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Abstract 
This paper presents an online data-driven 

algorithm to detect false data injection attacks 

towards synchronphasor measurements. The 

proposed algorithm applies density-based local 

outlier factor (LOF) analysis to detect the anomalies 

among the data, which can be described as spatio-

temporal outliers among all the synchrophasor 

measurements from the grid. By leveraging the 

spatio-temporal correlations among multiple time 

instants of synchrophasor measurements, this 

approach could detect false data injection attacks 

which are otherwise not detectable using 

measurements obtained from single snapshot. This 

algorithm requires no prior knowledge on system 

parameters or topology. The computational speed 

shows satisfactory potential for online monitoring 

applications. Case studies on both synthetic and real-

world synchrophasor data verify the effectiveness of 

the proposed algorithm. 
 

1. Introduction  

 
The electric power system is evolving towards 

tighter coupling between the information and 

physical systems [1]-[4]. As a prime example of 

sensor and communication deployment, 

synchrophasors provide high-resolution 

measurements with GPS-synchronized time stamps, 

which could benefit system monitoring, control, and 

protection. However, the communication and sensory 

system for synchrophasors also gives rise to threats 

of cyber attacks, which is of increasing concern for 

the grid operators [5]-[10].  

 

As a first step towards preventing the 

synchrophasor system from possible cyber attacks, 

several algorithms for better monitoring have been 

introduced. References [11]-[12] propose 

methodologies to identify and protect key 

measurements in a power grid, in order to prevent the 

system from “unobservable false data injection 

attacks”, which are created by manipulating multiple 

measurements simultaneously while keeping all the 

measurement residuals within normal range. These 

detection methods use measurements obtained from a 

single time instant and deal with false data injection 

attacks for supervisory control and data acquisition 

(SCADA) systems. References [13]-[14] study false 

data injection attacks using synchrophasor 

measurements obtained from multiple time instants, 

and perform detections according to the spatio-

temporal correlations among these measurements. 

However, expensive computations such as nonlinear 

optimizations are involved in [13], which may limit 

the real-time applicability of the algorithm. Prior 

knowledge on system parameters and topology is 

required in [14], which may introduce detection 

errors if inaccurate system information is presented. 

 

In this paper, a purely data-driven approach is 

proposed for online detection of false data injection 

attacks for synchrophsor measurements. An online 

attack detection framework is proposed to detect false 

synchrophasor data that is temporarily injected into a 

limited number of synchrophasors in certain power 

system. The proposed approach leverages the spatio-

temporal correlations among multi-time-instant 

synchrophasor measurements, and detects local 

outliers using a density-based data-mining technique. 

This approach is shown to be capable of detecting 

false data injection attacks in synchrophasor systems 

under both normal and eventful operating conditions, 

without introducing false alarms when system 

physical disturbances are presented. It requires no 

prior knowledge of system parameters or topology, 

and has fast computational speed suitable for online 

applications. 

 

The rest of the paper is organized as follows. 

Section II provides problem formulation for the false-

data-injection-attack detection of synchrophasor 

3194

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41544
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

mailto:marie126@tamu.edu


 

 

measurements; Section III proposes the online false-

data-injection-attack detection approach for 

synchrophasor systems; Section IV verifies the 

proposed approach through case studies; Section V 

presents concluding remarks to this paper.  

 
2. Problem Formulation 
 

In this section, the detection of false data injection 

attacks for synchrophasor measurements is 

formulated as detection of spatio-temporal outliers 

among time series measured by synchrophasors 

installed at various locations in the same power 

network. 

 
2.1. False Data Injection Attacks 

  
Let m n  matrix M  denote a set of 

synchrophasor measurements collected from n  

synchrophasor channels of the same type (i.e. all of 

them are voltage/current/power channels), within m  

time instants. This measurement matrix can be 

decomposed into the following two matrices: 

 

 M L D    (1) 

 

where L  denotes the matrix whose columns 

represent true synchrophasor measurements without 

false data injections attacks, and D  denotes the 

matrix of false data injections created by attackers. 

Each nonzero entry ijD  represents an injected data 

point to the thj  synchrophasor channel at time instant 

i . 

