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OPTIMAL HARVEST SCHEDULE FOR MARlCULTURED SHRIMP:

A Stochastic Sequential Decision Model

ABSTRACT

Successful introduction of advanced intensive technology in shrimp mariculture
requires the appropriate management tools. This report presents a management model
for determining the optimal stocking and harvesting schedules for a shrimp pond of a
mariculture shrimp operation. The developed model is an extension of the classical
growing inventory model. It provides a set of simple intra- and interseasonal decision
rules expressed as cutoff revenue when both price and weight are assumed random, and
as cutoff price or cutoff weight when either price or weight is assumed random. If current
realized revenue is less than the cutoff revenue, the decision is to keep the crop and delay
the decision to sell for another period; otherwise, the decision is to sell. Application of
this model to a hypothetical shrimp farm in Hawaii with 24 0.2-ha round ponds indicates
that net return can be increased three times by applying the derived optimal policies,
compared with a conventional fixed scheduling scheme. The economics of controlled
environment is also evaluated using the model.

Keywords: marine shrimp, decision model, optimal scheduling, aquaculture, growing
inventory.

INTRODUCTION

Shrimp aquaculture has emerged as a
potential industry in many parts of the
tropical region as shrimp catches from the
sea are unlikely to meet future world de­
mand (Shang 1983, Uwate 1984). At current
world shrimp prices, however, using
existing shrimp farming technologies,
shrimp aquaculture in this region has not
been proven to be economically viable.
Successful competition by this region in
the world shrimp market depends upon
developing management strategies and
technologies to increase profitability.

Shrimp ranks second in volume, be­
hind tuna, and first in value of total U.S.
seafood consumption. The United States is
the world leader in shrimp consumption,
consuming over 600 million lb annually.
Japan is a close second. Tropical species
represent the major part of the shrimp
market in the United States and Japan.

Shrimp culture worldwide represents
approximately 15 percent of the 4 billion lb
of shrimp placed on world markets. The
U.S. National Marine Fisheries Service
predicts that aquacultured shrimp will
constitute about 25 percent of the world
market by 1990. It is also estimated that
aquacultured shrimp will constitute about
35 percent of the tropical shrimp market,
with tropical, or penaeid, species being the
type of shrimp popular with U.S. con­
sumers (The Aquaculture Digest's, 1988).

The recent trend in marine shrimp
aquaculture is toward more intensive op­
erations, particularly in areas with high
land and labor costs such as Hawaii. In­
novative facility design and advance­
ments in nutritional knowledge also con­
tributed to this change from the more tra­
ditional extensive systems. Associated
with this change is the improvement of
overall productivity. This improvement,
however, has to be accompanied by large
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investment in specialized facilities such
as the innovative round-pond design re­
cently developed by the Oceanic Institute
in Hawaii. Efficient system design, good
management planning, and control are
the means to utilize the large investment
fully and help producers to remain
competitive.

As intensification of the shrimp pro­
duction system increases, the decision­
making process of the producers becomes
complex. They are faced with many in­
vestment and operational alternatives.
The process is further complicated because
of the dynamic and stochastic nature of the
biological and economic environments.
The survival rate, growth rate, food con­
version ratio, and shrimp market price,
among other parameters, are stochastic in
nature. These parameters depend not only
on the genetic traits of the shrimps and
natural environmental conditions, but
also on management input into the pro­
duction process, such as stocking density,
harvesting schedule, type and quantity of
feed, and environmental influence on
production facilities. Profitable operations
can only be achieved through better under­
standing of the relevant biological, physi­
cal, and economic elements as well as
their interrelationships in the entire pro­
duction process.

This report deals with the development
of decision aids to better manage the
shrimp farms in the Pacific region. In
particular, it addresses the question of op­
timal stocking and harvesting schedules
of cultured marine shrimps. A quantita­
tive management tool that can help the
producer locate the optimal management
practices in a dynamic, uncertain envi­
ronment can contribute immensely to the
success of the shrimp mariculture indus­
try in the Pacific region and in particular,
Hawaii. This in turn can contribute to the
diversification of the local economy, re­
duction in the balance of payments (as this
region imports most of its shrimp con-
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sumption), and increase in employment
opportunities in the region.

Since most farms in the Pacific region
can produce several crops of shrimps a
year, it is important to use the facility fully
so as to maximize profit. One of the major
decisions facing a shrimp producer is
whether to sell the shrimps and replace
with a younger crop or keep the existing
crop for another period. The interesting
issue in this problem is that shrimps of
different sizes command different prices,
with higher prices associated with larger
shrimps. However, producing larger
shrimps entails higher feed and other op­
erating costs and opportunity lost of rais­
ing a younger crop. In addition, shrimp
prices and rates of growth vary season­
ally. Because the decision concerns activ­
ities in future time and the decision pro­
cess is implemented at specified future
time intervals, risk is involved. There arEr
two elements of risk: the biological growth
process (due to the limited practical
experience of the producers) and the un­
controllable market price faced by the Pa­
cific producers, who are a small part of the
world market. This complicates the iden­
tification of the optimal stocking and har­
vesting schedules.

Since shrimp farming is relatively
new to the Pacific region, there is limited
practical experience and generally no
agreed-upon management practices. It is
imperative at this early developing stage
of the industry to have a management tool
so as to arrive at the optimal management
practices.

This report analyzes an intensive
round-pond shrimp-growing technology
recently developed at the Oceanic Institute
in Hawaii. This technology shows
tremendous promise to be economically
viable in the Pacific region. The intensity
of such a system, however, would require
modern management tools for efficient
and profitable operation, which is the focus
of this report. A sequential decision model



of growing inventory is extended to ana­
lyze the optimal stocking and harvesting
schedules of a shrimp-producing pond.
Although the focus here is on a single pond,
the optimal policies can be used to approx­
imate the operation of the whole farm for
comparative analyses.

Cost-benefit analysis indicates that a
loss would have been incurred based on a
hypothetical farm with 24 round ponds of
0.2 ha each under conventional manage­
ment practices. By applying the model de­
veloped in this report, however, which de­
fines a more efficient operation, annual
net return can range from $279,429 to
$322,719. Furthermore, it is demonstrated
that net return can be increased by about
one-third if the environment can be kept to
an optimal level.

REVIEW OF PAST RESEARCH

Management of the exploitation of
renewable resources as capital stock has
been discussed by Clark (1976) and Clark
and Munro (1975). Levhari et al. (1981)
considered the interaction between the
market systems and the natural biological
dynamics.

Models of aquacultural systems for the
purpose of system design and operational
management are few in comparison to
agricultural systems models. Some of
these models are documented by Allen et
al. (1984) and by Orth (1980) and Leung
(1986). The majority of the models
developed thus far have been directed
toward prediction rather than decision­
making.

Several systems models have been
developed for operational management of
aquacultural facilities. Johnson (1974)
used linear programming to optimize both
the schedule of release dates for each lot of
salmon and the choice of stocks for use in
the hatchery facility. Gates et al. (1980a, b)
used a multiperiod linear programming
model to determine the optimal methods of

operation of a full-term salmon culture
facility. Lipschultz and Krantz (1980) used
linear programming models to make
production decisions for oyster culture.
Optimal control theory was used to deter­
mine the optimal operating methods for
lobster culture by Botsford et al. (1974,1975)
and Schurr et al. (1974). They used the
model to determine the optimal tempera­
ture, recirculating rate, container size,
feeding rate, and food type. Emanuel and
Mulholland (1975) used optimal control
theory to maximize the standing crop of
largemouth bass. Kitchell et al. (1977) and
Sparre (1976) used dynamic programming
to determine the optimal methods of
operating yellow perch and rainbow trout
cultures, respectively. Talpza and Tsur
(1982) used capital theory and optimal
control methods to optimize feeding and
harvesting schemes under various market
and environmental conditions and to cal­
culate optimal initial stocking, length of
growout cycles, and water flow rates. Le­
ung et al. (1984) and Leung and Shang
(1989) used a variant of dynamic pro­
gramming to evaluate alternative pond
management and marketing strategies
for freshwater prawn production. While
the prawn producers practice continuous
stocking and harvesting, however, the
shrimp operations are generally of all­
in/all-out nature. The difference in prac­
tice is primarily due to the heterogeneous
growth of prawns and homogeneous
growth of shrimps.

All of the models mentioned above are
species-specific and are not directly appli­
cable to shrimp culture. The only opera­
tional management model for shrimp
culture was developed by Karp et al. (1986).
They used dynamic programming to de­
termine the optimal stocking and harvest
rates of P. stylirostris in the Southwest.
However, their dynamic program was ex­
ceedingly large, with 3501 different states,
which would be very cumbersome to apply
in a practical setting. Also, due to the
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environmental conditions in the South­
west, where poor weather may result in de­
creased growth rates or loss of the entire
stock, their model placed a heavy empha­
sis on dealing with environmental un­
certainty and assumed prices were fixed.
Conditions in the tropics allow a year­
round growing of shrimps; in that case,
price uncertainty is as important as envi­
ronmental uncertainty.

THEMODEL

This section introduces the conceptual
framework of a management model
developed to help the shrimp producer de­
termine the optimal harvesting policy of a
single pond. It is an important subproblem
within the general context of the larger
problem of operating a shrimp farm in
tropical and subtropical environments
(e.g., Hawaii). Focus is on the continuous
operation of a single pond. 1 Thus the
shrimp producer operates within a given
capacity and his decision is short-ru.n in
nature. Nevertheless, his production and
pond management decisions are carried
over time. Time enters at two levels: the
age of the growing crop of shrimp and the
calendar date of harvesting.

