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ABSTRACT 

The extended lagoons and steep flanks of most fringing reefs produce unique coastal 

processes that are challenging to numerical wave models developed for continental shelf 

conditions. This dissertation describes the formulation and validation of a coastal wave 

model applicable to fringing reef environment. The governing Boussinesq-type 

equations, which include a continuity and a momentum equation with conserved 

variables, contain the conservative form of the nonlinear shallow-water equations for 

shock capturing.  

The finite volume method with a Godunov-type scheme provides a conservative 

numerical procedure compatible to the present governing equations. A fifth-order TVD 

(Total Variation Diminishing) reconstruction procedure evaluates the inter-cell variables, 

while a directional splitting scheme with a Riemann solver supplies the inter-cell flux and 

bathymetry source terms in the two-dimensional horizontal plane. Time integration of the 

governing equations provides the conserved variables, which in turn provide the flow 

velocities through a linear system of equations derived from the dispersive terms in the 

momentum equations. The model handles wave breaking through momentum 

conservation based on the Riemann solver without the use of predefined empirical 

coefficients for energy dissipation. 

A series of numerical experiments verify the dispersion characteristics of the model. The 

computed results show very good agreement with laboratory data for wave propagation 

over a submerged bar, wave breaking and runup on plane beaches as well as wave 

transformation over fringing reefs. The model accurately describes transition between 

supercritical and subcritical flows as well as development of dispersive waves in the 

processes.  
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 CHAPTER 1 

INTRODUCTION 

Numerical modeling of nearshore waves is of growing interest in the coastal engineering 

and science communities. Waves generated in the open ocean by storms or seismic 

activities undergo drastic changes close to shore due to refraction, shoaling, diffraction, 

nonlinear wave-wave interaction, and wave breaking. These transformation processes 

determine the nearshore wave height and runup as well as the circulation patterns and 

sediment transport. A rising sea level exacerbates the impact of ocean waves to the 

coastal community. Numerical modeling can effectively describe nearshore wave 

processes to provide guidelines for hazard mitigation as well as planning and utilization 

of coastal resources. However, accurate modeling of water wave motion in the nearshore 

area is still a challenging task. Most wave models cater to continental shelf coasts with 

gently sloping bathymetry. But many events of destructive waves generated by storms 

and tsunamis affect tropical areas that are often sheltered by fringing reefs making the 

nearshore processes far more complex. Nonlinearity and dispersion become important 

aspects that numerical models have to deal with. Wave breaking over the reef and bore 

formation in the lagoon with intermittent submergence of coastal features pose additional 

challenges. Numerical models built upon Boussinesq-type equations include nonlinearity 

and frequency dispersion and have the potential to handle these nearshore processes.  

The pioneer work of Peregrine (1967) provides the foundation for many Boussinesq-type 

models used today. Madsen & Sørensen (1992) and Nwogu (1993) enhanced the classical 

Boussinesq equations to an equivalence of a Padé approximation of the linear dispersion 

relation. The former introduces third-order terms with a free parameter into the 

momentum equation, while the latter derives from the three-dimensional Euler equations 

a new set of governing equations with the horizontal velocity evaluated at a reference 
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depth. The two approaches have identical linear dispersion characteristics that show good 

agreements with linear wave theory. Madsen & Schäffer (1998), Madsen et al. (2003), 

and Fuhrman & Madsen (2009) provided further improvements by including high-order 

nonlinearity and frequency dispersion. Wei et al. (1995) extended Nwogu’s (1993) 

formulation by retaining higher order nonlinear dispersion terms from the Taylor series 

expansion and Gobbi et al. (2000) derived an approach with fourth-order accuracy in 

dispersion. These higher-order Boussinesq-type equations are difficult to implement in 

the two horizontal dimensions for practical applications, but remain useful for theoretical 

studies with idealized bathymetries. Independent of their numerical formulations, all 

Boussinesq-type equations satisfy approximate conservation laws in contrast to the 

nonlinear shallow-water equations that satisfy exact conservation laws for non-dispersive 

waves. 

Wave breaking in the nearshore environment becomes an important modeling issue. As 

the wave height and steepness increase, frequency dispersion balances amplitude 

dispersion to produce a local anomaly leading to instability prior to wave breaking. 

Researchers have developed semi-empirical approaches to account for wave breaking in 

Boussinesq-type models. These involve addition of a dissipative term to the momentum 

equation with prescribed criteria for onset and termination of wave breaking and energy 

dissipation rates. A popular approach is the concept of eddy viscosity (Zelt, 1991; Wei et 

al., 1995; Kennedy et al., 2000; Lynett et al., 2002). The surface roller concept is another 

common approach to account for wave breaking (e.g., Svendsen, 1984; Schäffer et al., 

1993; Madsen et al., 1997). The laboratory experiments of Ting & Kirby (1994) for 

spilling and plunging waves on a plane beach provide a useful dataset for calibration of 

these semi-empirical wave-breaking models. Alternately, transport equations for vorticity 

can be incorporated into the governing equations to account for wave breaking 
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(Veeramony & Svendsen, 2000). 

Modeling of wave transformation over fringing reefs involves energetic wave breaking 

and transition between sub and supercritical flows. Many numerical wave models have 

difficulties simulating bore-like surges over an extended reef. The conservative form of 

the nonlinear shallow-water equations and the associated numerical schemes are uniquely 

suitable to describe these processes (e.g., Toro, 2001; LeVeque, 2002). Godunov-type 

schemes based on a Riemann solver have remarkable shock-capturing capabilities to 

describe breaking waves as bores and conserve flow volume and momentum across 

discontinuities independent of the grid size. The Riemann solver automatically delineates 

wet and dry cells to track the moving waterline without numerical approximations. 

Researchers have applied shock-capturing finite volume schemes in coastal and riverine 

flood hazard modeling (e.g., Dodd, 1998; Pan et al., 2007; Begnudelli et al., 2008, 

George, 2010). Although these applications are relevant in some aspects to surf-zone 

processes, the lack of dispersion in the nonlinear shallow-water equations hampers their 

application to nearshore wave modeling. Horrillo et al. (2006) indicated that frequency 

dispersion can be important even in long wave processes associated with tsunamis. 

Dispersive waves from tsunamis of less than 3 min period can resonate over fringing reef 

bathymetry as demonstrated by Roeber et al. (2010). 

An approach to remediate the lack of dispersion in the nonlinear shallow-water equations 

was proposed by Casulli (1998) and Stelling & Zijlema (2003) who reformulated the 

governing equations from the Navier-Stokes equations to include non-hydrostatic 

pressure. These equations incorporate effects of low order dispersion and are suitable for 

large-scale free surface flows such as tides and tsunamis. The standard form of non-

hydrostatic shallow-water equations is expressed in physical variables and solved with a 

finite difference scheme. Bradford (2004) provided a similar formulation with conserved 
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variables together with a Riemann solver based Godunov-type scheme to account for 

momentum conservation under supercritical flow conditions. Yamazaki et al. (2009, 

2010) extended the non-hydrostatic model of Stelling & Zijlema (2003) to describe 

breaking waves as bores through a momentum conserved advection scheme and include a 

system of two-way nested grids for basin-wide propagation and coastal runup of 

tsunamis. These non-hydrostatic approaches might not be amenable to general 

applications in modeling of coastal processes due to their limited dispersion 

characteristic. High order dispersion can be achieved in these non-hydrostatic models 

only through a multi-layer formulation with additional computational effort (Zijlema & 

Stelling, 2008; Bai & Cheung, 2010). 

Generally, Boussinesq-type models have good dispersion characteristics, but often 

include an ad hoc approach to account for wave breaking. The Riemann solver of the 

conservative form of the nonlinear shallow-water equations provides a good 

approximation of breaking waves as bores and the resulting energy dissipation without 

the need for predefined mechanisms. The goal of this dissertation is to combine the 

merits of the two approaches to develop a nearshore model suitable for, but not limited 

to, fringing reef-type environment. The proposed model incorporates the shock-capturing 

capabilities of a Godunov-type scheme with a Riemann solver into a Boussinesq-type 

dispersive wave model. This includes reformulation of Nwogu’s (1993) Boussinesq-type 

equations in the conservative form of the nonlinear shallow-water equations and 

derivation of a finite volume scheme for the solution. In contrast to the Boussinesq-type 

equations in physical variables, the use of conserved variables allows direct 

implementation of a Godunov-type scheme to handle the transition between sub- and 

supercritical flows without special flux term treatments to ensure momentum 

conservation. Since the proposed governing equations are comparable to Nwogu’s 
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(1993), the model should retain the inherent dispersion and shoaling properties 

independent of the numerical scheme. 

In this dissertation, Chapter 2 describes the derivation of the Boussinesq-type equations 

in conserved variables from the Euler equations. The governing equations are reorganized 

in the conservative form of the nonlinear shallow-water equations for implementation of 

the numerical scheme. The linearized governing equations provide analytical expressions 

for examination of the basic dispersion and shoaling characteristics. Chapter 3 

summarizes the finite volume method with a Godunov-type scheme and an adaptation of 

the TVD (Total Variation Diminishing) technique for reconstruction of the flow variables 

at the cell interface. This includes the formulation of a system of equations from the 

dispersive terms in the momentum equations. Chapter 4 summarizes the conventional 

eddy viscosity approach and the proposed use of a Riemann solver to account for energy 

dissipation due to wave breaking. The laboratory data of Ting & Kirby (1994) allows 

calibration and evaluation of the two approaches prior to the implementation. In Chapter 

5, a series of standard tests with analytical or laboratory data provides verification and 

validation of the proposed model. Simulation of solitary wave collision and sinusoidal 

wave transformation over a submerged bar allow verification and validation of the 

dispersion and nonlinearity characteristics, while laboratory experiments of solitary wave 

transformation over a plane beach and a conical island provide a series of validation tests 

for modeling of wave breaking, bore propagation and runup.  

There is, however, a lack of suitable laboratory data to validate wave transformation 

models for fringing reef environment. Chapter 6 describes a series of flume experiments 

at the O.H. Hinsdale Wave Research Laboratory, Oregon State University, specifically 

designed to examine wave propagation and breaking over fringing reefs, reformation of 

bores in the lagoon, and breaking of the reflected waves with release of dispersive waves. 
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Chapter 7 examines and validates the capability of the proposed model in describing the 

unique wave processes over fringing reefs observed in the flume experiments. In 

addition, the model is implemented to describe wave transformation over a complex 

three-dimensional reef system, which was a benchmark test with laboratory data at the 

2009 NSF-sponsored Benchmark Challenge at Oregon State University. Chapter 8 

provides conclusions of this study and outlines future research directions. 
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CHAPTER 2 

MATHEMATICAL FORMULATION 

The motion of water waves is three-dimensional. Owing to the simple flow structure in 

the vertical direction, two-dimensional depth-integrated models usually suffice to 

describe the pertinent physical processes otherwise not amenable to computationally 

intensive three-dimensional models. General assumptions leading to these models are low 

ratios of amplitude to depth and depth to wavelength as elucidate in the seminal work of 

Peregrine (1967). Nwogu (1993) improved the dispersion characteristics of the classical 

Boussinesq equations of Peregrine (1967) and that enables modeling of ocean wave 

processes over a large region for practical applications. This section provides a summary 

of the commonly used Boussinesq-type approach from Nwogu (1993) and its adaptation 

with conserved variables to capture three-dimensional wave breaking processes as two-

dimensional bores. The dispersion and shoaling relations from the linearized governing 

equations allow assessment of the validity of the proposed formulation and provide 

comparisons with those from Airy wave theory, the classical Boussinesq equations, and 

Nwogu’s original formulation. 

2.1 Nwogu’s Boussinesq-Type Equations 

Figure 2.1 shows a schematic of the three-dimensional flow problem defined by a 

Cartesian coordinate system (x, y, z), in which z is positive upward from the still water 

level. The symbols η and h indicate the surface elevation and water depth from the still 

water level. Let t denote time. The Euler equations consist of a continuity equation and 

momentum equations in the x, y, and z directions as 

! 

ux + vy + wz = 0, (2.1) 
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! 

ut + uux + vuy + wuz +
1

"
px = 0 , (2.2) 

! 

vt + uvx + vvy + wvz +
1

"
py = 0, (2.3) 

! 

wt + uwx + vwy + wwz +
1

"
pz + g = 0 , (2.4) 

where (u, v, w) is flow velocity, p is pressure, g is gravitational acceleration, and ρ the 

fluid density. The irrotational assumption leads to 

! 

vx " uy = 0 , 

! 

wy " vz = 0 , 

! 

u
z
" w

x
= 0 (2.5) 

In addition, the flow satisfies the kinematic boundary conditions at the seabed and the 

free surface as 

! 

w + uhx + vhy = 0 at 

! 

z = "h , (2.6) 

! 

w " #t " u#x " v#y = 0  at 

! 

z = ". (2.7) 

The pressure vanishes at the free surface to give the dynamic free surface boundary 

condition as 

! 

p = 0  at 

! 

z = ". (2.8) 

This boundary value problem is computationally intensive, but provides the basis for 

formulations of many free-surface flow models in research and application.  

Most researchers utilize dimensionless variables to highlight their relative magnitude in 

the physical processes. In the present problem, the independent variables become  

! 

x
"

=
x

h
o

; 

! 

y
"

=
y

ho
; 

! 

z
"

=
z

h
o

; 

! 

t
"

= t
g

ho
, (2.9) 

and the dependent variables are 
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! 

p
"

=
p

#gho
; 

! 

"# =
"

h
o

;

! 

u
"

=
u

gho
; 

! 

v
"

=
v

gho
; 

! 

w
"

=
w

gho
, (2.10) 

where ho is a characteristic water depth parameter. Peregrine (1967) derived the classical 

Boussinesq equations through depth-integration with scaling parameters representing 

nonlinearity and frequency dispersion as 

! 

" =
a
o

h
o

, (2.11) 

! 

µ =
h
o

"
, (2.12) 

where ao is a typical wave amplitude and λ is a typical wavelength. Scaling of the 

independent horizontal variables and time is carried out as 

! 

x = µx" , 

! 

y = µy" , 

! 

t = µt". (2.13) 

The dependent variables are scaled as  

! 

" =
"*

#
 , 

! 

u =
u
*

"
, 

! 

v =
v
*

"
, 

! 

w =
w
*

µ"
. (2.14) 

The scaling parameters, which are of 

! 

O 0.1( ) , adjust the dependent and independent 

variables differently to capture small amplitude weakly dispersive waves through a 

perturbation expansion. 

Nwogu (1993) derived a set of Boussinesq-type equations using the scaled, dimensionless 

variables defined in (2.13) and (2.14). Integration of the continuity equation (2.1) to the 

still water level and implementation of the Leibniz rule give 

! 

w
z
" w

"h
= " u

"h

z

# dz( )
x

+ u
"h
"h( )

x
" u

z
zx " v

"h

z

# dz( )
y

+ v
"h
"h( )

y
" v

z
zy . (2.15) 

Applying the bottom boundary condition (2.6) gives the vertical velocity component in 

terms of the horizontal components 
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! 

w = " u
"h

z

# dz( )
x

" v
"h

z

# dz( )
y

 (2.16) 

Substitution of (2.16) into the irrotationality conditions (2.5) gives 

! 

u
z

= "µ2
u dz

"h

z

#( )
xx

, (2.17a) 

! 

vz = "µ2
v dz

"h

z

#( )
yy

. (2.17b) 

The tenet of Nwogu’s (1993) formulation is the approximation of the horizontal velocity 

components u and v by a Taylor series expansion about an arbitrary depth z = zα 

! 

u = u
z= z"

+ z # z"( )uz z= z" +
z # z"( )

2

2
u
zz z= z"

+
z # z"( )

3

6
u
zzz z= z"

+ ... (2.18a) 

! 

v = v
z= z"

+ z # z"( )vz z= z" +
z # z"( )

2

2
v
zz z= v

+
z # z"( )

3

6
v
zzz z= z"

+ ... (2.18b) 

This introduces a free parameter to optimize the dispersion of the classical Boussinesq 

equation for a range of µ. Combining (2.17) and (2.18) gives the horizontal velocity 

components evaluated at the arbitrary depth z = zα 

! 

u = u
z= z"

#µ2
z # z"( ) u h + z"( )( )

xx
+

z # z"( )
2

2

$ 

% 
& & 

' 

( 
) ) 
xx

$ 

% 

& 
& 

' 

( 

) 
) 
z= z"

, (2.19a) 

! 

v = v
z= z"

#µ2
z # z"( ) v h + z"( )( )

yy
+

z # z"( )
2

2

$ 

% 
& & 

' 

( 
) ) 
yy

$ 

% 

& 
& 

' 

( 

) 
) 
z= z"

. (2.19b) 

Substitution of (2.19a, b) into (2.16) gives 

! 

w = " h + z( )u + µ2
h + z#( )

2

2

$ 

% 
& & 

' 

( 
) ) u h + z#( )( )

x
"

h + z#( )
3

6

$ 

% 
& & 

' 

( 
) ) uxx

$ 

% 

& 
& 

' 

( 

) 
) 
x

      " h + z( )v + µ2
h + z#( )

2

2

$ 

% 
& & 

' 

( 
) ) v h + z#( )( )

y
"

h + z#( )
3

6

$ 

% 
& & 

' 

( 
) ) vyy

$ 

% 

& 
& 

' 

( 

) 
) 
y

 (2.20) 
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The vertical velocity component is expressed in terms of the horizontal components and 

its derivatives. 

The vertical momentum equation (2.4) now gives the pressure p in terms of the horizontal 

velocity components 

! 

