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Abstract

Matrix approximation (MA) methods are popular
in recommendation tasks on explicit feedback data.
However, in many real-world applications, only
positive feedbacks are explicitly given whereas negative
feedbacks are missing or unknown, i.e., implicit
feedback data, and standard MA methods will be
unstable due to incomplete positive feedbacks and
inaccurate negative feedbacks. This paper proposes a
stable matrix approximation method, namely StaMA,
which can improve the recommendation accuracy of
matrix approximation methods on implicit feedback data
through dynamic weighting during model learning. We
theoretically prove that StaMA can achieve sharper
uniform stability bound, i.e., better generalization
performance, on implicit feedback data than MA
methods without weighting. Meanwhile, experimental
study on real-world datasets demonstrate that StaMA
can achieve better recommendation accuracy compared
with five baseline MA methods in top-N recommendation
task.

1. Introduction

Matrix approximation (MA) methods have achieved
high accuracy in recommendation tasks on explicit
feedback data, e.g., movie rating prediction [1, 2,
3, 4, 5, 6]. In rating prediction tasks, all the user
ratings on items are explicitly given, so that MA
methods can simply minimize the training error to
learn the models on the observed data. However, in
many real-world applications, e.g., online venders, only
positive feedbacks are explicitly given, e.g., purchase
records, click stream data, etc., whereas negative
feedbacks are missing or unknown, a.k.a., implicit
feedback data. In such case, we cannot simply treat
unknown examples as negative examples because users
may be interested to unrated items, e.g., they bought
the items from other online venders. Standard MA
methods will be unstable on implicit feedback data due

to fitting wrong training data during model learning, i.e.,
incomplete positive feedback and inaccurate negative
feedbacks will make the learned models easily overfit or
be biased [7, 8]. For instance, MA methods will easily
overfit if only positive feedback data are considered,
e.g., a model that can only predict “1” can provide
optimal accuracy. On the other hand, MA methods
will yield wrong models if they wrongly treat all
unknown examples as negative feedbacks [9, 10, 7].
In summary, either only considering positive examples
or considering all unknown examples as negative
will not achieve optimal recommendation accuracy for
MA-based recommender systems.

Uniform stability [11] was proposed to measure how
stable a learning algorithm is, and it is proved that the
output of stable learning algorithms will not differ much
if we slightly change the training data. Several works [2,
12, 13] have shown that stable learning algorithms will
also generalize well, i.e., stable learning algorithms will
not easily overfit to the limited training data. From
the view of uniform stability, if a MA method is
stable, then it will yield almost the same model even
if part of the positive feedbacks are missing. In other
words, stable MA methods are more desirable because
their outputs on implicit feedback data will not change
much compared with the outputs on explicit feedback
data. Recent work [2] has shown that the accuracy of
rating prediction task can be improved by enhancing the
stability of MA methods. However, it is still unknown
how to design stable matrix approximation methods for
implicit feedback data.

To this end, this paper proposes — StaMA,
a stable matrix approximation method for implicit
feedback data, which adopts dynamic weighting during
model learning to improve the stability of matrix
approximation. More specifically, we define dynamic
weights for individual examples based on the model
output during training, which is based on the idea that
an observed negative example is more likely to be
positive if the model gives it a high score. This can
give more accurate weights than random or uniform
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weighting strategy. More specifically, a Gibbs sampler
is designed to achieve dynamic weighting, which
consists of the following two key steps: 1) the Gibbs
sampler samples the negative examples based on the
output of MA models, which ensures that an example
will be sampled with higher probability if MA models
give it low score; and 2) the dynamic weights of
observed negative examples are derived based on the
sampling results, which ensures that examples that are
sampled more times in the past will be of higher weights.
Theoretical analysis proves that the proposed method
can yield sharper uniform stability bound, i.e., lower
generalization error with high probability. Experimental
study on real-world datasets demonstrate that the
proposed method can outperform state-of-the-art matrix
approximation methods in recommendation accuracy on
implicit feedback data in top-N recommendation task.
The key contributions of this work are as follows:

• We analyze the uniform stability bounds of matrix
approximation methods on implicit feedback
data, and we theoretically prove that dynamic
weighting can improve the generalization
performance of matrix approximation methods;

• We propose a stable matrix approximation
method — StaMA, which can achieve
better generalization performance in matrix
approximation by our theoretical analysis and
empirical study;

• Experimental study on three real-world datasets
demonstrates that StaMA can outperform four
state-of-the-art matrix approximation-based
methods in recommendation accuracy on implicit
feedback data in terms of NDCG and Precision.

