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ABSTRACT 

With the increase in online information, which are mostly in text document form, there is 

a need to organize them so that management and retrieval by search engine become eas­

ier. Manual organization of these documents is very difficult and prone to error. Machine 

learning algorithms can be used for classification and then organization because they are 

quick, relatively more accurate and less costly. However, documents need to have feature 

representations that are suitable for training machine learning algorithms for document 

classification. 

Machine learning algorithms for document classification use different types of 

word weightings as features for representation of documents. In our findings we find the 

class document frequency, die, of a word is the most important feature in document classi­

fication. Machine learning algorithms trained with die of words show similar performance 

in terms of correct classification of test documents when compared to more complicated 

features. The importance of die is further verified when simple algorithm AlgdJ developed 

solely on the basis of die shows performance that compares closely with that of AlgtJ and 

other more complex machine learning algorithms. The importance of high die is verified 

when Algd2 performs comparably with Algt2 and other complex algorithms. This also 

implies that term frequency does not contribute much to the classification of documents 

compared to class document frequency. We also find improved performance when the link 

information of documents in a class is used along with the word attributes of the document. 

The contribution of term frequency of link and class document frequency of link are are 

similar in their classification performance. This shows the importance of class document 

frequency as the learned feature that learning algorithms use for effective text categoriza­

tion. We compared the algorithms for showing the importance of die on the Reuters-21578 

text categorization test classification set, Cora data set and Citeseer data set. 



Chapter 1 

Introduction 

With the tremendous increase of online infonnation [17)[ 18). most of which are 

in text document fonn. management and retrieval of these documents by internet search en­

gines become unimaginable without good document classification algorithms. Document 

classification can be used for spam filtering [27) because most of the spams have text con­

tent. Document classification along with link analysis can be used to extract social network 

[28) that can help people with similar interest connect and communicate. 

Document classification is the process of assigning text documents to one or more 

predefined categories based on their contents. The classification has to be learned from the 

available past data set based upon which the decision about the class of new data is made. 

Classification can be from a supervised or unsupervised learning algorithm depending upon 

whether or not class labels are available. 

Classification from unsupervised learning algorithms occurs without proper class 

label. Examples of unsupervised learning algorithms include K-means clustering [9] which 

finds clusters into which the data set is partitioned. The clustering is based on the similarity 

of data with the cluster centers. Another algorithm includes Principle component analysis 

[9) which works by decomposing the given data set into a smaller set of uncorrelated data. 

Independent component analysis [9] also decomposes the data into smaller set of data but 

under the constraint that the reduced set of data are independent of one another. Gaussian 

mixture (9) estimates the number of effective components required to be combined linearly 

with different weights to reproduce the data. Then there are gmphical methods [9] that try 
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to estimate the relationship among the data samples in tenns of conditional dependencies 

among them. 

In supervised machine learning the class label of different data samples are al­

ready available and the label of a new test sample is detennined based on the already la­

beled data samples. There are different supervised machine learning algorithms: rule based 

machine learning, statistical machine learning and ensemble based machine learning. Deci­

sion tree learning (20) is rule based learning. Naive Bayes [5) and support vector machines 

(6) are some examples of statistical machine learning. Bagging and boosting (21)[22) are 

examples of ensemble learning. Ensemble learning algorithms are meta-learning algo­

rithms that are used to strengthen other weak learning algorithms by combining different 

algorithms together. 

Supervised machine learning algorithms learn patterns from features in docu­

ments. Different types of features can be used to represent a document as a vector of 

features. The feature could mean the presence of a single word, a linguistic phrase or a 

complicated syntax template. According to the study conducted by Lewis (4) on the effects 

of syntactic phrases in text categorization it was found that a Naive Bayesian classifier 

trained only with single word as feature did better than the one trained with noun phrases. 

Using syntactic phrases as features did not contribute to the improvement on rule-based 

classifiers (3). It also did not show much improvement on Naive Bayesian and SVM clas­

sifiers [II). Infonnation retrieval research suggests that words work well as representation 

units and that their ordering in a document can be ignored for classification tasks [11][12). 

A document therefore can be considered as a bag of words and defined as a vector of fea­

tures with each component corresponding to a word in the document. Since the features 

themselves cannot be directly used by the machine learning algorithms it is necessary to 

quantify or assign weights to the features. It is important that the quantified value corre­

sponding to the feature be able to capture as much infonnation as possible regarding the 

feature distribution in the document, in the document class and in all the classes. There are 

different approaches to assigning weights to these features, (1)[2)[3)[4)[15)[19). Papers (2) 

and (26) assess perfonnance of machine learning algorithms on different types of features 

and come to different conclusions as to the best feature suitable for document classification. 

In this paper, a binary I for presence and binary 0 for absence of word is the feature value 
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assigned to represent a document vector so that the sum of these features across all the 

documents in a class constitote df c. Class document frequency. df c. is used as the feature 

for performance assessment of different machine learning algorithms. 

The machine learning algorithms used for text categorization are supervised sta­

tistical machine learning algorithms. The performance of Bayesian learning algorithm and 

support vector machines is assessed on class document frequency. Based on this perfor­

mance an argument is made that df c is the feature that the machine learning algorithms 

inherently learn that helps in effective classification of the text documents into different 

classes. 

We developed Algdl based directly on df c and its performance is found to be 

comparable to that of Algtl based on class term frequency and more complex machine 

learning algorithms. We also developed another algorithm Algd2 in which words with high 

class document frequency are made to have more contribution than those with low class 

document frequency towards classification of test documents. It is found that this algo­

rithm also performs well compared to Algt2 based on class term frequency with high value 

and other algorithms. This confirms the importance of high class document frequency. 

Based on this, it can be inferred that df c is an important discriminator for document clas­

sification whether using Bayesian learning algorithm or support vector machines. Both of 

these methods extract information about df c during training which helps in the effective 

classification of documents. It is also shown in this thesis that link information of text doc­

uments. such as conference papers with bibliographic citations. when used along with the 

word features of documents enhance the classification performance of algorithms. 

In this thesis we developed mathematical representation for document, class and 

link of document. We found modification of Naive Bayes and Probabilistic Term Frequency 

Inverse Document Frequency algorithms by using class document frequency as feature for 

representation of documents in a class in place of term frequency as feature for representa­

tion of documents. We showed the importance of class document frequency with KNN and 

SYM algorithms also. We developed algorithms Algdh Algd2• Algtl and Algt2 to show 

the importance of class document frequency. We showed that class document frequency 

of words along with class document frequency of link of document further enhance the 

classification performance of SYM. We conducted several experiments using algorithms 
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mentioned above on Reuters 21578. Cora and Citeseer data sets respectively and the re­

sults of these experiments showed the importance of class document frequency. 

This thesis is organized as follows. Chapter 2 discusses the feature representa­

tion of documents and deals with mathematical representation of documents. of class and 

of links of documents. Chapter 3 discusses different machine learning algorithms and how 

to use the class document frequency to train those machine learning algorithms. Chapter 

4 discusses the data sets used for simulations. different performance measures for classi­

fication. and the results obtained. Chapter 5 summarizes the thesis and discusses further 

research directions. 
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Chapter 2 

Feature Representation 

There have been different researches on text document classification seeking to 

find the features [1 ][2][3][4] that would act as effective discriminators contributing to cor­

rect classification of documents to their respective classes. Although different features 

such as phrases, complicated syntax template and individual words have been considered 

as features for representation of documents, it has been found that words act as reliable de­

scriptors of documents in terms of classification performance. Also the order of occurrence 

of words in documents does not much contribute to the classification performance and so 

documents can be considered as bags of words. 

In text document categorization in our research, words are considered as features 

for representation of documents ignoring their order of occurrence in the documents. Ma­

chine learning algorithms for text categorization require numerical representation of these 

features for learning and categorization. There are different ways of assigning numerical 

values to these features. This section discusses a formal mathematical model for these 

representations. 

Let W = {WI> W2, ... WN} be the set of N words constituting the vocabulary set. Let 

V = {d" d2, •.• dp } be the set of P documents such that 

(2.0.1) 

where Id(p) I is the cardinality of dp• Each document belongs to a particular class. A class 

can be represented as a set of documents. Let C = {c" C2, ••• cJ} be the set of classes such 

that 

(2.0.2) 

6 



where Ic] I is the cardinality of Cj. 

Documents can be represented as N dimensional vectors of features with numerical values 

assigned to them. A document lip, 1 ~ p ~ P can be represented as a binary vector. 

xb(p} = [1 0 0 ...... 1jT, (2.0.3) 

of binary values if the features are assigned with binary values i.e. 

xbi(p} = [(Wi E dp ), 1 ~ i ~ N, 1 ~ P ~ P (2.0.4) 

where T is the transpose of the vector. The indicator function [(x) = 1 if x is true else 

[(x) = O. If the first element of the vector xb(p) is 1 this means that the first word WI from 

the vocabulary set W is present in the document. If the second element of vector xb is 0 

this means that the second word W2 from the vocabulary set W is absent in the document. 

A document, lip. can be represented as a vector. 

xt(p) = [tli(P) t/2(p) ...... tfN(P)jT. (2.0.5) 

of term frequency if the features are assigned with term frequency values i.e. 