"pz =1"µ2
# z + h( )u( )

xt
"µ2

# z + h( )v( )
yt

. (2.21) 

Integration of the pressure from the depth z to the free surface εη and implementation of 

the dynamic free surface boundary condition give 

! 

p
z="h

= #$" z + µ2#
z
2

2
+ hz

% 

& 
' 

( 

) 
* u

% 

& 
' 

( 

) 
* 
xt

"µ2#
z
2

2
+ hz

% 

& 
' 

( 

) 
* u

% 

& 
' 

( 

) 
* 
xt

. (2.22) 

With the velocity components and bottom pressure, depth integration of the horizontal 

momentum equations (2.2) and (2.3) provides the momentum equations in the 

formulation of Nwogu (1993). Returning to dimensional variables, the equations read 

! 

ut + uux + vuy + g"x +
z#
2

2
utxx + vtxy( ) + z# hut( )

xx
+ hvt( )

xy( ) =O $µ2
,µ4( ) , (2.23) 

! 

vt + vvy + uvx + g"y +
z#
2

2
vtyy + utxy( ) + z# hvt( )

yy
+ hut( )

xy( ) =O $µ2
,µ4( ). (2.24) 

Depth integration of the continuity equation (2.1) from the bottom at z = -h to the free 

surface εη, implementation of the Leibniz rule to incorporate the boundary conditions, 

and making use of the velocity components (2.19a, b) and (2.20) provide the final 

continuity equation. In dimensional form,  

! 

"t + h + "( )u( )
x

+ h + "( )v( )
y

+
z#
2

2
$
h
2

6

% 

& 
' 

( 

) 
* h uxx + vxy( ) + z# +

h

2

% 

& 
' 

( 

) 
* h hu( )

xx
+ hv( )

xy( )
+ 

, 
- 

. 

/ 
0 
x

 

! 

+
z"
2

2
#
h
2

6

$ 

% 
& 

' 

( 
) h vyy + uxy( ) + z" +

h

2

$ 

% 
& 

' 

( 
) h hv( )

yy
+ hu( )

xy( )
* 

+ 
, 

- 

. 
/ 
y

=O 0µ2
,µ4( ) . (2.25) 
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The Boussinesq-type equations are truncated at 

! 

O "µ2
,µ4( )  with the parameters ε and µ 

assumed to be small and of the same order. This approach does not resolve the non-

hydrostatic pressure in deep water and, in theory, limits the application in shallow and 

intermediate water depth. The applicable range can be defined by the Ursell number, 

which relates the nonlinearity and dispersion as 

! 

U
r

=
"

µ2
=
a
o
#
2

h
o

3
,  (2.26) 

The Boussinesq-type equations of Nwogu (1993) are valid for 

! 

U
r

=O 10( ) . The 

optimization of the dispersion through zα would account for larger values of µ, thereby 

extending the applicable range in terms of the Ursell parameter.  

2.2 Formulation in Conserved Variables 

The horizontal velocity in the Boussinesq-type equations derived by Nwogu (1993) is 

evaluated at an arbitrary depth zα, from which the vertical flow structure can be derived. 

The equations contain the non-conserved variables (u, v) and η. In the absence of 

frequency dispersion, the equations reduce to the nonlinear shallow-water equations in 

the form 

! 

"t + h + "( )u( )
x

+ h + "( )v( )
y

= 0, (2.27) 

! 

ut + uux + vuy + g"x = 0, (2.28) 

! 

vt + vvy + uvx + g"y = 0 , (2.29) 

The continuity equation (2.27) already utilizes the conserved variable H = (h + η). Let 

(U, V) denote (u, v) for the depth-averaged velocity. With a stationary bathymetry, the 

equation can be expressed in the conserved variables (HU, HV) and H as 
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! 

Ht + HU( )
x

+ HV( )
y

= 0 , (2.30) 

Combining (2.30) and (2.28) pre-multiplied by U and H and (2.30) and (2.29) pre-

multiplied by V and H respectively, gives the momentum equations in conserved 

variables 

! 

HU( )
t
+ HU

2( )
x

+ HUV( )
y

+ Hg"x = 0 , (2.31) 

! 

HV( )
t
+ HV

2( )
y

+ HUV( )
x

+ Hg"y = 0 . (2.32) 

The momentum equations (2.28) and (2.29) express the same conservation law as (2.31) 

and (2.32), but can cater to the full solution of the hyperbolic system of equations. 

Reorganizing the flux terms as 

! 

1

H
HU

2( )
x

+ HUV( )
y[ ] =UUx +VUy +

U

H
HU( )

x
+ HV( )

y[ ] =UUx +VUy +
U

H
Ht

, (2.33) 

! 

1

H
HV

2( )
y

+ HUV( )
x[ ] =VVy +UVx +

V

H
HV( )

y
+ HU( )

x[ ] =VVy +UVx +
V

H
Ht

, (2.34) 

shows additional terms related to flow continuity in comparison to the momentum 

equations (2.28) and (2.29) in non-conserved variables. 

The nonlinear shallow-water equations in conserved variables have been extensively used 

for flood hazard modeling because of their ability to handle flux dominated flows even 

with discontinuities. A numerical model for nearshore wave processes based on 

Boussinesq-type equations would benefit significantly from a similar conservative 

structure. The continuity equation (2.25) in the Nwogu’s (1993) formulation can readily 

be expressed in terms of the conserved variables as in (2.30). The local acceleration and 

flux terms in the momentum equations (2.23) and (2.24) need to be expressed in terms of 

conserved variables (HU, HV). To this end, the local acceleration and flux terms of the 



14 
 

momentum equations (2.31) and (2.32) in the conservative form of the nonlinear shallow-

water equations can be expanded as 

! 

HU( )
t
+ HU

2( )
x

+ HUV( )
y

= H Ut +UUx +VUy( ) +U Ht + HU( )
x

+ HV( )
y( )  (2.35) 

! 

HV( )
t
+ HV

2( )
y

+ HUV( )
x

= H Vt +VVy +UVx( ) +U Ht + HU( )
x

+ HV( )
y( )  (2.36) 

Equations (2.35) and (2.36) are identical to 

! 

H ut + uux + vuy( ) = HU( )
t
+ HU

2( )
x

+ HUV( )
y
"U #t + h + #( )u( )

x
+ h + #( )v( )

y( )  (2.37) 

! 

H vt + vvy + uvx( ) = HV( )
t
+ HV

2( )
y

+ HUV( )
x
"V #t + h + #( )u( )

x
+ h + #( )v( )

y( )  (2.38) 

After multiplying (2.23) and (2.24) by H, substitution of (2.37) and (2.38) gives 

! 

HU( )
t
+ HU

2( )
x

+ HUV( )
y

+ H g"x +
z#
2

2
utxx + vtxy( ) + z# hut( )

xx
+ hvt( )

xy( )
$ 

% 
& 

' 

( 
)  

! 

                                           "U #t + h + #( )u( )
x

+ h + #( )v( )
y( ) = 0  (2.39) 

! 

HV( )
t
+ HV

2( )
y

+ HUV( )
x

+ H g"y +
z#
2

2
vtyy + utxy( ) + z# hvt( )

yy
+ hut( )

xy( )
$ 

% 
& 

' 

( 
)  

! 

                                           "V #t + h + #( )u( )
x

+ h + #( )v( )
y( ) = 0 (2.40) 

The last terms in (2.39) and (2.40) contain the local acceleration and flux terms from the 

continuity equation (2.25) that can be replaced by the corresponding dispersion term. 

The formulation has replaced the local acceleration and flux terms in the continuity and 

momentum equations in Nwogu’s (1993) formulation with conserved variables. The 

resulting Boussinesq-type equations are given by 

! 

Ht + HU( )
x

+ HV( )
y

+
z"
2

2
#
h
2

6

$ 

% 
& 

' 

( 
) h Uxx +Vxy( ) + z" +

h

2

$ 

% 
& 

' 

( 
) h hU( )

xx
+ hV( )

xy( )
* 

+ 
, 

- 

. 
/ 
x

 

 

! 

  +
z"

2

2
#
h

2

6

$ 

% 
& 

' 

( 
) h Uxy +Vyy( ) + z" +

h

2

$ 

% 
& 

' 

( 
) h hU( )

xy
+ hV( )

yy( )
* 

+ 
, 

- 

. 
/ 
y

= 0  (2.41) 
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! 

HU( )
t
+ HU

2( )
x

+ HUV( )
y

+ gH"x

+H
z#
2

2
Uxxt +Vxyt[ ] + Hz# hUt( )

xx
+ hVt( )

xy[ ]

+U
z#
2

2
$
h
2

6

% 

& 
' 

( 

) 
* h Uxx +Vxy( ) + z# +

h

2

% 

& 
' 

( 

) 
* h hU( )

xx
+ hV( )

xy( )
+ 

, 
- 

. 

/ 
0 
x

 

! 

+U
z"
2

2
#
h
2

6

$ 

% 
& 

' 

( 
) h Uxy +Vyy( ) + z" +

h

2

$ 

% 
& 

' 

( 
) h hU( )

xy
+ hV( )

yy( )
* 

+ 
, 

- 

. 
/ 
y

= 0  (2.42) 

! 

HV( )
t
+ HV

2( )
y

+ HUV( )
x

+ gH"y

+H
z#
2

2
Vyyt +Uxyt[ ] + Hz# hVt( )

yy
+ hUt( )

xy[ ]

+V
z#
2

2
$
h
2

6

% 

& 
' 

( 

) 
* h Uxx +Vxy( ) + z# +

h

2

% 

& 
' 

( 

) 
* h hU( )

xx
+ hV( )

xy( )
+ 

, 
- 

. 

/ 
0 
x

 

! 

+V
z"
2

2
#
h
2

6

$ 

% 
& 

' 

( 
) h Uxy +Vyy( ) + z" +

h

2

$ 

% 
& 

' 

( 
) h hU( )

xy
+ hV( )

yy( )
* 

+ 
, 

- 

. 
/ 
y

= 0 (2.43) 

The final governing equations consist of the conservative form of the nonlinear shallow-

water equations and the dispersion terms derived from Nwogu (1993). Because flux and 

dispersion are counteracting processes, it is important not to alter the dispersion terms 

with the conserved variables that are meant for flux-dominated processes. 

2.3 Conservative Form for Shock-Capturing 

The nonlinear shallow-water equations are hyperbolic and admit both continuous and 

discontinuous solutions. Their conservative form has been used extensively in shock-

wave modeling. The governing equations (2.41) - (2.43) can be rearranged in the 

conservative form of the nonlinear shallow-water equations. In the momentum equations 

(2.42) and (2.43), the terms including the free surface gradients are expanded with respect 

to the conserved variable H only as 

! 

hH"x =
1

2
g H

2( )
x
# gHhx , (2.44a) 
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! 

hH"y =
1

2
g H

2( )
y
# gHhy . (2.44b) 

The dispersion terms Hzα[0.5zαUtxx+(hUt)xx] and Hzα[0.5zαVtyy+(hVt)yy], which involve 

products of a time-dependent variable and temporal derivatives and present a challenge to 

the time integration, are expanded as 

! 

Hz" 0.5z"Utxx
+ hU

t( )
xx[ ] =

z"
2

2
HU

xx( )
t
+ z" hHUxx( )

t
#
z"
2

2
H

t
U

xx
# z"Ht

hU( )
xx

, (2.45a) 

! 

Hz" 0.5z"Vtyy + hVt( )
yy[ ] =

z"
2

2
HVxx( )

t
+ z" hHVxx( )

t
#
z"
2

2
HtVyy # z"Ht hV( )

yy
. (2.45b) 

Even though the last two terms on the right hand still contain products of a temporal 

derivative and time-dependent variables, the temporal derivative Ht is directly given by 

the continuity equation (2.41) in terms of spatial derivatives only. 

With the expansions (2.44) and (2.45), the governing equations (2.41) - (2.43) are written 

in matrix form analogous to the nonlinear shallow-water equations as 

! 

Ut + F U( )
x

+G U( )
y

+ S U( ) = 0, (2.46) 

where U is the vector of the conserved variables, F and G are the flux vectors in x and y 

directions respectively, and S is the source term, given respectively as 

! 

U =

H

P

Q

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

 F =

HU

HU
2

+
1

2
gH

2

HUV

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 
 G =

HV

HVU

HV
2

+
1

2
gH

2

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
 

! 

S =

"C

#gHhx #"P1 +U"C +"P 2 + $
1

#gHhy #"Q1 +V"C +"Q2 + $
2

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 

 (2.47) 
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In comparison to the nonlinear shallow-water equations, the evolution variables P and Q 

include the flux-related terms from the right hand side of (2.45) 

! 

P = HU + z" 0.5z"HUxx
+ hHU( )

xx[ ] , (2.48) 

! 

Q = HV + z" 0.5z"HVxx + hHV( )
xx[ ] . (2.49) 

This approach groups all time derivative terms into the evolution variables to simplify the 

time integration. The remaining terms in (2.45) become part of the source term 

accounting for dispersion 

! 

"
P1

= H
t
z# 0.5z#Uxx

+ hU( )
xx[ ], (2.50) 

! 

"Q1 = Htz# 0.5z#Vyy + hV( )
yy[ ] . (2.51) 

The other dispersion terms 

! 

"
C

, 

! 

"
P 2

, and 

! 

"
Q2

 are defined as 

! 

"C =
z#
2

2
$
h
2

6

% 

& 
' 

( 

) 
* h Uxx +Vxy( ) + z# +

h

2

% 

& 
' 

( 

) 
* h hU( )

xx
+ hV( )

xy( )
+ 

, 
- 

. 

/ 
0 
x

 

 

! 

 +
z"

2

2
#
h

2

6

$ 

% 
& 

' 

( 
) h Uxy +Vyy( ) + z" +

h

2

$ 

% 
& 

' 

( 
) h hU( )

xy
+ hV( )

yy( )
* 

+ 
, 

- 

. 
/ 
y

, (2.52) 

! 

"P 2 = Hz# 0.5z#Vxyt + hV( )
xyt[ ] , (2.53) 

! 

"Q2 = Hz# 0.5z#Uxyt + hU( )
xyt[ ]. (2.54) 

The friction terms are given by 

! 

"
1

=
gn

2

H
U U

2
+V

2 , (2.55) 

! 

"
2

=
gn

2

H
V U

2
+V

2 , (2.56) 

where n is the Manning coefficient representing bottom roughness. Bretschneider et al. 

(1986) determined the Manning coefficient for large-scale roughness by measuring wind 
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profiles over typical terrain in Hawaii covered by lava rocks, coral rocks, and dense 

vegetation.  

A solution for the mass flux and shock speed across a flow discontinuity is derived to 

show the governing equation (2.46) inherits a structure for correct representation of the 

physical processes. In the absence of the dispersion and source terms, the governing 

equation reduces to the conservative and homogeneous form of the nonlinear shallow-

water equations for a pure advection system. In one dimension, 

! 

 H

HU

" 

# 
$ 

% 

& 
' 

t

+
HU

HU
2

+
1

2
gH

2

" 

# 
$ 
$ 

% 

& 
' 
' 

x

= 0 . (2.57) 

Similarly, the Boussinesq-type equations (2.23) - (2.25) of Nwogu (1993) based on non-

conserved variables gives rise to 

! 

"

U

# 

$ 
% 
& 

' 
( 
t

+

h +"( )U
1

2
U
2 + gh

# 

$ 

% 
% 

& 

' 

( 
( 
x

= 0 . (2.58) 

Both equations represent conservation laws of mass and momentum. However, the 

Rankine-Hugoniot condition can show only (2.57) satisfies the conservation laws when 

discontinuities develop. A complete detailed derivation of the Rankine-Hugoniot 

condition is presented in the Appendix. 

The Rankine-Hugoniot condition is set up for a linear system of equations with h = H 

(Toro, 2001). The vector of conserved variables becomes 

! 

U =
h

hu

" 

# 
$ 

% 

& 
' , (2.59) 

and the governing equation (2.57) leads to 

! 

U
t
+ F U( )

x
= 0 . (2.60) 
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This equation defines the temporal change of conserved quantities in terms of the fluxes. 

When a discontinuity develops, the flux propagates through a shock. The flow parameters 

on the two sides of the discontinuity define the shock speed CS through the Rankine-

Hugoniot jump condition 

! 

C
S
U

L
"U

R( ) = F U
L( ) "F UR( ) ,  (2.61) 

where the subscripts L and R denote the flow parameters to the left and right of the shock. 

The shock corresponds to a system of intersecting characteristics from the left and right 

states. It is necessary to utilize the entropy condition to identify a physically acceptable 

and unique solution. The entropy condition states the relation between the shock speed 

and the characteristic speeds on the two sides as 

! 

C U
L( ) > C

S
> C U

R( ) . (2.62) 

Equation (2.61) gives the speed for a right moving shock as 

! 

CS =UR + g
h
*

+ hR( )h*
2hR

, (2.63) 

where h* is the water depth in the star region. However, the shock speed from (2.61) 

based on non-conserved variables is 

! 

CS =UR + g
2h

*

2

h
*

+ hR
.  (2.64) 

Even though (2.57) and (2.58) mathematically describe systems of conservation laws, the 

shock speeds in (2.63) and (2.64) are equivalent only for a continuous solution with h* = 

hR. In (2.64), the conservation of mass is correct, but the conservation of particle speed is 

physically meaningless. The lack of conservation of momentum results in wrong shock 

speeds and mass fluxes for discontinuous solutions. The errors are cumulative and cannot 

be overcome by just using a conservative numerical scheme. 
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The governing equation (2.46) allows implementation of the local acceleration, flux, and 

bottom gradient terms into a conservative numerical scheme to handle discontinuous 

flows. However, the dispersion terms are derived from approximations of the velocity 

profile. The governing equations might not fully satisfy exact conservation laws even in 

the conservative form of the nonlinear shallow-water equations. 

