

Towards an Agile Reference Architecture Method for Information Systems

Eric Souza
Universidade NOVA de Lisboa

 er.souza@campus.unl.fct.pt

Ana Moreira
Universidade NOVA de Lisboa

 amm@unl.fct.pt

Fernando Wanderley
Unicap

 fernando@unicap.br

Abstract

Agility in software architecture development has

received significant attention recently, but supporting
tools and methods for this architecture-agility
combination are still lacking. This paper proposes
RAMA (Reference Architecture Modeling in an Agile
software development), a value-centric method to
address this issue. RAMA uses model-driven
engineering to create information system’s reference
architecture aligned with the organization’s business
values. RAMA’s feasibility was evaluated with a case
study and a proof-of-concept tool.

1. Introduction

Traditional software architecture processes tend
to introduce excessive documentation and additional
development effort of possibly unneeded features [1].
This may be why combining software architecture
design and agile development was ranked second in
the top “ten burning research questions” for the agile
community [2]. However, combining these topics is
challenging [1], [3], as proved by a recent study [3]
showing that the architecture-agility combination still
lacks supporting techniques. The first challenge is the
apparent mismatch between architectural design
giving a development plan, and agile practitioners not
paying much attention to planning and embracing
changes during development [3]. The second
challenge points to valuable information being lost or
misunderstood due to communication issues between
business and software developers, leading to wrong
or needless architectural features [3].

This paper addresses these issues by proposing
RAMA, a Reference Architecture modeling Method
for information systems in the context of Agile
software development. RAMA focuses on customer
satisfaction, the core principle of the agile manifesto
[4]. It creates an information system reference
architecture aligned to the economic business values
of an organization, and uses model-driven techniques
to automate some development activities (e.g.,
generate source code). RAMA supports the creation

of a software architecture model in an intuitive,
interactive, and agile (fast) manner using a cognitive
map (e.g., mind map). While mind map based models
add simplicity (an important principle in the agile
manifesto [4]) to the models, model-driven
techniques are used to automate tasks required to
generate a reference architecture. Model-driven tools
were developed to check the viability of automating
part of the RAMA’s process and a case study shows
RAMA’s feasibility. The results indicate that RAMA
is a good alternative to model software architecture
for an information system in an agile context.

This paper is structured as follows. Section 2
introduces software architecture, agile practices,
cognitive maps, business value, and model-driven
engineering. Section 3 details RAMA and Section 4
evaluates it with proof-of-concept tools and an
industrial case study. Section 5 presents related work
and Section 6 concludes and identifies future work.

2. Background

2.1. Software architecture

Software architecture has been defined in many

different ways [5], but at its core it refers to the
structure of the software [6] comprising software
elements, the externally visible properties of those
elements, and the relationships among them [7]. Its
tasks are still hard to accomplish, demanding forceful
effort and time. The problem of creating a software
architecture model is similar to solving any other
problem, where, iteratively, we understand the
problem, find a solution, and evaluate the final result.
As building software architecture is costly, the
activities to its creation are not formally performed in
agile software development contexts, where software
architectures are built, but with little planning and
analysis. Our approach uses mind maps to create
essential software artifacts in a cognitive and
interactive way and model-driven techniques to
automatically generate artifacts (e.g., a reference
architecture), reducing the modeling process effort.

Proceedings of the 51st Hawaii International Conference on System Sciences | 2018

URI: http://hdl.handle.net/10125/50569
ISBN: 978-0-9981331-1-9
(CC BY-NC-ND 4.0)

Page 5455

2.2. Agile development

Agile development aims at reducing the effort-

intensive tasks in software development, focusing on
fast response to the various changes in a project [8].
The Agile Manifesto establishes values and
principles to guide the agile development [4]. In
recent years, researchers and practitioners have
proposed several agile practices [9], which have been
catalogued by the agile alliance in its “subway map to
agile practices” [10]. The following topics show the
meaning of Agile Practices (AP#) used in our method
[10]:

[AP01] Iterations: is a timebox during which

development takes place.
[AP02] User stories: are functional increments

describing what must be developed by the team.
[AP03] Facilitation: is any action that facilitates the

development.
[AP04] Team: is a small group of people, assigned

to the same project.
[AP05] Backlog: is an ordered list of items

representing everything that may be needed to
deliver a specific outcome.