Id(P)1 

xti(P) = tfi(P) = L [(wb) = Wi). 1 ~ i ~ N. (2.0.6) 
1=1 

Term frequency. tJ;(p) E [0, tfmazl. of a word in a document is the number of times it 

occurs in the document. tfm.., is the the maximum number of times that a word can occur 

in a document. If the first element of the vector xt(p) is tli (p) this means that the document, 

dp• contains the first word WI from the vocabulary set W and there are tli number of such 

words in the document. Similarly the document, dp contains t/2 number of second word 

W2 from the vocabulary set W. A document. dp , 1 ~ P ~ p. is represented as a vector. 

xd(P) = [tfidfl(P) tfidf2(p) ...... tfidfN(P)jT. (2.0.7) 

of term frequency inverse document frequency if the features are assigned with term fre­

quency inverse document frequency values. Term frequency inverse document frequency. 

tfidfi(P) E [0. tfidfmazl. is the product of tfi(P) and inverse document frequency. idfi. of 
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the word Wi E W. tfidfmaz is the maximum value that any tfidfi(P) can take. Inverse 

document frequency, idfi, of a word is given by 

idf; = 10g(;;) (2.0.8) 

Document frequency, df;, is the number of the documents containing the word Wi i.e. 

P 

dfi = L /(w; E d,,), 1 ~ i ~ N, 1 ~ P ~ P. (2.0.9) 
p=1 

Therefore [5] 

xd;(p) = tfid!o(p) = tfi(P) * idJ;. (2.0.10) 

A class Cj can also be represented as a vector, xcd(j) , of class document frequency, df e; (j) E 

[O,lcjlJ, 
(2.0.11) 

such that 
le,l 

xcd;(j) = dfe;(j) = L /(w; E d,,(j)), 1 ~ i ~ N. (2.0.12) 
p=1 

Here the first element of vector xcd(j) is dfci (j) meaning that the class Cj contains the 

first word WI E W and df CI number of documents in the class contain the word WI and 

similarly for the other elements. 

Class Cj can be represented as a vector, 

(2.0.13) 

of class term frequency, tfe;(j) E [0, tfCmaz]. Here tfCmaz is the maximum number of 

times that any word Wi E W can occur in class Cj and class term frequency is given by 

Ie, I 
xcti(j) = tfe;(j) = L tJ;(p), 1 ~ i ~ N. (2.0.14) 

p=1 

The first element of vector xctj is tfci (j) meaning that the class Cj contains the first word 

W; E W and there are total of t f CI number of the first word in the class Cj and similarly for 

the other elements of the vector xct(j). 
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In case the documents are linked. such as conference papers with bibliographic citations. 

link pattern can be captured by introducing link features. Link features of a document d E 

V can be modeled as the class distribution of the documents dp(j) the given document cites 

to and is cited by. The link features corresponding to the class distribution of documents 

that the given document cites to is given by 

(2.0.15) 

where 
ICJI 

IO(Cj,d) = I: l(d -> dp(j)). (2.0.16) 
p=1 

l(d --> dp(j)) = 1 if the given document d cites the document dp(j) otherwise l(d -> 

dp(j)) = O. The link features corresponding to the class distribution of documents that the 

given document is cited by is given by 

(2.0.17) 

where 
Ic,l 

ll(cj, d) = I: l(d <- dp(j)). (2.0.18) 
p=l 

l(d <- dp(j)) = 1 if the given document d is cited by the document dp(j) otherwise 

l(d <- dp(j)) = O. 

This feature representation corresponds to the tenD frequency of the link in that it provides 

with the number of class documents that the given document cites to or is cited by. The 

link features can also be modeled in tenDS of presence or absence of class of documents 

that the given document cites to or is cited by. The binary link features defined above for 

the class of documents that the given document cites to is given by 

lb(d)cite = Ilbo(ct, d) Ibo(c2' d) ..... . lbo(cJ, d)jT (2.0.19) 

where 

Ibo(Cj, d) = l(lo(c" d) > 0), l(x > 0) = 1 if x > 0 else l(x > 0) = O. (2.0.20) 

The binary link features corresponding to the class of documents that the given document 

is cited by is given by 

lb(d)cited = Ilbl(Cl, d) Ibl(c2, d) ..... . lbl(cJ, d)jT (2.0.21) 
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where 

Ibr(Cj, d) = I(ir(cj, d) > 0), I(x > 0) = 1 if x> 0 else I(x > 0) = O. (2.0.22) 

This feature representation corresponds to the class document frequency of the link in that 

it provides with the number of documents in a class that cite to or are cited by documents 

from certain class. 
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Chapter 3 

Machine Learning Algorithms 

3.1 Bayesian Learning 

For a statistical experiment ( which has S as the set of possible outcomes with 

{c\, C2 •••••. cJ} as the partition of S. Let Pr(d), d ~ S be the probability distribution 

defined on all events in S. Then for the event Cj and d in S, 

P ( ·Id) = Pr(dlcj)Pr(cj) . = 1 2 J 
r c, Pr(d) J " . .• • (3.J.l) 

Pr(d) > 0, Pr(cj) is the prior probability, Pr(dlcj) is the likelihood probability and 

Pr(cjld) is the posterior probability [25). Also from the law oftotaJ probability 

J 

Pr(d) = L Pr(dlcj)Pr(cj). (3.1.2) 
j=\ 

Here the denominator is the normalizing factor. Then 

Pr(cjld) ex Pr(dlcj)Pr(cj) j = 1, 2, ... J (3.1.3) 

or 

Pr(cjld) ex L(cjld)Pr(cj) j = 1, 2, ... J (3.1.4) 

where 

(3.1.5) 

is the likelihood function. Therefore the posterior probability is proportional to the product 

of likelihood function and the prior. The likelihood funtion is based upon the observed data 
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whereas the prior is based upon the previous knowledge about the probability distribution. 

This is how Bayesian learning uses probability to measure the uncertainty about posterior 

predictions. 

Bayesian learning is important in that it helps measure the uncertainty of predic­

tions. suggests ways to adapt to the characteristics of the data such as smoothness. degree 

of relevancy etc. Since the posterior predicted distribution depends upon the prior distribu­

tion. the proper prior distribution representing uncertainty as to the relevancy of available 

data, smoothness function and noise level need to be considered very carefully. 

3.1.1 Naive Bayes (NB) 

This algorithm assumes a probabilistic model for the generation of text and makes 

a simplifying assumption of word independence in documents [29]. In this model there are 

total of J classes and each class is represented as vector. xct(j), of class term frequency 

tfe;(j). The test document d' which is a set of words d' = {W\,W2 ... wid'l} is repre­

sented as vector xt(d') ofterm frequency tfi(d'). Jd'J is the cardinality of d'. The decision. 

HNB(d'). on a test document d' as the class it belongs to is given by 

(3.1.6) 

where the function ar~ f(x) returns that value of x for which f(x) has maximum value. 

Using Bayes formula. Pr(cjJd') can be written as 

P ( -Jd') = Pr(d'Jcj)Pr(cj) 
r c, Pr(d') (3.1.7) 

or 
P (Jd') = Pr(d'Jcj)Pr(cj) 

r c, Ec'EC Pr(d'Jc')Pr(c')· 
(3.1.8) 

Here. Pr( Cj) is the prior probability of occurrence of a document belonging to class Cj 

and Pr(d'Jcj) is the likelihood function that gives probability of observing the document d' 

given it belongs to the class Cj and is given by 

(3.1.9) 
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Finding the joint probability in the above equation is computationally expensive and so 

to reduce the computational cost words in d' are assumed to occur independently of one 

another so that 

Id'i 
Pr(d'[cj) = Pr( {wM') , W2(d'), ...... ,w([d'il (d')}[Cj) = II Pr (w; (d') [Cj). (3.1.10) 

i=l 

Substitution of (3.1.10) into (3.1.8) gives 

P ( .[d') _ Pr(cj) nl~\ Pr(wM)[cj) 
r cJ - Id'i 

Ec'ECPr(c') ni=1 Pr(w;(d')[c') 
(3.1.11) 

Finally, the decision of Naive Bayes algorithm is given by 

d' _orgm= Pr(cj) nw.(d')EW Pr(w;(d')[cj)t/;(d') 
HNB( ) -·i eC Ec'ec Pr(c') nW.(d')EW Pr(wi(d')[c')t/.(d')· 

(3.1.12) 

Pr(cj) is estimated as 

(3.1.13) 

where [Cj[ is the number of documents belonging to the class Cj and P is the total number 

of documents. Pr(w;(d')[cj) is estimated as 

- 1 + tfe;(j) 
Pr(w;(d')[cj) = N + EN tf .( ')' 

.=1 e; J 
(3.1.14) 

where tfe;(j) is the number of times word Wi occurs in class Cj and tfi(d') is the total 

number of times word w;(d') occurs in the test document d'. 

