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Abstract

We use the formalism of Szapudi (2004) to derive full explicit expressions for the

linear two-point correlation function, including redshift space distortions and large angle

effects. We take into account a non-perturbative geometric term in the Jacobian, which

is still linear in terms of the dynamics. This term had been identified previously (Kaiser,

1987; Hamilton and Culhane, 1996), but has been neglected in all subsequent explicit

calculations of the linear redshift space two-point correlation function. Our results

represent a significant correction to previous explicit expressions and are in excellent

agreement with our measurements in the Hubble Volume Simulation.

We measure the matter probability distribution function (PDF) via counts in cells in a

volume limited subsample of the Sloan Digital Sky Survey (SDSS) Luminous Red Galaxy

Catalog on scales from 30 h−1Mpc to 150 h−1Mpc and estimate the linear integrated

Sachs–Wolfe (ISW) effect produced by supervoids and superclusters in the tail of the

PDF. We characterize the PDF by the variance, S3, and S4, and study in simulations the

systematic effects due to finite volume, survey shape and redshift distortion. We compare

our measurement to the prediction of ΛCDM with linear bias and find a good agreement.

We use the moments to approximate the tail of the PDF with analytic functions. A simple

Gaussian model for the superstructures appears to be consistent with the claim by Granett

et al. (2008) that density fluctuations on 100 h−1Mpc scales produce hot and cold spots

with ∆T ≈ 10µK on the cosmic microwave background.
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We calculate the full density and ISW profiles of spherical superstructures. We find

that the Gaussian assumptions capable of describing N-body simulations and simulated

ISW maps remarkably well on large scales. We construct an ISW map based on locations

of superstructures identified previously in the SDSS Luminous Red Galaxy sample. A

matched filter analysis of the cosmic microwave background confirms a signal at the

3.2 − σ confidence level and estimates the radius of the underlying structures to be

55 ± 28h−1Mpc. The amplitude of the signal, however, is 2 − σ higher than ΛCDM

predictions.
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Chapter 1

The largest scales in cosmology

1.1 The cosmological principle

Our intuition about the world has been contradicted on countless occasions since the

earliest rigorous scientific observations and experiments. Simply looking further than ever

before can have the most profound effect on human knowledge and perception of reality.

The discovery of the moons of Jupiter by Galileo provided an irrefutable argument against

the central role of the Earth in the mechanics of the universe. Similar significance can

be attributed to the observations of Edwin Hubble, who discovered that distances in

the universe grew (Hubble, 1929); or to Penzias and Wilson (1965), who first detected

the single most important evidence for the Big Bang, the cosmic microwave background

radiation.

Owing to observational evidence, modern cosmology exchanged intuition for the

cosmological principles: there is no special location in the universe; and there are no

special directions. A metric compatible with this is the Friedmann-Robertson-Walker

metric. This gives a general parametrization for an ideal, homogeneous and isotropic
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universe (see, e.g.,Landau and Lifshitz, 1980):

ds2 = c2dt2 − a(t)2(dr2 + Sk(r)
2dΩ), (1.1)

with

Sk(r) =































√
k
−1
sin(r

√
k) k > 0

r k = 0

√

|k|−1
sinh(r

√

|k|) k < 0

(1.2)

k is called the curvature and a(t) the scaling factor with a(0) = 1.

Einstein’s equations in this case are reduced to the Friedmann equations which describe

the evolution of the parameters of the metric and the physical properties of the substance

that fills the universe (see, e.g., Dodelson, 2003):

( ȧ

a

)2
=

8πG

3
ρ− kc2

a2
, (1.3)

ä

a
= −4πG

3

(

ρ+
3p

c2
)

, (1.4)

where ρ is the density and p is the pressure. Since this is still underdetermined for

a(t), ρ(t), and p(t) , in addition, one has to assume an equation of state, e.g.,

p = wρ. (1.5)

Obviously, the universe is not homogeneous or isotropic, but as has been justified,

the Friedmann equations can form the basis of a perturbative approach for better

understanding the clustering of matter.
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1.2 The cosmic microwave background radiation

According to Hubble’s observation, the universe is expanding. Rewinding the thermal

history of such a universe, one encounters epochs with different prevailing physical

processes. The change can be fast, phase transition like. The latest, the recombination,

the first formation of neutral hydrogens from free protons and electrons, occurred when

the temperature of the universe was approximately 3000K, resulting in the decoupling of

photons from matter. Electromagnetic radiation from this epoch is practically unaltered

and carries information about the power spectrum of the gravitational potential in the

early universe. The existence of the cosmic microwave background (CMB) radiation did

not surprise many but it being highly isotropic provided the scientific community with a

challenge. Regardless of the origin of the CMB, its fluctuations are small: ∆T/T ∼ 10−5

(Bennett et al., 2003); and consistent with Gaussian distribution(Komatsu et al., 2005).

This implies that the early universe at recombination was close to homogeneous and

perturbation theory can be used to calculate its evolution.

In addition to being the echo of the primordial universe, the CMB acts as a device

which explores the space between the last scattering surface and our detector. The CMB

only went through subtle changes since decoupling; thus, in order to exploit the secondary

anisotropies, the latest instruments and data reduction techniques are required.

Later, in Section 1.4 the results of past and prospects of future CMB measurements

are discussed in detail.

1.3 The hydrodynamical model of clustering

The importance of radiation in structure formation decreased dramatically after

decoupling. The driving force of clustering is gravity. In the following we restrict ourselves
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to the discussion of the clustering of cold dark matter (CDM), which emerged as the winner

among the possible scenarios to explain observations. See Bernardeau et al. (2002) for

a comprehensive review of what is sketched in the following. The CDM is thought of as

a collection of non-relativistic invisible particles that interact purely through gravity. The

corresponding dynamics are within the regime of Newtonian gravity. In the expanding

universe as background, physical coordinates are usually transformed into their comoving

forms: r = a(τ)x and dt = a(τ)dτ . Where x and τ are the comoving distance and the

conformal time. In these coordinates the dynamical quantities of interest are the density

contrast δ(x, τ), the peculiar velocity u(x, τ), and the cosmological potential Φ(x, τ):

ρ(x, τ) = ρ(τ)(1 + δ(x, τ)), (1.6)

v(x, τ) = H(τ)x+ u(x, τ), (1.7)

φ(x, τ) = −dH
dτ

x2 + Φ(x, τ), (1.8)

where H = ȧ(τ)/a(τ). With these variables the Poisson equation takes the following

form:

∇2Φ(x, τ) =
3

2
Ωm(τ)H2(τ)δ(x, τ), (1.9)

where Ωm(τ) denotes the fraction of matter in the total density. To arrive at this

equation one has to make assumptions about the equation of state parameter, w in

Equation (1.5) for the components that fill the universe. Dust like matter has an w = 0,

relativistic particles have w = 1/3, while the cosmological constant can be thought of as

an exotic field with w = −1. Due to energy conservation, the adiabatic expansion sees

the energy density of radiation decrease rapidly and this component plays no role soon

after decoupling.
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If one knows the density distribution one can express the potential from Equation (1.9).

What is left is to derive the equations of motion for the density contrast. Throughout this

paper we deal with length scales that are far greater than the displacement of individual

non-relativistic particles even on cosmic time scales. This enables us to employ the long

wavelength approximation of fluid dynamics, the Euler equations. The first is the simple

Newton’s equation (ma = F ) in continuum mechanics for a pressureless fluid, while the

second is the conservation of mass:

∂u(x, τ)

∂τ
+Hu(x, τ) + (u(x, τ)∇)u(x, τ) = −∇Φ(x, τ), (1.10)

∂δ(x, τ)

∂τ
+∇

[

(1 + δ(x, τ))u(x, τ)
]

. (1.11)

By taking the divergence of Equation (1.10) and using Equation (1.9) to eliminate Φ we

arrive at a coupled set of equations for δ and θ = ∇u. It is useful to write them in Fourier

space:

∂θ(k, τ)

∂τ
+H(τ)θ(k, τ) +

3

2
Ωm(τ)H2(τ)δ(k, τ) = −

∫

dk3
1dk

3
2δD(k − k12)

×β(k1, k2)θ(k1, τ)θ(k2, τ), (1.12)

∂δ(k, τ)

∂τ
+ θ(k, τ) = −

∫

dk3
1dk

3
2δD(k − k12)α(k1, k2)θ(k1, τ)δ(k2, τ), (1.13)

where k12 = k1 + k2 and

α(k1, k2) =
k12k1
k2
1

, β(k1, k2) =
k2
12(k1k2)

2k2
1k

2
2

. (1.14)

To get the lowest order deviation from the homogeneous background, one only needs

to replace the right sides of Equation (1.12) and (1.13) with 0. To linear order, the

time component of the density contrast can be factored out: δ(x, τ) = D(τ)δ(x, 0),
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where the growing solution for D(τ) is the linear growth function. The growing mode

gradually drives the system away from the regime where linear perturbation theory is a

good approximation. The scales considered linear today are roughly below k ≈ 2π/30Mpc.

The equations above are not useful without the initial conditions. Each cosmological

model predicts a probability distribution for the initial density field which can be tested

statistically against observations. Because the size of the universe is much larger than the

scale of physical processes, the general properties of the probability distribution function

(PDF) can be inferred from a single realization. Equations (1.10), (1.11), and (1.9)

connect the initial PDF and the one that can be observed today:

Eulerian dynamics (1.15)

P [δ(x, 0)] −→ P [δ(x, τ)]

A PDF for fields can be described by its joint moments, the n-point functions; or by

the momentums of local PDF, the one-point PDF of the smoothed continuum PDF. In

the case of the latter, e.g., the equivalent of the power spectrum (or the 2-point function)

is the variance of the one-point PDF as the function of the smoothing scale. Both

approaches have advantages and this dissertation contains examples for both. The CMB

shows that the initial conditions were Gaussian (e.g., cumulants above the variance are

consistent with 0; see, Komatsu et al., 2005); thus the initial PDF is fully defined by its

power spectrum. This picture changes due to the non-linear nature of the Euler equations.

From this initial power spectrum using Equations (1.12) and (1.13), it is possible to derive

an expansion for the cumulants today. These formulae can be found in reviews, e.g. in

Bernardeau et al. (2002).
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1.4 Precision cosmology

Early observations raised more questions about the universe than they answered. The

grand unified models of particle physics generally predict magnetic monopoles and other

exotic particles at extremely high temperatures, which have not been observed. The

cosmic microwave background exhibits the properties of black body radiation, but thermal

equilibrium is impossible between causally unconnected regions according to special

relativity. To resolve the contradictions between cosmological observations and the

mainstream physical theories, various models were designed.

The most elegant and favored of them is the inflation proposed by Guth (1981).

According to his model, after the Big Bang (an initial singularity in space-time) the

universe underwent a phase of exponential expansion driven by the inflaton field. This

explains why the observed universe is causally connected and why we cannot find cosmic

relics, exotic particles. Another consequence of the inflation is the Gaussianity of

initial conditions, since all inhomogeneities were ironed out except quantum fluctuations.

According to the current state of science, neither inflation nor any event prior to

recombination can be tested directly by astronomical observations due to the opacity

of the early universe. However, gravitational waves could stream freely from an earlier

stage of the expansion. LIGO and similar detectors have been designed to intercept the

signal but their sensitivity is still below that required. See Barish and Weiss (1999) for a

popular article on this. The physics of the early universe can also be tested in accelerators.

The operation of the Large Hadron Collider is scheduled to resume in 2012 and expected

to bring us closer to a theoretical understanding of the inflation.

After the inflation ended, the universe still stayed on an expanding course described

by the Friedmann equations. As it cooled, first hadrons, then elements formed. After

recombination, the universe was filled with mostly neutral matter and photons. The
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structure that we see now has grown through gravitational clustering from primordial

fluctuations captured in the CMB. This latter, observable phase, provides data for testing

cosmological models.

ΛCDM is a model of many parameters: e.g., the primordial nucleosynthesis was

determined by the baryon-photon ratio; the spectrum of the inflaton field needs to be

parametrized; neutrino mass; to solve the Friedmann equations, one needs the the mass

ratios and the equation of state parameters of the components of the universe, etc. ΛCDM

correctly predicts the abundance of light elements, the shape of the CMB power spectrum,

and the observed large-scale structures. See, e.g., Dodelson (2003) for an introduction to

the required calculations.

Next, I give a brief, roughly chronological overview of the most relevant, recent

experiments and discoveries in the context of ΛCDM, while discussing pertinent aspects

of the model. Until the 1990s, the cosmological parameters were very loosely constrained.

The mission of COBE satellite launched the era of precision cosmology by measuring the

spectrum of the the CMB (Smoot et al., 1992). They found it to be a nearly perfect

black body with a temperature of 2.725 ± 0.002. This temperature tells us the ratio

of the size of the universe now and at recombination with 0.1% accuracy. They also

discovered the anisotropy of the radiation. Soon, other experiments such as BOOMERanG

collected enough data to measure the location of the first peak (l = 197±6) in the power

spectrum, separating modes that had grown freely before recombination from modes that

were smaller than the causally connected universe (De Bernardis et al., 2000). This put

a very tight constraint on the curvature of the universe, making it consistent with a flat

universe. It is worth rewriting the first Friedmann equation into a canonical form, which

tells less about background physics but highlights the parameters more:

( H

H0

)2
= ΩRa

−4 + Ωma
−3 + ΩΛ + Ωka

−2, (1.16)
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where H = ȧ/a and H0 is the Hubble’s constant. This equation can be thought of as

the ratio of Equation (1.3) at time t and today; the latter is denoted by subscript 0. The

contributions of the components to the total mass change with the scale factor and they

scale as ∼ a−4 for radiation (R) and ∼ a−3 for matter (m). ΩΛ represents a mysterious

substance that corresponds to Einsteins’s cosmological constant, and can be thought of

as a component with negative pressure, e.g., w = −1. Finally the curvature term from

Equation (1.3) can be cast into the remaining term in Equation (1.16). BOOMERanG

gave a constraint of Ωk = 0± 0.12 in 2000.

Due to the numerous parameters of ΛCDM, degeneracy occurs when using only a

certain aspect of the model to constrain cosmology. CMB constrains the Hubble parameter

only weakly. According to Equation (1.4), the second Friedmann equation, measuring the

acceleration of the expansion at present reveals information about the equation of state

parameter, constraining ΩM and ΩΛ. This scenario was pursued by Riess et al. (1998)

measuring the redshifts and luminosities of type 1a supernovae. They are standard candles,

which means that their absolute magnitudes are constants and their luminosity distances

can be measured independently from redshift. The universe appears to be accelerating,

as if a substance, referred to as dark energy in the scientific literature, with negative

pressure dominated. The dark energy is not necessarily the cosmological constant, its w

can be anything below −1/3, but this far this constant seems to be consistent with −1.

The precise measurement of the equation of state parameter is one of the major goals of

cosmology today. At present, we cannot exclude that w depends on the coordinate or the

time. Currently, there is no theory that predicts the correct amount of dark energy.

