
DEPTH-INTEGRATED FREE-SURFACE FLOW WITH NON-HYDROSTATIC
FORMULATION

A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE

UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT
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Abstract

This dissertation presents the formulation of depth-integrated wave propagation and

runup models from a system of governing equations for two-layer non-hydrostatic flows.

The conventional two-layer non-hydrostatic formulation is re-derived from the continu-

ity and Euler equations in non-dimensional form to quantify contributions from nonlin-

earity and dispersion and transformed into an equivalent integrated system, which sepa-

rately describes the flux and dispersion-dominated processes. The formulation includes

interfacial advection to facilitate mass and momentum exchange over the water col-

umn. This equation structure allows direct implementation of a momentum conserving

scheme and a moving waterline technique to model wave breaking and runup without in-

terference from the dispersion processes. The non-hydrostatic pressure, however, must

be solved at the layer interface and the bottom simultaneously from the pressure Poisson

equation, which involves a non-symmetric 9-band sparse matrix for a two-dimensional

vertical plane problem. A parameterized non-hydrostatic pressure distribution is intro-

duced to reduce the computational costs and maintain essential dispersion properties

for modeling of coastal processes. The non-hydrostatic pressure at mid flow depth is

expressed in terms of the bottom pressure with a free parameter, which is optimized to

match the exact linear dispersion relation for the water depth parameter up to kd = 3.

This reduces the integrated two-layer formulation to a hybrid system with unknown non-

hydrostatic pressure at the bottom only and a tridiagonal matrix in the pressure Poisson

equation. The hybrid system reduces to a one-layer model for a linear distribution of the

non-hydrostatic pressure.
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Fourier analysis of the governing equations of the two-layer, hybrid, and one-layer sys-

tems yield analytical expressions of the linear dispersion and shoaling gradient as well

as the super and sub-harmonics transfer functions. The two-layer system reproduces the

linear dispersion relation within a 5% error for water depth parameter up to kd = 11.

The hybrid system with an optimized free parameter yields the same dispersion relation

as the extended Boussinesq equations. The one-layer system shows a major improve-

ment of the dispersion properties in comparison to the classical Boussinesq equations,

but is not sufficient to model coastal wave transformation. The linear shoaling gradient

serves as analytical tool to measure wave transformation over a plane slope although it

is secondary compared to the linear dispersion relation. In comparison to second-order

wave theory, the two-layer system shows overall underestimation of the nonlinearity,

while the hybrid system reasonably describes the super and sub-harmonics for kd rang-

ing from 0 to 3.

The two-layer, hybrid, and one-layer systems share common numerical procedures. A

staggered finite difference scheme discretizes the governing equations in the horizon-

tal dimension and the Keller box scheme reconstructs the non-hydrostatic terms in the

vertical direction. A semi-implicit scheme integrates the depth-integrated flow in time

with the non-hydrostatic pressure determined from a Poisson-type equation. Numerical

results are verified and validated through a series of numerical and laboratory exper-

iments selected to measure model capabilities in wave dispersion, shoaling, breaking,

runup, drawdown, and overtopping. The two-layer model shows good performance in

handling these processes through its integrated structure, but slightly underestimates the

wave height in shoaling. The hybrid model provides comparable results with the two-

layer system in general and slightly improved performance in shoaling calculations due

to better approximation of nonlinearity. The one-layer model exhibits stable and robust

performance even when the wave characteristics are beyond its applicable range.
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Chapter 1

Introduction

The propagation of ocean waves from deep water to the shore involves a sequence of

physical processes with different spatial and temporal scales. Dispersion, which must

be balanced by nonlinearity, plays an important role for wave transformation from deep

to intermediate water. The flow becomes flux dominated in shallow water and exhibits

shock-related hydraulic processes arising from wave breaking. The resulting sheet flow

runs up on the beach and returns to the ocean as drawdown. These processes, with

different physical properties, have been modeled in part with reasonable accuracy. A

complete description of these processes and their interactions in free surface flows is

still an area of intense study.

Boussinesq-type equations have provided a theoretical framework to describe coastal

wave transformation since their introduction by Peregrine (1967). The depth-integrated

governing equations describe the vertical flow structure in terms of high-order deriva-

tives of the horizontal flow velocity. To improve linear dispersion, Madsen et al. (1991)

manipulated the dispersion terms to match a [2, 2] Padé expansion in terms of the dimen-

sionless water depth. Nwogu (1993) obtained the same degree of approximation through

a consistent derivation from the Euler equations with the velocity evaluated at an opti-

mum level. Wei et al. (1995) extended Nwogu’s approach to retain full nonlinearity
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of the free surface boundary condition while maintaining the same order of dispersion

approximation. Gobbi et al. (2000) subsequently extended the dispersion properties of

the model to a [4, 4] Padé approximation through a weighted average of the velocity

potential. Madsen et al. (2003, 2006) extended the fully nonlinear Boussinesq formula-

tions of Agnon et al. (1999) to include higher order dispersion over mildly and rapidly

varying bathymetry with an infinite power series expansion of the velocity profile. The

high-order dispersion terms, however, produce a local anomaly prior to wave breaking

that might lead to numerical instability. The eddy viscosity concept (Zelt, 1991) or the

roller concept (Schäffer et al., 1993; Madsen and Sørensen, 1997) is embedded in these

Boussinesq-type models to account for energy dissipation due to wave breaking.

More recently Boussinesq-type models utilize conservative formulations to describe

breaking waves as bores. Kim et al. (2009) derived a conservative form of Boussinesq-

type equations from the Navier-Stokes equations together with a shock-capturing finite

volume solution, but did not demonstrate the capability of their models in describing

discontinuous flows associated with wave breaking and bore formation. Tonelli and

Petti (2009) implemented the Boussinesq-type equations from Madsen and Sørensen

(1992) that contain the local acceleration and flux terms in conserved variables into a

finite volume model. Dutykh et al. (2011) reformulated the classical Boussinesq equa-

tion of Peregrine (1967) in conservative form and utilized a finite volume method to

describe shock-related processes. Roeber et al. (2010a) re-formulated the Boussinesq-

type equations of Nwogu (1993) in the conservative form of the nonlinear shallow-water

equations and derived a Godunov-type finite volume scheme for the numerical solution.

Since interference of dispersion on flux-dominated processes might lead to instabilities,

these models have to turn off the dispersion terms in order to describe breaking waves

as bores. Various moving-waterline techniques derived by Roeber et al. (2010a), Lynett

et al. (2002), and Kennedy et al. (2000) allow modeling of wave runup and drawdown at

the coastline. Boussinesq-type models in conservative or non-conservative formulations
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have been extensively applied to study coastal processes with manageable computational

requirements.

The non-hydrostatic approach provides an alternative to the Boussinesq-type equations

by directly including the vertical flow structure in a multi-layer formulation. This ap-

proach decomposes the pressure into hydrostatic and non-hydrostatic components in the

Navier-Stokes equations (Casulli, 1995). The continuity equation for an incompress-

ible fluid provides a Poisson equation for the solution of the non-hydrostatic pressure.

Mahadevan et al. (1996a,b) verified the well-posedness of the non-hydrostatic approach

by scaling analysis and applied the resulting free-surface model to study circulations in

the Gulf of Mexico. Casulli and Stelling (1998) and Stansby and Zhou (1998) demon-

strated the essential contributions of the non-hydrostatic pressure and vertical flow struc-

ture even in shallow water. The dispersion characteristics can be improved by adding

more layers without increasing the order of the spatial derivatives in the governing equa-

tions (Casulli, 1999; Zhou and Stansby, 1999). Stelling and Zijlema (2003) discretized

the primitive non-hydrostatic governing equations on a staggered Cartesian coordinate

system by the finite difference method with an edge-based compact scheme. The re-

sulting model reproduces linear dispersion properties in deep water with just two fluid

layers. Zijlema and Stelling (2005) employed a boundary-fitted coordinate system in

depth integration of the governing equations in each layer to improve the resolution of

the non-hydrostatic pressure near boundaries.

The non-hydrostatic approach with first-order spatial derivatives is more amenable to

practical applications. Stelling and Duinmeijer (2003) proposed a momentum conserv-

ing scheme in a finite difference model to approximate breaking waves as bores or hy-

draulic jumps without the use of empirical energy dissipation. Zijlema and Stelling

(2008) applied the depth-integrated formulation of Zijlema and Stelling (2005) with

the momentum conserving scheme and a wet-dry algorithm to simulate wave breaking

and runup in the surf zone. They subsequently released the serial and parallel codes,
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known as SWASH (Simulating WAves till SHore), in the public domain (Zijlema et al.,

2011). Yamazaki et al. (2009) applied an upwind-flux approximation scheme in a one-

layer model to describe energetic wave breaking, bore propagation, and runup. Most

importantly, the first-order spatial derivatives in the governing equations allow imple-

mentation of two-way nested grids to model wave transformation processes of different

spatial and temporal scales (Yamazaki et al., 2011). The resulting model, known as NE-

OWAVE (Non-hydrostatic Evolution of Ocean WAVE), has been implemented in studies

of 2009 Samoa, 2009 Mentawai, 2010 Chile, and 2011 Tohoku tsunamis (Roeber et al.,

2010b; Yamazaki and Cheung, 2011; Lay et al., 2011a,b). The simplicity of the code

and its computational efficiency enable modeling of basin-wide tsunami propagation

and regional-scale inundation through a system of two-way nested grids.

The dispersion property of the non-hydrostatic approach is primarily determined by the

number of layers over the water column. A two-layer model is sufficient to achieve good

dispersion characteristic in coastal engineering applications (Zijlema and Stelling, 2005,

2008). However, implementations of the non-hydrostatic approach for wave breaking

and runup have been limited to one-layer models except for the recent work of Ai and

Jin (2012) with a finite volume formulation, which approximates the boundary condi-

tions with layer-averaged velocities and requires up to ten layers to accurately describe

vertical distributions of the velocity and non-hydrostatic terms. Computational require-

ments represent another issue that needs special consideration. A multi-layer model

requires a considerable amount of computational resources in the implicit solution of

the pressure Poisson equation that inhibits its application over a large region. Despite

the widespread numerical implementations, analytical expressions of the linear and non-

linear properties of the non-hydrostatic models have not been explored to the extent as

in studies of the Boussinesq-type approach (Nwogu, 1993; Gobbi et al., 2000; Madsen

et al., 2003, 2006). A systematic analysis of those properties in the non-hydrostatic

model is not evident in the literature.
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The goal of this dissertation is to develop an alternate formulation for non-hydrostatic

free surface flows that can account for dispersion and flux-dominated processes with

strongly nonlinear interactions for coastal engineering applications. The formulation be-

gins with depth integration of the non-dimensional Euler equations with non-hydrostatic

pressure. The resulting governing equations for two-layer flows, which are equivalent to

those of Zijlema and Stelling (2005), are then transformed into an integrated two-layer

system. This integrated system allows implementation of the momentum-conserving

advection scheme for breaking wave approximation and a moving-waterline scheme for

inundation calculation, while maintaining the dispersion characteristics of the original

two-layer formulation for modeling of coastal processes. The pressure Poisson equation

derived from the two-layer formulation requires substantial computation resources that

might become an issue in practical coastal engineering applications. A parameterized

non-hydrostatic pressure distribution expresses the pressure at mid flow depth in terms

of the bottom pressure to reduce the computational requirements to those of the one

layer model, while retaining essential dispersion characteristic through optimization of

the pressure distribution. A linear pressure distribution converts this hybrid model into

a one-layer model (Yamazaki et al., 2009, 2011).

The capability of the one-layer, hybrid and two-layer systems to describe fundamen-

tal linear and nonlinear wave properties is first examined. A perturbation expansion

extracts the first and second order governing equations from the three systems. The cor-

responding analytical solutions allow a thorough examination of their linear dispersion

and shoaling properties as well as nonlinear monochromatic and bichromatic interac-

tions against solutions from first and second-order wave theories as well as the classical

and extended Boussinesq equations. The theoretical analysis is supplemented by nu-

merical solutions of the governing equations. The three systems have similar numerical

procedures except for the derivation of the pressure Poisson equation. The governing

equations are discretized over a staggered grid on a boundary fitted coordinate in the

two-dimensional vertical plane with a finite difference scheme. The pressure correction

5



technique splits time integration into a hydrostatic and a non-hydrostatic step. An in-

termediate solution from the hydrostatic step provides the input to the pressure Poisson

equation in the second step to yield non-hydrostatic pressure distribution. Numerical

results are compared and validated with previous laboratory experiments for regular

wave transformation over a submerged bar and a plane beach as well as solitary wave

propagation on a flat bottom, a plane beach and a fringing reef.
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Chapter 2

Governing Equations

This chapter summarizes the formulation of the conventional two-layer non-hydrostatic

model for free surface flows and describes the derivation of the governing equations for

the integrated two-layer and hybrid systems and their relation to the one-layer system.

In contrast to related works in the literature, the governing equations are derived from

the Euler equations in dimensionless form to highlight the contributions of the various

terms to dispersion and nonlinearity.

2.1 Non-dimensional Euler Equations

Consider a two-dimensional free-surface flow in the Cartesian coordinate system (x, z)

in Figure 2.1. The variables d and ζ denote water depth and surface elevation, and

h = ζ + d is the flow depth. The layer interface is placed at the mid flow depth zα =

(ζ−d)/2, which varies with ζ over time t. Three characteristic length scales a0, d0, and

l0 represent the magnitude of wave amplitude, water depth, and wavelength, while the

corresponding shallow-water celerity
√
gd0 allows scaling of water particle velocities.

These give rise to the dimensionless parameters ϵ = a0/d0 and µ = d0/l0, which denote

nonlinearity and dispersion in the dimensionless governing equations. The following

7



Figure 2.1. Definition sketch of a two-layer free-surface flow system.

physical variables (primed) are then converted to dimensionless quantities as

x =
x′

l0
z =

z′

d0
t =

t′

l0/
√
gd0

ζ =
ζ ′

a0
(2.1.1)

The scaling of the velocity components (u,w) can lead to an appropriate form of gov-

erning equations for specific physical problems. For non-hydrostatic free-surface flow

models in coastal engineering applications, the two components are expressed in the

following dimensionless form

u =
u′

ϵ
√
gd0

w =
w′

ϵµ
√
gd0

(2.1.2)

The nonlinear parameter ϵ scales the resulting governing equations for applications with

gravity waves, while the dispersion parameter µ allows resolution of the vertical struc-

ture even in flux-dominated flows. These parameters become instrumental should trun-

cation of high-order terms in the governing equations become necessary.