The model has to be modified when the class is represented as vector of class document 

frequency dfe;(j). The test document d' is now represented as vector xb(d') of binary val­

ues. The decision of modified Naive Bayes, HModNB(d') on the test document d' as the 

class it belongs to is given by 

H (d') _orgm= Pr(cj) nw,(d')eW Pr'(wi(d')[cj) 
ModNB -·iEC 

Ec'EC Pr(c') nw.(d')EW Pr'(wi(d')Ic')' 
(3.1.15) 

Pr'(wi(d')lcj) is estimated as 

- 1 + dfe;(j) 
Pr'(w;(d')lcj) = N + Ef..1 dfe;(j) ' (3.1.16) 
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where dJe;(j) is the number of documents in class Cj that contain the word wi(d'). Since 

only the presence or absence of words in a document is being considered, the term fre­

quency t Ji (d') becomes irrelevant 

3.1.2 Probabilistic Term Frequency Inverse Document Frequency (PrT· 

FIDF) 

The motivation for this algorithm is Rocchio relevance feedback algorithm using 

term frequency inverse document frequency (TFIDF). This algorithm considers generative 

model of the text documents and shows how it is related to the Rocchio algorithm. How­

ever, in our research this algorithm has been considered to assess the importance of class 

document frequency in terms of performance of this algorithm. 

This algorithm considers words as descriptors of documents and assigns different proba­

bilities to different words being considered as descriptors of a document (5). In PrTFIDF, 

the words are considered as belonging to a document of certain class unlike N B in which 

words are are considered as belonging to a class without regard to the document they are 

coming from. 

In this model there are a total of J classes and each class is represented as vector of class 

term frequency. The test document d' is represented as vector, xt( d'), of term frequency, 

tJi(d'). The decision, HPrTFTDF(d'), on a test document d' as the class it belongs to is 

given by 

Pr(cjld') = E Pr(cj,w.(d')ld'), 
w;(d')ew 

Pr(cjld') = E Pr(cjlw;(d'), d')Pr(wi(d')Id'), 
w,(d')EW 

(3.1.17) 

(3.1.18) 

(3.1.19) 

where the probability of word w;(d') being a descriptor of the document d' is given by 

Pr(w;(d')ld'). Using the Bayes formula. 

P ( .1 .(d') d') = Pr(d'lcj, w;(d')) Pr(cjlw;(d')) 
r cJ w, , Pr(d'lw;(d')). (3.1.20) 
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Then 

Pr(cild' ) = E 
w,(d'leW 

Pr(d/lcj, w,( d'))Pr( Cj Iw;(d'))Pr( Wi (d' ) Id' ) 
Pr( d/lw;(d')) 

Here assumption is made that 

Pr(d/lw;(d' )) = Pr(d/lc;, wi(d' )). 

Then 

Pr(c;Id') = E Pr(C;IWi(dl))Pr(w;(d')Id')· 
w.(d'leW 

Using the Bayes formula 

Then 

Pr(w;(d') ICj)Pr(Cj) 
Pr(c,lw.(d')) = Ec'EC Pr(w;(d')Ie')Pr(e') 

(3.1.21) 

(3.1.22) 

(3.1.23) 

(3.1.24) 

(d') argmoz '" Pr(Cj) Pr(w;(d')ICj) P ((d')Id') 3 1 25 
HPrTFIDF =CjeC w.(;'ew Ec'ec Pr(e')Pr(w;(d'lIe') r Wi . (..) 

Here Pr(cj) is estimated by 

(3.1.26) 

where Ic; I is the number of documents belonging to the class Cj and P is the total number 

of documents. Pr( Wi (d'llcj) is estimated by 

- 1-
Pr(wi(d')lcj) = -ici E Pr(w.(d'lI4) 

J dpEcJ 

(3.1.27) 

where 
-, tfi(P) 
Pr(wi(d)14)=EN f( ). 

.=1 t • P 
(3.1.28) 

Here tfi(p) is the number of times word wi(d' ) occurs in document dp• 

The model has to be modified when the class is represented as vector of class document 

frequency. Then the test document d' is represented as vector. xb( d'), of binary values. The 

decision of modified PrTFIDF. HModPrDF(d' ), on the test document as the class it belongs 

to is given by 

( ') _argmoz '" Pr(cj) Pr'(wi(d')lcj) 
HModPrDF d -c,ee L.J '<"' P (e')Pr'( (d') Ie') . 

wlCd'lew 4..c'eC r Wi 
(3.1.29) 
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Pr(Cj) is estimated as before. Pr'(wi(d')lcj) is estimated as 

~, . ' . _ dfe;(j) 
Pr (w,(d lie,) - Lf'.,l dfe;(j)' (3.1.30) 

Here dfe;(i) is the number of documents in the class Cj containing the word w,(d') that 

occurs in document d'. Also, since only the presence of word in the document is being 

considered, Pr(w;(d') Id') is replaced with indicator fucntion, I( w,(d') Ed'), representing 

d' in terms of presence or absence of words w,(d'). 

3.2 Support Vector Machines (SVM) 

SYM is a maximum margin classifier that maximizes the minimum distance of 

the decision hyperplane from the positive and negative examples [6](9)[10][30). In this 

model there are 2 classes, class 1 constituting positive examples labeled as tp = + 1 and 

class 2 constituting negative examples labeled as tp = -1. The training document rip E V 

is represented as vector, x(p) of some features of that document and the test document 

d' is represented as vector x( d') of similar features of corresponding test document. The 

decision, H sv M (d'), on a test document d' as the class it belongs to is given by 

HSVM(cl) = sign(wT x(d') + b). (3.2.1) 

If the decision is + 1 the test document belongs to class 1 otherwise it belongs to class 2. 

SYM is based on the Structural Risk Minimization principle. 

3.2.1 Structural Risk Minimization 

While minimizing risk during machine learning it is desired to learn parameters 

w such that the expected value of risk, 

R(w) = J L(t, f(x, wlldF(x, t) (3.2.2) 

is minimized. Here t is the correct output or label associated with the vector x, F(x, t) 

is the probability measure defined on X x T and L(t, f(x, w)) is the loss function. Loss 
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functions are different depending upon the type of learning being done. For regression 

learning a risk function is the quadratic loss function 

R(w) = J(t - f(x, w))2dF(x, t), (3.2.3) 

for classification learning a risk function is probability of error 

R(w) = J I(f(x, w) f. t)dF(x, t). (3.2.4) 

Since the probability measure F(x, t) is unknown. risk is minimized according to the in­

ductive principle and so the empirical risk for regression learning is 

1 K 
Remp(w) = K ~::ttk - f(Xk, w))2, 

10=1 

and the empirical risk for classification learning is 

(3.2.5) 

(3.2.6) 

Here empirical risk for classification will be considered as we are dealing with classifica­

tion problem. Empirical risk is a function of training error which is the number of error 

made by the learning algorithm on training samples. Generalization error is defined as the 

number of errors made by the learning algorithm on unseen test examples. Assumption is 

made that both the training and test examples come from the same probability distribution. 

Then Structural risk minimization (SRM), which is an inductive principle, simultaneously 

minimizes the empirical risk and capacity or Vapnik Chervonenkis (VC) dimension of the 

learning algorithms [23] [30]. So if a set of approximating functions 

SI = {f(x, w); wE WI}, I = 1,2, ... , L (3.2.7) 

is given by the nested structure 

(3.2.8) 

with the increasing VC dimension given by 

(3.2.9) 
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Figure 3.1: Structural risk minimization 
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where hI is the capacity or the complexity of the lth approximating function. Then SRM 

provides a formal way of finding a model such that it has optimal complexity and minimum 

empirical risk. This is as shown in the figure above. According to this principle the acutai 

risk is given by 

R(w) S R.".p(w) + 
hlog(~ + 1) - log i 

p 
(3.2.10) 

where P is the number of training samples for which R.".p( w) is determined. h is the ca­

pacity of the learning algorithm. The inequality holds with confidence of at least 1-.". The 

actual risk is bounded by sum of the empirical risk and confidence interval. As shown in 

the figure the training error decreases monotonically for a fixed number of samples as the 

VC dimension and hence the confidence interval increases. The generalization error goes 

through a minimum in this process. Before the generalization error reaches the minimum. 

the capacity of approximating function is too small to capture all the details of training 

samples and after the generalization error reaches the minimum the capacity of the ap­

proximating function is large than required to capture the details of training samples. This 

shows a tradeoff between the training error and the complexity of approximating function. 

Therefore there is a need for regularization of the capacity of the approximation function. 

The minimum of generalization error corresponds to the condition in which the capacity 

is optimally regularized in the sense that it has enough complexity in order to capture the 

details of the training samples to ensure minimum possible empirical risk and yet is simple 

enough to generalize on the unseen test samples to ensure minimum generaIization error. 

The hyperplanes corresponding to SVM that separate the data samples with max­

imum margin fulfil this requirement in that they minimize the empirical error and at the 

same time have optimal complexity by having only a few support vectors on the margin. 

3.2.2 SVM with No Class Overlap 

For the case in which the data are separable 

(3.2.11) 

(3.2.12) 
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Figure 3.2: Maximum margin classifier without class overlap 

These can be combined into one condition 

(3.2.13) 

Here the equalities are satisfied for the examples lying on the hyperplane on the margin. 

All the other examples lie on the other side of the hyperplane. It can be shown that the 

distance between hyperplanes or the margin is 

2 
Ilwll ' 

(3.2.14) 

which means that maximizing the margin is the same as minimizing II w II. This is equivalent 

to minimizing IIwW which is equivalent to solving a quadratic programming (QP) problem 

and is given by 

ar~n~lIwW 
subject to tp(wTx(P)+b) ~ I, tp € {+I,-I}. 