 

Definition 1: Let im , il , and id  denote the 
thi  

row of matrices M , L , and D , respectively. id  

represents the vector of coordinated false data 

injections at time instant i , and im  represents the 

vector of attacked synchrophasor measurements at 

time instant i . The coordinated attack id  is defined 

to be successful (undetectable) if the following 

conditions are satisfied: 

 

 ( )T
i i im h x r    (2) 

 ( )if r    (3) 

 

where ix  denotes the system state variables 

estimated by certain state estimation algorithm at 

time instant i ; ( )h   denotes the nonlinear 

relationship between system states and measurements 

(i.e., the power flow equations); ir  denotes the 

measurement residuals at time instant i ; ( )f   

denotes the bad data detection criterion based on 

measurement residuals;   denotes the threshold for 

bad data detection. The detection criterion shown in 

(3) is determined by the bad data detection 

mechanism used in certain state estimation program. 

Specifically, the 2 -test and largest normalized 

residual test can be applied on ir  to build (3) and 

identify bad data.  

 

In the above definition, the detection mechanism 

takes advantages of the following information: 1) 

system measurements obtained from single time 

instant; 2) power flow relationship among system 

measurements. Therefore, a coordinated attack id  

can go undetectable if power flow relationship ( )h   is 

satisfied without gross error, for the given 

measurement set T
im  at single time instant i . In the 

following section, a different detection mechanism is 

proposed to deal with false data injection attacks. The 

proposed mechanism leverages the following 

information to detect false data injection attack: 1) 

system synchrophasor measurements obtained from 

multiple time instants; 2) spatio-temporal correlations 

among system synchrophasor measurements. By 

utilizing the above different set of information, the 

proposed approach is able to detect false data 

injection attacks which are undetectable when 

traditional detection mechanism is applied. 

 
2.2. Features of Synchrophasor 

Measurements with/without False Data 

Injection Attacks 

 
In order to analyze measurements obtained at 

multiple time instants, row vectors im , il , and id  are 

inserted back into matrices M , L , and D , 

respectively. Each column of M  represents a 

measurement curve obtained at a synchrophasor 

channel, whose 
thi  entry could be attacked. In this 

paper, we focus on the false data injection attacks 

that could temporarily affect a limited number of 

synchrophasors. This indicates the attack matrix D  

is a sparse matrix with only a few nonzero entries.  

 

It has been demonstrated in [13]-[16] that under 

both normal and eventful operating conditions, 

matrix L  has the property of low rank, indicating 

strong linear correlations among attack-free 

synchrophasor measurements. However, matrix M  

is shown to have a higher rank compared to L , due 

to the nonzero entries of matrix D . Since rank of a 
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matrix represents the number of linearly independent 

columns/rows in the matrix, it can be concluded that 

the number of linearly independent synchrophasor 

measurements is increased due to the presence of 

false data injection attacks. This indicates 

synchrophasor curves under attacks tend to have 

weaker (linear) correlations among each other, 

compared with synchrophasor curves without attacks. 

 

 
Figure 1. Comparison between synchrophasor with 

and without false data injection attack. 

 

In order to further explain the above property, 

Figure 1 shows voltage magnitude curves obtained at 

two synchrophasors within the same local area. The 

system is under eventful condition from 3s to 5s. The 

upper curve contains a false data injection attack at 

around 1s, while the lower curve is free of false data 

injection attack. It can be observed that: 1) the upper 

curve tends to have outlier behavior (weak temporal 

correlation) when false data injection attack is 

presented (around 1s) and when system event is 

presented (from 3s to 5s);  2) during the attack-free 

time period (from 2s to 10s), the two curves obtained 

at different physical locations tend to have similar 

behavior (strong spatial correlation), no matter when 

the system is under normal or eventful operating 

condition; 3) when the system is under attack (around 

1s), the upper curve tends to have outlier behavior 

(weak spatial correlation) compared with the lower 

curve. The above phenomena is caused by the low-

rank property of the attack-free measurement matrix 

L  and the sparse property of the attack matrix D . 