In this context, the case of cultured
shrimp is an extension of the sequential
decision model of growing inventory de­
veloped and applied to a broiler producing
firm (Hochman and Lee 1972, Rausser
and Hochman 1979). These two "growing"
crops resemble each other closely in that at
each age there is homogeneity in the size
distribution and quality of the animals.
For a given age, therefore, the decision of
the grower is dichotomous: whether to sell
the crop and enter the new period with a

1 Note that in the subsequent analysis of the whole
farm, risk is assumed to be identical for each pond.
This can be a restrictive assumption but we believe
it is a good approximation for the case of shrimp
production. With more production data available in
the future, this assumption can be relaxed.
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new crop or keep the old crop and defer the
decision whether to sell it or not to the next
period. Note that the decision is of the all­
in/all-out nature.

The differences between the two crops
require the extension of the framework be­
yond the "broiler" model. While the
broiler growth processes are well known
in applying modern biotechnology for the
past few decades, the shrimp aquaculture
technology is in its infancy. Hence the
proportion of uncontrolled elements is
considerably higher than that of the broiler
case. The physical factors of the shrimp
culture environment such as air and water
temperatures, waste products, and other
water quality determinants are hard to
control and subject to random variation.
Another feature that characterizes the
shrimp production is the positive relation­
ship between price and size, which implies
a significant differentiation of the prod­
uct. These distinctions are absent in the
broiler operation. For both crops, however,
risk is introduced through uncertain
market prices. Thus, in the case of the
shrimp operation, risk is introduced
through both uncertain weights and un­
certain market prices.

The state of the system in shrimp cul­
ture is defined by (a) the age of the crop as it
relates to weight (the growth process) and
by extension to the price of shrimp through
the price/size relationship, and (b) the
calendar date of the year and the effect of
seasonality on the physical growth pro­
cesses as well as on the shrimp prices.
Thus, the current gross revenue per ani­
mal 2 received from selling a given crop
of age x weeks at a calendar week tis:

2 The present model is formulated on a per-animal
basis, and mortality is introduced explicitly in the
profit calculation. Mortality is assumed to be
density-independent, due to lack of information.
This can be modified easily when additional
information becomes available.



for x = X{)1 Xo + 1, . . . ,X
and t =1,2,3, ... ,52 weeks,

where W n(x,t) is the current weight,
Pn(x,t) is the current price, Xo is the start­
ing age, and X is the terminal age at which
the crop will be sold, whatever the revenue
is. The age of the crop determines both the
weight (or size) and the price. There is also
seasonality effect, i.e., the chronological
date, t, of the year, that will affect revenue
either through the environmental impact
(e.g., temperature) on the growth of the
animal and/or through the seasonality of
demand (e.g., Christmastime).

It is assumed that though the shrimp
producer knows the current revenue, next
week's revenue includes stochastic
(random) elements that make its cash
value uncertain. Therefore, without loss of
generality, revenue is assumed to be a
random variable with a known distribu­
tion heR) that may be one variate if either
weight or price is random or a bivariate if
both price and weight are random. Thus
the value R n is the current sales revenue
from the density heR). The case of random
prices is characteriz.ed by a price-taking

firm marketing either to local or to export
markets. A firm marketing most of its
product to a local, stable market may con­
sider the price-quantity relation as deter­
ministic. Stochastic variations in weight
may be caused by fluctuations of temper­
atures as well as other environmental
factors. Also, when new technologies are
introduced, randomness in weight should
be taken into account.

The cost function is defined as a de­
terministic function C(x,t) that has fixed
costs per crop (mainly the postlarva pur­
chase costs) and variable costs that depend
on age, such as feed, labor, and energy.
The immediate net return can then be cal­
culated as Rn(x,t) - C(x,t).

One approach of solution to this
problem is to determine a set of critical
values of revenues or cutoff revenues
R*(x, t) that maximizes profit or net return
as shown in Figure 1. The decision is such
that for each age, x, and calendar week, t,
if the current realized gross revenue,
R n(x, t), is less than R*(x, t), keep the crop
and delay the decision to sell for another
week, otherwise sell the crop if Rn(x,t) ~

R*(x, t).

Keep Sell

h(R) *R (x, t)

Figure 1. Schematic of the keep-sell decision and cutoff revenue.

This problem of continuous optimal
shrimp production and harvesting can be
formalized as a Markovian dynamic
programming model as a follows. Let fn

represent the maximum expected return
for the last n periods (weeks). If the pro­
ducer begins at stage n with crop of age x
and calendar date t, then:
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where

ff~ \fn(x, t) max·\ M(Rn(x, t), X, t)h(R)tdRt.f
R(x, t) ~ 0 (2)

fn_l(x+1,t+1), ifR,Ix, t) <R*(x, t)

M(R n(x, t), x, t) = {
Rn(x, t)-C(x, t)+fn-l(X O ' t+1), ifRnCx, t) c.R*(x, t)

(3)

for x = x(p xo+l, ... ,X-1 and t = 1,2,3, ... ,52 weeks.

Thus, M(Rn(x,t),x,t) is a dichotomous
return function that can take one of the two
values, according to whether the decision
is to keep or to sell the crop. Thus, by Bell­
man's principle of optimality, for all val­
ues ofRn(x,t) that fall within the domain of
the decision to keep, M(Rn(x,t),x,t) will
take the value of maximum expected re­
turns for the last (n-l) periods, i.e.,
fn_1(x+l,t+l) and for the decision within
the domain of the decision to sell,
M(Rn(x,t),x,t) will consist of the realized
immediate net returns, Le., R n (x, t) -

C(x, t) plus the maximum expected returns,
in the case of a decision to sell, for the last
(n-l) periods, i.e., fn- 1(xo,t+1).

The optimal policies that result consist
of 52 vectors of cutoff revenues, R*(x,t).
Each of the vectors represents the solution
for a given week, t, in the year. The 52 cut­
off vectors depict the effect of the calendar
time, while any given vector of cutoff rev­
enues is related to the age of the growing
inventory, i.e., for each age there is a crit­
ical value of revenue defined such that any
current realized revenue that is below it
will result in a decision to keep the crop
and wait for next week, but otherwise the
decision is to sell the crop.

This problem can also be formulated
as a Markovian dynamic programming
decision model as in Howard (1960). The
backward recursive relation of the dy­
namic program (Equation 2) can be
rewritten as:

(4)

roo

max h(R)t
H H xtln-l (x+ 1, t+1)+{1-Hxt} R n (x, t) 1-H dR t - C(x, t) + I n-l (xo , t+ 1)

xt xt

• R*(x t t)

In Equation 4, H xt is the probability to
keep the existing crop of age x at week t for
another week. Note that the transition
probability, H xt' has a one-to-one corre-
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spondence with the cutoff revenue, R*(x,t).
The transition probability matrix, T t , has
the following form:



I-H H x 0X o 0

I-HxO+1 0 H x +1
0

T t =

I-HX_1 0 0

1 0 0

o

o

H X- 1

o
(5)

for j = 1, 2, ,J;
x =xo,xo+l, ,X-l,X,4

J

ER[g..-1 (x, t)] =:1 L g..-1 (x, t)
j=1

for x = xo + 2, xo + 3, ... ,X- 1

4 We assumed J = 20 and allowed for a two-week
rest between crops. The terminal crop age, X, of
selling at any revenue is 15 weeks.

gn(X,t)= (6)

max [sell: R j (x, t) -C(x) + ER[gn-l (xo , t+ 1) J]
Keep: ER[gn-l (x+1, t+ 1)J

(fall) ,
(winter) \
(spring) f
(summer)

1,2, , 13
14, 15, , 26
27,28, ,39
40,41, ,52

t=

vian decision process. (See Appendix A for
a detailed mathematical description of the
homogeneous case.)

For computational convenience, the
basic functional equation (Equation 2) can
be rewritten in a form where the continu­
ous distribution is approximated by a his­
togram of J equal probability rectangles to
yield:

and

where

However, the problem at hand differs
from the standard Howardian model of
dynamic programming with Markov
chain in that T t is endogenous. This pre-
vents us from using the conventional
"value iteration method" as developed by
Howard. The solution would then require
an iterative process that starts with an av­
erage cutoff revenue (price or weight) until
optimal policy converges.3 The process is
found to converge rapidly on the optimal
vector of cutoff revenue (price or weight).
Except for the slight difference in the so­
lution process, the interpretation of the so­
lution expressed as a set of invariant op­
timal policies (lOP) is similar to
Howard's. Note that the transition matrix,
T t , has a time subscript that denotes a time­
varying Markov chain. If seasonality ef­
fects are ignored, the transition matrix
will be constant and so is the set of lOP. In
other words, the lOP will be identical for
each week in a year. This case is defined
as the homogeneous (calendar-indepen­
dent) case. It provides additional insights
on the statistical properties of the Marko-

3 An efficient algoritlun has been developed, and
the flowchart of the computer program is presented
in Appendix B, with a sample of input and output
of the program presented in Appendix C. The
computer program is available upon request from
the aUthors.
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and
J

ER[g" (X, t)J=j LRj(X, t)
j=I

-C(X)+ER[gn-l (Xo, t+l)J

In this case, gnCe ) is the discrete coun­
terpart of the functional equation f( e) and
E R is the expected value operator. The so­
lution consists of invariant optimal poli­
cies for the 52 weeks of an annual produc­
tion and marketing plan.

OPTIMAL SCHEDULING OF
PRODUCTION AND MARKETING IN A
HAWAIIAN SHRIMP-PRODUCING
FARM

The Search for an Appropriate Technology
The technologies developed for shrimp

production varied according to their
operating environments. Scarcity and
abundance of natural, physical, and hu­
man resources as well as the economic
variables, such as prices of inputs and out­
puts, are important determinants for the
choice of the appropriate technologies. For
example, in Japan, intensive technologies
are prevalent, while in Taiwan and the
Philippines semi-intensive technologies
are common. In Equador, technologies
range from extensive to semi-intensive.