The rest of the paper is organized as follows.
Section 2 introduces the basic concepts and formulates
the targeted problem. Section 3 presents the
details of the proposed method and then analyzes
the generalization performance and computational
complexity. Section 4 presents the experimental results.
Section 5 discusses and compares with the related
works. Finally, we conclude this work in Section 6.

2. Problem Formulation

This section first introduces the basic notions in
matrix approximation, and then introduces the definition
of uniform stability.

2.1. Matrix Approximation

The following notions are adopted throughout this
paper. Given a targeted user-item rating matrix R ∈

Rm×n, let R̂ denote the low-rank approximation of R.
Generally, the goal of r-rank matrix approximation is to
learn two rank r feature matrices, i.e., U ∈ Rm×r, V ∈
Rn×r, such that

R ≈ R̂ = UV T . (1)

The rank r is considered low in many real
applications. Generally, the following optimization
problem is designed to learn U and V in matrix
approximation tasks:

U, V = arg min
U ′,V ′

∑
x

f(U ′, V ′;x), (2)

where f is the loss function to measure the accuracy
of the learned models and x represents a training
example. Many methods are proposed to solve the above
optimization problem, among which stochastic gradient
descent (SGD) is the most popular one. In SGD, loss
function can be iteratively minimized as follows:

U ← U − α∇f(U, V ;x),

V ← V − α∇f(U, V ;x),

where x is a randomly chosen training example and α is
the learning step.

2.2. Uniform Stability

The notion of uniform stability [11] was proposed
in the literature to bound the generalization error of
learning algorithms.
Definition 1 [Uniform Stability [11]] A randomized
learning algorithmA is ε-uniformly stable if for any two
samples S and S′ satisfying that S and S′ differ in at
most one example, we have

sup
x

EA(f(A(S);x)− f(A(S′);x)) ≤ ε.

The above definition states that the expected loss of
learning algorithm A is bounded by ε when we only
change the input data by at most one example. Several
work [11, 12, 13] have established the relationship
between uniform stability and generalization
performance, i.e., lower uniform stability bound
indicates better generalization performance in empirical
risk minimization problem. Hardt et al. [13] showed
that the expected generalization error of SGD can be
bounded by uniform stability theory as follows:
Theorem 1 Given a loss function f : Ω→ R, assuming
f(·;x) is convex, ||∇f(·;x)|| ≤ L (L-Lipschitz) and
||∇f(w;x) − ∇f(w′;x)|| ≤ β||w − w′|| (β-smooth)
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for all training example x ∈ X and models w,w′ ∈
Ω. Suppose that we run SGD with the t-th step size
αt ≤ 2/β for totally T steps. Then, SGD satisfies
uniform stability on samples with n examples by εstab ≤
2L2

n

∑T
t=1 αt.

The above theorem states that if we solve the classic
empirical risk minimization problem using standard
SGD in MA then the generalization error can be

bounded by 2L2

n

∑T
t=1 αt. Therefore, if we want to

design a more stable matrix approximation method, then
its uniform stability bound, i.e., generalization error

bound, should be sharper than 2L2

n

∑T
t=1 αt.

3. The Proposed StaMA Method

Existing works on matrix approximation methods
for implicit feedback data mainly adopt two kinds of
techniques: weighting [9, 10, 7] and negative example
sampling [9, 14] to improve recommendation accuracy
or efficiency. In StaMA, a new dynamic weighting
strategy is proposed to improve the stability of matrix
approximation models in the model learning process.
Later, we will theoretically prove that StaMA can
achieve sharper uniform stability bound, i.e., lower
generalization error bound, than matrix approximation
methods without weighting.

3.1. Optimization Problem

Following the work of Zhang et al. [15], we consider
the unknown examples as a noisy set of negative training
examples, in which the noises in the negative training
examples are some mislabeled positive examples. Let
Ri,j ∈ R be a training example, Yi,j ∈ [−1,+1] be the
observed label of Ri,j and Zi,j ∈ [−1,+1] be the true
label of Ri,j . Then, we derive the optimization problem
of StaMA based on the above definitions.