[AP06] Iterative development: is the “repetition”
of software development activities for
potentially “revisiting” the same work products.

[AP07] Incremental development: is the adding of
user-visible functionality to the previous
software version.

[AP08] Ubiquitous language: is the use of the
vocabulary of a given business domain, not only
in discussions about the requirements for a
software product, but also in discussions of
design.

[AP09] Simple design: is the design that uses the
practice often reduced to the acronym YAGNI
(You Aren’t Gonna Need It).

2.3. Cognitive maps

A “cognitive map is a mental device and store

which helps to simplify, code and order the endlessly
complex world of human interaction with the
environment” [11]. A mind map is a type of cognitive
map used to view, classify and organize concepts, to
generate new ideas in a straightforward and intuitive
way, to emphasize relevant keywords, and to
associate elements in branches [12]. A mind map is
composed of a central node (representing the main
concept of model) and ramifications of topics and
sub-topics from the central node. We use a mind map
to structure business and software models to facilitate
knowledge transfer from business to software [27].

2.4. Business value

A business model is a lightweight, semi-formal

and conceptual technique, inspired in business
science, requirements engineering and conceptual
modeling to model business ideas [13]. Its main goal
is to identify who is offering what to whom and
expects what in return. (Note the difference with a
business process model (e.g., BPMN [14]) that
describes how processes should be carried out, and by
whom [15].) The central notion in a business model is
the concept of value, to explain the creation, addition,
and the exchange of value between stakeholders [15].

A value model shows how a business value is
created and exchanged in an inter-organizational
network, aiding detecting business opportunities [16].
Value is the reason why people and companies trade
with each other, offering money to get something in
return. So, a value model represents a business model
from an economic perspective, and determines the
exchanged economic values and their intervenients
[16]. Its alignment with software development is
critical to meet the customers’ satisfaction.

RAMA uses DVD (Dynamic Value Description
language) [17] to specify business values. DVD has
proved to be an ease to use, useful, effective and
efficient value-driven approach [18]. It offers an
environment where stakeholders can share their
values exchanged views in a semi-structured and
concise mind map model (Section 2.3). Figure 1
shows a DVD model for an abstract shop business,
structured as a mind map.

Figure 1. DVD model example.

Actors are environment entities economically

independent. The business analysts focus defines the
main actor (central node of the model), and their
focus change along the specification process. Each
time they focus on one actor (the main actor),
identify its relationship with other environment
actors, creating an inter-organizational network.
From each such relationship, a value exchange
(transfer of resources) is defined, showing economic

Page 5456

reciprocity through two value ports (blue arrows
connected to value exchanges in Figure 1 pointing to
value objects such as money and good). The arrows
direction is set based on the environment actor. Each
value exchange has a textual description which is not
represented in the visual model. Next, we define who
starts the value exchanges through a configuration of
arrows (in red) between the main actor and the
environment actors, helping understanding the model.
For example, Shopper starts a value exchange with
Store, by paying Money in exchange for a Good.

When focusing on one actor, the supporting tool
displays it, dynamically, as the central node of the
model. Each value exchange requires a value level of
agreement (VLA) between the actors involved, which
refers to the minimal business rule agreed among
them with no clear-cut satisfaction criteria. In the
example, the shopping transaction between Shopper
and Store must be secure, leading to add Security
to the corresponding value exchange.

2.5. Model driven engineering

Model-Driven Engineering (MDE) automates

repetitive and error-prone tasks through an automatic
processing model aiming at reducing the accidental
complexity involved in software development [19]. It
has been successfully used in industries, including
telecommunication, automotive, aerospace, and
business information systems [20]. MDE focuses on
abstracting the details of a complex problem,
concentrating developers on producing top-level
abstraction models to generate complex software
artifacts automatically. Hence, MDE uses models as
first class entities, aiming at increasing productivity,
augmenting interoperability, and facilitating
communication [21], [22].

