-
resented as vector, zt(d'), of term frequency, tfi(d’). The decision. Hxnn(d'), on a test
document as the class it belongs to is given by

Hinn(d) =572 Y I(st(p) € ¢;) (3.3.1)
zHP)EKNN

where K NN are the K nearest neighbor documents to the test document. The distance

between the test document and the training documents in different classes is computed as

N

||lzt(d’) — zt(p)|| = J D_(Eh(d) — tfi{p))?. (33.2)

i=1
The distances are sorted and K minimum distances are chosen which form the K nearest
neighbors of the test document.

For the algorithm to be able to learn class document frequency the training document is
represented as a vector, xb(p), of binary values and the test document is represented as
vector, zb(d"). The distance between the test document and training documents in different
classes is then computed as

N
|zb(d") — zb(p)| = ;‘ I{zbi(d") # zbi(p)). (3.3.3)
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Again, the distances are sorted and K minimum distances are chosen which form the K
nearest neighbors of the test document, The decision, Hgnn(d"), on the test document d’
as the class it belongs to is now given by

HKNN(d’) =a;%m Z I(a:b(p) £ C_-;). 3.34)
zh(p)EKNN

3.4 Algorithms Using Class Document Frequency(dfc)

In this section we discuss two simple algorithms just using dfc.

3.4.1 Classification Based on dfc

The algorithm. Algd;, examines class document frequency vector, zcd(j). There
are J classes so there are J veciors, zed(j). A test document is represented as vector
xb(d') of binary values. When a new document ¢’ from the test collection is considered
for classification, words from class ¢; are checked for their presence or absence in the test
document. A vector of 1’s and 0’s is formed with 1 indicating the presence and () indicating
the absence of the word in the test document. Let zb(d]) = [100 ...... 1]7, be the vector
corresponding to the test document for the first class ¢;. This means that the first word
from ¢, is present in the test document where as the second and the third words from c, are
absent in the test document. The same process is repeated for all the classes ¢;, 1 < j < J
and corresponding vectors zb(d);) are determined. Once all the vectors zb(d}) have been
determined, inner product of each of these vectors is taken with the corresponding class

vector zcd(j) which is given by
cls; =< zb(dy), zed(y) > (3.4.1)

where < a, b > is the inner product of the vectors o and b. The decision, H 4144, (@'), of the
algorithm as the class to which the test document belongs is given by,

Haga, (d) =55 cls;. (3.4.2)
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3.4.2 Classification Based on df c with High Value

The algorithm, Algds, examines class document frequency, df ¢;{;), of words and
uses some heuristics so that df c;(7) of words with high value contributes more to the classi-
fication than df c;(7) of words with low value in a document. The reason for doing this is to
assess whether words with high dfc;(j) contributes dominantly towards the classification
performance of an algorithm.

This algorithm assumes vector representation, zcd(j) of class c;. A test document is rep-
resented as vector zb(d'}). There are J classes so there are J vectors, zed(j). Each of
these vectors is normalized to get a normalized vector nzed(j) = -—m;z%, where
maz;(zed;(f)) which is the maximum value occurring in the vector, zcd(j), divides all
the elements of that vector to give the vector nzcd(j). The elements of vector, nzed(j)
whose value is less than 0.1 is removed meaning that those words that cccur less than ten
percent of the documents are removed from the vector. A new vector nxcd(j0.1) with N1
elements is formed in which the element with least value is 0.1. This process is applied to

vectors of all classes. The vector is now represented as

nzed(j0.1) = [dfc) (7) dfa(d) - .. dfchn ()7 (3.4.3)

where dfc;,(j7),1 < m < N1 is a normalized class document frequency. For each these
vectors, nzed(j0.1), fraction of elements are considered as contributing significantly to
the classification of documents, In this paper, vector elements with value of at least 0.5
are considered as contributing 50% 1o the classification of training documents. All the
elements of a vector nzed(j0.1) with value at least 0.5 are considered to form a new vector
nxed(j0.5) with N2 elements in which the element having the least value is 0.5. Value of
0.5 is considered because it gives the best classification result for the documents considered.
It is worth noting that the size of this vector is very small compared to the size of nzcd(j)
which is a large vector. This vector is represented as

nzed(j0.5) = [df e} (3) dfch(d) ... dfciya(3)]7. (344)
To solve this problem, an unknown a; has to be found such that the condition

Tnei(ezp(0y needn(i0.5))) _
Zi(ezp(ey nzcdm(50.1)))
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is fulfilled. The value of ¢; is found by assuming some initial value and then iterating
until (3.4.5) is approximately satisfied. Then for each class the weight vector, w;p,;, of
dfcl (7) > 0.1 is determined as follows

wypy = exp(a; nred(§0.1)). (3.4.6)

Now that the weight vectors, w;p.1, for different classes have been determined, test doc-
uments can be operated upon by this algorithm so that classification perfermance of the
algorithm can be assessed.