In StaMA, we adopt the balanced accuracy, which
is also known as AUC for one run [16], to define the
optimization problem. The true balanced accuracy is
defined as follows:

b = (Pr(R̂i,j = 1|Zi,j = 1)+Pr(R̂i,j = −1|Zi,j = −1))/2.

Similarly, the observed balanced accuracy is defined as
follows:

b′ = (Pr(R̂i,j = 1|Yi,j = 1)+Pr(R̂i,j = −1|Yi,j = −1))/2.

Zhang et al. [15] proved that b and b′ are related, i.e.,

b− 1

2
∝ b′ − 1

2
. (3)

Therefore, it is natural to directly optimize b′ by treating
unknown examples as negative examples, which is
equivalent to optimize b, i.e., optimize AUC for one
run. Then, 1 − b′ can be regarded as an appropriate
loss function. By some simple algebra, we can define
a point-wise loss function for implicit feedback data as
follows:

L(R̂) =
1

mn

∑
i∈[1,m],j∈[1,n]

1(R̂i,j 6= Yi,j) (4)

The above loss function is not differentiable, so that
gradient-based learning algorithms, e.g., SGD, cannot
be applied. Therefore, we adopt three popular surrogate
loss functions as follows [17]:

LLse(R̂i,j , Yi,j) = (R̂i,j − Yi,j)2

Lexp(R̂i,j , Yi,j) = exp{−R̂i,jYi,j}

LLog(R̂i,j , Yi,j) = log(1 + exp{−R̂i,jYi,j})

It should be noted that other differentiable surrogate loss
functions can also be applied in the proposed method
without loss of generality.

The above loss functions treat all unknown examples
as equally important negative examples, which suffers
from the same flaw as existing MA methods [7,
10]. This issue can be addressed by adopting a new
weighting method. Let Wi,j be the weight for the
the chosen example Ri,j at the t-th step. The final
optimization problems for StaMA can be described as
follows:

LLse(R̂) =
1

mn

∑
i,j

Wi,j(R̂i,j − Yi,j)2

LExp(R̂) =
1

mn

∑
i,j

Wi,j exp{−R̂i,jYi,j}

LLog(R̂) =
1

mn

∑
i,j

Wi,j log(1 + exp{−R̂i,jYi,j})

In StaMA, we assume that an observed negative
example is more likely to be real negative examples if
matrix approximation methods give it a low score. Next,
we show how to achieve dynamic weighting based on
the above idea.

3.2. Dynamic Weighting for Negative
Examples

Figure 1 shows the overall procedure of the dynamic
weighting method in StaMA. Instead of giving negative
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Figure 1. The overview of the dynamic weighting in

the proposed StaMA method: the model R̂(t−1) is

used to produce new weights W (t−1) which can be

used to help train the model R(t) at the t-th iteration.

examples the same weight, we assume that an observed
negative example is more likely to be real negative
example if matrix approximation methods give it a
low score. More formally, we denote p(zi,j) as the
probability that the i-th user would give negative score
to the j-th item, which can be defined as follows from
the perspective of Bayesian statistics:

p(zi,j) =

∫
θ

p(zi,j |θ)p(θ|αi)dθ

=

∫
θ

θ
δ(zi,j)
i,j Dir(θ|αi)dθ

(5)

where δ(zi,j) is the indicator function of which the value
is set to 1 if zi,j = −1 and 0 otherwise. Since p(i, j|θ)
follows multinomial distribution mul(θ), we adopt the
Dirichlet distribution Dir(αi) as its prior p(θ|αi) to
facilitate computations.

Naturally, the predictions of the matrix
approximation model can be used as empirical
knowledge to initialize α. As shown in Fig 1, we can
use the model outputs at iteration t − 1 to estimate
users’ preference and also produce new weights W (t−1)

to help train the model R(t) at the next t-th iteration.
Or more detailed, we can exploit the output of model at
t-th iteration to generate α:

αi,j = 1− R̂(t)
i,j (6)

where R̂(t)
i,j ∈ [−1, 1] is the estimated rating of Ri,j . As

we can see, the entry (i, j) would be sampled as negative
observation with higher probability, if R̂i,j is negative.
Then, it is straightforward to use Markov chain Monte
Carlo (MCMC) [18] to sample the negative examples.