Studying virialized objects, galaxies and clusters, revealed that most of the mass is

invisible, not radiating in any particular waveband. This nonbaryonic matter is called

dark matter (DM). There are many candidates for DM: all kinds of exotic particles, small

black holes, etc. What is common to all is that they do not interact with light. The
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Figure 1.1 As of today, the most accurate temperature power spectrum of the CMB, the
WMAP 7-year result (Larson et al., 2011). This plot is reproduced from the WMAP Web
site.

properties of acoustic oscillations (the speed of sound) in the primordial photon-baryon

plasma depended on baryon density, so this can be inferred from the shape of the CMB

power spectrum (Figure 1.1), in particular from the ratio of the odd and even peaks.

WMAP (Bennett et al., 2003), the successor of COBE, enhanced the quality of the

measured power spectrum to resolve the degeneracy between the DM and the baryonic

matter. DM is currently believed to be ∼ 80% of the total matter. It also appears to

be non-relativistic, since fast particles cannot be tightly bound to form clumps, clusters;

thus the ”cold” adjective (CDM).

In general, a model allows more independent parameters if it is more complex. On the

other hand, for the same reason the constraints are looser, because the same data are used

to constrain more parameters. The degeneracy among the cosmological parameters is the

less in the matter distribution than in the CMB power spectrum, due to its numerous

features stemming from nonlinear evolution and redshift distortion. The quality of the

available data for LSS improved tremendously since the start of the Sloan Digital Sky

Survey (Abazajian et al., 2003). This has both imaging and spectroscopic surveys.

Spectroscopy is important for good redshift resolution and distance resolution, whereas
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gravitational lensing needs images with good quality. Gravitational clustering requires

the introduction of new cosmological parameters because the formation of galaxies, the

irreducible objects of the analysis, is not fully understood. Galaxies are assumed tracers

of an underlying, smooth density field. This can be described by a biasing scheme, which

on large scales is given in the form of an expansion:

δg(x) =
∫

d3x′b1(x, x
′)δ(x′) +

∫

d3x′b2(x, x
′)δ2(x′) +O(δ3) . (1.17)

The simplest assumption of this form is the local, linear case, which often gives a good

description on linear scales, when δ2 is small: δg(x) = bδ(x). (See, e.g., Tegmark et al.,

2004, for a measurement of the galaxy power spectra in SDSS and the authors’ conclusion

about linear and nonlinear bias.) The continuous δg(x) translates into galaxy counts in a

particular volume V by Poisson sampling:

P (N) =
λN

N !
e−λ, (1.18)

with λ = ρg(δg + 1)V and δg =
∫

V
dx3δg(x) where ρg is the average galaxy density. In a

counts in cells (CIC) analysis of the PDF one needs to correct for the systematics of the

Poisson sampling (see, e.g., Szapudi and Szalay, 1993). Similarly, in the case of measuring

the two-point function, unbiased estimators can be built with the help of Monte Carlo

simulations which span the survey volume (see, e.g., Landy and Szalay, 1993).

Since the PDF is non-Gaussian, its higher order moments cannot be derived simply

from the first two; consequently, they add to our ability to constrain cosmology.

Additionally, the homogeneity in the measured galaxy distribution breaks down, due to

the systematic effects of redshift distortions. It arises from the fact that the distance of a

galaxy is calculated from its redshift, which gauges its velocity compared to the observer.
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The velocity is converted into distance by the Hubble law. Unfortunately the peculiar

velocity of the galaxy, which is its velocity in addition to the Hubble flow, complicates

this picture. The coordinates calculated based on redshift are referred to as redshift space

coordinates. On small scales, clustering is weaker along the line of sight, because in

redshift space a virialized cluster becomes elongated. On large scales, when objects are

not virialized yet, gravitational infall squashes the correlation function along the line of

sight. The first is called the finger of God effect, the latter is the Kaiser effect (Kaiser,

1987). Since the redshift distortion is bias dependent, the resulting symmetry breaking

resolves the degeneracy between the amplitude of the power spectrum and the galaxy bias.

Unlike the CMB, the PDF is time dependent, which makes it ideal to study the expansion

history of the universe through features like the baryonic peak, which is a manifestation of

the sound horizon of the primordial photon-baryon fluid in the matter correlation function

(see, e.g., Eisenstein, 2005).

The PDF contains much more information than the CMB. However, extra information

cannot be retrieved as easily, due to the nonlinear nature of gravitational clustering.

Eulerian perturbation theory breaks down on small scales and redshift distortion makes

relatively simple expressions for higher-order moments cumbersome. Due to these

problems, only the linear power spectrum or the correlation function have been used

for cosmological parameter estimation with significant results (see, e.g., Tegmark et al.,

2004; Pope et al., 2004; Okumura et al., 2008).

On small scales, an empirical approach has emerged to grasp the analytically

intractable problem of cluster formation. The foundations are due to Press and Schechter

(1974) and the formalism has been developing ever since (e.g., Sheth and Tormen, 1999).

The Press-Schechter formula gives the number density of collapsed objects as a function

of their mass, the mass function. Parameters of the formula are calibrated by simulations

or can be approximated by solving the spherical collapse model, while its dependence on
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cosmological parameters provides a tool to constrain cosmology. For studying clustering

on small scales and the internal structure of halos, various techniques have been developed.

X-ray emission and the Sunyaev-Zeldovich effect (SZ; Sunyaev and Zeldovich, 1972) can

be used to measure the velocity dispersion of galaxies via the temperature of the cluster.

Velocity dispersion is related to the potential and the total mass of the cluster according to

the virial theorem. Weak lensing measures the potential directly based on the distortion

of the shape of background galaxies. Observations to provide data for these methods

are among the current endeavors of research. Pan-STARRS is an ongoing galaxy survey

which identifies weak lensing as one of its key project (Kaiser, 2007), whereas the next

generation of CMB probes, Planck, will measure the CMB anisotropies on small enough

scales for a significant detection of the SZ effect or the polarization (Schäfer et al., 2006;

White, 2006; Balbi, 2007).

The CMB and the PDF are not statistically independent. The aforementioned SZ

effect, the inverse Compton scattering of CMB photons in hot gas, is a good example

of a mechanism that introduces correlation between large scale structure and the CMB.

On large-scales, gravity can also have a significant effect on the trajectory or the energy

of photons. The statistics of the distortion of images is studied under the title of weak

lensing, while the change of CMB temperature due to gravitational effects is the integrated

Sachs-Wolfe effect (ISW; Sachs and Wolfe, 1967). The spectrum of the cross correlation

between the projected density of galaxies and the CMB temperature depends strongly on

the dark energy and its equation of state. The limitation of the cross correlation comes

from the large uncertainty of the projected density and small sky coverage of surveys.

This will be improved by future surveys, such as Pan-STARRS.

Precision cosmology defines its goal as measuring the parameters of ΛCDM with better

and better accuracy. One can ask: why is it important to know the size of the universe

with 0.1% accuracy? My answer would be that the size of the universe is not as important
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as other parameters of the model; e.g., the curvature, the primordial non-Gaussianity, or

the equation of state parameter of the dark energy. They are all close to a special value,

0 or −1, and there is no fundamental theory with explanation. If one day the equation

of state is measured to be different from −1 with high significance, that would render

models based on the cosmological constant obsolete likewise, or the detection of a nonzero

primordial non-Gaussianity would have serious implications for models of inflation.

1.5 Outline of dissertation

In the following Chapters, I present the results of my work between 2007 and 2010.

Chapter 2 is basically our paper titled ”Non-perturbative effects of geometry in wide-

angle redshift distortions” and published in the Monthly Notices of the Royal Astronomical

Society (Pápai and Szapudi, 2008). We discuss a full analytic treatment of the correlation

function in redshift space. We use the formalism of Szapudi (2004), which is based on

spherical harmonics and has the advantage over similar work that it produces a finite

number of terms in the expansion and its simplicity enables other researchers to use our

formulae without having to dive into the details of the calculation. Recently, Raccanelli

et al. (2010) carried out a comprehensive study of the significance of the wide-angle

corrections for the correlation function. They confirmed the accuracy and the importance

of our formulae. Our work makes easier the correct analysis of the correlation function on

scales comparable to the distance between the observer and the galaxies in the survey.

Chapters 3 and 4 discuss our paper, ”Cosmological Density Fluctuations on 100 Mpc

Scales and their ISW Effect”, which appeared in The Astrophysical Journal (Pápai and

Szapudi, 2010). This paper combines two topics. Clustering on large scales and the ISW

effect. In Chapter 3 we present a CIC measurement in the SDSS LRG sample. Our goal is

to study the PDF on the largest possible scales and look for deviations from the ΛCDM.
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We use these results in Chapter 4 to give an estimate for the temperature shift due to

ISW in the direction of the center of the largest superstructures.

In Chapter 5 we deal with the full density and ISW profile of superstructures. We

create mock ISW images from N-body simulations to test our theoretical calculations.

We create an ISW map based on Granett et al. (2008) and our theoretical ISW profile

and measure its amplitude in the CMB. This work has been submitted for publication in

The Astrophysical Journal with the title of ”ISW Imprint of Superstructures on Linear

Scales” (Pápai et al., 2010).

In Chapter 6, I summarize my results and their possible extensions in a future work.

15



16



References

Abazajian, K., J. Adelman-McCarthy, M. Ag
”ueros, S. Allam, S. Anderson, J. Annis, N. Bahcall, I. Baldry, S. Bastian, A. Berlind,
et al., 2003, The Astronomical Journal 126, 2081.

Balbi, A., 2007, New Astronomy Reviews 51(3-4), 281, ISSN 1387-6473.

Barish, B. C., and R. Weiss, 1999, Physics Today 52, 44.

Bennett, C. L., M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer,
L. Page, D. N. Spergel, G. S. Tucker, E. Wollack, E. L. Wright, et al., 2003, ApJS 148,
1.
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Schäfer, B. M., C. Pfrommer, M. Bartelmann, V. Springel, and L. Hernquist, 2006,
MNRAS 370, 1309.

Sheth, R., and G. Tormen, 1999, Monthly Notices of the Royal Astronomical Society
308(1), 119, ISSN 1365-2966.

Smoot, G., C. Bennett, A. Kogut, E. Wright, J. Aymon, N. Boggess, E. Cheng,
G. De Amici, S. Gulkis, M. Hauser, et al., 1992, The Astrophysical Journal 396, L1,
ISSN 0004-637X.

Sunyaev, R. A., and Y. B. Zeldovich, 1972, Comments on Astrophysics and Space Physics
4, 173.

Szapudi, I., 2004, ApJ 614, 51.

Szapudi, I., and A. S. Szalay, 1993, ApJ 408, 43.

18



Tegmark, M., M. R. Blanton, M. A. Strauss, F. Hoyle, D. Schlegel, R. Scoccimarro, M. S.
Vogeley, D. H. Weinberg, I. Zehavi, A. Berlind, T. Budavari, A. Connolly, et al., 2004,
ApJ 606, 702.

White, M., 2006, New Astronomy Reviews 50(11-12), 938, ISSN 1387-6473.

19



20



Chapter 2

Non-perturbative effects of geometry in

wide-angle redshift distortions

2.1 Introduction

Redshift distortions represent a curse disguised as a blessing for high precision cosmological

applications. Radial coordinates of redshift surveys contain limited phase space

information, which in principle can be used to constrain theories more than configuration

information alone; moreover, velocities are sensitive to structure outside of the survey

boundaries, which potentially translates into a larger “effective volume”. On the other

hand, redshift distortions are plagued with non-linearities, both on large and small scales,

therefore; in the worst case they could amount to poorly understood contamination of the

configuration space data. Our aim is to extend the theory of linear redshift distortions

such that large angle information could be successfully extracted from galaxy surveys.

The work of Davis and Peebles (1983) and Peebles (1980) showing that redshift

distortions affect the power spectrum spawned a lot of activity. The all-important linear,

plane-parallel limit was first calculated by Kaiser (1987), showing that the effect on the

power spectrum corresponds to “squashing”. The other well known “finger of God”
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effect dominates small scales, and is irrelevant for our present study. The Kaiser formula

has been generalized for real space soon after (e.g., Hamilton, 1993; Cole et al., 1995).

These theories have been used to analyze surveys such as the Point Source Catalog

Redshift (PSCz) Survey (Tadros et al., 1999), the Two-Degree Field Galaxy Redshift

Survey (2dFGRS; Peacock et al., 2001; Hawkins et al., 2003; Tegmark et al., 2002), and

the Sloan Digital Sky Survey (SDSS; Zehavi et al., 2002).

The distant observer approximation only holds if pairs are separated by a small angle.

This means that a large fraction of pairs needs to be thrown away from modern wide

angle redshift surveys when they are analyzed in this limit. These pairs are typically

fewer and noisier than close pairs, but if our aim is to extract as much information as

possible from a given survey, it would be desirable to include them. Hamilton and Culhane

(1996) related the “ω-transform”, a complexified Mellin-like transform, of the two-point

correlation function to that of redshifted ω-space correlation function. The resulting

spherical ωℓm expansion is approximately orthogonal to redshift space distortions. This

expansion truncated at an appropriate mode was used in Tegmark et al. (2002) to analyze

data in this transform space. The first explicit perturbation theory calculation in coordinate

space was performed in Szalay et al. (1998). The result is a simple-to-use finite expression,

but only in coordinate space: in Fourier space an infinite series will result for the redshift-

distorted analog of the power spectrum. These formulae were later further generalized

to include high-z effects in various cosmologies by Matsubara (2004). These calculations

provide essential input for the pixel-based Karhunen-Loéve (KL) or quadratic likelihood

analyses (e.g., Vogeley and Szalay, 1996; Tegmark et al., 1997), since distant observer

approximation is not valid for modern wide angle galaxy surveys. The theory has been

applied in several subsequent analyses of wide angle redshift surveys, such as Pope et al.

(2004) and Okumura et al. (2008). Despite its elegance, the theory did not agree well
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with dark matter simulations. Scoccimarro (2004) pointed out that this might be due to

non-perturbative effects.

Szapudi (2004) reanalyzed the redshift distortion problem from a group-theoretical

point of view showing that tripolar spherical harmonics provide an excellent basis for

expansion, and result in especially compact formulae. In addition, this work provided

specific coordinate systems, one of which recovers the Legendre expansion of Szalay

et al. (1998), while the other represents the same information in an even simpler two-

dimensional Fourier mode expansion. We use this formalism to take into account a term

in the Jacobian, previously neglected in all explicit calculations, to derive the full linear

redshift-distorted correlation function.

Kaiser’s original work starts with the full linear Jacobian. It contains a term negligible

for small angles that is linear in terms of the small fluctuations, and is essentially non-

linear from the point of view of geometry: it contains a 1/r prefactor. Moreover, this

term, if expanded in bipolar spherical harmonics (or any other way), would contribute

infinite coefficients. Because of the presumed subdominance due to the prefactor, and

complexity of the calculation, this term was neglected in all previous coordinate space

expressions, although it is represented in the ω-space expansion of Hamilton and Culhane

(1996). In this chapter, we introduce a hybrid approach, in which we leave the essentially

non-perturbative terms in the expansion intact; our tripolar expansion coefficients will

still contain angular variables in a specific way. As we show later, this hybrid procedure

results in a finite number of terms, and it provides significant corrections and improvement

in the agreement with simulations. In retrospect, the omission of this term, while

intuitively reasonable, is not justified, as its contribution can become important on the

most interesting scales of tens of h−1Mpcs.