Developing software from models requires these
to be rigorously defined [23], what is achieved
through metamodels and automatic transformations
[24]. Metamodels are used to implement model
transformations and to create DSLs (Domain Specific
Languages). Model transformations incrementally
and automatically refine, refactor or re-engineer
abstract source models [25] until producing a solution
model (known as Model to Model, or M2M, and
Model to Code, M2C). DSLs are languages designed
to be useful for specific sets of tasks and particular
domains [26], realize particular points of view of a
problem, and create rigorous modeling editors.

Our approach uses MDE to generate software
artifacts, like a reference architecture model.

3. The RAMA method

The RAMA macro process in Figure 2 has six
activities: specify value model, prioritize value
exchanges, specify conceptual models, identify
concepts overlaps, decision analysis, and create
reference architecture. To specify a value model, the
business person creates a DVD model in a meeting
session with the participation of the development
team (related to the AP04 practice). Then, the
business prioritizes value exchanges, according to the
business return on investment (ROI).

Figure 2. RAMA’s macro-process.

Next, the business person and the development
team, with the help of a facilitator (agile practice
AP03), specify conceptual models, for the value
exchanges using mind maps (AP08). After, the
development team identifies concepts overlaps
among conceptual models. When an overlap is found,
the team decides (decision analysis) which of the
models take the responsibility for that concept. These
activities are performed iteratively and incrementally
(AP06 and AP07). Finally, model-driven techniques
are used to generate a reference architecture with its
architectural components and relationships.

3.1. Specify value model

The business person explains to the development

team how the business works, by representing
business values, what results in a DVD value model.
This model is created as follows: (1) Specify main
actor by representing the focus of the analysis (the
business for which the information system will be
developed or evolved). In the example of Figure 3,
Store is the central node. (2) Identify environment
actors that directly interact with the main actor. The
result is adding Shopper and Manufacturer (who
changes products damaged) and Wholesaler (who
offers a fast delivery service) to Figure 3. (3) Set
value exchanges defines the value elements related to
each value port. For example, Shopper gives Money
to Store in exchange for a Good. Money is depicted
in the value exchange’s output port (arrow heading
out) and Good in the input port (arrow heading in).

Page 5457

(4) Set who triggers each value exchange identifies
the actor causing the value exchange. For instance,
Shopper starts by making a payment. (5) Set value
level agreement defines the contracts, or restrictions,
for the value exchange. In the example, the shopping
transaction must be secure, leading to add Security
to the value exchange between Shopper and Store.

3.2. Prioritize value exchanges

Priorities are given in two rounds. For the first,

the business person uses a scale (high, medium, and
low) to define the priority of each value exchange
according to ROI. The DVD model uses a color code
to represent each scaling value visually (red, yellow
and blue, respectively). These priorities guide the
development iterations (AP01), where the highest
ranked will be implemented first. Figure 3 shows
these priorities and the context menu to choose them.

Figure 3. 1st-round priority to value

exchanges.

Next, the business person and development team

defines user stories (AP02) for each value exchange
(or only those with higher priority contained in an
iteration). User stories describe software
requirements aligned with the business values. The
second prioritization round, done by the development
team, happens for value exchanges with the same
priority (and user stories already described). The goal
is to distinguish the value exchanges with the same
priority, solving potential future conflicts. Then, it is
clear which value exchanges must be handled first
during the information system development.

3.3. Specify conceptual models

Development team creates conceptual models to

(or part of) the value exchanges. To aid visualization
and assure traceability between value exchanges and
respective conceptual models, a behavior tree view is
generated from the DVD model using M2M
transformations (Figure 4, generated automatically cf.
Section 4.1.1). The top level is the parent node
(backlog, related to AP05), each of the three nodes in
the second level represent a priority value from the

priority scale used in the first-round, the third level
has the value exchanges (each number represents the
second-round priority), and the fourth level has the
user stories.

Figure 4. Behavior tree view.