To build a Gibbs sampler, we need to compute the
conditional after k− 1 samples based on the model R̂(t)

at t-th iteration

p(zk = (i, j)|~z¬k, α(t)) ∝
n
(t)
i,j + α

(t)
i,j∑

i n
(t)
i,j + α

(t)
i,j

(7)

where n
(t)
i,j means the frequency that entry (i, j)

occurred in previous sampling process.
After sampling the negative examples, we can finally

define the weight W
(t)
i,j for any entry (i, j) as its

frequency n(t)i,j . After normalization, we can have

W
(t)
i,j = β

n
(t)
i,j∑
i n

(t)
i,j

, (8)

where 0 < β ≤ 1 is the scaling factor to address the data
imbalance issue in real-world top-N recommendation
tasks, because the majority of data are negative in many
real-world datasets, e.g., over 98% negative entries
in MovieLens (1M) dataset. Note that, for positive
examples, the weight will be 1 during the learning
process, and the weights for negative examples will be
smaller than 1.

3.3. Generalization Error Bound Analysis

Here, we analyze the generalization performance of
the proposed StaMA method, which can be bounded by
the uniform stability bound in the following theorem.
Theorem 2 (Generalization Error Bound of Weighting)
Given a loss function f : Ω → R, assuming
f(·;x) is convex, ||∇f(·;x)|| ≤ L (L-Lipschitz)
and ||∇f(w;x) − ∇f(w′;x)|| ≤ β||w − w′||
(β-smooth) for all training example x ∈ X and models
w,w′ ∈ Ω. Suppose that we run SGD with the t-th step
size αt ≤ 2/β for totally T steps. Let Wt be the weight
for the example at the t-th step of SGD. Then, SGD
satisfies uniform stability on samples with n examples

by εstab ≤ 2L2

n

∑T
t=1Wtαt.

The proofs of the above theorems can be simply
derived from the proof of Theorem 1 by treating the
learning step αt as Wtαt, so that the details are omitted
here. Since Wt ∈ [0, 1], we know that:

2L2

n

T∑
t=1

αt ≥
2L2

n

T∑
t=1

Wtαt.

This means that weighted matrix approximation
methods can achieve sharper uniform stability bound
than the methods without using the strategy, i.e.,
weighting can improve the generalization performance
of matrix approximation methods. Note that the above
theorem is proved without considering surrogate loss
functions as applied in StaMA. However, it is trivial
to verify that the adopted surrogate loss functions,
e.g., mean-square loss, exponential loss and log loss,
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are convex, and we can also find proper L and β
for L-Lipschitz and β-smooth conditions because the
training error of each example is bounded. Therefore,
we know that the above theorem will also hold with
surrogate loss functions, because all preconditions of the
theorem hold with surrogate loss functions. In summary,
we can conclude that the proposed StaMA method
can achieve sharper uniform stability bound than MA
methods without weighting, i.e., StaMA can achieve
better generalization performance than MA methods
without weighting.

3.4. Generalization Error and Optimization
Error Tradeoff

The improvement of generalization error generally
comes with degradation in optimization accuracy, i.e.,
generalization error and optimization error tradeoff. It
can be seen that StaMA will also sacrifice optimization
accuracy to improve generalization performance.
However, it should be noted that, due to the existence
of “false negative” ratings in implicit feedback data,
matrix approximation models with perfect optimization
accuracy are not optimizing towards the “right”
directions because the models are approximating the
wrong data. StaMA could help to alleviate such wrong
optimization direction issues, because examples with
high probability to be “false negative” will be given
much lower weights during optimization. Therefore,
StaMA can achieve much better generalization
performance without hurting much to optimization
performance.

3.5. Complexity Analysis

The loss function of StaMA is point-wise, so that
the computation complexity of StaMA is O(rmn) per
iteration where r is the rank for matrix approximation,
m is the number of users and n is the number of items.
Note that, during the learning process of StaMA, we
will need to compute the weight or negative example
sampling rate, which are both constants and thus can
be regarded as O(1). Therefore, the final computation
complexity of StaMA is still O(rmn) per iteration.
Overall, the computational complexity of StaMA is the
same as classic matrix approximation-based methods,
e.g., RSVD [19].

Further more, the computational overhead of StaMA
can be reduced by sampling a fraction of negative
examples. Our empirical studies show that 1)
adopting more negative examples in model learning
can achieve higher accuracy in StaMA and 2) around
50% of negative examples can achieve near optimal
recommendation accuracy in StaMA. Therefore, the

computational efficiency can be significantly improved
with only slightly degraded accuracy.