2.4 Linear Dispersion and Shoaling 

The linear dispersion and shoaling properties provide a reference for evaluation of the 

proposed governing equations. After replacing H by h and dropping the nonlinear terms, 

the same linearized governing equations as in Nwogu (1993) arise. In the x direction, they 

become 

! 

"
t
+ hu

x
+

z#
2

2
$
h
2

6

% 

& 
' 

( 

) 
* hu

xxx
+ z# +

h

2

% 

& 
' 

( 

) 
* h

2
u
xxx

= 0  (2.64) 

! 

ut + g"x +
z#
2

2
utxx + z#hutxx = 0  (2.65) 

The dispersion and shoaling properties depend on the depth zα, where the flow velocity is 

evaluated. The depth zα is part of the dispersive terms in both equations. Nwogu (1993) 

introduced a single parameter α to represent the terms containing zα as 

! 

" = 0.5
z"

h

# 

$ 
% 

& 

' 
( 

2

+
z"

h

# 

$ 
% 

& 

' 
( . (2.66) 

The governing equations become 

! 

"
t
+ hu

x
+ # +

1

3

$ 

% 
& 

' 

( 
) h

3
u
xxx

= 0, (2.67) 

! 

ut + g"x + # h
2
utxx = 0. (2.68) 
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The parameter α is pre-determined from (2.67) and (2.68) to define the value of zα for 

expected applications of the governing equations (2.41) - (2.43). 

To derive a linear dispersion relation, we consider a system of small amplitude periodic 

waves as  

! 

" x, t( ) = asin kx #$t( )  (2.69) 

! 

u x, t( ) = bsin kx "#t( )  (2.70) 

where 

! 

a  and b  are the respective amplitudes, k denotes the wave number 2π/λ, and ω is 

the angular frequency. Substitution of (2.69) and (2.70) into the linearized form of the 

governing equations gives 

! 

"a# + hbk " $ +
1

3

% 

& 
' 

( 

) 
* h

3
bk

3
= 0 (2.71) 

! 

"b# + gak + $h
2
b#k

2
= 0  (2.72) 

Solving (2.71) for b leads to 

! 

b =
a"

hk 1# $ +
1

3

% 

& 
' 

( 

) 
* h

2
k
2

% 

& 
' 

( 

) 
* 

 (2.73) 

Substitution of (2.73) and (2.72) gives the dispersion relation 

! 

C =
"2

k
2

# 

$ 
% 

& 

' 
( 

1/ 2

= gh

1) * +
1

3

# 

$ 
% 

& 

' 
( h

2
k
2

1)*h 2k 2

+ 

, 

- 
- 
- 
- 

. 

/ 

0 
0 
0 
0 

1/ 2

 (2.74) 

The group velocity, which is related to energy propagation and shoaling of gravity waves, 

is given in terms of the celerity as 

! 

Cg =
"#

"k
=
"

"k
kC( ) = C + k

"C

"k
= C 1$

k
2
h
2

3 1$%k 2h2( ) 1$ % +1/3( )k 2h2( )

& 

' 
( 
( 

) 

* 
+ 
+ 
. (2.75) 
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Shoaling is the result of the decrease of the group velocity with water depth leading to an 

increase in wave height, since the energy flux has to be constant. Based on the constancy 

of energy flux, Beji & Nadaoka (1996) defined the shoaling coefficient in terms of the 

group velocity. For the group velocity (2.75), the shoaling coefficient is given by 

! 

S =

1

2
+
"2k 2h2

K1 K2

K3

3 K1 1" # +1/3( )k 2h2( ) " k 2h2
"1

$ 

% 
& 
& 

' 

( 
) 
) 

* 

+ 

, 
, 

- 

. 

/ 
/ 

4

K1 K2
1+ # +1/3( ) #k 2h2 " 2( )k 2h2( )

, (2.76) 

where 

! 

K1=1"#k
2
h
2 , 

! 

K2 =1" # +1/3( )k 2h2, and 

! 

K3 =1" # +1/3( )k 4h4 . The optimal 

value of α can be determined to optimize the celerity (2.74) and shoaling coefficient 

(2.76) for a specific range of kh.  

Figure 2.2 shows the ratio of the celerity from (2.74) and Airy wave theory versus the 

water depth parameter kh. The results illustrate the effect of α on wave dispersion in the 

model. When α = -1/3, the computed celerity is equivalent to that of the classical 

Boussinesq equation of Peregrine (1967) for long waves. Nwogu (1993) determined α =  

-0.393 to minimize the error between the dispersion relations of the linearized governing 

equations and Airy wave theory for kh < π. This covers the frequency range of the 

incident waves, but might not account for the high frequency dispersive components 

generated from coastal wave transformation. The present study considers a larger range 

of kh < 2π but with stronger emphasis on kh < π. The optimal value of α = -0.38519 is 

determined through minimization of the error 

! 

err = C "CAiry /CAiry( )
2

0

#

$ d kh( ) + C "CAiry /CAiry( )
#

2#

$ d kh( ) . (2.77) 

This places more weight on the minimization of the dispersion error at low kh that affects 

the solution more significantly than the errors in low-energy, high-frequency dispersive 

waves. The difference in celerity is below 1 % for kh < π and below 4% at kh = 5. It 
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should be noted that at kh = 3.443 the dispersion characteristics agree perfectly with Airy 

wave theory. The value of α = -0.38519 thereby extends the applicability of the 

governing equations to high frequency dispersive waves. Figure 2.3 compares the 

shoaling coefficient from (2.76) with that based on Airy wave theory from Madsen 

(1992). The use of α = -0.38519 also improves the shoaling property of the equations at 

higher values of kh. This gives zα = -0.5208132 from (2.66), leading to the horizontal 

velocity (U, V) defined slightly below mid depth. 
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CHAPTER 3 

NUMERICAL FORMULATION 

The finite volume method with a Godunov-type scheme described in this chapter is 

complementary with the governing equations to capture shock-related processes. This 

imposes conservation laws of mass and momentum at each cell in the computational 

domain. The numerical formulation includes an adaptation of a polynomial 

reconstruction technique with a TVD (Total Variation Diminishing) limiter. This 

provides the flow variables on either side of the cell interface and the input to the 

Riemann solver to determine the interface flow variables for the flux terms. A high-order 

Godunov-type scheme integrates the evolution variables in time. The dispersion terms in 

the evolution variables provides two systems of equations for the solutions of the flow 

velocity. 

3.1 Explicit Time Integration 

The governing equations (2.41) - (2.43) contain a mix of flux and dispersion terms that 

require different numerical treatments. It is convenient to rearrange the governing 

equations in a modular structure similar to Wei et al. (1995) for the finite volume 

formulation and code development: 

! 

H
t
= E H,U,V( )  (3.2) 

! 

P H,U( )[ ]
t

= F
1
H,U,V( ) + F

2
V( )[ ]

t
 (3.3) 

! 

Q H,U( )[ ]
t
=G

1
H,U,V( ) + G

2
U( )[ ]

t
 (3.4) 

This arrangement places the evolution variables on the left-hand side for the time 

integration, while the time derivatives on the right-hand side are evaluated based on 



25 
 

quantities from previous time steps. The right hand side of (3.2) contains a mix flux and 

dispersion terms as in the original governing equations 

! 

E H,U,V( ) = " HU( )
x
" HV( )

y
"#C . (3.5) 

In the momentum equations (3.3) and (3.4), F1 and G1 include the flux, dispersion, and 

bottom friction terms, 

! 

F
1
H,U,V( ) = " HU

2 +
1

2
gH

2
# 

$ 
% 

& 

' 
( 
x

" HUV( )
y

+ gHhx +)P1 "U)C " *1, (3.6) 

! 

G
1
H,U,V( ) = " HV

2 +
1

2
gH

2
# 

$ 
% 

& 

' 
( 
y

" HUV( )
x

+ gHhy +)Q1 "V)C " *2, (3.7) 

and F2 and G2 contain the cross derivatives as 

! 

F
2
V( ) = "#

P 2
 (3.8) 

! 

G
2
U( ) = "#

Q2
. (3.9) 

In the absence of dispersion, (3.5), (3.6), and (3.7) reduce to the nonlinear shallow-water 

equations and (3.8) and (3.9) vanish. This equation structure excludes the cross 

derivatives from the evolution variables and decouples the x and y flow parameters in the 

solution process. 

The time-integration scheme should at least match the order of truncation errors from the 

spatial derivatives in the dispersion term (Wei & Kirby, 1995). With third-order spatial 

derivatives, the time integration utilizes an explicit fourth-order Adams-Bashforth-

Moulton method leading to a truncation error of O(Δt4). Let Δt denote the time step. The 

third-order predictor provides an intermediate solution of the evolution variables 

! 

" H 
n +1, 

! 

" P 
n +1, and 

! 

" Q 
n +1 explicitly as 

! 

" H i, j

n +1 = Hi, j

n +
#t

12
23Ei, j

n
$16Ei, j

n$1 + 5Ei, j

n$2[ ], (3.10) 
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! 

" P i, j

n +1 = Pi, j

n +
#t

12
23 F

1( )
i, j

n
$16 F

1( )
i, j

n$1
+ 5 F

1( )
i, j

n$2[ ]

                  +
#t

12
23 F

2t( )
i, j

n
$16 F

2t( )
i, j

n$1
+ 5 F

2t( )
i, j

n$2[ ]
, (3.11) 

! 

" Q i, j

n +1 = Qi, j

n +
#t

12
23 G

1( )
i, j

n
$16 G

1( )
i, j

n$1
+ 5 G

1( )
i, j

n$2[ ]

                 +
#t

12
23 G

2t( )
i, j

n
$16 G

2t( )
i, j

n$1
+ 5 G

2t( )
i, j

n$2[ ]
, (3.12) 

where the subscripts i and j are indices in the x and y direction at the cell centroid as 

shown on Figure 3.1 and n indicates the present time step. The intermediate solution of 

! 

" H 
n +1, 

! 

" P 
n +1, and 

! 

" Q 
n +1 leads to estimates of 

! 

" E 
n +1, 

! 

" F 
1

n +1, 

! 

" G 
1

n +1, 

! 

" F 
2

n +1, and 

! 

" G 
2

n +1 for the 

fourth-order corrector step as 

! 

Hi, j

n +1 = Hi, j

n +
"t

24
9 # E i, j

n +1 +19Ei, j

n
$ 5Ei, j

n$1 + Ei, j

n$1[ ] , (3.13) 

! 

Pi, j

n +1 = Pi, j

n +
"t

24
9 # F 

1( )
i, j

n +1
+19 F

1( )
i, j

n
$ 5 F

1( )
i, j

n$1
+ F

1( )
i, j

n$2[ ]

                  
"t

24
9 # F 

2( )
i, j

n +1
+19 F

2( )
i, j

n
$ 5 F

2( )
i, j

n$1
+ F

2( )
i, j

n$2[ ]
, (3.14) 

! 

Qi, j

n +1 = Qi, j

n +
"t

24
9 # G 

1( )
i, j

n +1
+19 G

1( )
i, j

n
$ 5 G

1( )
i, j

n$1
+ G

1( )
i, j

n$2[ ]

                  
"t

24
9 # G 

2( )
i, j

n +1
+19 G

2( )
i, j

n
$ 5 G

2( )
i, j

n$1
+ G

2( )
i, j

n$2[ ]
. (3.15) 

Both the predictor and corrector steps include cross-derivative terms from the momentum 

equation that require additional numerical treatment. 

In contrast to F1 and G1, the cross terms F2t and G2t do not contribute to the nonlinear flux 

terms and can be evaluated independently from values of F2 and G2 at previous time steps 

through a Taylor-series expansion. Denoting φ = [F2(V), G2(U)], the values at all four 

time steps involved in the predictor step are stated as

! 

 

! 

" t( )
i, j

n
=
1

6#t
11" i, j

n $18" i, j
n$1 + 9" i, j

n$2 $ 2" i, j
n$3[ ] +O #t 3( ) (3.16) 
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! 

" t( )
i, j

n#1
=
1

6$t
2" i, j

n + 3" i, j
n#1 # 6" i, j

n#2 + " i, j
n#3[ ] +O $t 3( ) (3.17) 

! 

" t( )
i, j

n#2
=
1

6$t
#2" i, j

n#3 # 3" i, j
n#2 + 6" i, j

n#1 # " i, j
n[ ] +O $t 3( )  (3.18) 

A similar discretization with fourth-order accuracy leads to φt in the corrector step as 

! 

" t( )
i, j

n+1
=

1

12#t
25" i, j

n+1 $ 48" i, j
n + 36" i, j

n$1 $16" i, j
n$2 + 3" i, j

n$3[ ] +O #t 4( ) (3.19) 

! 

" t( )
i, j

n
=

1

12#t
3" i, j

n+1 +10" i, j
n $18" i, j

n$1 + 6" i, j
n$2 + " i, j

n$3[ ] +O #t 4( ) , (3.20) 

! 

" t( )
i, j

n#1
=

1

12$t
#3" i, j

n#3 #10" i, j
n#2 +18" i, j

n#1 # 6" i, j
n # " i, j

n+1[ ] +O $t 4( ), (3.21) 

! 

" t( )
i, j

n#2
=

1

12$t
#25" i, j

n#3 + 48" i, j
n#2 # 36" i, j

n#1 +16" i, j
n # 3" i, j

n+1[ ] +O $t 4( ) . (3.22) 

Substituting (3.16) - (3.18) into (3.11) and (3.12) eliminates the time derivatives of the 

cross terms in the predictor step of the momentum equations as 

! 

" P i, j

n +1 = Pi, j

n +
#t

12
23 F

1( )
i, j

n
$16 F

1( )
i, j

n$1
+ 5 F

1( )
i, j

n$2[ ]
                  + 3 F

2( )
i, j

n
$ 6 F

2( )
i, j

n$1
+ 4 F

2( )
i, j

n$2
$ F

2( )
i, j

n$3

 (3.23) 

! 

" Q i, j

n +1 = Qi, j

n +
#t

12
23 G

1( )
i, j

n
$16 G

1( )
i, j

n$1
+ 5 G

1( )
i, j

n$2[ ]
                 + 3 G

2( )
i, j

n
$ 6 G

2( )
i, j

n$1
+ 4 G

2( )
i, j

n$2
$ G

2( )
i, j

n$3

 (3.24) 

Similarly, substitution of (3.19) - (3.22) into (3.14) and (3.15) simplifies the integration in 

the corrector stage as 

! 

" P i, j

n +1 = Pi, j

n +
#t

24
9 " F 

1( )
i, j

n +1
+19 F

1( )
i, j

n
$ 5 F

1( )
i, j

n$1
+ F

1( )
i, j

n$2[ ]

                  +
137

144
" F 
2( )

i, j

n +1
$

49

72
F

2( )
i, j

n
$

1

2
F

2( )
i, j

n$1
+

17

72
F

2( )
i, j

n$2
$

1

144
F

2( )
i, j

n$3

 (3.25) 



28 
 

! 

" Q i, j

n +1 = Qi, j

n +
#t

24
9 " G 

1( )
i, j

n +1
+19 G

1( )
i, j

n
$ 5 G

1( )
i, j

n$1
+ G

1( )
i, j

n$2[ ]

                 +
137

144
" G 
2( )

i, j

n +1
$

49

72
G

2( )
i, j

n
$

1

2
G

2( )
i, j

n$1
+

17

72
G

2( )
i, j

n$2
$

1

144
G

2( )
i, j

n$3

 (3.26) 

This time-integration scheme determines the evolution variables P and Q from the 

governing equations.  

3.2 Spatial Discretization 

The governing equations contain the conservative form of the nonlinear shallow-water 

equations that handles flux-dominated processes including discontinuities. The finite 

volume method with a Godunov-type scheme imposes conservation laws over a control 

volume through a Riemann solver and provides the solution for smooth and 

discontinuous flows. A Riemann problem is a generalization of the one-dimensional dam-

break flow defined by the nonlinear shallow-water equations and the discontinuous initial 

conditions   

! 

U = x,0( ) =
U

L
   if x " 0

U
R

   if x > 0

# 
$ 
% 

.  (3.27) 

where UL and UR contain the flow depth and momentum defined to the left and right of 

the cell interface. Figure 3.2 illustrate the solution of the Riemann problem that includes 

four possible cases involving two shock waves, two rarefaction waves, and one 

rarefaction and one shock wave on either side of the initial discontinuity. There are a 

wide variety of solvers for this problem as documented by Brocchini & Dodd (2008). Wu 

& Cheung (2008) solve the Riemann problem using the homotopy analysis method and 

provide an explicit solution in all four cases. Since the time-integration scheme requires 

this solution over all cell interfaces at the predictor and corrector steps, an efficient 

algorithm can reduce the computation time significantly. 
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The evolution variables are defined at the cell centers with a piece-wise linear 

distribution within the cells. It is necessary to reconstruct the initial condition (3.27) on 

the two sides of the cell interface for the Riemann problem. According to Zhou et al. 

(2001), a reconstruction of the surface elevation instead of the flow depth reduces 

spurious oscillations over irregular bathymetry and ensures a well-balanced finite volume 

scheme. We adapted the fifth-order TVD (Total Variation Diminishing) reconstruction 

scheme from Kim & Kim (2005) to evaluate the initial values of η for the continuity 

equation and HU and HV for the momentum equation for the Riemann problem in (19). 

Let φ denote either η, HU or HV. The values at the left and right sides of each interface 

are given by  

! 