The conceptual modeling activity is collaborative,
involving the business person, the development team,
and a facilitator (who can be a member of the team)
[27]. Armed with the value exchange specification
(composed of a set of user stories), the facilitator
helps the business person and the development team
build the conceptual models, and uses a mind map to
answer questions like: (i) What is the central concept
of the problem domain? (ii) What are the sub-
concepts directly related to the central concept and
that are relevant to the system? (iii) What data must
be managed and stored?  These help eliciting
relevant responses from the business person to build
the mind map model [27], which is used to aid
communication. It diminishes the semantic gap
between the business person and the development
team [28], [29].

From the conceptual models structured as mind
maps, the development team creates class diagrams
using M2M transformations [29]. For example,
Figure 5-a shows a conceptual map for “security
data” user story (where “profile” was elected as the
main term in the user story) and Figure 5-b (cf.
Section 4.1.2) shows the initial class diagram
generated from this mind map.

 Figure 5. Conceptual model structured as (a)

a mind map and (b) a class diagram.

Page 5458

Now the development team, owning IT background,
adds detail to the class diagram by defining data
types (e.g., String, Integer), access modifiers to
attributes (e.g., public, private), cardinalities, and
methods names [29].

3.4. Identify concept overlaps

The development team searches for similar

concepts among conceptual models, identifying
possible overlaps. Figure 6 shows an example of a
representation of a conceptual overlap.

Figure 6. Conceptual overlaps and decision

analysis.

3.5. Decision analysis

The development team must decide where the

overlapped concepts belong, following the principles
of domain-driven design [30], where the domain is
modularized with a concise set of concepts guiding
the software structure. A software component
encapsulates a cohesive set of system’s
functionalities. Those functionalities handle a set of
entities. Those entities are represented as concepts in
a conceptual model. Then when defining the
conceptual model boundaries we also define the
software component boundaries, leading to each
conceptual model to “map” to a software component
in our reference architecture. So, the development
team must decide if the overlapped concepts (Figure
7) belong exclusively to component A (matching to
conceptual model 1, for example) or component B
(matching to conceptual model 2) or neither (a new
component C). Figure 6 shows this decision analysis,
when the development team chooses that the overlap
should form a new component.

3.6. Generate reference architecture

After defining the scope of each component, the
development team generates the reference
architecture model and names of each component.
The relations between components are detected

through the conceptual models overlaps: if the
conceptual model A uses a concept from conceptual
model B, then they are related. Figure 7 shows the
resulting architecture model, which is automatically
generated using MDE techniques. If class diagrams
created by the activity specify conceptual models
were completed to have methods, then the
architectural components could be generated with
their interfaces (it is also possible to generate a
skeleton of Java code). Otherwise, if the methods
were not specified in the class diagrams, developers
must define the interfaces manually.

Figure 7. Reference architecture example.

4. Evaluating RAMA

RAMA’s evaluation is in two parts: (i) checking
the method’s feasibility by building proof-of-concept
tools to support the most important parts of the
method (business value modeling, conceptual
modeling, identification of concepts overlaps, and
support decision analysis), and (ii) applying the
method to create a reference architecture model for
an industrial online auction system in an agile
development. This reference architecture model was
the result of the first sprint of a software development
process based on the Scrum which had a
development team composed of only two people.

4.1. Proof-of-concept tools (first evaluation)

We identified three points for automation and

build a supporting tool to each point: (i) a DSL to
create the DVD model; (ii) a DSL to create the
conceptual models; (iii) an algorithm to identify
overlaps and support to decision analysis.

4.1.1 DSL for value modeling

A DVD editor was implemented using the Eclipse

EuGENia tool [31], allowing the creation of models
syntactically validated. EuGENia automatically
generates the background models needed to
implement a GMF editor from a single annotated

Page 5459

Ecore metamodel (Enfatic model). Figure 8 shows a
fragment of the Enfatic model used in our tool. The
editor allows the modeler to create a DVD model
dragging DVD’s objects contained in a palette box.
The implemented transformation rules used the
Epsilon Transformation Language (ETL) to generate
the behavior tree view (Figure 4) automatically.

Figure 8. Fragment of Enfatic model.