When a document d’ from the test collection is considered for classification, words from
class c; with dfc),(7) < 0.1 are checked for their presence or absence in the test docu-
ment. A vector of 1's and 0’s is formed with 1 indicating the presence and 0 indicating the
absence of the word in the test document. Let

Zh(d}) =[100 ...... 17, (34.7)

be the vector corresponding to the test document for the class ¢;. This means that the first
word corresponding to vector nzxed(j0.1),7 = 1, is present in the test document where as
the second and the third words corresponding to nzcd(j0.1}, j = 1, are absent in the test
document. The same process is repeated for all the classes ¢;, 1 < j < J and corresponding
vectors z(d;) are determined. Inner product of each of these vectors zb(d;) is taken with
the weight vector w;g,; calculated for the corresponding class as in (3.4.6)

cls; =< zb(d}),wjo,l >, (3.4.8)
The decision on the class to which the given test document, d', belongs is given by

Haga (d') =585 cls;. (34.9)
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3.5 Algorithms Using Class Term Frequency(t fc)

In this section we discuss the same algorithms but using ¢ fc.

3.5.1 Classification Based on ¢ fc

The algorithm, Algt,, examines class term frequency vector, zct(j). There are J
classes so there are J vectors, zct(7). A test document is represented as vector zt(d') of
term frequency. When a document o’ from test collection is considered for classification,
words from class ¢, are checked for their presence or absence in the test document. Then a
vector of term frequency is formed whichis given by zt(d}) = [tfi(d;) 00 ...... tfn(d)]F
and which corresponds to the test document for the first class ¢;. This means that the first
word corresponding to vector zct(1) is present in the test document where as the second
and the third words corresponding to vector zct(1) are absent in the test document. The
same process is repeated for all the classes ¢;,1 € 7 < J and the corresponding vectors,
xt(d;), are determined. Once all such vectors have been determined, inner product of each

of these vectors is taken with the corresponding class vectors zct(j) which is given by
cls; =< zt(d;), zct(j) > . (3.5.1)

The decision, H 44, (d'), of the algorithm as the class to which the test document belongs
is given by
H i, (d') ="5eq" cls;. (3.5.2)

3.5.2 Classification Based on { fc with High Value

The algorithm, Algt,, examines class term frequency, ¢ fc;(7), of words and uses
some heuristics so that ¢ f¢;(j) of words with high value contributes more to the classifica-
tion than ¢ fc;(j) of words with low value in a document. The reason for doing this is to
assess whether words with high ¢ fc;(7) contributes dominantly towards the classification
performance of an algorithm when compared with words with high df ¢;(7).

This algorithm assumes vector representation, zct(j) of class c;. A test document, &', is

represented as vector zt(d’). There are J classes so there are J vectors, zct(j). Each
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of these vectors is normalized to get a normalized vector nzct(j) = %, where
max;(zct; (7)) which is the maximum value occurring in the vector, zct(j), divides all the
elements of that vector to give the vector nzct(j). The elements of vector, nzct(4), whose
value is less than 0.1 is removed. A new vector, nzct(j0.1), with N1 elements is formed in
which the element with least value is 0.1. This process is applied to vectors of all classes.

The vector is now represented as

nzct(j0.1) = [tf; () tfe(7) ... tfen, ()] (3.5.3)

where ¢fc}.(7),1 € m < N1 is a normalized class term frequency. For each of these
vectors, nxct(j0.1), fraction of elements are considered as contributing significantly to
the classification of documents. In this paper, vector elements with value of at least 0.5
are considered as contributing 50% to the classification of training documents. All the
elements of a vector nzct(j0.1) with value of at least 0.5 are considered to form a new
vector nzct(j0.5) with N2 elements in which the element having the least value is 0.5.
Value of 0.5 is considered because it gives the best classification result for the documents

considered. This vector is represented as

nzct(§0.5) = [tfey(F) tfh() ... tfcha(h)]". (3.5.4)

To solve this problem, an unknown o; has to be found such that the condition below is

fulfilled.
T2 (ezp(a; nzctm(j0.5)))

Tmei(€zp(a; nzctm(§0.1)))
The value of «; is found by assuming some initial value and then iterating until (3.5.5) is

0.5. (3.5.5)

approximately satisfied. Then for each class the weight vector, wjp.1, of tfc),(7) > 0.1 is
determined as
Wi = ea:p(aj n:rct(JO.l)) (356)

Now that the weight vectors, w;o.1, for different classes have been determined, test doc-
uments can be operated upon by this algorithm so that classification performance of the
algorithm can be assessed.