" i+1/ 2, j
L = " i, j +

1

60
#2$" i#2, j +11$" i#1, j + 24$" i, j # 3$" i+1, j( )  (3.28) 

! 

" i+1/ 2, j
R = " i+1, j #

1

60
#2$" i+3, j +11$" i+2, j + 24$" i+1, j # 3$" i, j( ) . (3.29) 

Similarly, the values at the top and the bottom of each interface are derived as 

! 

" i, j+1/ 2
T = " i, j +

1

60
#2$" i, j#2 +11$" i, j#1 + 24$" i, j # 3$" i, j+1( )  (3.30) 

! 

" i, j+1/ 2
B = " i, j+1 #

1

60
#2$" i, j+3 +11$" i, j+2 + 24$" i, j+1 # 3$" i, j( ) . (3.31) 

where 

! 

"#  denotes the TVD values computed from quantities at the neighboring cell 

centroids. For example, 

! 

"# i, j = $ i, j ri, j( ) 0.5 # i, j % # i%1, j( ) + # i+1, j % # i, j( )[ ] , (3.32) 

in which ξi,j(ri,j) is the SUPERBEE slope limiter (e.g., Toro, 2001): 

! 

" ri, j( ) =

0

2ri, j

1

min ri, j ,"R ri, j( ),2{ }

# 

$ 

% 
% 

& 

% 
% 

  

! 

if

if

if

if

! 

 r " 0

        0 " r " 0.5

       0.5 " r "1

r #1

 , (3.33) 
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where  

! 

ri, j =
"i+1, j #"i, j( )
"i, j #"i#1, j( )

 , 

! 

"R ri, j( ) =
2

1+ ri, j
. (3.34) 

Figure 3.1 shows the locations of the reconstructed variables. The reconstructed values of 

! 

"i+1/ 2, j

L  and 

! 

"i+1/ 2, j

R  are then added to the water depth 

! 

hi+1/ 2, j  to provide 

! 

Hi+1/ 2, j

L  and 

! 

Hi+1/ 2, j

R . In the same way, 

! 

"i, j+1/ 2

T  and 

! 

"i, j+1/ 2

B  together with 

! 

hi, j+1/ 2  lead to 

! 

Hi, j+1/ 2

T  and 

! 

Hi, j+1/ 2

B . The reconstructed values of 

! 

HU( )
i+1/ 2, j

L  and 

! 

HU( )
i+1/ 2, j

R  must be divided by 

! 

Hi+1/ 2, j

L  and 

! 

Hi+1/ 2, j

R  to give 

! 

Ui+1/ 2, j

L  and 

! 

Ui+1/ 2, j

R . Similarly, 

! 

HV( )
i, j+1/ 2

T  and 

! 

HV( )
i, j+1/ 2

B  

require division by 

! 

Hi, j+1/ 2

T  and 

! 

Hi, j+1/ 2

B  respectively to provide the velocities 

! 

Vi, j+1/ 2

T , and 

! 

Vi, j+1/ 2

B . This requires a minimum water depth to account for dry cells. The model treats 

cells with a water depth smaller than 10-4 m as dry cells. The solution of a local Riemann 

problem provides the flow velocity and depth at each cell interface for the derivation of 

the flux and bathymetry source terms. 

The Riemann solver has first-order characteristics. The respective flux and bottom 

gradient terms in (3.5), (3.6), and (3.7) are computed with a first-order scheme to ensure a 

stable and well-balanced solution without adding noise even with rapidly varying 

bathymetry 

! 

E H,U,V( )
i, j

= "
1

#x
F Ui+1/ 2, j( ) "F Ui"1/ 2, j( )[ ] "

1

#y
G Ui, j+1/ 2( ) "G Ui, j"1/ 2( )[ ] " $C( )

i, j
 (3.35) 

! 

F
1

H,U,V( )
i, j

= "
1

#x
F Ui+1/ 2, j( ) "F Ui"1/ 2, j( )[ ] "

1

2#y
H U V ( )

i, j +1
" H U V ( )

i, j"1[ ]

                        +
1

#x
gH hi+1/ 2, j " hi"1/ 2, j[ ] + $M 1( )

i, j
"Ui, j $C( )

i, j
" %

1( )
i, j

, (3.36) 

! 

G
1

H,U,V( )
i, j

= "
1

#y
G Ui, j +1/ 2( ) "G Ui, j"1/ 2( )[ ] "

1

2#x
H U V ( )

i+1, j
" H U V ( )

i"1, j[ ]

                        +
1

#y
gH hi, j +1/ 2

" hi, j"1/ 2[ ] + $M 2( )
i, j
"Vi, j $C( )

i, j
" %

2( )
i, j

, (3.37) 
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where 

! 

H ,  U , and 

! 

V  are cell averages. The spatial derivatives in the dispersion terms are 

evaluated at the cell centroids with finite difference approximations of second order 

accuracy. Let φ denote U, V, (hU), and (hV). The first-order derivative is stated as 

! 

"i, j( )
x

=
"i+1, j #"i#1, j

2$x
+O $x 2( ) , (3.38) 

! 

"i, j( )
y

=
"i, j+1 #"i, j#1

2$y
+O $y 2( ) , (3.39) 

and the second order derivative is given by 

! 

"i, j( )
xx

=
"i#1, j # 2"i, j + "i+1, j

$x 2
+O $x 2( ), (3.40) 

! 

"i, j( )
yy

=
"i, j#1 # 2"i, j + "i, j+1

$y 2
+O $y 2( ). (3.41) 

The third order derivative, which is only present in the continuity dispersion term ψC, is 

evaluated by 

! 

"i, j( )
xxx

=
#"i#2, j + 2"i#1, j # 2"i+1, j + "i+2, j

2$x 3
+O $x 2( )  (3.42) 

! 

"i, j( )
yyy

=
#"i, j#2 + 2"i, j#1 # 2"i, j+1 + "i, j+2

2$y 3
+O $y 2( ) . (3.43) 

Second-order approximations are also extended to the boundaries of the domain. The 

momentum dispersion terms ψP1 and ψQ1 from (3.6) and (3.7) involve (Hi,j)t, which is 

explicitly obtained from the right side of the continuity equation (3.2) in terms of spatial 

derivatives only.  

3.3 System of Equations 

The explicit time-integration scheme accounts for the cross-derivative terms in the 

governing equations and provides the evolution variables H, P and Q in (3.13), (3.25), 
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and (3.26) via the Riemann solver. The momentum variables P and Q contain x and y 

derivatives of U and V respectively, which in turn can be solved independently from 

series of one-dimensional problems in the x and y directions. 

Discretization of (2.48) and (2.49) as part of (3.3) and (3.4) respectively with a second-

order central difference scheme gives systems of equations in terms of U and V 

respectively: 

! 

Pi, j = HU( )
i, j

+ Hi, j zi, j
zi, j

2

Ui"1, j " 2Ui, j +Ui+1, j

#x 2
$ 

% 
& 

' 

( 
) +

hU( )
i"1, j

" 2 hU( )
i, j

+ hU( )
i+1, j

#x 2

$ 

% 
& & 

' 

( 
) ) 

* 

+ 
, 
, 

- 

. 
/ 
/ 
 (3.44) 

! 

Qi, j = HV( )
i, j

+ Hi, j zi, j
zi, j

2

Vi, j"1 " 2Vi, j +Vi, j+1

#y 2
$ 

% 
& 

' 

( 
) +

hV( )
i, j"1

" 2 hV( )
i, j

+ hV( )
i, j+1

#y 2

$ 

% 
& & 

' 

( 
) ) 

* 

+ 
, 
, 

- 

. 
/ 
/ 
. (3.45) 

The central difference scheme only involves the adjacent cells of each grid and thus 

forms the following linear systems of equations 
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in which 
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where 

! 

H
i

*  is 

! 

H
i

n  in the predictor and 

! 

" H 
i

n +1 in the corrector step. The five vectors C, L, R, 

T, and B of the matrix equations (3.46) and (3.47) can be pre-calculated and used 

throughout the computation. The tri-diagonal matrices are symmetric and positive 

definite. A Thomas algorithm in Ferziger & Peric (2002) solves for the flow velocity 

(

! 

" U 
i

n +1, 

! 

" V 
i

n +1) in the predictor and for (

! 

U
i

n+1, 

! 

V
i

n+1) in the corrector step. 

The numerical procedures include a number of steps starting with the reconstructions of 

η, HU, and HV for the initial conditions of the Riemann problem in (3.27). The explicit 

solver of Wu & Cheung (2008) provides the cell interface values for the evaluation of the 

flux and the bathymetry source terms for the predictor in (3.10), (3.23), and (3.24) from 

which an estimate of H, P and Q are evaluated. The flow velocity components U and V 

are then determined from the matrix equations (3.46) and (3.47). The procedure is 

repeated in the corrector step (3.13), (3.25), and (3.26) and the relative error is evaluated 
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"f =

fi, j

n +1 # $ f i, j
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j

%
i

%
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where 

! 

f
n+1 and 

! 

" f 
n +1 denote H, U, and V at the present and previous steps in the 

iteration. Since the predictor step provides very accurate estimates of the variables, the 

scheme usually converges to the prescribed tolerance of Δf < 0.001 in two iterations or 

less. As pointed out by Wei et al. (1995), the numerical solution might oscillate above the 
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tolerance for strong nonlinear problems. Thus, the solution proceeds to the next time step 

if the iteration error in the corrector, 

! 

f
n+1, is larger than the error from the predictor, 

! 

" f 
n +1. Tests during the development stage of the model have confirmed such behavior 

occurs in very few cases. The time integration scheme has to satisfy the Courant-

Friedrichs-Lewy condition  

! 

"t = Cr min
"x

max Ui, j + gHi, j[ ]
,  

"y

max Vi, j + gHi, j[ ]
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, (3.54) 

where Cr is the Courant number between zero and one, thereby preventing the fastest 

wave from traversing more than one grid cell within a time step. 

The model uses an adaptive time step, which is constantly being readjusted based on the 

maximum flow velocity. The variable time step violates the assumptions of the explicit 

time integration and the resulting error has to be tracked. The numerical error in the 

fourth-order multistep method can be estimated as  

! 

err =
19 f i, j

n +1
" # f i, j

n +1

270$t
, (3.55) 

which must remain below the allowable tolerance 

! 

tol =
bi, j
n+1
" fi, j

n+1

10#t
, (3.56) 

where 

! 

bi, j
n+1 is the right hand side of (3.2) - (3.4) (Burdon & Faires, 2005). The time step is 

expected to change very little over the four steps in the time integration. Significant 

variations of Δt might only occur over several hundreds time steps. In the unlikely case of 

err > tol, the computation of the current time integration is repeated by a fourth-order 

Runge-Kutta method with a constant time step. The adaptive time step contributes 

significantly to a fast and stable numerical solution. Many nearshore models use a pre-

defined time step derived from the maximum still water depth in the computational 
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domain. This, however, might underestimate the allowable maximum time step during 

most of the numerical computation. Further, a fixed time step might momentarily violate 

the Courant-Friedrichs-Lewy criterion for transient, local high-speed flows as often 

encountered during the wave breaking process and propagation over dry bed. 
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CHAPTER 4 

WAVE BREAKING 

Depth-integrated models do not describe overturning of the free surface and thus cannot 

fully reproduce the wave breaking processes. The use of conserved variables in the 

present governing equations allows approximation of breaking waves as discontinuous 

flows. This section summarizes the shock-capturing properties of the formulation in 

conserved variables and their implementation to describe breaking waves in Boussinesq-

type models. The conventional eddy viscosity approach is adapted to the present 

formulation to provide an alternate treatment for wave breaking and a reference for 

comparison. The laboratory data of Ting & Kirby (1994) facilitates calibration and 

evaluation of the two approaches prior to their implementation. 

4.1 Riemann Solver Approach 

For wave breaking in shallow-water, the free-surface flow becomes an advection- or flux-

dominated process. The governing equations expressed in conserved evolution variables 

(H, HU) show a fundamental difference to those based on non-conserved variables (η, 

U). Expanding the flux terms of the present momentum equation (2.42) in the x direction 

leads to 

! 

1

H
HU( )

t
+UUx +VUy +

U

H
HU( )

x
+
V

H
HU( )

y
+ g"x +

U

H
#C +

1

H
#M = 0 , (4.1) 

whereas the momentum equation of Nwogu (1993) reads 

! 

1

H
Ut +UUx +VUy +

1

H
g"x +

1

H
#M = 0, (4.2) 

where the dispersion term ψM  is given by 
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! 

"M = H
z#
2

2
Uxxt +Vxyt[ ] + Hz# hUt( )

xx
+ hVt( )

xy[ ] . (4.3) 

It becomes obvious that the present evolution variables introduce a second set of flux and 

dispersion terms to the momentum equations. The flux term (HU)x is instrumental in 

enforcing momentum conservation under supercritical flows and the driving force for 

mass flux across discontinuities. The Riemann solution to the nonlinear shallow-water 

equations imbedded in the present governing equations defines the shock conditions and 

accounts for energy loss due to flow discontinuities. The parabolic non-hydrostatic part 

of the governing equations, however, cannot handle discontinuous flows. The governing 

equations balance amplitude dispersion with frequency dispersion as the free surface 

steepens, but the depth-integrated system breaks down when the wave is about to 

overturn. The surface profile does not reach a discontinuity for the Riemann solver to 

describe the energy dissipation associated with the breaking waves. Additional treatment 

is necessary to fully utilize the capabilities of the governing equations. 

The imbalance between amplitude and frequency dispersion results in a local anomaly at 

the breaking location that might lead to numerical instability depending on the order of 

the dispersion terms, the numerical scheme, and most important, the grid size. When the 

grid is fine enough to resolve the leading edge of a steep wave, the dispersion terms 

might not be able to describe the physical processes and the large local gradients can lead 

to instabilities, which are often too strong to be overcome by numerical diffusion. If only 

a limited number of cells are available to describe a bore-shaped wave, this leads to 

underestimation of the local gradients and the resulting numerical diffusion might be able 

to control the numerical instabilities to avoid breakdown of the model. Although no 

special treatment is necessary to avoid numerical instabilities, the use of numerical 

diffusion is not a solution to the stability problem as the grid size must be determined on 

a trial-and-error basis and the results become grid size dependent. In practical 
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applications, the users expect a model to work under a wide variety of wave breaking 

conditions and provide stable and reliable results. It is necessary to develop a general 

approach to eliminate potential instabilities due to the dispersion terms and enable the 

imbedded shock-capturing structure in the governing equations to describe wave 

breaking.  

Conventional approaches utilize a dissipative term to reduce the wave height prior to 

wave breaking as a way to avoid numerical instabilities. Since wave breaking in the surf 

zone is advection dominated, the present study considers an alternate approach by 

deactivating the dispersion terms to allow the Riemann solver to describe the breaking 

wave as a bore or hydraulic jump. The solution conserves momentum across the 

discontinuity and thus automatically accounts for the energy dissipation during the 

breaking process. The local momentum gradients, (HU)x and (HV)y, provide a good 

indicator for the onset of wave breaking consistent with the flux-based formulation even 

for a slow-moving hydraulic jump. Wave breaking begins when  

0.5[|(HU)x|+(HU)x] ≥ 

! 

B
1
gH , or (4.4a) 

0.5[|(HV)y|+(HV)y] ≥ 

! 

B
1
gH , (4.4b) 

where 

! 

HU( )
i, j[ ]

x
=
HU( )

i+1/ 2, j
" HU( )

i"1/ 2, j

#x
, (4.5a) 

! 

HV( )
i, j[ ]

y
=
HV( )

i, j+1/ 2
" HV( )

i, j"1/ 2

#y
, (4.5b) 

and B1 denotes the wave breaking criterion in terms of the shallow-water celerity. It is a 

calibration coefficient determined from laboratory experiments. The use of (4.4) instead 

of (HU)x and (HV)y accounts for the direction of the flow and rules out wave breaking 



39 
 

behind the crest, where large momentum gradients might occur in short period waves. 

Even though (HU)x and (HV)y are strictly not velocity terms, the calibration with 

laboratory data would define their relations to the velocity for the wave-breaking 

criterion. In addition, it is not straightforward to compute the flow velocity from the 

momentum, when the flow depth H approaches zero on dry bed. Cross-directional 

momentum gradients, such as (HU)y and (HV)x, are generally smaller than the x or y 

gradients and are not taken into account in this approach. Though a breaking event might 

occur in only one horizontal direction, the dispersion terms are locally deactivated in both 

directions. Since the Riemann solver used in this study is exact, the solution over the 

breaking cells satisfies exact conservation laws of mass and momentum. This provides a 

robust solution over an area, which is often the source of instabilities. Since the local 

variables in the resulting nonlinear shallow-water equations do not contain mixed time 

and space derivatives, the rank of the matrix equations (3.52) and (3.53) is reduced 

accordingly.  

The present approach is based on the fact that the flow is flux dominated and non-

hydrostatic effects are negligible near the breaking wave. The Boussinesq-type equations 

locally reduce to the nonlinear shallow-water equations for the shock-related hydraulic 

processes, while the waves in the rest of the domain remain dispersive. Local 

deactivation of dispersion terms along the breaking wave front automatically eliminates 

any source of high frequency contribution, which might give rise to instabilities. This 

approach is valid for waves breaking in shallow water including the swash zone, but it 

has limitations for wave breaking at intermediate water depth. Such a scenario might 

occur when superposition of two or more waves leads to rapid steepening and breaking of 

the free surface analogous to freak or sneak wave generation. Local deactivation of the 

dispersion terms over the steep wave front would terminate not only the potential 
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instability but also the dispersion of the underlying wave train. One way to work around 

this issue would be reconstruction of the dispersion terms at the breaking wave front from 

neighboring cells. However, the dispersion terms over irregular bathymetry do not 

necessarily follow the free surface profile for meaningful interpolation over the gap.  