4.1.2 DSL for conceptual modeling

The DSL infrastructure for conceptual modeling

consists of (i) a MindMappingModeler component a
(ii) DomainModelExtractor component, and (iii) a
DomainModelTool component. Figure 9 shows the
infrastructure of the DSL. Through the
MindMappingModeler, the business person and the
development team create the mind-map-like
conceptual model structure. The
DomainModelExtractor component performs
processing (binding) and produces the UML class
diagrams representing the domain. These class
diagrams artifacts are the input to the
DomainModelTool (an editor of class diagrams).

Figure 9. Tool infrastructure.

4.1.3 Overlap identification

To facilitate the overlap identification, we used

the well-known Levenshtein distance algorithm [32],
which measures the edition distance between two
words, calculating how many operations it needs to
transform a word source in another word target.
There is a significant probability of the concepts to be

the same when the edition distance between the
words is short. The similarity detection is a semi-
automatic process where the algorithm detects the
nodes with similar names (not necessarily the same)
and solicits a confirmation (is the concept “x” in the
mind map “m” analogous to the concept “x1” in the
mind map “m1”?). If the person confirms the
similarity, then the algorithm registers the concept
overlap. Levenshtein distance algorithm was enough
to the proof-of-concept evaluation, but we believe
that future research must be performed in natural
processing languages algorithms (e.g., identification
of synonymous words).

4.2. Case Study (second evaluation)

This is an industrial online auction system that is
part of a Brazilian gas station chain fidelity program
and was performed in an agile development.

4.2.1. Business description of the online auction

When a gas station chain customer registers in the

system, he earns 50 coins to bet in any auction of the
system (each coin allows one bet). Additional coins
are acquired if a customer (i) shops in a gas station
(receives the product and coins), (ii) wins an auction
(places a bet and expects to be the winner), or buys
coins packages (pays for coins). The system provides
several auctions concurrently, always selling cheaper
than market price. The idea is not to earn by selling a
third (partner) company’s product or service (i.e.
goods) but by having a large number of bets or
selling its own goods.

An auction starts with a minimum, current and
maximum price of goods, a start time, and an
envisaged end time. It begins with the minimum price
and, each time a bet is placed, the current price is
increased by R$ 0,01. If the auction finalizes before
reaching the maximum price, the customer makes a
very good acquisition (paying much less than market
price). If the price reaches the maximum price, he is
still acquiring the good cheaper than in the market.
Thirty seconds from the deadline, new bet delays the
finish time in thirty seconds, allowing time for more
bets. The winner is the owner of the last bet, who is
contacted by e-mail and has thirty days to pay with a
credit card for the good acquired. The credit card
company must provide a secure financial service in
exchange of a payment. After the payment is
confirmed, the gas station uses a delivery service to
deliver the product to the customer. If payment is not
concluded, the gas station chain creates a new auction
with that same product. The online auction system of
the gas station chain sells advertisement, earning

Page 5460

goods to be auctioned in exchange for publicity in
their own website (large number of visualizations).

4.2.2. Applying RAMA

Specify a value model. Figure 10 shows a DVD
model representing the business value exchanges for
the online auction business. First, we identified
Online auction, Customers, Partners,
Credit card company, and Delivery company
as the actors of this business. Online auction is the
focus of the analysis (main actor) and the other actors
are those with whom value exchanges occur
(environment actors).

The four value exchanges with Customers are (i)
register their data in the system, (ii) buy in the gas
station, (iii) place bets, (iv) pay for product won at
auction. In these value exchanges, customers start
the actions. Partners’ offer goods to be auctioned
and start the action. The Credit card company
offers a financial service contracted by the Online
auction that starts the action. The Delivery
company offers the delivery service to deliver goods
to the winners, and the Online auction starts the
action. The VLAs for the value exchanges with
Customer are free coins and is low cost of the good,
with Partners is large number of visualizations,
with Credit card company is Security, and with
Delivery company is fast (see Figure 10).

Figure 10. DVD model for the online action.

Prioritize value exchanges. The prioritization of

value exchanges are done based on ROI. Thus, the
business person sets the customers’ value exchanges
priority “high”, the financial value exchange as
“medium”, and the remaining value exchanges as
“low” (Figure 10). Once the high-level prioritization
is done, the business person specifies user stories for
the value exchanges with high priority. Table 1
describes some of these user stories.