When a document &' from the test collection is considered for classification, words from

class ¢; with ¢ f¢] (7} < 0.1 are checked for their presence or absence in the test document.
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A vector of term frequency is formed with ¢ f;(d}) indicating the presence and 0 indicating
the absence of the word in the test document. Let

2t(d}) = [t£(d}) 0 0 ...... tin (@), 357

be the vector corresponding to the test document for the first class ¢;. This means that the
first word corresponding to the vector nzct(j0.1},j = 1, is present in the test document
where as the second and the third words corresponding to the vector nzct(j0.1), 7 = 1, are
absent in the test document. The same process is repeated for all the classes ¢;, 1 < j < J
and corresponding vectors, zt(d}), are determined. Inner product of each of these vectors
zt(d;-) is taken with the weight vector wyp,; calculated for the corresponding class as in
(3.5.6)

cls; =< zt(dy), wion > . (3.5.8)

The decision on the class to which the given test document belongs is given by

Hpg,(d') ="525° cls;. (3.5.9)
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Chapter 4

Simulation Results

4,1 Data Set

Several experiments have been performed to assess the importance of class docu-
ment freqliency in document classification. The document sets considered are from Reuters-
21578 text categorization test collection [13], Cora data set [14] and Citeseer data set [14].
Preprocessing for Reuters 21578 has been done by us to obtain the features described in
Chapter 2. Data from Cora dataset and Citeseer dataset have already been processed. Per-
formances of the algorithms NB, Pr'TFIDF, KNN, SVM, Algd_1, Algd_2, Algt_1, Algt2
on the features described in chapter 2 have been assessed using these three different data
sets.

4.1.1 Reuters-21578

The data set considered is from the Reuters-21578 text categorization test collec-
tion . In this collection documents are marked up with SGML (Standard generalized mark
up language) tags, and a corresponding SGML DTD (Document Type Definition) is pro-
duced, so that the boundaries of important sections of documents are unambiguous. There
are multiple categories with the categories overlapping each other and most plausible fea-
ture/example matrices being large and sparse. The Reuters-21578 collection consists of 22
files. Each of the first 21 files (reut2-000.sgm through reut2-020.sgm) contains 1000 doc-
uments and the last (reut2-021.sgm) contains 578 documents and hence the name Reuters
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21578. Each of the 22 files begins with a document type declaration line:
<!DOCTY PE lewis SYSTEM "lewis.dtd” > .

Following the document type declaration line are individual Reuters articles marked up
with SGML tags, as described below.
Each article starts with an “open tag™ of the form

< REUTERSTOPICS =" LEWISSPLIT =2CGISPLIT =77

OLDID ="INEWID =77 >,

where the 77 are filled in an appropriate fashion. Each article ends with a "close tag” of the
form
< /REUTERS > .

In all cases the
< REUTERS > and < [REUTERS >

tags are the only items on their line. Each REUTERS tag contains explicit specifications of
the values of five attributes:

TOPICS, LEWISSPLIT, CGISPLIT, OLDID, NEWID.

These attributes are meant to identify documents and groups of documents and are used to
define training set splits. The attribute TOPICS gives information about whether or not
the document had topic. The attribute LEWISSPLIT gives information about whether
or not the document had been used in training or test set in the old Reuters collection. The
attribute CGISSPLIT gives information about whether or not the document was in train-
ing set or test set for the experiments reported in HAYES89. OLDID gives information
about the identification number the document has in old collection and NEWID gives
information about the identification number the document has in the Reuters 21578.

Just as the < REUTERS > < /REUTERS > tag serves to delimit documents within a
file, other tags are used to delimit elements within a document. < DATE > < /DATE >
encloses date and time of the document, < MKNOTE > < [MKNOTE > notes on
certain hand corrections that were done to the old Reuters collection. < TOPICS >
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< /TOPICS > encloses the list of TOPICS categories, if any, for the document, If
TOPICS categories are present, each will be delimited by thetag < D > < /D >. <
PLACES > < {PLACES > encloses the list of places, < PEOPLE > < {PEOPLE >
encloses the list of people, and similarly for the tags, < ORGS > < /ORGS >, <
COMPANIES > < [COMPANIES >, < UNKNOWN > < [UNKNOWN >,
< TEXT > < {TEXT > delimits all the textual material of each story and < AUTHOR >
< JAUTHOR > gives information about the author of the story. < DATELINE > <
[DATELINE > gives information about the location of the story, < TITLE > <
/TITLE > encloses the title of the story and finally < BODY > < /BODY > encloses
the main text of the story.

Reuters 21578 has five different sets of content related categories. The category
EXCHANGES has 39 subcategories. The category ORGS has 56 subcategories. The
category PEOPLE has 267 subcategories. The category PLACES has 175 subcategories.
The category TOPICS has 135 subcategories. The TOFICS subcategories have been
used most frequently in previous research with Reuters 21578, The ten TOPIC'S subcat-
egories used in this thesis are: earn, acq, money-fx, grain, crude, trade, interest, ship, corn
and wheat.

A small sample of the Reuters 21578 collection is shown below.