In Section 2.2, we present the theory of linear redshift distortions, including results

from the geometric term in the Jacobian. We follow closely the formalism of Szapudi
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(2004), mainly focusing on the new aspects of this calculation. For reference, we print

the full result, which has about twice as many terms as previously. In Section 2.3 we

compare our results with preliminary measurements in the Hubble Volume Simulations,

and present our conclusions.

2.2 Redshift distortion of the two-point correlation

function

We use linear perturbation theory to predict the redshift-distorted two-point correlation

function in terms of the underlying power spectrum. Our calculation is based directly on

the tripolar expansion formalism of Szapudi (2004); therefore our focus will be on the

additional terms arising from the Jacobian.

The exact mapping between real and redshift space is si = xi − fvjx̂ix̂j , where the

”hat” denotes the proper unit vector, f =
Ω0.6

b
and the velocity has units which provide

that its divergence is equal to the density up to linear order. From this, one can calculate

the derivative of this matrix: ∂si/∂xk = δik +Oik(v) where O is linear in v. This results

in a linear Jacobian J = 1 + TrO = 1 − fx̂ix̂j∂ivj − 2f
xjvj
x2

. The last term in the

previous expression is usually omitted due to the fact that it scales with 1/x; i.e., it would

tend to zero for large distances, which loosely correspond to large angles as well. Closer

examination of this term shows that it is of the same order as the previous term, not

only in perturbation expansion (linear), but also in order of magnitude. Our goal is to

propagate this new term through the full calculation.
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The linear density contrast and the two-point function can be expressed in the usual

fashion.

δs(x) =

∫

d3k

(2π)3
eikjxj

[

1 + f(x̂jk̂j)
2 − i2f

x̂j k̂j
xk

]

δ(k) (2.1)

〈δs(x1)δ
∗

s (x2)〉 =
∫

d3k

(2π)3
P (k)eik(x1−x2)

[

1 +
f

3
+

2f

3
P2(x̂1k̂)−

i2f

x1k
P1(x̂1k̂)

]

[

1 +
f

3
+

2f

3
P2(x̂2k̂) +

i2f

x2k
P1(x̂2k̂)

]

, (2.2)

where P1 and P2 are Legendre polynomials and P (k) is the linear power spectrum. The

third term in each of the brackets corresponds to the extension of the previous results;

these would tend to zero in the plane parallel limit. At wide angles, the separation between

the galaxies and the distance between a galaxy and the observer are of the same order;

therefore kx is of order unity. This shows explicitly that the order of this term can be as

large as the previous, and the detailed calculation confirms this.

Next we express the angular dependence of the correlation function with tripolar

spherical harmonics.

Sl1l2l(x̂1, x̂2, x̂)

≡
∑

m1,m2,m







l1 l2 l

m1 m2 m






Cl1m1(x̂1)Cl2m2(x̂2)Clm(x̂) (2.3)

We use x for denoting x1−x2. On the right hand side one can find the Wigner 3j symbols

and we define the normalized spherical functions as Clm =
√

4π/2l + 1Ylm; these result

in simpler expressions.

25



Eq. (2.2) has become more complex with the additions; x1 and x2 appear in the

denominator resulting in the following angular dependence

x1 = g1x =
sin(φ2)

sin(φ2 − φ1)
x, (2.4)

x2 = g2x =
sin(φ1)

sin(φ2 − φ1)
x. (2.5)

Expanding these terms into tripolar spherical harmonics would yield an infinite number of

terms, but simplification arises from the fact that they can be factored out of the integrals.

All the rest can be expanded as in Szapudi (2004), resulting in finite expressions. We

introduce φ1 to denote the angle between x̂1 and x̂ and φ2 for the angle between x̂2

and x̂. We emphasize that the coefficients of this (quasi-)tripolar expansion still have an

angular dependence in the form of g1 and g2:

ξs =
∑

l1l2l

Bl1l2l(x, φ1, φ2)Sl1l2l(x̂1, x̂2, x̂). (2.6)

After performing the expansions, only a finite number of coefficients survive. For reference,

the ones from Szapudi (2004) are:

B000(x) = (1 +
1

3
f)2ξ20(x)

B220(x) =
4

9
√
5
f 2ξ20(x)

B022(x) = B202(x) = −(
2

3
f +

2

9
f 2)

√
5ξ22(x)

B222(x) =
4
√
10

9
√
7
f 2ξ22(x)

B224(x) =
4
√
2√
35

f 2ξ24(x); (2.7)
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and the new terms, the main result in this chapter, are

B101(x, φ1, φ2) = −(2f +
2

3
f 2)

√
3

g1x
ξ11(x)

B011(x, φ1, φ2) = (2f +
2

3
f 2)

√
3

g2x
ξ11(x)

B121(x, φ1, φ2) =
4
√
2√
15

f 2 1

g1x
ξ11(x)

B211(x, φ1, φ2) = −4
√
2√
15

f 2 1

g2x
ξ11(x)

B123(x, φ1, φ2) =
4
√
7f 2

√
15g1x

ξ13(x)

B213(x, φ1, φ2) = − 4
√
7f 2

√
15g2x

ξ13(x)

B110(x, φ1, φ2) = − 4f 2

√
3g1g2x2

ξ00(x)

B112(x, φ1, φ2) = − 4
√
10f 2

√
3g1g2x2

ξ02(x), (2.8)

where ξml (x) =
∫

dk/2π2kmjl(xk)P (k), with j being the spherical Bessel function.

For further elaboration we choose coordinate system a) from Szapudi (2004). This

corresponds to our previous choice of angles with φ1, φ2, with which the Sl1l2l(x̂1, x̂2, x̂) =

Sl1l2l(π/2, φ1, π/2, φ2, π/2, 0) functions can be expressed using cosines and sines only.

Using the same notation as Szapudi (2004):

ξs(φ1, φ2, x) =
∑

n1,n2=0,1,2

an1n2 cos(n1φ1) cos(n2φ2)

+bn1n2 sin(n1φ1) sin(n2φ2). (2.9)

Again, for reference, the previously calculated coefficients are

a00 =

(

1 +
2f

3
+

2f 2

15

)

ξ20(x)−
(

f

3
+

2f 2

21

)

ξ22(x) +
3f 2

140
ξ24(x)

27



20 40 60 80 100 120 140

)h/cpM(r

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

ξ

Hubble volume
lin. theory

lin. theory w/ shift

30 40 50 60 70 80 90

)h/cpM(r

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

ξ

Hubble volume w/ redshift

lin. theory w/o correction

lin. theory w/ correction

shifted lin. theory w/ correction

Figure 2.1 (Left) The measurement of the correlation function without redshift distortion of the Hubble
Volume Simulation (symbols) compared with linear theory(dashed and solid lines). The error bars
were estimated from 93 subvolumes of th Hubble Volume. Shifting the theory by 0.00081 downward,
motivated by the integral constraint, provides an excellent fit to the data. (Right) Redshift distorted
correlation function of the Hubble Volume Simulation (symbols) at constant opening angle (0.71 radian)
and while the ratio of the distances of the particles in the pair are kept fixed (at 1.57). The error bars
were estimated as before. The lines indicate the linear theories with and without the geometric terms.
The solid line is the corrected theory with a downshift of 0.0016. The integral constraint correction is
expected to be larger since the average of the two point function is larger.
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a02 = a20 =

(−f

2
− 3f 2

14

)

ξ22(x) +
f 2

28
ξ24(x)

a22 =
f 2

15
ξ20(x)−

f 2

21
ξ22(x) +

19f 2

140
ξ24(x)

b22 =
f 2

15
ξ20(x)−

f 2

21
ξ22(x)−

4f 2

35
ξ24(x); (2.10)

and the new expressions of this work correspond to

a10 =
ã10
g1

= (2f +
4f 2

5
)
1

g1x
ξ11 −

1

5

f 2

g1x
ξ13

a01 =
ã01
g2

= −(2f +
4f 2

5
)
1

g2x
ξ11 +

1

5

f 2

g2x
ξ13

a11 =
ã11
g1g2

=
4

3

f 2

g1g2x2
ξ00 −

8

3

f 2

g1g2x2
ξ02

a21 =
ã21
g2

= −2

5

f 2

g2x
ξ11 +

3

5

f 2

g2x
ξ13

a12 =
ã12
g1

=
2

5

f 2

g1x
ξ11 −

3

5

f 2

g1x
ξ13

b11 =
b̃11
g1g2

=
4

3

f 2

g1g2x2
ξ00 +

4

3

f 2

g1g2x2
ξ02

b21 =
b̃21
g2

= −2

5

f 2

g2x
ξ11 −

2

5

f 2

g2x
ξ13

b12 =
b̃12
g1

=
2

5

f 2

g1x
ξ11 +

2

5

f 2

g1x
ξ13 . (2.11)

It is worth emphasizing again that the angular dependence g1 and g2 is suppressed for

clarity in the above formulae, but it obviously carries through according to the definition

of these functions. If the equivalence of the configurations (φ1, φ2) → (π−φ2, π− φ1) is

taken into account (same pairs can be counted twice), the number of independent new

coefficients is five; i.e., the number of terms approximately doubled. Next we explore the

relevance of these calculations, and compare the theoretical predictions with measurements

in dark matter only N -body simulations.
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2.3 Discussion and summary

To understand our results, we expanded our formulae to identify leading order corrections

to the Kaiser limit.

The leading order corrections to the distant observer approximation are second order.

Using the notation
1

2
(φ1 + φ2) = φ and

1

2
(φ2 − φ1) = ∆φ, and keeping leading order

terms in ∆φ results in

ξs(φ,∆φ, x)

= a00 + 2a02 cos(2φ) + a22 cos
2(2φ) + b22 sin

2(2φ)

+

[

− 4a02 cos(2φ)− 4a22 − 4b22

]

∆φ2

+

[

− 4ã10 cot
2(φ) + 4ã11 cot

2(φ)

−4ã12 cot
2(φ) cos(2φ) + 4b̃11 − 8b̃12 cos

2(φ)

]

∆φ2+

+O(∆φ4). (2.12)

The first line of Equation (2.12) corresponds to the Kaiser formula (∆φ = 0).The next

line contains leading order corrections corresponding to previous work only, and the third

line collects leading order corrections from the geometric term in the Jacobian. These

are all of the same order, reassuring the need of keeping the geometric non-perturbative

terms. We speculate that the terms containing the cot2(φ) could be responsible for the

reported failure of the linear theory for small angles along the line of sight (Okumura

et al., 2008).

As a preliminary test of the validity of our calculations, we measured correlation

functions in the Hubble Volume Simulation (Evrard et al., 2002), using cosmological

parameters σ8 = 0.9, ns = 1, Ωm = 0.3, Ωλ = 0.7, h = 0.7, Ωbh
2 = 0.0196 and
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a volume of (3000Mpch−1)3, with and without redshift distortions. The volume of the

simulation was divided into 93 subvolumes to obtain the error bars.

The left panel of the figure shows the measured and the theoretical two-point functions

without redshift distortions. The theory agrees with the measurements only after a shift

by a constant. This is due to the “integral constraint” problem (e.g., Peebles, 1980),

possibly compounded with slight non-linear effects. This constant represents a bias which

is approximately equal to the average of the two-point correlation function over the survey

area. It can be determined several ways (see discussion below).

Next, an observer was placed at the center of each subvolume and the mapping

between real and redshift space was performed using the velocities recorded in the

simulation. The correlation function was then measured using brute force counting of

pairs in high resolution bins matching our choice of coordinate system described earlier.

The right panel of the figure presents wide angle redshift distortion theory both with and

without non-perturbative geometric corrections. The latter cannot be made to agree with

the measurements even using a constant offset due to the integral constraint. In contrast,

the theory presented in this chapter provides excellent agreement with the measurements

if the effects of integral constraint are taken into account. Note that this shift is expected

to be larger with redshift distortions simply because the two-point function is enhanced

on large scales.

Although one can simply fit this constant shift, corresponding to throwing away a

constant from the two-point correlation function (Fisher et al., 1993), we have estimated

it in two more ways: Monte Carlo integrating the theoretical expression for the correlation

function, and empirically measuring the variance of the average density on the scales

of the subsamples. All three methods are consistent with each other; the figure uses

the empirical variance over subsamples. Note that in applications, the first method, i.e.
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discarding a constant from the theory, is the most prudent procedure to follow, since

fluctuations on the scale of the full survey are not measurable.

Although these measurements are preliminary in the sense that we did not try to

span the full parameter space of wide angle redshift distortions, the results presented in

this figure appear to be typical: any other configurations we measured showed similar

improvement. Scanning the full parameter space with our present brute force two-point

correlation function code would be impractical, since we need a very large number of pairs

in each bin to ”beat down” the error bars enough that the difference between the two

theories can be reliably measured. Although we developed a fast grid-based code, we

found that at these small values of the correlation, function the pixel window function

effects become important. These are more complex for the redshift-distorted correlation

function depending on three variables than in real space. Such an effect should be modeled

very accurately before one could fully span the available parameter space.

A few simple extensions and modifications of our theory are needed for practical

applications when measuring the two-point function (Okumura et al., 2008), or when using

our results to estimate a theoretical covariance matrix for a Karhunen-Loéve (KL) analysis,

(see Pope et al., 2004, for details). If the sample is not volume limited, the redshift space

density contrast is defined through the redshift space selection function (Φ(r)). The

effect of this can be taken into account by g → 2g/α. Where α =
d log(r2Φ(r))

d log(r)
. The

local bias can be neglected if we only deal with pairs farther away from the observer than

the correlation length and motion of the local group can be transformed out by using the

frame of the cosmic microwave background. These problems have been discussed in detail

by Hamilton and Culhane (1996), and the solutions are exactly analogous in our case.

Note that the integral constraint problem does not appear in KL analysis where only

modes orthogonal to the average density are used. This is more elegant than the simple

treatment we have given here, but the essence of it is the same: regarding the constant
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in the two-point correlation function as a nuisance parameter accomplishes the same for

direct applications of our formulae.

With these caveats we conclude that our theory of wide angle redshift distortions

yielded simple-to-use explicit formulae, which agree with simulations. The corrections

to previous formulae represent a significant improvement at modest cost in complexity.

Possible generalizations along the lines of Matsubara (2004) are left for future research.
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Chapter 3

The dark matter probability distribution

function on 100Mpc scales

3.1 Introduction

On large scales, well within the domain of linear perturbation theory, there are hints

of tantalizing structure in various reports. Periodic patterns in pencil beams (Broadhurst

et al., 1990) and great walls in galaxy surveys (Geller and Huchra, 1989; Gott et al., 2005)

have been discovered. Other researchers predict the existence of large coherent structures

based on indirect evidence: hot or cold spots in the CMB (Cruz et al., 2005; Granett et al.,

2008). Since these findings seemingly reject the simple Gaussian hypothesis, they demand

scrutiny from the scientific community. This can mean the recheck of the statistical

methods employed, usually a Bayesian calculation of significance (see, e.g., Kaiser and

Peacock, 1991, regarding pencil beams) or gathering supporting or contradicting evidence

in the newly available data.