(3.2.15) 

(3.2.16) 

This constrained optimization problem can be solved by introducing Lagrange multipliers 

up ~ O. with one multiplier up for each of the constraints 

(3.2.17) 
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giving the Lagrangian function 

1 p 
L(w,b,o) = 2"llw21l- LOp{tp(wTx(p) +b) -I}. 

1""1 

Minimizing the Lagrangian with respect to w and b gives 

and 

p 

w = L optpx(p) 
p=1 

p 

LOptp=O. 
1""1 

The duel representation of this problem is to maximize the function 

- PIP P 
L(o) = LOp - 2" L L OpOpltptplXpXpl 

p=1 Flpl=1 

P 

(3.2.18) 

(3.2.19) 

(3.2.20) 

(3.2.21) 

subject to op ;::>: 0, p = 1, ... P, L optp = O. (3.2.22) 
1""1 

Here the non zero Lagrangian multiplier op corresponds to those document vectors that 

are on the margin and are called Support Vectors represented by xs(P). Once w has been 

found, b can be found using b = tp - wT xs(P). 

3.2.3 SVM with Class Overlap 

For the case in which the data are not entirely separable 

(3.2.23) 

wT x(p) + b -;; -(1 - ~p), if tp = -1 (3.2.24) 

These can be combined into one condition 

(3.2.25) 
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Figure 33: Maximum margin classifier with class overlap 

Here the the slack variables ~p = 0 for those samples that are on or inside the correct 

margin. 0 < ~p ~ 1 for those samples that lie inside the margin but on the correct side of the 

decision boundary and {p > 1 for those samples that lie on the wrong side of the decision 

boundary. This way the hard margin has been transformed into soft margin through slack 

variables by allowing some examples to be misclassified. So the optimization problem now 

is that of maximizing the margin but by penalizing the outliers and so the corresponding 

QP is given by 

.rgmin~llw211+C~t t >0 
w~ 2 ~~~~-

p=1 

(3.2.26) 

subject to tp(wT x(p) + b) ~ 1- ~p. tp E {+l. -I}. (3.2.27) 

This constrained optimization problem can be solved by introducing Lagrange multipliers 

op ~ O. with one multiplier op for each of the constraints 

(3.2.28) 

giving the Lagrangian function 

1 P P P 
L(w. b.o) = 2"llw211 + CL~p - LOp{tp(wT x(P) + b) - 1+ {p} - LJlp{p. (3.2.29) 

p=1 p=1 p=1 
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Minimizing the Lagrangian with respect to w, b and ~p gives 

(3.2.30) 

(3.2.31) 

and 

ap = C - /-Lp. (3.2.32) 

The duel representation of this problem is to maximize the function 

- PIP P 
L(a) = Lap - 2 L L apClpltptplXpXpl 

p=1 p=l pl=l 

(3.2.33) 

P 

subject to 0:5 ap :5 C, p = 1, ... P, L aptp = O. (3.2.34) 
p=1 

Here the non zero Lagrangian multiplier 0 < ap < C corresponds to those document vec­

tors that are on the margin and are called Support Vectors represented by xs(P). Once w 

has been found, b can be found using b = tp - wT xs(p). 

3.2.4 Kernel for SVM 

Kernel function [32] measures the similarity among the data samples and is rep­

resented as K(x;, Xj) = .p(Xi)T .p(Xj). When the data samples are not linearly separable 

then kernels can be incorporated into SVM by transforming the data samples x into high 

dimensional feature space .p(x) to make the data samples linearly separable in the high 

dimensional feature space. Although the data samples are transformed into a high dimen­

sional feature space .p(x) yet because of the kernel functions the computation is done in 

the low dimensional feature space x without having to know the transformation .p(x). This 

significantly reduces the computational cost for training. kernel function can be easily 

incorporated in (3.2.33) as 

(3.2.35) 
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p 

subject to 0 ~ ll<p ~ C, P = 1, ... P, L: ll<ptp = O. 
p=\ 

Some of the important kernel functions are: 

Linear kernel function K(x, y) = xT y, 

Polynamial kernel Junction K(x, y) = (xT Y + 1)P, 

Gaussian kernel function K(x, y) = exp( - \ Ilx _ yI12), 
0' 

Sigmoidal kernel function tanh (axT y - b) for some a and b. 

(3.2.36) 

(3.2.37) 

(3.2.38) 

(3.2.39) 

(3.2.40) 

For training SYM. training documents. rip E V. are represented as vectors. xt{p). 

of term frequency. tfi(P). and vectors. xb(p). of binary values. xb;(p), respectively. When 

SYM is used to classify documents that have link information also [16]. vectors correspond­

ing to the documents are augmented with link information by concatenating the link vector 

with the document vector. When the term frequency of links as in (2.0.15) and (2.0.17) are 

considered as features to form the link vector. the augmented training document vector is 

given by 

xbc{p) = [xb(P); 1{d,,)cUe; I (d,,)dtedj. (3.2.41) 

When the class document frequency of links as in (2.0.19) and (2.0.21) are considerd as 

features for the link vector. the augmented training document vector is given by 

xbb(P) = [xb(P); lb(d,,)d"'; lb(d,,)dted] (3.2.42) 
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which is then used to train the SVM. The corresponding augmented test document vectors 

for the above two cases are respectively given by 

xbc(d') = [xb(d'); l(d')eile; l(d')cited] 

xbb(d') = [xb(d'); lb(d')cite; lb(d')cited] 

(3.2.43) 

(3.2.44) 

which are used to test the performance of SVM. Linear kernel has been used for training of 

SVM (33) because the data are sparse. 

3.3 K Nearest Neighbor (KNN) 

In this algorithm, K nearest documents in training set to the test document is 

found and the class with the maximum number of the nearest neighbor documents is as­

signed to the test document (8). Here each document rip E V is represented as vector, 

xt(p), ofterm frequency, tf;(p). There are total of J classes. The test document d' is rep­

resented as vector, xt(d'). of term frequency, tf.(d'). The decision. HKNN(d'). on a test 

document as the class it belongs to is given by 

HKNN(d') =a;ieC L I(xt(p) E Cj) (3.3.1) 
zt(P)eKNN 

where K N N are the K nearest neighbor documents to the test document. The distance 

between the test document and the training documents in different classes is computed as 

N 

Ilxt(d') - xt(p)ll = L(tf;(d') - tf.(P))2. (3.3.2) 
i=1 

The distances are sorted and K minimum distances are chosen which form the K nearest 

neighbors of the test document. 

For the algorithm to be able to learn class document frequency the training document is 

represented as a vector, xb(p), of binary values and the test document is represented as 

vector, xb( d'). The distance between the test document and training documents in different 

classes is then computed as 

N 

Ixb(d') - xb(p)1 = L I(xb.(d') '" xb.(p)). (3.3.3) 
i=l 
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Again. the distances are sorted and K minimum distances are chosen which form the K 

nearest neighbors of the test document. The decision, H K N N (d'), on the test document d' 

as the class it belongs to is now given by 

HKNN(d') =a;:;ca'" L J(xb(P) E Cj). (3.3.4) 
zb(p)eKNN 

3.4 Algorithms Using Class Document Frequency(dfc) 

In this section we discuss two simple algorithms just using df c. 

3.4.1 Classification Based on df c 

The algorithm. Algdh examines class document frequency vector. xcd(j). There 

are J classes so there are J vectors. xcd(j). A test document is represented as vector 

xb(d') of binary values. When a new document d' from the test collection is considered 

for classification. words from class CI are checked for their presence or absence in the test 

document. A vector of I's and O's is formed with I indicating the presence and 0 indicating 

the absence of the word in the test document. Let xb(d;) = [1 00 ...... lIT. be the vector 

corresponding to the test document for the first class CI. This means that the first word 

from CI is present in the test document where as the second and the third words from CI are 

absent in the test document. The same process is repeated for all the classes Cj, 1 :'5 j :'5 J 

and corresponding vectors xb(dj) are determined. Once all the vectors xb(dj) have been 

determined. inner product of each of these vectors is taken with the corresponding class 

vector xcd(j) which is given by 

cls; =< xb(dj), xcd(j) > (3.4.1) 

where < a, b > is the inner product of the vectors a and b. The decision. H Algd, (d'). of the 

algorithm as the class to which the test document belongs is given by. 

(3.4.2) 
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3.4.2 Classification Based on df c with High Value 

The algorithm, Algd2, examines class document frequency, df eM), of words and 

uses some heuristics so that df e; (j) of words with high value contributes more to the classi­

fication than df e; (j) of words with low value in a document. The reason for doing this is to 

assess whether words with high dfe;(j) contributes dOminantly towards the classification 

performance of an algorithm. 