The non-hydrostatic formulation includes the pressure explicitly in the governing equa-

tions. Following Casulli (1995), the dimensional pressure is decomposed into hydro-
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static and non-hydrostatic components as

p′ = g(ζ ′ − z′) + q′ (2.1.3)

where q′ denotes the dimensional non-hydrostatic pressure. Similarly, the scaling of the

non-hydrostatic pressure will affect the form of the governing equations. A parameter

n allows scaling of the non-hydrostatic pressure with respect to the hydrostatic pressure

P as

q =
q′

nP
(2.1.4)

When Mahadevan et al. (1996a,b) examined the well-posedness of the non-hydrostatic

approach for large-scale circulation, they balanced the vertical Coriolis acceleration with

the non-hydrostatic gradient by setting n = µ. Marshall et al. (1997) discussed the use

of this parameter in scaling of the governing equations for hydrostatic, quasi-hydrostatic,

and non-hydrostatic problems and outlined a strategy for ocean models to perform ef-

ficiently and accurately in different spatial scales. In the hydrostatic and geostrophic

limit, they found that n = µ2/Ri, where Ri is Richardson number. To stand out wave

characteristics, factors such as Coriolis effects, surface shear stress, and viscous dissi-

pation are not considered in this study. Vertical acceleration in the momentum equation

will be fully balanced by the non-hydrostatic pressure gradient, which leads to n = µ2.

Substitution of (2.1.1), (2.1.2) and (2.1.4) into the continuity and Euler equations gives

the dimensionless governing equations for non-hydrostatic free-surface flows

∂u

∂x
+

∂w

∂z
= 0 (2.1.5)

∂u

∂t
+ ϵ

∂u2

∂x
+ ϵ

∂uw

∂z
+

∂ζ

∂x
+ µ2 ∂q

∂x
= 0 (2.1.6)

∂w

∂t
+ ϵ

∂uw

∂x
+ ϵ

∂w2

∂z
+

∂q

∂z
= 0 (2.1.7)

The kinematic boundary conditions at the free surface and seabed become

wζ =
∂ζ

∂t
+ ϵuζ

∂ζ

∂x
z = ϵζ (2.1.8)
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wd = −ud
∂d

∂x
z = −d (2.1.9)

The parameters ϵ and µ2 indicate the nonlinear and dispersion terms respectively. Since

∂u/∂x and ∂w/∂z have the same order of magnitude, the dispersion parameter µ does

not exist in the continuity equation (2.1.3). In the x direction, the horizontal derivative of

the surface elevation has the same order of magnitude as the local acceleration, while the

non-hydrostatic gradient has an order of magnitude µ2. In the z direction, the magnitude

of the local vertical acceleration and the non-hydrostatic gradient are of the same order.

Stelling and Zijlema (2003) applied the finite difference method to the dimensional

form of the governing equations (2.1.5) - (2.1.7) and achieved good dispersion char-

acteristics with just two vertical layers through the Keller-box scheme. However, the

non-conservative form of the governing equations cannot fully describe discontinuous

flows due to wave breaking and runup.

2.2 Conventional Two-layer Formulation

Conservative forms of governing equations enable descriptions of discontinuities in free

surface flows and approximations of breaking waves as bores or hydraulic jumps. Zi-

jlema and Stelling (2005) derived a depth-integrated form of the continuity and Euler

equations (2.1.5) - (2.1.7) in a multi-layer system and converted the resulting governing

equations to a conservative form with good dispersion characteristic by application of

just two layers. This section provides a re-derivation of their governing equations in di-

mensionless form to provide a more systematic account of the nonlinear and dispersion

terms.

Figure 2.1 provides the definition sketch of the two-layer flow system. Depth-integration

of the continuity equation (2.1.5) in the bottom and top layers with application of Leib-
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niz’s rule yields

∂

∂x

∫ zα

−d

udz − uzα

∂zα
∂x

+ wzα = 0 (2.2.1)

∂

∂x

∫ ϵζ

zα

udz +
∂ζ

∂t
+ uzα

∂zα
∂x

− wzα = 0 (2.2.2)

where uzα and wzα are the horizontal and vertical velocity components at the instanta-

neous location of the interface defined by zα = (ϵζ − d)/2. The horizontal component

uzα is defined as the average from the bottom and top layers and the vertical component

wzα should be distinguished from the interface vertical velocity based on a kinematic

boundary condition. A relative vertical velocity wzα defines the difference between wzα

and the vertical velocity of the interface as

wzα = wzα − 1

ϵ

∂zα
∂t

− uzα

∂zα
∂x

(2.2.3)

This variable facilitates transfer of mass and momentum across the interface that might

become important for discontinuous flows. Depth integration of the horizontal momen-

tum equation (2.1.6) at the bottom and top layers yields

∂

∂t

∫ zα

−d

udz+ϵ
∂

∂x

∫ zα

−d

u2dz +
∂ζ

∂x
(zα + d)

+µ2

(
∂

∂x

∫ zα

−d

qdz − qzα
∂zα
∂x

− qd
∂d

∂x

)
+ ϵuzαwzα = 0

(2.2.4)

∂

∂t

∫ ϵζ

zα

udz + ϵ
∂

∂x

∫ ϵζ

zα

u2dz +
∂ζ

∂x
(ϵζ − zα)

+ µ2

(
∂

∂x

∫ ϵζ

zα

qdz − qζ
∂ζ

∂x
+ qzα

∂zα
∂x

)
− ϵuzαwzα = 0

(2.2.5)

Depth integration of the vertical momentum equation (2.1.7) yields

∂

∂t

∫ zα

−d

wdz + ϵ
∂

∂x

∫ zα

−d

uwdz + qzα − qd + ϵwzαwzα = 0 (2.2.6)

∂

∂t

∫ ϵζ

zα

wdz + ϵ
∂

∂x

∫ ϵζ

zα

uwdz + qζ − qzα − ϵwzαwzα = 0 (2.2.7)

It should be pointed out that the terms uzαwzα and wzαwzα also contribute to the nonlin-

ear properties and play an important role in momentum exchange when strong nonlinear

advection occurs at discontinuities.
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The governing equations (2.2.1), (2.2.2), and (2.2.4) - (2.2.7) are formulated in terms of

definite integrals that can be evaluated from the piecewise linear velocity and pressure

profiles. Integration of the horizontal velocity over the bottom and top layers give∫ zα

−d

u dz = h1u1 (2.2.8)∫ ϵζ

zα

u dz = h2u2 (2.2.9)

where h1 = zα + d and h2 = ϵζ − zα denote the flow depth and the subscripts 1

and 2 identify quantities for the bottom and top layers respectively. The integral of the

quadratic velocity terms in (2.2.4) and (2.2.5) can be expressed as∫ zα

−d

u2 dz =

∫ zα

−d

(u1 +∆u1)
2 dz = h1u

2
1 +

∫ zα

−d

∆u2
1 dz (2.2.10)

∫ ϵζ

zα

u2 dz =

∫ ϵζ

zα

(u2 +∆u2)
2 dz = h2u

2
2 +

∫ ϵζ

zα

∆u2
2 dz (2.2.11)

where ∆u1 and ∆u2 denote linear variations about the layer averaged values. Integrals

of ∆u2
1 and ∆u2

2 are commonly treated as diffusion and are neglected here. Application

of the trapezoidal rule gives the integrals of the non-hydrostatic pressure and vertical

velocity at each layer as ∫ zα

−d

q dz =
h1

2
(qzα + qd) (2.2.12)∫ ϵζ

zα

q dz =
h2

2
(qζ + qzα) (2.2.13)

∫ zα

−d

w dz = h1w1 =
h1

2
(wzα + wd) (2.2.14)∫ ϵζ

zα

w dz = h2w2 =
h1

2
(wζ + wzα) (2.2.15)

The vertical velocity at the free surface and seabed is given by

wζ =
∂ζ

∂t
+ ϵu2

∂ζ

∂x
z = ϵζ (2.2.16)

wd = −u1
∂d

∂x
z = −d (2.2.17)

12



and wzα is determined from the continuity equation (2.2.1) or (2.2.2).

Implementation of the above approximations gives a closed system of six governing

equations with six unknowns ζ , u1, u2, wzα , qzα and qd. The continuity, horizontal

momentum, and vertical momentum equations for the two-layer flow system are given

respectively as

∂h1u1

∂x
− 1

2
(u1 + u2)

∂zα
∂x

+ wzα = 0 (2.2.18)

∂h2u2

∂x
+

∂ζ

∂t
+

1

2
(u1 + u2)

∂zα
∂x

− wzα = 0 (2.2.19)

∂u1

∂t
+

1

h1

(ϵ
∂hu2

1

∂x
− u1

∂h1

∂t
) +

∂ζ

∂x

+
µ2

h1

(
1

2

∂h1(qzα + qd)

∂x
− qzα

∂zα
∂x

− qd
∂d

∂x
) +

ϵ

h1

uzαwzα = 0

(2.2.20)

∂u2

∂t
+

1

h2

(ϵ
∂hu2

2

∂x
− u2

∂h2

∂t
) +

∂ζ

∂x

+
µ2

h2

(
1

2

∂h2(qζ + qzα)

∂x
− qζ

∂ζ

∂x
+ qzα

∂zα
∂x

)− ϵ

h2

uzαwzα = 0

(2.2.21)

∂w1

∂t
+

1

h1

(ϵ
∂h1u1w1

∂x
− w1

∂h1

∂t
) + qzα − qd +

ϵ

h1

wzαwzα = 0 (2.2.22)

∂w2

∂t
+

1

h2

(ϵ
∂h2u2w2

∂x
− w2

∂h2

∂t
) + qζ − qzα − ϵ

h2

wzαwzα = 0 (2.2.23)

Equations (2.2.18) - (2.2.23), which encompass the kinematic boundary conditions (2.2.16)

and (2.2.17) and the dynamic free surface boundary condition qζ = 0, represent the con-

ventional formulation of two-layer non-hydrostatic free-surface flow.

2.3 Integrated Two-layer Formulation

The conventional formulation provides a direct description of the flows in each layer and

resolves their interactions only at the interface. The governing equations consist of two

single layer non-hydrostatic systems with interfacial motions described by the relative

vertical velocity. Since the governing equations for each layer share the same structure,
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it is straightforward to implement the formulation in a multi-layer system. However, this

layered structure conceals the merits of the two-layer over the one-layer formulation and

may encounter numerical difficulties in handling wave breaking, runup, and drawdown.

To overcome these problems, a new representation of the flow structure is introduced by

a linear transformation

u =
1

2
u1 +

1

2
u2 (2.3.1)

∆u =
1

2
u1 −

1

2
u2 (2.3.2)

w =
1

2
w1 +

1

2
w2 (2.3.3)

∆w =
1

2
w1 −

1

2
w2 (2.3.4)

where (u, w) is the depth-integrated velocity and (∆u, ∆w) is the velocity gradient

between the two layers. Substitution of (2.3.1) - (2.3.4) into the continuity equations

(2.2.18) and (2.2.19) gives

∂ζ

∂t
+

∂hu

∂x
= 0 (2.3.5)

wzα +
1

2

∂h∆u

∂x
= 0 (2.3.6)

The first continuity equation (2.3.5) is consistent with the one in the nonlinear shallow-

water equations, but different from typical Boussinesq formulations. It balances the

local variation of the surface elevation with the horizontal derivative of the flux without

interference from dispersion. The second continuity equation (2.3.6) shows that the

relative vertical velocity is proportional to the horizontal derivative of the flux gradient,

which becomes zero if there is no flux exchange between the two layers.

Similarly, the transformed horizontal momentum equations, which describe evolution

of u and ∆u, become

∂u

∂t
+
ϵ

h

(
∂ (hu2 + h∆u2)

∂x
− u

∂hu

∂x

)
+
∂ζ

∂x
+

µ2

h

(
1

2

∂hqzα
∂x

+
1

4

∂hqd
∂x

− qd
∂d

∂x

)
= 0

(2.3.7)
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∂∆u

∂t
+
ϵ

h

(
2
∂hu∆u

∂x
−∆u

∂hu

∂x

)
+
µ2

h

(
1

4

∂hqd
∂x

− qzα
∂ (ϵζ − d)

∂x
− qd

∂d

∂x

)
+

2 ϵ

h
uzαwzα = 0

(2.3.8)

With the interface defined at the mid flow depth, the second momentum equation (2.3.8)

no longer contains the horizontal derivative of the surface elevation and the local varia-

tion of the flux gradient mainly reflects the balance between nonlinearity and dispersion

effects. The linear transformation converts the vertical momentum equations into

∂w

∂t
+

ϵ

h

(
∂ (huw + h∆u∆w)

∂x
− w

∂hu

∂x

)
− qd

h
= 0 (2.3.9)

∂∆w

∂t
+

ϵ

h

(
∂ (hu∆w + h∆uw)

∂x
−∆w

∂hu

∂x

)
+ 2

qzα
h

− qd
h

+
2 ϵ

h
wzαwzα = 0

(2.3.10)

The vertical velocity and gradient are approximated by the trapezoidal rule as

w =
1

4
(wζ + wzα) +

1

4
(wzα + wd) (2.3.11)

∆w =
1

4
(wζ + wzα)−

1

4
(wzα + wd) (2.3.12)

where wzα is determined from the continuity equation (2.3.6) and wζ and wd from the

kinematic boundary conditions (2.2.16) and (2.2.17) as

wζ =
∂ζ

∂x
+ (u−∆u)

∂ζ

∂x
(2.3.13)

wd = −(u+∆u)
∂d

∂x
(2.3.14)

The present governing equations, which are equivalent to those from the conventional

formulation, provide an alternate description of the two-layer flow system.

Originated from the continuity and Euler equations, the derivation of the governing

equations (2.3.5) - (2.3.10) does not involve the irrotational condition. The two-layer
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flow structure is able to resolve a low level of vorticity. The non-dimensional horizontal

vorticity equation reads

∂ue

∂z
− µ2∂we

∂x
= Ω (2.3.15)

where (ue, we) is the fluid particle velocity and Ω the vorticity. Integration of (2.3.15)

within the bottom and top layers with the corresponding boundary conditions gives

uzα − ud − µ2

∫ zα

−d

∂we

∂x
dz =

∫ zα

−d

Ω dz (2.3.16)

uζ − uzα − µ2

∫ ϵζ

zα

∂we

∂x
dz =

∫ ϵζ

zα

Ω dz (2.3.17)

Adding (2.3.16) and (2.3.17) together with the transformation (2.3.2) yields

∆u = −µ2

2

∫ ϵζ

−d

∂we

∂x
dz − 1

2

∫ ϵζ

−d

Ω dz (2.3.18)

which defines the horizontal velocity gradient in terms of dispersion and vorticity. The

velocity gradient ∆u includes effects of the vertical velocity associated with the non-

hydrostatic pressure that represents the main driving mechanism for dispersion. In ad-

dition, ∆u may alter the nonlinear advection terms through the two-layer flow structure

to realize rotational effects associated wave breaking, runup, and drawdown. The for-

mulation of Boussinesq equations typically involves the irrotational condition, which

expresses the vertical flow structure by high-order derivatives of the horizontal velocity

in the continuity equation and momentum equations to account for dispersion (Pere-

grine, 1967; Madsen and Sørensen, 1992; Nwogu, 1993; Wei et al., 1995; Gobbi et al.,

2000; Madsen et al., 2006). To include rotational effects, Veeramony and Svendsen

(2000) implemented a roller concept based on the solution of the vorticity transport

equations without considering viscosity to model wave breaking in the surf zone. Kim

et al. (2009) re-derived a set of Boussinesq equations from the Navier Stokes equations

to capture rotational flows around coastal structures.