Specify conceptual models. Figure 11 shows the
conceptual model represented as mind maps for VE1.
The central term is “account”. Customer and partner

have accounts. Customer registers mandatory data,
personal data, billing data, delivery data and has a
wallet. The wallet knows the customer’s quantity of
coins and holds transactions history. The central node
of VE2 is “coins acquirement” (Figure 12). When a
customer buys a good in the gas station, an invoice is
issued. Customer must inform the data of the invoice
so that the system performs a calculation (conversion
table) of how many coins will be added in the
customer’s wallet. For VE3, the central node is “bet”
(Figure 13). Customer places a bet in an auction. The
auction offers an object (service or product) and
saves the history of all the bets. When the auction
finishes, a notification is sent to the winning
customer.

Table 1. User stories.

ID Value
exchange

User story

VE1 Registering data As a customer, I want to create an
account so that I can place a bet.

 As a customer, I want to receive free
coins so that I can place bets in
auctions.

VE2 Buying in the
gas station

As a customer, I want to earn free
coins when I buy goods in the gas
station so that I can place bets in the
auctions.

VE3 Placing a bet As a customer, I want to see all
auctions available so that I can choose
where I will place my bets.

 As a customer, I want to place a bet on
an auction so that I can be the winner.

 As a customer, I want to know if I am
losing an auction where I am betting so
that I can place another bet.

 As a customer, I want to know when
the auction will finalize so that I can
place another bet if I am losing the
auction.

 As a customer, I want to be notified
when I am the winner of an auction so
that I can conclude and pay.

VE4 Buying the
auctioned good

As a customer, I want to know the
price of the good I won so that I can
pay for it.

 As a customer, I want to know the
deadline to confirm the payment so
that I can perform the payment on
time.

For VE4, the central node is “payment” (Figure

14). Customer knows the price of the auction s/he
won and offers billing data to complete the payment
process. During this process, a monitor checks that
all payment steps (e.g., if the payment was performed
before the expiry date) and all changes that may
happen during the process are registered (history).
When payment is concluded and the object auctioned
is of type product, then the delivery process starts.

Page 5461

Figure 11. “Registering data” conceptual

model.

Figure 12. “Buying” conceptual model.

Figure 13. “Placing a bet” conceptual model.

Figure 14. “Payment” conceptual model.

From these conceptual models, the development team
can generate class diagrams and complete them with
additional details. All class diagrams can be found in
a zip file at https://goo.gl/7PrXZ4.

Identify concepts overlaps & decision analysis.

A total of eight overlaps were found during the
identification task. Table 2 shows the overlaps and
the decisions made.

Table 2. Overlaps
Conceptual

model A
Conceptual

model B
Overlap
concept

Decision
analysis

1 Registering
data

Buying in the
gas station

Customer Create new
“Customer”
component

2 Registering
data

Placing a bet Auction Create new
“Auction”
component

3 Registering
data

Placing a bet Object Create new
“Object”
component

4 Buying in the
gas station

Customer Customer Customer

5 Placing a bet Customer Customer Customer
CRUD

6 Placing a bet Payment Auction Placing a bet
7 Placing a bet Object Object Object
8 Payment Customer Customer Customer

Generate reference architecture. To finalize the
process of combining architecture design and agile
practices, the development team automatically
generates the reference architecture and names each
component (AP09). Figure 15 shows the reference
architecture generated where the “registering data”
was renamed to “Partner”, and “placing a bet” to
“Bet”. The generated components are complemented
with the interfaces (offered and required) according
to methods specification in the class diagrams. The
more information the class diagrams have (e.g.,
methods, signatures, attribute types) the more
complete the reference architecture generated is in
terms of interfaces. Component relationships are
detected automatically through the concepts overlaps.

Figure 15. Reference architecture for the

online auction system.