This algorithm assumes vector representation, xcd(j) of class Cj. A test document is rep­

resented as vector xb(d' ). There are J classes so there are J vectors, xcd(j). Each of 

these vectors is normalized to get a normalized vector nxcd(j) = =':fJ!lu»' where 

maxi(xcd;(j)) which is the maximum value occurring in the vector, xcd(j), divides all 

the elements of that vector to give the vector nxcd(j). The elements of vector, nxcd(j) 

whose value is less than 0.1 is removed meaning that those words that occur less than ten 

percent of the documents are removed from the vector. A new vector nxcd(j0.1) with N1 

elements is formed in which the element with least value is 0.1. This process is applied to 

vectors of all classes. The vector is now represented as 

nxcd(jO.1) = [dfc;(j) dfc'.Aj) ... dMI1(jW (3.4.3) 

where dfc;"(j),l :.,; m :.,; N1 is a normalized class document frequency. For each these 

vectors, nxcd(j0.1), fraction of elements are considered as contributing significantly to 

the classification of documents. In this paper, vector elements with value of at least 0.5 

are considered as contributing 50% to the classification of training documents. All the 

elements of a vector nxcd(j0.1) with value at least 0.5 are considered to form a new vector 

nxcd(jO.5) with N2 elements in which the element having the least value is 0.5. Value of 

0.5 is considered because it gives the best classification result for the documents considered. 

It is worth noting that the size of this vector is very small compared to the size of nxcd(j) 

which is a large vector. This vector is represented as 

nxcd(j0.5) = [dfd,.(j) df~(j) '" dfc~V2(jW· 

To solve this problem, an unknown OJ has to be found such that the condition 

L~~I(exp(oj nxcd,..(jO.5))) _ 0 5 
NI - • 

Lm=l(exp(oj nxcd,..(j0.1))) 
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is fulfilled. The value of aj is found by assuming some initial value and then iterating 

until (3.4.5) is approximately satisfied. Then for each class the weight vector, WjD.1> of 

dfdm(j} ~ 0.1 is determined as follows 

WjD.! = exp(aj nxcd(jO.1)). (3.4.6) 

Now that the weight vectors, WjD.1> for different classes have been determined, test doc­

uments can be operated upon by this algorithm so that classification performance of the 

algorithm can be assessed. 

When a document d' from the test collection is considered for classification, words from 

class C! with dfdm(j} ~ 0.1 are checked for their presence or absence in the test docu­

ment. A vector of I's and O's is formed with I indicating the presence and 0 indicating the 

absence of the word in the test document Let 

xb(dD = [1 0 0 ...... W, (3.4.7) 

be the vector corresponding to the test document for the class C!. This means that the first 

word corresponding to vector nxcd(jO.1},j = I, is present in the test document where as 

the second and the third words corresponding to nxcd(jO.1},j = I, are absent in the test 

document The same process is repeated for all the classes Cj, 1 ~ j ~ J and corresponding 

vectors x(dj} are determined. Inner product of each of these vectors xb(dj} is taken with 

the weight vector WjD.! calculated for the corresponding class as in (3.4.6) 

clsj =< xb(dj}, WjD.! > . (3.4.8) 

The decision on the class to which the given test document, d!, belongs is given by 

(3.4.9) 
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3.5 Algorithms Using Class Term Frequency(tJc) 

In this section we discuss the same algorithms but using tIc. 

3.5.1 Classification Based on tfc 

The algorithm, Algt" examines class term frequency vector, xct(j). There are J 

classes so there are J vectors, xct(j). A test document is represented as vector xt(d') of 

term frequency. When a document d' from test collection is considered for classification, 

words from class c\ are checked for their presence or absence in the test document. Then a 

vector of term frequency is formed which is given by xt(di) = [tIMi) 00 ...... tlN(diW 

and which corresponds to the test document for the first class Ct. This means that the first 

word corresponding to vector xct(l) is present in the test document where as the second 

and the third words corresponding to vector xct(l) are absent in the test document. The 

same process is repeated for all the classes Cj, 1 :5 j :5 J and the corresponding vectors, 

xt(dj), are determined. Once all such vectors have been determined, inner product of each 

of these vectors is taken with the corresponding class vectors xct(j) which is given by 

cIsj =< xt(~), xct(j) > . (3.5.\) 

The decision, HAlg •• (d'), of the algorithm as the class to which the test document belongs 

is given by 

(3.5.2) 

3.5.2 Classification Based on tfc with High Value 

The algorithm, Algt2, examines class term frequency, tle;(j), of words and uses 

some heuristics so that tIe; (j) of words with high value contributes more to the classifica­

tion than tle;(j) of words with low value in a document. The reason for doing this is to 

assess whether words with high tle;(j) contributes dominantly towards the classification 

performance of an algorithm when compared with words with high dICj(j). 

This algorithm assumes vector representation, xct(j) of class Cj. A test document, d', is 

represented as vector xt(d'). There are J classes so there are J vectors, xct(j). Each 
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of these vectors is nonnaIized to get a normalized vector nxct(j) = """;:~:(j»' where 

maxi(xcti(j)) which is the maximum value occurring in the vector, xct(j), divides all the 

elements of that vector to give the vector nxct(j). The elements of vector, nxct(j), whose 

value is less than 0.1 is removed. A new vector, nxct(j0.1), with N1 elements is formed in 

which the element with least value is 0.1. This process is applied to vectors of all classes. 

The vector is now represented as 

nxct(jO.1) = [tfC;(j) tf~(j) '" tfc:VI(j)f (3.5.3) 

where tfc!m(j),l :5 m :5 Nl is a normalized class term frequency. For each of these 

vectors, nxct(j0.1), fraction of elements are considered as contributing significantly to 

the classification of documents. In this paper, vector elements with value of at least 0.5 

are considered as contributing 50% to the classification of training documents. All the 

elements of a vector nxct(jO.1) with value of at least 0.5 are considered to form a new 

vector nxct(j0.5) with N2 elements in which the element having the least value is 0.5. 

Value of 0.5 is considered because it gives the best classification result for the documents 

considered. This vector is represented as 

nxct(j0.5) = [tfcW) tf~(j) '" tfC:V2(j)f. (3.5.4) 

To solve this problem, an unknown OJ has to be found such that the condition below is 

fulfilled. 
ES~I(exp(Oj nxctm~0.5))) = 0.5. 
Em=1 (exp(oj nxctm()O.l))) 

(3.5.5) 

The value of OJ is found by assuming some initial value and then iterating until (3.5.5) is 

approximately satisfied. Then for each class the weight vector, WjD.I, of tfc!m(j) ~ 0.1 is 

determined as 

WjD.I = exp(oj nxct(jO.l)). (3.5.6) 

Now that the weight veclOrs, WjD.to for different classes have been determined, test doc­

uments can be operated upon by this algorithm so that classification petformance of the 

algorithm can be assessed. 

When a document d' from the test collection is considered for classification, words from 

class CI with tfc(,.(j) :5 0.1 are checked for their presence or absence in the test document. 
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A vector of term frequency is formed with t Ii (d;) indicating the presence and 0 indicating 

the absence of the word in the test document. Let 

xt(dD = [tIM;) 0 0 ...... tIN(d;W, (3.5.7) 

be the vector corresponding to the test document for the first class CI. This means that the 

first word corresponding to the vector nxct(jO.1),j = 1, is present in the test document 

where as the second and the third words corresponding to the vector nxct(jO.1),j = 1, are 

absent in the test document. The same process is repeated for all the classes Cj, 1 ~ j ~ J 

and corresponding vectors, xt(dj), are determined. Inner product of each of these vectors 

xt (dj) is taken with the weight vector W jD.I calculated for the corresponding class as in 

(3.5.6) 

dSj =< xt(dj), WjD.I > . (3.5.8) 

The decision on the class to which the given test document belongs is given by 

(3.5.9) 
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Chapter 4 

Simulation Results 

4.1 Data Set 

Several experiments have been performed to assess the importance of class docu­

ment frequency in document classification. The document sets considered are from Reuters-

21578 text categorization test collection [131. Cora data set [14] and Citeseer data set (14). 

Preprocessing for Reuters 21578 has been done by us to obtain the features described in 

Chapter 2. Data from Cora dataset and Citeseer dataset have already been processed. Per­

formances of the algorithms NB. PrTFIDF. KNN. SVM. Algd_l. Algd..2. AlgLl. AIgt..2 

on the features described in chapter 2 have been assessed using these three different data 

sets. 

4.1.1 Reuters-21S78 

The data set considered is from the Reuters-21578 text categorization test collec­

tion . In this collection documents are marked up with SGML (Standard generalized mark 

up language) tags, and a corresponding SGML DTD (Document Type Definition) is pro­

duced, so that the boundaries of important sections of documents are unambiguous. There 

are multiple categories with the categories overlapping each other and most plausible fea­

ture/example matrices being large and sparse. The Reuters-21578 collection consists of 22 

files. Each of the first 21 files (reut2-000.sgm through reut2-020.sgm) contains 1000 doc­

uments and the last (reut2-021.sgm) contains 578 documents and hence the name Reuters 
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21578. Each of the 22 files begins with a document type declaration line: 

<!DOCTY PE lewis SYSTEM "lewis.dtd!' > . 

Following the document type declaration line are individual Reuters articles marked up 

with SGML tags, as described below. 

Each article starts with an "open tag" of the fonn 

< REUTERSTOPICS =??LEW ISSPLIT =??CGISPLIT =?? 

OLDID =??NEWID =?? >, 

where the ?? are filled in an appropriate fashion. Each article ends with a "close tag" of the 

fonn 

< /REUTERS >. 

In all cases the 

< REUTERS> and < /REUTERS > 

tags are the only items on their line. Each REUTERS tag contains explicit specifications of 

the values of five attributes: 

TOPICS, LEWISSPLIT, CGISPLIT, OLDID, NEWID. 