The integrated two-layer system (2.3.5) - (2.3.10) maintains the same linear disper-

sion characteristics as the conventional two-layer formulation (Zijlema and Stelling,
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2005), but provides two sets of governing equations to describe dispersion and flux-

dominated processes. In deep water, the dispersion-dominated governing equations

(2.3.6), (2.3.8) and (2.3.10) alter the depth-integrated velocity to describe short-period

dispersive waves. As waves propagate into shallow water, the flux-dominated govern-

ing equations (2.3.5), (2.3.7) and (2.3.9) describe breaking and broken waves as bores

through momentum conservation and wave runup and drawdown as sheet flows. The

dispersion-dominated system remains in the doldrums complementing shock-related

hydraulic processes without creating numerical instabilities. The two sets of govern-

ing equations are coupled through ∆u and ∆w in contrast to the conventional two-layer

formulation, in which the interactions only take place at the interface. In addition, the

nonlinear interfacial advection terms uzαwzα and wzαwzα , which only exist in momen-

tum equations (2.3.8) and (2.3.10), are responsible for momentum exchange between

the two layers. They only contribute to nonlinear wave properties and play a fundamen-

tal role in determining the wave profile and flow structure when interfacial activities are

dominant.

This integrated two-layer system provides a general approach to describe wave transfor-

mation from deep to shallow water as well as the coastal processes for practical applica-

tion, but contains six unknowns ζ, u, ∆u, wh/2, qh/2 and qd in the six governing equa-

tions. The numerical solution involves a pressure Poisson equation, which contains a

non-symmetric 9-band sparse matrix for one-dimensional problems or a non-symmetric

15-band sparse matrix for two-dimensional problems. The computational requirements

might become an issue for application over a large region.

2.4 One-layer Formulation

For weakly dispersive waves, the depth-integrated velocity gradient (∆u, ∆w) and in-

terfacial advection diminish. The non-hydrostatic pressure and the velocity have a linear

17



distribution over the water column. The governing equations of the integrated two-layer

formulation (2.3.5) - (2.3.10) reduces to those of a one-layer system in terms of the

depth-averaged velocity (u,w) and non-hydrostatic pressure qd at the bottom as

∂ζ

∂t
+
∂hu

∂x
= 0 (2.4.1)

∂u

∂t
+
ϵ

h

(
∂hu2

∂x
− u

∂hu

∂x

)
+

∂ζ

∂x
+

µ2

2

∂qd
∂x

+
µ2qd
2h

∂ (ζ − d)

∂x
= 0 (2.4.2)

∂w

∂t
+
ϵ

h

(
∂huw

∂x
− w

∂hu

∂x

)
− qd

h
= 0 (2.4.3)

The depth-averaged vertical velocity is approximated by

w =
1

2
wζ +

1

2
wd (2.4.4)

in which the vertical velocity at the free surface and bottom are given by

wζ =
∂ζ

∂t
+ ϵu

∂ζ

∂x
(2.4.5)

wd =− u
∂d

∂x
(2.4.6)

The one-layer system, which has three variables ζ, u, and qd in the three governing

equations, is closed by the kinematic boundary conditions at the free surface and bottom

in (2.4.5) and (2.4.6).

In the numerical solution, the pressure Poisson equation involves a tridiagonal and a 5-

band matrix in one and two-dimensional problems. In addition, the rank of the matrix is

reduced by one half in comparison to the two-layer system. Yamazaki et al. (2009, 2011)

developed the numerical model, NEOWAVE, based on this one-layer formulation. The

simplicity of the code and its computational efficiency enable modeling of basin-wide

tsunami propagation and regional-scale inundation through a system of two-way nested

grids (Roeber et al., 2010b; Yamazaki and Cheung, 2011; Lay et al., 2011a). However,

the dispersion properties of the one-layer structure are not sufficient to model transfor-

mation of short period waves from deep to shallow water in most coastal engineering

applications.
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2.5 Hybrid Formulation

The integrated two-layer system reduces to a one-layer system without the gradient

terms. The corresponding non-hydrostatic pressure has a linear distribution equivalent

to qzα = 0.5 qd. The piecewise linear distribution of the non-hydrostatic pressure is

amenable to highly dispersive waves and discontinuous flows. In lieu of a two-layer

system, some features can be retained through the non-hydrostatic pressure in the form

qzα = α qd (2.5.1)

where α is a free parameter to optimize the wave characteristics over a range of wa-

ter depth parameters analogous to the approach introduced by Nwogu (1993) for the

Boussinesq equations. Since the non-hydrostatic pressure at the free surface qζ is zero,

the relation (2.5.1) with α ranging from 0.5 to 1.0 is equivalent to a predefined piecewise

linear distribution of the non-hydrostatic pressure. When α = 0.5, the pressure has a

linear distribution over the water column as in a one-layer model.

The pressure relation (2.5.1) provides an alternate formulation for depth-integrated non-

hydrostatic flows. Substitution of this relation into the governing equations (2.3.5) -

(2.3.10) yields a hybrid system that retains the simplicity and efficiency of a one-layer

model and adequate dispersion properties of a two-layer model. The governing equa-

tions for flux-dominated flows read

∂ζ

∂t
+
∂hu

∂x
= 0 (2.5.2)

∂u

∂t
+
ϵ

h

(
∂ (hu2 + h∆u2)

∂x
− u

∂hu

∂x

)
+

∂ζ

∂x

+µ2

(
α

2
+

1

4

)(
∂qd
∂x

+
qd
h

∂h

∂x

)
− µ2qd

∂d

∂x
= 0

(2.5.3)

∂w

∂t
+
ϵ

h

(
∂ (huw + h∆u∆w)

∂x
− w

∂hu

∂x

)
− qd

h
= 0 (2.5.4)
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The governing equations for dispersion-dominated system become

∂ζ

∂t
− ∂h∆u

∂x
+ u

∂ (ζ − d)

∂x
− 2wzα = 0 (2.5.5)

∂∆u

∂t
+
ϵ

h

(
2
∂hu∆u

∂x
−∆u

∂hu

∂x

)
+

µ2

4

∂qd
∂x

+µ2

(
1

4
− α

)
qd
h

∂h

∂x
+ µ2 (2α− 1)

qd
h

∂d

∂x
+

2 ϵ

h
uzαwzα = 0

(2.5.6)

∂∆w

∂t
+

ϵ

h

(
∂ (hu∆w + h∆uw)

∂x
−∆w

∂hu

∂x

)
+

(2α− 1) qd
h

+
2 ϵ

h
wzαwzα = 0

(2.5.7)

Equations (2.3.11) - (2.3.14) are still employed to connect the vertical velocity with the

horizontal fluid motion in the two layers.

The governing equations (2.5.2) - (2.5.7) have the same structure as the two-layer flow

system, but with the unknown pressure qzα at the interface replaced by the free parame-

ter α. The introduction of α allows tuning of wave dispersion due to the non-hydrostatic

pressure, but does not alter the dispersion characteristics associated with the bottom

slope as shown in the horizontal momentum equation (2.5.3). On the other hand, α

modifies the flow and bottom terms without affecting the pressure gradient in the mo-

mentum equation (2.5.6). The removal of the interface non-hydrostatic pressure qzα

reduces the pressure Poisson equation from a two-layer system to a one-layer system.

The model still retains a two-layer flow structure through the solution of the velocity

gradient (∆u,∆w) subject to the predefined piecewise linear distribution of the non-

hydrostatic pressure. However, this approximation lowers the order of dispersion from

the two-layer system. The optimal value for free parameter α is determined by varying

it from 0.5 to 1.0 to best fit the exact linear dispersion relation over a specific range of

water depth parameters.
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Chapter 3

Wave Properties

Waves slow down and shoal as they propagate from deep to shallow water. In addition,

nonlinear wave-wave interactions play an important role as the wave height increases in

the near-shore region. Researchers have utilized the linear dispersion relation, the linear

shoaling gradient, and the quadratic transfer function as analytical tools for evaluation

of model performance. The linear dispersion relation measures the capability of wave

models in describing the celerity as a function of wave period and water depth, while the

linear shoaling gradient quantifies the effects of bottom slope on wave transformation.

The transfer functions for super and sub-harmonics describe the nonlinear wave-wave

interaction across the frequency spectrum. In this chapter, the integrated two-layer,

hybrid, and one-layer systems are converted into the Boussinesq form in terms of high-

order derivatives for derivation of the linear and nonlinear wave properties. The first and

second-order governing equations in terms of ϵ are extracted through the perturbation

expansions

ζ = ζ1 + ϵζ2 + ϵ2ζ3 + ... (3.1)

u = u1 + ϵu2 + ϵ2u3 + ... (3.2)

∆u = ∆u1 + ϵ∆u2 + ϵ2∆u3 + ... (3.3)
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where subscripts 1, 2, and 3 represent the first, second, and third-order solutions respec-

tively. Fourier analysis is conducted to derive the linear dispersion relation, the linear

shoaling gradient, and the quadratic transfer function for comparison with solutions

from the classical and extended Boussinesq equations of Peregrine (1967) and Nwogu

(1993).

3.1 Linear Properties

3.1.1 Linear governing equations

For the integrated two-layer system, the non-hydrostatic pressure qzα and qd can be

explicitly expressed through the vertical momentum equations (2.3.9) and (2.3.10) by

invoking the interface continuity equation (2.3.6), the vertical velocity approximations

(2.3.11) and (2.3.12), and the kinematic boundary conditions (2.3.13) and (2.3.14). Sub-

stitution of the resulting expressions for qzα and qd into (2.3.7) and (2.3.8) gives rise to

the horizontal momentum equations in terms of the physical variables (ζ, u,∆u). The

governing equations in the Boussinesq form are expressed in terms of high-order deriva-

tives of the horizontal velocity for derivation of the wave properties. Implementation of

the perturbation expansion (3.1) - (3.3) and retaining terms up to the first order, the

linearized governing equations in dimensional form read

∂ζ1
∂t

+ d
∂u1

∂x
+ u1
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∂x
= 0 (3.1.1)
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∂x
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(3.1.3)
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In contrast to the Boussineq equations, the continuity equation (3.1.1) does not contain

dispersion terms to ensure mass conservation. The momentum equations (3.1.2) and

(3.1.3) include the classical frequency dispersion terms and and dispersion due to the

bottom slope. The equation structure allows derivation of the linear shoaling gradient

and dispersion relation accounting for high-order effects from the velocity gradient and

its coupling with the horizontal velocity.

The linearized governing equations for the one-layer system can be derived similarly

from (2.4.1) - (2.4.3) with the aid of (2.4.4) - (2.4.6) to remove the vertical velocity and

non-hydrostatic pressure terms. In the absence of ∆u, the governing equations include

a continuity and a momentum equation

∂ζ1
∂t

+ d
∂u1

∂x
+ u1

∂d

∂x
= 0 (3.1.4)

∂u1

∂t
+ g

∂ζ1
∂x

− 1

4
d2

∂3u1

∂x2∂t
− 3

4
d
∂2u1

∂x∂t

∂d

∂x
= 0 (3.1.5)

Although the one-layer system retains similar dispersion terms without considering ∆u,

the governing equations cannot be simplified directly from (3.1.1) - (3.1.3) because

of the fundamental difference in the assumed flow structure. The dispersion terms in

(3.1.5), which result from a linear distribution of the non-hydrostatic pressure, also have

different coefficients comparing to the corresponding terms in (3.1.2). In relation to the

classical Boussinesq equations (Peregrine, 1967), the frequency dispersion term has a

coefficient of 1/4 instead of 1/3 that results in different applicable ranges of the models

(Yamazaki, 2010).

The hybrid system contains most of the essential features in the two-layer system in-

cluding a piecewise linear distribution of the non-hydrostatic pressure. In the derivation

of the linear governing equations, the non-hydrostatic pressure qd is expressed in terms

of the physical variables (ζ, u,∆u) through the vertical momentum equation (2.5.4) and

the interface continuity equation (2.5.5) using (2.3.11) - (2.3.12). Substitution of qd into

(2.5.3) and (2.5.6) gives the horizontal momentum equations. The linearized governing
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equations for the hybrid system become

∂ζ1
∂t

+d
∂u1

∂x
+ u1

∂d

∂x
= 0 (3.1.6)
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(3.1.8)

The governing equations have the same form as the two-layer system. The coefficients

of the dispersion terms contain the free parameter α, which can be adjusted to provide

desirable performance over a range of water depth parameters. A single parameter,

however, cannot reproduce all the coefficients or the dispersion properties of the two-

layer system. For α = 0.5 and in the absence of ∆u, the governing equations reduce to

those of the one-layer system.

3.1.2 Linear dispersion

Linear dispersion relates the wave period and water depth to the celerity over a flat

bottom. This section compares the dispersion relations from the linearized governing

equations of the one-layer, two-layer, and hybrid systems with the exact relation given

by Airy wave theory as

c2 =
gd tanh (kd)

kd
(3.1.9)

where c is celerity, k is wave number, and kd is the water depth parameter. To derive

the dispersion relations, a system of small amplitude periodic waves over a flat bottom

is considered

ζ1 (x, t) = a1 e
i(kx−ωt) (3.1.10)
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u1 (x, t) =u1 e
i(kx−ωt) (3.1.11)

∆u1 (x, t) =∆u1 e
i(kx−ωt) (3.1.12)

where i =
√
−1 and ω is angular frequency. Substitution of (3.1.10) and (3.1.11) into

the linearized governing equations of the one-layer system gives the dispersion relation

c21 =
g d

1 + 1
4
k2d2

(3.1.13)

which contains a second-order polynominal in terms of kd. In comparison, the linear

dispersion relation of the classical Boussinesq equations is

c2B =
g d

1 + 1
3
k2d2

(3.1.14)

which has the same polynominal with a different coefficient carried over from the gov-

erning equations. Both provide basic approximations to the exact linear dispersion rela-

tion for small values of kd.