<!DOCTYPE lewis SYSTEM "lewis.dtd" >

<REUTERS TOPICS="NO" LEWISSPLIT="TRAIN" CGISPLIT="TRAINING-SET"”
OLDID="16321" NEWID="1001">

<DATE> 3-MAR-1987 09:18:21.26</DATE>
<TOPICS></TOPICS>

<PLACES > <D>usa</D><D>ussr</D></PLACES>
<PEOPLE></PEOPLE>

<ORGS></ORGS>

<EXCHANGES> </EXCHANGES>

<COMFANIES > </COMPANIES >

<[UNKNOWN>

&HS & HS &#5:G T



&#22;&#22; 841, f02888:#3 1 reute

d f BC-SANDOZ-PLANS-WEEDKILL 03-03 0095 </UNKNOWN>

<TEXT>&H#2;

<TITLE>SANDOZ PLANS WEEDKILLER JOINT VENTURE IN USSR</TITLE>
<DATELINE> BASLE, March 3 - </DATELINE><BODY>Sandoz AG said it planned a
Joint venture to produce herbicides in the Soviet Union. The company said it had signed
d letter of intent with the Soviet Ministry of Fertiliser Production to form the first foreign
Joint venture the ministry had undertaken since the Soviet Union allowed Western firms to
enter into joint ventures two months ago. The ministry and Sandoz will each have a 50 pct
stake, but a company spokeswoman was unable to give details of the size of investment or
planned output. Reuter

&#3;<BODY></TEXT>

</REUTERS>

Frequent words that do not contribute much towards text classification such as ‘a’,
‘the’, ‘has’, *have’, ‘is’, ‘was’, ‘are’, ‘were’, ‘had’ etc are removed from the text corpus.
There are many morphologically related words with common root. Stemming algorithm
[31] can be used to reduce these words to their common base. However, the benefits are
not very obvious and so word stemming is not done for this data set. The documents in
this data set contain hundred and ten words on average. The plot given below shows the
distribution of the words in different classes in terms of class document frequency. This

shows that the data vectors are sparse.
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Figure 4.1: Class document frequency of words for different classes

4.1.2 Cora Data Set

The Cora data set consists of machine learning papers. These papers are classified
into one of the following seven classes
1.Case Based
2.Genetic Algorithms
3.Neural Networks
4 Probabilistic Methods
5.Reinforcement Learning
6.Rule Learning
7.Theory
There are 2708 papers in the whole corpus. After stemming and removing stop-words,
vocabulary size is of 1433 unique words. The documents in this data set contain ninety
words on average. The data set contains files related to word attributes and link attributes.
The files related to word attributes are represented in the following format:
< paper identification tag > + < word attributes > + < class label > .
The first entry in each line contains the unique string identification of the paper followed
by binary values indicating whether each word in the vocabulary is present (indicated by 1)
or absent (indicated by 0) in the paper. Finally, the last entry in the line contains the class
label of the paper. The file related to link attributes is represented as citation graph of the
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corpus. Each line describes a link in the following format:
< Identi fication tag of cited poper >< Identification tag of citing paper > .
Each line contains two paper identification tags. The first entry is the identification tag of
the paper being cited and the second entry is that of paper which contains the citation. The
direction of the link is from right to left. If a line is represented by "paper] paper2” then
the link is "peper2 = paper1” meaning "paper2 cites paperl”.

The plot below shows the distribution of words in different classes in terms of

class document frequency. This shows that the data vectors are sparse.

rzrbor ol wonts

Figure 4.2: Class document frequency of words for different classes

4.1.3 Citeseer Data Set

Citeseer data set contains papers classified into one of the following six classes:
1. Agents
2. Artificial Intelligence
3. Data Base
4. Information Retrieval
5. Machine Learning
6. Human Computer Interface
The papers have been selected in such a way that in the final set every paper cites or is
cited by at least one other paper. There are 3312 papers in the whole data set. After
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stemming and removing stop words, the vocabulary has 3703 unique words. All words
with document frequency less than 10 have been removed. The documents in this data set
contain 120 words on average. The data set contains files related to word attributes and link
attributes. The files related to word attributes are represented in the following format:
< paper identi fication tag > + < word attributes > + < class label > .
The first entry in each line contains the unique string ID of the paper followed by binary
values indicating whether each word in the vocabulary is present (indicated by 1) or absent
(indicated by () in the paper. Finally, the last entry in the line contains the class label of
the paper. The file related to link attributes is represented as citation graph of the data set.
Each line describes a link in the following format:
< Identi fication tag of cited paper >< Identification tag of citing paper > .
Each line contains two paper identification tags. The first entry is the identification tag of
paper being cited and the second entry is that of paper which contains the citation. The
direction of the link is from right to left. If a line is represented by "paper] paper2” then
the link is "paper2 =» paperl™ meaning “paper2 cites paperl™.