All the mentioned anomalies might signal an excess power on large scales or a

deviation from a Gaussian PDF. The two-point and three-point functions have already

been measured on various scales and compared to predictions in the largest galaxy survey,
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the Sloan Digital Sky Survey (Eisenstein et al., 2005; Okumura et al., 2008; Nichol et al.,

2006; Kulkarni et al., 2007, SDSS; ). In this chapter, we use an alternative characterization

of the PDF. If the density field is smoothed on a range of scales, the moments of its local

PDF as a function of smoothing-length contain all the information. The technique for

measuring the local PDF is termed counts in cells (CIC), which has been neglected recently

in favor of the n-point functions. We face practical difficulties that arise due to the survey

mask or redshift distortions and solve them in a novel way.

The hydrodynamical model of the universe is based on the assumption that

the observed galaxy distribution is a Poisson-sampled version of a continuous field.

Furthermore, this continuous field is a realization of a random field (see, e.g., Peebles

1980). Measuring CIC is a well-established method to estimate its PDF (see, e.g., Colombi

et al. 2000; Szapudi et al. 2000). In this chapter, we first give a brief summary of this

method and description of the data, the SDSS Luminous Red Galaxy (LRG) Catalog, and

the algorithm we use in our analysis. From CIC we derive the first few moments (the

variance, S3, and S4) of the PDF and compare them to the predictions of ΛCDM.

3.2 CIC and the PDF

In the following we deal with two random fields, one corresponding to dark matter, and

the other its biased version, the galaxy field. In our notation the terms that refer to these

are ”matter PDF”, ”matter field”, ”galaxy PDF” and ”galaxy field”.
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The matter PDF for cells is fully given by its cumulants, possibly normalized (Peebles,

1980):

ξn =
1

V n

∫

V
...
∫

V

〈

δ(x1)...δ(xn)
〉

c
dx1...dxn, (3.1)

Sn =
ξn

ξ
n−1

2

, (3.2)

where V is the volume of a cell and the subscript c refers to connected moments. These

formulae show that the cumulants of the local PDF are simply the volume averaged

n-point functions. Inverting these equations to get the n-point functions is done via

derivation. When ξ2 << 1, Sns are around unity according to perturbation theory. Thus,

S3, the skewness, and S4, the kurtosis, represent the lowest-order correction to a Gaussian

distribution. Estimating these quantities from galaxy counts can be done in two steps:

first, by using factorial moments to get the moments of the underlying galaxy PDF (see,

e.g., Szapudi and Szalay, 1993); second, by using some galaxy–dark-matter biasing scheme

to transform the galaxy PDF into the matter PDF.

Estimators for the variance (ξ2), S3 and S4 are:

ξ2 =

〈

N2
〉

−
〈

N
〉

〈

N
〉2 − 1, (3.3)

S3 =
(F3 − 3F2F1 + 2F 3

1 )/F
3
1

ξ
2

2

, (3.4)

S4 =
(F4 − 4F3F1 + 12F2F

2
1 − 6F 4

1 − 3F 2
2 )/F

4
1

ξ
3

2

. (3.5)

where

Fn =
〈

N(N − 1)...(N − n+ 1)
〉

= V n
〈

ρnV
〉

. (3.6)
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The average density of the continuous field in a volume V is denoted by ρV . The

extra terms next to the naive
〈

Nn
〉

in Equation (3.6) cancel out the effects of the

Poisson-sampling. This can be demonstrated easily for the variance. If the underlying

matter PDF is convolved with a Poisson distribution their variances are to be added:

V 2
〈

ρ2V
〉

+
〈

N
〉

=
〈

N2
〉

−
〈

N
〉2
. Ergodicity ensures that these ensemble averages can be

calculated from a single, ideally large, volume-limited survey. The caveats, arising when

we depart from the ideal case, are discussed later in this section.

In this chapter, we use cosmological parameters taken at their best-fit WMAP values

(Spergel et al., 2007). For the bias, we fit the simplest, deterministic, local, linear model:

δg = bδ. (3.7)

This is generally a good approximation on quasi-linear scales. Its validity is tested in

Section 3.6.

3.3 The data

Among the spectroscopic galaxy surveys available today, the Seventh Data Release of

the Sloan Digital Sky Survey (SDSS DR7) covers the largest volume (Abazajian et al.,

2009). The LRG sample is generally regarded as a good cosmological probe. Properties

of the LRGs can be found in Eisenstein et al. (2001). In practice, flags in the Sloan

database identify these galaxies. For CIC, one needs a volume-limited sample which can

be obtained by magnitude and redshift cuts. We restricted our LRG sample to redshifts

between 0.24 and 0.31 and k-corrected absolute magnitudes between −22.3 and −24.3

in the r band. We used values from the Photoz and SpecObjAll tables on the SkyServer

Web site. By excluding the three stripes in the Southern Galactic Cap, we were left with
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Figure 3.1 The angle-averaged density function of the data we specify in Section 3.3. The
shaded area shows the 1σ level of the Poisson noise. The plot supports the assumption
that the selection function has an insignificant radial dependence, since no large-scale
trend can be observed.

21613 galaxies. After converting redshift into comoving radial distance by using the best

WMAP cosmological parameters, the angle-averaged density appears to be uniform with

fluctuations consistent with Poisson noise, as can be seen in Figure 3.1. The selection

function of a similar data set is plotted in Figure 12 in Eisenstein et al. (2001).

3.4 The algorithm

From R.A., decl., and z coordinates, we calculated comoving Cartesian coordinates. Then

we placed a rectangular grid over the sample. Since in this arrangement cubical cells are

readily accessible, we chose to measure CIC in cubes. The survey mask (Figure 3.2),
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however, has a complex shape, usually given by spherical polygons. Holes and the irregular

boundary cause unwanted edge effects which could bias the results in a complicated way.

The mask of the SDSS DR7 spectroscopic survey is plotted in Figure 3.2.

To tackle this problem, first we took a cube-shaped region encompassing the survey.

Then we created two negatives by filling the parts in the mask and outside the survey

area with dummy galaxies from a Poisson point process; one with the average density of

the survey and one with hundred times that density. We added the first negative to the

survey to fill the holes. We measured CIC in this and in the second negative in parallel.

Since its density is large, the counts from the second negative provide a good measure of

the overlap of the cells with the survey geometry. We ignored any cell that had more than

10% of its volume outside, which corresponded to having a galaxy count in the second

negative larger than 100 × average density × volume of cell × 0.1. In this work we used

MANGLE (Swanson et al., 2008) to check whether an object was inside the mask.

3.5 The systematics

The shape of the survey and diluting the data with a Poisson point process introduce

systematic bias into our measurements of CIC. In order to assess its level, we studied

simulations. We created mock catalogs with a second-order Lagrangian (2LPT) code

(Crocce et al., 2006). We created 100 mock catalogs in 2500 h−1Mpc cubes, then we

used these to create another set of mocks by applying the mask of the spectroscopic

survey. The galaxies were downsampled in every case to match the average density with

that of the data. With these and the two negatives described in Section 3.4, we were able

to measure CIC in three different arrangements.

(i) Ideal, large, cubic-shaped simulations.
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Figure 3.2 Mask, angular selection function, of the SDSS seventh data release
spectroscopic sample. The data are presented in equatorial coordinates in HEALPix
pixelization (Górski et al., 2005) and retrieved from the MANGLE Web site (Swanson
et al., 2008).
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(ii) Variant of (i). We only took into account a cell when at least 90% of its volume lay

inside the survey area.

(iii) Dropping the galaxies which are outside the survey area and filling the empty space

with the dummy galaxies of the negative to preserve the average density. (The 90%

rule still applies.)

First, we estimated the cosmic bias due to the survey shape and volume. This question

has been studied extensively (see, e.g., Szapudi and Colombi, 1996). We measured the

variance, S3 and S4 in the first two arrangements (i) and (ii). In Figure 3.3 the ratio, δA/A,

is plotted for each of these quantities, where A is the quantity measured in arrangement

(i) . Error bars were estimated from the scatter around the average. The error of the

average is plotted, so the error of a single measurement is ten times larger. In the case

of the variance, this is the well-understood integral constraint problem and the ratio does

not exceed a couple of percent even at the largest scale. For S3, the ratio is consistent

with 1 but for S4 the difference from 1 is not negligible even at relatively small scales.

However, as we show later, this bias is still small compared to the cosmic error.

The bias, caused by the data having been diluted with a random sample, can be

understood in the case that evenly distributed holes comprise the mask. The resulting

catalog can be considered the linear combination of the Poisson sampled galaxy and a

constant field. This constant field is the random sample that fills the mask:

ρ = ρgalaxy + ρrandom. (3.8)

Subsequently the density contrast can be written as

δ = yδgalaxy + (1− y)δrandom (3.9)
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Figure 3.3 Systematic bias due to the finite volume of the survey as a function of the
cell size. The difference between ξ, S3, and S4 measured in a 25003h−1Mpc simulation,
arrangement (i), and in one with the volume and shape of the data we described in
Section 3.3, arrangement (ii). The differences are normalized by values from arrangement
(i). The uncertainty is calculated from 100 realizations. The bias in the case of ξ and S3

is consistent with 0, while for S4, it becomes more than 100% around 100h−1Mpc.
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with

y =
ρgalaxy

ρ
. (3.10)

Since δrandom is zero the moments of δ are proportional to the moments of δdata :

ξ = y2ξgalaxy, (3.11)

Sn = y−n+2Sgalaxy
n . (3.12)

We used arrangement (ii) and (iii) to express y according to Equation (3.11) and

Equation (3.12) (Figure 3.4). The measured values are consistent with our assumption,

Equation (3.10). The robustness of this simple model is due to the fact that the variance

and Sn are insensitive to small changes in the cell shape (e.g., in the case of a power-

law correlation function the Sns are constants, see Peebles 1980 or Boschan et al. 1994;

Szapudi 1998 for a study of on this). This bias can be corrected for by measuring y

directly.

As the next step we added redshift distortions to the mock catalogs. The effect on

the variance is expected to be similar to the effect on the monopole of the two-point

function. S3 and S4 are affected less according to, e.g., Hivon et al. (1995). While the

Kaiser formula (Kaiser, 1987; Hamilton, 1992) gives a good description of this in the linear

regime. The lowest order of the three-point function in Fourier space has been worked out

by Scoccimarro et al. (1999) but Fourier transforming it back to redshift space is infeasible

in general. Higher moments are gradually harder to compute. For these reasons we follow

a phenomenological approach. In Figure 3.5, the ratios of redshift and real space values

of the variance, S3, and S4 are plotted. The thick line is the predicted amplification from
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Figure 3.4 y as a function of cell size from Equation (3.11) and (3.12). y is a heuristic
value that aims to capture the systematic bias due to using dummy galaxies to fill the
holes in the survey. All curves are to match the thick solid line, which is simply the ratio
of the dummy galaxies to the total number of galaxies.
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the Kaiser formula for the variance:

ξRS = (1 + 2f/3 + f 2/5)ξ, (3.13)

with

f = Ω0.6/b, (3.14)

where the subscript RS stands for redshift space. In the simulations b is 1. In this chapter,

we assume that the effect of redshift distortion is small compared to the cosmic errors in

the case of S3 and S4, and that the variance is amplified according to Equation (3.13).

In practice, if the systematic bias is small compared to the cosmic error then it is

negligible. In Figure 3.6, the total systematic bias after corrections according to Equation

(3.11) and (3.12) and the cosmic error are plotted. It can be concluded that the proposed

corrections are sufficient to measure the variance, S3, and S4 with an error that is not

significantly different from the cosmic error. This plot also tells us that the signal-to-noise

ratio drops below 1 around 100 h−1Mpc for S3 and around 50 h−1Mpc for S4, so they

cannot be measured reliably beyond these scales.

3.6 The variance, S3, and S4

We measured CIC in the SDSS DR7 spectroscopic LRG sample and compared the

prediction of ΛCDM to our results.

For measuring the variance, S3, and S4 we followed the procedure outlined in Section

3.4 and we corrected for the systematic bias as given by Equation (3.11) and (3.12). We

determined the y parameter from the simulations.
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Figure 3.5 Effect of redshift distortion on the variance (ξ), S3, and S4 as a function of the
cell size. The redshift distortion is added to the 2LPT simulations by hand. The variance
agrees with the theoretical values within uncertainty. Due to the large variance of S4, its
inverse can explode.
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Figure 3.6 Total expected systematic bias in a survey similar to the one discussed in
Section 3.3 is plotted after corrections as discussed in Section 3.5. The shaded region
represents the cosmic error.
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Additionally, in the case of the real data one has to assume a galaxy–dark-matter

biasing scheme. We used the simplest linear local model as given by Equation (3.7). We

computed the bias parameter from fitting the variance and testing its consistency on S3

and S4. We defined the following chi-square:

χ2(b) = (ξd − ξth(b))C
−1(ξd − ξth(b)). (3.15)

Here ξd and ξth stand for the measured and the theoretical variance. For the theory, we

used the real space linear model and we assumed that it transforms to redshift space as

the monopole of the two-point function (see Equation (3.13)). The measured variance

was rescaled as in Equation (3.11) and extrapolated to present day (z = 0) using the

growth function (see, e.g., Dodelson 2003). The covariance matrix was calculated from

mock catalogs described in Section 3.5:

Cij =
1

N − 1

∑

n(ξ
n

i − ξi)(ξ
n

j − ξj), (3.16)

ξj =
1

N

∑

n ξ
n

j , (3.17)

where the superscript n refers to the nth simulation and N is the total number of

simulations, in this case 100. These simulations are in redshift space and with bias equal

to 1. After finding the minimum of the chi-square, the covariance matrix was rescaled

according to Equation (3.13).

For our fit, we used the range from 30 h−1Mpc to 150 h−1Mpc where the linear theory

is generally assumed to be valid. The result is b = 2.14+0.13
−0.14 with 1σ uncertainty, which is

consistent with findings of Okumura et al. (2008), who used a very similar data set. The

best fitting variance is plotted with the data in the upper panel of Figure 3.7. When we
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changed the boundaries of the range to 50 h−1Mpc and 130 h−1Mpc, we found that the

change in the best b was consistent, only +0.03.

We also measured S3 and S4 and applied Equation (3.12). In Figure 3.7 these are

plotted along with the prediction of linear ΛCDM (Juszkiewicz et al., 1993; Bernardeau,

1994):

bS3 =
34

7
+ γ1, (3.18)

b2S4 =
60712

1323
+

62

3
γ1 +

7

3
γ2
1 −

2

3
γ2 (3.19)

with

γi =
d logi ξ

d log ri
. (3.20)

These quantities are all derivatives of the two-point function that we calculated from the

matter power spectrum generated by CAMB (Lewis et al., 2000) from the proper input

cosmological parameters. The average of the correlation function, ξ, was calculated via

Monte Carlo simulations for cells of 30 h−1Mpc +∆, 40 h−1Mpc +∆, ..., 150 h−1Mpc

+∆, where ∆ is 0 or ±3. The γ values were estimated using discrete derivatives of ξ.

The data values from the plot are collected in Table 3.1.