Equation (3.1.12) accounts for the piecewise linear distribution of the horizontal velocity

distribution over the water column in the two-layer and hybrid systems. Substitution of

(3.1.10) - (3.1.12) into the linearized governing equations of the two-layer system gives

the dispersion relation

c22 =
gd

(
1 + 1

16
k2d2

)
1 + 3

8
k2d2 + 1

256
k4d4

(3.1.15)

which contains a second-order and a fourth-order polynominal in the numerator and

denominator respectively. This forms a [2, 4] Padé approximation in terms of kd and

provides good agreement to the exact linear dispersion. On the other hand, the linear

dispersion relation of the hybrid system gives a [2, 2] Padé approximation as

c2α =
gd

(
1 + 1

16
k2d2

)
1 +

(
3
16

+ 1
4
α
)
k2d2

(3.1.16)

The fourth-order term k4d4 in the denominator is reduced to the product of a second-

order term k2d2 and the free parameter α. The linear dispersion relation of the Boussinesq-

type equations of Nwogu (1993) has the same form, but contains the free parameter in
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both the numerator and denominator resulting from modulation of the dispersion terms

in the momentum as well as the continuity equation.

Coastal wave transformation occurs when the water depth parameter kd is less than

3. Therefore, the free parameter α in (3.1.16) is optimized with respect to the exact

linear dispersion relation by minimizing the absolute error of the normalized celerity

over 0 < kd ≤ 3 as

error (α) =

∫ 3

σ

(
cα
c0

− cexact
c0

)2

d (kd) (3.1.17)

where

c0 =
√

gd (3.1.18)

is the shallow-water celerity and σ is set equal to 0.01 to avoid singularity in the inte-

gration. An α of 0.85442 gives a minimum error of 1.5× 10−5 and cα becomes

c2α=0.85442 =
gd

(
1 + 1

16
k2d2

)
1 + 2

5
k2d2

(3.1.19)

which has the same form and very similar coefficients as the linear dispersion relation

derived by Nwogu (1993)

c2N =
gd(1 + 0.06 k2d2)

1 + 0.393 k2d2
(3.1.20)

Despite the differences in formulation and approximation, both approaches lead to the

same linear dispersion relation through an optimization scheme.

The one-layer, hybrid, and two-layer systems represent a systematic improvement of the

dispersion properties through increasing degrees of freedom in describing the vertical

flow structure. Figure 3.1 compares the normalized celerity obtained from these systems

with those from Airy wave theory and the classical Boussinesq equations. The one-layer

system shows a major improvement over the classical Boussinesq equations in terms of

dispersion properties through a coefficient of 1/4 instead of 1/3. The two-layer system

reproduces the linear dispersion characteristics of Airy wave theory over the range of kd
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considered. A separate analysis has shown that the error is less than 5% in relation to

the exact solution for kd = 11. The hybrid system, which has errors of less than 1% and

5% for kd = 3.0 and 4.3 respectively, allows modeling of coastal wave transformation

from deep to shallow water.
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Figure 3.1. Comparison of linear dispersion relations.

3.1.3 Linear shoaling

The group velocity, closely related to dispersion, describes the shoaling process through

conservation of energy flux. In addition, Madsen and Sørensen (1992) introduced the

linear shoaling gradient γ to measure the effect of bottom slope on wave transformation

through the relation

1

A

∂A

∂x
= − γ

d

∂d

∂x
(3.1.21)
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where A denotes wave amplitude. They utilized Airy wave theory in combination with

conservation of energy flux to derive the expression

γ =
kd tanh (kd) (1− kd tanh (kd)) (1− tanh2 (kd))

(tanh (kd) + kd (1− tanh2 (kd)))2
(3.1.22)

The shoaling gradient represents the ratio of the relative amplitude gradient and bottom

slope. For example, a positive γ on an ascending slope (i.e., ∂d/∂x < 0) indicates

increasing wave amplitude or vice verse.

Following the procedures given by Schäffer and Madsen (1995), the solution of wave

shoaling on a gentle slope is expressed as

ζ1 (x, t) =A (x) ei(ωt−
∫
k(x)dx) (3.1.23)

u1 (x, t) = (ur (x) + iui (x)) e
i(ωt−

∫
k(x)dx) (3.1.24)

∆u1 (x, t) = (∆ ur (x) + i∆ ui (x)) e
i(ωt−

∫
k(x)dx) (3.1.25)

where the subscripts r and i indicate the real and imaginary parts of the respective vari-

ables. Substitution of (3.1.23) - (3.1.25) into the linearized governing equations and

collection of the real part without the gradient terms and the imaginary part with first-

order derivatives only yield a set of equations from which the shoaling gradient can be

determined. The results for the one-layer, two-layer, and hybrid systems read

γ1 =
1− 3

4
k2d2

4
(3.1.26)

γ2 =
1− 11

16
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k8d8 + 5
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k10d10

4 + k2d2 + 7
32
k4d4 + 5

256
k6d6 + 25

16384
k8d8

(3.1.27)
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3α2
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32
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1024

)
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(3.1.28)
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The shoaling gradients in these three systems are expressed as rational functions in kd.

Their values converge to 1/4 as kd→ 0 as in the exact solution (3.1.21). In the one-

layer and two-layer systems, the polynominals in the numerator are two orders higher

than those in the denominator. This leads to divergence of the shoaling gradients as

kd→∞, whereas the exact solution converges to zero. In the hybrid system, the nu-

merator and denominator have the same order of polynominals and thus the shoaling

gradient converges to a finite value at large kd depending on α.

The free parameter in the hybrid system defines the shoaling properties in coastal wave

transformation. Its value can be optimized for a range of kd through minimization of

the absolute error defined by

error (α) =

∫ kd

0

(γα − γ)2 d (kd) (3.1.29)

Table 3.1 shows the optimized values of α and the errors in the shoaling gradient for

different ranges of kd. The shoaling gradient is optimized over 0 ≤ kd ≤ 3 with an

error of 1.20 × 10−2 for α = 0.70359. However, the dispersion relation (3.1.16) is

optimized for α = 0.85442, which results in a larger error of 1.98×10−2 in the shoaling

gradient. Figure 3.2 compares the shoaling gradient over the range of α considered.

The results show good agreement with the exact shoaling gradient for kd < 0.5, when

shoaling begins to affect the wave height according to Airy wave theory. Although

discrepancies appear for larger values of kd, their effects on the local shoaling process

are secondary. Figure 3.3 compares the exact shoaling gradients with those from the

one-layer, two-layer, hybrid system with α = 0.85442, and the Boussinesq model of

Table 3.1. The optimized free parameter α for different range of kd

kd α error

[0 , 1] 0.63853 3.38× 10−6

[0 , 2] 0.65844 1.59× 10−4

[0 , 3] 0.70359 1.20× 10−2
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Nwogu (1993) presented by Beji and Nadaoka (1996). The shoaling gradient for the

one-layer system decreases monotonically and grossly underestimates the solution for

large values of kd. The two-layer system reproduces the exact solution up to kd = 1.7,

but overestimates the shoaling gradient for larger values of kd. The shoaling gradients

of the hybrid system and Nwogu (1993) follow the same trend as that of the two-layer

system, but shows noticeable discrepancies with the exact solution for large values of

kd.
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Figure 3.2. Comparison of linear shoaling gradient from the hybrid model over applica-
ble ranges of kd in Table 3.1.

The comparisons show that a single value of α cannot optimize the dispersion relation

and shoaling gradient in the hybrid system at the same time. It is obvious that α =

0.70359 gives the best fit to the exact shoaling gradient within 0 ≤ kd ≤ 3. The

dispersion relation, on the other hand, performs better with α = 0.85442, which leads to

a larger error in the shoaling gradient. Dispersion defines the group velocity, which is the
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Figure 3.3. Comparison of linear shoaling gradient from different models.

primary factor in the shoaling process through conservation of energy flux. The shoaling

gradient, which is derived in part from the dispersion relation to account for the effects

of a gentle bottom slope, might not be a good indicator of shoaling properties (Chen and

Liu, 1995). Throughout this dissertation, α = 0.85442 is applied in the hybrid model

to capture the more important dispersion properties in coastal wave transformation. The

selection of this value will be validated with laboratory data in the case studies.

3.2 Nonlinear Properties

Linear dispersion and shoaling define basic coastal wave processes. The free-surface

boundary condition is nonlinear in terms of wave amplitude leading to further modifi-
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cations of the free surface and velocity profiles. Nonlinearity transfers energy to high

and low frequency components in the generation of forced short and long waves. This

section summarizes the development of the second-order governing equations for the

one-layer, hybrid, and two-layer models from which the quadratic transfer function for

wave amplitude can be derived and compared with the solution from the Boussinesq

equations of Nwogu (1993).

3.2.1 Second-Order Interaction of Monochromatic Waves

The second-order governing equations account for the nonlinear interactions to provide

a correction to the linear solution. The non-homogeneous equations have the same struc-

ture as the linear governing equations, but with addition of nonlinear forcing terms on

the right-hand side. Nwogu (1993) derived the second-order governing equations from

his extended Boussinesq formulation as

∂ζ2
∂t

+ d
∂u2

∂x
+

(
α+

1

3

)
d3

∂3u2

∂x3
= −ζ1

∂u1

∂x
− u1

∂ζ1
∂x

(3.2.1)

∂u2

∂t
+ g

∂ζ2
∂x

+ α d2
∂3u2

∂x2∂t
= −u1

∂u1

∂x
(3.2.2)

where α is a free parameter adjusting the elevation of the horizontal velocity and the

subsequent dispersion properties. The first-order spatial derivatives of ζ1u1 and 1
2
u2
1

serve as weak nonlinear forcing without association of α. The second-order solution

from (3.2.1) and (3.2.2) provides a reference for comparison with the results from the

non-hydrostatic approach.

Substitution of the perturbation expansions (3.1) - (3.3) in the Boussinesq form of the

two-layer, hybrid, and one-layer systems and collection of terms with leading order

of ϵ provide the corresponding second-order governing equations. The evolution of

∆u results in a third governing equation in the two-layer and hybrid systems and new
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nonlinear terms in comparison to the Boussinesq approach. For the two-layer system,

the second-order governing equations read
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+ d
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(3.2.5)

The continuity equation (3.2.3) does not contain dispersion terms, but has the same

forcing term as the Boussinesq approach of Nwogu (1993) in (3.2.1). The momentum

equations (3.2.4) and (3.2.5) contain additional forcing terms that involve the surface el-

evation ζ1 and its first and second-order spatial derivatives ∂ζ1/∂x and ∂2ζ1/∂x
2. These
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two equations couple not only in the homogeneous part but also the nonlinear forcing

part to include effects of vorticity through the velocity gradient that are not considered

in the nonlinear forcing of Nwogu (1993).

The second order governing equations of the hybrid system maintain the structure of the

two-layer system as
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d(4α− 5)

∂ζ1
∂x

∂2∆u1

∂x∂t
− 1

8
d(4α− 3)

∂ζ1
∂x

∂2u1

∂x∂t

+
3

16
dζ1

∂3∆u1

∂x2∂t
+

1

16
d2u1

∂3∆u1

∂x3
+

3

8
dζ1

∂3u1

∂x2∂t

(3.2.8)

However, the coefficients of all high-order derivatives in the momentum equation (3.2.7)

and two high-order derivatives in (3.2.8) contain the free parameter α. This demonstrates

that the free parameter modulates not only the dispersion but also the nonlinearity and
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vorticity of the hybrid system. The second-order governing equations for the one-layer

system reduce to

∂ζ2
∂t

+ d
∂u2

∂x
= −∂ζ1

∂x
u1 − ζ1

∂u1

∂x
(3.2.9)

∂u2

∂t
+ g

∂ζ2
∂x

− 1

4
d2

∂3u2

∂x2∂t
= −u1

∂u1

∂x
− 1

4
d2

∂u1

∂x

∂2u1

∂x2
+

1

4
d2u1

∂3u1

∂x3

+
3

4
d
∂ζ1
∂x

∂2u1

∂x∂t
+

1

2
dζ1

∂3u1

∂x2∂t

(3.2.10)

which contain the basic nonlinear forcing from the non-hydrostatic formulation. The

absence of the velocity gradient implies a low-order approximation of dispersion and the

lack of vorticity in the velocity field of the one-layer model. All three systems contain

the same continuity equation meaning that the vertical flow structure associated with the

non-hydrostatic pressure influences the nonlinearity through the momentum equations

only.

The second-order solution depends on the nonlinear forcing terms associated with the

vertical flow structure in the three systems. Computation of the second-order harmonics

due to interactions of first-order waves allows comparison with the classical solution

and evaluation of model performance in terms of nonlinearity. The first-order solution

of monochromatic waves can be written as

ζ1(x, t) = a1 cos (kx− ωt) (3.2.11)

u1(x, t) = b1 cos (kx− ωt) (3.2.12)

∆u1(x, t) = c1 cos (kx− ωt) (3.2.13)

where a1, b1, and c1 are amplitude. The linear solution produces self-interacting second-

order harmonics in the form

ζ2(x, t) = a2 cos (2kx− 2ωt) (3.2.14)

u2(x, t) = b2 cos (2kx− 2ωt) (3.2.15)

∆u2(x, t) = c2 cos (2kx− 2ωt) (3.2.16)
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where a2, b2 and c2 are amplitude that varies with the water depth parameter kd. The

second-order Stokes solution reads

a2S =
1

4
a21k (3 coth

3(kd)− coth(kd)) (3.2.17)

which is used to compare with the solutions from the two-layer, hybrid, and one-layer

models as well as the Boussinesq equations of Nwogu (1993).

Substitution of the first-order solution (3.2.11) - (3.2.13) into the linearized governing

equations (3.1.1) - (3.1.3) of the two-layer system gives the expressions of b1 and c1

in terms of a1. The linear dispersion relation (3.1.15) provides an expression for the

angular frequency ω in terms of kd. These three expressions consolidate the variables

of the first and second-order solutions (3.2.11) - (3.2.16) for substitution into the second-

order governing equations (3.2.3) - (3.2.5) to give

a2T =
1

4
a21k

49152 + 33792k2d2 + 9280k4d4 + 796k6d6 + 15k8d8

3k3d3 (5120 + 640k2d2 + 36k4d4 + k6d6)
(3.2.18)

The amplitude of the second-order harmonic comprises 6th and 8th-order polynominals

in the denominator and numerator. A similar procedure provides a2 for the hybrid and

one-layer systems as

a2H =
1

4
a21k(3072 + (1536 + 768α)k2d2 + (420 + 432α− 256α2)k4d4

+(27 + 24α− 16α2)k6d6)
(
24k3d3(16 + k2d2)(1 + 2α)

)−1
(3.2.19)

a2O =
1

4
a21k

4 + k2d2

k3d3
(3.2.20)

The power of the polynominals reduces to 2 and 6 in the denominator and numerator in

the hybrid system and to 2 and 0 in the one-layer system. In comparison, the solution

from the second-order Boussinesq equations of Nwogu (1993) has a power of 2 and 4

in the denominator and numerator

a2N =
1

4
a21k

9− 42α k2d2 − 6k2d2 + 24α2 k4d4 + 8α k4d4

k3d3 (3− 3α k2d2 − k2d2)
(3.2.21)
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Figure 3.4. Relative amplitude of self-interacting super-harmonics from different mod-
els.