These attributes are meant to identify documents and groups of documents and are used to 

define training set splits. The attribute TOPICS gives infonnation about whether or not 

the document had topic. The attribute LEW ISSPLIT gives infonnation about whether 

or not the document had heen used in training or test set in the old Reuters collection. The 

attribute CG ISS P LIT gives infonnation about whether or not the document was in train­

ing set or test set for the experiments reported in HAYES89. OLDI D gives infonnation 

about the identification number the document has in old collection and NEW I D gives 

infonnation about the identification number the document has in the Reuters 21578. 

Just as the < REUTERS> < / REUTERS> tag serves to delimit documents within a 

file, other tags are used to delimit elements within a document. < DATE> < /DATE > 

encloses date and time of the document, < M KNOT E > < / M KNOT E > notes on 

certain hand corrections that were done to the old Reuters collection. < TOPICS> 
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< ITO PIC S > encloses the list of TO PIC S categories, if any, for the document. If 

TO PIC S categories are present, each will be delimited by the tag < D > < I D >. < 
PLACES> < IPLACES > encloses the list of places, < PEOPLE> < IPEOPLE > 

encloses the list of people, and similarly for the tags, < 0 RG S > < 10 RG S >, < 
COMPANIES> < ICOMPANIES >, < UNKNOWN> < IUNKNOWN >. 
< TEXT> < ITEXT > delimits all the textual material of each story and < AUTHOR> 

< IAUTHOR > gives information about the author of the story. < DATELINE> < 

IDATELINE > gives information about the location of the story, < TITLE> < 

IT IT LE > encloses the title of the story and finally < BODY> < I BO DY > encloses 

the main text of the story. 

Reuters 21578 has five different sets of content related categories. The category 

EXCH ANGES has 39 subcategories. The category ORGS has 56 subcategories. The 

category P EO P LE has 267 subcategories. The category PLACES has 175 subcategories. 

The category TOPICS has 135 subcategories. The TOPICS subcategories have been 

used most frequently in previous research with Reuters 21578. The ten TOPICS subcat· 

egories used in this thesis are: earn. acq. money·fx, grain. crude. trade, interest, ship. corn 

and wheat. 

A small sample of the Reuters 21578 collection is shown below. 

</DOCTYPE lewis SYSTEM "lewis.dtd"> 

<REUTERS TOPICS= "NO" LEWISSPLIT= "TRAIN" CGISPLIT= "TRAINING·SET" 

OWID="1632I" NEWID= "IOOI "> 
<DATE> 3·MAR·I987 09:18:2I.26<IDATE> 

<TOPICS><lTOPICS> 

<PLACES> <D>usa<ID> <D>ussr<ID> <lPLACES> 

<PEOPLE> <lPEOPLE> 

< ORGS><lORGS> 

<EXCHANGES> <ZEXCHANGES> 

<COMPANIES><lCOMPANIES> 

<UNKNOWN> 

&#5;&#5;&#5;G T 
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&#22;&#22;&#1 ;jD288&#31 ;reute 

df BC-SANDOZ-PlANS-WEEDKILL 03-03 0095</uNKNOWN> 

<TEXT>&#2; 

<11TLE>SANDOZ PlANS WEEDKILLER JOINT VENTURE IN USSR</I7TLE> 

<DATEUNE> BASLE, March 3 - <fDATEUNE><BODY>Sandoz AG said it planned a 

joint venture to produce herbicides in the Soviet Union. The company said it had signed 

a letter of intent with the Soviet Ministry of Fertiliser Production to form the first foreign 

joint venture the ministry had undertaken since the Soviet Union allowed Western firms to 

enter into joint ventures two months ago. The ministry and Sandoz will each have a 50 pet 

stake, but a company spokeswoman was unable to give details of the size of investment or 

planned output. Reuter 

&#3; <BODY> <lI'EXT> 

<!REUTERS> 

Frequent words that do not contribute much towards text classification such as 'a' , 

'the', 'has', 'have', 'is', 'was', 'are', 'were', 'had' etc are removed from the text corpus. 

There are many morphologically related words with common root. Stemming algorithm 

[31) can be used to reduce these words to their common base. However, the benefits are 

not very obvious and so word stemming is not done for this data set. The documents in 

this data set contain hundred and ten words on average. The plot given below shows the 

distribution of the words in different classes in terms of class document frequency. This 

shows that the data vectors are sparse. 
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Figure 4.1: Class document frequency of words for different classes 

4.1.2 Cora Data Set 

The Cora data set consists of machine learning papelli. These papelli are classified 

into one of the following seven classes 

I.Case Based 

2.Genetic Algorithms 

3.Neural Networks 

4.Probabilistic Methods 

5.Reinforcement Learning 

6.Rule Learning 

7.Theory 

There are 2708 papelli in the whole corpus. After stemming and removing stop-words, 

vocabulary size is of 1433 unique words. The documents in this data set contain ninety 

words on average. The data set contains files related to word attributes and link attributes. 

The files related to word attributes are represented in the following format: 

< paper identification tag> + < word attributes> + < class label> . 

The fillit entry in each line contains the unique string identification of the paper followed 

by binary values indicating whether each word in the vocabulary is present (indicated by 1) 

or absent (indicated by 0) in the paper. Finally, the last entry in the line contains the class 

label of the paper. The file related to link attributes is represented as citation graph of the 
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corpus. Each line describes a link in the following format: 

< Identification tag of cited paper >< Identification tag of citing paper> . 

Each line contains two paper identification tags. The first entry is the identification tag of 

the paper being cited and the second entry is that of paper which contains the citation. The 

direction of the link is from right to left. If a line is represented by "paper I paper2" then 

the link is "paper2 '* paper1" meaning "paper2 cites paperl". 

The plot below shows the distribution of words in different classes in terms of 

class document frequency. This shows that the data vectors are sparse. 

-~--------------~~~~~ I ... c..s-.. .. 

.. _.-

._-,-­._-.---._-

, .. 
Figure 4.2: Class document frequency of words for different classes 

4.1.3 Citeseer Data Set 

Citeseer data set contains papers classified into one of the following six classes: 

1. Agents 

2. Artificia1lntelligence 

3. DataBase 

4. Information Retrieval 

5. Machine Learning 

6. Human Computer Interface 

The papers have been selected in such a way that in the final set every paper cites or is 

cited by at least one other paper. There are 3312 papers in the whole data set. After 
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stemming and removing stop words. the vocabulary has 3703 unique words. All words 

with document frequency less than 10 have been removed. The documents in this data set 

contain 120 words on average. The data set contains files related to word attributes and link 

attributes. The files related to word attributes are represented in the following format: 

< paper identification tag> + < word attributes> + < class label> . 

The first entry in each line contains the unique string ID of the paper followed by binary 

values indicating whether each word in the vocabulary is present (indicated by !) or absent 

(indicated by 0) in the paper. Finally. the last entry in the line contains the class label of 

the paper. The file related to link attributes is represented as citation graph of the data set 

Each line describes a link in the following format: 

< Identification tag of cited paper >< Identification tag of citing paper> . 

Each line contains two paper identification tags. The first entry is the identification tag of 

paper being cited and the second entry is that of paper which contains the citation. The 

direction of the link is from right to left. If a line is represented by "paper! paper2" then 

the link is "paper2 '* paper!" meaning "paper2 cites paper!". 