4.2 Eddy Viscosity Approach 

For governing equations formulated in primitive variables, a wave-breaking model not 

only has to control potential instabilities along the steep wave front, but also has to 

account for momentum conservation across flow discontinuities. There are numerous 

semi-empirical approaches originated from the eddy viscosity concept of von Neumann 

& Richtmyer (1950) to stabilize shock fronts in the Euler equations. The idea was later 

used by Smagorinsky (1963) to parameterize the effect of unresolved subgrid-scale 

processes in an ocean circulation model under the assumption that the eddy viscosity is 

directly proportional to the horizontal gradient of the velocity. Heitner & Housner (1970) 

implemented the eddy viscosity approach to approximate energy dissipation due to wave 

breaking. Zelt (1991) and Kennedy et al. (2000) adapted this idea to account for wave 

breaking in Boussinesq-type models. 

Adaptation of the approach of Heitner & Housner (1970) for the present formulation with 

conserved variables leads to the following dissipation terms 

! 
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x[ ]
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+
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2
"
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y
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x
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y( )[ ]
x

, (4.6b) 

where υ1 and υ2 are the eddy viscosity calibrated to describe energy dissipation in the 

breaking process. The dissipation terms (4.6a) and (4.6b) are simply added to the left 
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hand sides of the momentum equations (2.42) and (2.43) respectively. Kennedy et al. 

(2000) use a velocity indicator derived from ηt to determine the eddy viscosity. 

Consistent with the present formulation, the eddy viscosities are given by 

! 
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= #$
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 ,  (4.7a) 
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in which 
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where B1 and B2 denote the onset and termination of the wave-breaking process in terms 

of the shallow-water celerity and must be calibrated through laboratory experiments. The 

onset and termination criteria enable gradual energy dissipation through the momentum 

equation over time and distance from the initial steepening of the surface to the reduction 

of the wave height after wave breaking. In contrast, the Riemann solver approach uses 

only one criterion to deactivate the dispersion terms for energy dissipation through a flow 

discontinuity. Both approaches provide a mechanism to eliminate instabilities associated 

with the dispersion terms prior to wave breaking. The former dissipates the energy over a 

larger area analogous to turbulence dissipation, whereas the latter describes dissipation of 

energy locally at the steep wave front through bore formation.  

For illustration and comparison, this study considers the eddy viscosity approach in one-

dimensional problems in the x direction only. Consistent with the flux-based formulation, 

the local momentum gradient (HU)x is used to  determine the eddy viscosity and the wave 

breaking criterion. Equations (4.6) - (4.8) become 
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x
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2
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Wave energy dissipation associated with breaking begins when |(HU)x| ≥ 

! 

B
1
gH  and 

continues as long as |(HU)x| ≥ 

! 

B
2
gH . Since this approach involves both the onset and 

termination criterion, a proper indexing system has to track each breaker individually. 

The same approach as in (4.4) is applied to avoid activation of wave breaking cells at the 

back of the wave. The largest momentum gradients occur at the steep wave face or 

hydraulic jump where wave breaking initiates. Air entrainment and white water 

turbulence follows. The breaking term stays active for a duration equal to T*, accounting 

for the continuing dissipation process behind the broken waves, where the momentum 

gradient would not exceed the breaking thresholds. This also prevents development of 

unrealistic kinks at the tip of the wave faces by distributing the energy dissipation in time 

and along the wave train. Kennedy et al. (2000) found 

! 

T
*

= TC H /g  to be applicable for 

a wide range of wave conditions. For plunging breakers, the momentum gradient far 

exceeds the breaking thresholds along the entire wave face resulting in large initial 

energy dissipation over a number of grid cells. Air entrainment and turbulence resulting 

from the overturning wave remain as the wave propagates forward. The breaker index 

would keep the previously assigned breaking cells active for the duration T*. The eddy 

viscosity term would consequently affect a larger part of the wave from the front to the 

back. Under spilling wave conditions, the breaking process is less intense without major 

overturning of the free surface. Hence, fewer cells in the upper part of the wave face 

would pass the breaking threshold. This will also result in fewer cells affected by the 

index and more gradual energy dissipation. 
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It is worth mentioning that the eddy viscosity approach is suitable for the Boussinesq-

type models formulated in non-conserved variables. The imbedded momentum term 

(HU)x helps to overcome the missing momentum conservation locally during the wave 

breaking process and to account for shock propagation under supercritical flow 

conditions. However, the dissipation term has to act over a large area around the breaking 

wave and that might smear out the physical character of any subsequent bores 

propagating over an extended distance. 

4.3 Model Calibration 

Both the Riemann solver and eddy viscosity approaches involve empirical parameters 

that require calibration with laboratory experiments. Ting & Kirby (1994) provided 

laboratory data for 0.125-m high incident waves in 0.4 m water depth with 2 and 5 s 

period. The incident cnoidal waves transform into spilling and plunging breakers on a 

1:35 slope. These test cases provide a valuable dataset for calibration of the present 

concept as it has been in the past for other depth-integrated wave-breaking models (e.g., 

Madsen et al., 1997; Bredmose et al., 2004; Sørensen et al., 2004; Lynett, 2006). 

The Riemann solver approach uses the coefficient B1 to define the threshold for 

deactivation of the dispersion terms. The predefined coefficient must work reliably for 

both spilling and plunging wave breakers. We consider a computational domain of 40 m 

with a 0.025-m grid. The incident cnoidal waves, which are generated at the left 

boundary, propagate over a distance of 20 m before reaching the toe of the 1:35 beach. 

Figure 4.1 compares the laboratory data for spilling and plunging breakers with computed 

results for B1 = [0.4; 0.5; 0.6]. The comparison includes the crest and trough envelopes as 

well as the wave setup. The three thresholds deactivate the dispersion terms at different 

stages and over different amounts of cells during the wave breaking process. The overall 
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results from all three thresholds are very similar for both spilling and plunging waves 

indicating that the results are not very sensitive to the calibration coefficient. The model 

reproduces the wave breaking location, but underestimates the initial breaking wave 

height due to deactivation of the dispersion terms, which are responsible for the 

steepening of the wave front to balance the flux terms. Because dissipation only occurs 

locally at the portion of the wave face exceeding the threshold, the model underestimates 

the overall dissipation in the adjacent area where turbulence and air entrainment might be 

important. In addition, the abrupt termination of the dispersion terms generates a small 

local peak at the wave front resulting in overestimation of the wave height and under 

prediction of the setup in the surf zone. Close to the beach, the momentum gradient is 

lower than the breaking thresholds for all three parameters and, as a consequence, the 

dispersion terms maintain active. At this stage, the dispersion terms do not cause 

instabilities anymore and the model continues the wave breaking process. The overall 

agreement between the numerical and laboratory data is reasonable. 

Since the depth-integrated model cannot describe overturning of the free surface, the 

computed crest elevation does not fully reproduce the laboratory data for the range of B1 

considered. It is also difficult to measure precisely the surface elevation of the 

overturning waves and the subsequent splash up in the laboratory experiment. The 

computed crest envelope shows that the onset parameter B1 is responsible for the location 

and timing of the breaking process. A small value of B1 causes the waves to break early, 

but does not adversely affect the rest of the results. A large value of B1 delays the 

breaking process and causes unrealistic steepening of the wave face. For both spilling and 

plunging breakers, the breaking wave height is best accounted for by using B1 = 0.6. The 

high threshold, however, delays deactivation of the dispersion terms prior to wave 

breaking and allows dispersion in the waves close to shore leading to larger deviation 
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with the laboratory data. The coefficient B1 = 0.4 produces the lowest breaking wave 

height, but slightly lower wave heights in the inner surf zones. The value of B1 = 0.5 

appears to provide the best compromise on the onset and duration of wave breaking for 

subsequent applications. It is worth to mention that this calibration includes long-period 

cnoidal waves, which possess characteristics of solitary waves as well.  

The eddy viscosity model involves the calibration coefficients B1 and B2 defining the 

onset and termination of the wave-breaking process in terms of the shallow-water celerity 

! 

gH . The calibration is carried out with the same laboratory dataset. Figure 4.2 

compares the computed and laboratory data for six combinations of B1 and B2 in the 

spilling case. The choice of B1 affects the breaking wave height and slightly modifies the 

wave setup profile, but produces little effect on the wave trough elevation. The 

termination parameter B2 does not influence the overall results for the range considered. 

For this particular test case, good agreement with the laboratory data is obtained with B1 

= 0.5 and 0.1 ≤ B2 ≤ 0.25. Figure 4.3 shows the comparison for the plunging case. The 

best agreement is obtained for B1 = 0.6, which corresponds to the onset of breaking at a 

higher speed in comparison to the spilling breaker. This is consistent with the higher flow 

speed and surface elevation developed prior to a plunging breaker. The termination 

parameter is sufficiently low to ensure a continuous breaking process until most of the 

wave energy is dissipated. Additional tests with both spilling and plunging wave breakers 

have shown a deviation of the computed crest envelope from the experimental data 

towards the end of the breaking process for B2 > 0.25 due to the breaking term being 

applied to an insufficient number of grid cells. The trough elevation is set by the initial 

wave height and period and has little to do with the breaking parameters. The wave setup 

results from the excess of momentum in the surf zone and the computed and measured 

data agrees in both test cases. Overall, B1 = 0.5 and B2 = 0.15 provide the best 
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compromise between the spilling and plunging wave breakers. 

The calibration has demonstrated that the eddy viscosity approach with two coefficients 

better reproduces the laboratory data. Its extension to the two-dimensional horizontal 

plane is not straightforward. Depending on the angle of approach and the local 

bathymetry, wave breaking is a dynamic process and the breaker has many 

configurations. The breaking wave front may simultaneously advance forward and 

laterally as seen at a surfing site. Apart from the validity of the dissipation mechanism 

empirically predefined for uni-directional waves, tracking of the individual breakers is a 

challenging task in the two-dimensional horizontal plane. Each wave would have to be 

indexed and tracked as it propagates across the surf zone. A tracking algorithm has to 

work reliably for all possible breaking scenarios, but there is no guarantee that all 

breaking processes over complex bathymetry can be detected. The Riemann solver 

approach determines the breaking threshold using one coefficient without the need for a 

tracking mechanism. Since the numerical model uses analytical solutions of all 

admissible wave breaking conditions and their combinations over a number of cells to 

construct a wave-breaking scenario, it is more amendable to situations not seen in the 

calibration process. Hence, the subsequent analysis uses the Riemann solver approach 

with local deactivation of the dispersion terms to account for wave breaking. 
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CHAPTER 5 

VERIFICATION AND VALIDATION 

This dissertation introduces conserved variables into the Boussinesq-type equations and 

obtains the solution through a conservative numerical scheme analogous to that of the 

nonlinear shallow-water equations. While the linearized governing equations retain the 

original dispersion and shoaling characteristics, it is still necessary to verify the 

numerical scheme and its capability in handling these processes under nonlinear 

conditions through a series of numerical experiments. These include an examination of 

the linear dispersion characteristics and test cases for head-on solitary wave collision in a 

straight channel and sinusoidal wave transformation over a submerged bar. In addition, 

the use of the proposed reference depth versus the original approach of Nwogu (1993) is 

examined more closely in the wave transformation experiment. The implementation of a 

Riemann solver to describe breaking waves in Boussinesq-type equations also needs 

validation. The standard test cases of solitary wave runup on a plane beach and a conical 

island allow validation of the model for both wave breaking and runup. 

5.1 Linear Dispersion 

The reference depth z at which the velocity is evaluated has a significant impact on the 

dispersion characteristics of the Boussinesq-type equations of Nwogu (1993) and their 

applicability to wave propagation over a range of water depths. He determined an optimal 

value of zα = −0.5374h to provide the best overall dispersion characteristics for 0 < h/Lo < 

0.5. While the present governing equations retain the same dispersion characteristics, it is 

necessary to confirm that the numerical scheme would work for the same value of zα 

despite truncation errors in the spatial derivatives and time integration. 
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By setting zα = −0.5374h as a demonstration, a numerical experiment with small 

amplitude waves would identify the same optimal value of zα as Nwogu (1993) to 

reproduce the celerity from the linear dispersion relation. The computational domain is 

1.0 m deep and 120 m long with a grid size Δx = 0.012 m. A wavemaker at the left 

boundary generates periodic waves of small amplitude A = 0.01 m towards the open 

boundary at the right. The input periods were selected to produce wavelengths between 2 

m and 10 m with −0.56253 < zα/h < −0.51253 at zα/h = 0.0025 increments. The zero up-

crossing method identifies the average wavelength for computation of the celerity. Figure 

5.1 shows the ratio of the computed and linear celerity over a range of h/Lo up to 0.5. The 

overall optimum value of zα/h is found by minimizing the sum of the relative errors 

between the computed and analytical values of h/Lo. A minimum relative error of 0.012 

occurs over the range of h/Lo for zα/h = −0.53503, which is close to the analytical value of 

zα/h = −0.5374 from Nwogu (1993). This confirms that the numerical scheme does not 

alter the dispersion characteristics of the governing equations. 

5.2 Head-on Collision of Two Solitary Waves 

A common test for Boussinesq-type and non-hydrostatic models is the propagation of 

solitary waves in a long, frictionless channel of constant depth (Wei & Kirby, 1995; Li & 

Raichlen, 2002; Stelling & Zijlema, 2003; Yamazaki et al., 2009). The solitary wave is a 

single symmetric pulse above the still water level characterized by an exact balance of 

nonlinearity and dispersion. Since a solitary wave involves actual mass flux, it can be 

seen as a dispersive shallow-water wave, thereby making this test suitable for nearshore 

models. The uniform channel allows examination of the balance between nonlinearity 

and dispersion without interference from additional nonlinear effects due to irregular 

bathymetry. The numerical model must handle the equilibrium between amplitude and 

frequency dispersion to propagate the wave profile at constant shape and speed. Typical 
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problems during propagation often involve trailing edge dispersion consequently causing 

reduction in wave height and celerity. Those phenomena mostly arise from 

approximation errors in the governing equations with respect to nonlinearity and 

dispersion or a combination of numerical errors from poorly balanced schemes and 

truncation of numerical approximations.  

The numerical experiment simulates two solitary waves with an initial height of A/h = 0.3 

propagating in opposite directions in a channel. Their collision presents additional 

challenges to the model by a sudden change of the nonlinear and frequency dispersion 

characteristics. In theory, the two solitary waves maintain their original identity after 

passing each other. The computation uses a grid spacing of Δx/h = 0.1 and a Courant 

number of Cr = 0.4 resulting in a time step of 

! 

"t g / h = 0.028. The channel is 300h long 

and the initial position of the solitary waves is at x/h = 35 and x/h = 265. Figure 5.2 

shows the simulated surface profiles at /t g h  = 0, 101.2, and 200. Due to 

incompatibility between the analytical and numerical solutions, it takes about 150 time 

steps for the model to adjust to a steady free surface profile of approximately A/h = 0.31. 

At 

! 

t g / h =101.2 , the solitary waves align at their peaks. Local nonlinear interactions 

occur and give rise to a wave height of A/h = 0.65. At 

! 

t g / h = 200 , the wave profiles 

are almost identical to the initial solitary waveform with a slight reduction of amplitude 

to A/h = 0.30.  

The total reduction in wave height between the numerically adjusted profiles at 

! 

t g / h = 21 and the final stage at 

! 

t g / h = 200  is A/h = 0.01. The average celerity of 

the numerical solution is 0.3% lower than the analytical celerity resulting in a small phase 

lag of the computed solitary waves and the analytical solution. The test demonstrates the 

capability of the proposed numerical procedure to handle the strong nonlinearity and 

dispersion of solitary waves and maintain stable and accurate results even after long 
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computations. Nwogu (1993) compared the quadratic transfer function of the linearized 

form of his equations with second-order Laplace equation and pointed out that nonlinear 

effects can reasonably be accounted for up to A/h ~ 0.3. This test shows the numerical 

approach provides acceptable and stable solutions for nonlinear and dispersive waves 

beyond the range of the model’s intended applicability. This supports the use of the 

proposed reference depth to potentially enhance the dispersion characteristics of Nwogu’s 

(1993) Boussinesq-type equations.  

5.3 Periodic Wave Propagation over a Submerged Bar 

Beji & Battjes (1992) and Luth et al. (1994) described a series of laboratory experiments 

to investigate wave propagation and dispersion over a submerged bar. Figure 5.3 shows a 

schematic of the 37.7 m long, 0.8 m wide, and 0.75 m high flume with a 0.3 m high 

trapezoidal bar at 6 m from a piston-type wavemaker. The bar has a 1:20 offshore slope 

followed by a 2-m crest and a 1:10 back slope. A gravel beach at the end of the flume 

acts as a wave absorber. Waves shoal when propagating up the slope of the bar forcing 

development of bound higher harmonics, which are then released from the carrier 

frequency on the lee side of the bar as the water depth parameter kh increases rapidly. 

Bar-type features are quite common in coastal waters making this study an important test 

case for nearshore models. Many Boussinesq-type or non-hydrostatic models do not fully 

resolve the higher harmonics due to low-order approximation of nonlinearity and 

dispersion in the governing equations. This provides a good test case for the use of the 

proposed reference depth versus the original approach of Nwogu (1993). 