4. Experiments

In this section, we first introduce the experimental
setup, and then analyze the performance of the proposed
StaMA method in different configurations. At last, we
compare the recommendation accuracy of StaMA with
five state-of-the-art methods in terms of Precision@N
and NDCG@N.

4.1. Experimental Setup

We adopt three real-world datasets to evaluate
the performance of StaMA: 1) MovieLens1 100K
(approximately 105 ratings of 943 users on 1682
items); 2) MovieLens 1M (approximately 106 ratings
of 6,040 users on 3,952 items); and 3) FilmTrust [20]
(35,497 ratings of 1,508 users on 2,071 items). These
datasets are rating-based, so we turn them into implicit
feedback data by predicting if a user will rate an item
or not following the recent works [21]. After data
transformation, we can regard the datasets as good
examples of implicit feedback datasets, because users
may want to rate some of the unrated movies but they
cannot rate all of them due to the large number of
existing movies. In the experiments, we randomly split
the datasets into training and test sets by a ratio of 9:1.
And the results are averaged over five different training
/ test splits. We set the learning rate as 0.001, the
L2 regularization coefficient as 0.01, the convergence
threshold as 0.0001 and the maximum number of
iterations as 1000 in stochastic gradient descent.

We compare the accuracy of StaMA with the
following one baseline and four state-of-the-art
collaborative filtering methods on implicit feedback
data:

1. RSVD [19] is a rating-based matrix
approximation method using L2 regularization in
model learning, which is one of the most popular
rating-based collaborative filtering methods;

2. WRMF [10], which assigns point-wise
confidences to individual ratings in the user-item
rating matrix so that positive examples will have
much larger confidence than negative examples.
But they assign the same weights for all the
negative examples.

3. BPR [14], which learns a pair-wise loss to
optimize ranking measures. They proposed

1https://grouplens.org/datasets/movielens/
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Figure 2. The NDCG@10 and Precision@10 of StaMA with different negative example sampling rates for three

different loss functions (least square loss, exponential loss and log loss) on MovieLens 100K dataset. We set rank

r = 100 and β = 0.04 for all the experiments.

different versions of BPR methods, e.g.,
BPR-kNN and BPR-MF. This paper compares
with the BPR-MF, which is also based on matrix
approximation method;

4. AOBPR [22], which improves the original BPR
method by a non-uniform item sampler and
oversampling informative pairs to speed up
convergence and accuracy.

5. SLIM [23], which generates top-N
recommendations by aggregating user ratings. In
their method, the weight matrix of user ratings
is learned by solving an L1 and L2 regularized
optimization problem.

The parameters of the compared methods are chosen as
the optimal ones reported in their papers.

The following two popular evaluation metrics are
adopted to measure recommendation accuracies on
implicit feedback data [24, 25, 17]: 1) Precision.
Given a user u, its Precision@N can be computed
as follows: Precision@N = |Ir ∩ Iu|/|Ir| where
Ir is the list of top N recommendations and Iu
is the list of items that u has rated. and
2) Normalized discounted cumulative gain (NDCG).
Given a user u, its NDCG@N can be computed
as follows: NDCG@N = DCG@N/IDCG@n,
where DCG@N =

∑n
k=1 (2reli − 1)/log2(i+ 1) and

IDCG@n is the value of DCG@N with perfect
ranking (reli = 1 if the i-th recommendation is relevant
to u and reli = 0 otherwise). Note that, for both
measures, higher values indicate better recommendation
accuracy.

4.2. Accuracy vs. Negative Example Sampling
Rate

Figure 2 shows the precision of StaMA for three
different surrogate loss functions : 1) least square error
loss; 2) exponential loss and 3) log loss with negative
example sampling rate varying from 10% to 90%.
And as shown in the figure, the Precision@10 values
increase as the ratio of negative examples increases,
which is intuitive because more data will be more
helpful to model learning and thus achieve better
recommendation accuracy. Meanwhile, we see that
StaMA with exponential loss consistently outperforms
the other two loss functions. Therefore, the following
experiments will adopt exponential loss. Meanwhile, it
can be seen that a sampling rate of 50% will achieve
near optimal recommendation accuracy, so that we can
sample 50% of negative examples to speed up training.