In Hawaii, scarcity of land and the
high costs of labor require the adoption of
intensive technology in shrimp produc­
tion. Failure of early attempts to introduce
commercial aquaculture production into
the Hawaiian islands signals the need for
highly competitive marine aquacultural
technologies that can be profitable under
existing conditions. In this section, the
model developed in the previous section is
demonstrated as an appropriate manage­
rial tool to analyze the optimal operation of
the round-pond technology developed by the
Oceanic Institute.

8

The Round-Pond Technology
In 1985, Oceanic Institute constructed

an experimental intensive shrimp pond at
its Makapuu facility that incorporates
features from intensive systems around
the world. It is round, 1 m deep, slightly
sloped to the center, 337 m2 in area, and has
a large center sump/drain. The sides of
the pond are cement block and the bottom is
compacted soil. A paddlewheel aerates and
mixes the pond water in a circular pattern
that causes organic sedimentation to
accumulate in the center of the pond where
it can be flushed out the drain.

Four shrimp production trials were
conducted in the experimental pond dur­
ing 1986 and 1987. The Equadorian white
shrimp, Penaeus vannamei, was selected
as the species of choice because of its excel­
lent growth characteristics, disease
resistance, and high market value. All
trials were stocked with l-gm animals,
with two trials at a density of 50 ani­
mals/m2 and two with 100. Shrimp feed
from Taiwan was used in all trials. These
trials provided the data for estimation of
biological growth. Overall growth aver­
aged 1.75 gm per animal per week over the
four trials. Survival was slightly over 80
percent, and feed conversion efficiency
ranged from 2.3:1 to 2.7:1. The animals
were harvested at a size of 20 gm (Wyban
et al. 1988). A 0.2-ha prototype commercial
round pond was also constructed at a
commercial shrimp farm in Hawaii in
late 1987. Production trial results indicate
that the experimental round pond is effec­
tive when scaled up (Oceanic Institute
Newsline 1988).

Estimated Growth Relationship
Several growth relationships were

tried, and the most plausible form selected
is the log-reciprocal form, presented as
follows:

(7)



2
dW W dWwhere - =a 1 2: > 0 and --2 ~ or ~ 0
dx x dx

with an inflection point at x = ~1

This log-reciprocal equation implies an

asymptotic level of weight; it also allows
for varying marginal growth rates.

Weekly grow-out data from four trials
of the Oceanic Institute round pond were
used to estimate the growth function, and
the result is presented below:

where

InW = 4.92 - 241.24(1/x) + 14.38D(1/x)
(22.00) (2.18)

R2 = 0.91 (8)

W = average weight of shrimp (gm),
x = days from hatching,
D = dummy variable, 1 if temperature is ~ 26°C, 0 otherwise,
In = natural logarithm,

and numbers in parentheses are t-statistics.

The estimated marginal rate of growth
is dW/dx =241.24W/x2 > 0 and the point of
inflection is at 120.5 days. The dummy
variable, D, was used to test the impact of
temperature differences on the growth co­
efficient, al.

The influence of temperature was
found to be significant as shown in Equa­
tion 8 and was applied later in deriving the
two seasonal semiannual growth periods.
The effect of a higher stocking density (100
animal/m2) was also tested and was found
to be insignificant. The estimated growth
relations were used in the decision process
by incorporating the predicted weight-age
relationship as well as their estimated
random spread. The estimated standard
deviationS of 1.34 gm/animal was used to
derive heW) in the case of the univariate
normal distribution and to derive heR) in
the case of the bivariate normal
distribution. For computa-

5 We chose to use the standard deviation (error) of
the equation as a measure of risk rather than the
total sampling variability, which is composed of
the equation error and the error in estimating the
unknown parameters.

tional convenience, 20 equal intervals
were selected from the normal distribu­
tion, such that each has a probability of
0.05.

Estimated Price-Size Relationship
As pointed out, the main market envi­

ronment the shrimp producer will be fac­
ing is that of shrimp prices on the U.S.
Mainland, characterized by that of a price­
taker producer. Weekly data of shrimp
prices by size for the year 1985-1986 was
obtained from a weekly summary of Pe­
naeid ex-vessel prices, headless, shell on,
from National Marine Fisheries Service
Market News Reports.

The data were converted to prices by
weight category (there is one-to-one
correspondence between size and weight)
and were used in estimating the price­
weight relationships, allowing for sea­
sonal effects as follows:

9



where

P =0.477 + 0.114W + 0.033DS + 0.233DF + 0.097DW
(95.81) (0.68) (5.46) (2.40)

P = price per pound ($Ilb.)
W = mean weight of size category (gm/animal)
DS = dummy variable, 1 if in summer, 0 otherwise
DF = dummy variable, 1 if in fall, 0 otherwise

DW = dummy variable, 1 if in winter, 0 otherwise
and numbers in parentheses are t-statistics.

R2 = 0.96 (9)

This relationship was tested for possi­
ble heteroskedasticity to see if higher
variance is associated with higher weight.
No heteroskedasticity was found in this
case. The estimated standard deviation
was found to be $0.3166Ilb. This standard
deviation was used to construct the price
density function hCP) assuming a normal
distribution similar to the weight distri­
bution. This standard deviation was used
to construct the univariate normal price
density distribution, hCP), in the case of
random prices with deterministic growth
relation and to construct the bivariate
normal distribution, hCR), in the general
case of both price and weight having inde­
pendent normal distributions. 6

Table 1. Feeding schedule.

Average Size of Shrimp
(body weight in gm)

0-1
1-5
5-10

10-15
15-25

Feed Rate
(% of Body weight)

12.0
10.75

9.3
6.1
4.0

Feeding Schedule and Estimated Growout
Operation Costs

High-protein feed is assumed to be
used with application levels according to
body weight of shrimp as presented in
Table 1.7

Growout operation costs include feed,
energy, labor, and stocking costs based on
a hypothetical farm of 24 round ponds, 0.2
ha each, with stocking density of 100 ani­
mals/m2. Energy cost is for paddle-wheel
and resource pumping, while labor cost is
for regular sampling and feeding. The
energy and labor costs for a particular
farm situation must be estimated as a
weekly per-pond cost. In this application,
energy cost and labor cost are estimated to
be $56.26 and $20.31 per week per pond,
respectively. The weekly per-pond costs
are then divided by the total number of
shrimps stocked to get estimates of the cost
per shrimp per week. Feed cost per shrimp
is calculated as a function of feeding rate
and weight. Feed is assumed to cost
$0.00125/gm. Stocking cost includes the
cost of postlarvae and expenses incurred
in the nursery until the age of 65 days. It is
assumed to be $0.015 per animal.

6 The distributions of price and weight are assumed
to be independent, since the shrimp producers are
assumed to be price-takers and their production
would not affect the market price.

10

7 We assumed feed is a function of average body
weight. Thus, in the case of random weight, feed
remains deterministic. For all practical purposes,
this assumption matches closely the actual feeding
practice, which is based on the average body
weight.



Results: The Optimal Policies8

Optimal policies are a function of the
growth function, the related operating
costs, the seasonal price distribution, and
the effect or interaction of the other seasons
with respect to growth, costs, and price. The
seasons in our case have been defined as
follows: fall, September to November;
winter, December to February; spring,
March to May; and summer, June to
August. Fall is the best season, with
relatively higher prices, and the best rate
of growth owing to relatively higher
temperatures. Summer has the same rate
of growth (temperature) as fall. The least
favorable growth and market conditions
are shared by winter and spring.
The above information is fed into the de­
veloped model to generate the inter- and
intraseasonal optimal policies for three
cases assuming random revenue, random
price, and random weight.9 The results
are presented in Table 2. This table shows
for each week in a season and each age of
the crop the cutoff revenue, price, and
weight for each of the three cases. (Note
that weight is uniquely determined for
each season from an age-weight relation­
ship.) The numbers in this table are ex­
pressed in ordinal scale according to the 20
equal intervals of the assumed normal
distributions of price and weight. Using
this scale, the number 0 indicates the
probability to sell is 1.0, while the number
20 (shown as dashes in Table 2) indicates
that the sell probability is o. Number 17

8 The results presented are based on experimental
growth data, which are used here primarily to
demonstrate the application of the developed model.
In particular, in the present application, estimated
growth is extended beyond the maximum size of 20
gm as reported in the experimental data. The
authors are investigating the sensitivity of the
results, on the basis of more recent experiments
with growth up to 27 gm. The results presented
should therefore be treated as preliminary and used
as such.
9 The convergence to the invariant solution was
relatively fast (6-8 iterations).

represents a sell probability of 0.15, and so
on. The ordinal scale is used in this table
to emphasize the inter- and intraseasonal
optimal policies. Table 3 shows the
corresponding cutoff revenue, price, and
weight. Table 4 summarizes the corre­
sponding cutoff values for week 13 of each
case. For example, in the case of random
revenue, if a producer comes into week 13
with a crop of age 8 weeks, the decision will
be to sell the crop if the current realized
gross revenue is above $124 per 1000
animals. Otherwise, the crop should be
kept for another week. Similarly, for the
case of random price, if the producer comes
into week 13 with a crop of age 14 weeks, the
decision will be to keep the crop if the cur­
rent market price is below $8.08/kg. Fig­
ures in the case of random weight can be
interpreted in the same way. It should be
noted that 15 weeks is the terminal age
when the crop will be sold regardless of the
current revenue, price, or weight. This
provides a set of simple decision rules that
take into account the dynamics and un­
certainty of the decision process.

In this application, summer and fall
are considered good seasons in terms of
growth, while fall is significantly better
than winter and winter is better than
summer and spring in terms of price.
These seasonality effects are captured by
the optimal policies as shown in Table 2.
For example, in the case of random
weight, the decision to sell comes at
earlier ages toward the end of the fall
season, since winter, which is a bad sea­
son in growth, follows. It is also true for
the case of random price, as prices in the
fall are higher than in the winter. The
case of random revenue is a combination
of random price and random weight. It is
also interesting to note that overall the
case of random price shows earlier
selling ages than does the case of random
weight. This is primarily due to the higher
variation in price than in weight. Of
course, the case of random revenue would

11
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Table 2. Interseasonal and intraseasonal optimal policies.