Since components in the same power grid are 

strongly coupled with each other through 

transmission network, the system dynamic 

measurements obtained by different synchrophasors 

within a local area tend to be strongly correlated with 

similar behavior, under both normal and eventful 

operating conditions. However, when a limited 

number of synchrophasors are temporarily attacked 

by the attackers, only the attacked synchrophasors in 

the system would encounter a temporary change in 

their measurements, while measurements obtained by 

the other synchrophasors would reflect normal 

system dynamics. Unlike system events which could 

affect most of the synchrophaor measurements within 

a local area, these false data injection attacks affect 

only a small fraction of all the synchrophasor 

measurements. Therefore, synchrophasor 

measurements under this type of attack would have 

outlier behavior compared with their spatial 

neighborhoods which are free of attack. 

 

The above features of synchrophasors 

with/without false data injection attacks can be 

summarized as follows: 

 

Feature 1: Under normal operating conditions, 

synchrophasor measurements without false data 

injection attacks obtained from nearby physical 

locations exhibit strong spatial and temporal 

correlations with each other. 

 

Feature 2: Under eventful operating conditions, 

synchrophasor measurements without false data 

injection attacks obtained from nearby physical 

locations exhibit strong spatial correlations but weak 

temporal correlations with each other. 

 

Feature 3: Under both normal and eventful operating 

conditions, synchrophasor measurements with false 

data injection attacks exhibit weak spatial and 

temporal correlations with synchrophasor 

measurements without false data injection attacks. 

 

The above three features are further demonstrated 

through the simple example shown in Figure 2. Three 

2×8 measurement matrices M(1), M(2), and M(3) are 

sampled from the same set of synchrophasor channels 

at three different time periods. Each matrix contains 8 

synchrophasor curves within 2 consecutive time 

instants. M(1) contains 6 attack-free synchrophasor 

curves and 2 attacked synchrophasor curves obtained 

under normal operating condition. M(2) and M(3) 

contain 8 attack-free synchrophasor curves obtained 

under eventful and normal operating conditions, 

respectively. The Euclidean distance is used to 

quantify the strength of the spatio-temporal 

correlations among these curves. Each synchrophasor 

curve in the three matrices is projected to the 2D 

Euclidean space shown in Figure 2. The x and y 

coordinates of each point are the data values at the 
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first and second time instant of the corresponding 

synchrophasor curve, respectively. 

 

 
Figure 2. 2D points representing synchrophasor 

curves under normal/eventful/attacked conditions. 

 

The following observations can be drawn from 

Figure 2: (1) the cluster of eventful synchrophasor 

data (eventful cluster) lies far from the clusters of 

attack-free synchrophasor data under normal 

operating condition (normal cluster), indicating weak 

temporal correlation between the two clusters; (2) all 

the points within the eventful cluster lie close to each 

other, indicating strong spatial correlation among 

points within the eventful cluster; (3) the two points 

representing attacked synchrophasor curves lie far 

from the normal cluster, as well as the majority of 

points in the other 6 points representing the 6 attack-

free synchrophasor curves in M(1), indicating weak 

spatial and temporal similarities with those 

neighboring points. Therefore, synchrophasor 

measurements under false data injection attacks show 

the feature of weak spatio-temporal correlations with 

their neighboring measurements. 

 
2.3. Detection of Spatio-temporal Outliers due 

to False Data Injection Attacks 

 
The above features of synchrophasor 

measurements with/without false data injection 

attacks indicate that under both normal and eventful 

operating conditions, synchrophasor measurements 

with false data injection attacks can be considered as 

spatio-temporal outliers among all the synchrophasor 

measurements of the same type. These outliers can be 

detected using density-based outlier detection 

methods, if the strength of spatio-temporal 

correlations among synchrophasor measurements can 

be measured properly by certain definition of 

“distance”. 

 

For a measurement matrix M obtained within a 

certain period of time, general steps to formulate the 

false-data-injection-attack detection problem are 

presented as follows: 

 

Step 1: Define a proper distance function to quantify 

the similarity between ith and jth column of M. 

 

Step 2: Map each column of M to the subspace S 

where the distance function is defined. Each column 

of M can be represented as a point in the 

corresponding subspace S. 

 

Step 3: Examine the outlier behavior of the points in 

the subspace S, according to the distance function 

defined in Step 1. Points lying far from the majority 

are classified as data with false data injection attacks. 