The present study focuses on test cases A and C of their experiment that involve 

sinusoidal incident waves with 1 cm amplitude (A) and 2.02 sec period and with 2.05 cm 

amplitude and 1.01 sec period respectively. Both tests were conducted in 0.4 m of water 
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producing kh ≈ 0.67 and A/Lo ≈ 0.0054 in case A and kh ≈ 1.7 and A/Lo ≈ 0.0276 in case 

C. The model consists of a 35-m long flume with Δx = 0.012 m and a Courant number Cr 

= 0.4. A wavemaker at the left boundary generates the incident waves and a 6-m long 

sponge layer dissipates the outgoing waves at the right boundary. Figure 5.4 shows the 

results for case A. The numerical model maintains good agreement with the experimental 

data at stations 4 to 8 over the bar. With the zα proposed by Nwogu (1993), minor 

discrepancies arise behind the bar at stations 9, 10, and 11, where higher harmonics are 

released. A spectral analysis shows evidence of fourth and fifth-order free harmonics of 6 

> kh > 10, which cannot be fully resolved by the present governing equations. These 

higher harmonics, however, do not contain significant energy to affect the overall 

performance of the model. The use of the proposed reference depth appears to capture 

most of these low-energy higher harmonics.  

The results from case C are illustrated in Figure 5.5. Because of the larger value of kh, the 

waves maintain a typical cnoidal profile over the crest and do not release the higher 

harmonics until propagating over the back slope. The model results match the measured 

data well over the bar with only minor phase shifts despite the strong nonlinearity. The 

largest discrepancy can be seen at gauge 10 where nonlinear, higher order dispersive 

waves arise over the back slope of the bar. With Nwogu’s (1993) zα, the model does not 

properly describe the strong second and third-order free harmonics at kh ≈ 6 and 14 

behind the bar. The proposed value of zα helps to at least account for the second 

harmonics and reproduce the overall waveforms over and behind the bar. In addition to 

case A, this test shows the model's capabilities in handling wave conditions that are well 

beyond the applicable range of the governing equations and providing stable results. The 

model’s errors in describing highly nonlinear dispersive waves are small, provided the 

main energy is contained in waves not far exceeding kh ≈ 5. It should also be noted that 



52 
 

part of the discrepancy between laboratory data and model results might be due to the 

experimental setup, since the gravel beach in the laboratory experiment might not act as a 

perfect wave absorber. 

5.4 Solitary Wave Runup on a Plane Beach  

Solitary wave runup on a plane slope is one of the most intensively studied problems in 

long-wave modeling. In particular, the laboratory experiments of Hall & Watts (1953) 

and Synolakis (1987) have provided frequently used data for validation of wave breaking 

and runup models (e.g., Zelt, 1991; Titov & Synolakis, 1995; Lynett et al., 2002; Li & 

Raichlen, 2002; Wei et al., 2006; Yamazaki et al., 2009). Figure 5.6 shows a schematic 

of the experiment with A indicating the initial solitary wave height, R the runup, and β the 

beach slope. The numerical model runs with a Courant number Cr = 0.4 and a grid size 

Δx/h = 0.1 for all the tests. A Manning coefficient n = 0.01 s/m1/3 defines the surface 

roughness of the smooth glass beach in the laboratory experiment. The initial solitary 

wave location is at x/h = -20 from the beach toe allowing the initial wave profile to adjust 

to the governing equations before reaching the slope.  

The runup on a beach with β = 19.85 and a wave height A/h = 0.3 is first examined. 

Figure 5.7 compares the measured surface profiles and the model results. Different from 

nonlinear shallow-water models, which lack dispersive terms, the present model 

reproduces the shoaling process up to 

! 

t g /h = 20  at the onset of a plunging breaker as 

observed in the laboratory experiment. With the conserved variables, the model mimics 

the three-dimensional breaking process as a collapsing bore and conserves the flow 

volume and momentum during the process. The resulting surge reaches the maximum 

elevation of R/h = 0.55 around 

! 

t g / h = 40 . The model shows a minor discrepancy with 

the laboratory data starting around 

! 

t g /h = 50 , when a hydraulic jump begins to develop 
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from the drawdown. This may be due to the complex two-dimensional flow structure in 

the vertical plane that the depth-integrated model cannot fully capture. Since the 

computed results agree with the measured data toward the end, the local disagreement 

might also be due to instrumentation errors. The drawdown process introduces air 

entrainment in the water column and splashes at the surface that are difficult to measure 

by any instrument. 

Figure 5.8 plots the measured and computed runup as a function of the initial solitary 

wave height A/h for beach slopes of 1:19.85, 1:15, and 1:5.67. The data shows good 

agreement over a wide range of breaking and non-breaking events characterized by a 

bilinear distribution with a distinct transition. For the 1:19.85 and 1:15 slopes, the data to 

the right of the transition represents plunging breakers, whereas the relatively steep slope 

of 1:5.67 produces surging waves without flow discontinuities or breaking. The model is 

able to simulate the runup for incident wave heights of up to A/h = 0.7, which is beyond 

the model's range of nonlinearity. The tests prove the validity of the use of the Riemann 

solver for wave breaking in Boussinesq-type models. The results are stable without 

artificial smoothing or filtering and are not grid sensitive. 
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5.5 Solitary Wave Transformation around a Conical Island 

Transformation of long waves around an island has attracted a lot of attention in the 

research community. Refraction and diffraction of long waves may result in significant 

inundation on the lee side and trapping of energy around an island. During the Flores 

Island tsunami in 1992, the circular shaped Babi Island experienced unexpectedly large 

runup on the leeside (Liu et al., 1991, Liu et al., 1995a,b; Yeh et al., 1996). Similar 

impacts were observed at a small island during the Okushiri Island tsunami in 1993 (Cho, 

1995) and more recently during the Great Indian Ocean tsunami at Car Nicobar Island 

near the Sumatra-Andaman earthquake source region (Choi et al., 2005). In addition, 

Munger & Cheung (2008) and Roeber et al. (2010) reported trapped waves with 

resonance amplification around the Hawaiian and Samoan Islands. A common 

observation is that waves refract around an island on the two sides, collide in the back 

with additional energy from the diffracted waves, and continue to wrap around the island. 

Briggs et al. (1995) conducted a large-scale laboratory experiment to investigate solitary 

wave transformation around a conical island. The collected data has become a standard 

for validation of runup models in the tsunami community (Liu et al., 1995a; Titov & 

Synolakis, 1998; Wei et al., 2006, Yamazaki et al., 2009), but also for Boussinesq-type 

models (Chen et al., 2000; Lynett et al., 2002). Figure 5.9 shows schematics of the 

laboratory experiment. The basin is 25 m by 30 m. The circular island has the shape of a 

truncated cone constructed of concrete with diameters of 7.2 m at the bottom and 2.2 m at 

the top. The island is 0.625 m high and has a side slope of 1:4. A 27.4-m long directional 

wave maker consisting of 61 paddles generates the input solitary waves for the laboratory 

test. Wave absorbers at the three remaining sidewalls reduce reflection in the basin. 
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The experiment covers the water depths h = 0.32 and 0.42 m and the solitary wave 

heights A/h = 0.05, 0.1 and 0.2. The present study considers the smaller water depth h = 

0.32 m, which provides a more challenging test case for dispersive models. In the 

computation, the solitary wave is generated from the left boundary with the measured 

incident wave heights of A/h = 0.045, 0.096, and 0.181. These measured wave heights, 

instead of the target wave heights A/h = 0.05, 0.1, and 0.2 in the laboratory experiment, 

better represent the recorded data at gauge 2 and thus the incident wave conditions to the 

conical island. The radiation condition is imposed at the lateral boundaries to account for 

the effects of the wave absorbers. While the radiation condition acts as an open boundary 

condition for low frequency waves, the laboratory wave absorbers partially eliminate the 

incoming wave signal. The model is set up with a grid of Δx = Δy = 5 cm. A Manning’s 

roughness coefficient n = 0.014 s/m1/3 accounts for the smooth concrete finish according 

to Chaudhry (1993). The time step constraint is set to Cr = 0.4. Figure 5.10 shows a series 

of snapshots as the solitary wave with A/h = 0.181 propagates around the island. The 

result shows the maximum runup at the front and refraction and trapping of the solitary 

wave over the island slope. The trapped waves from the two sides superpose with the 

diffracted wave on the leeside of the island. Wave breaking occurs around the island 

according to Titov & Synolakis (1998) and reduces the runup particularly on the leeside 

of the island. After the solitary wave passes the island, the trapped waves continue to 

wrap around to the front.  

A number of gauges recorded the transformation of the solitary wave around the conical 

island. Figure 5.11 shows the time series of the solutions and the measured free surface 

elevations at selected gauges. With reference to Figure 5.9, gauges 2 and 6 are located in 

front of the island and 9, 16, and 22 are placed close to the still waterline at 0°, 270°, and 

180° around the island. These gauges provide sufficient coverage of the wave conditions 
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important to the experiment. The measured data at gauge 2 provides a reference for 

adjustment of the timing of the computed waveforms. The results show the incident wave 

profile and reflection from the island. With higher nonlinearity, the crest of the solitary 

wave is narrower and the reflection is more distinct. Wave breaking was observed at 

gauge 9 for A/h = 0.181 and 0.096. The model accurately describes the subsequent 

drawdown in all three cases, but just like most published models, does not reproduce the 

small amplitude short period waves afterwards. A careful inspection of the laboratory 

setup shows the wavemaker is 2.6 m shorter than the basin width and diffraction of the 

incident wave at the two ends of the wavemaker likely generated these short period 

waves in all three cases. For A/h = 0.181, the wave breaks as it wraps around the island 

and the model approximates the wave breaking process as bores resulting in steep front 

faces. The waves wrapped around from the two sides superpose and break symmetrically 

as if it is a standing wave. This is a classical example of the two-shock interaction in the 

Riemann solver used in the present model. Most empirical wave breaking mechanisms 

cater to typical spilling and plunging wave breakers such as those examined by Ting & 

Kirby (1994) and might not correctly account for these conditions. Figure 5.12 compares 

the measured data and the computed inundation in its original resolution around the 

conical island. The computed results show good agreement with the laboratory data and 

are symmetric about the wave propagation direction despite the use of a Cartesian grid to 

describe curved surfaces.  

This chapter has documented standard verification and validation tests for wave 

transformation models in the literature. The overall agreement between the computed 

results and laboratory data demonstrates the capability of the present model to estimate 

wave transformation, breaking, and inundation in the two horizontal dimensions.  
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CHAPTER 6 

LABORATORY EXPERIMENTS 

6.1 Background  

Laboratory experiments are always a crucial component in scientific research. The 

controlled environment in a laboratory enables researchers to accentuate certain processes 

for thorough examination and for model validation. Many laboratory studies for long 

waves have focused on runup of solitary waves on a plane slope (e.g.: Hall & Watts, 

1953; Synolakis, 1987; Li & Raichlen, 2002; Chang et al., 2009). The tsunami modeling 

community frequently uses these experiments for model validation. The measured runup 

data on a straight slope can be a valid test for the moving boundary scheme of a 

numerical model. Although these experiments involve wave breaking in most cases, the 

breaking events occur over a short period of time near the initial waterline and cannot 

truly validate the shock-capturing capabilities of a model. In fringing reef environments, 

numerical models need to describe propagation and decay of flow discontinuities over an 

extended lagoon.  

Limited laboratory data pertaining to the detailed hydraulics and wave processes over 

reef-type bathymetry exists in the literature. Most previous laboratory experiments 

utilized monochromatic or narrow-banded waves to investigate integrated processes over 

fringing reefs such as wave setup and setdown (e.g., Seelig, 1983; Gourlay, 1996a,b; 

Skotner & Apelt, 1999). A recent laboratory study by Nwogu & Demirbilek (2010) 

focused on transfer of spectral energy during the breaking process and development of 

infragravity waves over fringing reefs. However, these laboratory studies do not 

characterize the flow conditions on the time-scale of the individual waves for validation 

of the flow kinematics. For example, very little experimental data relates to the wave 
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breaking, bore formation, and the hydraulic processes over a fringing reef that can affect 

the subsequent coastal inundation, scouring of foundations, and loading on coastal 

structures. Such data is necessary for understanding and characterization of the physical 

processes involved in wave transformation over fringing reefs for validation of numerical 

wave models.  

A laboratory experiment for validation of nearshore wave models in fringing reef 

environment shall include processes related to breaking, bore formation, and dispersion 

with a sufficient scale. Such experiments should utilize high amplitude solitary waves 

and a lagoon of constant water depth to accentuate these processes for a deterministic 

assessment. This allows investigation of transitions between sub- and supercritical flows 

as well as bore propagation over a lagoon for an extended period of time. 

6.2 Laboratory Facility 

A National Science Foundation grant enabled performance of large-scale flume 

experiments pertaining to wave transformation over fringing reefs at the O.H. Hinsdale 

Wave Research Laboratory, Oregon State University (OSU). The test facility is a 

National Science Foundation designated site for tsunami research within the Network for 

Earthquake Engineering Simulation. Two series of experiments were conducted in fall 

2007 and summer 2009. 

The first series of experiments was carried out in two-dimensional flumes constructed in 

the Tsunami Wave Basin (TWB), which is 48.8 m long, 26.5 m wide, and 2.1 m high. 

The wave maker consists of 29 individual paddles of 0.905 m width and 2.0 m height 

each attached to a piston driven by an electric motor. A silicon band caulks the seams 

between adjacent paddles and the tank walls. The motors, which are mounted to a fixed 

steel frame, move the paddles with a maximum speed of 2.0 m/s along a caterpillar-type 
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belt to displace the water. The independent motion of the paddles can produce 

multidirectional waves with active absorption in addition to unidirectional linear and 

nonlinear waves. Depending on the water depth, the system can create regular waves 

between 0.5 sec and 10 sec period. 

Additional experiments were carried out at the Large Wave Flume (LWF) to provide data 

for similar flow conditions at a larger scale. The LWF has a length of 104 m, a width of 

3.66 m, and a height of 4.57 m. The piston-type wavemaker was installed in early 2009 

prior to the second series of experiments. A hydraulic actuator moves a single piston, 

which in turn drives a 4.57-m high waveboard at a maximum speed of 4.0 m/s. The 

wavemaker capabilities are similar to the one in the TWB except for the multi-

directionality of wave formation. The system can create regular waves between 0.5 sec 

and 10 sec period. This facility can accommodate tests with a scale of up to 2.5 times of 

that in the TWB. 

Solitary wavelength and amplitude have an inverse relation in constant water depth. The 

generation of solitary waves is thus limited by the stroke of the piston. Figure 6.1 

illustrates the stroke over time for three target wave conditions in the TWB and LWF. 

The wavemaker in the TWB can produce a maximum stroke of 2.1 m. This generates a 

solitary wave height of 0.8 m in 1.0 m water depth but fails to produce the same wave 

height in 1.2 m water depth. For a larger water depth of 1.3 m, the maximum wave height 

is 0.6 m. The LWF has a maximum stroke of 4.0 m. A 1.2 m solitary wave in 2.6 m water 

depth is already the limit of the wavemaker. The other two configurations with the 

solitary wave height of 1.6 m and water depths 2.0 and 2.4 m would exceed the stroke 

limit. It can be inferred that the maximum stroke velocities of 2 m/s and 4 m/s in the 

TWB and LWF are not a limiting factor for solitary wave generation in this facility. 
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6.3 Design of Experiment 

The OSU facility offers a good opportunity to investigate the detailed hydraulic and wave 

processes over fringing reefs. These are often dominated by turbulence, air entrainment, 

and splashing that cannot be examined in small-scale experiments. The OSU TWB and 

LWF have sufficient scales to accommodate reef profiles commonly seen in tropical and 

subtropical environment. A typical reef includes an extended shallow lagoon followed by 

a steep fore-reef. Figure 6.2 shows reef profiles from various locations in the Hawaiian 

Islands, American Samoa, and Guam. The lagoon extends as far as 1 km offshore and the 

slope of the fore-reef has a range of 1:5 to 1:30. A pronounced reef crest that exposes at 

low tides might be present at the transition between the fore-reef and the lagoon. Though 

wave transformation over fringing reefs is a three-dimensional process, the laboratory 

study focuses on the characteristics of cross-shore wave transformation to understand the 

dominant processes. The resulting data provide an excellent opportunity for modelers to 

validate their numerical codes along transects in the x or y direction without the 

interference from the longshore components. 

Two channels were constructed in the TWB with reinforced concrete walls as illustrated 

in Figure 6.3. Each channel is 2.16 m wide, 2.1 m high, and 38 m long with both ends 

open. Figure 6.4 shows the setup of the two-dimensional reef models with a 1:5 slope and 

x = 0 at the neutral position of the wavemaker. The experiments also included two other 

fore-reef slopes of 1:10 and 1:15 with the reef flat at 1.0 m above the bottom. The fore 

reef and flat were constructed of 0.1 m thick concrete poured on top of a sand fill. Some 

of the tests included a reef crest composed of marine plywood, which was bolted to the 

edge of the slope covering the entire width of the flume. The reef crests are 0.5 m long 

and 0.05, 0.10 and 0.15 m high extending from the fore reef. While the offshore side of 

the crest follows the same slope as the fore reef, the onshore side always has a 1:15 slope. 
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The tests were conducted with the reef crest submerged, exposed or flush with the water 

level. 

Figure 6.5 shows the model setup in the LWF. The reef configuration is similar to the 

experiments in the TWB to examine the scale effects. Due to the much larger dimensions, 

reinforced concrete slabs were used to build the fore-reef slope and the reef flat. The 

prefabricated slabs of 0.2 m thickness, 3.66 m width, and 4.57 m length were mounted at 

bolt holes in the tank walls 0.305 m apart resulting in a 1:12 fore-reef slope and a flat reef 

2.36 m above the bottom. It was necessary to cast a wedge in front of the fore reef to 

provide a smooth transition between the 0.2-m slab and the floor of the flume. The 

optional reef crest was constructed of marine plywood and set up in the same way as the 

experiments in the TWB. It has a crest height of 0.2 m and a length of 1.25 m with a 1:15 

slope connecting the crest with the lagoon.  