Case A: Random Revenue

l __________________ FAU L___________. _______1___ . ________________ WN TER ___________________ :"__1___- _______ . ________ SPRING- _______. __________ . __1___- ___ . ___________ SUM MER ____________________I
AaelWeek 1 2 3 4 5 II 7 8 II 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 28 27 28 29 30 31 32 33 34 35 311 37 38 39 40 41 42 43 H 45 48 47 48 411 50 51 52

1
2
3
4

5
8 111 19 19 19 19
7 19111 19111 111 19 19 19

8 19 19 111 19 111 111 19 19 111 19 19 19 11

9 19 19 19 18 17 19 111 19 19 19 111 19 19 19 19 19 19

10 19 19 11 17 15 111 19 19 19 19 19 19 19 19 19 19 11 11 18 19 111 111 19 11 18 19 11 1.

11 19 19 111 19 11 19 11 11 19 111 18 18 13 111 111 19 19 19 19 19 19 19 11 111 19 19 19 19 19 18 17 17 18 18 19 19 19 111 19 19 19 19 18 17 11 11 111 111
12 18 11 19 19 111 19 19 11 19 19 17 15 10 18 18 18 19 19 19 19 19 19 19 18 18 18 18 11 11 17 17 18 18 17 11 11 19 19 19 19 19 19 11 11 17 15 18 18 18 19

13 17 17 17 17 17 17 17 17 17 17 17 14 7 18 15 18 17 17 17 17 17 17 17 17 17 18 17 17 17 18 15 14 14 15 18 18 18 19 19 17 17 17 17 17 17 17 18 14 14 15 17 18

14 13 13 13 14 14 14 14 14 13 13 13 13 3 12 12 12 13 13 13 13 13 13 13 13 13 12 13 13 13 13 12 11 11 11 12 12 12 13 18 13 13 13 13 13 13 13 13 10 11 11 1115
15 0 0 0 0 0 0 0 0 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Converged in 7 iterations
Case B: Random Price

l FAUL . 1 . WN TER . 1 SPRI NG . . __1 . .SUM MER __. . I
Aa.!Week 1 2 3 4 5 8 7 8 • 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 28 27 28 29 30 31 32 33 34 35 38 37 38 39 40 41 42 43 H 45 411 47 48 49 JHt51 52

1

2
3
4
5
8
7
8
9

1C
11
12
13
14

15'

19
111 19

111 19 11 19 19 19
111 18 17 19 11 19 19 19 19

19 111 17 14 19 19 11 18 18 19 19 19 18 19
19 18 18 12 111 19 19 19 19 19 19 18 17 17 17 11 19 19 19 18 18 18 11 19

19 19 19 11 19 19 11 11 19 19 18 15 9 11 18 11 19 19 19 19 19 19 19 19 11 11 19 19 11 17 18 15 18 18 17 18 19 19 19 11 19 19 11 17 15 15 17 18 111

17 17 18 11 18 18 11 17 17 17 17 14 8 18 15 18 17 17 17 17 17 17 17 17 18 18 17 17 18 18 14 14 14 14 15 15 18 17 17 17 17 17 17 17 18 13 14 14 18 11
12 13 13 14 14 14 14 14 13 13 13 13 3 12 11 11 13 13 13 13 13 13 13 13 13 11 13 13 12 12 11 11 10 10 11 11 12 13 19 13 13 13 13 13 13 13 13 10 10 10 11 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Converged in 8 iterations

Case C: Random Weight
l FAU L . 1 . . WIll TER 1 SPRI NG 1 . SUM MER I

AaelWeek 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15 18 17 18 19 20 21 22 2324 u 25 28 27 28 29 30 31 32 33 34 35 38 37 38 39 40 41 42 43 H~5 4114748 49 50 51 52
1

2
3
4

5
8
7
8
9

10
11

121
131
14
15

19111 111 19 19
191714 18 18 111 19 15

111 18 5 19 18 14 18 19 11 14 18
19 19 19 18 1 19 11 19 19 19 17 13 12 15 19 19 19 19 11 12 13 18

17 11 18 11 11 11 18 11 18 18 18 18 o 18 17 17 17 17 17 17 17 17 17 17 17 14 15 15 15 15 11 10 9 15 17 17 17 17 17 17 17 17 18 18 18 18 9 10 11 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Converged in 6 iterations



Table 3. Cutoff revenue, .price, and weight.

Case A: Random Revenue ($/1000 animals)
________________ FAll I. WN TEA L SPRING I. SUMMER 1

AaelWetlk 2 3 4 5 8 7 8 9 10 11 12 1:1 14 15 18 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 4B 47 48 49 50 51 52
1

2
3
4

5
6 . 80 80 59 59 59
7 101101101101 75 75 75
8 124 124 124 124 124 94 94 94 94 94 . 115 115 115
9 149 149 149 142 137 119 115 115 115 115 115 115 140 140 140 140 140

1 177 177 169 184 158 142 142 142 142 142 142 142 138 138 138 138 131 131 131 138 187 117 187 180 160 187 187 187
11 207 207 207 207 207 207 207 207 207 207 199 188 178 168 168 168 ,.8 188 168 188 188 1118 168 188 188 168 1113 1113 163 1511 151 151 158 1511 183 198 1911 198 1911 1911 191 118 1" 182 188 118 118 198
1 230 239 239 239 239 239 239 239 239 239 224 214 195 187 117 187 195 195 195 195 195 115 195 187 187 187 182 112 112 178 1711 172 172 178 182 182 190 227 227 227 227 227 218 21. 212 202 207 218 218 227
1 2511 2511 2511 2511 258 258 258 258 258 258 2511 241 214 205 200 205 210 210210 210 210 210 210 210 210 205 204 204 204 199 195 110 190 195 199 199 199 219 219 244 244 244 244 244 244 244 238 229 229 233 244 250
14 270 270 270 274 274 274 274 274 270 270 270 270 223 217 217 217 221221221221221221221221221217215215 215 215211207 207 207 211211211215 240 257 257 257 257 257 257 257 257 244 248 248 248 288
1 •••••••••••••••••••••••••••••••••••••••••••••••••

Converged in 7 iterations

'.8 11.8
7.3 7.3 7.1 7.3

7.8 7.8 7.7 7.4 7.7 7.9 7.1
8.4 1.4 8.4 1.4 8.4 1.4 1.2 1.1 7.8 7.1 8.1 1.2 1.4
1.8 1.11 8.8 8.11 1.8 8.8 8.8 8.5 8.2 8.2 1.2 1.5 1.7

1.7 1.7 8.7 8.7 8.7 8.7 1.7 1.7 1.7 1.4 8.4 1.4 1.5 1.1

4.7
5.25.2

6.7 11.7 8.7 5.75.75.7
7.2 7.0 8.9 11.26.06.28.2

7.' 7.8 7.4 7.1 6.7 11.7 8.5 8.5 11.5 8.7
8.3 '.17.87.57.47.4 7.4 7.4 7.4 7.2 7.2 7.0 8.9 8.9 '.9 7.0 7.2

1.9 I.' 1.9 1.1 8.1 1.1 1.8 1.9 8.9 1.9 8.7 1.3 7.7 7.7 7.7 7.7 7.9 7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.7 7.7 7.7 7.7 7.5 7.4 7.3 7.1 7.3 7.3 7.4 7.5
9.0 9.0 8.2 8.2 8.2 1.2 8.2 8.0 1.0 8.0 9.0 8.7 '.0 1.0 7.9 8.0 8.1 1.1 8.1 8.1 8.1 1.1 1.1 8.1 1.0 8.0 7.9 7.9 7.8 7.8 7.5 7.5 7.5 7.5 7.7 7.7 7.8
9.0 8.1 8.1 9.2 8.2 8.2 8.2 8.2 8.1 8.1 9.1 8.1 8.1 1.1 8.0 8.0 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.0 8.0 8.0 7.9 7.9 7.8 7.8 7.7 7.7 7.8 7.8 7.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Converged in 8 iterations

Case B: Random Price ($/kg)
______________ FAll 1. WN TEA L SPRING L SUMMER 1

Aa~Wetlk 2 3 4 5 II 7 8 9 10 11 12 13 14 15 16 17 1819 20 21 22 23 24 25 26 27 28 29 3D 31 32 33 34 35 311 37 38 39 40 41 4243 44 45 48 47 48 49 50 51 52

2
3
4

5
8
7
8

9
U
11
1

1

14
1

Case C: Random Weight (gm/animal)
_____________ FAll I. WN TEA L SPRING I. SUMMER 1

AaelWetlk 2 3 4 5 8 7 I 9 10 11 12 13 18 18 19 20 21 22 23 24 25 28 27 29 3D 31 32 33 34 35 38 37 38 39 40 42 45 411 47 41 49 50 51 52
1

2
3
4

5
6
7
8
9

1~ . - . - . - . - . - - 22.722.7 . - . - . . . - . . . ., ··20.520.5
11 . - .. - . - . - ·24.924.223.8 - - .. - ·22.221.822.6
1 - . . . . - - . . . 27.0211.1 24.0 . - . . - - . - - - . . . . . 24.624.223.323.7 24.11
1 ....• - . ·29.129.128.121.224.5 - - -28.828.228.1128.828.1125.125.124.125.528.8
,. 30.4 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.2 30.2 30.2 30.2 • 27.6 27.11 27.9 27.9 27.927.127.127.127.1 27.1 27.11 27.8 27.2 27.4 27.4 27.4 27.4 28.7 28.5 28.4 27.4 27.8 27.9 27.1 27.9
1

. 22.7
- 24.1 23.8
. 28.11 25.7 211.1

·28.129.129.121.727.427.821.2
- 30.4 30.4 30.4 30.4 30.2 30.2 30.2 30.2 21.9 21.1 21.3211.'