Page 5462

4.2.3. Discussion of the second evaluation part

We used value modeling, domain-driven, model-
driven, and conceptual modeling techniques together
with agile practices to produce a feasible approach to
combine software architecture design and agile
development. Given that several parts of the process
are generated automatically, we reduced time to
create the various models, aligned with the initial
business values. However, the granularity of the
reference architecture created is directly related to the
granularity of the conceptual models specifications.
The more detailed the specification is, the more
detailed the reference architecture generated is. For
instance, if detailed class diagrams were created
during conceptual modeling, the generated reference
architecture could show the components’ interfaces.
The result shows that RAMA helps creating a
software architecture for an information system in an
agile software development context. The next step is
to validate these results with an empirical experiment
with Agile teams.

5. Related work

Our method differs from the other existing
methods (e.g., [33], [34], [37], [38]), as it uses DVD
to represent business values and uses user stories to
bridge business value representation and software
requirements specification (conceptual modeling).

Regarding the architectural description process in
agile development, the product backlog is the most
important artifact used as input [3]. In general, the
product backlog is used as a knowledge base to create
an architectural document [35]. Our method uses
conceptual models instead of product backlog as the
knowledge base because they have a lot more details
of the entities and attributes of the system. Also, the
conceptual model used in our method is structured
through mind map, aiming at decreasing the effort
and improving the business understanding during its
building. Also, the most frequently used tools for
architectural description are an office white board
and an online user-editable Wiki [33], [36]. Our
method uses tools to generate and handling models
using model-driven techniques, aiming at reducing
error-prone activities and time to build a reference
architecture.

6. Conclusion and future work

This paper shows a value-centric development

method to Reference Architecture Modeling in an

Agile software development (RAMA) context,
addressing the lack of techniques (approaches, tools,
methods) to support the architecture-agility
combination. The proposed method uses model-
driven techniques to create a reference architecture
for an information system aligned with the business
values. We evaluated the method by applying it to an
industrial case study and developing proof-of-concept
tools to check the feasibility of automating parts of
the process, hence contributing to make the agility-
architecture combination a lightweight process. The
results show that RAMA enables the creation of a
software architecture model for an information
system in an agile software development context. We
plan to build an integrated environment for the proof-
of-concept tools and improve the conceptual overlaps
algorithm to identify synonymous words, and set up
an empirical experiment with agile teams to confirm
our results.

6. References

[1] P. Abrahamsson, M. A. Babar, and P. Kruchten,
“Agility and Architecture: Can They Coexist?,” IEEE
Software, 27(2), 2010.

[2] S. Freudenberg and H. Sharp, “The Top 10 Burning
Research Questions from Practitioners,” IEEE Software,
27(5), 2010.

[3] C. Yang, P. Liang, and P. Avgeriou, “A systematic
mapping study on the combination of software architecture
and agile development,” The Journal of Systems and
Software, vol. 111, 2016.

[4] M. Fowler and J. Highsmith, “The Agile Manifesto,”
Software Development, vol. 9, 2001.

[5] L. Hohmann, Beyond Software Architecture:
Creating and Sustaining Winning Solutions, 1st ed. 2003.

[6] D. Garlan, “Software architecture: a travelogue,”
presented at the Proceedings of the on Future of Software
Engineering, New York, USA, 2014.

[7] L. Bass, P. C. Clements, and R. Kazman, Software
architecture in practice, 2nd ed., Addison-Wesley, 2003.

[8] J. Erickson, K. Lyytinen, and K. Siau, “Agile
modeling, agile software development, and extreme
programming: the state of research,” Journal of Database
Management, 16(4), 2005.

[9] J. Medeiros, A. Vasconcelos, M. Goulão, and C.
Silva, “An approach based on design practices to specify
requirements in agile projects,” ACM SIGAPP Symposium
On Applied Computing, 2017.

Page 5463

[10] Agile Alliance, “Subway map to agile practices,”
https://www.agilealliance.org/agile101/subway-map-to-
agile-practices/.

[11] D. J. Walmsley, T. F. Saarinen, and C. L. MacCabe,
“Down under or centre stage? The world images of
Australian students,” Australian Geographer, 21(2), 1990.

[12] T. Buzan and B. Buzan, The Mind Map Book.
Pearson Education, 2006.

[13] A. Rasiwasia, “Meta Model for Business Model
Design: Designing a Meta model for E3 value model based
on MOF”, MSc thesis, Sweden, 2013.