Figures 6.4 and 6.5 show the instrumentation layouts in the TWB and LWF experiments. 

The devices were mounted along the slope, reef crest, and over the lagoon to obtain the 

overall flow conditions involving wave shoaling, breaking, bore formation, and release of 

dispersive waves around the reef crest. The measurements include time series of free 

surface elevation and fluid particle velocity. The wave gauges, which are placed closely 

on either side of the reef edge, capture the free surface elevation. The flow regime 

required two types of wave gauge devices. Resistance-type wire gauges give accurate 

readings of the water level of non-breaking waves, whereas ultrasonic wave gauges can 

track sheet flows over dry bed as well as turbulent bores with significant amounts of 

white water and air bubbles. Some of the instruments are co-located to provide redundant 

measurements for quality control. Acoustic Doppler velocimeters (ADV) measured flow 

velocity at some of the wave gauge locations.  
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6.4 Calibration and Postprocessing 

A data acquisition system (DAQ) archived signals from the resistance-type wire gauges, 

ultrasonic wave gauges, and acoustic Doppler velocimeters synchronically at 50 Hz 

during the test. Figure 6.6 shows images of the three types of instruments. The DAQ 

processing unit from National Instruments is a PXI-8106 in a PXI-1052 combo chassis 

with SCXI-1143 anti-aliasing filters. The wavemaker motion and data recording started 

independently as they were triggered manually.  

The resistance-type wire gauges are composed of two parallel and vertically arranged 

surface-piercing wires attached to plastic sockets on either end. The sockets are mounted 

to horizontal struts in the flume walls. In shallow-water areas, the lower socket was 

directly screwed into the concrete floor or into the wooden reef crest. The gauge 

measures the resistance between the two wires in terms of the voltage to infer the free 

surface position. Calibration is necessary for post-processing of the returned signal in 

Volt to give the water depth. Voltage readings over a large range of water levels produce 

a linear relation as the calibration coefficient for each gauge. The calibration process was 

conducted during filling and draining of the basin. The chlorine content and herein the 

conductivity of the city water varies depending on the local weather conditions. The 

calibration during draining represents the instrument behavior during the tests more 

closely, since the water releases most of its chlorine content in the first day after filling. 

The minimum distance between individual resistance-type wire wave gauges is 0.7 m to 

avoid cross-talking between the instruments. The gauges were mounted no closer than 1.0 

m apart from each other. The resistance-type wire gauges should be deployed in locations 

where the water column is of homogeneous nature with only a low amount of air bubbles 

in the fluid, since a discontinuous medium could interrupt the circuit and lead to false 
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readings. Due to limited supply of instruments, some resistance-type wire gauges were 

used in the shallow lagoon measuring signals of turbulent breaking waves.  

Ultrasonic wave gauges provide non-intrusive measurements of the surface elevation. 

They were mounted to struts in the flume walls with the pinger near the top of the tank 

wall. The instrument emits a high-frequency sound signal toward the water surface and 

measures the time of the reflected signal to determine the water surface elevation. The 

ultrasonic wave gauges were calibrated prior to deployment. The calibration consists of 

deriving a linear relation between the measured voltage and the water surface elevation. 

The raw signal from each ultrasonic wave gauge was later converted to water depth by 

applying the calibration coefficients. Figure 6.7 shows a comparison between 

measurements from a resistance-type wire wave gauge and a co-located ultrasonic wave 

gauge at x = 17.64 m near the wavemaker and at x = 72.6 m over the reef flat in the LWF. 

The incident solitary wave profiles recorded at x = 17.64 m by both gauges show very 

good agreement. A bore developed over the reef flat with significant turbulence and air 

entrainment. The ultrasonic wave gauge better captures the water surface and measures 

the bore at slightly higher elevation than the resistance-type wire wave gauge x = 72.6 m. 

The discrepancy from both instruments is less than 5% of the full signal in the turbulent 

wave breaking regime and less than 1% for nonbreaking waves.  

Nortek Vectrino 3D acoustic Doppler velocimeters (ADV) provide measurements of the 

fluid particle velocity at a fixed point in the flow. The device is composed of a power 

supply, a temperature sensor, and a probe unit mounted to a stainless steel rod. The probe 

unit consists of a transmitter at the center and four outward pointing transducers 

measuring the backscattered signal. The ADVs were mounted to struts in the flume wall 

and to an aluminum wing suspended from a bridge at the center of the flume. The wing 

could hold up to four vertically stacked ADVs. The submerged transmitter emits a sound 
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pulse toward a sampling volume 5 cm away and the transducers pick up the Doppler shift 

introduced by reflection from moving particles suspended in the water. Depending on the 

motion of the particles and the temperature of the water, the ADV returns three 

orthogonal velocity components (u,v,w) in [m/s]. Particles outside the sampling volume 

may cause additional backscatter and introduce noise to the signal. The ADV also records 

the amount of backscatter from outside the sampling volume to provide a signal to noise 

ratio and a scatter correlation coefficient. The backscatter quality was improved by 

introducing microscopic glass spheres in the water. Additional post-processing was 

necessary to remove spikes and outliers from the signal. The de-spiking procedure 

incorporated an algorithm developed by Mori et al. (2007) that removes signals outside a 

three-dimensional ellipsoid in the sampling volume. The post-processing discards all 

information with a signal-to-noise ratio of less than 3 and a signal correlation of less than 

70%. 
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CHAPTER 7 

WAVE PROCESSES OVER FRINGING REEFS 

The two series of laboratory experiments at Oregon State University conducted in 2007 

and 2009 include 198 tests with 10 two-dimensional reef configurations and ranges of 

solitary wave height and water depth. This dissertation presents the results from three 

tests with A/h = 0.5 to examine the computed hydraulic processes near the applicable 

limit of the model in terms of nonlinearity and dispersion. The 2009 Benchmark 

Challenge also at Oregon State University provides two additional test cases for wave 

transformation over three-dimensional reef configurations. These test cases are logical 

extensions of the present experiments for validation of the proposed model in a complex 

dynamic system.  

7.1 Two-dimensional Reefs 

The 198 test cases provide a database of hydraulic processes over typical reef geometries 

in tropical and subtropical environments. The data allows parameterization of the 

processes to understand the effect of reefs on surf-zone dynamics and to provide 

guidelines for flood hazard assessment and coastal infrastructure design. Most important 

to the numerical modeling community is a series of benchmarks for validation of coastal 

wave models. This study utilizes four of the most challenging test cases that exemplify 

the physical processes for validation of the model capabilities in handling nonlinearity, 

dispersion, wave breaking, bore propagation, and sheet flow. The effective lengths of the 

flumes are 45 and 84 m and the numerical model uses a grid size Δx = 0.05 m with a 

maximum Courant number Cr = 0.4. A Manning coefficient of 

! 

n = 0.014  s/m1/3 from 

Chaudhry (1993) describes the smooth, finished concrete surface of the reef. 
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The first two test cases examine wave transformation from the fore-reef onto the dry and 

wet reef flat without the reef crest. Figures 7.1 and 7.2 show comparisons of the 

computed and recorded free surface profiles and time series along the 45-m flume with a 

steep fore-reef of 1:5. The test involves a water depth h = 1.0 m and a 0.5 m solitary wave 

resulting in A/h = 0.5 and a dry reef flat. The wave steepens rapidly at the reef edge, but 

does not form a plunging breaker over the steep 1:5 slope. As the wave surges over the 

reef edge at x = 22 m, it undergoes a gradual transition from sub- to supercritical flow. 

The numerical model reproduces the collapse of the wave front at x = 23 m and the surge 

onto the dry bed around 

! 

t g /h = 55  with a rarefaction wave. The water rushes over the 

dry reef flat as sheet flow without producing a pronounced bore-shape leading edge as 

observed in the experiments. The model captures the timing and depth. Meanwhile, the 

reflected component of the rarefaction falls below the initial water level exposing the reef 

edge momentarily, separating the flow into two segments. This demonstrates the models 

capability in capturing the moving wave front and wet-dry interfaces. Researchers 

typically use measurements of free surface elevation for model validation, while the 

capability of the depth-integrated models in describing flow speed is not known with 

certainty. Figure 7.3 shows the computed and measured flow speed of the solitary wave 

over the fore reef as well as the formation of the surge on the reef flat. The results are 

non-dimensionalized with the shallow-water celerity from the still water depth at the 

gauge locations; whereas the maximum bore height is used on the dry reef flat. The 

comparisons show very good agreement of the solitary wave and the subsequent sheet 

flow even at high Froude number. The minor discrepancy in the remainder of the flow is 

most likely due to the openings at the two ends of the laboratory flume that do not reflect 

the waves in the same way as in the numerical model. 
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The slope of the fore reef plays an important role in the wave breaking processes. Figure 

7.4 shows the free surface profiles along the 84-m wave flume with a gentle fore-reef of 

1:12. The test involves and a water depth of h = 2.46 m and a 1.23 m solitary wave 

resulting in A/h = 0.5 and standing water of 0.1 m over the reef flat. The initially 

symmetric solitary wave begins to skew to the front as it propagates across the toe of the 

slope at x = 25.9 m. In the laboratory experiments, a plunging wave breaker developed 

around 

! 

t g /h = 64 . The jet from the breaking wave hits the water surface and forms an 

elliptical air cavity around 

! 

t g /h = 66  that shortly collapses and produces extensive air 

entrainment in the flow. The depth-integrated model does not describe overturning of the 

free surface, but instead approximates the entire process through conservation of volume 

and momentum. The solution mimics the plunging breaker as a collapsing bore, which 

slightly underestimates the height of the jet, but conserves the volume immediately 

behind the bore. The bore continues to propagate over the reef flat because of the 

standing water. The reflected bore from the back wall disintegrates into a series of 

dispersive waves over the fore reef. Figure 7.5 shows the model captures the incident 

wave and bore as well as the multiple reflections in the closed flume. High frequency 

dispersive waves superposed on long period reflection are evident after signals of the 

initial waves. This demonstrates the capability of the model in describing flux- and 

dispersion-dominated processes simultaneously. The comparison in Figure 7.6 shows the 

model correctly describes the flow velocity resulting from the two systems of waves even 

across discontinuities. 

Most fringing reefs have an exposed reef crest and a lagoon that modify the hydraulic 

processes on the reef flat. Figure 7.7 shows the computed and measured free surface 

profiles along the 84-m flume. The test includes a fore reef slope of 1/12, a 0.2-m reef 

crest, and a water depth of 2.5 m. This setup exposes the reef crest by 6 cm and 
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submerges the flat with 14 cm of water. The 0.75-m solitary wave gives a dimensionless 

wave height of A/h = 0.5. The solitary wave shoals over the relatively gentle slope. The 

profile becomes near vertical and the wave begins to break around 

! 

t g /h = 57 . 

Observations during the laboratory experiment indicate subsequent overturning of the 

free surface and the development of a plunging breaker on top of the reef crest with air 

entrainment and splash-up around 

! 

t g /h = 60 . The present model mimics the plunging 

breaker as a collapsing bore and correctly describes the free surface profile during the 

entire process. The flow transitions to advection- or flux-dominated over the reef flat 

such that the conservative form of the governing equations becomes instrumental in 

capturing the pertinent hydraulic processes. Around 

! 

t g /h = 61, the broken wave begins 

to travel down the back slope of the reef crest and generates a supercritical flow 

displacing the initially still water in the lagoon. The flow generates a hydraulic jump off 

the back reef and a propagating bore downstream. Laboratory observations indicate 

overturning of the free surface at the hydraulic jump as the supercritical flow transfers 

volume and momentum to the subcritical flow that fuel the propagating bore at the front. 

The hydraulic jump initially moves downstream with the strong supercritical flow. 

Around 

! 

t g /h = 68 , the momentum flux balances at the flow discontinuity and the 

hydraulic jump becomes stationary momentarily. The present model detects the breaking 

at the hydraulic jump during the process through the momentum gradient in the Riemann 

solver approach that would otherwise not be accounted for by conventional methods 

based on free surface motion. The hydraulic jump subsequently diminishes with the flow 

and moves back to the reef crest as a bore. In the meanwhile, the propagating bore shows 

a gradual reduction in amplitude and continues to propagate downstream. 

The end wall of the flume reflects the bore back to the lagoon that in turn overtops the 

reef crest as sheet flow and generates a hydraulic jump on the fore reef. The reflected 
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bore, which has lower Froude number, generates a series of dispersive waves that warrant 

a closer examination. Figure 7.8 compares the computed and recorded surface elevation 

time series. The station at x = 80 m immediate adjacent to the incident bore and its 

reflection superposed on top of it, while the gauge at x = 72.7 recorded separate incident 

and reflected bores. The time series at x = 65.2 on the reef flat shows the reflected bore 

from the end wall as well as its reflection from the reef crest. The process continues with 

the subsequent reflection from the end wall. The time series at x = 57.9m shows 

overtopping at the reef crest. As the water rushes down the fore reef, the flow transitions 

back from flux to dispersion-dominated through a hydraulic jump. Observations during 

the experiments confirm an overturning free surface with air entrainment near x = 54.4 m. 

The hydraulic jump initially generates an offshore propagating bore, which transforms 

into a train of waves over the increasing water depth over the fore reef at x ≤ 50.4 m. The 

resulting undulations intensify as higher harmonics are released from the wave packet. At 

the same time a long period reflected wave propagates in onshore direction and 

superposes with the released higher harmonics from the offshore propagating bore. Wave 

gauges located near the toe of the slope record highly dispersive waves of kh > 15 that 

cannot be fully resolved by the present model. The subsequent oscillations show a slight 

over-prediction in wave height. Figure 7.9 shows the velocity in x direction at a location 

in front of the reef crest. Despite its depth-integrated structure, the model captures the 

velocity of the initial strong supercritical flow conditions and subsequent dispersive 

waves. 

The model reproduces the long and intermediate-period oscillations even after a long 

simulation involving a series of wave breaking and reflection in the flume throughout the 

two tests in the LWF. The conservative structure of the model allows description of the 

transition between super and subcritical flows and the present wave breaking model 
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reproduces the surging and plunging waves over the reef. This test also demonstrates the 

applicability of the Riemann solver model for wave breaking. The local deactivation of 

dispersion terms efficiently eliminates potential instabilities, and at the same time, does 

not alter the dispersion properties of subsequent wave transformation processes such as 

the release of higher order dispersive waves from a decaying bore. 

7.2 Three-dimensional Reefs 

The National Science Foundation funded a workshop and a benchmarking exercise for 

inundation models at the Oregon State University in 2009. The organizer provided two 

benchmark test cases with laboratory data from experiments at the Tsunami Wave Basin. 

Swigler (2009) provided a detailed description of the experiments, instrumentation, and 

data post-processing. These test cases, which involve wave transformation over three-

dimensional reef configurations, are logical extensions of the present experiments. The 

laboratory data allows validation of models to handle dispersion and flux dominated 

processes simultaneously.  

Figure 7.10 shows the finished reef configuration determined from a laser scan and the 

setup of the instrumentation for Benchmark I. The neutral position of the wavemaker is at 

x = 0. The main feature in the experiment is a triangular reef flat between 7.5 and 9 cm 

below the still water level. The reef sits on top of a bilinear background profile extending 

from x = 10.2 to 17.7 m at a slope of 1:16 and from x = 17.7 to 32.4 m at 1:32. The slope 

of the reef is 1:3.5 at the apex and flares to 1:16 over a distance of 9 m on either side to 

converge the wave energy. The water depth in front of the bilinear profile varies slightly 

around 0.78 m. The top of the relief model has an elevation between 0.16 to 0.13 m 

above the still water level with a mild grade to the back of the basin. Time series of the 

water surface elevation were reported along transects at the centerline from gauges 1 to 7, 
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at 5 m offset from gauges 8 to 13, and at the edge of the reef flat from gauges 7 and 14 to 

17. Velocity measurements are available at gauges 3, 6, and 13. Because of the limited 

supply of instruments, the data were recorded over several weeks from a number of 

repetitions of the same test conditions with the instrument array repositioned along the 

basin. 

The incident solitary wave has a height of 0.39 m giving rise to strongly nonlinear 

conditions with A/h = 0.5. Figure 7.11 shows a series of snapshots as the solitary wave 

transforms over the reef and slope complex. In the laboratory experiment, spilling at the 

crest occurred locally at t = 5 sec, when the solitary wave reached the apex of the reef 

with little shoaling over the steep slope. With shoaling of the wave along the sides, 

plunging subsequently developed along the entire length of reef edge at t = 8 sec. The 

model reproduces the breaking process as a collapsing bore spreading across the 

triangular reef flat. The flow transitions into a surge moving up the initially dry slope and 

overtops the reef and slope complex. At t = 22 sec, drawdown of the water has already 

occurred on the slope interacting with the reflection from the wavemaker, while the sheet 

flow on the top continues to move forward. As observed in the laboratory experiment, the 

upper slope is mostly dry with water trickling down the streaks of the concrete surface 

and the sheet flow at the top has been reflected from the back wall as a bore over the 

impounded water by t = 35 sec. The panel at t = 48 sec shows the second reflection from 

the wavemaker and sloshing of the impounded water at the top separated by the dry upper 

slope.  