We tested the goodness of the theory by calculating a covariance matrix with the

shrinkage technique (Pope and Szapudi, 2008) with a diagonal of the empirical covariance

matrix (C) as the target covariance matrix (T ):

C̃ij = λTij + (1− λ)Cij (3.21)
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r(h−1Mpc) ξ ∆ξ S3 ∆S3 S4 ∆S4

30 0.980 0.046 1.951 0.238 7.176 2.225
40 0.574 0.034 1.916 0.273 6.701 2.234
50 0.370 0.027 1.804 0.343 5.821 2.770
60 0.256 0.022 1.613 0.452 4.191 3.581
70 0.187 0.019 1.404 0.586
80 0.144 0.017 1.179 0.755
90 0.115 0.015 0.942 0.951
100 0.094 0.013
110 0.078 0.011
120 0.066 0.010
130 0.056 0.009
140 0.048 0.008
150 0.040 0.008

Table 3.1 The Numerical Values of ξ, S3, and S4 with 1σ Uncertainty. We leave the fields
blank when the signal-to-noise ratio is less than 1.

A recipe to calculate λ is given in Pope and Szapudi (2008). This method ensures that

we get a well-behaving covariance matrix. We estimated the significance for the variance,

S3 and S4 separately and jointly. The results are in Table 3.2, showing a good overall

agreement with our ΛCDM model with linear bias. Visually, S3 and S4 appear to be

slightly larger than expected on smaller scales; however, this is not statistically significant.

On large scales, there appears to be a slight excess power on 130− 150 h−1Mpc scales in

the variance (not apparent in Figure 3.7). This is not large enough to influence the ISW

effect, and its significance is only 2σ according to Table 3.2. In summary, ΛCDM is a good

fit for all the moments we measured. Note that the shrinkage estimator (λ = 0.0006)

gave identical results for the covariance matrix of the variance to that given by Equation

(3.17).
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data λ p
ξ 0.0006 0.05
S3 0.13 0.80
S4 1. 0.83

Joint 1. 0.85

Table 3.2 Testing the Linear Model with Shrinkage Techique as in Pope and Szapudi
(2008).

3.7 Discussion

We measure CIC in a volume-limited subsample of the SDSS DR7 spectroscopic LRG data.

Since there is no clear recipe for how to measure CIC best in a survey with a complicated

mask, we study simulations first. We identify three sources of systematic bias: the finite

volume effect, survey mask, and redshift distortions. We compare the variance, S3 and S4

to their values in ΛCDM. Despite the fact that we use the lowest order approximation, we

find agreement between data and prediction (Figure 3.7). However, it cannot be excluded

that more complex models can fit the data better, especially on nonlinear scales. As can

be seen from Figure 3.7, S3 and S4 differ slightly from the lowest order predictions possibly

due to nonlinearities, although this difference is not statistically significant.

We find no sign of excess power or a fat tail in the case of the PDF. However, the

data still allow large uncertainty in higher-order moments. The useful volume of the

survey needs to be increased in order to get tighter error bars. This could be achieved by

relaxing the requirements for the selection function, which introduces another source of

systematic bias, or with future spectroscopic surveys with larger sky coverage and depth,

such as BOSS and BigBOSS.
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Spergel, D. N., R. Bean, O. Doré, M. R. Nolta, C. L. Bennett, J. Dunkley, G. Hinshaw,
N. Jarosik, E. Komatsu, L. Page, H. V. Peiris, L. Verde, et al., 2007, ApJS 170, 377.

Swanson, M. E. C., M. Tegmark, A. J. S. Hamilton, and J. C. Hill, 2008, MNRAS 387,
1391.

Szapudi, I., 1998, ApJ 497, 16.

Szapudi, I., and S. Colombi, 1996, ApJ 470, 131.

Szapudi, I., S. Colombi, A. Jenkins, and J. Colberg, 2000, MNRAS 313, 725.

Szapudi, I., and A. S. Szalay, 1993, ApJ 408, 43.

58



Chapter 4

The integrated Sachs-Wolfe effect of

superstructures

4.1 Introduction

After last scattering, photons traveled through mostly neutral media. Although radiation

and matter are not strongly coupled, there is still a secondary signal due to large scale

structure on top of the primary fluctuations of the cosmic microwave background (CMB)

radiation. The integrated Sachs-Wolfe (ISW) effect (Sachs and Wolfe, 1967) accounts

for most of the secondary anisotropies for low multipoles (Hu and Dodelson, 2002). As

the expansion of the universe accelerates, gravitational potential wells and hills decay.

Photons traversing these get blueshifted or redshifted, respectively

Due to its weak signal, ISW detection is challenging. Cross-correlating galaxy surveys

with CMB maps yields results from marginally significant (Scranton et al., 2003; Afshordi

et al., 2004; Padmanabhan et al., 2005; Raccanelli et al., 2008; Sawangwit et al., 2010)

to 4.5σ detections (Giannantonio et al., 2008; Ho et al., 2008). The higher significance

was achieved by a joint analysis of surveys. Other techniques focusing on the signal from
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discrete objects can reach up to 4.5σ from a single survey (McEwen et al., 2008; Granett

et al., 2008).

The ISW effect can be a unique probe of dark energy if well-measured. From cross-

correlation measurements and theWilkinson Microwave Anisotropy Probe (WMAP) power

spectrum (Bennett et al., 2003), it has already been possible to constrain cosmological

parameters (Giannantonio et al., 2008; Ho et al., 2008). Despite the fact that the

detection of the signal from discrete objects has higher significance, they cannot be used

for parameter estimation due to the lack of simple quantitative models.

Further motivation for studying superstructures stems from anomalies in the low l

modes of the CMB (Tegmark et al., 2003; Copi et al., 2004). Inoue and Silk (2007)

calculate the effect of large, dust filled, compensated voids in the local universe. They

were successful in explaining the observed CMB anomalies but these voids, due to their

size and depth, do not fit into the widely accepted picture of clustering. They assume

extra power on large scales in the matter power spectrum. When subtracting the estimated

local ISW signal from CMB maps, Francis and Peacock (2010) found that the significance

of the anomalies decreased.

In this chapter, our principal goal is to estimate the ISW signal from large overdense

or underdense regions (superclusters or supervoids). We use the results of the CIC

measurement from the previous chapter to estimate the PDF focusing on its tail, since an

enhanced tail could explain a strong ISW signal from superstructures. Since no significant

non-Gaussianity has been found on these scales, we use a simple Gaussian model to derive

an expression for their profile and the potential. We compare the estimated ISW signal

to the results of Granett et al. (2008). More about their ISW measurement can be found

in Section 4.2 of this chapter. In Section 4.5, we summarize and discuss our results.
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4.2 The ISW signature of SDSS superstructures

(a recap of the results of Granett et al.)

Granett et al. (2008) identified large underdense and overdense regions (supervoids and

superclusters) in the SDSS DR4 photometric LRG sample. They stacked images, cut out

from the CMB, centered on the directions of 50 supervoids and 50 superclusters found

with the highest significance.

The signal is consistently present in every frequency band, so it is likely to have a

cosmological origin. In this section we scrutinize the tail of the density distribution and

the density profile of supervoids or superclusters. The question we ask is: what is the

expected ISW signal produced by the 50 objects with the highest and lowest densities in

a survey similar to the one in Granett et al. (2008)?

In order to answer this, we have to have an estimate for tail of the matter PDF. We

show that by using simple analytic functions to approximate the galaxy PDF this estimate

can be made robustly for our purposes. We also revise the way in which the ISW signal

from these density extrema is estimated.

4.3 The matter PDF

If the galaxy PDF is known, a simple convolution with a Poisson-distribution gives the

galaxy counts:

P (N) =
∫

〈

N
〉N

(1 + δg)
N

N !
e−

〈

N
〉

(1+δg)P (δg)dδg. (4.1)

On large scales one can approximate P (δg) as Gaussian, lognormal or second-order

Edgeworth expansion (see, e.g., Kim and Strauss 1998; Szapudi and Pan 2004). The first
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two depend on the variance only, whereas for the Edgeworth expansion we need S3 and

S4 as well:

PG(δg) =
1√
2πσ

e−δ2g/2σ
2

(4.2)

PLN(δg) =
1√
2πσ

e−(ln(1+δg)+σ̃2/2)2/2σ̃2
/(1 + δg) (4.3)

PE(δg) =
1√
2πσ

e−δ2g/2σ
2(

1 +
σS3

6
H3(δg/σ)

+
σ2S4

24
H4(δg/σ) +

10σ2S2
3

720
H6(δg/σ)

)

, (4.4)

where σ2 = ξ, σ̃2 =
√

(1 + ξ) and Hi is the ith Hankel-function. The above

approximations are plotted in Figure 4.1 for galaxy counts in cubes with a linear size

of 100 h−1Mpc from the spectroscopic LRG sample. The best match around the tails is

the Edgeworth expansion, whereas around the mean all of these approximations provide

qualitatively similar results. The left panel of Figure 4.1 shows the underlying continuous

galaxy PDFs, the deconvolved CIC distribution, whereas the right shows them convolved

with the Poisson-distribution and the galaxy counts.

To estimate the density of the 50 supervoids and 50 superclusters of a certain size,

we generated Vsurvey/Vcell random numbers with the PDFs given above, where Vsurvey

refers to the volume of the survey and Vcell refers to the volume of a superstructure. This

approximation slightly overestimates the number of independent cells. Then we stored the

lowest and highest 50 of the numbers. Repeating this several times gives the distribution

of the extrema. This method, however, is too slow for calculating a covariance matrix

from hundreds of simulations. Since we only deal with linear ISW here, as we explain

in the next subsection, we need only the mean of the extrema rather than their whole
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Figure 4.1 In the left panel, three analytic functions approximating the galaxy PDF for
cells of 100 h−1Mpc are plotted (for details, see the text). In the right panel, these are
plotted again convolved with a Poisson noise (Equation (4.1)). The data are the solid
line in the right panel.
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distribution. A satisfactory approximation for the mean in the case of voids is:

δg =
∫ δmax

−∞
P (δg)δgdδg, (4.5)

where δmax is given by 50Vcell/Vsurvey =
∫ δmax

−∞
P (δg)dδg. For clusters, the limits of the

integration change to
∫

∞

δmax
. In our tests we found the difference to be about a few

percent. As we use the linear bias model, a further division by the bias yields δ.

4.4 The profile of supervoids and superclusters and

the ISW Signal

4.4.1 The average profile of superstructures

In general, the ISW effect is determined by an integral along the path of a CMB photon

(Sachs and Wolfe, 1967):

∆T

T
= − 2

c2

∫

dτ
∂Φ(r(τ), τ)

∂τ
, (4.6)

where τ denotes the conformal time.

According to Rudnick et al. (2007), a simple estimate of the linear ISW effect, an

underdense or an overdense spherical region at redshift z causes a

∆T

T
≈ Ωm

( rc
c/H0

)3
(1 + 2z)(1 + z)−2δ (4.7)

temperature shift at its center on the CMB, where rc is the comoving radius of the sphere.

In the derivation, the authors approximated the potential with a top hat which implies a

compensated void or cluster. Here, instead, we propose a profile motivated by Gaussian
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statistics. For a spherically symmetric object, the Newtonian potential can be calculated

easily as:

Φ(r) = −3Ωm

8π

(

H0

c

)2
∫

∞

r

M(r̃)

r̃2
dr̃, (4.8)

where M(r) = 4π
∫ r

0
dr̃r̃2δ(r̃). The density contrast at distance r from the center can

be obtained with the condition that the average density inside rc is known:

P (δin) =
1

√

2π
〈

δ2in
〉

exp

(

− δ2in
2
〈

δ2in
〉

)

, (4.9)

P (δ(r), δin) =
1

√

2π|C|
exp

(

− 1

2
~δC−1~δ

)

, (4.10)

P (δ(r)|δin) = P (δ(r), δin)/P (δin) (4.11)

where
〈

...
〉

refers to unconditional ensemble averaging and δin is the average density

measured inside rc. To simplify the notation, we use ~δ = (δ(r), δin) and C =
〈

~δ⊗ ~δ
〉

. In

practice,
〈

...
〉

can be computed with Monte Carlo simulations robustly. From these, the

expected density is

〈

δ(r)
〉

δin
=

〈

δ(r)δin
〉

〈

δ2in
〉 δin. (4.12)

See the Appendix for details. This profile is not compensated inside a finite radius.

4.4.2 The uncertainty of the profile and the ISW effect

It is useful to calculate the uncertainty of the profile in order to get an estimate of the

uncertainty of the potential and the ISW effect. We would like to point out that for a

correct treatment of the potential one should drop the assumption of spherical symmetry.
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We chose to optimize the accuracy and speed by keeping the spherical approximation.

We use the Gaussian model as before:

P (δ(r1), δ(r2), δin) =
1

√

2π|C3|
exp

(

− 1

2
~δ3C

−1
3
~δ3

)

, (4.13)

P (δ(r1), δ(r2)|δin) = P (δ(r1), δ(r2), δin)/P (δin), (4.14)

where ~δ3 = (δ(r1), δ(r2), δin) and C3 =
〈

~δ3 ⊗ ~δ3
〉

. From this, the covariance between

shells at r1 and r2 is:

Cov(r(1), r(2)) =
〈

δ(r1)δ(r2)
〉

δin
−

〈

δ(r1)
〉

δin

〈

δ(r2)
〉

δin

=
1

〈

δ2in
〉

[

〈

δ(r1)δ(r2)
〉〈

δ2in
〉

−
〈

δ(r1)δin
〉〈

δ(r2)δin
〉

]

, (4.15)

In the upper panel of Figure 4.2, we plot M(r) for rc = 100/(4π/3)1/3h−1Mpc. The

curve is normalized so that M(rc) =
4πr3c
3

. The error bars are:

∆M(r) =
√

(4π)2
∫ r

0

∫ r

0
Cov(r1, r2)r21r

2
2dr1dr2 . (4.16)

On the lower panel of Figure 4.2, we plot the potential of such an object as in Equation

(4.8), along with the top hat potential from Rudnick et al. (2007).

Since the potential is only Equation (4.8) and in linear theory its time dependence is

relatively simple Φ(r, τ) = Φ(r)
D(τ)

a(τ)
, it is straightforward to integrate Equation (5.5)

numerically. In our calculations we placed the density fluctuation at the median redshift

(z = 0.53) of the SDSS photometric LRG survey so that we can compare our result

to actual measurements (Granett et al., 2008). In Figure 4.3, we plot ∆T versus the
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Figure 4.2 In the upper panel, M(r) = 4π
∫ r

0
drr2δ(r) is plotted for a supercluster with

δin = 1 for rc = 62 h−1Mpc. In the lower panel, we plot the potential (dashed line) and
the top hat potential (see the text for details).

comoving radius (rc) of the superstructure, we also plot ∆T according to Equation (4.7).

Here, we used δin = 1. It is clear that Equation (4.7) underestimates the ISW effect.