4.3. Accuracy vs. Rank

Figure 3 shows how the recommendation accuracy
of StaMA varies with different rank values on FilmTrust
dataset. Here, we set β as 0.04 for all the experiments.
It can be seen from the results that the recommendation
accuracy (NDCG@10 and Precision@10) of StaMA
first increases with the rank increases and achieves
optimal accuracy at 100 – 150, which is because smaller
ranks will cause the models to easily underfit the data.
After 150, the accuracy of StaMA will consistently
degrade as the rank increase, which is because larger
ranks will cause the models to easily overfit the data.
Meanwhile, the larger the rank is, the more computation
overhead StaMA will have. Therefore, we choose
100 as the optimal rank for the following accuracy
comparisons.
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Figure 3. The NDCG@10 and Precision@10 of StaMA with different ranks on FilmTrust dataset. We set

β = 0.04 for all the experiments.
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Figure 4. The NDCG@10 and Precision@10 of StaMA with different β values on FilmTrust dataset. We set rank

r = 100 for all the experiments.

4.4. Accuracy vs. β

Figure 4 shows how the recommendation accuracy
of StaMA varies with different β values on the FilmTrust
dataset. Here, we set the rank of all experiments as 100,
and similar results are observed with other ranks. It
can be seen from the results that the recommendation
accuracy of StaMA will first increase as β increases,
which is because too small β will make the negative
examples not important in the model training and
make the learned models biased too much towards
positive examples. When β is too large, e.g., over
0.05, the recommendation accuracy of StaMA will
degrade, which is because large β will make the negative
examples overly important in the model training and
make the learned models biased too much towards
negative examples. Overall, the optimal value of β
should vary for different datasets mainly relying on the
ratio of positive / negative examples, i.e., β is sensitive to

the datasets but not other hyperparameters, e.g., learning
rate, rank, etc. In the following experiments, we set β as
0.04 for all accuracy comparisons.

4.5. Accuracy Comparison

Table 1 and Table 2 compare the recommendation
accuracy between the StaMA method and five other
methods in terms of precision@N and NDCG@N,
respectively. As shown in the results, StaMA
consistently and significantly outperforms all the other
four methods on all three datasets in terms of NDCG,
and achieve better or comparable accuracy in terms
of precision. Note that NDCG is a ranking measure
which assigns higher scores to correct recommendations
at higher ranks in the list. These results indicate that
StaMA can provide high quality recommendations even
if only a few recommendations are allowed. Note
that, among the three datasets, MovieLens 1M and
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Table 1. Precision@N comparison between StaMA and one baseline collaborative filtering method (RSVD [19])

and four state-of-the-art top-N recommendation methods (WRMF [10], BPR [14], SLIM [23], AOBPR [22]) on

Movielens 1M, Movielens 100K and FilmTrust datasets.
Metric Precision@N

Data |Method N=1 N=5 N=10 N=20
M

L
-1

M
RSVD 0.1659 ± 0.0017 0.1263 ± 0.0005 0.1037 ± 0.0009 0.0766 ± 0.0020
BPR 0.3062 ± 0.0030 0.2277 ± 0.0074 0.1896 ± 0.0048 0.1516 ± 0.0007

WRMF 0.2761 ± 0.0074 0.2155 ± 0.0009 0.1816 ± 0.0007 0.1459 ± 0.0004
AOBPR 0.3098 ± 0.0076 0.2315 ± 0.0002 0.1926 ± 0.0022 0.1540 ± 0.0016
SLIM 0.3053 ± 0.0097 0.2208 ± 0.0039 0.1836 ± 0.0006 0.1419 ± 0.0029

StaMA 0.4768 ± 0.0039 0.3632 ± 0.0014 0.2979 ± 0.0015 0.2332 ± 0.0011

M
L

-1
00

K

RSVD 0.3155 ± 0.0038 0.2179 ± 0.0007 0.1403 ± 0.0035 0.1300 ± 0.0057
BPR 0.3439 ± 0.0168 0.2533 ± 0.0082 0.2061 ± 0.0040 0.1581 ± 0.0028

WRMF 0.3851 ± 0.0116 0.2752 ± 0.0053 0.2202 ± 0.0056 0.1679 ± 0.0035
AOBPR 0.3395 ± 0.0099 0.2591 ± 0.0057 0.2119 ± 0.0031 0.1632 ± 0.0025
SLIM 0.3951 ± 0.0056 0.2625 ± 0.0090 0.2055 ± 0.0031 0.1539 ± 0.0015