The data from the laboratory experiment allows a quantitative comparison with the model 

prediction. Figures 7.12 and 7.13 show good agreement of the computed and recorded 

surface elevation during the initial steepening and breaking of the solitary wave along the 

two cross-shore transects of the basin. The model gives slightly higher amplitude at the 
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front of the subsequent bores, including those shown in the longshore transect in Figure 

7.14, but reproduces the overall profile reasonably well. The timing of the first and 

second reflection from the wavemaker is slightly off at the gauges over the shallow reef 

flat. This discrepancy is probably due to inadvertent, minor changes of the water levels 

between the repetitions that become significant in comparison to the 8 cm water depth 

over the reef flat. Figure 7.15 compares the recorded and computed flow velocity 

components at three of the gauges in the x and y directions. At the apex of the reef, the 

model reproduces the entire recorded time series of the x component of the velocity. The 

recorded data are not continuous at the two other locations at the reef flat but generally 

agree with the model output albeit with minor phase shift of the reflection. The hydraulic 

processes over the reef flat primarily involve flows in cross-shore direction as indicated 

in the model data. Fluctuations in the recorded y component of the flow velocity are 

observed even along the centerline of the basin. The signal, which is an order of 

magnitude lower compared to the x component, might be due to secondary flow 

structures such as vortices that the model cannot fully describe. 

Benchmark II utilizes the same relief model but with a concrete cone of 6 m diameter and 

0.45 m height fitted to the apex of the reef between x = 14 and 20 m. Figure 7.16 shows 

the test configuration and instrumentation layout. The presence of the cone modifies the 

hydraulic processes over the reef flat and provides even more complex wave dynamics 

for model validation. Figure 7.17 shows snapshots of the computed free surface elevation 

in the basin. The solitary wave breaks at the apex of the reef flat at t = 5.1 sec and the 

resulting surge completely overtops the cone at t = 6.6 sec. The refracted waves from the 

two sides of the cone collide in the back at t = 8.6 sec and continue to wrap around as 

trapped waves. The diffracted wave on the leeside of the cone propagates up the slope 

reinforcing the refracted waves from the reef edge. The drawdown of the diffracted wave 
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generates a bore, which collides with the reflection from the wavemaker over the reef flat 

around t = 17 sec and part of which is trapped around the cone as shown in the panel at t 

= 21.2 sec. Figure 7.18 compares the computed and recorded surface elevations. The 

model reproduces the recorded surface elevations in front of the cone and gives well 

defined peaks behind the cone that the instruments give negative or zero surface elevation 

probably due to turbulence and air entrainment. The model reproduces the x component 

of the velocity at gauge 2 in front of the cone as shown in Figure 7.19. The recorded data 

at gauge 3 missed the initial wave probably due to the turbulence and air entrainment 

behind the cone. Gauge 7 recorded most of the initial wave and gives good agreement 

with the computed data. The y component of the velocity is an order of magnitude 

smaller with distinct secondary flow structures. The overall agreement between the 

computed and recorded data demonstrates the validity of the proposed model in handling 

multiple hydraulic processes and a variety of wave breakers in the two-dimensional 

horizontal plane. 
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

This dissertation has introduced an alternate form of Boussinesq-type equations with 

shock-capturing capabilities and demonstrated its use along with a conservative 

numerical scheme for modeling of breaking waves over fringing reefs. The Boussinesq-

type equations of Nwogu (1993) are expressed in conserved variables and rearranged in 

the conservative form of the nonlinear shallow-water equations. The formulation 

incorporates the dispersion terms with time and spatial derivatives in either x or y 

direction into a new set of evolution variables. The governing equations have the same 

dispersion characteristics as Nwogu’s (1993) and contain identical flux terms as the 

nonlinear shallow-water equations for proper handling of discontinuous flows as 

demonstrated by the Rankine-Hugoniot jump condition. This allows the governing 

equation to describe wave breaking as bores without additional terms to account for 

super-critical flow.  

A Godunov-type scheme based on a Riemann solver integrates the evolution variables in 

time. The dispersion terms with time and spatial derivatives in x and y directions reduce 

to weighted summation of the solutions at previous time steps. The evolution variables in 

the momentum equations provide tri-diagonal systems of equations from which the flow 

velocity can be determined. Since the evolution variables contain spatial derivatives in 

either x or y direction, the two-dimensional problem is uncoupled into a series of one-

dimensional problems for the solution of the velocity in the x and y directions. Data from 

a previous laboratory study allows calibration of an analytical and an eddy viscosity 

model to describe energy dissipation associated with wave breaking. Although the eddy 

viscosity approach performs better than the analytical approach in the calibration, the 

latter is preferred for general application as it determines the breaking threshold using 
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only one coefficient without the need for a tracking mechanism and contains all 

admissible wave breaking conditions and their combinations to construct a wave-

breaking scenario. 

The conservative formulation and numerical scheme enhance the capability and 

applicability of Boussinesq-type models without altering their dispersion characteristics. 

The model correctly describes generation of higher-order harmonics over a submerged 

bar and produces good agreement with laboratory data for the water depth parameter up 

to kh = 5. The shock-capturing Godunov-type scheme mimics energetic breaking waves 

as collapsing bores and models the moving waterline with a Riemann solver. The present 

model produces very good agreement with laboratory data in the plane-beach and conical 

island runup experiments. Two series of laboratory experiments at Oregon State 

University provide a unique dataset for understanding of the hydraulic processes and 

validation of coastal wave models for application in fringing reef environment. The 

model reproduces the height and velocity of breaking waves, propagating bores, and 

high-frequency dispersive waves recorded in the experiments. Comparison with the 

laboratory data for a variety of breaker types confirms the validity of the proposed 

breaking mechanism based entirely on momentum flux. 

The work described in this dissertation has opened an alternate direction in ocean and 

coastal wave modeling with many opportunities for practical application and further 

research and development. A major contribution is the development of a tool for flood 

hazard mapping and assessment in fringing reef environment. Computational 

requirements are important issues in practical application. The reduction of the two-

dimensional solution to a series of uncoupled one-dimensional problems is ideal for code 

parallelization. A spectral, multi-directional wavemaker algorithm is necessary to 

describe realistic incident wave conditions for subsequent modeling of surf zone 
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processes and inundation. The model could also be extended to shorter period waves by 

including higher order dispersion in the governing equations. A grid nesting or 

refinement scheme will be instrumental for modeling of basin-wide propagation and 

coastal runup of tsunamis. 
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Figure 2.1 Schematic of the free-surface flow problem. 
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Figure 2.2 Linear dispersion properties.        (blue), α = -0.38519; 
 (red), α = -0.393;         (black), α = -1/3 equivalent to Peregrine 
(1967). 
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Figure 2.3 Linear shoaling properties.        (blue), α = -0.38519; 
 (red), α = -0.393;         (black), α = -1/3 equivalent to Peregrine 
(1967). 
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Figure 3.1 Definition sketch of spatial grid (plane view). Red stars indicate the 
positions of the Riemann solution. 

Figure 2.2 Linear dispersion properties.        (blue), α = -0.38519; 
 (black), α = -0.393;         (red), α = -1/3 equivalent to Peregrine 
(1967). 
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Figure 3.2 Definition sketch of the Riemann problem. 
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Figure 4.1 Comparison of laboratory data from Ting & Kirby (1994) and 
model results using the Riemann solver approach for different calibration 
parameters for spilling (left) and plunging (right) wave breakers. Diamonds 
denote crest envelope, circles denote trough envelope, and crosses denote wave 
setup. Solid lines indicate model results. 
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Figure 4.2 Comparison of laboratory data from Ting & Kirby (1994) and 
model results using the eddy viscosity approach for spilling wave breakers. 
Diamonds denote crest envelope, circles denote trough envelope, and crosses 
denote wave setup. Solid lines indicate model results. 
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Figure 4.3 Comparison of laboratory data from Ting & Kirby (1994) and 
model results using the Riemann solver approach for plunging wave breakers. 
Diamonds denote crest envelope, circles denote trough envelope, and crosses 
denote wave setup. Solid lines indicate model results. 
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Figure 5.1. Computed celerity for different reference depths. Black line 
denotes celerity obtained from the linearized form of the Boussinesq-type 
equations at zα = -0.53753. 
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Figure 5.2. Surface profiles of solitary waves with A/h = 0.3 propagating in 
opposite directions in a channel of constant depth. Solid and dash lines denote 
numerical and analytical solutions. 

 



87 
 

Figure 5.3. Definition sketch of wave transformation over a submerged bar. 
(a) Laboratory setup from Beji and Battjes (1993). (b) Numerical model 
setup. Circles denote gauge locations. 
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Figure 5.4. Surface elevations of sinusoidal wave transformation over a 
submerged bar with A = 1.0 cm and T = 2.02 s. Solid lines denote computed 
results, where  (blue), α = -0.38519;   (black), α = -0.393. 
Circles denote measured data. 
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Figure 5.4. Surface elevations of sinusoidal wave transformation over a 
submerged bar with A = 2.05 cm and T = 1.01 s. Solid lines denote computed 
results, where  (blue), α = -0.38519;   (black), α = -0.393. 
Circles denote measured data. 
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 Figure 5.6. Definition sketch of solitary wave runup on a plane beach. 
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 Figure 5.7. Free surface profiles of solitary wave transformation on a 1:19.85 
plane beach with A/h = 0.3. Solid lines and circles denote computed and 
measured data. 
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Figure 5.8. Solitary wave runup on a plane beach. (a) 1:19.85 (Synolakis, 
1987). (b) 1:15 (Li & Raichlen, 2002). (c) 1:5.67 (Hall & Watts, 1953). Solid 
lines and circles denote computed and measured data. 

(b) 

(a) 

(c) 
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(a) 

Figure 5.9. Schematics of the conical island laboratory experiment. (a) Perspective 
view. (b) Cross-sectional view along centerline. Circles denote gauge locations. 

(b) 
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Figure 5.10. Wave transformation around the conical island for A/h = 0.181. 
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Figure 5.11. Free surface profiles of wave transformation around the conical 
island. (a) A/h = 0.045; (b) A/h = 0.096; (c) A/h = 0.181. Solid lines and circles 
denote computed and measured data. 
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Figure 5.12. Maximum inundation around the conical island. (a) A/h = 0.045; 
(b) A/h = 0.096; (c) A/h = 0.181. Solid lines and circles denote computed and 
measured data. 

 

(a) (b) (c) 
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(a) 

(b) 

Figure 6.1 Wavemaker stroke at O.H. Hinsdale Wave Research Laboratory at 
Oregon State University. (a) Tsunami Wave Basin;   (blue), A = 0.8 m, 
h = 1.0 m;        (black), A = 0.8 m, h = 1.2 m;         (green), A = 0.6 m, h 
= 1.3 m. (b) Large Wave Flume;         (blue), A = 1.6 m, h = 2.0 m; 
 (black), A = 1.6 m, h = 2.4 m;    (green), A = 1.2 m, h = 2.6 m. 
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Figure 6.2. Profiles of fringing reef bathymetry. (a) Oahu, Hawaii; (b) 
Tutuila, American Samoa; (c) Guam. Black boxes indicate profile locations 
in each bathymetry plot respectively. 

 

(a) 

(b) 

(c) 

Oahu 

Tutuila 

Guam 
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(a) 

(b) 

Figure 6.3. Constructed channels in the Tsunami Wave Basin at Oregon State 
University. (a) View from wavemaker. (b) View from end of channels. 
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Figure 6.4. Two-dimensional reef model of 1:5 slope in the Tsunami Wave Basin at 
Oregon State University. Circles and vertical lines indicate wave gauge locations. 
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Figure 6.5. Two-dimensional reef model of 1:12 slope in the Large Wave Flume at 
Oregon State University. Circles and vertical lines indicate wave gauge locations. 
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(b) (a) 

(c) 

Figure 6.6. Instruments used for laboratory experiments. (a) Resistance-type 
wire wave gauges. (b) Acoustic Doppler velocimeter (bottom), Ultra-sonic 
wave gauge (top right). (c) Wave propagating through TWB channel along 
instruments. 
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(b) 

(a) 

Figure 6.7. Comparison of ultra-sonic and resistance-type wire wave 
gauges in the Large Wave Flume. (a) At x = 17.64 m. (b) At x = 72.6 m.  
 (blue) Ultra-sonic wave gauge;    (black) resistance-type wire 
wave gauge. 
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Figure 7.1. Snapshots of free surface profiles for propagation of solitary 
wave with A/h = 0.5 over 1:5 slope and dry reef flat. Solid lines and circles 
denote computed and measured data. 
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Figure 7.2. Time series of free surface profiles for propagation of solitary wave 
with A/h = 0.5 over 1:5 slope and dry reef flat. Solid lines and circles denote 
computed and measured data. 
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Figure 7.3 Velocity in x direction for propagation of solitary wave with 
A/h = 0.5 over 1:5 slope and dry reef flat. Solid lines and circles denote 
computed and measured data. 
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Figure 7.4. Snapshots of free surface profiles for propagation of solitary 
wave with A/h = 0.5 over 1:12 slope and reef flat submerged by 0.1 m of 
water. Solid lines and circles denote computed and measured data. 
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Figure 7.5. Time series of free surface profiles for propagation of 
solitary wave with A/h = 0.5 over 1:12 slope and reef flat submerged 
by 0.1 m of water. Solid lines and circles denote computed and 
measured data. 
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Figure 7.6. Velocity in x direction for propagation of solitary wave of 
A/h = 0.5 over 1:12 slope and reef flat submerged by 0.1 m of water. 
Solid lines and circles denote computed and measured data. 
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Figure 7.7. Snapshots of free surface profiles for propagation of solitary 
wave with A/h = 0.5 over 1:12 slope and exposed reef crest. Solid lines 
and circles denote computed and measured data. 
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Figure 7.8. Time series of free surface profiles for propagation of 
solitary wave with A/h = 0.5 over 1:12 slope and exposed reef crest. 
Solid lines and circles denote computed and measured data. 
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Figure 7.9. Velocity in x direction for propagation of solitary wave of 
A/h = 0.5 over 1:12 slope and exposed reef crest. Solid lines and circles 
denote computed and measured data. 
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 Figure 7.10. Perspective view of Benchmark I bathymetry from laser scan at 
original resolution of Δx = 5 cm. Circles denote wave gauge locations at free 
surface and corresponding location on tank bottom. Red crosses at gauges 3, 6, 
and 13 indicate positions of acoustic Doppler velocimeters for velocity 
measurements. 
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Figure 7.11. Snapshots of solitary wave transformation in Benchmark I.  
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Figure 7.12. Time series of free surface profiles along basin centerline in 
Benchmark I. Solid lines and circles denote computed and measured data. 
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Figure 7.13. Time series of free surface profiles along transect at x = -5 m 
in Benchmark I. Solid lines and circles denote computed and measured 
data. 
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Figure 7.14. Time series of free surface profiles along longshore 
transect in Benchmark I. Solid lines and circles denote computed and 
measured data. 
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(b) 

(a) 

Figure 7.15. Time series of velocity in Benchmark I. (a) Cross-shore 
component. (b) Longshore component. Solid lines and circles denote 
computed and measured data. 



119 
 

Figure 7.16. Perspective view of Benchmark II bathymetry from laser scan at 
original resolution of Δx = 5 cm. Conical island was added after laser scan. 
Circles denote wave gauge locations at free surface and corresponding location 
on tank bottom. Red crosses at gauges 2, 3, and 10 indicate positions of 
acoustic Doppler velocimeters for velocity measurements. 
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 Figure 7.17. Snapshots of solitary wave transformation in Benchmark II. 
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Figure 7.18. Time series of free surface profiles at wave gauges in 
Benchmark II. Solid lines and circles denote computed and measured data. 
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Figure 7.19. Time series of velocity in Benchmark II. (a) Cross-shore 
component. (b) Longshore component. Solid lines and circles denote 
computed and measured data. 

(b) 

(a) 
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APPENDIX 

In the following, we look at the solution of an isolated right moving shock wave. The left 

and the right states of water depth, h, and flow velocity, u, for the Rankine-Hugoniot 

condition are 
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The shock wave involves three constant states, namely 

! 

U
L
 to the left, 

! 

U
R
 to the right, and 

a new constant state, 

! 

U
*
, valid in the region between the left and the right states. This 

region is denoted as star region and it connects the known left and right states, which run 

into the shock path as illustrated here: 

 

 

 

 

 

 

 

Applying a frame of reference moving to the right with the shock at speed 
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the transformation of the equations as 
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For the flow situation involving 
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 the vectors of conserved variables are 
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For the transformed frame of reference the Rankine-Hugoniot condition results in 
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The mass flux through the shock can be stated as 
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A.5 gives 
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Substituting (A.7) into (A.8) results in an expression for the right mass flux as 
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Multiplication of the Rankine-Hugoniot condition by 
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which is 
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The velocity in the star region can be defined in terms of a function 

! 

fR  governing the 

flow quantities across h* and hR respectively by 
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The function is then expressed as 
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It is possible to obtain a relation for the shock speed, 
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, by using 
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By using the shallow-water celerity 

! 

aR = ghR  and the equation above, we can also write 

the shock speed as 

! 

CSR = uR + aRqR   (A.15) 
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By introducing Froude numbers like 
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 for the shock and 
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 ahead of the shock as 
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It is possible to derive a relation for flow stage behind the shock in terms of only the 

initial data stage ahead of the shock and the shock Froude number. Since the flow must 

be supercritical through the shock, it is required that 

! 

h
*
" h

R
 and also 
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qR "1. Therefore 
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qR = FS " FR #1.  (A.18) 

The water depth in the star region behind the shock is then 
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and the particle velocity behind the shock is given by 
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For a left moving shock the two above equations read respectively 
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