Converged in 6 iterations

a-The crop will be sold regardless of the current revenue, price, or weight

~
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Table 4. Cutoff revenue, price, and weight for week 13.

Case A: Random Revenue Case B: Random Price Case C: Random Weight

Cutoff
Revenue Cutoff Cutoff

Ordinal Probability ($ per 1000 Ordinal Probability Price Ordinal ProbabilityWeight

Age (x) Scale to Sell animals) Scale to Sell ($/kg) Scale to Sell (g/animaD

1-6 20 0.00 keep 20 0.00 keep 20 0.00 keep

7 19 0.05 101 20 0.00 keep 20 0.00 keep

8 19 0.05 124 19 0.05 6.70 20 0.00 keep

9 17 0.15 137 17 0.15 6.90 20 0.00 keep

10 15 0.25 156 14 0.30 7.09 19 0.05 22.73

11 13 0.35 176 12 0.40 7.45 14 0.30 23.55

12 10 0.50 195 9 0.55 7.71 5 0.75 24.04

13 7 0.65 214 6 0.70 7.95 1 0.95 24.51

14 3 0.85 223 3 0.85 8.08 0 1.00 sell

15 0 1.00 sell 0 1.00 sell 0 1.00 sell

show even earlier selling ages, as it would
have even higher variation. In general,
planned sales are higher in the fall, with
the peak at the end of the fall to take full
advan tage of favorable prices at
Christmas. On the other hand, the
recommended optimal policy is to postpone
harvesting during the last weeks of spring
in order to use the favorable growth
conditions during the summer.

Note that if the 13th week could be con­
sidered to be prevalent over the rest of the
year, i.e., the homogeneous model will ap­
ply, one could proceed to calculate the con­
ditional expected net profit per week, 1r, as
well as the expected length of the produc­
tion cycles (Appendix A). Since we witness
seasonal variations both in prices and in
weights, however, there are different poli­
cies over the various weeks. Thus, even
though the optimal policy patterns for the 52
weeks of the year can be calculated in
advance, the long-run steady-state
probabilities and the resulting expected net
profits cannot be calculated in a straight­
forward way as in the homogeneous case­
they depend on the vector of initial stock­
ing dates. IO Thus, the optimal solution
supplies the producer with a priori,

10 The Markov chain is not a complete ergodic one,
but has periodic cycles.
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normative guidelines, but the actual
realized policies may take numerous al­
ternative trajectories. This was one of the
factors that motivated us to trace the
behavior of the hypothetical shrimp farm
during a specific year in the next section.

Simulation of Optimal Policies Using
1985-1986 Prices

In this section, the invariant optimal
policies derived above for the random price
case are used to simulate the optimal har­
vesting schedule based on the actual 1985­
1986 shrimp prices reported in the National
Marine Fisheries Service Market News
Reports. Table 5 shows the sequence of op­
timal actions assuming the starting date
is the first week of fall. For example, at the
beginning of week 12 in the fall, the age of
the shrimps is 11 weeks and their average
weight 22.94 gm. Table 2 shows an ordinal
cutoff value of 16, which refers to a cutoff
price of $7.84/kg (Table 3). Comparing this
number with the actual shrimp price
($7.83/kg) during the same period in the
year, the decision is to keep the crop, since
it is less than the cutoff price. This
"tracing" process is continued until the
current market price is greater than the
cutoff price. In that case, a sell decision is



Table 5. Simulation of optimal policies for the case of random price.

Age of Cutoff Price
Shrimp Average Current

Beginning From Stocking Weight Ordinal Price

Season of Week (wks) (gm) Scale $/kg ($/kg) Decision

Fall 1 stock

11 10 20.81 19 7.78 7.63 keep

12 11 22.94 16 7.84 7.83 keep

13 12 25.06 9 7.71 8.29 sell

Winter 14 rest
15 stock
26 11 20.63 19 7.44 6.20 keep

Spring 'Zl 12 22.64 19 7.73 6.58 keep
28 13 24.64 17 7.88 8.54 sell
29 rest
30 stock

Summer 42 12 25.06 19 8.41 8.07 keep
43 13 27.14 17 8.58 8.07 keep
44 14 29.18 13 8.66 8.93 sell
45 rest
46 stock

Fall 6 12 25.06 19 8.85 8.73 keep
(next year) 7 13 27.14 18 9.17 8.65 keep

8 14 29.18 14 9.19 9.31 sell

recommended and the pond will be rested
two weeks for cleaning. A new stock will
then be introduced and the keep-sell deci­
sion will be determined as discussed above
for another cycle. This tracing is done for
one full year as shown in Table 5. The
tracing produces 3.57 crops (in a year) with
an average harvesting weight of 27.02
grams. The annual net return is esti­
mated to be $322,719 for the hypothetical
farm with 24 0.2-ha round ponds. Similar
tracings are also performed using starting
dates at the first week of winter, spring,
and summer; Table 6 shows the results.

The operation that has the first stock­
ing starting at the first week of spring
yields the highest net profits, $357,453 per
year for the 24-pond farm. It has, on aver­
age, the highest marketing age (and
weight) and therefore receives the highest
price. Note that the operation depends on

the performance during all four seasons,
and it seems that starting in the spring al­
lows for the best appropriate policies. Such
a solution, however, does not take into ac­
count the labor constraints. If all ponds are
started at the same date in spring, there is
a peak load problem in allocating the labor
needed for harvesting.

On the other extreme, if harvests are
spaced equally, at age 11 weeks (four crops
per pond) and thus having 96 harvests per
year, which is approximately two harvests
per week, they will result in a loss of
$82,464 ("Fixed Scheduling," Table 6). A
hybrid policy that will start in the spring
and use fixed scheduling at marketing
age of 13 weeks would yield a profit of
$100,008.

Economics of Controlled Environment
This conceptual framework can be
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helpful, also, in answering an important
question often asked by the farmer: How
much should I invest in a new technology?
As an example, the researchers at Oceanic
Institute are interested in the possibility of
creating a controlled environment of a
constant high temperature of 28°C. To ad­
dress this possibility, the tracing procedure
used in obtaining the results in Table 6
was rerun assuming summer conditions
(~ 26°C) during the whole year. The re­
sults, shown h.1 Table 7, indicate an in­
crease in annual net returns of approxi­
mately $100,000 in comparison with the op­
eration of the hypothetical farm under the
existing environmental constraints. This
provides the upper limit of the annualized
investment cost.

SUMMARY AND CONCLUSIONS

A dynamic decision model has been
developed to determine the optimal stock­
ing and harvesting strategies (policies) of
a shrimp-producing pond. The model
captures both the dynamics of the decision
process and the risk involved. Risk is
represented by randomness in market
prices and growth of shrimps.

The model provides a set of simple op­
timal policies for each calendar week of a
year and for each given age of the growing
shrimps. The policies are expressed as a
set of cutoff revenues when both price and
weight are considered random, and as
cutoff price or cutoff weight when either
price or weight is considered random.

Table 6. Summary of tracing results.

Average
Harvest Age Average Cycle Market Net

Start From Stocking Harvest Weight Per Price Returns
Stocking In (wks) (gm) Year ($/kg) ($)

Case B: Random Price

Spring 14.00 27.89 3.31 8.84 357,453
Summer 12.50 25.42 3.79 8.43 279,429
Fall 13.25 27.02 3.57 8.78 322,719
Winter 13.50 26.91 3.46 8.69 303,806

Fixed Scheduling

Spring 13.00 25.89 3.54 7.81 100,008
Any Season 11.00 21.79 4.00 6.84 -82,464

Table 7. Summary of tracing results for controlled environment (summer).

Average
Harvest Age Average Cycles Market Net

Start From Stocking Harvest Weight Per Price Returns
Stocking In (wks) (gm) Year ($/kg) ($)

Spring 14.00 29.18 3.36 9.17 450,879
Summer 13.50 28.15 3.50 9.28 491,672
Fall 13.50 28.15 3.50 8.93 390,147
Winter 13.75 28.67 3.43 9.26 425,630
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This model was applied to analyze the
economics of the round-pond technology
recently developed at the Oceanic Institute
in Hawaii. By using the management tool
developed here, which provides efficient
scheduling policies of production and
marketing of a single pond, it has been
shown that an operation can increase its
profitability about threefold compared with
a fixed scheduling scheme.

In the operation of the shrimp farm,
experimental trials were used. As a result
of these experiments, commercial shrimp
farms are starting to apply the round-pond
technology. The importance of using the
introduced model is further increased.

The model is well equipped to analyze
the economics of alternative production
strategies. As presented in this paper, in­
vestment in controlled environment is
worthwhile if the annual cost is less than
$100,000.

The strength of the present model is
that it provides a simple and practical
managerial tool and yet it captures both the
dynamics and uncertainties of the shrimp
production process.

It should be noted, however, that the op­
timal decision rules are derived for a sin­
gle shrimp pond and no resource con­
straint, such as labor shortage, exists. In
this respect, the present model only solved
an important subproblem of a large prob­
lem of operating a shrimp farm. Other­
wise, this model can very well be adapted
to other growing crops, as long as they are
homogeneous and production is of an all­
in/all-out nature.
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APPENDIX A

The Homogeneous (Calendar-Independent) Case

In the homogeneous case the calendar week, t, is omitted from Equation 1 to yield:

(AI)

for x = xo, xo+1, ... ,X, where Wn(x) and Pn(x) are the corresponding current weight and
price. Note that the calendar date, t, is not in the equation as it will not affect the current
value in the homogeneous case. Also, the revenue distribution, heR), that may have
either random prices or random weights or both, will remain the same for all weeks of
the year.