The plot below shows the distribution of words in different classes in terms of

class document frequency. This shows that the data vectors are sparse.
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Figure 4.3: Class document frequency of words for different classes

38



4.2 Performance Evaluation

There are different performance evaluation measures used in text categorization
[71[24] based on number of correctly and incorrectly classified documents. In this thesis
accuracy(Ac), f-measure(F'1) and break-even point(BE P) have been used as performance
measures for text categorization algorithms.
Let true positives, tp;, with respect to the class c;, be the number of the correctly classified
documents belonging to class c;. Let false positives, fp; with respect to class ¢; be the
number of documents falsely classified as belonging to the class ¢;. Let true negatives,
tn;, with respect to the class c; be the number of documents correctly classified as not
belonging to the class c;. Let false negatives, fn;, with respect to the class c; be the
number of documents falsely classified as not belonging to the class ¢;. Then accuracy, Ac,
of the classifier with respect to the class c; is the ratio of number of documents correctly
classified as belonging and not belonging to the class c; and the total number of documents
provided for classification, which is given by
o= tp; + tn; .
tpj +tn; + fp; + fn;

4.2.1)

Precision of the classifier with respect to the class ¢; is the ratio of number of correctly
classified documents belonging to the class ¢; to the total saumber of documents classified
as belonging to ¢; and is given by

tp;

=2 4.2.2)
tp; + fp;

Pj

Recall of the classifier with respect to the class c; is the ratio of number of correctly classi-
fied documents belonging to class c; to the total number of documents actually in the class

¢; and is given by

— L
tp; + fn;’

There are different ways of combining these measures for classes into a single global mea-

Ty (42.3)

sure. In this thesis micro averaging and macro averaging are used as a global measures.
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In micro averaging each class proportionally contributes to the global measure and so the

corresponding precision and recall are respectively given by,

2_}"’:1 tp;
Dric—avg = 4.2.4)
T T iaa(tes + fp5)
o1 19
Tmic—toog = . (4.2.5)
mic—avg Z}Ll(tpj"'fnj)

In macro averaging each class contributes equally to the global measure and so the corre-

sponding precision and recall are respectively given by,

J ,
Prrac—avg = # 4.2.6)
J
1 T
Tmac—aug = J}I 3 4.2.7)
f-measure(F'1), is the harmonic mean of the precision and recall and is given by
F1= 287 (4.2.8)
ptr

Break-even point(58 E P) is that value for which precision equals recall and is given by

BEP:p;T. 42.9)

Here
[ps T] € {IPJ ) Tj]! [pmic—avg: Tmic—avgl: [pmuc—avg’ Tmac—aug]}- {4.2.10)



4.3 Results

Reunters 21578
Category NB | PrTFIDF | KNN | SVM | Algt.1 | Algt2
earn 68.54 95.72 | 84.33 89 96.6 | 94.64
acq 82.7 96.7 92 88 | 94.53 | 86.84
money-fx 86 90 | 88.3 93 89.7 89
grain 87 894 | 875 97 88.2 88
crude B85 94 | 91.3 90 938 93.6
trade 77 87 B8 | 913 80.1 84.8
interest 72.7 925 | B64 93 90 87.2
ship 87 93.3 92| 949 93.7 85.6
corn 88 92 | 908 97 914 95.5
wheat 92.67 92 | 894 96 93 93.3

Table 4.1: Ac of algorithms with term frequency as features for representation of
documents

Reuters 21578
Category | ModNB | ModPrDF | KNN | SVM | Algd_1 | Algd2
earn 77.12 95.44 06 | 88.47 [ 95.35 95
acq 81 966 963 874 95.2 933
money-fx 84 01| 88.6 | 92.7 89.7 88
grain 86 88.8| 879 | 987 88.8 87
crude 84 95.5 93 90 95 93
trade 84 85.7| 821 | 935 73 93.1
interest 7T 93.8 | 894 94 92.9 83
ship 84.1 95.3 | 923 96 94 94.5
corn 93.3 927 905 97.6 94.1 96
wheat 924 92| 92.6 | 96.6 93.6 91

Table 4.2: Ac of algorithms with class document frequency as features for representation
of documents
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Reuters 21578

Category | NB | PrTFIDF | KNN | SVM | Algt_1 | Algt 2
can 2625 | 75.86 | 53.82 | 88.80 | 80.75 75
acq 845| 8474|5778 | 88.12| 79.57 | 53.89
money-fx | 14.74 |  49.12 | 43.48 | 65.85 | 24.52| 25.15
grain o| 1081 1263051 1519 18.71
crude 11| 7603| 4797942 77.17| 75.00
trade 1377 5665|5431 | 83.19 | 49.44 | 485
interest | 6.45| 5029 | 54.05 | 68.12 | 60.58 | 50.17
ship 134 | 6606(4892| 67| 268 18.09
corn 14| 31.822222| 45| 3194 31.58
wheat 667 2456 |34.72 | 4643 | 43.08| 469

Table 4.3: F1 of algorithms with term frequency as features for representation of
documents

Reuters 21578
Category | ModNB | ModPrDF | KNN | SVM | Algd.] | Algd 2
earn 37.07 78.88 | 80.24 [ 89.58 | 78.57 80
acq 17.49 86.84 | 83.77 [ 91.86 | 80.56 | 74.36
money-fx 18.02 51.21 | 39.05 [ 65.06 | 28.22 | 4291
grain 8.09 2912302 (1783} 2629 | 18.78
crude 18.5 78.75 | 73.97 [ B1.53 | 77.30| 77.66
trade 13.02 5691 | 54.60 | 86.67 | 42.48 | 70.85
interest 14.95 68.72 | 63.28 [ 6545 | 6432 | 32.54
ship 2.25 70.97 | 30.61 | 72.82 | 31.68 | 45.76
corn 9.41 37.24 | 36.36-( 5140 | 33.66| 28.13
wheat 10.31 3942 [ 3299 (4655 | 46.72| 54.55