The plot below shows the distribution of words in different classes in terms of 

class document frequency. This shows that the data vectors are sparse. 

~~~---------~---r.~ .. ;=====~ ,-­._-.. .. .. 

•• 
~ 

• 
'. ~ ... ~ _.-

._---'--""'II .- -

... 
Figure 4.3: Class document frequency of words for different classes 
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4.2 Performance Evaluation 

There are different perfonnance evaluation measures used in text categorization 

[7][24] based on number of correctly and incorrectly classified documents. In this thesis 

accuracy(Ac). f-measure(Fl) and break-even point(BEP) have been used as perfonnance 

measures for text categorization algorithms. 

Let true positives. tPj. with respect to the class Cj. be the number of the correctly classified 

documents belonging to class Cj. Let false positives. fpj with respect to class Cj be the 

number of documents falsely classified as belonging to the class Cj. Let true negatives. 

tnj. with respect to the class Cj be the number of documents correctly classified as not 

belonging to the class Cj. Let false negatives. Inj. with respect to the class Cj be the 

number of documents falsely classified as not belonging to the class Cj. Then accuracy. Ac. 

of the classifier with respect to the class Cj is the ratio of number of documents correctly 

classified as belonging and not belonging to the class Cj and the total number of documents 

provided for classification. which is given by 

(4.2. I) 

Precision of the classifier with respect to the class Cj is the ratio of number of correctly 

classified documents belonging to the class Cj to the total number of documents classified 

as belonging to Cj and is given by 

tp· 
P

· _ , ,-
tPj + fpj 

(4.2.2) 

Recall of the classifier with respect to the class Cj is the ratio of number of correctly classi­

fied documents belonging to class Cj to the total number of documents actually in the class 

Cj and is given by 

(4.2.3) 

There are different ways of combining these measures for classes into a single global mea­

sure. In this thesis micro averaging and macro averaging are used as a global measures. 
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In micro averaging each class proportionally contributes to the global measure and so the 

corresponding precision and recall are respectively given by. 

Ef=l tPj (4.2.4) 

Tmic-.vg = ",J (t . + f .). 
L..J=1 PJ nJ 

(4.2.5) 

In macro averaging each class contributes equally to the global measure and so the corre-

sponding precision and recall are respectively given by. 

Ef=IPj 
Pmac-avg = J (4.2.6) 

_ E;-l Tj 
Tmac- avg - J (4.2.7) 

f-measure(Fl). is the harmonic mean of the precision and recall and is given by 

Fl = 2PT. 
P+T 

(4.2.8) 

Break-even point(BEP) is that value for which precision equals recall and is given by 

Here 

BEP=P+T. 
2 
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4.3 Results 

Reuters 21578 
Category NB PrTFlDF KNN SVM AlgU AIgL2 
earn 68.54 95.72 84.33 89 96.6 94.64 
acq 82.7 96.7 92 88 94.53 86.84 
money-fx 86 90 88.3 93 89.7 89 
grain 87 89.4 87.5 97 88.2 88 
crude 85 94 91.3 90 93.8 93.6 
trade 77 87 88 91.3 80.1 84.8 
interest 72.7 92.5 86.4 93 90 87.2 
ship 87 93.3 92 94.9 93.7 85.6 
corn 88 92 90.8 97 91.4 95.5 
wheat 92.67 92 89.4 96 93 93.3 

Table 4.1: Ac of algorithms with term frequency as features for representation of 
documents 

Reuters 21578 
Category ModNB ModPrDF KNN SVM Algd_1 Algd2 
earn 77.12 95.44 96 88.47 95.35 95 
acq 81 96.6 96.3 87.4 95.2 93.3 
money-fx 84 91 88.6 92.7 89.7 88 
grain 86 88.8 87.9 98.7 88.8 87 
crude 84 95.5 93 90 95 93 
trade 84 85.7 82.1 93.5 73 93.1 
interest 71 93.8 89.4 94 92.9 88 
ship 84.1 95.3 92.3 96 94 94.5 
corn 93.3 92.7 90.5 97.6 94.1 96 
wheat 92.4 92 92.6 96.6 93.6 91 

Table 4.2: Ac of algorithms with class document frequency as features for representation 
of documents 
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Reuters 21578 
Category NB PrTFIDF KNN SYM AlgU AIgt.2 
earn 26.25 75.86 53.82 88.89 80.75 75 
acq 8.45 84.74 57.78 88.12 79.57 53.89 
money-fx 14.74 49.12 43.48 65.85 24.52 25.15 
grain 0 10.81 12.6 30.51 15.19 18.71 
crude 11 76.03 47.9 79.42 77.17 75.09 
trade 13.77 56.65 54.31 83.19 49.44 48.5 
interest 6.45 50.29 54.05 68.12 60.58 50.17 
ship 1.34 66.06 48.92 67 26.8 18.09 
corn 1.4 31.82 22.22 45 31.94 31.58 
wheat 6.67 24.56 34.72 46.43 43.08 46.9 

Table 4.3: FI of algorithms with tenn frequency as features for representation of 
documents 

Reuters 21578 
Category ModNB ModPrDF KNN SYM Algd_1 Algd.2 
earn 37.07 78.88 80.24 89.58 78.57 80 
acq 17.49 86.84 83.77 91.86 80.56 74.36 
money-fx 18.02 51.21 39.05 65.06 28.22 42.91 
grain 8.09 2.9 23.02 17.83 26.29 18.78 
crude 18.5 78.75 73.97 81.53 77.30 77.66 
trade 13.02 56.91 54.60 86.67 42.48 70.85 
interest 14.95 68.72 63.28 65.45 64.32 32.54 
ship 2.25 70.97 30.61 72.82 31.68 45.76 
corn 9.41 37.24 36.36 51.40 33.66 28.13 
wheat 10.31 39.42 32.99 46.55 46.72 54.55 

Table 4.4: FI of algorithms with class document frequency as features for representation 
of documents 
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Reuters 21578 
Category NB PrTFIDF KNN SYM AlgLl AIgL2 
earn 30.44 77.59 60.65 89.40 82.36 78.73 
acq 10.24 85.1 58.5 88.47 80.11 54.39 
money-fx 17.72 50.53 43.81 66.29 52.33 39.65 
grain 0 31.56 18.81 41.47 30.53 28.15 
crude 14.87 76.08 49.85 79.97 77.24 75.16 
trade 14.71 64.39 55.36 83.41 64.86 53.94 
interest 7.65 51.71 57.01 68.94 64.56 54.85 
ship 1.35 71.91 49.85 70.09 46.36 18.81 
corn 1.2 35.8 23.01 46.88 37.17 32.69 
wheat 8.31 24.94 35.16 48.66 43.08 47.4 

Table 4.5: BEP of algorithms with term frequency as features for representation of 
documents 

Reuters 21578 
Category ModNB ModPrDF KNN SYM Algd_1 AIgd2 
earn 39.84 82.28 83.5 89.74 81.79 82.14 
acq 17.88 86.85 83.96 91.9 80.75 74.44 
money-fx 18.83 56.08 40.41 65.36 48.24 43.23 
grain 11.8 34.07 28.51 35.66 37.27 24.77 
crude 20.77 78.96 74.53 81.70 77.7 80.79 
trade 13.07 67.35 66.65 86.96 63.08 72.68 
interest 19.17 69.32 66.46 65.8 64.87 32.54 
ship 2.27 72.38 48.97 75.54 48.1 52.40 
corn 9.44 43.5 40.91 55.94 34.07 33.68 
wheat 11.66 39.52 36.74 49.43 46.84 65.51 

Table 4.6: BEP of algorithms with class document frequency as features forrepresentation 
of documents 
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Reuters 21578 
Measure NB PrTFIDF KNN SYM AlgU AIgt..2 
Flmic-avg 11.89 59 48.3 73 54 57 
BEPmic-avg 11.89 59 48.3 73 54 57 
Flmac- avg 9 52.6 45 66.3 48.4 52.8 
BEPmac- avg 10.5 57 47.5 68.4 56.2 54.3 

Table 4.7: Global performance measure of algorithms for term frequency as representation 
of documents 

R~uters 2 5~8 
Measure MOONB ModPrDF KNN SYM Algd_1 Algd..2 
Flmic-avg 17.9 63 56 72 57.5 62 
BEPmic-avg 17.9 63 56 72 57.5 62 
Flmac_avg 15 57.2 51.7 68.1 51 55.7 
BE P """,-avg 16.5 63 56.1 70.6 57.2 60.5 

Table 4.8: Global performance measure of algorithms for class document frequency as 
representation of documents 
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Cora Data Set 
Category SVM SVM SVM 

(words) (words+tf link) (words+dfclink) 
Case..Based 93.27 95.80 95.92 
Genetic...Algorithms 94.88 97.66 97.70 
~eural~etvvorks 85.30 92 92.09 
Probabilistic.Methods 91.24 96.18 95.73 
ReinforcementJ..eaming 95.51 97.32 97.21 
Rule...Learning 95.54 97.33 97.36 
Theory 90.72 94.06 93.91 

Thble 4.9: Ae of SVM with die, die + tl link and die + dlcJink 

Cora Data Set 
Category SVM SVM SVM 

(words) (words+tflink) ( words+dfclink) 
Case..Based 71.70 79.47 80.11 
Genetic...Algorithms 87.22 92.66 92.83 
~eural~etvvorks 81.22 88.27 86.95 
Probabilistic.Methods 77.82 87.95 86.64 
ReinforcementJ..eaming 75.38 83.03 82.15 
RuleJ..eaming 70.88 81.35 81.48 
Theory 67.04 76.01 75.92 

Table 4.10: Fl of SVM with dfe, die + tf link and die + dfcJink 
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Cora Data Set 
Category SYM SYM SYM 

(words) (words+tfJink) (words+dfcJink) 
Case-Based 68 80.02 80.60 
Genetic-Algorithms 83.35 92.72 92.92 
NeuraLNetworks 76.88 88.28 86.96 
Probabilistic..Methods 72.88 87.97 86.66 
Fleinforcemen~blg 70.64 83.07 82.26 
Flule.Leaming 65.37 81.66 81.77 
Theory 62.82 76.05 75.93 

Table 4.11: BEP ofSYM with dfe. dfe + tf .link and dfe+ dfc.link 

Cora Data Set 
Measure SYM SYM SYM 

(words) (words+tfJink) (words+dfcJink) 
Flmic-avg 73 86.5 86.3 
BEPm;'_ •• g 73 86.5 86.3 
Flmoc- avu 71.2 85.1 85.3 
BEPmac_avg 71.4 85.3 85.5 

Table 4.12: Global performance measure of SYM with die. die + tf .link and dfe + 
dfc.link 
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Citeseer Data Set 
Category SYM SYM SYM 

(words) (words+tfJink) (words+dfcJink) 
Agents 89.15 90.81 91.15 
Artificial Intelligence 90.24 91.02 91.29 
Data Base 86.83 89.30 90.06 
Information Retrieval 85.34 87.34 87.76 
Machine Learning 85.34 86.55 87.10 
Human Computer Interaction 89.12 92.35 92.75 

Table 4.13: Ae of SYM with dfe, dfe + tf Jink and dfe + dfcJink 

Citeseer Data Set 
Category SYM SYM SYM 

(words) (words+tfJink) (words+dfcJink) 
Agents 70.69 75.08 75.91 
Artificial Intelligence 28.58 33.37 34.60 
Data Base 69.09 74.86 76.48 
Information Retrieval 65.12 68.69 70.09 
Machine Learning 57.39 61.87 63.45 
Human Computer Interaction 63.02 74.67 76.08 

Table 4.14: Fl of SYM with dfe, dfe+ tfJink and dfe+ dfcJink 
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Citeseer Data Set 
Category SVM SVM SVM 

(words) ( words+tfJink) ( words+dfcJink) 
Agents 71.13 75.64 76.42 
Artificial Intelligence 29.06 34.38 35.48 
Data Base 69.12 74.93 76.56 
Information Retrieval 65.86 69.57 70.86 
Machine Learning 58.28 62.48 64.13 
Human Computer Interface 63.28 74.84 76.18 

Table 4.15: BEP ofSVM with dfe, dfe + tf Jink and dfe + dfeJink 

Citeseer Data Set 
Measure SVM SVM SVM 

(words) (words+tfJink) (words+dfcJink) 

Flmic-avg 65.6 72.6 73.3 
BEPmil:-•• g 65.6 72.6 73.3 
Flmac- avg 60.3 66.7 67.4 
BEPmac_ •• g 61 67.7 68.2 

Table 4.16: Global performance measure of SVM with dfe, dfe + tfJink and dfe + 
dfcJink 

Algorithms 
Time (sees) 

Table 4.17: Computational time of algorithms with term frequency of words 
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Algorithms 
TIme (sees) 