 

In the above formulation, a data segment that can be 

identified as “spatio-temporal” outlier among its 

neiboring data segments has the the following 

characteristics: it shows certain outlying behavior 

(quantified by the definition of “distance”) along both 

row direction and column direction of the 

measurement matrix M. 

 

3. Online Detection of False Data 

Injection Attacks 

 
In this section, a local outlier factor (LOF) based 

approach is proposed for online detection of false 

data injection attacks towards synchrophasor 

measurements. In [17], we present a similar LOF-

based approach for data quality improvement of 

synchrophasor systems. In this paper, we focus on the 

false data injection attack detection problem for 

synchrophasor measurements, and propose a more 

robust definition of “distance”, which is tailored for 

detecting false data injection attacks caused by false 

data injections in synchrophasor systems. The 

proposed LOF-based false-data-injection-attack 

detection algorithm is described as follows. 

 
3.1. Definition of “Distance” between 

Synchrophasor Measurements 

 
In order to measure the strength of spatio-

temporal correlations among synchrophasor 

measurements, the following definition of “distance” 

is proposed. 

 

Definition 2: Let ( )M k  denote the measurement 

matrix obtained at the 
thk  time interval. Let ( )iM k  

and ( )jM k  denote the 
thi  and thj  columns of 
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measurement matrix ( )M k , that is, ( )iM k  and 

( )jM k  are synchrophasor measurements obtained 

from the thi  and thj  synchrophasor channels at the 

same time interval. The distance ( , )d i j  between 

( )iM k  and ( )jM k  is defined as follows: 

 

( , ) Norm Norm
i jd i j                         (4) 

1 1

1 1

( )

( ) ( ( )) ( ( ))

Norm i
i t k t k

i C i C i

t t

k

t M t M t




  
   

 



 
    (5) 

 
1 ( ( ) )

( ( ))
0 ( ( ) )

i
C i

i

M t C
M t

M t C



 


              (6) 

 

where ( )i t  denotes the standard deviation of the 

columns of ( )iM t , C  denotes the data set of all the 

synchrophasor measurements identified to be clean 

(without false data injection attacks) by the proposed 

algorithm. 

 

Intuitively, Norm
i  represents the standard 

deviation of measurements obtained from the thi  

synchrophasor channel at current time interval k , 

normalized by the average of all the standard 

deviations of measurements obtained from the same 

channel at previous time intervals, when this channel 

is identified to be clean. This normalized standard 

deviation Norm
i  serves as an indicator of the strength 

of dynamic behavior of time series ( )iM t . For clean 

measurements without false data injection attacks, 

their normalized standard deviations tend to have 

similar values, indicating strong spatio-temporal 

correlations among them. However, the normalized 

standard deviations of attacked measurements tend to 

have significantly different values compared with 

those of clean measurements, due to their weak 

spatio-temporal correlations. Therefore, the distance 

( , )d i j  can be defined as the absolute difference 

between Norm
i  and Norm

j . Larger distance indicates 

weaker spatio-temporal correlations between ( )iM k  

and ( )jM k . 

 
3.2. LOFs Computation  

 
Based on the above definition of distance, LOFs 

for synchrophasor measurements can be calculated 

through the following procedure. Details of the LOF 

analysis can be found in reference [18]. 

 
3.2.1. Calculation of k-distance(p). Let the 

measurement matrix M  be the matrix consisting of 

synchrophasor measurements, each row of M 

represents a time instant, and each column of M 

represents measurements obtained from a 

synchrophasor channel. Let p , q , o  be some 

objects in M , each object represents a column in 

M . Let k  be a positive integer. Let \{ }q M p  

denotes { : , { }}q q M q p  . The distance between p  

and q , denoted by ( , )d p q , is defined in the previous 

section. 

 

For any positive integer k , the k-distance of 

object p , denoted by k-distance(p), is defined as the 

distance ( , )d p o  between p  and an object o M  

such that: 

 

a) for at least k  objects \{ }o M p  it holds that 

( , ) ( , )d p o d p o  , and 

 

b) for at most 1k   objects \{ }o M p  it holds that 

( , ) ( , )d p o d p o  . 

 

where  

 

The value of k-distance(p) provides a measure on the 

density around the object p . Smaller k-distance(p) 

indicates higher density around p . 