Table 4.4: F'1 of algorithms with class document frequency as features for representation
of documents
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Reuters 21578
Category NB | PrTFIDF | KNN { SVM | Algt_1 | Algt.2

earn 30.44 77.59 | 60.65 | 89.40 | 82.36 | 78.73
acq 10.24 85.1 58.5|88.47| 80.11 | 54.39
money-fx | 17.72 50.53 | 43.81 | 66.29 | 52.33 | 39.65
grain 0 31,56 | 18.81 | 41.47 | 30.53 | 28.15

crude 14.87 76.08 | 49.85 | 79.97 | 77.24 | 75.16
trade 14.71 64.39 | 55.36 | 83.41 | 64.86 | 53.94
interest 7.65 51.71 | 57.01 | 68.94 | 64.56 | 54.85
ship 1,35 71.91 { 49.85 | 70.09 | 46.36 | 18.81
corn 1.2 358 | 23.01 | 46.88 | 37.17 | 32.69
wheat 8.31 2494  35.16 | 48.66 | 43.08| 474

Table 4.5: BEP of algorithms with term frequency as features for representation of
documents

Reuters 21578
Category | ModNB | ModPrDF | KNN | SVM | Algd_1 | Algd2
eamn 39.84 8228 | 83.5|89.74| 81.79| 82.14
acq 17.88 B86.85 | 8396 | 919 | B075| 7444
money-fx 18.83 56.08 | 40.41 [ 65.36 | 4824 | 43.23
grain 11.8 34.07 | 28.51 | 35.66 | 37.27 | 24.77
crude 20.77 78,96 | 74.53 | 81.70 717 80.719
trade 13.07 67.35 | 66.65 | 86,96 | 63.08| 72.68
interest 19.17 6932 | 6646 65.8| 64.87| 32.54
ship 2.27 72.38 | 48.97 | 75.54 48.1 | 52.40
corn 9.44 43514091 | 5594 | 3407 33.68
wheat 11,66 3952 [ 36.74 | 4943 | 46.84 | 65.51

Table 4.6: BE P of algorithms with class document frequency as features for representation
of documents
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Reuters 21578

Measure NB | PrTFIDF | KNN | SVM [ Algt_1 | Algt2
Flmioamg | 11.89 59| 483 73 54 57
BEPy e avg | 11.89 59| 483 73 54 57
Flimac—avg 9 526 45| 663! 484| 52.8
BEPrge—avg | 105 57| 475| 684 562| 543

Table 4.7: Global performance measure of algorithms for term frequency as representation
of documents

Renters 21578
Measure ModNB | ModPrDF | KNN | SVM | Algd.1 | Algd.2
Flaic—avg 17.9 63 56 72 57.5 62
BEP, ic uvg 17.9 63 56 72 57.5 62
Flyue—avg 15 57.2| 51.7 | 68.1 51 55.7
BEPucaug 16.5 63| 56.1| 70.6 572 60.5

Table 4.8: Global performance measure of algorithms for class document frequency as
representation of documents



Cora Data Set

Category SVM SVM SVYM

(words) | (words+tf1ink) | (words+dfc_link)
Case_Based 93.27 95.80 95.92
Genetic_Algorithms 94,88 97.66 97.70
Neural Networks 85.30 92 92.09
Probabilistic_Methods 91.24 96.18 95.73
Reinforcement_Learning | 95.51 97.32 97.21
Rule_Learning 05.54 97.33 97.36
Theory 090.72 94.06 93.91

Table 4.9: Ac of SYM with dfc, dfc + tf link and df ¢ + df clink

Cora Data Set

Category SVM SVM SVvM

(words) | (words+tf_link) | (words+dfc_link)
Case_Based 71.70 7947 80.11
Genetic_Algorithms 87.22 92.66 92.83
Neural_Networks 81.22 88.27 B6.95
Probabilistic_Methods 77.82 87.95 86.64
Reinforcement_Learning | 75,38 83.03 82.15
Rule_Leaming 70.88 81.35 81.48
Theory 67.04 76.01 75.92

Table 4.10: F'1 of SVM with dfc, dfc 4 t f link and df c + dfclink

45




Cora Data Set

Category SVM | SVM SVM

(words) | (words+tf.link) | (words+dfc_link)
Case_Based 68 80.02 80.60
Genetic_Algorithms 83.35 92.72 92.92
Neural Networks 76.88 88.28 86.96
Probabilistic Methods 72.88 87.97 86.66
Reinforcement Learning | 70.64 83.07 82.26
Rule_Learning 65.37 81.66 81.77
Theory 62.82 76.05 75.93