Despite being expressed by polynomials of different order, all four solutions have a

common coefficient of a21k/(kd)
3 in contrast to a21k in the second-order Stokes solution.

Figure 3.4 compares the normalized second-order harmonics from the two-layer, hybrid,

and one-layer models with those from the Boussinesq approach of Nwogu (1993) and

Stokes wave theory. The results from the hybrid model is based on the selected value

of α = 0.85442 that optimizes the dispersion relation. When normalized by the second-

order Stokes solution, only the Boussinesq approach exactly reproduces the amplitude at

kd = 0. Derived under a weakly nonlinear assumption, this approach overestimates the

amplitude in 0 ≤ kd ≤ 1.65 for up to 15.3% and gives underestimations for deeper wa-

ter with a relative amplitude of 0.5871 at kd = 3. The solutions from the non-hydrostatic

approach exhibit different characteristics with kd. The two-layer model gives a relative
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amplitude of 1.07 at kd = 0 and shows an overall downward trend, dropping below 1

at kd = 0.8 and resulting in value of 0.7432 at kd = 3. The one-layer model begins

with 1.333 at kd = 0 and follows the same trend, but with larger errors. This implies

the one and two-layer models may produce a slightly higher surface elevation through

the nonlinear forcing over time for relative long waves. The hybrid model gives the best

overall agreement with the second-order Stokes theory. It starts with a relative ampli-

tude of 0.9844 at kd = 0 and produces a maximum value of 1.044 within its applicable

range of kd ≤ 3.

3.2.2 Second-Order Interaction of Bichromatic Waves

Nonlinear surface waves with different frequencies interact with each other to gener-

ate super-harmonics at sum of the frequencies and sub-harmonics at difference of the

frequencies by which wave energy is transferred from the peak to the sidebands of

the spectrum. The second-order interaction between two first-order wave components

plays a fundamental role in this process. This section summarizes the derivation of

the second-order bichromatic solutions from the two-layer, hybrid, one-layer, and the

extended Boussinesq models for comparison with the second-order Stokes solution.

Consider wave propagation over water of constant depth for derivation of analytical

solutions. A wave group consisting of two wave frequencies ωm and ωn with the corre-

sponding wave numbers km and kn at the first order can be written as

ζ1(x, t) = am cos(kmx− ωmt) + an cos(knx− ωnt) (3.2.22)

u1(x, t) =
ωm

k′
umd

am cos(kmx− ωmt) +
ωn

k′
und

an cos(knx− ωnt) (3.2.23)

∆u1(x, t) =
ωm

k′
∆umd

am cos(kmx− ωmt) +
ωn

k′
∆und

an cos(knx− ωnt) (3.2.24)
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where a is wave amplitude and k′
um, k′

un, k′
∆um, and k′

∆un are coefficients determined

from the first-order governing equations. The first subscript of k′ denotes the affiliation

to either u or ∆u, and the second subscript corresponds to wave component of either m

or n. For example, substitution of (3.2.22) - (3.2.24) into the linear governing equations

(3.1.1) - (3.1.3) of the two-layer system gives

k′
um = km (3.2.25)

k′
un = kn (3.2.26)

k′
∆um = −km

16 + k2
md

2

2k2
md

2
(3.2.27)

k′
∆un = −kn

16 + k2
nd

2

2k2
nd

2
(3.2.28)

A similar procedure can be applied to the one-layer and hybrid systems to determine the

corresponding coefficients.

To abbreviate the expressions of the second-order solutions, let θm = kmx − ωmt and

θn = knx − ωnt. Self and cross-interactions of the bichromatic waves in the form of

(3.2.22) - (3.2.24) force the development of four second-order components, which in-

clude three super-harmonics 2θm, 2θn, and (θm + θn) and one sub-harmonics (θm − θn).

The resulting second-order solution can be written as

ζ2(x, t) = amanG
m+n
ζ cos(θm + θn) +

1

2
a2mG 2m

ζ cos( 2θm )

+ amanH
m−n
ζ cos(θm − θn) +

1

2
a2nG

2n
ζ cos( 2θn )

(3.2.29)

u2(x, t) = amanG
m+n
u cos(θm + θn) +

1

2
a2mG 2m

u cos( 2θm )

+ amanH
m−n
u cos(θm − θn) +

1

2
a2nG

2n
u cos( 2θn )

(3.2.30)

∆u2(x, t) = amanG
m+n
∆u cos(θm + θn) +

1

2
a2mG 2m

∆u cos( 2θm )

+ amanH
m−n
∆u cos(θm − θn) +

1

2
a2nG

2n
∆u cos( 2θn )

(3.2.31)
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where G and H are the super and sub-harmonic transfer functions for the respective

subscripted variables and superscripted wave components. Substitution of the first and

second-order bichromatic systems (3.2.22) - (3.2.24) and (3.2.29) - (3.2.31) into the

second-order governing equations (3.2.3) - (3.2.5) of the two-layer system yields six

equations for the six unknown quadratic transfer functions. The transfer functions of the

self-interacting super-harmonics 2θm and 2θn has been discussed in section 3.2.1. The

transfer functions of the cross-interacting super-harmonics (θm + θn) and sub-harmonics

(θm − θn) are examined here in relation to the solutions from Nwogu (1993) and the

second-order Stokes theory.

2.3

3

3

5

5

5

7

7

10

10

30

30

k
m

d

k nd

0 1 2 3 4 5 6
0

1

2

3

4

5

6

−30

−30

−10

−10

−7

−7

−5
−5

−3

−3

−2.3

−2.3

k
m

d

k nd

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Figure 3.5. Amplitude of super-harmonics (left) and sub-harmonics (right) from second-
order Stokes theory.

Published transfer functions of super and sub-harmonics are derived from the Laplace

equation with the second-order free surface boundary conditions based on Stokes wave

theory (Ottesen-Hansen, 1978; Dean and Sharma, 1981; Sand and Mansard, 1986).

These solutions are expressed as functions of ω
√
d/ (4π2g). In this study, the transfer

functions are re-derived as functions of kd as shown in figure 3.5. Since kmd and knd are

interchangeable, both contour plots are symmetric about the diagonal kmd = knd, which
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correspond to the self-interacting solution. It is well known that the super-harmonic

transfer function has a minimum in the intermediate-wave range and increases for longer

and shorter waves. The super-harmonics modify the first-order wave profile by elevat-

ing the crest and flattening the trough. The absolute value of the sub-harmonic transfer

function increases from short to long waves and converges to the setdown when kmd ap-

proaching knd. These low frequency waves are also called wave-group induced setdown,

which is closely related with many coastal wave phenomena such as low-frequency drift

motions of ships in harbors, surf beats, and coastal sediment transport.

Figure 3.6 plots the transfer functions from the three non-hydrostatic models and the

Boussinesq model of Nwogu (1993). The results are normalized by the second-order

Stokes solution and each panel shows contour lines of the relative amplitude with equal

intervals. Based on the upper limit of long waves at kd = 0.3 and the lower limit of short

waves at kd = 3.0, the two-dimensional plots in terms of kd are divided into 9 symmet-

ric segments for discussion. The diagonal segments correspond to interactions between

two long waves, two intermediate waves, and two short waves at first order. The relative

amplitude along the diagonal from each model follows closely with the results of a2/a2S

in figure 3.4. In the segment for long-wave interactions, the Boussinesq and hybrid mod-

els produce nearly the same transfer function as the second-order Stokes wave theory,

whereas the one and two-layer models give slightly higher relative amplitude of 1.2846

to 1.3333 and 1.0569 to 1.0667. The capability to describe the super-harmonics of inter-

mediate waves varies among the four models. The formulation of Nwogu (1993) shows

considerable errors with the relative amplitude ranging from 0.5872 to 1.1534, while

the two-layer model has a smaller range from 0.7432 to 1.0569. The one-layer model

gives a relative amplitude of 1.2846 toward the long-wave limit, but with a value as low

as 0.2360 at the short-wave limit, which outside its applicable range. The hybrid model

has the best performance among the four with a relative amplitude range of 0.9726 to

1.2152. A coastal wave transformation model needs to describe deep-water input wave

conditions at kd ≥ 3. The one-layer model, two-layer model and the Boussinesq model

41



0.3

0.4

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

1

1.1

k
m

 d

k n d

Boussinesq Formulation of Nwogu (1993)

0 1 2 3 4 5 6
0

1

2

3

4

5

6

k
m

 d

k n d

Two−layer System

0.550.6

0.65

0.7

0.75

0.75

0.8

0.8

0.85

0.85

0.9

0.9

0.95

0.95
1

0 1 2 3 4 5 6
0

1

2

3

4

5

6

1

1.1

1.1

1.2
1.2

1.3

1.3

1.4

1.4

1.4

1.5

1.5

1.5

1.6

1.6

1.6

k
m

 d

k n d

Hybrid System

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0.2

0.4

0.4

0.6

0.6

0.8

1

1.2

k
m

 d

k n d

One−layer System

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Figure 3.6. Relative amplitude of super-harmonics from Boussinesq (upper left), two-
layer (upper right), hybrid (lower left), and one-layer (lower right) models.

of Nwogu (1993), which greatly underestimate the super-harmonics with relative ampli-

tude of 0.2737, 0.7432, and 0.5872 at kd = 3, might not fully describe the nonlinearity

of the input wave conditions at deep water. The hybrid model slightly overestimates the

super-harmonics with a relative amplitude of 1.0913.

The transfer function in figure 3.6 also illustrate the model capability to account for

second-order interactions between long and intermediate waves, long and short waves,

and intermediate and short waves. Nonlinear interactions between long and immediate
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waves might be important when surf beat develops from wave breaking in the surf zone.

The one-layer model has the largest range of relative amplitude from 0.7127 to 1.3155,

because it is not fully applicable over the entire range of intermediate waves. The two-

layer model has the smallest relative amplitude from 0.9753 to 1.0631 despite a larger

error for second-order self interactions. Although the hybrid model and the Bossinesq

model of Nwogu (1993) have very similar dispersion relations, they exhibit distinct

nonlinear properties especially for long and intermediate wave interactions. The rela-

tive amplitude of the hybrid model varies from 0.9824 to 1.2227, while the Boussinesq

model varies from 0.8363 to 1.0833. Overall, the hybrid model has the most favorable

nonlinear properties to describe the super-harmonics for wave transformation from deep

to shallow water. The model has the lowest relative error over a wide band along the

diagonal extending to the upper limit of the intermediate range. This is important for

definition of the input deep water wave conditions and steepening of wave profiles prior

to wave breaking. It has low errors for cross interactions between long waves and the

immediate waves in the surf zone.

Sub-harmonic interactions are equally important in coastal processes related to infra-

gravity waves and resonance. Figure 3.7 plots the normalized transfer functions from

the three non-hydrostatic models and the Boussinesq model of Nwogu (1993). For long-

wave interactions, the Boussinesq and hybrid models produce very good agreement with

the second-order Stokes solution, while the one and two-layer models gives higher rel-

ative amplitude of 1.333 and 1.07. In the intermediate range, the Boussinesq model

underestimates the transfer function with relative amplitude from 0.9818 to 0.3833 at

the short-wave limit. The one-layer and two-layer models have a similar downward

trend with relative amplitude of 1.3134 and 1.0627 at the long-wave limit to 0.2095

and 0.7819 at the short-wave limit. The hybrid model, however, shows a different pat-

tern. It gives underestimations down to 0.6872 toward the short-wave limit along the

diagonal and higher values with a maximum relative amplitude of 1.2061 in the off-

diagonal directions. For short-wave interactions, the hybrid model maintains the small
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Figure 3.7. Relative amplitude of sub-harmonics from Boussinesq (upper left), two-
layer (upper right), hybrid (lower left), and one-layer (lower right) models.)

level of error, while the other three models deteriorate rapidly with kd. Cross interac-

tions between short, intermediate, and long waves are not as important for generation of

sub-harmonics because of the large difference in frequency. The Boussinesq, two-layer,

and hybrid models can reasonably handle interactions between long and intermediate

waves especially for small values of kd in the range. It should be re-iterated that the

one-layer model is not applicable toward the upper limit of the intermediate range.
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Figure 3.8. Ratio of approximate sub-harmonic transfer coefficients to Stokes solution
for self-interaction.

The sub-harmonics convert to steady setdown of the water level at the limiting condition

of kmd→ knd. Figure 3.8 compares the four solutions along the diagonal of the sub-

harmonic transfer functions. The second-order solution from the Boussinesq model of

Nwogu (1993) agrees with the Stokes solution at the long-wave limit and gradually

deteriorates with kd. The one and two-layer model overestimate the Stokes solution for

kd < 1.4 and producing larger errors than the Boussinesq model at large values of kd.

The hybrid model closely approximates the Stokes solution for kd < 1 and maintains

a much smaller error than the Boussinesq model for large values of kd. Similar to the

super-harmonic results, the hybrid model provides the best performance in reproducing

sub-harmonic interactions.
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Chapter 4

Numerical Formulation

This chapter describes the numerical implementation of the governing equations for the

integrated two-layer, hybrid, and one-layer system. The numerical formulation for the

two-layer system is addressed first and then adapted for the hybrid model through the

predefined non-hydrostatic pressure distribution. Assigning a value of 0.5 for the free

parameter gives rise to the one-layer model.