In Figure 4.4, we used Equation (4.5) to calculate δin. The PDF was measured in an

SDSS LRG subsample at z = 0.28 median redshift (see 3.3 for details) and scaled to the

subsample described in Granett et al. (2008), which is located at z = 0.53. This means

the scaling of the variance, S3 and S4 according to linear dynamics. The value for Vsurvey

came from the properties of the survey in Granett et al. (2008). All three assumptions

in Equations (4.2–4.4) about the density distribution give similar results. We also plot

an estimate based on raw data without deconvolution. The dashed line is the ISW effect

according to Equation (4.7). We plotted both the supervoids and superclusters. The
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Figure 4.3 ∆T for a photon traveling through the center of a supervoid at redshift 0.52
with δin = 1 against its radius is plotted (solid line). The dashed line comes from Equation
(4.7), an approximation using compensated profile.

intrinsic fluctuations of the matter density (see Figure 4.3) and the uncertainty of the

tail of the PDF add up. On the horizontal axis, the scale is the linear size of the cell we

measured CIC in.

4.5 Discussion

We used the the first few moments of the matter PDF from Chapter 3 and give an

estimate of the linear ISW effect owing to the largest density fluctuations on 100 h−1Mpc

scales.
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Figure 4.4 Expected ISW effect from the average of 50 supervoids and superclusters from
a survey similar to the SDSS DR4 photometric LRG sample. The dashed line is Equation
(4.7). In each panel, we use a different approximation of the matter PDF.
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We approximate the tail of the matter PDF with analytic functions to estimate the

distribution of the density extrema. We calculate the expected radial profile of supervoids

and superclusters with the condition that their average density inside a sphere is known.

We estimate the average linear ISW signal of the most significant 50 from each in a

realistic survey. As can be seen from Figure 4.4, it is plausible that linear ISW can

produce the results presented in Granett et al. (2008). They used a compensating top

hat filter with inner radius of 4◦ to get 7.9± 3.1µK for clusters and −11.3± 3.1µK for

voids. In comparison, our estimates for the temperature at the center of the same stacks

from Figure 4.4 are 5.5 ± 3.5 and −5.5 ± 3.5 in the case of a Gaussian PDF. We plot

the linear size of a cube on the x-axis. The projection of a sphere with the same volume

gives the corresponding angle. In case of L = 150 h−1Mpc, this is 3.8◦. Although our

errors originate from the fluctuations of the ISW signal, theirs come from the primary

CMB anisotropies. Thus the errors are independent and our calculation is fully consistent

with Granett et al. (2008). Our estimate is robust. It is not affected significantly by the

details of the matter PDF. The error bars can be tightened if the volume of the survey

is larger and if more images are stacked. The former would reduce the cosmic error on

the scales we study, whereas the latter would give a more accurate measurement of the

average profile.

We take one step toward cosmological parameter estimation with calculating the

expected linear ISW signature of supervoids and superclusters. The next step can be

to depart from the spherically symmetric model that we use for the sake of simplicity.

Anisotropic fluctuations in the matter density around the center of a superstructure might

give a quantitatively different error estimate. We also ignore any nonlinearities. We work

with linear scales but we also probe the highest and lowest densities. The latter calls for

a biasing model more complex than linear. We also ignore the nonlinear ISW, the Rees–

Sciama effect (Rees and Sciama, 1968). It has been shown that it is small compared to

70



the linear part at low redshifts (see Cai et al. 2009, 2010). Another possible improvement

is to use general relativity instead of Newtonian gravity. A model of compensated voids

based on general relativity is discussed in Inoue and Silk (2007) and Inoue et al. (2010).

We also ignore the correlation between the objects.

Our result suggests that the void needed to produce detectable anomalies on the

CMB is smaller than previously estimated. The CMB Cold Spot (Cruz et al., 2005) has

been considered consistent with a compensated void having δ = −0.3 and a radius of

200 h−1Mpc by Sakai and Inoue (2008) in agreement with the heuristic argument of

Rudnick et al. (2007). From Figure 4.3, one can see that a void of similar size needs

to have a much less significant underdensity in our Gaussian, non-compensated model.

The signal from a top-hat potential is less than half of the signal of a realistic void. This

makes the detection of such voids harder in today’s sparse catalogs (see Granett et al.,

2010; Bremer et al., 2010).
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Chapter 5

Measurement of the full integrated

Sachs-Wolfe profile of spherical density

fluctuations

5.1 Introduction

Since the first sky maps of the Wilkinson Microwave Anisotropy Probe (WMAP) were

published, there have been claims for the existence of circular features (spots and rings)

in the cosmic microwave background (CMB) (Cruz et al., 2005; Granett et al., 2008a).

Their origin and statistical significance are still debated. Sources, such as foreground

contamination, the integrated Sachs-Wolfe (Sachs and Wolfe, 1967; ISW) effect, and the

more exotic conformal cyclic cosmology, or cosmic texture, have been considered viable

candidates to explain circular CMB anomalies (Rudnick et al., 2007; Inoue et al., 2010;

Cruz et al., 2007; Gurzadyan and Penrose, 2010). A notable feature is the cold spot

(Cruz et al., 2005), which has a mean temperature of −70µK in a 5◦-radius aperture.

Additionally, 10µK hot and cold spots have been identified on 4◦ scales associated with

super structures (Granett et al., 2008a).
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In this chapter, we focus on the ISW effect and investigate whether it is possible

that large spherical fluctuations (supervoids and superclusters) in the dark matter field

produce the aforementioned features in the CMB. The large-scale ISW effect is expected

in a universe with accelerated cosmic expansion arising either from a dark energy term

in flat cosmological models, or from spatial curvature. The effect is sensitive to both

the expansion history and the rate of structure formation and provides constraints on

alternative cosmological models (e.g. Giannantonio et al., 2008b) as well as initial non-

Gaussianity (e.g. Afshordi and Tolley, 2008). Cross correlating a galaxy catalog and a

CMB temperature map is the standard way of studying the ISW signal and it has an

extensive literature (Scranton et al., 2003; Afshordi et al., 2004; Padmanabhan et al.,

2005; Raccanelli et al., 2008; Giannantonio et al., 2008a; Ho et al., 2008; Sawangwit

et al., 2010). Our work is similar considering that what we measure is related to the

correlation between the dark matter and the CMB. However, we only focus on parts of

the sky where the signal is expected to be large, regions corresponding to supervoids and

superclusters. Because reports (Cruz et al., 2005; Granett et al., 2008a) indicate that

the scale of these regions is beyond nonlinear scales, our model for their average density

profile and ISW imprint is derived from the statistics of the linearly evolving primordial

Gaussian density field (Pápai and Szapudi, 2010). This is in contrast with Inoue et al.

(2010), who assumed a top hat density profile, which is the asymptotic final state of a

void with steep initial density profile (Sheth and van de Weygaert, 2004).

We use the publicly available Hubble Volume Simulation of the Virgo Supercomputing

Consortium (Colberg et al., 2000; HVS) to test the Gaussian model. This is the N-body

simulation with the largest volume, which is relevant considering that the gravitational

potential is correlated more strongly than the density. We simulate ISW maps by ray

tracing through the potential and calculating the linear part of the ISW effect. These
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are compared to partial ISW maps generated from sets of spherical regions based on our

model.

After gaining some confidence by studying simulations, we create an ISW map from

real data. We select locations on the sky based on Granett et al. (2008a). They compiled

a list of supervoids and superclusters found in the Sloan Digital Sky Survey (SDSS)

Luminous Red Galaxy (LRG) sample. The list can be found in Granett et al. (2008b). We

build an ISW map by placing the theoretical profiles to the given R.A., decl. coordinates.

This map is fitted to a WMAP temperature map.

The structure of the Chapter is the following: in Section 5.2 we measure the expected

density and ISW profile of spherical dark matter fluctuations in N-body simulations; in

Section 5.3 we apply the matched filter technique to detect the signature of superstructures

in the CMB; in Section 5.4 we discuss our results and views of the relationship between

the linear ISW effect and circular features on the CMB.

5.2 Profiles in simulations

In this section, we calculate the full expected density profiles and ISW imprints of spherical

overdensities and underdensities based on Pápai and Szapudi (2010) and compare them

with measurements from the HVS.

5.2.1 Density profiles of superstructures in N-body simulations

According to Pápai and Szapudi (2010) and Chapter 4, if the average density contrast

in a Gaussian random field inside a sphere of radius R is given, we expect the density
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contrast at radius r from its center to be:

〈

δ(r)
〉

δin(R)
=

〈

δ(r)δin(R)
〉

〈

δ2in(R)
〉 δin(R), (5.1)

where
〈

...
〉

stands for ensemble averaging, δ(r) is the density contrast at radius r and

δin(R) is the average of δ inside radius R. In the appendix of Dekel (1981), the author

derived a similar formula for a single, point-like location with given density, which is

the R → 0 limit. Equation (5.1) is essentially the two-point function multiplied by a

normalization constant. A more general calculation for the density profile around local

maxima in a Gaussian random field was carried out by Bardeen et al. (1986).

In order to measure
〈

δ(r)
〉

δin(R)
, one needs to select regions with δin(R) and calculate

the average over these regions. However, according to Equation (5.1),
δ(r)

δin(R)
gives an

unbiased estimator of

〈

δ(r)δin(R)
〉

〈

δ2in(R)
〉 , the shape of the profile:

〈 δ

δin

〉

=
∫

dδdδin
δ

δin
P (δ|δin)P (δin)

=

〈

δδin
〉

〈

δ2in
〉

∫

dδinP (δin) =

〈

δδin
〉

〈

δ2in
〉 , (5.2)

where we shorten δ(r) and δin(R) to δ and δin. We also use the fact that, by definition,
〈

δ(r)
〉

δin(R)
=

∫

dδδP (δ|δin) and

〈

δδin
〉

〈

δ2in
〉 is independent of δin. The argument above

shows that it is unnecessary to search for spheres with a certain δin(R) to verify Equation

(5.1). In the rest of this subsection, we deal with the integral of δ(r) instead of δ(r),

because the former is measurable directly:

M(r) = 4π
∫ r

0
drr2δ(r). (5.3)
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The linear size of the HVS is 3000h−1Mpc. We chose to place spheres at 253

evenly spaced coordinates. We counted galaxies in concentric spheres with radii of

10h−1Mpc, 20h−1Mpc, ..., 160h−1Mpc and subtracted the average to get M(r). We

normalized this as
M(r)

M(R)

4π

3
R3 and calculated the average of the 253 instances to get

an estimate of the integral of Equation (5.2). As R changes, technically, by weighting

M(r) differently, one can get the profile of linear superstructures of different sizes. A

nuisance that we have to deal with, is that the estimator given by Equation (5.2) is

unstable because δin can be arbitrarily small. The ratio of two Gaussian variables with

zero means has a Lorentzian distribution, which has an undefined variance. This problem

can be avoided if cases in which |δin| is under a threshold are ignored. This constraint

leaves the estimator unchanged as can be seen from Equation (5.2). We chose the

threshold based on the variance of δin in the particular catalog, e.q., 2
√

〈

δ2in
〉

. The result

is not sensitive to the exact choice but the right choice can decrease the variance of the

estimator substantially. In Figure 5.1 we plotted the measured profiles and their theoretical

counterparts for R = 60h−1Mpc in the upper panel and for R = 100h−1Mpc in the lower

panel. We obtained the error bars by repeating the measurement on one hundred mock

catalogs generated with a second order Lagrangian (2LPT) code (Crocce et al., 2006).

The mocks were set up to have the same cosmological parameters, size and density as

the HVS. To calculate the theoretical profiles of Equation (5.1), we used a matter power

spectrum calculated by CAMB (Lewis et al., 2000). The measured profiles, both in 2LPT

and the HVS, appear to be in good agreement with theory within the uncertainty up to

400h−1Mpc, the largest radius in our measurement.
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Figure 5.1 The integral of the spherically averaged density profile measured in the HVS
and 100 2LPT simulations. Linear theory given by Equation (5.2) appears to be a good
approximation.
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5.2.2 The ISW imprints of superstructures

In Pápai and Szapudi (2010), the ISW effect in the direction of the center of a

superstructure was calculated. This was done simply by calculating the spherically

symmetric potential of the superstructure, then computing the following integral along

the path of the CMB photon (Sachs and Wolfe, 1967):

Φ(r) = −3Ωm

8π

(H0

c

)2 ∫∞

r

M(r̃)

r̃2
dr̃, (5.4)

∆T

T
= − 2

c2
∫

dτ
∂Φ(r(τ), τ)

∂τ
, (5.5)

where τ denotes conformal time. Similarly, this calculation can be carried out for any

direction easily in order to predict the full ISW profile. In linear theory, the potential at a

a particular redshift is just Φ(r, z) = Φ(r, z = 0)
D(z)

a(z)
. We leave the study of nonlinear

corrections for future work. Because these integrals are linear, the linear ISW signal is

predicted to be proportional to the average density of the superstructure, δin. In this

chapter as in the previous one, we place the centers of the superstructures at z = 0.52,

which is the median redshift of the galaxy catalog we use in Section 5.3.

5.2.3 Fluctuations in the potential on the largest scales and the

ISW profile

To test the ISW profile, we traced rays through the HV simulation along the z-axis. We

calculated δ on an 8003 grid and calculated Φ at z = 0 by using the simple formula:

Φ(k) = −3Ωm

2

(H0

c

)2 δ(k)

k2
. (5.6)
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Because we aimed to analyze imprints of superstructures at redshift 0.52, we defined

the boundaries of the integral of Equation (5.5) in a way that put the 253 preselected

locations (see Subsection 5.2.1) at this redshift. We used periodic boundary conditions and

we integrated up to 3000h−1Mpc from starting points ensuring that 252 of the locations

were at redshift 0.52 each time. This yielded 25 ISW images of the HVS in the x − y

plane. Each of these images contains imprints of 252 superstructures. After this, one can

follow the procedure discussed for density profiles in Subsection 5.2.1. If the ISW profile

of a superstructure is normalized by the average density of the superstructure, the result

will be an estimator of the shape of the ISW profile:

〈∆T (r2D)

δin(R)

〉

= f(r2D, R). (5.7)

The arguments are r2D, the radius in the x − y plane and R, the radius in which we

know the galaxy count in the corresponding volume. The interpretation of Equation

(5.7) is similar to that of Equation (5.2). The density fluctuations are replaced by the

temperature on the left side of the equation; while on the right side, we symbolically refer

to the normalized ISW profile which can be derived via Equations (5.3)-(5.5).

Here, we would like to remind the reader that
〈

...
〉

refers to ensemble averaging. For

density, averaging over a relatively large volume proved to be a sufficient substitute in

Subsection 5.2.1. Despite the fact that the cosmic variance is large on the largest scales,

these modes contribute only a little to the density distribution since their amplitudes are

small. (The power spectrum goes to zero with k.) For the potential, this picture changes

due to the 1/k2 factor. As a result, the ISW effect has a large cosmic variance regardless

of the large size of the simulation. To demonstrate this, we projected the density to the

x − y plane. We split this projection in the middle of the x-axis to create two 1500 X

3000Mpc2h−2 areas. In Figure 5.2 in the top row we plotted the histograms of these.
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We did the same with one of the 25 ISW images, which is essentially the projection

of the potential. Those histograms are shown in the middle row. The cosmic variance

is significantly larger for the ISW map. To demonstrate that the difference is due to

modes on the largest scales, we removed the low k-modes from the potential. After

experimenting, we found that removing modes with |k| < 2π 5
L
, where L = 3000h−1Mpc

for the HVS, gave a visually compelling result (Figure 5.2, bottom row). After applying

this high-pass filter to a 2-dimensional projection, the effect of the cosmic variance on

the modes with the lowest wavenumber will be around 18%. This argument is valid for

any survey or simulation. Generally, modes can be combined optimally with the proper

covariance matrix. In this paper, we simply use the sum of the modes as an estimator of

the ISW signal. In other words, our covariance matrix is diagonal with a truncation at

1/5 of the linear size. This subjective choice, which we consistently carry along through

the paper, is based purely on the histogram of the potential (Figure 5.2).