Table 4.12: Global performance measure of SVM with dfc, dfc + tf.link and dfc +

dfelink

Table 4.11: BEP of SVM with dfc, dfc + t f link and df ¢ + df clink

Corg Data Set
Measure SVM SVYM SVM
{words) | (words+tf_link) | (words+dfc_link)
Flmic-avg 73 86.5 86.3
BEPric—avg 73 86.5 36.3
Flmac—avg 71.2 85.1 85.3
BEPrac—avg 714 85.3 85.5




iteseer Data Set

Category SVM SVM SVM

{words) | (words+tf_link) | (words+dfc.link)
Agents 89.15 00.81 91.15
Artificial Intelligence 50.24 91.02 91.29
Data Base 86.83 89.30 90.06
Information Retrieval 85.34 87.34 87.76
Machine Leamning 85.34 86.55 87.10
Human Computer Interaction | 89.12 92.35 92.75

Table 4.13: Ac of SVM with df ¢, dfc + ¢t f_link and df c + df clink

Citeseer Data Set

Category SVM SVM SVM

(words) | (words+tf link) | (words+dfc_link)
Agents 70.69 75.08 75.91
Artificial Intelligence 28.58 33.37 34.60
Data Base 69.09 74.86 76.48
Information Retrieval 65.12 68.69 70.09
Machine Learning 57.39 61.87 63.45
Human Computer Interaction |  63.02 74.67 76,08

Table 4.14: F1 of SYM with df c, dfc + t f link and dfc + df c link
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Citeseer Data Set

Category SVM SVM SVM

(words) | (words+tf_link) | (words+dfc_link)
Agents 71.13 75.64 76.42
Artificial Intelligence 29.06 34.38 3548
Data Base 69.12 7493 76.56
Information Retrieval 65.86 69.57 70.86
Machine Learning 58.28 62.48 64.13
Human Computer Interface 63.28 74.84 76.18

Table 4.15: BEP of SVM with dfc, dfc + {f link and dfc + dfclink

Citeseer Data Set

Measure SVM SVM SVM

{words) | (words+tf link) | (words+dfc_link)
Flmic-avg 65.6 72.6 733
BE Pric—auvg 65.6 72,6 73.3
Flyge—aug 60.3 646.7 67.4
BE Py —aug 61 67.7 68.2

Table 4.16: Global performance measure of SVM with dfc, dfc + tf_link and dfc +
dfclink

Reuters 21578
Algorithms | NB | PrTFIDF | KNN | SVM | Algt_1 | Algt2

Time (secs) | 530 1580 | 2200 | 1360 | 1211 413

Table 4.17: Computational time of algorithms with term frequency of words
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Reuters 21578
Algorithms | ModNB | ModPIDF | KNN | SYM | Algd.1 | Algd.2

Time (secs) 580 1400 | 991 | 1200 | 1211 423

Table 4.18: Computational time of algorithms with class document frequency of words

Cora Data Set
SVM words | words+tf link | words+dfc_link
Time (secs) 164 509 483

Table 4.19: Computational time of SVM with df ¢, dfc + t f Link and df ¢ + df c link

Citeseer Data Set
SVM words | words+tf_link | words+dfc_link
Time (secs) 310 1338 1145

Table 4.20: Computational time of SVM with df ¢, dfc + tf link and df ¢ + df clink
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4.4 Discussion

The performances of different algorithms trained with term frequency and that of
different algorithms trained with class document frequency are comparable as shown by the
results. The performance in terms of accuracy for class document frequency shown by ta-
ble 4.2 and for term frequency as shown by table 4.1 are comparable. The performances in
terms of f-measure and break even point for class document frequency shown by table 4.4
and 4.6 and for term frequency shown by table 4.3 and 4.5 respectively are also comparable
for all the categories. The global f-measure and global break even point for class document
frequency are nearly the same as for term frequency as shown by tables 4.8 and 4.7 re-
spectively. All these show that class document frequency is an important learned feature
for learning algorithms. Also these tables show that algorithms, Algd; and Algt; perform
comparably and algorithms Algds and Algts also perform comparably. This means that
term frequency does not add much to the performance compared to the class document fre-
quency. Algds shows that even if words with low class document frequency are removed
the performance is not much affected emphasizing the importance of high class document
frequency.

The performances of SVM in terms of Ac, F1, BEP, Flpiero—avgs BE Pricro—avgs
Flpaero—-avg: a0d BE Pyyiepo—cug as shown by tables 4.9, 4.10, 4.11 and 4.12 respectively
for Cora data set with class document frequency of words and link information in the doc-
ument is better than that with class document frequency of words in the document only.
The same is the case for Citeseer data set as shown by the tables 4.13, 4.14, 4.15 and 4.16
respectively. These tables clearly show that performances with term frequency of link and
class document frequency of link are comparable towards the enhancement in categoriza-
tion. This shows that class document frequency of words along with the class document
frequency of the link further enhance the performance of learning algorithms.