In this case the dichotomous decision, sell or keep for each week, can be depicted by
the following set of optimal decision rules for each corresponding age group:

Vex) = max \f.R(x) - C(x), f - V(x+ l)h(R)dR - n \f
R*(x+1) (A2)

for x =Xo xo+1, ... , X - 2, X -1,

where V (X) = 1
0
~R (X)h (R)dR - C(X) corresponds to the age X of termination at any

current revenue; R*(x) is the cutoff revenue at age x; C(x) is the cost of keeping the crop
until age x; and p is the expected returns of one week as the system operates for a long
period (see discussion of Equation A3.3 below). The meaning of this set of equations (A2)
is best explained by their first order conditions. Thus, the solution of the set of Equations
A2, which contains the optimal policy of harvesting the given shrimp pond, will define a
unique vector of cutoff revenues, R*(xo), R*(xo+1), ... , R*(X-1) such that:

R*(x) - C(x) = M[R*(x+ 1), (x+ 1)] - 1t

+ H X+1{M[R*(x+2), (x+2)]-n } + ...
(A3)

+ H x+l H x+2 • •• H X- 1{M[R*(X) = 0, X] - n}
where

M[R*(x), x] = f ~ R(x)h(R)dR- C(x)
R*(x)

given
R*(x)

H x =1
0

h(R)dR

f0r x = x(p xo+1, ... , X - 2, X-I,

(A3.1)
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given HX =0, and

M(R*(X) = 0, X]- n = V(X) - n
(A3.2)

n= _

(A3.3)

Equation A3 states that after deducting C(x), the cutoff revenue at a given age, R*(x),
is determined such that it equals the conditional net expected returns of the shrimp crop
edited from herefrom age x to the termination age, X, of the specific shrimp pond. Thus,
for example, the last term on the RHS consists of the product of the probability of a crop at
age x to reach the age of (X - 1) times the net returns at the terminal age X. The term
"net" (for the RHS of Equation 6) is used, since the opportunity costs of deferring the
harvest for one week, lr, are deducted from the conditional expected return of each of the
following weeks of operation.

In A3.l, the conditional expected return at any given age, x, is defined over the
domain of "Sell," while H x is the probability to wait for harvest at the age, x, for another
week. Condition A3.2 is a transversality condition stating that at the age X the shrimp
producer will harvest and sell at any current revenue, i.e., Hx = R*(X) = o.

In A3.3 the opportunity costs of deferring the harvest of a crop by one week are
measured, where the numerator of lr measures the expected return per crop up to age X
and the denominator measures the expected life of the crop. Thus, the shrimp producer
that follows the optimal harvesting policy will harvest the crop if the immediate realized
net returns are greater than the expected net return over the remaining period (from age
x to X), and he will keep the stock of shrimp if immediate returns are smaller than
expected returns. The recursive nature of the decision process means that, starting from
the termination age X, the shrimp producer is concerned at each stage only with ages
greater than the age under consideration. The reason is intuitively obvious because at
age x the decision to keep would have already been made for earlier ages.

As pointed out in the general case (Equation 1), the distribution of the revenue may
depend on a one-variate distribution of the price or the weight, or on a bivariate
distribution that depends on both. The same is true in the homogeneous case, e.g.,
Equation A1 may be rewritten as:

or

Rn(x) = Wn(x)P(x)

(Al.l)

(Al.2)

Thus, in the case of Al.l, only prices are random and the growth relations are
deterministic. In this case the optimal solution will define a unique vector of cutoff
prices, for each age a P*(x), such that if the current price, Pn(x), is lower than the cutoff
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price, P*(x), keep the crop for another week; otherwise harvest the crop and start a new
one.

In the case of Equation Al.2 where the weight is random and prices are given and
fixed for each age, the optimal policy will consist of a vector of cutoff weights, W*(x), that
replace the vector of cutoff prices p*(x). Thus, if the average weight of the shrimp in the
pond, Wn(x) is larger than or equal to W*(x), harvest and start a new crop, otherwise
wait for another week and check to see if Wn(x+l) ~ or < W*(x+l), and so on.

The general case of the homogeneous model is when allowing both weight and price
to be stochastic. Thus, if the reasonable assumption is made that the current revenue Rn
is depicted from a revenue distribution i.e. assuming that the weights and prices are
independently distributed, it can be shown that the vector of cutoff revenues R*(x) has the
same properties as those of the previous vectors P*(x) and W*(x).ll

Note that the decision process can be described as a Markovian process; defined in
the homogeneous case, it is an ergodic Markov chain. Each strategy chosen by the
shrimp producer determines simultaneously the cutoff revenue R*(x), the transition
probabilities H x , and the immediate reward. Moreover, because H x is connected in a
one-to-one correspondence with the cutoff revenue, at each age one and only one decision
variable determines the strategy taken. Note that H x is without the time subscript, t, and
so is the transition probability matrix, T.

T is a complete ergodic Markov chain, with steady state probabilities qx' to be at a
given age group such that:

x
n = L M[R*(x), xJqx

x=x o (A4)

The General Model-Interseasonal Effects
The solution for the general model described in Equation 1 consists of 52 vectors of

cutoff revenues R *(x, t). The Markov chains are no longer completely ergodic, and
hence the steady-state probabilities depend on the initial state. In this case randomness
of prices and weights may also be introduced separately and simultaneously.

The optimal policies, differing from the homogeneous case, will take into account
the new dilemma the shrimp producer faces, i.e., to sell the crop and enter a new season
with a young stock or to keep the old one and enter the new season with an old stock. Each
of the weekly vectors can be interpreted as in the homogeneous case. The property of the
negative relations between the cutoff revenues and the age of stock still hold. Moreover,
as an approximation, one may derive the steady-state probability and the corresponding
1C for each of the weekly vectors assuming the conditions of this week will hold for the
rest of the period.

11 A fonnal proof of the random price case can be found in Hochman (1972). The same rationale can be
extended to the random weight and the more general random revenue cases.
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APPENDIXB

Flow Chart of Optimal Shrimp Harvest Scheduling Program

x
F(j, x) = L avg. W(j, i) x Feed tate x day forj = 1,2, ... ,J; x = 1,2, ... , X

i= 1

FC(j, x) =F(j, x) x price offeed forj = 1,2,. " ,J; x = 1,2, .. , ,X

W{i. x) = EXP[awV) + bwV) ag~(xj] forj = 1.2, ... ,1; x = 1.2•.... x

P(j, x) =alJ) + b IJ)W(j, x) forj = 1,2, ... ,J; x = 1,2, ... ,x

No

C(j, x) =FC(j, x) + fixed cost + (variable cost x x)

RM. x)= W(i. x)P(i. x) +[W(i. x)Z/..h.}) DiD]

1 H
ER(52, x) =H L R,{/, x) for x = 1,2, ... , X

h=l

Yes

for j = 1, 2, ... ,J; x = 1, 2, ... ,X

Case b: Random price
for h =1,2, , H; j = 1,2, .. , J;

x= 1,2, ,X
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No

IOP(n, x) = IOP(n+52, x) r---""----.;,j

ER(n, x) = ER(n+52, x)

fOf,n=53, 54, ... , 104;
x=1,2, ... ,X

j= 1 {N=92)
j=2 {N=79)
j=3 {N=66}
j=4 {N=53}
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Yes

No

Yes

S =RJIj, x) + ER(n-1, 1) - C(j, x)

Yes
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H
ER(n, X)=~ L R,[i, X)+ ER(n-l, 1)- C(j, X)

h=l
1

ER(n, x) =l] ER(n, x) for x=l. 2. .. . X-I



Description ofVariables

Variable Description

age age of shrimp in days
ap 'price-size intercept
aw growth intercept
bp price-size coefficient
bw growth coefficient
C total cost
ER expected revenue
F feed
FC accumulated feed cost
H maximum number of distribution interval
h distribution interval counter
lOP invariant optimal policy
J maximum number of season
j season counter
N last week of a season
n week counter
P price of shrimp
R revenue
sp standard deviation of price
W weight of shrimp
X terminal age
x age counter
Zp standard normal variant of price distribution
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APPENDIXC

Optimal Shrimp Harvest Scheduling System
and Input/Output Sample Printouts

Optimal Shrimp Harvest Scheduling System
The system consists of two separate components, an input worksheet and a computer

program. It requires an MS-DOS based computer and Lotus 1-2-3 program Release 2.x
to operate. The menu-driven input worksheet is written in Lotus 1-2-3 macros language
to facilitate the inputs. The computer program for the calculation of the Invariant
Optimal Policies is written in Pascal. The following diagram depicts the input and
output flows of the system:

Worksheet
(Lotus 1-2-3)

Computer
Program
(Pascal)

Results
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Sample Input Worksheet Screens (Lotus 1-2-3)

GENERAL INPUTS

Weight option
A = Actual weight, F Functional form

Type of Growth
L = Linear Form, G loG-reciprocal form

Price option
F = Fixed price, D price Distribution

End of GENERAL INPUTS

Selection

F

G

D



GENERAL ANIMAL INPUTS

Value

Maximum allowed growout period (weeks, max

Stocking age (days)

Product type (H = Heads on, T = Tails)

End of GENERAL ANIMAL INPUTS

ANIMAL INPUTS
(Functional form)

Growth equation intercepts
Fall
Winter
Spring
Summer

Growth equation coefficients
Fall
Winter
Spring
Summer

PqDn to continue

ANIMAL INPUTS (continue)

30) 15

65

T

4.92
4.92
4.92
4.92

-241.24
-255.62
-255.62
-241.24

Number of intervals of distribution of weight 20

Enter standard normal variates for weight distribution

1 2 3 4 5 6 7 8 9
-1.96 -1.438 -1.15 -0.941 -0.76 -0.6 -0.45 -0.32 -0.191

10 11 12 13 14 15 16 17 18
-0.061 0.061 0.191 0.32 0.45 0.6 0.76 0.941 1.15

19
1.438

20
1.96 Standard deviation of weight

End of ANIMAL INPUTS

1.34
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FEED INPUTS

Value

Feed cost per gram

Feeding rates (% body weight of shrimp)
Shrimp weight in grams
< 1
1-4
5-9
10-14
>15