 
3.2.2. Identification of k-distance neighborhood of 

p. Given k-distance(p), the k-distance neighborhood of 

p contains every object whose distance from p  is not 

greater than the k-distance, i.e.,  

 

 
( )( )

{ \{ }| ( , ) ( )}

k distance pN p

q M p d p q k distance p

 

  
  (7) 

 

These objects q  are called the k-nearest 

neighbors of p. 

 
3.2.3. Calculation of reachability distance of object 

p with respect to object o. The reachability distance 

of object p with respect to object o is defined as:  

 

 
( , )

{ ( ), ( , )}

kreach dist p o

max k distance o d p o

 


  (8) 

 

Intuitively, if object p  is far away from object o , 

then the reachability distance between p  and o  is 

simply their actual distance. However, if they are 
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‘sufficiently’ close to each other, the actual distance 

is replaced by the k-distance of o . The reason is that 

in doing so, the statistical fluctuations of ( , )d p o  for 

all the p 's close to o  can be significantly reduced. 

The strength of this smoothing effect can be 

controlled by the parameter k . The higher the value 

of k , the more similar the reachability distances for 

objects within the same neighborhood. 

 

3.2.4. Calculation of local reachability density of p. 

The local reachability density of p is defined as: 

 

 

1

( )

( )

( , )

| ( ) |

MinPts

MinPts

MinPts

o N p

MinPts

lrd p

reach dist p o

N p







 
 
 
 
 
 

           (9) 

 

where ( )( ) ( )k k distance pN p N p . 

 

Intuitively, the local reachability density of an object 

p  is the inverse of the average reachability distance 

based on the MinPts-nearest neighbors of p. It is 

essentially an estimation of the density at point p  by 

analyzing the k-distance of the objects in ( )kN p . 

The local reachability density of p  is just the 

reciprocal of the average distance between p  and the 

objects in its k-neighborhood. 

 

3.2.4. Calculation of LOF of p. The local outlier 

factor of p is defined as: 

 

 
( )

( )

( )
( )

| ( ) |

MinPts

MinPts

MinPtso N p

MinPts
MinPts

lrd o

lrd p
LOF p

N p





           (10) 

 

The local outlier factor of object p  captures the 

degree to which p  is a local outlier. It is the average 

of the ratio of the local reachability density of p  and 

those of p 's MinPts-nearest neighbors. It is easy to 

see that the lower p 's local reachability density is, 

and the higher the local reachability densities of p 's 

MinPts-nearest neighbors are, the higher the LOF 

value of p is. 

 

After obtaining LOFs for all the synchrophasor 

channels, each LOF is compared with a pre-defined 

threshold to detect false data injection attacks. The 

LOF threshold is a system-dependent value and can 

be determined through offline training, using 

historical data obtained from the same system. 

Synchrophasor channels with LOFs exceeding the 

threshold can be detected as attacked channels. 

Figure 2 shows the implementation flowchart for the 

proposed LOF-based false-data-injection-attack 

detection approach. 

 

 
Figure 3. Flowchart of the proposed false-data-

injection-attack detection approach. 

 
4. Case Studies 

 
In this section, the proposed false-data-injection-

attack detection approach is tested using both 

synthetic and practical synchrophasor data. In order 

to demonstrate the proposed approach can detect 

false data injection attack under eventful operating 

condition, without introducing false alarms by system 

physical events, a system event is presented in each 

of the test cases. In all the following test cases, a 

unique set of algorithm parameters are used: moving 

data window length = 20 data points; LOF threshold 

= 10; Number of neighboring data for LOF algorithm 

= 0.5   number of synchrophasor curves. The setting 

of the algorithm parameters can be optimized through 

offline training using historical synchrophasor 

measurements obtained in the same power grid. 

 

It is worth emphasizing that, the physical events 

chosen for the following case studies are fast 

transient events with similar temporal outlying 

behavior compared to the false data injection attacks. 

Both the events and the attacks show some sudden 

changes in the eventful/attacked synchrophasor 

curve. This similarity could potentially cause false 

alarms for false-data-attack detection algorithms. For 

slower events such as variation of loading conditions, 
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less false alarms would be introduced, since these 

slow events do not have very similar temporal 

outlying behavior compared to false data injection 

attacks. 