StaMA 0.4033 ± 0.0012 0.2903 ± 0.0044 0.2330 ± 0.0033 0.1969 ± 0.0043

Fi
lm

Tr
us

t

RSVD 0.4411 ± 0.0005 0.2939 ± 0.0001 0.1714 ± 0.0001 0.0859 ± 0.0002
BPR 0.4363 ± 0.0132 0.3420 ± 0.0011 0.2229 ± 0.0012 0.1217 ± 0.0020

WRMF 0.4624 ± 0.0055 0.3504 ± 0.0025 0.2241 ± 0.0017 0.1277 ± 0.0013
AOBPR 0.4421 ± 0.0103 0.3283 ± 0.0039 0.2236 ± 0.0015 0.1219 ± 0.0029
SLIM 0.5005 ± 0.0039 0.3491 ± 0.0066 0.2216 ± 0.0027 0.1206 ± 0.0017

StaMA 0.5101 ± 0.0040 0.3553 ± 0.0024 0.2266 ± 0.0004 0.1281 ± 0.0002

Table 2. NDCG@N comparison between StaMA and one baseline collaborative filtering method (RSVD [19])

and four state-of-the-art top-N recommendation methods (WRMF [10], BPR [14], SLIM [23], AOBPR [22]) on

Movielens 1M, Movielens 100K and FilmTrust datasets.
Metric NDCG@N

Data |Method N=1 N=5 N=10 N=20

M
L

-1
M

RSVD 0.0324 ± 0.0020 0.0700 ± 0.0006 0.0864 ± 0.0002 0.1006 ± 0.0001
BPR 0.0538 ± 0.0006 0.1235 ± 0.0003 0.1601 ± 0.0035 0.2070 ± 0.0011

WRMF 0.0510 ± 0.0013 0.1202 ± 0.0002 0.1563 ± 0.0013 0.2012 ± 0.0010
AOBPR 0.0532 ± 0.0018 0.1200 ± 0.0006 0.1567 ± 0.0009 0.2021 ± 0.0009
SLIM 0.0551 ± 0.0015 0.1201 ± 0.0023 0.1586 ± 0.0028 0.1948 ± 0.0043

StaMA 0.0677 ± 0.0006 0.1624 ± 0.0006 0.2155 ± 0.0010 0.2757 ± 0.0012

M
L

-1
00

K

RSVD 0.0389 ± 0.0028 0.1047 ± 0.0032 0.0996 ± 0.0059 0.1393 ± 0.0071
BPR 0.0783 ± 0.0036 0.1803 ± 0.0056 0.2351 ± 0.0056 0.2929 ± 0.0065

WRMF 0.0913 ± 0.0034 0.1989 ± 0.0030 0.2535 ± 0.0045 0.3131 ± 0.0043
AOBPR 0.0770 ± 0.0043 0.1801 ± 0.0044 0.2343 ± 0.0051 0.2930 ± 0.0058
SLIM 0.0912 ± 0.0021 0.1967 ± 0.0036 0.2476 ± 0.0050 0.3017 ± 0.0091

StaMA 0.0972 ± 0.0011 0.2130 ± 0.0022 0.2718 ± 0.0048 0.3332 ± 0.0040

Fi
lm

Tr
us

t

RSVD 0.1840 ± 0.0001 0.4286 ± 0.0004 0.4532 ± 0.0002 0.5039 ± 0.0002
BPR 0.2046 ± 0.0022 0.4664 ± 0.0051 0.5428 ± 0.0076 0.5890 ± 0.0042

WRMF 0.2325 ± 0.0059 0.4910 ± 0.0131 0.5651 ± 0.0003 0.5962 ± 0.0011
AOBPR 0.2001 ± 0.0038 0.4525 ± 0.0009 0.5258 ± 0.0034 0.5761 ± 0.0038
SLIM 0.2453 ± 0.0062 0.5090 ± 0.0066 0.5779 ± 0.0042 0.6135 ± 0.0057

StaMA 0.2529 ± 0.0012 0.5220 ± 0.0024 0.5879 ± 0.0034 0.6248 ± 0.0014

MovieLens 100K are more sparse than FilmTrust, and
StaMA achieves better improvements compared with
other methods. This means that the improvement of
StaMA is more significant when the data is more sparse,

which indicates StaMA is more desirable in many
real-world applications where user ratings are typically
very sparse. This further confirms our theoretical
analysis that StaMA can achieve better uniform stability
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bound, i.e., StaMA can achieve stable recommendation
even when the training data is very sparse.