End of FEED INPUTS

0.00125

0.12
0.1075
0.093
0.061
0.04

SHRIMP MARKET PRICE INPUTS
FALL

Number of intervals of distribution of price 20

Enter standard normal variates for price distribution
1 2 3 4 56 7 8 9

-1.96 -1.438 -1.15 -0.941 -0.76 -0.6 -0.45 -0.32 -0.191

10 11 12 13 14 15 16 17 18
-0.061 0.061 0.191 0.32 0.45 0.6 0.76 0.941 1.15

19 20
1.438 1.96 Standard deviation of price 0.3166

PqDn to continue

28

Fall
Winter
Spring
Summer

Fall
Winter
Spring
Summer

PRICE INPUTS (continue)
Price-size equation intercepts

Price-size equation coefficients

End of PRICE INPUTS

0.71
0.574
0.477
0.51

0.11397
0.11397
0.11397
0.11397



SHRIMP MARKET PRICE INPUT

Price of shrimp (pound)
(fixed price $/lb)

End of Fixed PRICE INPUT

COST INPUTS

Fixed cost (per animal)

Variable cost (per animal)
Energy
Labor

Total

End of COST INPUTS

4.00

Value

0.015

0.00190
0.00069

0.00259
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Sample Input Data File (For the ComputerProgram)

-0.32
0.76

-0.32
0.76

-0.32
0.76

-0.32
0.76

-0.45
0.6

-0.45
0.6

-0.45
0.6

-0.45
0.6

-0.6
0.45

-0.6
0.45

-0.6
0.45

-0.6
0.45

-0.76
0.32

-0.76
0.32

-0.76
0.32

-0.76
0.32

-0.76
0.32

-0.76
0.32

-0.6 -0.45 -0.32
0.45 0.6 0.76

twenty standard normal variates for weight
distribution (Fall, Winter, Spring, Summer)

standard deviation of weight (Fall, Winter, Spring, Summer)

-0.6 -0.45 -0.32
0.45 0.6 0.76

twenty standard normal variates for price
distribution (Fall, Winter, Spring, Summer)

o. 3166 0 . 3166 0 . 3166 0 . 3166 standard deviation of price (Fall, Winter, Spring, Summer)
20 number of equal intervals of an assumed normal distribution of weight
-1.96 -1.438 -1.15 -0.941 -0.76 -0.6 -0.45 -0.32
-0.191 -0.061 0.061 0.191 0.32 0.45 0.6 0.76

0.941 1.15 1.438 1.96
-1.96 -1.438 -1.15 -0.941
-0.191 -0.061 0.061 0.191

0.941 1.15 1.438 1.96
-1.96 -1.438 -1.15 -0.941
-0.191 -0.061 0.061 0.191

0.941 1.15 1.438 1.96
-1.96 -1.438 -1.15 -0.941
-0.1'91 -0.061 0.061 0.191

0.941 1.15 1.438 1.96

15 65 growout period (week), stocking age (day)
o. 015 O. 00259 fixed cost ($ / animal), variable cost ($ / animal)

4 .92 4 .92 4.92 4 . 92 growth intercept (Fall, Winter, Spring, Summer)
-241.24 -255.62 -255.62 -241.24 growth coefficient (Fall, Winter, Spring, Summer)
o. 00125 0 . 12 O. 1075 O. 093 O. 061 O. 04 feed cost ($ /gm), feed rate (% of body weight)
0.71 0.574 0.477 0.51 price-size intercept (Fall, Winter, Spring, Summer)
0.11397 0.11397 0.11397 0.11397 price-size coefficient (Fall, Winter, Spring, Summer)
20 number of equal intervals of a assumed normal distribution of price
-1.96 -1.438 -1.15 -0.941 -0.76 -0.6 -0.45 -0.32
-0.191 -0.061 0.061 0.191 0.32 0.45 0.6 0.76

0.941 1.15 1.438 1.96
-1.96 -1.438 -1.15 -0.941
-0.191 -0.061 0.061 0.191

0.941 1.15 1.438 1.96
-1.96 -1.438 -1.15 -0.941
-0.191 -0.061 0.061 0.191

0.941 1.15 1.438 1.96
-1.96 -1.438 -1.15 -0.941
-0.191 -0.061 0.061 0.191

0.941 1.15 1.438 1.96

1.34 1.34 1.34 1.34
4 price of shrimp ($ / lb)
F weight option: F = functional form, A = actual weight
G type ofgrowth function: G = log-reciprocal form, L = linear form
D price option: F = fixed price, D = price distribution
T product type: T = tail only, H = head and tail
2 100 0.2 0.8 24
number of resting week, stocking density (animal / m2), pond area (ha), survival rate, number of pond

Note: Explanations are in italics.
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Sample Output (From the Computer Program)

Summary ofthe Input Data
-Input Data-

5-9gm
0.09

Input file name: WASRP.PRN
Stocking age (day): 65
Grow out period (week): 15
Weeks between harvesting and stocking:
Animal stocked per sq. m: 100
Pond area in hectare: 0.200
Number of ponds: 24
Survival rate: 0.800
Fixed cost: 0.0150
Variable cost: 0.0026
Feed cost ($/gram): 0.0012
Feeding Rate: <lgm 1-4gm

0.12 0.11

Weight option: Functional form.
Growth function: Log/recip. form.
Price option: Price distribution.
Product type: Without head.

2

10-14gm
0.06

>15gm
0.04

Fall
Growth Intercept: 4.92000
Growth Coefficient: -241.24000
Price-size Intercept: 0.71000
Price-size Coefficient: 0.11397

Winter
4.92000

-255.62000
0.57400
0.11397

Spring
4.92000

-255.62000
0.47700
0.11397

Summer
4.92000

-241.24000
0.51000
0.11397
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Weight Table and Total Feed Table

-Output Data-

-Weight (gm) - -Cum. Total Feed (gm/animal)-

Week Age (Day) Fall Winter Spring Summer Fall Winter Spring Summer

1 65 3.35 2.68 2.68 3.35 0.00 0.00 0.00 0.00

2 72 4.80 3.93 3.93 4.80 3.07 2.49 2.49 3.07

3 79 6.46 5.39 5.39 6.46 6.74 6.00 6.00 6.74

4 86 8.29 7.01 7.01 8.29 11.54 10.03 10.03 11.54
5 93 10.24 8.77 8.77 10.24 17.57 15.17 15.17 17.57
6 100 12.28 10.63 10.63 12.28 22.37 21.49 21.49 22.37
7 107 14.37 12.57 12.57 14.37 28.06 26.44 26.44 28.06
8 114 16.51 14.55 14.55 16.51 32.39 32.23 32.23 32.39
9 121 18.66 16.57 16.57 18.66 37.31 36.59 36.59 37.31

10 128 20.81 18.60 18.60 20.81 42.84 41.51 41.51 42.84
11 135 22.94 20.63 20.63 22.94 48.96 47.00 47.00 48.96
12 142 25.06 22.64 22.64 25.06 55.68 53.06 53.06 55.68
13 149 27.14 24.64 24.64 27.14 62.99 59.68 59.68 62.99
14 156 29.18 26.61 26.61 29.18 70.87 66.85 66.85 70.87
15 163 31.19 28.55 28.55 31.19 79.32 74.58 74.58 79.32

Feed Cost Table and Total Cost Table

-Cum. Feed Cost ($/animal)- -Cum. Total Cost ($/animal)-
Week Age (day) Fall Winter Spring Summer Fall Winter Spring Summer

1 65 0.000 0.000 0.000 0.000 0.018 0.018 0.018 0.018
2 72 0.004 0.003 0.003 0.004 0.024 0.023 0.023 0.024
3 79 0.008 0.007 0.007 0.008 0.031 0.030 0.030 0.031
4 86 0.014 0.013 0.013 0.014 0.040 0.038 0.038 0.040
5 93 0.022 0.019 0.019 0.022 0.050 0.047 0.047 0.050
6 100 0.028 0.027 0.027 0.028 0.059 0.057 0.057 0.059
7 107 0.035 0.033 0.033 0.035 0.068 0.066 0.066 0.068
8 114 0.040 0.040 0.040 0.040 0.076 0.076 0.076 0.076
9 121 0.047 0.046 0.046 0.047 0.085 0.084 0.084 0.085

10 128 0.054 0.052 0.052 0.054 0.094 0.093 0.093 0.094
11 135 0.061 0.059 0.059 0.061 0.105 0.102 0.102 0.105
12 142 0.070 0.066 0.066 0.070 0.116 0.112 0.112 0.116
13 149 0.079 0.075 0.075 0.079 0.127 0.123 0.123 0.127
14 156 0.089 0.084 0.084 0.089 0.140 0.135 0.135 0.140
15 163 0.099 0.093 0.093 0.099 0.153 0.147 0.147 0.153
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Revenue Table
-Revenue ($/animal)-

Week Age (day) Fall Winter Spring Summer
1 65 0.0054 0.0035 0.0031 0.0044
2 72 0.0089 0.0059 0.0053 0.0075
3 79 0.0137 0.0094 0.0086 0.0118
4 86 0.0201 0.0141 0.0131 0.0177
5 93 0.0282 0.0202 0.0190 0.0252
6 100 0.0380 0.0278 0.0263 0.0344
7 107 0.0495 0.0370 0.0352 0.0453
8 114 0.0627 0.0476 0.0456 0.0579
9 121 0.0776 0.0598 0.0575 0.0721

10 128 0.0940 0.0735 0.0708 0.0879
11 135 0.1119 0.0885 0.0855 0.1052
12 142 0.1310 0.1048 0.1015 0.1237
13 149 0.1514 0.1222 0.1187 0.1434
14 156 0.1727 0.1408 0.1370 0.1642
15 163 0.1951 0.1603 0.1563 0.1859