 
4.1. Case Study with Synthetic Data 

 
The synthetic synchrophasor measurements are 

generated using simulation results obtained from a 

standard IEEE-14 bus system in Matlab PSAT 

toolbox [19]. In order to verify the performance of 

the proposed algorithm under eventful operating 

condition, a three-phase line-to-ground fault is 

applied to the system. All the simulation results are 

sampled at the rate of 50Hz to build the synthetic 

synchrophasor data. The synthetic data set has 14 

synchrophasor curves for voltage magnitudes, where 

synchrophasor channels No. 1, 3, and 9 contain 

constant false data injections (lasting from 6s to 6.4s) 

[13]-[14]. The length of each injected data segment is 

0.4s. Figure 3 shows the data curves with false data 

injection attacks. 

 

 
Figure 4. Synthetic synchrophasor measurements 

with false data injection attacks. 

 

Figure 4 shows the LOF values of the 

synchrophasor measurements under physical event or 

false data injection attack. It can be seen that under 

physical events, LOFs of all the measurements lie far 

below the threshold value, while under false data 

injection attacks, LOFs of the attacked measurements 

(synchrophasor channel No. 1, 3, and 9) exceed the 

threshold value. This verifies the effectiveness of the 

proposed algorithm in accurately detecting false data 

injection attacks without creating false alarms due to 

physical system events. 

 

 
Figure 5. LOF values of synthetic synchrophasor 

channels when system physical event (right) or false 

data injection attack (left) is presented. 

 

The detection results of false data injection 

attacks for synthetic synchrophasor data are shown in 

Table 1. It can be seen that all the attacked 

synchrophasor channels (No. 1, 3, and 9) are 

successfully detected, and no false alarms are created 

by system events. The time delay of the starting and 

ending time instants of the false data injection attacks 

is less than 0.38s. The time delay is mainly caused by 

the time window length determined in the algorithm. 

Larger time window may result in more time delay 

for the detection. The average computation time for 

the proposed algorithm over one time window is 

0.0130s. The detection delay and computation time of 

the proposed approach are insignificant compared 

with the latency requirements for online quasi-

steady-state applications, ranging from 1 seconds to 5 

seconds [20]. The performance of the proposed 

approach is satisfactory for online applications. 

 

Table 1. Detection results for synthetic 

synchrophasor data with false data injection attack 

Index of 

Synchrophasor 

with Cyber 

Attack 

Starting Time 

of Attacked 

Segment 

Ending Time of 

Attacked 

Segment 

1 
6.20s 

(LOF = 101.5) 

6.78s 

(LOF = 33.4) 

3 
6.32s 

(LOF = 52.3) 

6.78s 

(LOF = 26.3) 

9 
6.32s 

(LOF = 73.9) 

6.78s 

(LOF = 36.6) 

 
4.2. Case Study with Actual PMU Data 
 

The proposed approach is also tested using real 

synchrophasor measurements obtained in a practical 

power grid during a line-tripping fault. The sampling 

rate of the synchrophasor data is 100Hz. Since we do 

not have access to some cyber compromised actual 

PMU data, in order to test the performance under 
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false data injection attacks, we added constant data 

injections to PMU No. 14, 18, 24, and 37 (lasting 

from 1.0s to 1.2s). The length of each injected data 

segment is 0.2s. Figure 5 shows the data curves with 

false data injection attacks. 

 

 
Figure 6. Practical synchrophasor measurements with 

false data injection attacks. 

 

Figure 6 shows the LOF values of the 

synchrophasor measurements under physical event 

and false data injection attack. It can be seen that 

under physical events, LOFs of all the measurements 

lie far below the threshold value, while under false 

data injection attacks, LOFs of the attacked 

measurements (synchrophasor channel No. 14, 18, 

24, and 37) exceed the threshold value. This verifies 

the effectiveness of the proposed algorithm in 

accurately detecting false data injection attacks 

without creating false alarms due to physical system 

events. 

 

 
Figure 7. LOF values of practical synchrophasor 

channels when system physical event (right) or false 

data injection attack (left) is presented. 