Table 4.18: Computational time of algorithms with class document frequency of words 

Cora Data Set 
SVM words words+tfJink words+dfcJink 
TIme (sees) 164 509 483 

Table 4.19: Computational time of SVM with dIe, dIe + tI.link and dIe + dIc.1ink 

SVM words+dfcJink 
TIme (sees) 1145 

Table 4.20: Computational time of SVM with dIe, dIe + tI.link and dIe + dIc.1ink 
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4.4 Discussion 

The perfonnances of different algorithms trained with tenn frequency and that of 

different algorithms trained with class document frequency are comparable as shown by the 

results. The perfonnance in tenns of accuracy for class document frequency shown by ta­

ble 4.2 and for tenn frequency as shown by table 4.1 are comparable. The perfonnances in 

tenns of f-measure and break even point for class document frequency shown by table 4.4 

and 4.6 and for tenn frequency shown by table 4.3 and 4.5 respectively are also comparable 

for all the categories. The global f-measure and global break even point for class document 

frequency are nearly the same as for tenn frequency as shown by tables 4.8 and 4.7 re­

spectively. All these show that class document frequency is an important learned feature 

for learning algorithms. Also these tables show that algorithms. Algd1 and Algtl perfonn 

comparably and algorithms Algd2 and Algt2 also perfonn comparably. This means that 

tenn frequency does not add much to the perfonnance compared to the class document fre­

quency. Algd2 shows that even if words with low class document frequency are removed 

the perfonnance is not much affected emphasizing the importance of high class document 

frequency. 

The perfonnances of SVM in tenns of Ac, Fl. BEP. Flmicro_ •• g• BEPmicr ...... g • 

Flmacro_.vg• and BEPmicro_ •• g as shown by tables 4.9. 4.10. 4.11 and 4.12 respectively 

for Cora data set with class document frequency of words and link infonnation in the doc­

ument is better than that with class document frequency of words in the document only. 

The same is the case for Citeseer data set as shown by the tables 4.13.4.14.4.15 and 4.16 

respectively. These tables clearly show that perfonnances with tenn frequency of link and 

class document frequency of link are comparable towards the enhancement in categoriza­

tion. This shows that class document frequency of words along with the class document 

frequency of the link further enhance the performance of learning algorithms. 

The computational time of the algorithms as shown by tables 4.17 and 4.18 for 

tenn frequency and class document frequency respectively are comparable. Also these ta­

bles show that the computational time of Algd1 and Algd2 are less compared to the other 

algorithms. The algorithms Algd1 and Algd2 are simple in that they are based on in­

ner product for classification of documents and so are computationally cheap compared to 
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other more complicated algorithms. Also the computational time of SVM on Cora data set 

and Citeseer data set for term frequency of link and class document frequency of link are 

comparable as shown by the tables 4.19 and 4.20 respectively. The algorithms have not 

been optimized to reduce the computation time depending on the features used. 
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ChapterS 

Conclusion 

5.1 Summary 

Machine learning algorithms for text categorization require some fono of numer­

ical feature representation of documents. These numerical features can be used to train the 

algorithms so that they can be used for classification of unknown documents. In our study 

of text classification literature we found a lack of proper mathematical representation for 

feature representation of documents. So chapter two discusses the mathematical feature 

representation of documents. In this representation, words are considered as features for 

representation of documents. In this model document is considered as vector of word at­

tributes and class is also considered as vector of word attributes. The document with link is 

represented as vector of word attributes concatenated with vector of link attributes. Perfor­

mances of algorithms have been assessed on teno frequency and class document frequency 

of words and links in documents. 

To assess the Perfonoance of Naive Bayes on class document frequency we mod­

ified the Naive Bayes algorithm to obtain Modified Naive Bayes algorithm. We found that 

the perfonoance of Modified Naive Bayes algorithm using class document frequency is 

comparable and to a certain extent better than that of Naive Bayes algorithm using teno fre­

quency. We also modified the Probabilistic Teno Frequency Inverse Document Frequency 

algorithm using teno frequency to Modified Probabilistic Document Frequency algorithm 

using class document frequency. We found comparable perfonoances of these algorithms. 
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The performances of Support Vector Machines and K-Nearest-Neighbor algorithm are 

comparable for term frequency and class document frequency. 

To further assess the importance of class document frequency, we developed two 

simple algorithms. Algdl is based directly upon the class document frequency of words 

whereas Algd2 is based on class document frequency of words with high value. The per­

formances of these algorithms are comparable to other machine learning algorithms in­

dicating the importance of class document frequency and emphasizing the importance of 

words with high class document frequency. Similar to the above two algorithms, we devel­

oped the algorithms Algtl and Algt2 based on the term frequency of the documents. The 

performances of Algdl and Algtl are comparable and the performances of Algd2 and Algt2 

are also comparable indicating that term frequency does not contribute much to the classifi­

cation of documents compared to class document frequency. The performance evaluations 

were done on Reuters 21578 data set. 

For the linked document, the document vector of word attributes is augmented 

with link vector of link attributes. Term frequency of link and class document frequency 

of link are the two attributes used for the construction of link vectors. SVM was used for 

performance evaluation of these features on Cora data set and Citeseer data set respectively. 

It was found that the classification performance based on combination of word attributes 

and link attributes for document representation was better than the one based only on word 

attributes for document representation. More importantly, it was found that the class doc­

ument frequency of link and term frequency of link have comparable contribution towards 

classification performance indicating that term frequency of link does not add much to the 

classification performance compared to class document frequency of the link. This verifies 

the importance of class document frequency. 

5.2 Importance of Class Document Frequency 

It is clear from the results that the learning algorithms we considered perform 

comparably whether they are trained with term frequency or class document frequency. 

The reason for this is, term frequency implicitly gives information on class document fre­

quency as a word present in different documents during the training of machine learning 
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algorithms. This is the reason that the performance of SYM does not degrade when the 

documents are represented just as binary vector because then, the only feature that SYM is 

learning is the class document frequency. The class document frequency is the underlying 

important feature that machine learning algorithms learn and is used as discriminator for 

document categorization. 

We also showed that two very simple classifiers. Algdl and Algd2 based on dfe alone per­

form similarly compared to AlgtI and Algt2. Although not the best, yet the developed 

algorithm has performance comparable to that of other complicated learning algorithms. 

When the class document frequency of the link is incorporated with that of the words there 

is further enhancement in the classification performance of the algorithm. This verifies 

that class document frequency is an important feature and should be the underlying learned 

feature during the training of machine learning algorithms for text categorization. 

5.3 Further Research Directions 

We only considered three data sets for performance evaluation of machine learn­

ing algorithms on the considered features. It would be important to know whether the 

results obtained on these data set are similar with that obtained with other data sets also. 

We used equal number of documents from each class for training and classification. Study 

could be done on performance changes of algorithms as the number of documents in dif­

ferent classes are made different. All the data sets considered by us are in English. Study 

on whether the features considered and results obtained are similar with data sets in other 

languages would provide further insight into the generality of these approaches. 

It would be important to explore whether we can find practical applications for 

algorithms developed since they are simple and computationally less costly. It would be 

important to know whether the simple algorithms could be further developed so as to make 

them more competitive compared tu powerful machine learning algorithms like SYM. The 

algorithms have not been optimized to reduce the computational time. It would be worth 

exploring whether optimization of algorithms would reduce the computational time of al­

gorithms for class document frequency as compared to that for term frequency. 
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Finally. empirical results obtained from our simulations on the data sets show that 

class document frequency is an important learned feature. Analytical results verifying the 

empirical results would strengthen our claim and so is an important direction for further 

research. 
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