Invariant Optimal Policy aOP) Table

Season=Fall Iteration= 8
Age Week 1 2 3 4 5 6 7 8 9 10 11 12 13

---------------------------------------------------------
1
2
3
4
5
6
7
8 19 19 19
9 19 18 17

10 19 19 17 14
11 19 18 16 12

112 19 19 19 19 19 19 19 19 19 19 18 15 9
13 17 17 18 18 18 18 18 17 17 17 17 14 6
14 12 13 13 14 14 14 14 14 13 13 13 13 3
15 0 0 0 0 0 0 0 0 0 0 0 0 0

The lOP table provides values in ordinal scale in order to find the corresponding
cutoff revenue, price, and weight. For example, using the above random price lOP table,
if the producer enters the first week of the fall season with a crop of age 12 weeks, the cut­
off price can be found on the price distribution table (next page) under the 19th column at
age 12 weeks.
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Price Distribution Table

Price Distribution Table for Fall ($/Kilogram)

Agel Price Index
I 1 2 3 4 5 6 7 8 9 10

----1----------------------------------------------------------------------
1 I 1.04 1.40 1.60 1.75 1.87 1.98 2.09 2.18 2.27 2.36

2 I 1.40 1.76 1.97 2.11 2.24 2.35 2.45 2.54 2.63 2.72

3 I 1.82 2.18 2.38 2.53 2.65 2.76 2.87 2.96 3.05 3.14

4 I 2.28 2.64 2.84 2.98 3.11 3.22 3.33 3.42 3.51 3.60

5 I 2.76 3.13 3.33 3.47 3.60 3.71 3.82 3.91 4.00 4.09

6 I 3.27 3.64 3.84 3.98 4.11 4.22 4.33 4.42 4.51 4.60

7 I 3.80 4.16 4.37 4.51 4.64 4.75 4.85 4.94 5.03 5.12

8 I 4.34 4.70 4.90 5.05 5.17 5.28 5.39 5.48 5.57 5.66

9 I 4.88 5.24 5.44 5.58 5.71 5.82 5.93 6.02 6.11 6.20

10 I 5.41 5.78 5.98 6.12 6.25 6.36 6.47 6.56 6.65 6.74

11 I 5.95 6.31 6.51 6.66 6.79 6.90 7.00 7.09 7.18 7.27

12 I 6.48 6.84 7.04 7.19 7.32 7.43 7.53 7.62 7.71 7.80

13 I 7.00 7.36 7.57 7.71 7.84 7.95 8.05 8.14 8.23 8.32

14 I 7.51 7.88 8.08 8.22 8.35 8.46 8.57 8.66 8.75 8.84
15 I 8.02 8.38 8.58 8.73 8.85 8.96 9.07 9.16 9.25 9.34

I 11 12 13 14 15 16 17 18 19 20

----1---------------------------------------------------------
1 I 2.44 2.53 2.62 2.72 2.82 2.93 3.06 3.20 3.40 3.77
2 I 2.81 2.90 2.99 3.08 3.18 3.30 3.42 3.57 3.77 4.13
3 I 3.23 3.32 3.41 3.50 3.60 3.71 3.84 3.98 4.18 4.55
4 I 3.68 3.77 3.86 3.95 4.06 4.17 4.30 4.44 4.64 5.01
5 I 4.17 4.26 4.35 4.44 4.55 4.66 4.78 4.93 5.13 5.49
6 I 4.68 4.77 4.86 4.95 5.06 5.17 5.30 5.44 5.64 6.01
7 I 5.21 5.30 5.39 5.48 5.58 5.70 5.82 5.97 6.17 6.53
8 I 5.74 5.83 5.92 6.01 6.12 6.23 6.36 6.50 6.70 7.07
9 I 6.28 6.37 6.46 6.55 6.66 6.77 6.90 7.04 7.24 7.61

10 I 6.82 6.91 7.00 7.09 7.20 7.31 7.43 7.58 7.78 8.14
11 I 7.36 7.45 7.54 7.63 7.73 7.84 7.97 8.12 8.32 8.68

112 I 7.89 7.98 8.07 8.16 8.26 8.37 8.50 8.65 8.85 9.21
13 I 8.41 8.50 8.59 8.68 8.78 8.90 9.02 9.17 9.37 9.73
14 I 8.92 9.01 9.10 9.19 9.30 9.41 9.53 9.68 9.88 10.24
15 I 9.42 9.51 9.60 9.70 9.80 9.91 10.04 10.18 10.38 10.75

The Price Distribution Table provides the cutoff price for every age of shrimp in
each season. Using the previous example, the cutoff price is $8.85/kg if the producer
enters the first week of the fall season with a crop of age 12 weeks having an average
weight of 25.06 gm. (See Weight Table).
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Sample Tracing Results

** TRACE RESULT **

(Market Price File: MKTPRICE.DAT)

STOCK 1 -- Start Stocking in Fall Week 1
----------------------------------------------------------------
Current week
Age of Shrimp
Price Index
Cut-off Price
Market Price

------>

Fall Week 11
10 week
19
$ 7.78/kg
$ 7.63/kg

KEEP

Wt. of shrimp: 20.807 gm
Cost per shrimp: $ 0.094

STOCK 1 -- Start Stocking in Fall Week 1

Current week
Age of Shrimp
Price Index
Cut-off Price
Market Price

------>

Fall Week 12
11 week
16
$ 7.84/kg
$ 7.83/kg

KEEP

Wt. of shrimp: 22.944 gm
Cost per shrimp: $ 0.105

STOCK 1 -- Start Stocking in Fall Week 1

Current week
Age of Shrimp
Price Index
Cut-off Price
Market Price

------>

Fall Week 13
12 week

9
$ 7.71/kg
$ 8.29/kg

SELL

Wt. of shrimp: 25.056 gm
Cost per shrimp: $ 0.116

Revenue per pond
Cost per pond

$ 21638.96
18508.98

Net Profit per pond $ 3129.99

Net Profit for 24 ponds $ 75119.66
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STOCK 2 -- Start Stocking in Winter Week

Current week
Age of Shrimp
Price Index
Cut-off Price
Market Price

------>

Winter Week 13
11 week
19
$ 7.44/kg
$ 6.20/kg

KEEP

Wt. of shrimp: 20.625 gm
Cost per shrimp: $ 0.102

STOCK 2 -- Start Stocking in Winter Week 2

Current week
Age of Shrimp
Price Index
Cut-off Price
Market Price

------>

Spring Week
12 week
19
$ 7.73/kg
$ 6.58/kg

KEEP

1
Wt. of shrimp: 22.643 gm

Cost per shrimp: $ 0.112

STOCK 2 -- Start Stocking in Winter Week 2

Current week
Age of Shrimp
Price Index
Cut-off Price
Market Price

------>

Spring Week
13 week
17
$ 7.88/kg
$ 8.54/kg

SELL

2
Wt. of shrimp: 24.641 gm

Cost per shrimp: $ 0.123

Revenue per pond
Cost per pond

$ 21901.57
19722.74

Net Profit per pond $ 2178.83
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Net Profit for 24 ponds $ 52291.96



STOCK 3 -- Start Stocking in Spring Week 4

Current week
Age of Shrimp
Price Index
Cut-off Price
Market Price

------>

Summer Week
12 week
19
$ 8.41/kg
$ 8.07/kg

KEEP

3
Wt. of shrimp: 25.056 gm

Cost per shrimp: $ 0.116

STOCK 3 -- Start Stocking in Spring Week 4

Current week
Age of Shrimp
Price Index
Cut-off Price
Market Price

------>

Summer Week
13 week
17
$ 8.58/kg
$ 8.07/kg

KEEP

4
Wt. of shrimp: 27.138 gm

Cost per shrimp: $ 0.127

STOCK 3 -- Start Stocking in Spring Week 4
----------------------------------------------------------------
Current week
Age of Shrimp
Price Index
Cut-off Price
Market Price

------>

Summer Week
14 week
13
$ 8.66/kg
$ 8.93/kg

SELL

5
Wt. of shrimp: 29.183 gm

Cost per shrimp: $ 0.140

Revenue per pond
Cost per pond

$ 27141.57
22376.21

Net Profit per pond $ 4765.35

Net Profit for 24 ponds $ 114368.47
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STOCK 4 -- Start Stocking in Summer Week 7

Current week
Age of Shrimp
Price Index
Cut-off Price
Market Price

------>

Fall Week
12 week
19
$ 8.85/kg
$ 8.73/kg

KEEP

6
Wt. of shrimp: 25.056 gm

Cost per shrimp: $ 0.116

STOCK 4 -- Start Stocking in Summer Week 7

Current week
Age of Shrimp
Price Index
Cut-off Price
Market Price

------>

Fall Week
13 week
18
$ 9.17/kg
$ 8.65/kg

KEEP

7
Wt. of shrimp: 27.138 gm

Cost per shrimp: $ 0.127

STOCK 4 -- Start Stocking in Summer Week 7

Current week
Age of Shrimp
Price Index
Cut-off Price
Market Price

------>

Fall Week
14 week
14
$ 9.19/kg
$ 9.31/kg

SELL

8
Wt. of shrimp: 29.183 gm

Cost per shrimp: $ 0.140

Revenue per pond
Cost per pond

$ 28278.04
22376.21

Net Profit per pond
Percentage of cost in current year

Adjusted Net Profit per pond

$
x

$

5901.82
0.571

3372.47
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Net Profit for 24 ponds $ 80939.28



Stock 1
Stock 2
Stock 3
Stock 4

Annual Profit

** ANNUAL PROFIT **

$ 75119.66
$ 52291.96
$ 114368.47
$ 80939.28

---------
$ 322719.37

=========
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