The computational time of the algorithms as shown by tables 4.17 and 4.18 for
term frequency and class document frequency respectively are comparable. Also these ta-
bles show that the computational time of Algd; and Algd, are less compared to the other
algorithms. The algorithms Algd; and Algd, are simple in that they are based on in-
ner product for classification of documents and so are computationally cheap compared to
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other more complicated algorithms. Also the computaticnal time of SVM on Cora data set
and Citeseer data set for term frequency of link and class document frequency of link are
comparable as shown by the tables 4.19 and 4.20 respectively. The algorithms have not
been optimized to reduce the computation time depending on the features used.
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Chapter 5

Conclusion

5.1 Summary

Machine learning algorithms for text categorization require some form of numer-
ical feature representation of documents. These numerical features can be used to train the
algorithms so that they can be used for classification of unknown documents. In our study
of text classification literature we found a lack of proper mathematical representation for
feature representation of documents. So chapter two discusses the mathematical feature
representation of documents. In this representation, words are considered as features for
representation of documents. In this model document is considered as vector of word at-
tributes and class is also considered as vector of word attributes. The document with link is
represented as vector of word attributes concatenated with vector of link attributes. Perfor-
mances of algorithms have been assessed on term frequency and class document frequency
of words and links in documents.

To assess the Performance of Naive Bayes on class document frequency we mod-
ified the Naive Bayes algorithm to obtain Modified Naive Bayes algorithm, We found that
the performance of Modified Naive Bayes algorithm using class document frequency is
comparable and to a certain extent better than that of Naive Bayes algorithm using term fre-
quency. We also modified the Probabilistic Term Frequency Inverse Document Frequency
algorithm using term frequency to Modified Probabilistic Document Frequency algorithm
using class document frequency. We found comparable performances of these algorithms.
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The performances of Support Vector Machines and K-Nearest-Neighbor algorithm are
comparable for term frequency and class document frequency.

To further assess the importance of class document frequency, we developed two
simple algorithms. Algd, is based directly upon the class document frequency of words
whereas Algd, is based on class document frequency of words with high value. The per-
formances of these algorithms are comparable to other machine learning algorithms in-
dicating the importance of class document frequency and emphasizing the importance of
words with high class document frequency. Similar to the above two algorithms, we devel-
oped the algorithms Algt;, and Algt, based on the term frequency of the documents. The
performances of Algd; and Algt, are comparable and the performances of Algd; and Algt,
are also comparable indicating that term frequency does not contribute much to the classifi-
cation of documents compared to class document frequency. The performance evaluations
were done on Reuters 21578 data set.

For the linked document, the document vector of word attributes is augmented
with link vector of link attributes. Term frequency of link and class document frequency
of link are the two attributes used for the construction of link vectors. SVM was used for
performance evaluation of these features on Cora data set and Citeseer data set respectively.
It was found that the classification performance based on combination of word attributes
and link attributes for document representation was better than the one based only on word
attributes for document representation. More importantly, it was found that the class doc-
ument frequency of link and term frequency of link have comparable contribution towards
classification performance indicating that term frequency of link does not add much to the
classification performance compared to class document frequency of the link. This verifies
the importance of class document frequency.

5.2 Importance of Class Document Frequency

It is clear from the results that the leamning algorithms we considered perform
comparably whether they are trained with term frequency or class document frequency.
The reason for this is, term frequency implicitly gives information on class document fre-

quency as a word present in different documents during the training of machine learning
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algorithms. This is the reason that the performance of SVM does not degrade when the
documents are represented just as binary vector because then, the only feature that SVM is
learning is the class document frequency. The class document frequency is the underlying
important feature that machine learning algorithms learn and is used as discriminator for
document categorization.

We also showed that two very simple classifiers, Algd1 and Algd2 based on df c alone per-
form similarly compared to Algtl and Algt2. Although not the best, yet the developed
algorithm has performance comparable to that of other complicated learning algorithms.
When the class document frequency of the link is incorporated with that of the words there
is further enhancement in the classification performance of the algorithm. This verifies
that class document frequency is an important feature and should be the underlying learned
feature during the training of machine learning algorithms for text categorization.

5.3 Further Research Directions

We only considered three data sets for performance evaluation of machine learn-
ing algorithms on the considered features. It would be important to know whether the
results obtained on these data set are similar with that obtained with other data sets also.
We used equal number of documents from each class for training and classification. Study
could be done on performance changes of algorithms as the number of documents in dif-
ferent classes are made different. All the data sets considered by us are in English. Study
on whether the features considered and results obtained are similar with data sets in other
languages would provide further insight into the generality of these approaches.

It would be important to explore whether we can find practical applications for
algorithms developed since they are simple and computationally less costly, It would be
important to know whether the simple algorithms could be further developed so as to make
them more competitive compared to powerful machine learning algorithms like SVM, The
algorithms have not been optimized to reduce the computational time. It would be worth
exploring whether optimization of algorithms would reduce the computational time of al-
gorithms for class document frequency as compared to that for term frequency.
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Finally, empirical results obtained from our simulations on the data sets show that
class document frequency is an important learned feature. Analytical results verifying the
empirical results would strengthen our claim and so is an important direction for further

research.
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