4.1 Integrated two-layer system

The governing equations of the two-layer free-surface flow provide separate descrip-

tions of the flux and dispersion-dominated processes. Equations (2.3.5), (2.3.7) and

(2.3.9) describe the flux-dominated processes including discontinuous flows, and equa-

tion (2.3.6), (2.3.8) and (2.3.10) provide corrections to highly dispersive waves and ro-

tational flows. The six governing equations are re-organized into a quasi-linear form

for the implementation of the momentum-conserving advection scheme of Stelling and

Duinmeijer (2003) and the θ-method for time integration. The governing equations for

the flux-dominated flows are

∂ζ

∂t
+

∂hu

∂x
= 0 (4.1.1)
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∂u

∂t
+ g

∂ζ

∂x
+

1

2

∂qzα
∂x

+
1

4

∂qd
∂x

= Su (4.1.2)

∂w

∂t
− qd

ζ + d
= Sw (4.1.3)

and the remaining governing equations are

wzα − uzα

∂zα
∂x

− ∂zα
∂t

+
1

2

∂h∆u

∂x
= 0 (4.1.4)

∂∆u

∂t
+

1

4

∂qd
∂x

= S∆u (4.1.5)

∂∆w

∂t
+

2 qzα
ζ + d

− qd
ζ + d

= S∆w (4.1.6)

in which the source terms are given by

Su = −1

h

(
∂hu2 + h∆u2

∂x
− u

∂hu

∂x

)
− qzα

2h

∂h

∂x
− qd

4h

∂h

∂x
+

qd
h

∂d

∂x

(4.1.7)

Sw = −1

h

(
∂huw + h∆u∆w

∂x
− w

∂hu

∂x

)
(4.1.8)

S∆u = −1

h

(
2
∂hu∆u

∂x
−∆u

∂hu

∂x

)
− qd

4h

∂h

∂x

+
qzα
h

∂ (ζ − d)

∂x
+

qd
h

∂d

∂x
− 2uzαwzα

h

(4.1.9)

S∆w = −1

h

(
∂hu∆w + h∆uw

∂x
−∆w

∂hu

∂x

)
− 2wzαwzα

h
(4.1.10)

The horizontal and vertical advection terms, in the forms as shown in (4.1.7) - (4.1.10),

allow approximation of breaking waves as bores or hydraulic jumps and ensure momen-

tum conservation across the discontinuities. The interfacial advection terms are only

involved in (4.1.9) and (4.1.10) for description of mass and momentum exchange across

the interface.
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4.1.1 Time-integration equations

The governing equations are discretized with a finite difference scheme in the horizontal

direction and a finite volume scheme over the water column. Figure 4.1 shows the

staggered grid and flow variables. The non-hydrostatic pressure and vertical velocity

are defined at the cell center xi and the horizontal velocity at the cell interfaces xi−1/2

and xi+1/2. The θ-method is implemented to integrate the governing equations (4.1.1) -

(4.1.6), which gives

ζn+1
i − ζni

∆t
+

1

∆x
{+ θ ((hu)n+1

i+1/2 − (hu)n+1
i−1/2)

+ (1− θ) ((hu)ni+1/2 − (hu)ni−1/2)} = 0

(4.1.11)

un+1
i+1/2 − un

i+1/2

∆t
+

g

∆x

{
θ
(
ζn+1
i+1 − ζn+1

i

)
+ (1− θ)

(
ζni+1 − ζni

)}
+

1

2∆x

{
θ
(
qn+1
zαi+1

− qn+1
zαi

)
+ (1− θ)

(
qnzαi+1

− qnzαi

)}
+

1

4∆x

{
θ
(
qn+1
di+1

− qn+1
di

)
+ (1− θ)

(
qndi+1

− qndi

)}
= Sun

i+1/2

(4.1.12)

wn+1
i − wn

i

∆t
−

{
θ qn+1

di

hn+1
i

+
(1− θ) qndi

hn
i

}
= Swn

i
(4.1.13)

wn
zα,i =

un
i

2∆x

(
ζni+1/2 − di+1/2 − ζni−1/2 + di−1/2

)
− 1

2∆x

(
(hu)ni+1/2 + (h∆u)ni+1/2 − (hu)ni−1/2 − (h∆u)ni−1/2

) (4.1.14)

∆un+1
i+1/2 −∆un

i+1/2

∆t
+

1

4∆x
{+ θ (qn+1

di+1
− qn+1

di
)

+ (1− θ) (qndi+1
− qndi)} = S∆un

i+1/2

(4.1.15)

∆wn+1
i −∆wn

i

∆t
+ 2

{
θ qn+1

zαi

hn+1
i

+
(1− θ) qnzαi

hn
i

}

−

{
θ qn+1

di

hn+1
i

+
(1− θ) qndi

hn
i

}
= S∆wn

i

(4.1.16)
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Figure 4.1. Staggered grid and flow parameters.

A central difference scheme is applied to the first-order spatial derivatives in the source

terms except for the horizontal advection speeds, which are treated with a second-order

upwind scheme according to Zijlema and Stelling (2008)

ui =


1.5ui−1 − 0.5ui−2 if (hu)i ≥ 0

1.5ui+1 − 0.5ui+2 if (hu)i < 0

(4.1.17)

The vertical advection speed at the cell interface, wi+1/2, ∆wi+1/2, are evaluated by

taking average of the values at adjacent cell centers.

Equations (4.1.11) - (4.1.16) involve eight unknowns in the non-hydrostatic flow system.

Implementation of a finite volume scheme to the continuity equation (2.1.5) over the two

layers provides the remaining two equations to ensure conservation of mass and to close

the system. Integration of the flow variables along the boundaries of the grid cells in the

top and bottom layers and implementation of the linear transformation from (2.3.1) to
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(2.3.4) give

hn+1
i+1/2u

n+1
i+1/2 − hn+1

i−1/2u
n+1
i−1/2 + wn+1

i,ζ ∆x− wn+1
i,d ∆x = 0 (4.1.18)

−hn+1
i+1/2∆un+1

i+1/2 + hn+1
i−1/2∆un+1

i−1/2 + wn+1
i,ζ ∆x− 2wn+1

i,zα
∆x+ wn+1

i,d ∆x = 0 (4.1.19)

The numerical procedure, which is also known as the pressure correction technique,

includes a hydrostatic and a non-hydrostatic step (Zijlema and Stelling, 2005). An in-

termediate solution of the surface elevation and horizontal velocity is obtained from

(4.1.11), (4.1.12) and (4.1.15) and the vertical velocity from (4.1.13), (4.1.14) and

(4.1.16). Implementation of (4.1.18) and (4.1.19) over all grid cells forms a Poisson-type

equation from which the non-hydrostatic pressure is determined. Equations (4.1.11) -

(4.1.16) then update the solution to the next time step.

4.1.2 Numerical procedures

This section provides a detailed description of the numerical procedures for the hydro-

static and non-hydrostatic steps of the solution. In the hydrostatic step, the θ-terms are

initially ignored in (4.1.11), (4.1.12) and (4.1.15) to evaluate an intermediate solution of

the horizontal velocity and free surface elevation:

ζ∗∗i − ζni
∆t

+
(hu)ni+1/2 − (hu)ni−1/2

∆x
= 0 (4.1.20)

u∗∗
i+1/2 − un

i+1/2

∆t
+ g

ζni+1 − ζni
∆x

+
1

2

qnzαi+1
− qnzαi

∆x
+

1

4

qndi+1
− qndi

∆x
= Sn

ui+1/2
(4.1.21)

∆u∗∗
i+1/2 −∆un

i+1/2

∆t
+

1

4

qndi+1
− qndi

∆x
= S∆un

i+1/2
(4.1.22)

where the double-asterisk denotes the intermediate solution. The surface elevation

and horizontal velocity are then refined with the corresponding θ-terms in (4.1.11) and

(4.1.12) as

ζ∗i − ζ∗∗i
∆t

+ θ (
h∗
i+1/2u

∗
i+1/2 − h∗

i−1/2u
∗
i−1/2

∆x

−
hn
i+1/2u

n
i+1/2 − hn

i−1/2u
n
i−1/2

∆x
) = 0

(4.1.23)
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u∗
i+1/2 − u∗∗

i+1/2

∆t
+ g θ

ζ∗i+1 − ζ∗∗i+1 − (ζ∗i − ζ∗∗i )

∆x
= 0 (4.1.24)

where the asterisk denotes the refined intermediate solution. Inserting (4.1.24) into

(4.1.23) and denoting ∆ζi = ζ∗i − ζ∗∗i give rise to a tridiagonal matrix in the form

− gθ2∆t2

∆x2 h∗
i+1/2∆ ζi+1 −

gθ2∆t2

∆x2 h∗
i−1/2∆ ζi−1

+

(
1 +

gθ2∆t2

∆x2 h∗
i+1/2 +

gθ2∆t2

∆x2 h∗
i−1/2

)
∆ ζi

= +
θ∆t

∆x

(
hn
i+1/2u

n
i+1/2 − hn

i−1/2u
n
i−1/2

)
− θ∆t

∆x

(
h∗
i+1/2u

∗∗
i+1/2 − h∗

i−1/2u
∗∗
i−1/2

)
(4.1.25)

Once ∆ζ is obtained from (4.1.25), u∗ can be calculated from (4.1.24). The procedure

repeats until convergency at |u∗(1 ) − u∗(0 )| ≤ 0.00001.

The non-hydrostatic step begins with an intermediate solution of the vertical velocity

from (4.1.13) and (4.1.16) with the θ-terms ignored:

w∗
i − wn

i

∆t
−

qndi
hn
i

= Sn
w,i (4.1.26)

∆w∗
i −∆wn

i

∆t
+

2 qnzαi

hn
i

−
qndi
hn
i

= Sn
∆w,i (4.1.27)

The momentum equations, which contain the terms not used in the hydrostatic step and

the initial computation of the vertical velocity, read

un+1
i+1/2 − u∗

i+1/2

∆t
+
1

4

θ

∆x

{
qn+1
di+1

− qn+1
di

− qndi+1
+ qndi

}
+
1

2

θ

∆x

{
qn+1
zαi+1

− qn+1
zαi

− qnzαi+1
+ qnzαi

}
= 0

(4.1.28)

wn+1
i − w∗

i

∆t
−θ

{
∆qdi
hn+1
i

+

(
1

hn+1
i

− 1

hn
i

)
qndi

}
= 0 (4.1.29)

∆un+1
i+1/2 −∆u∗

i+1/2

∆t
+
1

4

θ

∆x

{
qn+1
di+1

− qn+1
di

− qndi+1
+ qndi

}
= 0 (4.1.30)
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∆wn+1
i −∆w∗

i

∆t
+2 θ

{
∆qzαi

hn+1
i

+

(
1

hn+1
i

− 1

hn
i

)
qnzαi

}
− θ

{
+
∆qdi
hn+1
i

+

(
1

hn+1
i

− 1

hn
i

)
qndi

}
= 0

(4.1.31)

where ∆u∗ = ∆u∗∗, qn+1
d = qnd +∆qd, and qn+1

zα = qnzα +∆qzα . Substituting (4.1.28) -

(4.1.31) into (4.1.18) and (4.1.19) gives a system of simultaneous equations for ∆qd and

∆qzα in the form

A1 ∆qd + B1 ∆qzα = G1 (4.1.32)

A2 ∆qd + B2 ∆qzα = G2 (4.1.33)

The non-symmetric, tridiagonal matrices A1, A2, B1, and B2 are defined by

a1l =− 1

4

θ∆t

∆x
hn+1
i−1/2 (4.1.34)

a1c =+
1

4

θ∆t

∆x
hn+1
i+1/2 +

1

4

θ∆t

∆x
hn+1
i−1/2 −

4 θ∆x∆t

hn+1
i

(4.1.35)

a1r =− 1

4

θ∆t

∆x
hn+1
i+1/2 (4.1.36)

b1l =− 1

2

θ∆t

∆x
hn+1
i−1/2 (4.1.37)

b1c =+
1

2

θ∆t

∆x
hn+1
i+1/2 +

1

2

θ∆t

∆x
hn+1
i−1/2 +

8 θ∆x∆t

hn+1
i

(4.1.38)

b1r =− 1

2

θ∆t

∆x
hn+1
i+1/2 (4.1.39)

a2l =+
1

4

θ∆t

∆x
hn+1
i−1/2 − θ∆t

(
∂d

∂x

)
i

(4.1.40)

a2c =− 1

4

θ∆t

∆x
hn+1
i+1/2 −

1

4

θ∆t

∆x
hn+1
i−1/2 −

12 θ∆x∆t

hn+1
i

(4.1.41)

a2r =+
1

4

θ∆t

∆x
hn+1
i+1/2 + θ∆t

(
∂d

∂x

)
i

(4.1.42)
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b2l =− θ∆t

(
∂d

∂x

)
i

(4.1.43)

b2c =+ 16
θ∆x∆t

hn+1
i

(4.1.44)

b2r =− θ∆t

(
∂d

∂x

)
i

(4.1.45)

where the subscript c denotes the diagonal and l and r denote the elements to the left and

right. The forcing vectors G1 and G2 from the non-hydrostatic source terms are defined

by

G1 =− hn+1
i+1/2u

∗
i+1/2 + hn+1

i−1/2u
∗
i−1/2

+4∆x

{
∆w∗

i − 2 θ∆t

(
1

hn+1
i

− 1

hn
i

)
qnzαi

+ θ∆t

(
1

hn+1
i

− 1

hn
i

)
qndi

} (4.1.46)

G2 =+ hn+1
i+1/2∆u∗

i+1/2 − hn+1
i−1/2∆u∗

i−1/2

+4∆x

{
w∗

i + θ∆t

(
1

hn+1
i

− 1

hn
i

)
qndi

}
+4∆x

{
2∆w∗

i − 4 θ∆t

(
1

hn+1
i

− 1

hn
i

)
qnzαi

}
+4∆x

{
1

2

(
∂d

∂x

)
i

(
u∗
i+1/2 + u∗

i−1/2 +∆u∗
i+1/2 +∆u∗

i−1/2

)}
(4.1.47)

Equations (4.1.32) and (4.1.33) give rise to a Poisson-type system with a non-symmetric,

9-band sparse matrix from which the non-hydrostatic pressure can be obtained by a

linear equation solver. The horizontal and vertical velocities are then updated from

(4.1.28) - (4.1.31) to complete the solution.

For inundation and runup calculations, special numerical treatments are necessary to

describe the moving waterline in the swash zone. The moving-waterline scheme of Ya-

mazaki et al. (2009) is utilized to keep track of the wet-dry boundary through extrapola-

tion of the numerical solution from the wet region onto the beach. The non-hydrostatic

pressure is set to be zero at the wet cells along the wet-dry boundary to conform with

the solution scheme of the non-hydrostatic model. In the implementation, a thin layer
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of water, usually 0.0001m thick, is overlaid on the dry cells to improve numerical sta-

bility. As long as the time step ∆t is small enough to guarantee the waterline movement

is smaller than ∆x, wave runup could be computed without any difficulties.