5. Related Work

Top-N recommendation is an important class of
collaborative filtering problems [26, 27]. and matrix
approximation methods have been proposed to address
the implicit feedback data issue in many top-N
recommendation tasks [10, 9, 7, 14]. Existing works
of matrix approximation methods for implicit feedback
data adopt two kinds of techniques: 1) weighting [10,
9, 7] and 2) negative example sampling [9, 14] to
improve recommendation accuracy. Hu et al. [10]
adopted a point-wise weighting strategy to vary the
confidence levels for different examples. However,
in their methods, all positive examples are given the
same confidence and all negative examples are given
the same confidence. Hsieh et al. [7] proposed a
biased matrix completion method, which gives high
weight to positive examples and low weight to unknown
examples. Similar to the above methods, all positive
examples or negative examples are given the same
weight. Pan et al. [9] proposed a weighted low
rank approximation method and a negative example
sampling based method, and empirical proved that
both methods will improve recommendation accuracy
for implicit feedback data. Different from the above
works that only adopt either weighting or sampling,
StaMA integrates both weighting and sampling in the
model learning process, which can achieve sharper
generalization error bound and thus further improve
recommendation accuracy. Moreover, different from the
equally weighted methods, StaMA can give negative
examples lower weights if the model gives them high
score during training, because those examples are more
likely to be “false negative” examples.

Another kind of existing works adopts pair-wise [25,
14, 28] or list-wise [24] loss functions to address
the implicit feedback issue. The basic idea behind
these methods is that observed positive examples are
more important to users than those unknown examples.
Therefore, matrix approximation methods which can
minimize the pair-wise or list-wise loss functions
are proposed to achieve accurate recommendation on
implicit feedback data, e.g., CofiRank [25], BPR [14],
OrdRec [28], ListMF [24], etc. However, this kind of
methods often suffer from efficiency issue [14], e.g., the
training examples will increase from mn to mn2 for
pair-wise methods (m is the number of users and n is
the number of items). Different from these methods,
StaMA optimizes a point-wise loss function rather than
pair-wise or list-wise loss functions and therefore does

not suffer from the efficiency issue. Moreover, StaMA
can adopt negative example sampling (similar to the
above methods [14]) to further speed up model training
process.

Recently, Srebro et al. [29] derived the
generalization error bound for binary matrix
approximation problem for collaborative filtering.
However, we cannot directly design stable binary
matrix approximation methods based on their results,
because their theoretical analysis assumes that all
observed negative examples are true negative examples
and thus cannot deal with “false negative” example
problem. Li et al. [2] proposed a stable matrix
approximation method for explicit feedback data, and
showed that stable matrix approximation methods can
indeed improve generalization performance. However,
their method cannot be directly adopted in implicit
feedback setting because their method is not designed
to deal with the “false negative examples” issue for
implicit feedback datasets. Li et al. [3] analyzed the
generalization error bound and expected error bounds
of matrix approximation methods, and showed that
weighted matrix approximation can achieve lower
expected risks if the weights are properly chosen.
However, their analysis focused on rating prediction
problem on explicit feedback data rather than top-N
recommendation problem on implicit feedback data. To
the best of our knowledge, this is the first work that tries
to improve the generalization performance of matrix
approximation methods for top-N recommendation on
implicit feedback data.

6. Conclusion

This paper presents StaMA — a stable matrix
approximation method for top-N recommendation on
implicit feedback data by integrating new weighting
and negative example sampling techniques in model
learning process. The new weighting strategy is based
on the model output during model learning process,
which can give examples lower weights if the model
gives them low score during model learning. We
show that StaMA can achieve better generalization
performance in both theoretical analysis and empirical
study. Experimental study on three real-world
datasets demonstrate that StaMA can outperform
five baseline collaborative filtering methods in top-N
recommendation accuracy in terms of Precision@N and
NDCG@N. In addition, the proposed StaMA method
can achieve better recommendation accuracy than the
five compared methods even when the dataset is very
sparse.
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