Having removed the low k-modes from both the density and the potential we computed

the average in Equation (5.7). As before, we omitted cases when the denominator

was too close to zero. (See Subsection 5.2.1.) The results for R = 60h−1Mpc and

R = 100h−1Mpc are shown in Figure 5.3. The error bars show the uncertainty calculated

from the HVS itself due to the long CPU time required to calculate the ISW images.

Predictions of the linear model are calculated by removing the low k-modes from the

power spectrum when doing calculation according to Equation (5.1).

This approach has to be modified slightly when the CMB is given and late time

anisotropies are affected by every mode of the galaxy distribution. The previous exercise

still proves that low k-modes are to be ignored if we want to study the imprints of

superstructures statistically. This can be achieved by filtering out these modes from

the CMB before performing such analysis. In addition, one has to remove the same

components from the theoretical ISW profile before fitting the data. This is shown in
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Figure 5.2 Each row shows histograms of a certain projection of density along the z-axis.
A simple integral of

∫

δ(x, y, z)dz is presented in the first row, an ISW map in the second
and its filtered version in the third. (See text for details.) The x − y plane is halved
to test the cosmic variance, hence the two columns. As a result of large fluctuations in
the low k-modes in the potential, the ISW projections show a significant cosmic variance
(second row) which can be reduced by filtering (third row).
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Figure 5.3 The spherically averaged ISW profile from the HVS. This is defined by Equation
(5.7). Fourier-modes from the density were filtered out above λ = 0.2L, where L is the
linear size of the HVS. The linear approximation is calculated as described in the text.
See Equations (5.2)−(5.5).
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Figure 5.4 The same as Figure 5.3 with the exception that the ISW map was filtered, not
the density. The error bars represent the uncertainty of the measurement.

Figure 5.4. We filtered the ISW map and we filtered the ISW profile, which is implicitly

expressed as f(r2D, R), on the right side of Equation (5.7), so that only modes with

|k| > 2π
5

L
remained. After these manipulations the measurement remained consistent

with linear theory.

The success of these tests proves the validity of the Gaussian model of Pápai and

Szapudi (2010). We studied Euclidean ISW projections because or their simplicity, but

there is no reason to think that our findings are restricted to the Euclidean case. The

only major difference is that on a sphere one deals with spherical harmonics and instead

of low k-modes we speak of low l-modes analogously.

86



5.3 ISW map of SDSS Superstructures

Having calculated the full linear ISW profile of superstructures in the dark matter density,

we attempt to detect their presence on the CMB. With the locations of 50 superclusters

and 50 supervoids found in the SDSS DR6 LRG sample by Granett et al. (2008a), we

created ISW maps and used the matched filter technique to measure the amplitude of the

ISW signal. Our ISW maps are statistical in the sense that the individual ISW profiles

were predicted by using statistical properties of Gaussian, spherically symmetric density

fluctuations rather than the particular (poorly observed) realization of the density field.

5.3.1 Superclusters and supervoids in the SDSS LRG sample on

100h−1Mpc scales

Large regions with significantly high overdensities or low underdensities are called here

superclusters or supervoids. In a given dataset, these regions can be defined in many

different ways. Void finder algorithms were compared in Colberg et al. (2008). Each

implementation is based on a certain notion of a void. Voids can have spherical or

irregular shapes; finders can be parameter free or there can be a hard-coded density

threshold or radius to describe what a void is like. It is important to emphasize that

despite the similarities, any analysis using the output of a void finder will be sensitive to

its particulars. This renders our study qualitative in nature.

Our work is based on supervoids and superclusters found in a subsample of the

SDSS DR6 LRG catalog by ZOBOV and VOBOZ, parameter-free void and cluster-finder

algorithms (Neyrinck, 2008; Neyrinck et al., 2005). ZOBOV and VOBOZ calculate the

Voronoi tessellation of the data in order to approximate the density field with a simple

function, a funcion that is constant inside polyhedra. Voids are found by using the concept

of drainage basins from the field of geography. Clusters are identified analogously.
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A table with the properties of 50 supervoids and 50 superclusters can be found in

Granett et al. (2008b). Their sizes and densities cannot be quantified simply due to their

shapes and survey boundary effects. The bias, redshift error and the shot-noise are also

sources of uncertainty for both size and density. This is why we used only the directions

of the centers of these superstructures in creating ISW maps in Section 5.3.3. The error

in the angular coordinates is relatively small.

5.3.2 CMB and ISW maps

We used the Internal Linear Combination (ILC) Map from the WMAP 7-year release

(Hinshaw et al., 2007; Gold et al., 2010) with the KQ75y7 galactic foreground and point

source mask (Figure 5.5). We employed HEALPix pixelization at resolution nside = 64

(Górski et al., 2005). In general, we strove to carry out the measurement with up to date

maps and masks while remaining consistent with Granett et al. (2009).

Section 5.2 concluded that a Gaussian model gave a good approximation to the

expected ISW signal from a large spherical region in the dark matter field with given

density contrast. It also became apparent that in an analysis of statistical ISW maps low

l-modes were to be filtered out due to the large cosmic variance of the potential affecting

these modes. This also lowers the cosmic variance. The lowest mode to be taken into

account is determined by the sky coverage of the ISW map. Experimenting with the HVS

gave us kmin ≈ 2π 5
L
for an Euclidean ISW map, where L is the linear size of the map.

This translates into llmin ≈ 2π5r
λ

via the Limber approximation, where λ and r are the

angular size and the median distance of the SDSS DR6 LRG sample. A rough estimate

yields lmin ≈ 12.
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Figure 5.5 WMAP 7-year ILC map with 25% of the sky masked out according to the
KQ75y7 foreground mask as explained in Gold et al. (2010).
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Due to the large uncertainty in their size and density, we assume that each supervoid

is a realization of the same statistical entity when we creating ISW maps. We consider

superclusters similar in nature but with an opposite density contrast.

An ISW map is made simply by placing the expected ISW profiles of superstructures

at the locations given in Granett et al. (2008b). We set δin to 1 for clusters and −1

for voids in formulae of Section 5.2. For every radius there is a corresponding ISW map.

We calculated the alm coefficients of the spherical expansion of both the ISW maps and

the CMB map, and zeroed the modes below lmin = 12 before transforming the alm

coefficients back. These manipulations were carried out with routines from the Healpix

package (Górski et al., 2005). Figure 5.6 shows how the ISW profile changes when modes

are removed.

5.3.3 The matched filter technique

We continue with measuring the amplitude of the ISW maps created in Section 5.3.2 in

the WMAP ILC map. To do this we used the same matched filter technique as Granett

et al. (2009). A likelihood function is defined as:

L(λ) = −1

2

(

Tcmb − λTISW

)

C−1
(

Tcmb − λTISW

)

, (5.8)

where Tcmb is a foreground cleaned CMB map, in this case the WMAP ILC map, and

TISW refers to the ISW maps. The pixel covariance matrix, C, is computed from the best

fitting ΛCDM power spectrum. This likelihood is based on the assumption that the TISW

and the primary CMB are the realizations of two very different Gaussian random fields
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Figure 5.6 The expected ISW imprint of a spherical region with radius of 120h−1Mpc and
an average δ of 1 at redshift 0.52. Each curve shows the same profile without modes
under their respective lmin.
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and the latter is given by the minimum of Equation (5.8):

λ∗ =
TISWC−1Tcmb

TISWC−1TISW
, (5.9)

Tprim = Tcmb − λ∗TISW . (5.10)

As explained in Section 5.3.2, we filtered out modes up to lmin = 12 from both TISW and

Tcmb, and before building the covariance matrix from Cl’s we set C0 = C1 = ... = C11 = 0.

Because the exact inverse of the covariance matrix is unstable for partial sky maps, we

regularized C by calculating a pseudo-inverse omitting the noisiest modes. The likelihood

function above defines an error on λ∗ as

∆λ2 =
1

TISWC−1TISW
. (5.11)

5.3.4 Results

We calculated λ∗ according to Equation (5.9). Because we have ISW maps for different

void/cluster radii, the result is a function, λ(R). This is presented in Figure 5.7 in the

bottom row on the left panel. The error bars are given by Equation (5.11). From now on

every time we refer to a λ we mean the value at the minimum of the likelihood function,

so we drop the superscript *. If we marginalize λ(R)/∆λ(R) over R, we get a 3.24-σ

detection. Similarly, the marginalized value of R is 55± 28h−1Mpc.

λ(R) can be interpreted as the average density contrast in one hundred superstructures

inside radius R, where the supervoids are taken into account with a minus sign:

λ(R) ≈ 1

2

(

δ50cin (R)− δ50vin (R)

)

, (5.12)
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Figure 5.7 The top and the middle rows contain contour plots of the best fitting amplitude
of the ISW maps, λ, and their relative uncertainty, σ, (see text for their definition) as
functions of lmin and R. The bottom row shows cross sections of the contour plots from
the top row at lmin = 12, as well as the prediction for the average density contrast of
superstructures of a certain size. In the left column, the fitting is for an ISWmap consisting
of the 50 most significant supervoids and 50 superclusters. The middle column shows the
same for the best 25-25, whereas the right for the remaining 25-25 superstructures which
are not included in the middle column.
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where superscripts 50c and 50v refer to the average of 50 superclusters and 50 supervoids.

This interpretation originates from the linear relationship between the ISW signal and the

density fluctuations, and our choice of δin = ±1 when building ISW maps in Section

5.3.2. In addition to the data curves, in Figure 5.7 we plotted the prediction of linear

theory for the average of the 50 largest superclusters. We assumed a Gaussian probability

distribution function (PDF), which is reasonable in light of the findings of Pápai and

Szapudi (2010). The variance of the PDF was calculated by CAMB (Lewis et al., 2000)

using the latest WMAP cosmological parameters (Jarosik et al., 2010) and it was scaled

with the growth function to the median redshift of the superstructures (z = 0.52). The

number of independent clusters was estimated as Vsurvey/Vcluster where Vsurvey is the

volume of the LRG sample used by Granett et al. (2009). λ is consistently several times

larger than the predicted δin. As a consistency test, we split the voids and clusters into two

groups. Group 1 consists of the first 25 voids and 25 clusters with the highest significance

in the supplementary tables of Granett et al. (2008b). The other 25 voids and 25 clusters

make up group 2. We created two ISW maps, one from each of the groups. After repeating

the whole procedure for these, we got the center and the right panel in the bottom row

of Figure 5.7. As expected, superstructures associated with lower significance produce a

lower signal on the CMB and allow larger deviation from the average λ. This supports

the hypothesis that the signal is due to the ISW effect.

We also checked the sensitivity of the results to the choice of lmin, the lowest spherical

harmonics included in the analysis. The result for different choices of lmin is shown in the

middle and top rows of Figure 5.7. The top row shows λ(R, lmin), while the middle row

shows σ(R, lmin) = λ(R, lmin)/∆λ(R, lmin) on contour plots. The result seems robust

for wide range of lmin.

We performed another consistency check to acquire a better understanding of the

uncertainty of λ and its relationship with δin. We created ISW maps from single
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Figure 5.8 After fitting simple ISW maps made from the expected imprint of single
superclusters or supervoids we were left with 50-50 best amplitudes, λ. Their averages
with the 2σ uncertainty are plotted with the amplitude of a full ISW map consisting of all
100 imprints. These measurements were done with lmin = 12. The theoretical prediction
(continuous line) for the density contrast is also plotted.
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superstructures. We used the matched filter technique to determine a λ and its error

as before. The average λ for voids and for clusters separately are plotted in Figure 5.8.

In this case we defined the uncertainty of λ as the standard deviation of its mean. We

also plotted the previous results for the previous combined ISW map. All of this is for

lmin = 12. The three measured curves are consistent with each other, the error bars

show the two σ deviation. The single void and cluster fit allow wider range of λ than the

combined fit.

5.4 Discussion

This chapter is the continuation of the work started in Pápai and Szapudi (2010). Our

goal is to estimate the ISW imprint of large spherical dark matter overdensities and

underdensities. In Section 5.2, we first tested a simple Gaussian model for density profiles

in the HVS. We created an ISW map by ray tracing through the simulation and computing

the linear ISW effect. We neglected the nonlinear part of the ISW effect, as it is small

in comparison at z = 0 (Cai et al., 2010). Another simplification was that our ISW map

was Euclidean. For the purpose of testing this has no relevance.

As it can be seen from Figure 5.1, the density profiles followed linear theory given by

Equation (5.1) within 1-σ uncertainty up to 400h−1Mpc, the largest scale in our study.

This is not surprising, since the density profile is equivalent of the two-point function and

on large scales high-order clustering is not important. When we averaged the density

profiles we only used locations where the average density contrast in a certain radius was

in the 2-σ (positive or negative) tail of the PDF. This demonstrates that not even the

extreme cases are affected by significantly nonlinearities.

We demonstrated that cosmic variance was a much more important factor for the

ISW effect than for the density. Because cosmic variance is large for low k-modes and
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the potential is non-vanishing as k → 0, these modes have relatively large effect on the

ISW profile. Surely large variance modes should be removed from the CMB and the ISW

maps if the ISW maps are based on the statistics of density fluctuations and not on the

observed density. First, we measured the ISW profiles after filtering out the low k-modes

from the HVS density and consequently the ISW map. Filtering the two-point function

in the same way gave a good match to the data. (See Figure 5.3.)

If the ISW map is given, as in the CMB, another route has to be taken. We filtered

the complete ISW map and compared it to the theoretical profile after removing the same

modes. The result is shown in Figure 5.4.

In Section 5.3, we used matched filter technique to detect the ISW signal of

superstructures in the CMB. We closely followed the procedure described in Granett et al.

(2009). The major difference is that our ISW map was built from theoretical assumptions

about the shape of ISW profiles, whereas Granett et al. (2009) used an analytic curve

which fitted the measured profiles the best. Because of this difference, the significance of

our measurement can readily be interpreted. We estimated the marginalized significance

of our measurement to be σ = 3.24. (See Subsection 5.3.4 for details.) The interpretation

of the best fitting amplitude of the ISW map is still not without difficulties. It is several

times higher than the anticipated signal (Figures 5.7 and 5.8), although it appears to

be 2-σ higher than ΛCDM predictions, where sigma indicates the uncertainty of the

fit and not the intrinsic uncertainty of the ISW signal. We caution, though, that the

uncertainty can still be underestimated, because it was derived from data alone. Despite

the difference in amplitude, the theoretical and the measured curves run parallel with each

other, which supports that the signal is related to the ISW effect. Moreover, traditional

cross-correlation methods have also been reported to yield higher signal than expected

(Ho et al., 2008; Giannantonio et al., 2008a; Granett et al., 2009).
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The ISW effect provides an explanation for another feature of observations. On

average, supervoids tend to have a hot ring around a cold center and the opposite is

true for superclusters (Granett et al., 2009). When we erased large scale fluctuations in

the microwave background, the expected ISW profile changed sign, as seen in Figure 5.6.