4.2 Hybrid system

The numerical procedures for the hybrid system follow closely the two-layer formula-

tion. The governing equations (2.5.2) - (2.5.7) are re-organized into a quasi-linear form,

which is discretized over a staggered grid on a boundary-fitted coordinate with a finite

difference scheme. Implementation of the θ-method splits the time integration into the

hydrostatic and non-hydrostatic steps. The hydrostatic step provides an intermediate

solution from the nonlinear shallow-water equations with the non-hydrostatic pressure

from the previous time step. Substitution of the intermediate solution from the hydro-

static step into the cell-integrated continuity equation forms the pressure Poisson equa-

tion. The velocity components are then updated through the computed non-hydrostatic

pressure at the bottom for next time step as in the two-layer model. The development of

the pressure Poisson equation, which is distinct from the formulation of the two-layer

system, is presented here.

The discretization of the six governing equations (2.5.2) - (2.5.7) reduces the number

of unknowns to seven together with a predetermined free parameter. Implementation

of a finite volume scheme to the continuity equation (2.1.5) and integration along the

boundaries of the grid cells in the top and bottom layers gives

hn+1
i un+1

i+ 1
2

− hn+1
i un+1

i− 1
2

− 4∆x∆wn+1
i = 0 (4.2.1)

The horizontal and vertical velocity components at the new time step is given by integra-

tion of the intermediate solution from the hydrostatic step as well as the non-hydrostatic
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pressure terms through (2.5.3) and (2.5.7) as

un+1
i− 1

2

= u∗
i− 1

2
−

(
α

2
+

1

4

)
∆t

∆x

(
∆qdi −∆qdi−1

)
(4.2.2)

un+1
i+ 1

2

= u∗
i+ 1

2
−
(
α

2
+

1

4

)
∆t

∆x

(
∆qdi+1

−∆qdi
)

(4.2.3)

∆wn+1
i = ∆w∗

i −
(2α− 1)∆t

hn+1
i

∆qdi −∆t (2α− 1)

(
1

hn+1
i

− 1

hn
i

)
qndi (4.2.4)

where the asterisk (∗) indicates intermediate solutions from the hydrostatic step and

∆qd = qn+1
d − qnd is the non-hydrostatic pressure correction. The numerical formulation

retains the piecewise linear distribution of the variables in the vertical direction through

the parameter α, but only involves the non-hydrostatic pressure at the bottom.

Equations (4.2.2) - (4.2.4) connect the non-hydrostatic solution with the intermediate

solution and the non-hydrostatic pressure correction. After the hydrostatic solution is

determined from time integration, substitution of these equations into (4.2.1) gives the

pressure Poisson equation in terms of ∆ qd as

A∆ qd = G (4.2.5)

where the coefficients are given by

al = −
(
α

2
+

1

4

)
∆t

∆x
hn+1
i (4.2.6)

ac = +

(
α+

1

2

)
∆t

∆x
hn+1
i +

4 (2α− 1)∆t∆x

hn+1
i

(4.2.7)

ar = −
(
α

2
+

1

4

)
∆t

∆x
hn+1
i (4.2.8)

and the forcing vector from the non-hydrostatic source terms is

G = +hn+1
i u∗

i− 1
2
− hn+1

i u∗
i+ 1

2

+ 4∆x

(
∆wn

i −∆t (2α− 1)

(
1

hn+1
i

− 1

hn
i

)
qndi

) (4.2.9)
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The pressure Poisson equation (4.2.5) contains a non-symmetric tridiagonal matrix ver-

sus a non-symmetric, 9-band sparse matrix in the two-layer system. Since only the

non-hydrostatic pressure at the bottom is involved, the matrix A has half of the rank in

comparison to a two-layer model. The reductions in bandwidth and rank substantially

lower the computational requirements of the hybrid model.

4.3 One-layer system

The numerical discretization and time integration for the one-layer model are a spe-

cial case of the hybrid model when α = 0.5 and the dispersion-dominated governing

equations are disabled. Examination of the diagonal component (4.2.7) of the pressure

Poisson equation reveals that the matrix becomes ill-posed for α = 0.5. The numerical

formulation in the discretized continuity equation (4.2.1) is based on the vertical veloc-

ity gradient ∆w, which vanishes in a one-layer system when α = 0.5. For completeness,

the pressure Poisson equation for a one-layer system is derived here.

Similar to the two-layer and hybrid models, the pressure Poisson equation is derived

from cell-integration of the continuity equation (2.1.5) as

hn+1
i un+1

i+ 1
2

− hn+1
i un+1

i− 1
2

− 2∆x
(
wn+1

di
− wn+1

i

)
= 0 (4.3.1)

The horizontal velocity is given by (2.5.3) through (4.2.3) and (4.2.4). The depth-

integrated vertical velocity is given by (2.4.3) and the bottom velocity by (2.4.6) as

wn+1
i = w∗

i +
∆t

hn+1
i

∆qi +∆t

(
1

hn+1
i

− 1

hn
i

)
qndi (4.3.2)

wn+1
di

= − 1

2∆x

(
un+1
i− 1

2

+ un+1
i+ 1

2

)(
di+ 1

2
− di− 1

2

)
(4.3.3)

Equation (4.3.1) gives a system of simultaneous equations in the form of (4.2.6) with

the coefficients and forcing defined by

al =− 1

2

∆t

∆x
hn+1
i +

1

2

∆t

∆x

(
di+ 1

2
− di− 1

2

)
(4.3.4)
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ac =+
∆t

∆x
hn+1
i +

2∆t∆x

hn+1
i

(4.3.5)

ar =− 1

2

∆t

∆x
hn+1
i − 1

2

∆t

∆x

(
di+ 1

2
− di− 1

2

)
(4.3.6)

G = +hn+1
i u∗

i− 1
2
− hn+1

i u∗
i+ 1

2

− 2∆x{wn
i +∆t

(
1

hn+1
i

− 1

hn
i

)
qndi

+
1

2∆x

(
un
i− 1

2
+ un

i+ 1
2

)(
di+ 1

2
− di− 1

2

)
}

(4.3.7)

The matrix in this linear system is also non-symmetric tridiagonal as in the hybrid sys-

tem and Yamazaki et al. (2009).
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Chapter 5

Results and Discussion

The non-hydrostatic formulation provides a series of models to study coastal processes

over a spectrum of ocean waves from tsunamis to wind seas. The one-layer model caters

to weakly-dispersive long waves such as tsunamis and provides a baseline for com-

parison with the two-layer and hybrid models. The two-layer model maintains strong

dispersion characteristics for propagation of wind waves and utilizes a momentum con-

serving scheme to describe the flux-dominated breaking process in runup calculations.

The hybrid system provides better performance than one-layer models in dispersion and

shoaling properties and requires less computational resources than a two-layer system.

This chapter examines the performance of the three models through a series of numeri-

cal experiments involving long and short waves. Modeling of solitary wave propagation

in a channel of constant water depth allows examination of the balance between dis-

persion and nonlinearity as well as assessment of model convergency with respect to

temporal and spatial resolution. The laboratory experiment of Beji and Battjes (1993)

for transformation of small amplitude waves over a submerged bar provide a test case to

examine the dispersion characteristics in a weakly nonlinear setting, while the laboratory

data from Nwogu (1993) on wave transformation over a plane beach allow examination

of the dispersion, shoaling, and nonlinear properties. Wave breaking and runup are as-

sessed through laboratory data from Synolakis (1987) for solitary wave transformation
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on a plane beach. Finally, the shock-capturing capability is validated through the labora-

tory data of Roeber (2010) on wave transformation over fringing reefs. Each of the test

cases utilizes θ = 1 in the numerical procedures of the hydrostatic and non-hydrostatic

steps to guarantee convergency and the same spatial and temporal resolution for direct

comparison of the results.

5.1 Solitary wave propagation in a channel

A standard test for the dispersion characteristics of non-hydrostatic and Boussinesq-

type models is the propagation of solitary waves in a frictionless channel of constant

depth. Due to the balance between nonlinearity and dispersion, the computed solitary

wave should maintain its profile when traveling over water with uniform depth. Since a

solitary wave involves mass flux, it provides a suitable test for nearshore wave models.

In the numerical experiment, a 2500m long and 10m deep channel is considered with

the initial conditions corresponding to a solitary wave of 2m high at 100m from the left

boundary. A reflecting boundary condition is implemented at the two ends of the chan-

nel. The solitary wave solution provides the horizontal velocity and surface elevation

as

u =
c ζ

ζ + d
(5.1.1)

ζ =
4a exp

(
−
√

3a
d2(a+d)

(x− ct)
)

(
1 + exp

(
−
√

3a
d2(a+d)

(x− ct)
))2 (5.1.2)

where a = 2m, d = 10m, and c =
√

g (a+ d). The vertical velocity and gradient are

inferred from the solitary wave solution provided by Stelling and Zijlema (2003) as

w =
1

2
(−ζ + d)

∂u

∂x
(5.1.3)

∆w =
1

4
(ζ + d)

∂u

∂x
(5.1.4)
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A grid size of ∆x = 3m and a time step of ∆t = 0.05 s achieve a Courant number of

∆t
√
gd/∆x = 0.1651.
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Figure 5.1. Solitary wave profile along a channel with constant water depth. Integrated
two-layer model (black line), hybrid model (blue line), and one-layer model (purple
line).

Figure 5.1 shows the wave profiles at 60 s, 120 s, and 180 s. The incompatibility be-

tween the initial analytical and the subsequent numerical solutions results in develop-

ment of trailing waves at the beginning for all three models. The two-layer model, which

maintains the waveform and height through the remaining computation, demonstrates a

good balance between dispersion and nonlinearity in the governing equations. For the

one-layer and hybrid models, a low-frequency component begin to separate from the

leading solitary wave causing an initial increase of the wave amplitude at t = 60 s. This

small-amplitude component propagates at a lower speed and gradually lags behind the

leading solitary wave decreasing its amplitude over time. This indicates an imbalance
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between dispersion and nonlinearity in the governing equations that are further modified

by the numerical schemes.
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Figure 5.2. Solitary wave profiles at t = 180 s with different temporal and spatial
resolution (a) ∆x = 3m (b) ∆t = 0.05 s.

The two-layer model is less susceptible to numerical artifacts arising from dispersion

and nonlinearity and provides a platform for testing of the accuracy and stability of

the numerical scheme. Figure 5.2 compares the wave profiles at t = 180 s with dif-

ferent temporal and spatial resolution. The profile computed with ∆t = 0.05 s and

∆x = 3.0m is nearly identical to the analytical solution and provides a reference for

comparison. In Figure 5.2 (a), the spatial resolution ∆x = 3.0m is fixed and the time

step varies from ∆t = 0.05 to 0.15 s resulting in Courant numbers between 0.1651

and 0.4952. The results show reduction of the amplitude and celerity at high Courant

numbers because of accumulation of truncation errors due to the increased number of

iterations at each time step. Figure 5.2 (b) shows the wave profiles computed with ∆x =

3, 6, and 9m at ∆t = 0.05 s. The Courant number remains low in these cases. However,

a large grid size coupled with an explicit scheme for the advection terms may result in
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significant numerical dissipation in the present model. Further testing showed that the

model remains stable for a Courant number up to 0.79.
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Figure 5.3. Sketch of submerged bar experiment. Circles indicate wave gauge locations.

5.2 Sinusoidal wave propagation over a bar

The laboratory experiments of Beji and Battjes (1993) and Luth et al. (1994) on wave

propagation over a submerged bar provide a good illustration of coastal wave processes.

Their work provides a useful dataset for validation of numerical wave models especially

in their capability to describe dispersive waves (Stelling and Zijlema, 2003; Yamazaki

et al., 2009; Roeber et al., 2010a). Figure 5.3 shows the numerical model setup. The

flume is 35m long and 0.4m deep. A 0.3m high trapezoidal bar is located at 6m from

the wave maker. The bar has a 2m crest with a 1:20 front slope and a 1:10 back slope.

Regular sinusoidal waves are generated from the left boundary and a 10m sponge layer
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and a radiation condition at the right boundary mimic the gravel beach in the laboratory

experiment. Test case with wave amplitude and period of 0.01m and 2.02 s correspond-

ing to kd = 0.67 is selected. The small wave amplitude results in a weakly nonlinear

problem that stands out the dispersion and shoaling properties in the comparison among

the integrated two-layer, hybrid and one-layer models. With the origin defined at the

wave maker, all three models utilize a grid size of ∆x = 0.05m in the 35m long com-

putational domain. The use of the time step ∆t = 0.01 s gives a Courant number of

Cr = 0.3962. The surface roughness is small and unimportant in this experiment.
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Figure 5.4. Comparison of computed and recorded free surface elevations over and
behind a submerged bar. Integrated two-layer model (black line), hybrid model (blue
line), one-layer model (purple line), and laboratory data (dots).

Figure 5.4 plots the recorded and computed surface profiles at eight stations over and

behind the bar. The incident sinusoidal waves shoal over the front slope and the profile

63



becomes asymmetric at station 4. The comparison indicates very good agreement on

the surface elevations from all three models up to station 7 on the back slope just be-

hind the crest. The results from the one-layer model begin to deviate at station 8 when

higher harmonics are released from the waves propagating down the slope. The results

at stations 9 to 11, which are located behind the bar, show greater discrepancies among

the three models. Although the one-layer and hybrid models are outside the applica-

ble range of the dominant third-order harmonics at 0.67 s with kd = 3.6, their results

provide close approximations of the measurements. However, the dispersion properties

become dependent on the numerical scheme when models are implemented beyond their

applicable range (Yamazaki et al., 2009). The two-layer model, which reproduces the

exact linear dispersion relation with an error of less than 5% up to kd = 11, provide

good agreement with the recorded waveforms.

5.3 Regular wave shoaling on a plane beach

The laboratory experiment of Nwogu (1993) on wave propagation over a plane slope

allows examination of model capabilities in describing wave dispersion, shoaling, and

nonlinearity simultaneously. The experiments were conducted in a basin of 20m long,

30m wide, and 3m high at the National Research Council of Canada in Ottawa. Waves

generated at a water depth of 0.56m propagate normally toward a 1:25 plane slope. A

test case with regular incident waves of 0.033m amplitude and 1.5 s period is consid-

ered. This gives rise to kd = 1.0 at the wave maker and decreasing values toward the

beach for demonstration of the shoaling process. All three models utilize a grid size

of ∆x = 0.025m and a time step of ∆t = 0.0025 s to achieve the Courant number

Cr = 0.2344. The surface roughness becomes important for wave processes on the

64



beach. A Manning coefficient of n = 0.012 accounts for the smooth concrete beach in

the laboratory experiment.