[14] S. A. White, “Introduction to BPMN,” IBM
Cooperation 2.0, 2004.

[15] J. Gordijn, H. Akkermans, and H. V. Vliet, “Business
Modelling Is Not Process Modelling,” in International
Conference on Conceptual Modeling, 1921(5), Springer
Berlin Heidelberg, 2001.

[16] J. Gordijn, “Value-based Requirements Engineering,”
PhD Thesis, 2002.

[17] E. Souza, S. Abrahao, A. Moreira, J. Araújo, and E.
Insfran, “Comparing Value-Driven Methods: an experiment
design,” presented at the 2nd International Workshop on
Human Factors in Modeling, Saint Malo, France, 2016.

[18] E. Souza, A. Moreira, J. Araújo, S. Abrahao, and E.
Insfran, “Evaluating the efficacy of value-driven methods:
a controlled experiment”, 26th International Conference on
Information System Development, Larnaca, Cyprus, 2017.

[19] D. S. Kolovos et al., “Model Driven Grant Proposal
Engineering,” in International Conference on Model Driven
Engineering Languages and Systems, Springer
International Publishing, 2014.

[20] G. Mussbacher et al., “The Relevance of Model-
Driven Engineering Thirty Years from Now”, in
International Conference on Model Driven Engineering
Languages and Systems, Springer International Publishing,
2014.

[21] D. C. Schmidt, “Guest Editor's Introduction: Model-
Driven Engineering,” IEEE, 39(2), 2006.

[22] J. P. A. Almeida, “Model-Driven Design of
Distributed Applications”, in OTM Confederated
International Conferences" On the Move to Meaningful
Internet Systems, Springer Berlin Heidelberg, 2004.

[23] Y. Singh and M. Sood, “Model Driven Architecture:
A Perspective”, presented at the Advance Computing

Conference, 2009. IACC 2009. IEEE International, 2009.

[24] A. G. Kleppe, J. Warmer, and W. Bast, MDA
Explained: The Model Driven Architecture: Practice and
Promise. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2003.

[25] F. Wanderley and J. Araújo, “Generating goal-
oriented models from creative requirements using model
driven engineering”, International Workshop on Model-
Driven Requirements Engineering (MoDRE), 2013.

[26] R. C. Gronback, Eclipse modeling project: a domain-
specific language (DSL) toolkit. Addison-Wesley, 2009.

[27] F. Wanderley and D. S. da Silveira, “A Framework to
Diminish the Gap between the Business Specialist and the
Software Designer”, presented at the International
Conference on the Quality of Information and
Communications Technology, 2012.

[28] S. Robertson and J. Robertson, Mastering the
Requirements Process: Getting Requirements Right, 3rd ed.
Addison-Wesley Professional, 2012.

[29] S. Ambler, Agile modeling: effective practices for
extreme programming and the unified process. John Wiley
& Sons, Inc., New York, 2002.

[30] E. Evans, Domain-driven design: tackling complexity
in the heart of software. Boston: Addison-Wesley, 2003.

[31] D. Kolovos, “EuGENia website”,
http://www.eclipse.org/epsilon/doc/eugenia/. [Accessed:
08-Jun-2017].

[32] C. D. Manning, P. Raghavan, and H. Schütze,
Introduction to Information Retrieval, vol. 1. Cambridge
University Press, 2008.

[33] J. Sauer, “Architecture-Centric Development in
Globally Distributed Projects,” in Agility Across Time and
Space, no. 22, Springer Berlin Heidelberg, 2010.

[34] R. L. Nord, I. Ozkaya, and R. S. Sangwan, “Making
Architecture Visible to Improve Flow Management in Lean
Software Development,” IEEE Software, 29(5), 2012.

[35] V.-P. Eloranta and K. Koskimies, “Aligning
architecture knowledge management with Scrum”,
presented at the the WICSA/ECSA 2012 Companion
Volume, ACM, 2012.

[36] R. L. Nord and J. E. Tomayko, “Software
architecture-centric methods and agile development,” IEEE
Software, 23(2), 2006.

Page 5464