This means that in certain, not particularly unique, realizations the average profiles of

50 supervoids or superstructures from a finite area of the sky can have rings in the ISW

context, simply due to the cosmic variance of low k-modes.

Overall, we can say that the shape of the measured signal follows the predicted ISW

profile while its amplitude exceeds expectation. This is a good reason to investigate further

by studying galaxy surveys other than the SDSS. A key to a quantitative study is the well-

measured galaxy density. Because the model described in this and the previous chapter

is a model for density fluctuations around a particular location, which is not necessarily a

maximum, it is enough to know the density at this location accurately.

The HVS were carried out by the Virgo Supercomputing Consortium using computers

based at the Computing Centre of the Max-Planck Society in Garching and at the

Edinburgh parallel Computing Centre. The data are publicly available at http://www.mpa-

garching.mpg.de/NumCos.
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Chapter 6

Conclusion

In my dissertation, I study aspects of galaxy clustering. The range of related

phenomena is wide, since the equations describing the evolution of the universe are

coupled, and observables are rarely uncorrelated.

I start out with my work on redshift-distorted two-point functions. The motivation

stems from the need of a more precise measurement of the correlation function. In the

distant observer approximation, pairs with a large angle of view are discarded in order

for the approximation to remain valid. In Chapter 2, I argue that data can be used

more efficiently if we use the full redshift-distorted two-point function. By developing a

formalism which yields a compact form for the non-perturbative terms, Equation (2.3)-

(2.11), we facilitate measurements with lower uncertainty. This improvement depends

on properties of the survey, being more significant, when the galaxy pairs are closer

to the observer. In Pápai and Szapudi (2008), we tested the formula in the Hubble

Volume Simulation and found them accurate for the tested configuration (Figure 2.1).

Recently, a more comprehensive study of all configurations was published by Raccanelli

et al. (2010). They found that our formula gave an excellent description of redshift

distortions in simulated data and they could provide a slight improvement over current

two-point measurements in the SDSS spectroscopic LRG sample, in agreement with our
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own estimates. However, future surveys, such as Euclid and BOSS, will have a larger sky

coverage making wide-angle corrections important.

I split my second paper, Pápai and Szapudi (2010) into two parts (Chapter 3 and

4) , because this way the apparent leap from large-scale structure to ISW becomes a

natural step along the course of research. Both parts are motivated by the tantalizing

observation by Granett et al. (2008a), who detected an unexpectedly large correlation

between superstructures in the galaxy distribution and the CMB. The ISW effect (Sachs

and Wolfe, 1967), the SZ effect (Sunyaev and Zeldovich, 1972), and extragalactic radio

contamination (Rudnick et al., 2007, e.g., ) can all contribute to a signal. Since for

l < 200 the SZ effect is negligible compared to the ISW effect and the signal is consistently

present in all wavebands, we focus on the ISW effect. First, we measure CIC, which is an

alternative to the n-point functions to describe the PDF of the galaxy distribution. Since

CIC has received relatively little attention recently, this is also an opportunity to work

out difficulties specific to SDSS and spectroscopic surveys. The mask and the selection

function are usually taken care of by adding dummy galaxies to the data, to make the

radial and angular selection functions uniform. This solves a problem by creating another;

namely, it introduces a systematic bias, because the dummy galaxies are drawn from a

Poisson distribution. The redshift distortion also complicates the picture. We study these

effects in simulations and develop a phenomenological approach, which is adequate at the

current level of noise and cosmic variance (Figure 3.6). The purpose of the measurement

is to see whether the tail of the PDF differs that of a Gaussian, because this could explain a

higher signal from extreme fluctuations. We measure the variance, skewness and kurtosis

and we find a good agreement between them and ΛCDM predictions (see, Table 3.2 and

Figure 3.7). We cannot confirm any significant deviation from a Gaussian distribution

(Figure 4.1); however, the uncertainty could be decreased with data spanning a larger

volume.
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The ISW effect is the single most important secondary source of anisotropy of the

CMB on large scales (see, e.g., Hu and Dodelson, 2002). It is the temperature shift of

CMB photons due to passing through the changing gravitational potential. In a static

universe, the net shift would be zero; thus, this effect is a direct measure of the growth

function, which is the factor carrying the time dependence of the density field in linear

perturbation theory: δ(x, τ) = δ(x, 0)D(τ). In Chapter 4, we estimate the temperature

shift of a photon passing through the center of a spherical region with a certain overdensity

or underdensity. We first calculate the average density profile for such structures (Figure

4.2) and from the density profile, we calculate the average temperature shift (Figure

4.3). Since the equations are linear, this can be done consecutively. The variance

of the density profile is slightly more complicated than its average and it provides an

approximation for the uncertainty in the temperature also. Using the results of Chapter

3, we approximate the PDF with analytic functions and calculate the ISW effect owing

to the largest fluctuations in a survey similar to the SDSS photometric LRG sample. The

result is plotted in Figure 4.4, which is the main result of Chapter 4. We compare our

results to previous estimates based on a compensated top-hat potential. This is a valid

approximation on nonlinear scales, where perturbations with steep enough density contrast

in the initial density field, rapidly converge to a compensated top-hat (see, e.g., Sheth

and van de Weygaert, 2004). This model underestimates the ISW effect and is unrealistic

on large scales, whereas our uncompensated model appears to reproduce the amplitude

of the signal of Granett et al. (2008a) within the combined uncertainty of the measured

PDF and the intrinsic uncertainty of the ISW effect.

In Chapter 5, we continue with calculating the whole temperature profile of spherical

superstructures and test the validity of our model in N-body simulations. The importance

of cosmic variance in the case of the potential adds to the complexity of the problem

(Figure 5.2), since the largest modes in the potential are dominating. It is necessary to

103



remove these modes from the CMB. For simulations, the theory works well (Figures 5.3

and 5.4). From the calculated profile, we calculate, we make an ISW map using the

coordinates of superstructures identified in the SDSS photometric LRG sample (Granett

et al., 2008b). After high-pass filtering both the ISW map and the CMB, we apply the

matched filter technique to measure the amplitude of the signal (Figure 5.7). We obtain a

positive detection with high significance (σ ≈ 3.24), however, the amplitude of the signal

is lower than theoretical prediction from ΛCDM. The contents of this chapter comprise

the body of Pápai et al. (2010), which we submitted to The Astrophysical Journal.

Our goal with this investigation is to create a tool for studying the redshift dependence

of the growth function, by studying the ISW imprint of superstructures at different

redshifts. As of today, the data are too sparse for a quantitative study, and the previously

reported structures correspond to an unexpectedly strong signal.
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Appendix A

Gaussian fluctuations (supplement for

Chapter 4)

In the main body of the dissertation, I omitted the simple but tedious calculations

and I only presented the final results. In Chapter 4 and 5, I used the average of spherical

fluctuations from a multivariate Gaussian conditional probability and their covariance.

Equations (4.9)-(4.15) summarize the premise and the conclusion. To fill in the gap in

the argument, let us consider an n-dimensional Gaussian distribution:

P (~δ, C) =
1

√

(2π)n|C|
exp

(

− 1

2
~δTC−1~δ

)

, (A.1)

where ~δ = (δ1, ..., δn), and |C| is the determinant of the positive definite symmetric

matrix, C. Furthermore, a well known identity, due to which C is referred to as the

covariance matrix, is:

〈

δiδj
〉

=
∫

dδ1...
∫

dδnδiδjP (~δ, C)

=
−1

|C|
∂

∂C−1
ij

|C| = Cij . (A.2)

107



I made use of following results from linear algebra:

d(|CC−1|) = C−1d|C|+ CdC−1, (A.3)

C−1
ij = |C|ji/|C|, (A.4)

∂

∂Cij
|C| = |C|ij, (A.5)

where |C|ij is the subdeterminant with the appropriate sign belonging to the Cij matrix

element. One consequence of Equation (A.2) is the relationship between the covariance

matrices Cn and Cn−1 which are defined by:

∫

dδnP (~δ(n), C(n)) = P (~δ(n−1), C(n−1)). (A.6)

C(n−1) is just the {1 : n−1}X{1 : n−1} submatrix of C(n) and because for its elements

C
(n−1)
ij = C

(n)
ij =

〈

δiδj
〉

(A.7)

must hold for ∀i, j < n.

The elements of the vector ~δ are the average density contrast in dr → 0 thick shells,

with δ1 being δin, the known average density contrast of the superstructure inside R

radius. The constrained probability is given by:

P
(

~δ(r)|δin, C, σ2
)

= P
(

~δ(r), δin, C
)

/P
(

δin, σ
2
)

=

√

(2π)σ2

√

(2π)n|C|
exp

(

− 1

2
~δT (r)C−1~δ(r)

)

/ exp

(

− 1

2
δ2in/σ

2

)

, (A.8)

where σ2 =
〈

δ2in
〉

, a 1-dimensional covariance matrix. If one wants to calculate the average

density contrast in a shell at r, every other component of ~δ(r) (the density contrasts of

another shells) will be integrated out of this formula leaving only the 2X2 covariance
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matrix between δ(r) and δin as shown by Equations (A.6) and (A.7):

〈

δ(r)
〉

δin
=

∫

dδ(r)δ(r)P
(

δ(r)|δin, C(2), σ2
)

=

=

√

(2π)σ2

√

(2π)2|C(2)|
∫

dδ(r)δ(r)e
−

1

2
(δ(r),δin)

TC(2)−1(δ(r),δin)
/e

−

1

2
δ2in/σ

2

, (A.9)

since the expected value of Gaussian variable is the the one with the maximum likelihood,

we can write down the result without any calculation:

〈

δ(r)
〉

δin
= −C

(2)−1
12

C
(2)−1
11

δin,

=
C

(2)
12

C
(2)
22

δin =

〈

δ(r)δin
〉

〈

δ2in
〉 δin. (A.10)

For the last two steps, I used Equations (A.2) and (A.4). This is the profile used in

Chapter 4 and 5. This expression is normalized correctly, since:

∫ R

0
dr4πr2

〈

δ(r)
〉

δin
=

4πR3

3

〈

δ2in
〉

〈

δ2in
〉δin =

4πR3

3
δin. (A.11)
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The covariance between shells can be obtained similarly:

〈

δr1δr2
〉

δin
=

∫ ∫

dδr1dδr2δr1δr2P
(

δr1 , δr2|δin, C(3), σ2
)

=

=

√

(2π)σ2

√

(2π)3|C(3)|
∫ ∫

dδr1dδr2δr1δr2e
−

1

2
(δr1 ,δr2 ,δin)

TC(3)−1(δr1 ,δr2 ,δin)
/e

−

1

2
δ2in/σ

2

= −
√

(2π)σ2

√

(2π)3|C(3)|
e

1

2
δ2
in
/σ2

2
∂

∂C
(3)−1
12

∫ ∫

dδr1dδr2e
−

1

2
(δr1 ,δr2 ,δin)

TC(3)−1(δr1 ,δr2 ,δin)

= −
√

(2π)σ2

√

(2π)3|C(3)|
e

1

2
δ2
in
/σ2

2
∂

∂C
(3)−1
12

(

√

(2π)3|C(3)|
√

(2π)σ2
e
−

1

2
δ2
in
/σ2

)

= − 1

|C(3)|
∂|C(3)|
∂C

(3)−1
12

+
1

σ2

∂σ2

∂C
(3)−1
12

− δ2in
(σ2)2

∂σ2

∂C
(3)−1
12

= C12 −
C13C23

C33
+

C13C23δ
2
in

C2
33

=
1

〈

δ2in
〉

[

〈

δr1δr2
〉〈

δ2in
〉

−
〈

δr1δin
〉〈

δr2δin
〉

]

+
1

〈

δ2in
〉2

〈

δr1δin
〉〈

δr2δin
〉

δ2in. (A.12)

In the calculation, I used that σ2 = C
(3)
33 and the easy to prove

∂C
(3)
33

∂C
(3)−1
12

= −C13C23. The

last term in this expression is
〈

δr1
〉

δin

〈

δr2
〉

δin
as can be seen from Equation (A.10). This

yields Equation (4.15):

〈

δr1δr2
〉

δin
−

〈

δr1
〉

δin

〈

δr2
〉

δin
=

1
〈

δ2in
〉

[

〈

δr1δr2
〉〈

δ2in
〉

−
〈

δr1δin
〉〈

δr2δin
〉

]

. (A.13)
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A statement from Chapter 5 , that the ratio of two Gaussian variables has a Lorentzian

distribution, is addressed for last:

P (z) =
∫ ∫

dxdyδD(z − x/y)P1(x)P2(y)

=
1

2πσ1σ2

∫

dy|y|e
−

1

2

z2y2

σ2
1 e

−

1

2

y2

σ2
2

=
1

2πσ1σ2

1

z2

2σ2
1

+
1

2σ2
2

2
∫

∞

0
dỹỹe−ỹ2 =

1

π

1
σ2

σ1
z2 +

σ1

σ2

. (A.14)

The Lorentz distribution has a divergent variance, which causes estimators of this kind to

have a large uncertainty. This can be mended if one introduces the cut, y0 < |y|:

P (z) = θ(y0, σ2)
∫

dx
∫

dyδD(z − x/y)H(|y| > y0)P1(x)P2(y)

=
θ(y0, σ2)

2πσ1σ2

1

z2

2σ2
1

+
1

2σ2
2

2
∫

∞

ỹ0
dỹỹe−ỹ2 =

θ(y0, σ2)

π

e−ỹ20

σ2

σ1
z2 +

σ1

σ2

=
θ(y0, σ2)

π
e
−

y20
2σ2

2
1

σ2

σ1
z2 +

σ1

σ2

e
−

z2y20
2σ2

1 , (A.15)

where H(x) is the Heaviside function and θ(y0, σ2) =

(

2
∫

∞

y0
dye

−

1

2

y2

sigma22

)

−1

normalizes the P2 with the cut-off. The result will have an exponential tail, which

guarantees that its every moment exists.
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Appendix B

Frequently used abbreviations
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WMAP Wilkinson Microwave Anisotropy Probe
CMB cosmic microwave background
LIGO Laser Interferometer Gravitational-Wave Observatory
(C)DM (cold) dark matter
ΛCDM most widely accepted cosmological model with cosmological constant (Λ) and cold dark matter (CDM)
PDF probability distribution function
SDSS Sloan Digital Sky Survey
CAMB software by Anthony Lewis
LRG luminous red galaxy
HVS Hubble Volume Simulation
CIC counts in cells

COBE Cosmic Background Explorer
ISW Integrated Sacks-Wolfe (effect)
SZ Sunyaev-Zeldovich (effect)
Mpc Mega parsec

R.A., decl. angles of the equatorial coordinate system
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