Figure 5.5 compares the measured and computed surface profiles at 0.24m and 0.14m

water depth corresponding to kd = 0.7 and 0.5. The hybrid model shows good agree-
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Figure 5.5. Comparison of computed and recorded surface elevation in the plane beach
experiment. Integrated two-layer model (black line), hybrid model (blue line), one-layer
model (purple line), and experiment data(dots).

ment with the laboratory data, whereas the one and two-layer models underestimate

the wave height at both locations despite having better agreement with the exact lin-

ear shoaling gradient in the range of kd considered. At h = 0.24m, the hybrid model

gives good predictions of the crest but slightly underestimates the trough. The one and

two-layer models, however, underestimate both the crest and trough elevations. Since all

three models capture the phase correctly, nonlinearity instead of dispersion is an issue in

this case. A major source of nonlinearity derives from the kinematic free surface bound-
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ary condition, which is approximated differently through the layer-averaged velocity in

these models (see equations 2.3.13 and 2.4.5).

The hybrid model provides the best agreement with the laboratory data at h = 0.14m.

The one and two-layer models reproduce the non-symmetric wave profile, but further

underestimate the wave height due to increasing importance of nonlinearity at shallower

water. The numerical results reinforce the findings from the second-order analysis in

Section 3.2 that the hybrid model has better nonlinear properties associated with the

layer-averaged velocity resulting from the predefined non-hydrostatic pressure distribu-

tion. However, the waves were observed to break around h = 0.14m in the laboratory

experiment. Apart from nonlinearity, dissipation due to wave breaking and the surf

zone processes also affects the results. Although all three models describe wave break-

ing through the momentum-conserving advection scheme, the implementation in each

model depends on the flow variables involved and results in different dissipation rates

and incipient times.

5.4 Solitary wave transformation on a plane beach

The two-layer, hybrid, and one-layer formulations allow direct implementation of a mo-

mentum conserving scheme to describe breaking waves and a moving-waterline scheme

to track flooding and drying of the beach. The laboratory experiment of solitary wave

transformation on a plane beach from Synolakis (1987) provides a good dataset to val-

idate these three models for wave breaking and runup calculations. A test case with a

1:19.85 beach slope and a wave height to depth ratio of A/h = 0.3 are considered here.

A Manning coefficient of n = 0.01 approximates the surface roughness of the plexi-

glass flume and beach. Following Titov and Synolakis (1995), the initial solitary wave

is placed one half wavelength from the toe of the beach in the numerical experiment.
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Figure 5.6. Comparison of computed and recorded surface profiles in the experiment
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laboratory data (circles).
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Figure 5.6 shows comparisons between the measured and computed waveforms over the

slope. The solitary wave begins to transform as it enters shoaling water starting from

x/h = −20 and develops into a plunging breaker around t (g/h)0.5 = 20 just before

reaching the waterline. All three models reproduce the breaking process as a collapsing

bore through momentum conservation without artificial dissipation mechanisms. The

two-layer model generates a slightly lower bore compared with the hybrid and one-layer

model. The flow transitions into a flux or advection-dominated process over the beach at

t (g/h)0.5 = 25. The one-layer model yields a surge with a steep wave front that persists

through the runup process. In contrast, the two-layer and hybrid models produce a surge

with a gradual decrease of flow depth to the waterline. The resulting surge reaches a

maximum elevation of ζ/h = 0.55 around t (g/h)0.5 = 40. The drawdown process of

the flow begins to generate a hydraulic jump around t (g/h)0.5 = 50. The one-layer

model develops a steeper wave front compared to the laboratory measurements as well

as the hybrid and two-layer model results. All three models describe the runup and

drawdown processes reasonably well, but could not fully describe the hydraulic jump at

t (g/h)0.5 = 55 probably due to the three-dimensional flow structure in the laboratory

experiment. The computed results recover toward the end of the test demonstrating the

resilience of these models.

The vertical flow exchange in a two-layer system is essential to maintain the correct

speed and prevent a bore-like feature at the moving waterline. This can be demonstrated

by turning off the interfacial advection terms uzαwzα and wzαwzα to eliminate vertical

flow exchange in the two-layer model. Figure 5.7 compares the computed waveforms

with and without the interfacial advection terms with the laboratory measurements. The

two solutions produce the same results as the solitary wave shoals over the slope just

before wave breaking around t (g/h)0.5 = 20. After wave breaking, a surge develops

on the beach at about t (g/h)0.5 = 25. The solution with interfacial advection shows a

smooth transition to the waterline. Without it, a bore-like feature develops immediately

behind the waterline. The wave front maintains its distinctive feature and travels further
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onshore until the flow recedes at around t (g/h)0.5 = 42. Only minor discrepancies exist

between the two numerical solutions when the flow draws down the beach.

To understand the difference in the two solutions, the horizontal velocity profiles at

t(g/h)0.5 = 25 and 30 are examined in figure 5.8. When the bore collapses onto the

shoreline, the velocity of the top layer utop is higher than that of the bottom layer ubottom.

The two layers exchange momentum and mass through interfacial advection. The faster

top layer transports water into the bottom layer at the wave front to advance the sheet

flow at the correct speed on the initially dry bed. This transportation also induces an

upward return flow from the bottom layer to balance the momentum and mass fluxes.

This exchange between the two layers results in a rotational flow that mimics a vortex
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at the wave front. It is in this way that the two layers of flow function coherently and act

as a whole. The results show the flow velocity in each layer smoothly approaches zero

at the waterline. When interfacial advection is disabled, the two layers lose the ability

to describe interfacial activities and start to behave separately at the wave front. The top

layer over takes the bottom layer to generate a bore-like feature in surface elevation and

produces a sharp increase of the flow velocity beyond the wave front into a sheet flow.

The flow in bottom layer terminates with a rapid decrease of the velocity at the wave

front. This leads to a local discontinuity of the depth-integrated velocity at the bore-like

feature. The comparison indicates that without interfacial advection, the transport of the

fluid is not continuous and an unrealistic flow structure may occur at the waterline.

5.5 Solitary wave propagation over a fringing reef

Roeber (2010) conducted two series of laboratory experiments on solitary wave trans-

formation over idealized fringing reefs at the O.H. Hinsdale Wave Research Laboratory

of Oregon State University. The configuration consists of a steep fore reef, a reef crest,

and a reef flat commonly seen in tropical coastal environments. The experiments pro-

vided a valuable dataset for validating shock-capturing capabilities of dispersive wave

models (Roeber et al., 2010a). The selected tests for the present study were conducted in

the Large Wave Flume of 104m long, 3.66m wide, and 4.57m high. The setup includes

a fore reef with a 1:12 slope beginning at 25.9m from the wave maker followed by a

0.2m wide reef crest and a reef flat. The water depth of 2.56m, which is at the level

of the reef crest, submerges the flat by 0.2m to form a shallow lagoon. The submerged

reef does not involve flows over initially dry surface and avoid problems with the lack

of interfacial advection in the one-layer model to provide a consistent comparison of

the dispersion and nonlinear properties in the three models. This condition accentuates
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the shock-related hydraulic processes involving bores and hydraulic jumps for model

evaluation.

The solitary wave heights of A = 0.256m and 0.768m are considered. These result in

dimensionless wave heights of A/d = 0.1 and 0.3 to examine the model capability in

handling dispersion and shoaling in varying degrees of nonlinearity. All three models

use a grid size of ∆x = 0.1m and a time step of ∆t = 0.005 s for a Courant number of

Cr = 0.2476. A Manning coefficient of n = 0.012 defines the surface roughness of the

concrete reef system in the laboratory experiment. Figure 5.9 shows the computed and

measured surface elevations along the flume for A/d = 0.1. The small amplitude soli-

tary wave steepens over the reef and overtops the reef crest without breaking. The surge

transitions from subcritical to supercritical over the back slope of the crest and generates

a hydraulic jump in the lagoon. The influx of water in turn produces a bore propagating

in the downstream direction. All three models give very good agreement with the labo-

ratory data. The results from the hybrid and two-layer models are nearly identical. The

one-layer model gives rise to a minor discrepancy near the bore and hydraulic jump due

insufficient resolution of the non-hydrostatic pressure at the discontinuities.

The comparison in figure 5.10 shows more discernible discrepancies between the three

solutions for the larger wave height of A/d = 0.3. While all three models produce

the same incident solitary wave profile in front of the reef, slight deviations emerge as

the wave shoals over the slope because of the varying capability to account for non-

hydrostatic and nonlinear effects. Consistent with the results from non-dispersive or

weakly dispersive models (Yamazaki et al., 2009; Wei et al., 2006), the profile from

the one-layer model steepens and collapses earlier as the wave begins to break over the

reef crest around t
√

g/h = 87.46. These models approximate the breaking process

as a collapsing bore albeit with a slight offset in timing and give the same predictions

over the fore reef, when the surface slope decreases and nonlinearity abates after wave

breaking. This results in similar hydraulic jumps over the back slope of the reef crest.
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Figure 5.9. Comparison of computed and recorded surface profiles in the reef exper-
iment with A/h = 0.1. Integrated two-layer model (black line), hybrid model (blue
line), one-layer model (purple line), and measured data (dots).
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As the bore begins to develop and propagate into the lagoon, the discrepancy in the

celerity becomes significant over time.

The flow over the reef flat is flux dominated, but the vertical flow structure is important

near discontinuities. The one-layer flow structure impedes the advection across the dis-

continuity and distorts the strength and phase of the shock. The effects, which might

not be noticeable in the hydraulic jump immediately behind the reef crest, are cumu-

lative for the propagating bore and become more pronounced with higher nonlinearity.

The hybrid and two-layer models allow both horizontal and vertical advection across

the discontinuity to more appropriately describe the flow structure as well as the bore

formation and propagation as in the laboratory experiment. Shock-capturing capabil-

ities and adequate resolution of vertical flow structures are necessary to describe flow

discontinuities.

Roeber (2010) also conducted a series experiments of the solitary wave propagation

in the same setup but with a smaller water depth of 2.5m. This exposes the crest by

0.06m and submerges the flat by 0.14m. The exposed reef involves intermittent wet-

dry conditions that require the interfacial advection to facilitate vertical flow exchange

and to maintain correct speed and wave profile for the sheet flow across it. Figure

5.11 compares the measured wave profile and the two-layer model results with and

without interfacial advection. The two numerical solutions remain identical through

the wave breaking process until the wave reaches the reef crest at t(g/d)0.5 = 68.74.

Without interfacial advection, the higher momentum in the top layer causes the wave

front to surge forward and generate a bore in the lagoon. The subsequent overtopping

of the solitary wave over the crest generates a second bore. The two bores are fully

developed by t(g/d)0.5 = 73.10 and travel down the lagoon. In contrast, interfacial

advection allows transfer of the excess momentum to the bottom layer and maintain

the sheet flow across the crest. This produces a single bore in the lagoon as observed

in the laboratory experiment Roeber (2010). The comparison indicates that interfacial
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Figure 5.11. Surface profile of solitary wave propagation over an exposed fringing reef
from the integrated two-layer model with (blue line) or without (red line) interfacial
advection. Dots denote laboratory measurements.
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advection is essential for a two or multilayer model to synchronize the flow over the

water column at the wet-dry moving boundary.
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Chapter 6

Conclusions and Recommendations

This study has introduced an alternate formulation for multi-layer non-hydrostatic flows

and demonstrated its capabilities in handing discontinuous flows and moving wet-dry

boundaries with a two-layer model. A linear transformation between the two layers re-

casts the governing equations into a flux-dominated and a dispersion-dominated system.

The new governing equations maintain the dispersion characteristics of the conventional

two-layer system. The removal of the layer interface from the governing equations sim-

plifies the implementation of the momentum-conserving advection scheme for breaking

wave approximation and a moving-waterline scheme for inundation calculation.

To lower the computational requirements, a predefined piecewise linear distribution of

the non-hydrostatic pressure coverts the integrated two-layer flow system into a hybrid

system with a free parameter, which in turn is optimized for a specific range of water

depth parameters. The approximation to the non-hydrostatic pressure reduces the non-

symmetric 9-band sparse matrix in the integrated two-layer system into a non-symmetric

tridiagonal matrix with one half of the rank as in a one-layer model, while maintaining

necessary dispersion characteristics for practical application. A one-layer system can be

recovered by setting the tuning parameter as 0.5.
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A perturbation procedure develops the first and second-order governing equations for a

systematic analysis of the linear and nonlinear wave properties associated with the two-

layer, hybrid, and one-layer models. Dispersion is fundamental to the non-hydrostatic

formulation of free surface flows. The two-layer model reproduces the exact linear

dispersion relation within a 5% error for water depth parameter up to kd = 11. The

hybrid model can be satisfactorily tuned for the water depth parameter 0 < kd ≤ 3 as in

the extended Boussinesq model of Nwogu (1993), while the one-layer model produces

better performance than the classical Boussinesq model. In terms of the linear shoaling

gradient, the one and two-layer models provide slightly better performance than the

hybrid model, which is optimized to reproduce the linear dispersion relation. However,

the hybrid model exhibits better performance than the two-layer model in reproducing

super-harmonics and sub-harmonics in nonlinear wave-wave interactions.

Numerical implementation of the integrated two-layer system is conducted on a stag-

gered grid by a finite difference scheme in the horizontal direction with the θ-method for

time integration. A finite volume scheme resolves the vertical velocity distribution with

the Keller box method and gives rise to a Poisson-type equation for the non-hydrostatic

pressure. The pressure correction technique of Zijlema and Stelling (2005), which con-

sists of a hydrostatic and a non-hydrostatic step in the solution procedure, works well for

the integrated two-layer model. The numerical solution remains stable and accurate with

proper temporal and spatial resolution. The numerical framework reduces to the hybrid

and one-layer models through adjustment of the tuning parameter in the non-hydrostatic

pressure distribution.

The integrated two-layer and hybrid models provide an accurate description of disper-

sive waves in a series of test cases without compromising the capability to describe

flux-dominated processes such as wave breaking, bore propagation, and sheet flow. The

computed results give very good agreement with laboratory measurements for wave

transformation over a submerged bar, a plane beach, and fringing reefs. The submerged
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bar experiment with weak nonlinearity demonstrates the important role of dispersion

in coastal wave transformation. The plane beach experiment confirms both dispersion

and nonlinearity play a primary role in defining shoaling processes. The fringing reef

tests illustrate the vertical flow structure is crucial in describing the advection across

discontinuities associated with bore formation and propagation. Interfacial advection

is essential for a multi-layer models to describe rotational flows at the wet-dry moving

boundary.

The analytical and numerical studies have shown the advantages of the hybrid model

in describing coastal wave transformation. The hybrid model provides comparable or

better results as the two-layer model partly due to its good nonlinear properties, but

at substantially lower computational requirements. Its non-hydrostatic formulation is

identical to the one-layer model, NEOWAVE, of Yamazaki et al. (2009, 2011). A logical

next step is to extend NEOWAVE with the hybrid formulation for modeling of coastal

and surf-zone processes. Future research on the multi-layer non-hydrostatic models

should be directed toward quantification of the rotational flow across flow discontinuities

and at the moving wet-dry boundary.
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