 

The detection results of false data injection attacks 

for practical synchrophasor data are shown in Table 

2. It can be seen that all the attacked synchrophasor 

channels (No. 14, 18, 24, and 37) are successfully 

detected, and no false alarms are created by system 

events. The time delay of the starting and ending time 

instants of the false data injection attacks is less than 

0.19s. The time delay is mainly caused by the time 

window length determined in the algorithm. Larger 

time window may result in more time delay for the 

detection. The average computation time for the 

proposed algorithm over one time window is 0.040s. 

The detection delay and computation time of the 

proposed approach are insignificant compared with 

the latency requirements for online quasi-steady-state 

applications, ranging from 1 seconds to 5 seconds 

[20]. The performance of the proposed approach is 

satisfactory for online applications. Although the 

computation time of the proposed algorithm would 

grow if more synchrophasor curves are available in 

the system, the growth in computation time would be 

limited since there is no complicated computation, 

such as nonlinear optimization or matrix inversion, 

involved in the proposed approach. Moreover, in 

order to detect false data injection attacks in large-

scale power systems with a large number of 

synchrophasors, this approach can be easily applied 

in a decentralized way by performing false-data-

injection-attack detection at each of the local phasor 

data concentrators (PDC), using synchrophasor data 

obtained at the corresponding local regions. 

 

Table 2. Detection results for practical synchrophasor 

data with false data injection attack 

Index of 

Synchrophasor 

with Cyber 

Attack 

Starting Time 

of Attacked 

Segment 

Ending Time of 

Attacked 

Segment 

14 
1.16s 

(LOF = 141.9) 

1.39s 

(LOF = 133.4) 

18 
1.16s 

 (LOF = 99.5) 

1.39s 

 (LOF = 93.6) 

24 
1.16s 

(LOF = 60.4) 

1.39s 

(LOF = 55.9) 

37 
1.16s 

 (LOF = 332.2) 

1.39s  

(LOF = 311.8) 

 

In order to study the impact of time delay on the 

performance of the proposed algorithm, Figure 7 

shows the receiver operator characteristic (ROC) 

curves when different time window lengths are used. 

It can be seen from Figure 7 that: a) the proposed 

approach has higher detection accuracy when the 

time window length is set to be 0.2s or 0.25s; b) 

when the time window length is set at a lower value 

(0.15s), the detection accuracy tends to be lower and 

false alarms would happen; c) when the time window 

length is increased form 0.2s to 0.25s, the detection 

accuracy of the proposed algorithm is not improved 
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significantly. Since time window length is also 

closely related to the detection delay of the algorithm, 

it is desirable to consider both detection accuracy and 

detection delay when determining the time window 

length for the algorithm. 

 

 
Figure 8. ROC curves for test case with practical 

synchrophasor measurements when different time 

window lengths are used. 

 

5. Conclusions  

 
This paper proposes an online data-driven algorithm 

to detect false data injection attacks against 

synchronphasor measurements. This approach 

leverages the unique spatio-temporal correlation 

signatures among synchrophasor measurements over 

a moving window of time. The change of the 

signature indicates the presence of possible false data 

injection attacks. The detection is shown to be 

effective under both normal and fault-on conditions. 

It is purely data-driven algorithm without involving 

prior knowledge on parameters or topology of the 

power grid, which avoids the impact of inaccurate 

system information on the detection results. The 

effectiveness of the proposed approach is verified 

through case studies using both synthetic and 

practical data sets.  

 

The proposed LOF-based framework can also be 

applied to detecting various low-quality 

synchrophasor measurements. Through proposing 

different ‘distance functions’ for different types of 

data quality problems, and introducing multiple 

‘distance functions’ into the algorithm, the spatio-

temporal features of each type of data quality 

problem can be quantified differently. This could 

improve the detection sensitivity for different types 

of problems. 

 

While in this work we focus on attacks that only 

affect a limited number of synchrophasors in a 

temporary way, our future work will investigate the 

possibility of a more coordinated attack. The cross-

domain correlation among different sets of data (e.g., 

SCADA and synchrophasors) would offer new 

possibilities to detect such coordinated attacks. We 

would also investigate more robust definitions of 

distances for various types of data attacks. Last but 

not least, we would also investigate different 

categories of cyber attacks such as spoofing of GPS 

clocks. 
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